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Abstract

" Box (1987) and Leon et al. (1987) discuss the problem of closeness to target in quality
engineering. If the mean response f(z,z) depends on (z,z), the variance function is a

PERMIA if it is g(z), i.e., depends only on 2.rThe goal is to find (x4, 29) which minimizes
- Yo
variance while achieving a target mean value. We pose and answer the question: for given

smoothness assumptions about f and g, how accurately can we estimate zg and 25?7 As

4
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part of the investigation, we also find optimal rates of convergence for estimating f, ¢ and

their derivatives.
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1. Introduction

We investigate estimation of optimal policies in what Box (1987) calls the problem
of “closeness to target” in quality engineering; see also Leon et al. (1987) and Taguchi &
Wu (1985). System vanability is governed by a control factor z, so that observations have
variance function g(z). System mean is governed not only by the control factor z but also
by a signal factor z, so that observations have mean function f(r,z). In the terminology
of Leon et al. (1987). the variance function g(z) is a PERMIA. As in Box (1987). the goal
is to find the control setting zo which minimizes g, and to find the signal setting z, for
which f(zo, 20) = To, where 7 is a prespecified target value.

In practice, f and g would usually be unknown, and so we sample a variety of signal
factors and control factors to produce estimators f and § of f and g, respectively. Choose
%o to minimize §, and given Zp, choose %, so that f(io,éo) = 7o. Interest in this paper
focuses on the case where f and g cannot be specified parametrically. We pose and answer
the question: for given smoothness assumptions about f and g, how accurately can we
estimate zy and z¢?

Some insight into the problem may be obtained by simple Taylor expansion, as follows.
Assume f and g have one and two continuous deﬁvati\’es, respectively. Then it is reasonable

to suppose f and § to satisfy those smoothness conditions. Since g'(2¢) = §'(3) = 0 then
0= §'(20) = §'(20) + (20 — 20)3" (5]) = §'(20) — 8'(z0) + (0 — 20)i"(})

where Eg lies between zo and ;. Therefore

(L1) o — 20 = —{§(20) ~ ¢'(20)}/8"(3]) .

Likewise, since f(z¢.20) = f(i'o, %0) = 7o then

10 = f(%0, %) = f(2o, %0) + (Fo — z0) fFAV (20, 20)

= 7o+ f(20,20) = f(Zo, 20) + (50 = 20)f OV (20, 33) + (Z0 — 7o) f 15, %0)
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o

where 3§ lies between z¢ and o, and Z§ lies between zg and %;. Therefore

#o — 20 = —{f(20.20) = f(z0,20)}/FFO (25, %)

— (30 = 20)fOV (20, 53)/ f10) (25, %0) -

~~
()
(B
A

From equations (1.1) and (1.2) we conclude that (i) if 9¢®(z() is nonzero then z; can be
estimated with the same accuracy as g(1(2¢); and (ii) if f(1:9)(zg, 20), £ (z0, 20) and
g®(z0) are nonzero then zo can be estimated with the worst of the accuracies with which
f(x0,20) and g(*)(z0) can be estimated. In the pathological event that one or other of
these functions should be zero, higher-order Taylor expansions must be investigated.

Thus, estimation of zo and zo reduces to estimation of f, g and derivatives of those
functions. Inference about the mean, f, is a classic nonparametric regression problem, but
not so inference about the variance, g. We require an estimate of the mean before we can
estimate the variance, and interest centres on the effect which not knowing f has on our
ability to estimate g.

We now discuss convergence rates obtainable from (1.1) and (1.2). Suppose f has 1,
derivatives and g has v, derivatives. We allow v, and v, to be arbitrary positive numbers,
since fractional derivatives may be expressed in terms of Lipschitz conditions. (See the
second paragraph of Section 2 for definitions.) The argument leading to (1.1) and (1.2)
requires at least one derivative of f and two derivatives of g, and so we assume here that
vy > 1 and v, > 2. In Sections 2 and 4 we shall use (1.1) and (1.2) to show that kernel-type

estimators achieve convergence rates

(13) ,5‘0 — 1‘0, = Op{max(N""/ﬂ”l"‘l)’ ]\,’-(Vz—])/(2u;+l))} ,

(1.4) |20 — 20| = Op(]\r_(”?‘l)/(?"z*'l)) :

where N denotes the numher of pairs of signai faciors and control factors 1n our sample.
The first contribution to the right-hand side of (1.3) is due to the possible effect of not know-

ing f. When v; > 1 and v, > 2, not knowing f has no effect on the accuracy with which we
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can estimate zg, but does influence the accuracy with which we can estimate z4. A neces-
Fary and sufficient condition for the right-hand side of (1.3) to equal O (N ~(*2=1)/(2va+1)y
l and so for there to be no penalty in not knowing f, is v; > (2/3)(v2 — 1).

We shall prove in Section 3 that the rates of convergence described by (1.3) aud (1.4)
are optimal, in the sense that under the stated smoothness assumptions, no nonparametric
estimator can achieve faster rates.

Result (1.2), which leads to rates of convergence for estimates of zp, requires only
vy > 2 and vy > 0. We shall show that in this general circumstance, the best achievable

rate of convergence of any estimator of zq is
(1_5) (20 — 70| = Op{max(l\’_(""”/(")""“) ,]\T-Vx(vz—l)/((l'x-H)”:})} .

For small vy, this rate is inferior to that described by (1.4) unless vy (v, ~1)/{(v; +1)v;} >
(v2—1)/(2v2+1); that is, unless v; > vy /(v +1). Of course, the latter inequality is always
satisfied when v; > 1, and in that case (1.4) and (1.5) are identical.

Most of our attention will be devoted to the case of an experiment of fixed design.
defined by model (2.1) in Section 2. Fixed design is more realistic than random design in
most control contexts, and is amenable to complete asymptotic analysis. Section 4 will
outline analogous results in the random design case. Some of this work has a counterpart in
heterscedastic, nonparametric regression, and will be discussed elsewhere in that context.

In some applications, our model (2.1) applies only after a data transformation of the
response variable. Our discussion still applies for the closeness-to-target-problem, by using

approximations suggested by Box (1987); see his equation (15).

