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Abstract

Box (19S7) and Leon et al. (1987) discuss the problem of closeness. to target in quality

engineering. If the mean response f(x, z) depends on (x, z), the variance function is a

PERMIA if it is g(z), i.e., depends only on z. The goal is to find (z 0 , z0 ) which minimizes

variance while achieving a target mean value. W-e pose and answer the question: for given

smoothness assumptions about f and g, how accurately can we estimate zo and z0 ? As

part of the investigation, we also find optimal rate- of convergence for estimating f, g and

their derivatives.

Keywords: Nonparametric Regression; Performance Measure PERMIA: Quality Control-'

Taguchi's Method: Variance Function Estimation. ,



1. Introduction

We investigate estimation of optimal policies in what Box (1987) calls the problem

of "closeness to target" in quality engineering; see also Leon et al. (1987) and Taguchi &

Wu (1985). System variability is governed by a control factor z, so that observations have

variance function g(z). System mean is governed not only by the control factor z but also

by a signal factor x, so that observations have mean function f(x, z). In the terminology

of Leon et al. (1987). the variance function g(z) is a PERPMIA. As in Box (1987). the goal

is to find the control setting z0 which minimizes g, and to find the signal setting x0 for

which f(xO, zo) = ro, where r0 is a prespecifled target value.

In practice, f and g would usually be unknown, and so we sample a variety of signal

factors and control factors to produce estimators f and of f and g, respectively. Choose

io to minimize §, and given i0 , choose io so that ](io, io) = ro. Interest in this paper

focuses on the case where f and g cannot be specified parametrically. We pose and answer

the question: for given smoothness assumptions about f and g, how accurately can we

estimate x0 and z0 ?

Some insight into the problem may be obtained by simple Taylor expansion, as follows.

Assume f and g have one and two continuous derivatives, respectively. Then it is reasonable

to suppose f and § to satisfy those smoothness conditions. Since g'(zo) = g'(40) = 0 then

0 = '(o) = .'(Zo) + Po - Zo)&"(o) = .'(Zo) - g'(o) + (PO - Zo)W"(0)

where .0 lies between zo and io. Therefore

(1.1) Zo - .o -{'(Zo) - g'(zo)}/4"(4).

Likewise, since f(xo. :o) = f(io, :o) = ro then

T"o = !(o, io) =(xo, -o) + (&o - Xo)"('°)(i, io)

= To + f(zo, Zo) - (o, zo) + (-o - Zo)(' 1)(Xo, i;) + (io - Xo)f" 0°(i;, 0o ,



where 5 lies between o and io, and :0* lies between zo and zo. Therefore

(-.2) .o - X0 = --{f(Xo,Zo) - -f(xo, zo)/1°)(.i, ,o)

- ( O)- 0 '1 1(. -)/flO)(j* io)

From equations (1.1) and (1.2) we conclude that (i) if g(2 )(Zo) is nonzero then z0 can be

estimated with the same accuracy as g(0)(z2); and (ii) if f(',°)(zo, zo), f(°I)(x0, z0) and

g(2)(zo) are nonzero then x0 can be estimated with the worst of the accuracies with which

f(xo, zo) and g(l)(zo) can be estimated. In the pathological event that one or other of

these functions should be zero, higher-order Taylor expansions must be investigated.

Thus, estimation of x0 and z0 reduces to estimation of f, g and derivatives of those

functions. Inference about the mean, f, is a classic nonparametric regression problem, but

not so inference about the variance, g. We require an estimate of the mean before we can

estimate the variance, and interest centres on the effect which not knowing f has on our

ability to estimate g.

We now discuss convergence rates obtainable from (1.1) and (1.2). Suppose f has vi

derivatives and 9 has v 2 derivatives. We allow v, and V2 to be arbitrary positive numbers,

since fractional derivatives may be expressed in terms of Lipschitz conditions. (See the

second paragraph of Section 2 for definitions.) The argument leading to (1.1) and (1.2)

requires at least one derivative of f and two derivatives of g, and so we assume here that

v, > 1 and v2 > 2. In Sections 2 and 4 we shall use (1.1) and (1.2) to show that kernel-type

estimators achieve convergence rates

(1.3) io - xo I Op {max(N -v/ 2 ( t +1) N-(v2-1)( 2 v2+1)),

(1.4) IZo - zol -O()

where N denotes the numbr of pairs of signal factors and control factors in our sample.

The first contribution to the right-hand side of (1.3) is due to the possible effect of not know-

ing f. When v, > 1 and v2 > 2, not knowing f has no effect on the accuracy with which we
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can estimate z0, but does influence the accuracy with which we can estimate x0. A neces-

garY and sufficient condition for the right-hand side of (1.3) to equal O(N-('2-1)/( 2
&"2+1)).

and so for there to be no penalty in not knowing f, is v, > (2/3)(v2 - 1).

Ve shall prove in Section 3 that the rates of convergence described by (1.3) a&d (1.4)

are optimal, in the sense that under the stated smoothness assumptions, no nonparametric

estimator can achieve faster rates.

Result (1.2), which leads to rates of convergence for estimates of z0 , requires only

v2 > 2 and v, > 0. We shall show that in this general circumstance, the best achievable

rate of convergence of any estimator of z0 is

(1.5) 1^0 - z01 = Opr{max(N(I -)I(2 v2+l),

For small vj, this rate is inferior to that described by (1.4) unless Vz(V 2 - 1)/{(v1 + 1)V2} >

(112 - 1)/(2v2 + 1); that is, unless v, >! v2 /(v2 +1). Of course, the latter inequality is always

satisfied when v, > 1, arid in that case (1.4) and (1.5) are identical.

Most of our attention will be devoted to the case of an experiment of fixed design.

defined by model (2.1) in Section 2. Fixed design is more realistic than random design in

most control contexts, and is amenable to complete asymptotic analysis. Section 4 will

outline analogous results in the random design case. Some of this work has a counterpart in

heterscedastic, nonpararnetric regression, and will be discussed elsewhere in that context.

In some applications, our model (2.1) applies only after a data transformation of the

response variable. Our discussion still applies for the closeness-to-target-problem, by using

approximations suggested by Box (1987); see his equation (15).

