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' because they have no natural decomposition into separately provable parts. This %
g paper presents a proof technique for the modular verification of such non-modular :E:
algorithms. It generalizes existing verification techniques based on a totally-ordered :::
hierarchy of refinements to allow a partially-ordered hierarchy—that is. a lattice of :1:
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Section 1: Introduction

i 1. Introduction
R The proliferation of distributed computer systems gives increasing iimportance
X to correctness proofs of distributed algorithms. Techniques for verifying sequential
‘,S algorithms have been extended to handle concurrent and distributed ones- -for ex-
;;; ample, by Owicki and Gries [OG], Manna and Pnueli [MP], Lamport and Schneider
Dl [LSc], and Alpern and Schneider [AS]. Practical algorithms are usually optimized
" for efficiency rather than simplicity, and proving them correct may be feasible only if .
W the proofs can be structured. For a sequential algorithm, the proafis structured hy
::' developing a hierarchy of increasingly detailed versions of the algorithm and prov- o
::', ing that each correctly implements the next higher-level version. This approach s
‘ has been extended to concurrent algorithms by Lamport [L]. Stark [S], Harel [H].
‘.:: Kurshan [K], and Lynch and Tuttle [LT|, where a single action in a higher-level
:‘: representation can represent a sequence of lower-level actions. The higher-level ver- ‘
:: sions usually provide a global view of the algorithm, with progress made in large \
o atomic steps and a large amount of nondeterminism allowed. At the lowest level is i
R the original algorithm, which takes a purely local view, has more atomic steps, and
:% usually has more constraints on the order of events.
it i
;:3 With its totally ordered chain of versions, this hierarchical approach usually
;.( does not allow one to focus on a single task in the algorithm. The method described
;:: in this paper extends the hierarchical approach to a lattice of versions. At the f
::: bottom of the lattice is the original algorithm. which is a refinement of all other
s: versions. However, two versions in the lattice may be incommeasurable, neither one

being a refinement of the other. .
;:: ]
:;2' Multiple higher-level versions of a communication protocol, each focusing on ]
::‘ a different function, were considered by Lam and Shankar [LSh]. They called each
‘e higher-level version a “projection”. If the original protocol is sufficiently modular.
5 ‘ then it can be represented as the composition of the projections. and the correctness
:": of the original algorithm follows immediately from the correctness of the projections.
:.. L Thl% approach was used by Fekete, Lynch. and Shrira [FLS] to prove the correctness
'E: of Awerbucl’s synchronizer [A1].
;::. Not all algorithms are modular. In practical algorithins. modularity is often .
:‘\&z destroyed by optimizations. The correctness of a non-modular algorithm is not an )
AN immediate consequence of the correctness of its higher-level versions. The method
b presented in this paper uses the correctness of higher-level versions of an algorithm
f«, to simplify its proof. The proofs of coirectness of all the versions in the lattice
B
> '
"
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Section 1: Introduction .“x’:

i' 'l

(in which the original algorithm is the lowest-level version) constitute a structured E:g%:
proof of the algorithm. :::::.s
Any path through our lattice of representations ending at the original algo- :::
rithm is a totally-ordered hierarchy of versions that can be used in a conventional :E:::E
hierarchical proof. Why do we need the rest of the lattice? Each version in the ::;E::
i lattice allows us to formulate and prove invariants about a separate task performed Wi
by the algorithm. These invariants will appear somewhere in any assertional proof R
of the original algorithm. Our method permits us to prove them at as high a level :::::}
. of abstraction as possible. 'i::::(
Y

The method proceeds inductively, top-down through the lattice. First, the "
highest-level version is shown directly to have the original algorithm’s desired prop- '.'..::t
erty, which involves proving that it satisfies some invariant. Next, let A be any ::::'.:
algorithm in the lattice, let By,..., B; (¢ 2 1) be the algorithms immediately above u}:::::
A in the lattice, and let @Qq,...,Q; be their invariants. We prove that A satisfies M
the same safety properties as each Bj, and that a particular predicate P is invariant 1 :s
for A. The invariant P has the form QA Q) A--- A @; for some predicate Q. In this :'::::.ﬁ
way, the invariants @Q; are carried down to the proof of lower-level algorithms, and ::::::‘
@ introduces information that cannot appear any higher in the lattice—information 'g': '
about details of the algorithm that do not appear at higher levels, and relations be-
tween the ;. We provide two sets of sufficient conditions for verifying these safety E:,.:}
properties, one set for the case « = 1, and the other for : > 1. We also provide '2"
three techniques for verifying liveness propertics; only one of them makes use of the ‘:i:;:?j

lattice structure.

The technique is used to prove Gallager, Humblet and Spira’s distributed min- ‘,‘.::;
imum spanning tree algorithm [GHS). This algorithm has been of great interest for 3 '::',
some time. There appears in [GHS] an intuitive description of why the algorithm o
should work, but no rigorous proof. There are several reasons for giving a formal =
proof. First, the algorithmm has important applications in distributed systems, so \
its correctness is of concern. Second, the algorithm often appcars as part of other "'t"\
algorithms [A2,AG], and the correctness of these algorithms depends upon the cor- {:::

rectness of the minimum spanning tree algorithm. Finally, many concepts and

techniques have been taken from the algorithin, out of context, and used in other

553

algorithms [A2,CT,G|. Yet the pieces of the algorithin interact in subtle ways, some -
. . . .. . %
of which are not explained in the original paper. A careful proof of the entire :E-.f,
. . . . . ‘,,\
algorithm can indicate the dependencies hetween the pieces. -
: - : R

Our proof method lLielped us to find the correct invariants; it allowed us to <

s
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Section 2: Foundations

describe the algorithm at a high level, yet precisely, and to use our intuttion abowt
the algorithm to recason at an appropriate level of abstraction. A by-product of our
proof was a better understanding of the purpose and importance of certain parts of

the algorithm, enabling us to discover a slight optimization.