2. Fixed design case

In the fixed design case our model is

, . . . 1 ..
Yi; = f(i/n,j/n)+ 9(j/n)%e;;, 1Zi,j<n, (2.1
where the ¢€;;’s are independent with zero means, unit variances and uniformly bounded

fourth moments. We observe the data set {¥;;, 1 < {,j < n}, and wish to estimate f, g
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and their derivatives. Note that there are N = n? observations, not n; this is important

when compéring our results with those in classical nonparametric regression problems.
Let v > 0, and write (v) for the largest integer strictly less than v. A univariate

function g is said to be v-smooth if it has (v) bounded derivatives and if g{{*?) satisfies a

Lipschitz condition of order v — (v):
9N 2) = ¢D Q)] < Clx — y

for all z,y € (0,1). A bivariate function f is said to be v-smooth if f(*9)(z,y) exists and

is bounded for all : > 0, 7 > 0 satisfying i + 7 < (v), and if
6D (,0) = F02,9)] € Cllu = 2~ 4 o =y~ )

for all u,v,z,y € (0,1) and all i > 0, j > O satisfying i+ j = (v). We assume that in model
(2.1), the bivariate mean function f is v,-smooth and the univariate variance function g is
vp-smooth.

Our estimates of f and g are based on fixed-design analogues of kernel sequences
which may be defined as follows. Given 0 < h;, h; < 1, and nonnegative integers r, s and
t. let {ax(hy), —00 < k < o0}, {bk(h1), —~00 < k < o0} and {cx(h2), —o0 < k < oo} be
sequences of constants satisfving

lag] < ChT™, |be) S Ch{*', lex) S CRGY, ax =be =0 if k| > ChT',
. T
9 = . . -1 oo r. 11 r
(22) ex=0 if |k>Ch", Ek:’“" {o f0<i<(n)andi#r,

st ifi=s ! ifi=t

Zk‘bk={0 if0<1< (1) Zk‘ckz{o if 0 <1< ()
k andi # s, k and i #¢.

The constant C does not depend on h; or h,.
To construct {a} for example, let i be a compactly supported, real-valued, r-times
continuously differentiable function satisfying [u'R(u)du =1ifi =0,0if 1 <i < ().

Put L(u) = (-1)"KI(u). Then fu'L(u)du =r!'ifi=r, 0if 0<i< () andi#r. A
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slight adjustment of L, taking account of errors in series approximations to integrals and
giving the function L, say, ensures that a; = h]*'L,(h; k) has the desired properties.

Our estimator of f{"*) is

(2.3) fOO n, i n) = n"te Z Z arbiYivi, i+t

k {
where Y;; is defined to be zero if one or other of 1,j is less than one or greater than n.
Basic properties of f(*) are described by the following theorem.

Theorem 2.1. Assume f is vy-smooth, vy > r + s, g is bounded, sup E(e?j) < oo, and

hy = hy(n) satisfies h; — 0 and nh; — oo. Then for each0 < 6 < %,

(2.4) sup  |Ef"(ifn,j/n) — f(ifn, j/n)| = O{(nhy)" 1T}
§n<i,j<(1-8)n ‘
(2:5) sup var {f")(i/n,j/n)} = O{(nh1)*"*9h3}.
1<i,)<n

REMARK 2.1 Givenany (z,y) € (0,1)?, we may define f(r9)(z,y) by linear interpolation
among the four vertices of the integer square containing (r,y). It is easily shown that

analogues of (2.4) and (2.5) hold for this “more general” estimator:

sup  |Ef"*)z,2) ~ f")(z,2)| = Of(nhy)~ 17"},
§<x,2<1-6

sup var{f(z,2)} = O{(nh1)*"*9A}}.
0<r,2<1

REMARK 2.2 It follows from Theorem 2.1 that the mean squared error of f("*) is
(2.6)  E{f"(i/n,j/n) = f")i/n.j/n)}* = O{(nh1) 7317770 4 (nh,)*T*2h1}

uniformly in én < 1,7 < (1 — §)n. The order of magnitude of the right-hand side is
minimized at O(n=2(11-7=9)/(+)y = QN1 ~7=9)/(m+D)) by taking by = n~* /(1)
By modifying techniques of Stone (1980) we may show that the rate Q(N ~(*1=7=9/(x:1+1))

is optimal in a minimax sense, where the maximum is over the class of v,-smooth functions

having a given constant C in the Lipschitz condition and in bounds on derivatives.
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If we knew { we could form the “true” residuals r,, = Y;; — f(i/n,i/n) = g(i/n)}ei;,
and construct an estimator 3V of ¢(! as follows:

n

(2.7) §0G /) =n"? Z Z ckr?’ﬁ_k .

=1 k
Here r;; is defined to be zero if j < 1 or j > n, and {c;} is as in (2.2). An argument

similar to that employed to prove Theorem 2.1 may be used to establish:

Theorem 2.2. Assume g is vy-smooth, v; > t, E(e};) is uniformly bounded, and h; =

ha(n) satisfies hy — 0 and nhy — oo. Then for each 0 < § < 3,
sup lEg(f)(j/n) - g(i)(j/n)l = O{(nhz)—(v:—t)}

dn<j<(i=6)n
sup var {g(')(j/n)} = 0{(nh2)2'—lh§} )
1<i<n

REMARK 2.3 It follows from Theorem 2.2 that the mean squared error of §(" satisfies
(2.8) E{§(i/n) - ¢0(j/n)}? = O{(nha)***™ 4+ (nh2)*'~Th3} .

The right-hand side here is minimized by taking h; = n~(@2=1)/Q2v2+1)  oiving a mean
square error of O(n~4(¥2=1/(2va+1)) — Q(N-2(»2=1)/(2¥241)) Again this rate is optimal if
f is known. However, we pay a penalty for not knowing f. as Theorem 2.3 below shows.