2. Fixed design case

In the fixed design case our model is

)"j = f(i/n,j/n) + g(j/n)i e, 1 <i,j < n (2.1)

where the ci1 's are independent with zero means, unit variances and uniformly bounded

fourth moments. We observe the data set {Yij, 1 < ij < n}, and wish to estimate f, g
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and their derivatives. Note that there are N = n2 observations, not n; this is important

when comparing our results with those in classical nonparametric regression problems.

Let v > 0, and write (v) for the largest integer strictly less than v. A univariate

function g is said to be v-smooth if it has (v) bounded derivatives and if g((')) satisfies a

Lipschitz condition of order v - (v):

Ig" 0) (X) - 9((v))(Y)l _< Clx - YlI

for all z, y E (0, 1). A bivariate function f is said to be v-smooth if f (Ii)(x,y) exists and

is bounded for all i > 0, j > 0 satisfying i + j < (v), and if

if "')(U, v) - f 'j)(X, )I -C(u - X1' -(') + Iv'- Y-

for all u. v, x, y E (0,1) and all i > 0, j > 0 satisfying i+j = (v). We assume that in model

(2.1), the bivariate mean function f is vl-smooth and the univariate variance function g is

v2-smooth.

Our estimates of f and g are based on fixed-design analogues of kernel sequences

which may be defined as follows. Given 0 < hl, h2 < 1, and nonnegative integers r, s and

t, let {a1k(hl), -oo < k < oo}, {bk(hi), -oc < k < oo) and {ck(h2), -00 < k < cc) be

sequences of constants satisf.ving

la0I __ Chr+1 Ibkj h , jcbk _ Cht + , aj= bk = 0 if IkI > Ch-,

(2.2) Ck = 0 if II> Ch' Zkiak ={r! if i = r(2.2)~~~ ck=0i k h kat = 0 if 0 < Z' < (vj) and i' 0 r

(S! ifi=s t! if I =t
_kkbk= 0 if0<i <(VI) kick 0 if0<i< ( 2)

k andios , k and i 0 t

The constant C does not depend on h, or h 2.

To construct {ak} for example, let K be a compactly supported, real-valued, r-times

continuously differentiable function satisfying f u'K(u)du = 1 if i = 0, 0 if 1 < i < (vI).

Put L(u) = (-l)rK(r)(u). Then f u'L(u)du = r! if i = r, 0 if 0 5 i < (vi) and i r. A



slight adjustment of L, taking account of errors in series approximations to integrals and

giving the function L1 say, ensures that ak = h+ILI(hik) has the desired properties.

Our estimator of f(r,") is

(2.3) ~r)(/nj/n)=_ T+a

k I

where 1'j is defined to be zero if one or other of i,j is less than one or greater than n.

Basic properties of (r,) are described by the following theorem.

Theorem 2.1. Assume f is v1-smooth, vi > r + s, g is bounded, sup E(Ej) < oo, and

hI = h,(n) satisfies h, -* 0 and nh, --+ oo. Then for each 0 << .2,

(2.4) sup [Ej(r's)(i/n,j/n) - f(*")(i/nj/n) = O{(nh1)-O"-r-,)}
6n<i~J<(l-b)n

(2.5) sup var f j(r)(i/n,j/n)} = O(nh )2(r+ )h2}I
I<ij<n

REMARK 2.1 Given any (z, y) E (0,1)2, we may define i(r,')(X, y) by linear interpolation

among the four vertices of the integer square containing (x,y). It is easily shown that

analogues of (2.4) and (2.5) hold for this "more general" estimator:

sup IEf (r')(X, z) - f (°)(z, z)1 = O{(nhi)-(v'-r-S) I
6<z,z<1-6

sup var i(x, z)} = .0<X,I<l

REMARK 2.2 It follows from Theorem 2.1 that the mean squared error of f(r s) is

(2.6) E{f(r")(i/n,j/n) - f( /n)(/ j/n)}2 = O{(nhi)- 2(v1 - - ) + (nhi) 2(r+s)h}

uniformly in bn < i,j < (1 - 6)n. The order of magnitude of the right-hand side is

minimized at O(n - 2 (v1 - r )/ + 1)) = O(.N - ( P1-r - s)/(,1+I)) by taking hi -

By modifying techniques of Stone (19S0) we may show that the rate O(NV- (v2 -r-.)/(v1 +1))

is optimal in a minimax sense. where the maximum is over the class of vl-smooth functions

having a given constant C in the Lipschitz condition and in bounds on derivatives.
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If we knew f we could form the "true" residuals 7-, - i - f(i/n,j/n) = g(j/n) ,ij.

and construct an estimator (') of g(t) as follows:

(2.7) fl/ - I Ckr 2E Ei,j+ k •

v=1 k

Here rij is defined to be zero if j < 1 or j > n, and {ck} is as in (2.2). An argument

similar to that employed to prove Theorem 2.1 may be used to establish:

Theorem 2.2. Assume g is v2-smooth, v2 > t, E(efj) is uniformly bounded, and h2

h2(n) satisfies h2 - 0 and nh 2 -+ oo. Then for each 0 < 6 < I

sup JE ('t (j/n) - g(t)(j/n)l = O{(nh2) - ( ' - t ) }

bn<j<(i -6)n

sup var{((j/n)) = O{(nh 2 ) 2t-h }
I<j<,

REMARK 2.3 It follows from Theorem 2.2 that the mean squared error of () satisfies

(2.8) E{f( t)(j/n) - g(t)(j/n)}2 = O{(nh 2)- 2 (v - ) + (nh)'h}

The right-hand side here is minimized by taking h2  - (22,
- 1 ) /( 2v2+1), giving a mean

square error of O(n -
4(

2 -
t)/(

2
2+1)) = O(N-2 (-2-)/( 2 V2+)). Again, this rate is optimal if

f is known. However, we pay a penalty for not knowing f. as Theorem 2.3 below shows.

Replace the true residual ri, by its estimate ij - Y j - f(i/n,j/n), giving rise to the

following practical estimator of go):

(29) (t)(j/n) = n-' i,,+k

i=1 k

Theorem 2.3. Assume f is vj-smooth, g is v2-smooth. V2 > t, E(f,) is uniformly

bounded, and h i = hi(n) satisfies hi -+ 0 and nhi f zc for i = 1,2. Then for each

0<6<2'

(2.10) sup E{f t t)(j/n) - g()(j/n)}2 = O[{(nh 2 ) - 2(v2- 1 ) + (nh 2 )2 -1'h )
6n<j<( +-6)n

+ (nh2)2 t{(nhi) - ' + h}]
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REMARK 2.4 The order of the mean squared error of (') is that of the mean squared

error of ('), plus (nh 2)2t times the square of the mean squared error of jf; compare (2.8)

and (2.10), noting result (2.6) for r = s = 0. The additional term represents the penalty

in not knowing f when estimating g(').

REMARK 2.5 The value of hi which minimizes the order of the ,econd term on the

right-hand side of (2.10), is hi = h =- n - '/(V1+ ) . Using this value of h, we find that

(2.11) E '(j/)= o[{(nh 2 )' ) + (nh 2) 2 -'h }

+ (nh 2 ) 2 'n - 4 v /(v + l )] .

The value of h2 which minimizes the order of A(h 2 ) = (nh2 ) 2 (v - ) + (nh 2 )2 - 2 is h2 =

h2 = n - (2
I'2

-
i)/(

2
'2+i), and A(h) - 2n4(v2 -)/( 2v2+I). Furthermore, (nh) 2 1n 4 "iI('' 1)

< A(h2) if and only if

(2.12) VI > V2 (V + 1).

Therefore when (2.12) is true, the term involving h, on the right-hand side of (2.10) does

not influence the convergence rate of the optimally constructed version of 4 ('), and for

h, = h and h2 = h,

E{i()(j/n) - 9 (')(j/n)}2 = o(,

This is -he same as the best rate of convergence of §('); see Remark 2.3.

REMARK 2.6 If (2.12) fails then there is a cost to estimating f. An optimal balance

among terms on the right-hand side of (2.11) is achieved by making (nh 2 ) - 2 ( 2-) the same

size as (nh 2 ) 2'n - 
-41/(v+l). That is. take h 2 = h ° ={2i' - (i+I))/{(n'1+1)V2 . in which

case

E{O ')(j/n) - g(')(j/n )) 2 = O(n-4"j("'-1)/f "'+1)"2).

REMARK 2.7 Note that h2° (the optimal version of h2 when (2.12) fails) is different

from h (the optimal h2 when (2.12) holds). Also, none of h, h and h;° depends on t.



REMARK 2.8 We may summarize the main points made during Remarks 2.5 and 2.6 by

stating that if 4 (') is constructed using h, = h* and h 2 = h2 (if (2.12) holds) or h2 = h;"

(if (2.12) fails), then

(2.13) E{'(O(j/n) - g()(3/n)12 = O{max(n-4(,v,-1)/( 2
P,2+1), T?4Y(V 2 -)/(,I+ ), 2 ))}

The term involving only v2 dominates the right-hand side here if (2.12) holds, while the

other term dominates if (2.12) holds. We shall show in Section 3 that the rate of conver-

gence described by (2.13) is optimal in a minimax sense.

To solve the first part of our control problem we need to estimate that value z0 which

minimizes g. If g has a continuous derivative then this amounts to estimating the solution

zo of the equation g(1)(z) = 0. A potential estimator (')(z) of g(')(:) may be obtained by

interpolating among values of (l)(j/n), defined at (2.9). However, this approach results

in a very rough estimator, without even a single continuous derivative. There are several

ways of deriving a smoother estimator. One is to derive (2)(z) by linearly interpolat;ng

among values of (2)(j/n), and then estimate gO) by integrating §(2). This we do below.

Define §()(j/n) and §(
2)(j/n) as at (2 9), construct §(2)(z) by linearly interpolating

among points (2)(j/n), and for an arbitrary jo satisfying jo na. some 0 < a < 1, put

')(z) - §()(jo/n) + §(2)(u) du , 0<Z <1.

This will be our estimator of g(')(z). It is continuously differentiable, with derivative

(0())'(z) = §2)(z), and is a quadratic interpolation of an estimator like" 4(1). It shares

the mean squared error properties of §(1), as follows.

Theorem 2.4. Assume the conditions of Theorem 2.3, with 1 = 1. Then for each 0 <

6< I
2'

(2.14)

sup E (0"(z) - g(')(z)} 2 O[{(nh 2 ) - (v2- ) + nh2} + ( Jh)2 (nhi) -v1 + h}



REMARK 2.9 Note that the right-hand sides of (2.10) (for t = 1) and (2.14) are identical.

REMARK 2.10 The conditions in Theorem 2.4 do not require the existence of a second

derivative of g, even thc-'gh (2) is used in the construction of 4(1). We need only assume

v 2 > 1; of course, 4(2) is well-defined without any smoothness assumptions, being given by

formula (2.9).

We are now in a position to solve the first part of our control problem. Let .0 be any

solution of the equation .(')(Zo) = 0, and zo be the unique solution of g(1)(zo) = 0. Then

(2.15) 0 = (Io) = (zo) + (0 -zo)(2f{ o + 6( - ZO))

where 0 < < 1. Assume g is v2 -smooth for some v 2 > 2. Then g(2) is well-defined and

continuous. Suppose that for an integer I > 1, 41'th moments of the errors cij are uniformly

bounded. Then the argument leading to Theorem 2.3 may be generalized to prove that

for each 0<b< ,

sup E{( 2)(j/n) - g(2 )(3j/n)) 2
1 = O{B 2(hl,h 2)'}

6n<j<(1-6)n

where B,(h 1 ,h 2 ) = {(nh2) + (nh 2 )2 'h2 + (nh 2 )2 i{(nh1i) -L ' + hi} . Choose

hl- h2 to minimize the order of B1 (h1 , h2 ), as described in Remark 2.8. Then B 2 (hl, h2 ) =

O(n - b) 'here b = min[4(v 2 - 2)/(2v2 + 1),4v,(v2 - 2)/{(vl + 1)v 2 )) > 0. If I > 11b then

for each rq > 0 and each 0 < 6 < , we have by Markov's inequality,

P{ sup 1I0)('(/n) - g(')(J/n)l > 7} = 0(n' -b) = o(1)
671 <j<(l -f)n

so that

(2.16) sup 141 2)(z) - g( 2 (z)l = o1)
6<z<1 -6

Therefore by (2.15), assuming that g(2)(zO) # 0,

Z- zo = -11 + oP(j)}{)4 ()(ZO) - g(')(Zo)}/)g 2)(Zo)
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We conclude that z0 converges to zo at the same rate as §(I)(zo) converges to 9(')(z0); that

is,

(2.17) t.0 - I = Op{max(- 2(1i-n)/(2v2+l), n2il(i21)/{(V+1)I2)} •

This is result (1.5), announced in Section 1, and implies (1.4) when vi > 1.