Replace the true residual ry; by its estimate #;; = };; ~ f(i/n,j/n), giving rise to the
following practical estimator of g{*):

n

(2.9) §9G/m) =m0 el

=1 &k
Theorem 2.3. Assume f is vy-smooth, g is vp-smooth. v, > t, E(efj 1s umformly
bounded, and h; = h;(n) satisfies h; — 0 and nh; — > for i = 1,2. Then for each
0<é<i,

(210)  sup  E{§'7(i/n) ~ ¢0(i/n)}? = O[{(nh2) 227" + (nh2)**" R}
§n<j<(1-6)n

+ (nhy 2 {(nhy)"21 + K2}
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REMARK 2.4 The order of the mean squared error of §*) is that of the mean squared
error of §*, plus (nh,)? times the square of the mean squared error of f: compare (2.8)
and (2.10), noting result (2.6) for r = s = 0. The additional term represents the penalty
in not knowing f when estimating g(".

REMARK 2.5 The value of h; which minimizes the order of the second term on the
right-hand side of (2.10), is hy = h} = n~/(1+))_ Using this value of h; we find that

(2.11) E{30(/n) - ¢0(i/n)}? = O[{(nh2) ™22~ + (nhz)*~ 3

+ (nh2)2¢n—4v,/(u1+l)] .

The value of h; which minimizes the order of A(hy) = (nhy)~2*2=9 4 (nhy)** " k2 is h; =
hy = n=»=1/(2v24)) and A(h3) = 2rn~4(»=/(2v3+))_ Fyrthermore, (nhj)*'n=4"1 /(141

< A(h3) if and only if
(2.12) | v 2 /(g +1).

Therefore when (2.12) is true, the term involving h; on the right-hand side of (2.10) does
not influence the convergence rate of the optimally constructed version of §(*), and for

hy = h} and hy = A3,
E{g'(i/n) = ¢0(i/m)}? = O(n~{(2=0/Grat),

This is :he same as the best rate of con\'érgence of §(9; see Remark 2.3.

REMARK 2.6 If (2.12) fails then there is a cost to estimating f. An optimal balance
among terms on the right-hand side of (2.11) is achieved by making (nhy)~2(*2=" the same
size as (nhy)?'n=4"1/("+1)  That is. take hy = h}* = n{21—v2(+DY {41002} g which

case

E{{](')(j/n) _ gm(j/n)}z — O(n—4V1(V:-1)/(("1+1)V2)) .

REMARK 2.7 Note that h3* (the optimal version of h; when (2.12) fails) is different

from hj (the optimal h; when (2.12) holds). Also, none of A}, h; and h3* depends on ¢.
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REMARK 2.8 We may summarize the main points made during Remarks 2.5 and 2.6 by
stating that if §(*) is constructed using hy = h} and h; = h3 (if (2.12) holds) or hy = h3°

(if (2.12) fails). then
(2.13) E{gPG/n) - g¢PG /M) = O{max(n"‘(”?")/(z"r’"),n"‘”x(“:-’)/{(”x‘“)":})} ]

The term involving only v, dominates the right-hand side here if (2.12) holds, while the
other term dominates if (2.12) holds. We shall show in Section 3 that the rate of conver-
gence described by (2.13) is optimal in a minimax sense.

To solve the first part of our control problem we need to estimate that value zy which
minimizes g. If g has a continuous derivative then this amounts to estimating the solution
=0 of the equation g{?)(z) = 0. A potential estimator §V)(z) of ¢{*)(z) may be obtained by
interpolating among values of §(*)(j/n), defined at (2.9). However, this approach results
in a very rough estimator, without even a single continnous derivative. There are several
ways of deriving a smoother estimator. One is to derive §(*)(z) by linearly interpolating
among values of §(?)(j/n), and then estimate g{!) by integrating §'?’. This we do below.

Define 31 (j/n) and §@(5/n) as at (2 9), construct §*(z) by linearly interpolating
among points §{?)(j/n), and for an arbitrary j, satisfying jo ~ na. some 0 < a < 1, put

z
§0) = 0Go/m)+ [ P, 0<z<1,
Jo/n
This will be our estimator of ¢{*}(z). It is continuously differentiable, with derivative
(3M)(2) = §'¥(z), and is a quadratic interpolation of an estimator “like” g}). It shares

the mean squared error properties of §(}), as follows.

Theorem 2.4. Assume the conditions of Theorem 2.3, witht = 1. Then for each 0 <
<1,
(2.14)

| Sup GE{g‘“(z)—g“’(z)}’ = O[{(nh2)"2**~1) 4 nh3} + (nh2)?{(nhy)™2* + A]}?] .
<241~
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REMARK 2.9 Note that the right-hand sides of (2.10) (for t = 1) and (2.14) are identical.

REMARK 2.10 The conditions in Theorem 2.4 do not require the existence of a second

. derivative of g, even thcgh §(® is used in the construction of §g(1). We need only assume

vy > 1; of course, §(® is well-defined without any smoothness assumptions, being given by
formula (2.9).

We are now in a position to solve the first part of our control problem. Let 5 be any

solution of the equation §*)(%5) = 0, and z, be the unique solution of ¢(*)(zo) = 0. Then
(2.15) 0 = gM(20) = 9(z0) + (30 — 20)§® {20 + 6(30 — 20)} ,

where 0 < 6 < 1. Assume g is v;-smooth for some v > 2. Then ¢‘? is well-defined and
continuous. Suppose that for an integer I > 1, 4/'th moments of the errors ¢;; are uniformly
bounded. Then the argument leading to Theorem 2.3 may be generalized to prove that
for each 0 < 6 < %,

sup  E{§?(j/n) - ¢P(ji/n)}*! = O{Ba(h1, h)'},
n<j<(1-6)n

where Bi(hy, ha) = {(nhy) 2379 4 (nhy)?' " A2} + (nhy)?{(nh1)~2 + h?}%. Choose
hi.h2 to minimize the order of B;(h), hy), as described in Remark 2.8. Then B,(h;.hy) =
O(n%) where b = min[4(v; — 2)/(2v2 + 1), 411 (v2 — 2)/{(vy + 1)1p}) > 0. If I > 1/b then
for eachn >0 and each 0 < § < %, we have by Markov’s inequality,
P{ sup 13P(/n) =g G/n)| >0} = O(n'"*) = o(1),
§n<j<(1~6)n
so that
(2.16) sup Ig“)(z) -¢?P(2)| = op(1) .
f<z<1~6

Therefore by (2.15), assuming that ¢(®(zq) # 0,

= 20 = {1+ 0,()}{FV(z0) = 9 (20)} 9D (z0)




———— Baad
~

10

We conclude that 3, converges to zo at the same rate as §(!)(zo) converges to g(})(zo): that

1S,
(2.17) |29 — 20| = Op{max(n—2(vz—l)/(2vz+l),n—2u1(w-l)/{(u1+l)v2))} .

This is result (1.5), announced in Section 1, ard implies (1.4) when v; > 1.

The second part of our control problem consists of estimating the value ry which
satisfies f(zo,20) = To. An estimator of f is f = f(%9) defined at (2.3) with r = s = 0.
However, as in the case of our estimator of ¢(}), this suffers from being “too rough”.
Therefore we compute f(o'l), f(”o) and f(“) by linearly interpolating among values defined
at (2.3), and then derive an estimator f of f by integration, as follows. Let 1, jo satisfv
1o ~ na, jo ~ nf3 where 0 < a,f < 1, and put

Py
z

(218)  f(z,2) = fio/mjo/n) + / FOO(u, jo/n) du + / FOD(ig/n,v) dv

Jo/n
/ / f(”)(ut)dv 0<z,2<1.
io/n jo/n

This will be our estimator of f(z,2). It is continuously differentiable in both variables.
satisfying

z

(8/01)f(z,z) =f("°)(r,jo/n)+/ fO(z,v)dv

Jo/n

and an analogous expression for (8/8z)f(x,z). It shares the mean squared error properties

of (09 as follows.
Theorem 2.5. Assume the condition of Theorem 2.1, with r = s = 0. Then for eack

0<é< i,

(2.19) sup E{f(z,z) = f(z,2)}? = O{(nhy)™* + h?}.

b<2<1 ¢

REMARK 2.11 Note that the right-hand sides of (2.14) (for r = s = 0) and (2.19) are

identical.
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REMARK 2.12 Theorem 2.5 does not require the existence of any derivative of f, even
though numerical values of f(®1), f(1.0) 3nq f(1.3) are used in the construction of f.

We are now in a position to solve the second part of our control problem. Suppose
f is vy-smooth, where v; > 1. Then f(%1) and f(3:9 are well-defined and continuous.
Assume f(®1)(zq,29) # 0 # f(1:9(z¢, 2). Define f as at (2.18), and write f()(z,z) for
(8/01)'(8/8z)’ f(z,z). Choose hy = n~*1/t1+1) to minimize the order of (nh;)~2*1 + A2,
Then by (2.19),

(2.20) |7(z0,s 20) = f(20, 20)| = Op(n~"/ 14Dy

Suppose that for an integer ! > 1, 2/'th moments of the errors ¢,; are uniformly bounded.
The argument leading to (2.16) may be modified to show that if ! is sufficiently large then

for each 0 < 6 < %,

(2.21) sup  |fN(z,2) = fOIN(z,2)] = 0p(1)
§<x,2<€1 -6

for (4,5) = (0,1) or (1,0). Using the Taylor expansion which produced (1.2) we may now

deduce that
Fo— 20 = —{1 4 0p(1)}H{F (70, 20) = f(70,20)}/F O (z0. 20)
— {1+ 0p(1)}(20 — 20)f " Nz0. 20)/ f (20, 20) -
We conclude that the rate of convergence ;;f T to 1o is the worst of the rates of convergence
of f(z9,20) to f(zq,20) and of 3, to z. By (2.17) and (2.20), this is
|20 — 70| = Op{max(n"’l/("l*'l),n—2(l’2*1)/(2£’2+1).n—2u1(u2—-1)/{(u‘+1)v;})}
= Op{max(n=*/(1+1) n-2a=1)/(2vat1))}

the second identity following from the fact that v; > 1. This is result (1.3), announced in

Section 1.

PROOF OF THEOREM 2.1 We begin with a lemma.




LEMMA. Let m 2 0. Suppose the bivariate function f has continuous derivatives f(i3)
fri>0,j>0andi+j < m, on the square [0,1)2. There exist numbers 6,,.6,, satisfviug

0 < 6;; <1, such that

flur+8,u+8) = D> (6815 f9) (uy,u,)

0<i+j<m~1

+ D3B8 /NN (uy + 6,6y, up + 6,26;)

itj=m
whenever uy,uz,u; 4 6;,uz + 6, € [0,1].
To prove the lemma, write f(u; + é1,uz + 62) = {f(u1 + 61,u2 + &) - flug,uz +
) 62)} + f(u1,u2 + &), and repeatedly apply the univariate version of Taylor’s theorem with
remainder.
To prove (2.4), put m = (1;) and apply the lemma, obtaining for integer a and 8:

E{f"(a/n,B/n) ~ f"*Na/n,B/n)}

T U o (2280 8500) (e )

i+j=m

= of 3303 Sk Y A b/l + =)} = Of(mky) 1)

|+J=m

To prove (2.5), observe that

var {f(")(ifn,j/n)} = O{"Z('“)(Zai)(z 82)} = O{(nhy)*™+"12} .

PROOF¥ OF THEOREM 2.3 Take r = s = 0, in which case we may assume a; = b

and our estimator of f is

fGIn,imy =37 ananYigu, jar, -

L I

"Put Ajj = E:, 2’: apan9{(j + Ig)/n\;e,,'.,,[,,j.}.lz and

Bi; =YY ana, f{(i + h)/n,G +k)/n) - fi/n,j/n).

L I
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In this notation, #; = rij — A;; — Bij, so that n?~'g()(j/n) = n'~*§{)(j /n) — 24, + B,
where ¢

n n

A=) S (Aijer+ Bijadrijeice s B; > (Aijak + Bijer)ex -

=1 k =1 k

il

Therefore, in view of (2.8), it suffices to prove that
(2.22)
E(A%) = O[(nh%)*{(nhy)™1 + K3} 4 1,7 V], E(B?) = O[(nh§)*{(nk1)™2* + h}}?].