The second part of our control problem consists of estimating the value r0 which

satisfies f(ro, z 0 ) = r0 . An estimator of f is f = j(0,0), defined at (2.3) with r = s = 0.

However, as in the case of our estimator of g(l), this suffers from being "too rough-.

Therefore we compute j(0,1), f(O) and .f(i,) by linearly interpolating among values defined

at (2.3), and then derive an estimator f of f by integration, as follows. Let i0, Ao satisfy

/0 - na, Jo " n3 where 0 < o, 3 < 1, and put

(2.18) !(x,z) f j(io/n, jo/n) + J (1,0 )(u,jo/n)du + f(°')(io/n,v)dv
•i. /T n z

+ du ] )(u, v) dv, 0 < X, z <1.

This will be our estimator of f(x, z). It is continuously differentiable in both variable-.

satisfying

(a/X)f(r,z) = Jf( (,.o/n)+ (x, v) d

and an analogous expression for (O/8z)f(x, z). It shares the mean squared error propertiesz

of (0.0), as follows.

Theorem 2.5. Assurne the condition of Theorem 2.1, with r = s = 0. Then for eac"

0<6<12'

(2.19) sup E{f(x, z) - f(x,z)}2 = O{(nhi)-2/ + h}
6<:<] -

REMARK 2.11 Note that the right-hand sides of (2.14) (for r = s = 0) and (2.19) are

identical.
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RENARK 2.12 Theorem 2.5 does not require the existence of any derivative of f, even

though numerical values of f(0,I), j(1,0) and (1,,) are used in the construction of f.

We are now in a position to solve the second part of our control problem. Suppose

f is vl-smooth, where v, > 1. Then f(OI) and f(O) are well-defined and continuous.

Assume f(o.")(xo, zo) # 0 # f(lo)(xo, zo). Define I as at (2.18), and write 1(')(x, z) for

(O9x)'(Oz)jf(x, z). Choose h, = n- / +  to minimize the order of (nh,) -2v + hl.

Then by (2.19),

(2.20) If(xo, zo) - f(.o, zo)= Op(n- /("')) .

Suppose that for an integer I > 1, 21'th moments of the errors fj are uniformly bounded.

The argument leading to (2.16) may be modified to show that if I is sufficiently large then

for each 0 < 6 <

(2.21) sup If(i'j)(X, z) - f(i'J)(x, z)I = op(1)
6<z,z<1-6

for (i,j) = (0, 1) or (1,0). Using the Taylor expansion which produced (1.2) we may now

deduce that

io - 0= -{ + op(1)}f(/o, 2o) - f(o, zo))/f(")(.o. zo)

- {1 + o(1)}(P O - zo)f( .0 (Xo. zo)/f(,° 0 )(o, 2o)

We conclude that the rate of convergence of io to x0 is the worst of the rates of convergence

of (xo, zo) to f(xo, z0) and of zo to z0 . By (2.17) and (2.20), this is

P50 - x0l = Op{max(n - 1/(v+1), n-2(L2- 1 )/ ( 2v 2 + 1 ). n- 2 vj(&2-1)/{(&'1
+ 1) } )}

= OP {max(n -v/(u +]),n -2(&,2-1 )/(22+) )} ,

the second identity following from the fact that v, > 1. This is result (1.3), announced in

Section 1.

PROOF OF THEOREM 2.1 We begin with a lemma.



12

LEMMA. Let m > 0. Suppose the bivariate function f has continuous derivatives j(0')

r i > 0, j > 0 and i + j < m, on the square [0, 1]2. There exist numbers Oi. 0,2 satisfviug

0 _ ,< 85 1, such that

f(U+ ,U2+2) = (616/i!j!)f (uu 2)

+~~~ ZZ66 Tzi)"")(ui± 6,U2 +022
Oi.+j _m-1

i+j=m

whenever u1, u2, uI - b, u 2 + b2 E [0, 11.

To prove the lemma, write f(u, + 61,u2 + 62) = {f(ul + 61,u 2 + 2) - f(Ul,U 2 +

62)1 + f(ul, u2 + 62), and repeatedly apply the univariate version of Taylor's theorem with

remainder.

To prove (2.4), put m _ (vi) and apply the lemma, obtaining for integer a and /f:

El (0/)(a/n,/3/n) - f /n.,)( 0/n))

ir~ajk! fi) o+ Oil k +3 021 (0 a

k I i+j=m j! * ' - _(ii) ,

= O{n+'aZ ZZE i(k/n)(l/n'akbi(ilk/nlm"'- + iO/l" =-') >

k I i-j=n

To prove (2.5), observe that

var {f,'%)(i/n,j/n)j = O{n2(r+)( 02) (Z b2) } = ((nh,)2(r+')h }

PROOF OF THEOREM 2.3 Take r = s = 0, in which case we may assume al= b

and our estimator of f is

!(I/n,j/n) = a C 12 1,+,14+12

11 12

Put S - , ) aE1 a2 1g{(J + 12 )/n' 4-i+, l+12 and

Bi ,. E ,a1 2 f{(i + li)/n,(j + 12 )/n) - f(i/n,j/n) .
11 12J



~13

In this notation, jij = rii - ij - Bi, so that nl-4(l)(j/n) = n -'((j/n) - 2Ai + B,

where
n 

1

A, ZZ (Ai~.'±& + Bi,i+k)r,+kCk , Bi j -+B1  ,)Ca,-+ B+ ,+-)2c+
i=1 k i=1 k

Therefore, in %iew of (2.8), it suffices to prove that

(2.22)

E(A') = O[(nh) 2 {(nh)- 2', + h }2 + h 2(t+l)], E(B ) O[(nh) 2 f{(nh)-2v' + h 2 ].