Since A; = 3, (A sk + Bij+1)9{(i + k)/n}dei jexes then
(2.23) 1E(4D) < E[Z Z A e jrrgll + k)/n}%ck]z
+ E[Z ; € j+1Bij4kg{(J + k)/n}ick]z .
Now,

E(Aix.i“'h €iy,i+k Aiz.j*-kz eiz.H'kz)

. i
= Z e Zal,,...,l, [H 9{(.7 +Ia)/n}] 2
ly,...,14

a=1
4 27, S L. o— I
X E(€iy 41y, i+ k41 €1 i+ ky €iabls g koL €ig i+ ks ) = O{R] + R1I(1y = ia, by = ka)} .

Hence the first term on the right-hand side of (2.23) equals

o[z ... Z {4 + B2I(iy = in, by = k) YRV I(|ky |, k2| < Chgl)]
11,12,k kg

= O{(nh%)?he + nh2h2+1} = O{(nhs)?h! + hg(r-n)} ‘

Since |B;;| = O{(rhy)~"'} then the second term on the right-hand side of (2.23) equals
E(eh) ) Y Bliawelli + K)/n}el = O{(nh1) "> nh3*")
ik

= 0{(nh;)2(nhl)—4v: + h§(1+1)} .
Combining estimates from (2.23) down we get the first part of (2.22). The second part
follows from the fact that |ex| < Chyt'I(|k| < Ch3?), E(A}) = O(h4) and |By;| =
0{(71’11 )™ }
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PROOF OF THEOREM 2.4 If j/n < u < (j + 1)/n then

§B(n) = (nu = 7)§P{(G + 1)/n} + (G + 1 = nu)§P(j/n),

whence
(j4+1)/n .(2) )
// §P () du = (2n) (g (i/n) + §PH{G + 1)/n)] -
j/n
Therefore if j/n <z £(j+1)/nand j > jo + 2,

)1

§0(z) = §Go/n)+ 07t Y (/M) + T+ T,
i=jo+1

=§V0o/n) + 5" NG = D)/n} = DGo/n)+ T + T

where
n oo
VG =Y difle, A=) enn,
=1 & =0

T, = / " iPwdu, To= (205D o/n) + PG/} -
i/n

If {cx} satisfies condition (2.2) with t = 2 then {d;} satisfies the same condition (stated
there for {c;}) with ¢t = 1. Therefore Theorem 2.4 will follow from Theorem 2.3 if we prove

that for 1 = 1 and 2,
(2.24) E(T?) = O[(nh2)~2*2=D 4 nhd 4 (nh2)*{(nh1)~2" + h2)?].

(The case of j values with 7 < jo + 1 may be treated similarly. Note that we may not, and
do not, assume existence of g(?.)
Observe that
E(T})<n™? sup E{g(u)*} < 2n~* max E{g®(I/n)’}.
j/ngug(i+1)/n I=3.5+1

Let 4;, B; be as in the proof of Theorem 2.3, this time with t = 2. Then §®(I/n) =
§®(1/n)+n(B; - 2A1), and (as shown during our proof of Theorem 2.3) E(A>)+ E(B}) =
O[(nh2)*{(nhy)~2" + h1}? + KS]. Also,

n~?E{§P(1/n)?} < 16[n"2E{gP(1/n)?} + E(A}) + E(B})],
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and since §P(I/n)=nd ;S ag{(l+ k)/n}e:{,“ then

E{§®(/n)?} = var {§'P(1/n)} + {EGD(/n))?
=0[n*) e} +n? ) crg{(l + k)/n}?)

k k
= O{n*h} + (nhy)??~*9)} .

Combining all these estimates we conclude that for : = 1 and 2,
E(T?) = Olnh3 + (nh2) 2%+~ Dh] + (nh3)*{(nh1) ™" + h3)?]
from which follows (2.24).

3. Optimal rates of convergence.

In this section we show that the convergence rates derived in Section 2 for kernel-type
estimators cannot be improved upon by other estimators. Our optimality results will be in
the form of “worst possiBle” rates computed over function classes. It is a trivial matter to
obtain the same rates for our kernel-type estimators by extending arguments in Section 2.
In the next paragraph we define the function classes and state the extended results.

Given positive numbers 1y, v, and B, let C; = C;(1, B) be the class of bivariate

functions f on [0, 1]? for which sup |f{*¥)}| < B whenever: >0, j > 0and i+ < (1,); and
£ (w,0) = F6 (e, y)] < Bllu — =00 4 fo — =)

whenever u,v,z,y € [0,1},1 20,5 2 0and i+ j = (1n). Let C; = C2(v2, B) be the class of
nonnegative univariate functions g on [0, 1) for which sup |g(*)| < B whenever 0 < i < (v;)

and

1g¥ () — g2V (y)| < Blzx — y}*2~ 2

whenever z,y € [0,1]. Let C3 = C3(B) be the classs of nonnegative univariate functions
g on [0,1] such that supg < B. Take £ 5(0 and g1 to be the estimators defined at

(2.3), (2.7) and (2.9) respectively, calculated by linear interpolation at points which are
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not integer multiples of n™!. (See Remark 2.1.) Assume that v; > r + s and v; > ¢. For
appropriate choices of the smoothing parameters h; and k,, and for each 0 < § < -‘2-, there

exist positive constants Cy, C; and C; depending on v, v, and B such that

sup  sup  Ep {f(z,2) — f(z,2)}2 < Cynm2rmm-0/a)
J€C,,0€C 8<x,2<1~§

Sup sup Eg{g(t)(z) —_ g(')(z)}2 S Czn—4(ll2—1)/(2llz+l) ,
9€C2 6<2<1 6

sup  sup By, {5(=) — o(2))?
fEC, ,9€C; <216

S 03 max(n—l(l'z—()/(2v:+l)’ n—(n(u;—l)/{(u;-{»l)u;)) .

These results, but without the suprema over f and g, were obtained in Remarks 2.2, 2.3
and 2.8 respectively. The methods of proof. smoothing parameters and convergence rates
are exactly the same in the present uniform context.