Since A, Ei Ek(Ai,j+k + Bi,+k)g{(j + k)/n}*efi+kck then

(2.23) E(, E 1
(E(A2 ) < E 1 [ZZ i+kfij+k f(j + k)/n) 'ck

I k

+ EZ4.i+kB.+k9{&U + 1)/n ICk]
Sk

Now,

E(A1,j+ j, fi,j-k 1 A,,j+k, fi,,j+k2 )

= ... E-a,... [ g{(j +l)/n,}
11, ,14

x E(fi,+, +kl+12fl,j+k 2+ 3 ,j+k2 +14 i2,i+k 2 ) = O{h4 + h 1 (ii = i2, k1 = k2)}

Hence the first term on the right-hand side of (2.23) equals

0[ ... E {hl + h2I(i, = i2,ki = k2)} h2( ki , 1k2 :5 Ch2)]
11,i2,k1,k2

O{(nh) 2 h4 + nh2h 2  } - O{(nh )2 h4 + h 2( 1 .}

Since B~jI = O{(nh)-"' } then the second term on the right-hand side of (2.23) equals

E( ,f) E B ,,+gl(j + k)/,)C2 = O{(nh) -2 ,, 2th+' }
i k

2 ) -4 , 
2 ( t'+ 1 )

O{(nh2')(nh,) -4 ' + h2

Combining estimates from (2.23) down we get the first part of (2.22). The second part

follows from the fact that Ickj :_ Ch +'I(Ikl < Ch-1 ), E(A4.) = O(h4) and tBijI

O{(nhi)1-",
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PROOF OF THEOREM 2.4 If )/n < u < (j + 1)/n then

(2)(n) = (nu - j) (2){(j + 1)/n} + + 1 - nu) (2)(j/n),

whence
/1 +1)/n

§(2) (u)du = (2n)-'[ (2 )(j/n) + §(2){(j + 1)/ni.

Therefore if j/n < z < (j + 1)/n and j j0 + 2,

g(')(z) = §(I)(jo/n) + n-' E §(2)(i/n) + T, + T2
i i=j0+1

= §(')(jo/n) + §*(l){(j - 1)/n) - §*(')(jo/n) + T + T2

where
n 00

§*()(/ = E Z: dk?~ , k = Z Ck41
i=1 k 1=0

Ti = (')(u) du, T =(2n) - ' {(2)(jo/n) + §(2)(j/,)}

If {ck} satisfies condition (2.2) with t = 2 then {dk1 satisfies the same condition (stated

there for {ck1) with t = 1. Therefore Theorem 2.4 will follow from Theorem 2.3 if we prove

that for i = 1 and 2,

(2.24) E(T 2 ) = O[(nh 2 ) - (' -1) + nbz2 + (nh 2) 2{(nhi) - 2m' + hi 2]

(The case of j values with j 5 j0 + 1 may be treated similarly. Note that we may not, and

do not, assume existence of g( 2).)

Observe that

E(T?) < n-2 sup E{ :5(u)2} < 2n 2 max E{ 72 )(l/n) }
j/ - <t < O+ ')/ - = ,j+ I

Let A., Bj be as in the proof of Theorem 2.3, this time with f = 2. Then 4(2)(l/n) =

§(2)(1/n) + n(B, - 2AI), and (as shown during our proof of Theorem 2.3) E(A2) + E(B2) =

O[(nh2) 2 {(nh 1 ) - 2 , + h2 }2 + h6]. Also,

n 2 E{ ( 2)(1/n) 2} 16[- 2E{§(2) (l/) 2 1 + E(A2) + E(B2)]
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and since (2)(l/n) = n E Ek ckg{(l + k)/n}cI+k then

E c2) (1/n) 2 ) = var{_f( 21(1l/1)) + {E(2) (l/n)} 2

[= oIn C2 + In2 2 cg{( + k)/n}12 1

k &

= O1 3h2 + (nh 2 )2( 2 -'2))

Combining all these estimates we conclude that for i = 1 and 2,

E(T 2 ) = O[nh' + (nh 2 )-("2)h 2 + (nh )f{(nh,)-"' + h 2 1,

from which follows (2.24).

3. Optimal rates of convergence.

In this section we show that the convergence rates derived in Section 2 for kernel-type

estimators cannot be improved upon by other estimators. Our optimality results will be in

the form of "worst possible" rates computed over function classes. It is a trivial matter to

obtain the same rates for our kernel-type estimators by extending arguments in Section 2.

In the next paragraph we define the function classes and state the extended results.

Given positive numbers vj, z2 and B, let C = C1 (vi, B) be the class of bivariate

functions f on [0, 112 for which sup If('J)I -< B whenever i > 0, j _> 0 and i+j < (v1 ); and

If(ii)(u, v) - f('i,)(x,y)I B(Ou - X ,,,-(,, + Iv - Y r', -',))

whenever u,v,x,y E [0, 1], i > 0, j 2! 0 and i+j = (v). Let C2 = C2 (v 2 ,B) be the class of

nonnegative univariate functions g on [0, 1] for which sup g(S)1 < B whenever 0 < i < (v 2 )

and

Ig( (V))(X) - g((2))(y)l _< BIx - y2' 2- (P2)

whenever x,y E [0, 1]. Let C3 = C3 (B) be the classs of nonnegative univariate functions

g on [0, 11 such that sup g _< B. Take f("'.), §() and §(') to be the estimators defined at

(2.3), (2.7) and (2.9) respectively, calculated by linear interpolation at points which are
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not integer multiples of n - '. (See Remark 2.1.) Assume that v, > r + s and v2 > t. For

appropriate choices of the smoothing parameters h, and h2 , and for each 0 < 6 < , there

exist positive constants C1 , C 2 and C 3 depending on v1 , v 2 and B such that

sup sup Ef,g{f(r')(x, z) - f(r'a)(, z)} 2 < Cin -2(t -r-)/(s l +I )

JECv ,gEC 6 <z,z<1-6

sup sup E {(I)(z) g(1(z))2 < C2n - 4
(V2- /(2P2+ 1) ,

gEC2 6<z<1-6

sup sup Ef,9{§(')(Z)-g(t)(z)}2
fEC,,gEC 2 6<z<1-6

<_ C 3 max(n -4(v2 - )/(2&2+1), n-4/1( VL2-)/{(vi+)L 2l).

These rtsults, but without the suprema over f and g, were obtained in Remarks 2.2, 2.3

and 2.8 respectively. The methods of proof. smoothing parameters and convergence rates

are exactly the same in the present uniform context.

In this section we show that, for any nonparametric estimators f(7,u), 4(1) and 4(1)

(not just for our kernel estimators), the above inequalities may be reversed. Let f(r,*) and

4(1) be nonparametric estimators of f(r,,) and 9(') respectively, based on model (2.1), and

let () be a nonparametric estimator of g('), based on the true residuals ri = g(j/n) .,1 .

1 < i,j < n. Assume that the errors eij are independent and identically distributed as

normal N(0, 1), and that v > r+s and v2 > t. We claim that for any fixed (X0 , zo) E (0, 1)2

and arbitrary nonparametric estimators j("), 4(t) and 4 (t) there exist positive contants

D1 , D 2 and D3 such that for large n,

(3.1) sup Ef,g{j(r")( o,zo) - f(")(Xo, zo)} 2 > Din - 2( -, -1r )(v1+i) ,
'ECx,gECa

(3.2) supE{4(t )(ZO) - g(t)(Zo)}2 > D 2 n - 4 (& -
1)/(

2
'
V2+])

GEC 2

(3.3) sup Ef,g{f(t)(zo) -g(1(Zo)2

fECi,PEC2

>D3 max(n - 4(V2- 0)/(2A'2+ ), ?I- 4V1(&'- O {(V
1
+
1
)V2}) .

Results (3.1) and (3.2) may be viewed as lower bounds to convergence rates for esti-

mation of mean functions in nonparametric regression with uniformly bounded variances.

In the case of (3.2), the regression is replicated n times at each design point. Both results
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may be derived by modifying arguments of Stone (1980), who treats lower bounds in non-

replicated regression. Result (3.3) is more difficult to obtain, and is proved in detail later

in this section.

Next we turn attention to estimation of z0, the unique element of [0,1] such that

inf g = g(zo). The rate of convergence for our kernel-based estimator was described by

(2.17). To extend this to a rate uniform over a function class, we must define a new function

class, as follows. Fix V2 > 2, 0 < 6 < and 0 < c < B. Write V2 = V 2(v 2 ,6,B,c) for the

class of nonnegative functions g which are in C2 (V2, B) and which satisfy c < g 2)(z) < 2c

for z E [0,1], g(')(zo) = 0 for some z0 E [6,1 - 61. It follows that each g E T 2 is

strictly convex, with minimum attained at its unique turning point z0 . Fix v, > 0 and

let C, = Ci(vj, B) be the function class defined earlier. Then if l0 is our kernel-based

estimator of z0 , and if {aI is a positive sequence with a,, --* oo,

(3.4) sup Pf,{ io - zo > a, max(n- 2 (ji. -)/( 2v2+1),n- 2 '1(&'2-1)/{(Vx+1)a'})} + 0
fECi,9,EV2

as n --+ oo. (Here vz > 0 and v2 > 2.) This is a version of (2.17) uniformly over function

classes, and is proved in the same manner as (2.17). To state a converse result, let ig be

any nonparametric estimator of z0 and {a,,} be any positive sequence. We claim that if

(3.4) holds then a,, --+ oo. An outline of the proof of this fact will be given later in this

section.

Similar results for estimation of x0 require a new class D, of mean functions f. Fix

d e (0, 1-B), vi > 1 and r0 , and let V, = 1 (v, 6, ", B, d) be the class of functions f which

are in C2 (V', B), which satisfy d < If(OI)(x,z)I, If(''0 )(x, z)I 5 2d for (x, z) E [0. 1,2, and

which are such that for each z E [6, 1 - 6] the equation f(x, z) =- r0 has a unique solution

x(z). Then if io is our kernel-based estimator of zo = x(zo), and if {a,,} is a positive

sequence with a,, - oo,

(3.5) sup Pf,,{ 0io - Xo > a, max(n-s"/(v'1+),n- 2 (v2-1)/(2v2+1))) - 0
fE'D ,ED72
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as n --+ o. (Here v, > 1 and V2 > 2.) Conversely, if io is any nonparametric estimator of

x0, if {a,,} is a positive sequence and if (3.5) holds, then a,, -+ oo.

We conclude this section with a detailed proof of (3.3), and sketches of proofs of the

rates of convergence described by (3.4) and (3.5).

Proof of (3.3). It is notationally simpler to assume a regular design on the square [_1, 1]2

instead of on [0, 1]2, and to take x0 = 0. There is no loss of generality in confining attention

to this situation, and so we suppose instead of model (2.1) that Yq = f(i/n,j/n) +

g(j/n) ej, -n < ij <_ n, where the e~j's are i.i.d. N(0, 1). Define the function classes C1

and C2 on [-1, 1] instead of [0,1].

In the case v, _> v 2 /(V 2 + 1), we must prove that for large n,

sup Ef,g{")(o)- g(t)(xO)} 2 > Cn -4(v2 -)/( 2 v2+l)
fEC, ,gEC 2

This inequality follows from

(3.6) sup Ef, 9{§(1)(xo) g(1)(Xo)) 2 > Cn- 4(&,- t)/(2v + 1

f -O,gEC 2

which is true for all v2 > t. To prove (3.6), note that when f - 0 our model entails

Y, = g(j/n)+7my, where 7iit - g(j/n)(iE,-1). This is a replicated regression model, having

mean function g and residuals with uniformly bounded variance. Techrques of Stone

(1980), giving lower bounds to convergence rates for non-replicated regression models, are

easily modified to produce (3.6).

WNhen v, < v2 /(v 2 + 1), we must show that for large n,

(3.7) sup Ef,p{§(t )(xo) - 9(1)(xo)} 2 > Cn -4 " ,(v2- )/ {J j+1)V2 }

fEC, ,gEC 2

Our first proof of this inequality is valid for

(3.8) v < V2/(V2 + 1), V2 > max(, 1), =0, 1,...

The only case of interest not covered by these conditions is

(3.8) VI < 2 /(V2 + 1), 0 < V2 :5 1 , 1 =0,



19

and we shall treat this separately at the end of our main proof.

Assume condition (3.8). Let 01, ¢2 be real-valued functions having at least (v 2 ) + 2

bounded derivatives on (-o,o), such that V1 vanishes outside [0.1], 02 vanishes outside

1, ], 0' (2) # 0, 0"4)(0) # 0, and sup 1¢0')j 1 1B for 0 < i < (V2) + 2 and j = 1.2.