In this section we show that, for any nonparametric estimators f("’), g™ and g
(not just for our kernel estimators), the above inequalities may be reversed. Let f (r®) and
3 be nonparametric es;‘imators of f(m*) and g(9 respectively, based on model (2.1), and
let 3 be a nonparametric estimator of g(*), based on the true residuals r;; = g(j/n)%e;.
1 £1,5 € n. Assume that the errors ¢,; are independent and identically distributed as
normal N(0,1), and that v; > r+sand v; > t. We claim that for any fixed (z¢,20) € (0,1)?
and arbitrary nonparametric estimators f("‘), g and (", there exist positive contants

D,, D; and Dj3 such that for large n,

(3.1) sup  Ef {f(")(z0,20) = £ (20, 20)}? > Dyn=2 =m0/t |
feclypeca
(3.2) supEg{g(')(zo) - g(’)(zo)]z > D,n~42=0/Qv41)
9€C;
(3.3) sup  Er{§(20) - ¢'"(20))’
f€C, 9€C2

> D3 max(n-4(l/2-1)/(2llp+l), 71—41/'1(v;—t)/{(u1+l)vz)) .

Results (3.1) and (3.2) may be viewed as lower bounds to convergence rates for esti-
mation of mean functions in nonparametric regression with uniformly bounded variances.

In the case of (3.2), the regression is replicated n times at each design point. Both results
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may be derived by modifying arguments of Stone (1980), who treats lower bounds in non-
replicated regression. Result (8.3) is more difficult to obtain, and is proved in detail later
in this section.

Next we turn attention to estimation of 2z, the unique element of [0,1] such that
inf g = g(z0). The rate of convergence for our kernel-based estimator was described by
(2.17). To extend this to a rate uniform over a function class, we must define a new function
class, as follows. Fix v, > 2,0< 6§ < % and0 < c< %B. Write D; = D;(v,, 46, B, ¢) for the
class of nonnegative functions g which are in C;(v2, B) and which satisfy %c <g®(z)< 2¢
for z € [0,1), g"(z9) = O for some z, € [6,1 — 6]. It follows that each ¢ € D, is
strictly convex, with minimum attained at its unique turning point zo. Fix v; > 0 and
let C; = Ci(»1, B) be the function class defined earlier. Then if 3y is our kernel-based
estimator of zg, and if {a,} is a positive sequence with a, — oo,

(3.4) sup Py o{|3 — 20| > an max(n~2(1=1)/(2v241) p-2n(n=D/{n+wa)yy g
€C,,9€D2 '

as n — oo. (Here v; > 0 and v; > 2.) This is a version of (2.17) uniformly over function
classes, and is proved in the same manner as (2.17). To state a converse result, let 2, be
any nonparametric estimator of zo and {a,} be any positive sequence. We claim that if
(3.4) holds then a, — oo. An outline of the proof of this fact will be given later in this
section.

Similar results for estimation of z¢ require a new class D, of mean functions f. Fix
d € (0,3B),v; > 1and 7o, and let D; = Dy (11, 6, 70, B,d) be the class of functions f which
are in Cy(vs, B), which satisfy 1d < |f@V(z, z)|, | f1:9(z, 2)| < 2d for (z,z) € [0.112, and
which are such that for each z € [6,1 — 6] the equation f(z,z) = 7, has a unique solution
z(z). Then if #o is our kernel-based estimator of zo = z(z0), and if {an} is a positive

sequence with a,, — oo,

(3.5) sup Py g {|#o — zo| > an max(n""/("‘“),n—z(""l)/u""'“))} =0
!GD).’GD:
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as n — oo. (Here v; > 1 and v; > 2.) Conversely, if o is any nonparametric estimator of
zg, if {an} is a positive sequence and if (3.5) holds, then a, — oo.
We conclude this section with a detailed proof of (3.3), and sketches of proofs of the

rates of convergence described by (3.4) and (3.5).

Proof of (3.3). It is notationally simpler to assume a regular design on the square [-1, 1}
instead of on [0, 1)?, and to take ro = 0. There is no loss of generality in confining attention
to this situation, and so we suppose instead of model (2.1) that Y;; = f(i/n,j/n) +
g(j/n)*e.-j, —n <1,j < n, where the ¢;;’s are i.i.d. N(0,1). Define the function classes C,
and C; on [-1,1] instead of [0,1].

In the case v; > v3/(v2 + 1), we must prove that for large n,

sup By, {§(za) = g(@0)}? 2 Cnm4Cam0/2urdn
f€C1,9€C;

This inequality follows from

(3.6) sup  Eyg4{§)(z0) — 9(z0))? 2 Cn4(na=0/CnatD)
JEOygecz

which is true for all v, > t. To prove (3.6), note that when f = 0 our model entails
Y,-"; = g(j/n)+ni;, where n;; = g(j/n)(e?;—1). This is a replicated regression model, having
mean function ¢ and residuals with uniformly bounded variance. Techniques of Stone
(1980), giving lower bounds to convergence rates for non-replicated regression models, are
easily modified to produce (3.6).

When vy < 1v,/(v7 + 1), we must show that for large n,
(3.7) sup Ej,g{g(t)(IO) ~ ¢(z9)}? > Cn— 41 (2=/{tn+Dwa}
f€Cy,9€C;
Our first proof of this inequality is valid for
(3.8) v <v/(va+1), vy >max(t,1), t=01,...

The only case of interest not covered by these conditions is

(38) V](Vz/(l/g’*’l), O<v, <1, t=0,
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and we shall treat this separately at the end of our main proof.

Assume condition (3.8). Let ¥, ¥; be real-valued functions having at least (v;) + 2
bounded derivatives on (—00,00), such that 1; vanishes outside [0.1], ¥ vanishes outside
(1.1), ¥a(3) # 0, ¥7(0) # 0, and sup|$\”| < B for 0 < i < (vz) +2and j = 1.2.
Fix ¢ > 0 and put m; = [en"t/14D] m = [p2~ @)/ Aa+Dv2} ym ] (where [z] denotes
the integer part of z), mz = mym and é; = m;/n for i = 1,2. Let m¢ be an integer such
that mgm; < n and mo ~ n/m;. Since we are assuming vz > 1 then 1,/(v2 + 1) < %Vz.
and so the hypothesis 1; < v,/(v; + 1) entails v; < Jv,. This implies m — oc as
n -+ oo. Let {I;j,—mo <1 <mp—1and -m < j < m~1} be a sequence of +1’s, put
A(z,y) = 8§ v1(2/6:)¢1(y/62), and define f = f(- | {Ii;}) by

flz,) = LjAlz = n" myi,y — n™'myj) if (2,y) € Ty , f(z,y) = 0if (z,9) € | JTij
i
where I;; = [n 7 myi,n"Imy(i 4+ 1)) x [n7Tmy3,n 7 my (5 + 1)) for —~me <1 < 1;n0 —1 and
-m < j <m-—1, and where U,.J. denotes the union over these values of i,j. Write F for
the class of all such f’s. Let G(z) = 62" ¢2(2/62),90 = 1,01 = (1-G)™? and G = {90, 1 }-
For large n, ¥ C C; and ¢ C C,, provided B > 1. (The latter restriction may be removed
at the cost of notational complexity.)