Fix c > 0 and put m, = [cnl"/(v'+1)], m = [n'(2P1)/{(la+I)v2)/mi] (where [x] denotes

the integer part of x), m2 = MrM and 6, = m,/n for i = 1,2. Let m0 be an integer such

that m0 m, _< n and mn0 - n/m 1 . Since we are assuming v2 > I then v 2 /(V2 + 1) < 12.

and so the hypothesis v, < v2 /(v 2 + 1) entails v, < 1v2. This implies m --- o as

n -4 00. Let {Iij,-mo < i < m0 -1 and -m <j m -1) be a sequence of +i's, put

A(x,y) = b5't ,1(X 6 1)OlI,!(Y/2), and define f = f(. I f ,I}) by

f(, y) = IjA(z - n- m, i, y- n- 1 mj)if (z, y) E 2"i,, f(z, y) = 0 if (x, y) I U i.,

where "ij = [n-'rn1 i,n-'m(i + 1)) x [n-'mlj,n-Imm(j + 1)) for -n 0 < i < m0 - 1 and

-m < j <m - 1, and where Ujj denotes the union over these values of ij. Write F for

the class of all such f's. Let G(x) 6 2, 0 2 (X/6 2 ), go 1, g1  (1- G) - 1 and {go, gi}.

For large n, .F g C1 and Q C C2 , provided B > 1. (The latter restriction may be removed

at the cost of notational complexity.)

Let (')(0) be any nonparametric estimator of g(')(0). It suffices to show that

liminfn -  sup Ef,9 {(I)(0) - g(l)(0)) 2 > 0
n-00 JEY,gEG

This result will follow if we prove that

(3.10) lim inf n41( ' 2-
f)/(

'2+1)V2) sup E {f(I)(O) - g(1)(0)) 2 > 0n-00 PEG .

where E, denotes expectation under the model

Yj = f(i/n,j/n I {I,#)) +g(j/n)Ei , -n < i.j < n

in which the I4,'s are independent symmetric +1 variables, independent of the eo's which

are i.i.d. N(0, 1).
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If (3.10) fails, choose a sequence {nk) such that the left-hand side of (3.10) converges

to zero as n -- o through {nk}. Since

, (o) )(O)l 2 b-ti,(1 )(o)1 -. const.n-2 ,l( 2-t )/( 1,+1 )1)

then the decision rule b given by b = 0 if I W(O) - g(0)(0)j < 1(")(0) - gOt)(0)j. D 1

otherwise, provides asymptotically perfect discrimination between gol)(0) and g,")(0) as

n --+ oo through {nk}, in the sense that

PO0(= 1) + P;g(b = 0) -- 0.

We shall complete our proof by showing that this is impossible, even for the likelihood

ratio (LR) rule. It suffices to show that if the true g is go then the chance that the LR rule

picks g, is bounded away from zero as n -+ oo. We may confine attention to the LR rule

based on {1'l, i <mom1 and 131 < mmii}. (Note that morn 1 - n, and go(x) = gl(x) for

[xI > mmi/n. Therefore Y,, with IJl > mm 1 provides no information for discriminating

between go and gl.)

Let a, b, a, P be integers satisfying-m 0 < a < mo-1, -m < a < m-i, 1 < b, 3 < mi.

If i = am1 + b and j = aml + 8, write )aba6 and fabag for 1,j and cii, respectively. For

fixed a, a, the likelihood of { Ya , 1 < b, 0 < mi} is proportional to

(exp [-1 E{Ybo + 4(b/n, 3/n)}2 /g{(omil + 3)/ni]
b

+ exp [- "1 Y. b.i~,6~ + A(b/n,/3/n)12/Ig{I(a M I + S)/ni)
b a

[jX g{(cm1 +,8/)
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The chance that the LR rule wrongly picks gi, equals the probability that

exp[-2- Z e bo$/g{( mM + f)/n){ gi(/n)
a b a _ -I

x 11 I (1+ exp [-2 Z{A(b/n,,6/)2 +A(b/n,,/f)E.ob.,o$/9 (amj +,3)/n)
a a b

22

a b a

x7 IH (1 + exp [-2 >3 Z{A(b/n, #j/n)2 + A(b/n, /fa.
a a b 0

(Here we have used symmetry of the Normal distribution, which implies that eaba6 and

la ifb. have the same distribution.) Equivalently, since G = I -g 1 , it equals the chance

that

exp (n E[C(j/n) + log{1 - G(j/n))] + E E F, -(fbo# - 1)G{(ami + ,)/n)
j=1 a b a p

X J7 {(1 +exp[-2.1: {A(b/n,3/n)2 + A(b/n,fl/n)Cba,6{1 - G((m 1 + 13/n))])

(i 1+exp[-2j:E ZA(b/n, /3/n )2 + A(b/n, /3/n)CaOP1)-21 >1.

Denote the left-hand side of this inequality by B and put

d, E A(b/n, -/n) . Io,,+l ) _d,
b 6 ~

A'a a do -Ed 1 : A(b/n,/n)e.p N(O, 1)b

Noting that b, m " cn-l/(v"1+l) and 62 - r7- 2v/{(v+i) 2}, we see that

logB =-{1 + o(1)}In G(j/n)2 +O. nG(j/n)2

=1 j=

+ {1 + o(1))4E Eexp{-2(di + dINao)}[1 + exp{-2(d, + d'2.o)}]-'
a a

x (d, + d'VN,,)G(kmI/n)
-{1 + o,(1)in 2b4"' 62 2 + 11 + o,(1)}Smo6b2.-'6 2S

= ,' 2 -V,("2 +'))1/' 1 +1)&2) {c2v-2s - 4 v."V J , + oP(1},



where s (ft0,2 )E([exp{2(d+ d'N)) + I]-'(d+ diN)), N 2 N(0,1), and c is chosen so

that the expectation is nonzero. Choose , 2 to be either nonnegative or nonpositive, the

sign being selected so that s > 0, and choose I/'2I so small that Sc2 v1 2 s- !,4 1 f' >0 .

Then B -, +oo in probability, implying that the chance that the LR rule picks gi when

go is the true variance function converges to one as n -- oo. This completes our proof in

the presence of condition (3.8).

The proof when (3.9) holds is simpler. Adopt the same notation as before, except that

m is re-defined as mo (- n/mi), '2 - 1, and M2 and 62 are no longer needed. Pursue the

same argument.