Let §{(0) be any nonparametric estimator of g("(0). It suffices to show that

him i;‘,f nin (n=0/{(n+1)v2} sup Ef,g{_(‘](')(O) - g(')(O)}2 >0.
n— fEF g€

This result will follow if we prove that

(3.10) lim inf n#*1 (2= /{1 +1)v2) sup E}{§”0) - ¢} >0,

n—oo 9

where E; denotes expectation under the model

= fGiniin | {Tag)) + 9(G/n)¥eij, —n<ij<n,

in which the I, 3’s are independent symmetric 1 variables, independent of the ¢;,'s which

are i.i.d. N(0,1).




If (3.10) fails, choose a sequence {ny} such that the left-hand side of (3.10) converges

to zero as n — oo through {n;}. Since
1957(0) — 93" (0)] ~ 8187 [ (0)] ~ const. n~21 2=/ At D)

then the decision rule D given by D = 0 if |§(0(0) — g{"(0)| < 1§(0) - gﬁt)(O)l. D=1
otherwise, provides asymptotically perfect discrimination between g((,')(O) and g,')(O) as

n — oo through {ni}, in the sense that
Pr(D=1)4+P;(D=0)—0.

We shall complete our proof by showing that this is impossible, even for the likelihood
ratio (LR) rule. It suffices to show that if the true g is go then the chance that the LR rule
picks g, is bounded away from zero as n — co. We may confine attention to the LR rule
based on {};j,|i| < mom; and |j| £ mm;}. (Note that mgm; ~ n, and go(z) = ¢,(z) for
|z| > mm;/n. Therefore Y;; with |j| > mm, 'provides no information for discriminating

between gy and ¢;.)
Let a, b, a, B be integers satisfying —my e < mp—~1,-m<a <m-1,1<5,3 <m,.

If i = am; + band j = am; + B, write Yypap and €qp0p for Y, and 5, respectively. For

fixed a,a, the likelihood of {}Y,4a8 , 1 < b, 8 < m;} is proportional to

(exe- 523 en + A/, B/ o +8)m)|

b
+exp [—% 5 5 tas + A/, B/ oi(ams + o))

-my /2

x [H o{(am + ﬂ)/n}]




The chance that the LR rule wrongly picks g1, equals the probability that
exp [—% Z 2; Z Eﬁj pas/q1{(am + ﬂ)/n}]{j:f[l o (,-/n)}'"”
x HH(1 ¥ exp[-zzbj S AW/, 8/ + A/ B/m)esns)fr{(ams + s)/m))
> exp(~} E Zb) Z ; has)
x 1'[ ]:[(1 + exp [-2 Z:, ;{A(b/n, B/n)? + A(b/n, ﬂ/n)eabap}]) :

(Here we have used symmetry of the Normal distribution, which implies that €;505 and
I,3€a0ap have the same distribution.) Equivalently, since G = 1 —91_!1 it equals the chance

that

exp (n ;[G(J’/n) +log{1 - GG/} + ? > zﬁj(eiboﬂ ~1)G{(am; + ﬂ)/n})
j= | .
< ITI{ (1+ e [-z.z S (A, B/n) + AB/n, B/n)casas} {1 ~ G((am; + 6)/n)}])
e o b B .

x (14 e [—2¥;{A(b/n,ﬁ/n)2 ¥ A(b/n,ﬁ/n)eaboﬁ}])_z} >1.

Denote the left-hand side of this inequality by B and put
2
d, = ZZ A(b/n, B/n)? ~ 31 tD (/ z,’vf) =d,
b 8
Nea=d; 150N Ab/n, B/n)easas 2 N(0,1) .
b 8
Noting that 6, ~ mo'] ~ en~V(m+1) and §, ~ n=20/{n+1)n2} ] e see that
n n 4
logB=—{1+0(1)}in E G(j/n)* + O,[{nZG(j/n)z} ]
5= =1
+ {1+ op(l)}4zzexP{_2(dl + d;}Naa)}ll + exp{—2(d, + dl%‘]\va«:)}]—1
x (d) + df Noa)Glamy /n)
= —{1+0,(1)}}n*61" 6 /4’3 + {1+ 0p(1)}8mob]" 135

- n{"?—"l("?“’]))/“("l‘H)"!}{8c2"1‘25 _ -;-c"" /’4”3 +0P(1)} .
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where s = ([ #2) E(lexp{2(d + d} \')} + 1)-(d + 4} N)), N 2 N(0,1), and ¢ is chosen so
that the expectation is nonzero. Choose 13, to be either nonnegative or nonpositive, the
sign being selected so that s > 0, and choose |y*z| so small that 8c?25 — %C“‘ fu’% > 0.
Then B — +o0o in probability, implying that the chance that the LR rule picks g; when
go is the true variance function converges to one as n — oo. This completes our proof in

the presence of condition (3.8).

The proof when (3.9) holds is simpler. Adopt the same notation as before, except that

m is re-defined as mo (~ n/m;), v2 = 1, and m2 and é; are no longer needed. Pursue the

same argumment. D

We next sketch & proof of the fact that if (3.4) holds for a nonparametric estimator
30 of 2z, then a, — co. We treat only the case v; < v2/(v2 + 1), which is the context of
the major part of our proof of (3.3). The case v; > 12/(v2 + 1) is similar. Our argument

is almost identical to that employed to derive (3.3).

Assume that estimation takes place on {—1,1]2. Use the same class of f’s but change
go. g1 from 1, (1 — G)~! respectively to H, H + G respectively, where G is as before and
H is a positive, strictly convex function with unique minimum interior to (—1,1]. For
definiteness we shall take H(z) = (1 + 22)By, where our selection of the positive contant
By depends on the value of B. Let zgp (= 0) and 2o, be the values which minimize go and

g1, respectively. Now,

9:(z) = 2Boz + 612”’62-11,’)5(:/62) ,

which equals zero when z = zp;. Thus, by appropriate choice of ¢; we may ensure that z¢-
and zo; are distant apart an amount which is asymptotic to const.63**6;! The argumert
given during our proof of (3.3) shows that it is impossible to discriminate between zo:
and zg,, and so it is also impossible to discriminate between zoy and zp;. Therefore no

nonparametric estimator of zo can converge to z, more rapidly than 67*'6;?, and the latter

\




23
is asymptotic to a constant multiple of

n- =)/ {(n+)v2} _ rnax(n"z(”"")/(2”’+l),n-2"‘("7—])/{("‘+1)”’}) ,

the above identity holding since v; < 1,/{v; + 1). It follows that if (3.4) holds then
an — 00.

A proof of the fact that (3.5) entails a,, —0‘00, is similar. It uses the same go(= H) and
91(= H + G) as above, but has the class of f’s changed from F to F' = {F + f: f € F}.
where F is an appropriate bivariate function which is strictly monotone in both variables.

For example, if 7o = 2 and zq is close to zero then we may take F(z,z) = (z+1)?+(z+1)%

4. Random design case.

Although the fixed design case is the more important, analogues of our results may be
obtained if (z;,2;), 1 <t < N, are random variables distributed within the square [0, 1)?
according to density d, rather than points on a lattice. In the present section we bnefly
discuss the random design case. The reader is referred to Prakasa Rao (1983, Section 4.2)
for details of nonparametric regression estimation.

Assume that N observations (z;,1]. z;) are generated by the model
Yi = f(ziyzi) + g(zi)te,, 1<i<N,
where f is v;-smooth, g is v;-smooth. the density d of the pairs (zy, z;) is max(v,v;)-
smooth, and conditional on the (z,,z,)'s the ¢;’s are ndependent with zero mean and
uniformly bounded second moments. A kernel estimator of d is

.
(4.1) d(z,2) = (VBT S Kal(z, — 2)/h, (25 - 2)/ha )}

j=1

where K is a compactly supported bivariate function as in Theorem 3.1 of Stute (1984)
and such that [z'2/K\(z,z)dzdz = 1ifi =3 =0,0if1 <i+4j < (11). A kernel
estimator of f is .

N
(4.2) fl(z,2) = §(z,2)/d(z.z), §(z,2) = (NR})™? ZY,—K,{(.TJ- —z)/hy,(z; — 2)/ M} .

=1




rl | -
- .
i »
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Let di(z,z) and 3,(z,z) be as in (4.1) and (4.2) but with the sums taken only over
J # 1, and let fi(:r,z) = 5,(1,2)/3,-(1,2), r; = Y; — f(z,,z,) (not observable) and r; =

Yi - fuzi,z). Fix0< 5 < 3. Analogues of § and § are

N
§(z) = Z,@I(a <zj<l- §)J\'2{(z, — z)/h3}
= N
/ZI(& <z; < 1 —5)1\’2{(:)' - z)/hz} )
=1
N J
§(2) =) U < 2; < 1-6)Ko{(z — 2)/h2)
=1
N
(4.3) /ZI(5<11~ < 1=8)1,y{(zj — 2)/h2},
j=1

respectively, where K is a univariate function satisfying [ z'K2(z)dz = 1for i =0, 0 for
1< i< ().
Take h; = N~-1/@n+2) and write ay = N~*/(*1+1) By moment calculations applied

to 8 and d" for 0 < r + s < vy, using (4.2) we find that for § < z,z <1 -6,
(4.4) {(f Uz, 2) = fr)(z,2)}? = Op{N~(r=r=0)/EndD)
By Theorem 3.1 of Stute (1984),

sup{|di(z,z) — d(z,2)] : 1<i < N,6<7,2<1—6} =0,{(anlogN)t}.

Assuming that d is bounded away from zero on [0,1]?, one can show that uniformly in

b<r.z<1 -6,

-

(4.5) fi—f = (3~ fd,)/d—=(3;—fd;)(d,—d)/d* +(3i~ fd)(d,—d)?/(d*d,)+Oy(ax log N) .

Let hy — 0 such that Nh; — oo. By moment calculations applied to each term in

3", it follows that for 0 <t < (1p), 6§ <2< 1-6,

(4.6) {§0() = 9(2)}? = Op{(NR3!)~" 4 B3 7Y}




[
(4]

Using (4.5), detailed calculations yield
(4.7) {g“)(z) - g(r)(z)}'z - OP{(‘\'th-])—l + h‘;’(u:—t) + h;m‘,\,_z.,l/(y,“)} _

Equations (4.4), (4.6) and (4.7) are analogues of (2.6), (2.8) and (2.11) respectively.
We may also derive analogues of (1.3), (1.4) and (1.5), by following essentially the
arguments given in Section 1. It is necessary to show that

sup  |§V(z) - ¢ (2)| = 0, sup  |f¥(z,2) - fONz,2)| - 0
§<2<1-4 §<r,2<1—-6

in probability, where (7,7) = (0,1) or (1,0). The trick is to decompose §(? and 49 into
a series of terms each of which is a ratio of two consistent function estimators. Assuming
sufficiently many moments of the errors ¢;, and Holder continuity of derivatives of A\
and K, uniform consistency of these function estimators may be proved by using the
“continuity argument”; see for example Stone (1984, foot of p.1292) and Hall (1985). The
technique is intricate and laborious, but conce‘ptually straightforward. It gives the same
rates of convergence exhibited in (1.3). and (1.4) and (1.5), under the same conditions on
f and g. Arguments similar to those in Section 3 may be employed to show that these

ratcs are optimal.
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