We next sketch a proof of the fact that if (3.4) holds for a nonparametric estimator

-0 of z 0 , then a, -- oo. We treat only the case v1 < v 2 /(v 2 + 1), which is the context of

the major part of our proof of (3.3). The case v, > zt2 /(v 2 + 1) is similar. Our argument

is almost identical to that employed to derive (3.3).

Assume that estimation takes place on [-1, 112. Use the same class of f's but change

go, gi from 1, (1 - G) - ' respectively to H, H + G respectively, where G is as before and

H is a positive, strictly convex function with unique minimum interior to [-1,1]. For

definiteness we shall take H(z) =- (1 + z 2 )Bo, where our selection of the positive contant

Bo depends on the value of B. Let zoo (= 0) and zo be the values which minimize go and

gI, respectively. Now,

g,(z) = 2B 0 z + 662 2(Z/6 2 ),

which equals zero when z = z 01 . Thus, by appropriate choice of 02 we may ensure that :c:

and z 01 are distant apart an amount which is asymptotic to const.6b2,6 - ' The argumer t

given during our proof of (3.3) shows that it is impossible to discriminate between :0:.

and z 0 1 , and so it is also impossible to discriminate between zoo and z 01 . Therefore no

nonparametric estimator of zo can converge to z0 more rapidly than 6 -'1, and the latter
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is asymptotic to a constant multiple of

n-= max(n-2(v2-1)/(22+1), n-2va(v2-1)/{(vj+1)v2})

the above identity holding since v, < v2 /(v 2 + 1). It follows that if (3.4) holds then

a t -o.

A proof of the fact that (3.5) entails a, .- oo, is similar. It uses the same go(= H) and

gi (= H + G) as above, but has the class of f's changed from F to F' - {F + f : f EY-).

where F is an appropriate bivariate function which is strictly monotone in both variables.

For example, if r0 = 2 and z0 is close to zero then we may take F(x, z) E (x + 1)2 + (z + 1)2

4. Random design case.

Although the fixed design case is the more important, analogues of our results may be

obtained if (xi, zi), 1 < I < N, are random variables distributed within the square [0, 1] 2

according to density d, rather than points on a lattice. In the present section we briefly

discuss the random design case. The reader is referred to Prakasa Rao (1983, Section 4.2)

for details of nonparametric regression estimation.

Assume that N observations (xi, 11. zi) are generated by the model

I = f(xi, z,) + g(zi)1,, 1 < i < N,

where f is vl-smooth, g is v2 -smooth. the density d of the pairs (x-,z,) is max(V,v 2 )-

smooth, and conditional on the (xi,z,)'s the ci's are "ndependent with zero mean and

uniformly bounded second moments. A kernel estimator of d is

N

(4.1) d(x,z) = (N'h') -  A ,(x, - z)/hi , (z, - z)/h},
j=1

where K, is a compactly supported bivariate function as in Theorem 3.1 of Stute (19S4)

and such that fXziziK(x,z)dxdz = 1 if i = j = 0, 0 if 1 < i+j < (vi). A kernel

estimator of f is

N

(4.2) f(x,z) -(xz)/d(x, z), (T,z) = (Nh)-' E -K,{(Xj - X)/hi,(z, - z)/h,}
j=1
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Let d,(x,z) and . (x, z) be as in (4.1) and (4.2) but with the sums taken only over

. j i, and let fi(x,z) - ,(x,z)/d3(x,z), r, 1", - f(xi,z,) (not observable) and i -

-f.(zi, zi). Fix 0 < 6 < . Analogues of and 0 are

N

X(Z) Z:r I(b < x<-: 1 - 6)K2{(z3 - z)/h 2}
j=l

N/ : I(6 <xT, <1 -)K 2{: -z)/h 2}
j=1

N
(4 .3) , / < xj < - 6)2{( , - z)/h 2}

j=1

#N(4.3 E s(b < X, < I -b))1:2 {(-, - Z)lh },
/j=1

respectively, where K 2 is a univariate function satisfying f Zi'K 2 (z) dz = 1 for i = 0, 0 for

1 <i < (u2).

Take h, = N-/( 2 q+ 2 ) and write aN = N - "/(v1+1). By moment calculations applied

to .(r'') and d(r,) for 0 < r + s < vi, using (4.2) we find that for < X, z < -,

(4.4) {f(")(x, z) - f(r")(X, z)}2 = Op N - (v' - - a)/ ( + ) }

By Theorem 3.1 of Stute (19S4),

sup{Jd(x,z) - d(z,z): 1 < i < N, 6 < xz < 1 - b} = Op{(a,.logN) }

Assuming that d is bounded away from zero on [0, 1]2, one can show that uniformly in

(4.5) f,-f = (.-fdi)/d-(g,-fd,)(d,-d)/d2 +(pi-fd.)(d- d)2/(d 2 d.)+OP(ax log N).

Let h2 - 0 such that Nh 2 --- 00. By moment calculations applied to each term in

() it follows that for 0 <_ t < (V2), 6 < z < 1 - 6,

(4.6) {()(z) _ g(l)(z)1 2 = Op{(Nh 21'1 ) - ' + 2 }"
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Using (4.5), detailed calculations yield

(4.7) { 1)(Z) - g(')(z))2 = Op{(.N'h 2t+1) - 1 + h 2(v
-

f
) + h-21,'V-2vi/tv,+1)

Equations (4.4), (4.6) and (4.7) are analogues of (2.6), (2.8) and (2.11) respectively.

We may also derive analogues of (1.3), (1.4) and (1.5), by following essentially the

arguments given in Section 1. It is necessary to show that

sup 1I(2)(Z)- g2)(-)l _ 0 , sup If,)(X, Z) - f (i) (, z)I - 0
6<2<1-6 6<X,z<1-6

in probability, where (i,j) = (0, 1) or (1,0). The trick is to decompose (2) and (,) into

a series of terms each of which is a ratio of two consistent function estimators. Assuming

sufficiently many moments of the errors ei, and H6lder continuity of derivatives of K1

and K 2, uniform consistency of these function estimators may be proved by using the

"continuity argument"; see for example Stone (1984, foot of p.1292) and Hall (19S5). The

technique is intricate and laborious, but conceptually straightforward. It gives the same

rates of convergence exhibited in (1.3), and (1.4) and (1.5), under the same conditions on

f and g. Arguments similar to those in Section 3 may be employed to show that these

rates are optimal.
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