The complete proof of the correctness of this minimum spanning tree algorithm
is very long and can be found in [W}]. One reason for its length is the intricacy of the
algorithm. Amnother reason is the duplication inherent in the approach: the code
in all the versions is repetitive, because of carry-over from a higher-level version
to its refinement, and because the original algorithm cannot be presented as a
true composition of its immediate projections; the repetition in the code leads to
repetition in the proof. The full proof also includes extremely detailed arguments—
detailed enough so we hope that, in the not too distant, future, they will be machine-
checkable. This level of detail seems necessary to catch small bugs in the program
and the proof. '

Two other proofs of this algorithm have recently heen developed. Stomp and
de Roever [SdR] used the notion of conununication-closed layers, introduced by
Elrad and Francez [EF]. Chou and Gafni [CG] prove the correctness of a simpler,
more sequential version of the algorithm and then prove that every execution of the
original algorithm is equivalent to an execution of the more sequential version.

2. Foundations

This section contains the definitions and results that form the basis for our
lattice-structured proof method. Our method can be used with any state-based,
assertional verification technique. In this paper, we formulate it in terms of the
1/O automaton model of Lynch, Merritt. and Tuttle [LT,LM], which provides a
convenient, ready-made “language” for our use. A summary of the I/O automaton
model appears in the Appendix.

The first step is to design the latiice, using one’s intuition about the algorithm.
Each element in the lattice is a version of the algorithm, described as an I/0 au-
tomaton. and has associated with it a predicate. The bottom element of the lattice
is the original algorithm. Next, we must show that all the predicates in the lattice
are invariants. The invariant for the top element of the lattice must be shown di-
rectly. Assuming that Q,...,Q,; are invariants for the versions By,..., B; directly
above A in the lattice, we verify that predicate P = QAQ; A---AQ; is invariant for
A, by demonstrating mappings that preserve Q and take executions of 4 to execu-
tions of By,...,B; (thus preserve Q; A -+ A Q;). (Finding these mappings requires

4




Section 2: Foundations

insight about the algorithm.) Finally, the lattice is used to show that the original
algorithm solves the problem of interest by showing directly that the top element
in the lattice solves the problem, and showing a path Aj,..., 4 in the lattice from
top to bottom such that each version in the path satisfies its predecessor. To show
that A; satisfies A;_;, we show that for every fair execution of A;, there is a fair
execution of 4;_; with the same sequence of external actions. The mapping used
to verify the invariants takes executions to executions; by adding some additional
constraints on the mapping, we can prove, using the invariants, that it takes fair
executions to fair executions with the same sequence of external actions, i.e., that

liveness properties are preserved.

Section 2.1 deals with safety properties. First, suppose there are two automata,
4 and B, where B is offered as a “more abstract” version of A. We define a mapping
from executions of A to sequences of alternating states and actions of B; if the
mapping obeys certain conditions, we say A simulates B. Lemma 1 proves that this
definition preserves important safety properties, namely that executions of 4 map to
executions of B, and that a certain predicate is an invariant for A. Next we suppose
that there are several higher-level versions, A,, A,, etc., of one more concrete
automaton A. There are situations in which it is difficult to show independently
that A simulates A; and A simulates 4,, but invariants about states of A2 can help
show a mapping from A to A;, and invariants about states of A4; can help show
a mapping from A to A,. To capture this, we define a notion of simultaneously
simulates, which Lemma 2 proves preserves the same safety properties as in Lemma
1. Of course, to be able to apply Lemina 2, we must know what the invariants of
Ay and A, are, which may require having already shown that 4; and A; simulate

other automata.

Section 2.2 considers liveness properties. Given automata A and B, and a
locally-controlled action ¢ of B, a definition of 4 being equitable for ¢ is given:
Lemmas 3 and 4 show that this definition implies that in the execution of B obtained
from a fair execution of A by either of the simulation mappings. once ¢ becomes
enabled, it either occurs or becomes disabled. We are on our way to verifying the

fairness of the induced execution of B.

Three methods of showing that A is equitable for locally-controlled action ¢
of B are described. The first method is to show that there is an action p of A
that is enabled whenever ¢ is, and whose oceurrence implies ¢’s occurrence. (Cf.

Lenumna 5.)

The sccond method uses a definition of A being progressive for . The intu-

fabe )

'
'

Ay
A N S s R N o



y " A TR TR AR TUR TN TAN L LR AN O
T T T T O T TSR T SR W T W R W n AU WU WU WO R W TR W TN J L

%

‘i; 3
"f Section 2.1: Safety '
o ;
:: ition behind the definition is that there i a set of “helping™ actious of A4 that arc (
':'. guaranteed to occur, and which make progress toward an occurrence of ¢ iu the ‘
: induced execution of B. Lemma 6 shows that progressive implies equitable.

i The third method for checking the equitable condition can be useful when

: various automata are arranged in a lattice. (See Figure 1.) Suppose B and C are

i »
N more abstract versions of A, and D is a more abstract version of C. In order to h
A show that A is equitable for action ¢ of B. we demonstrate an action p of D that y
K is “similar” to ¢, such that C is progressive for p using a set ¥ of helping actions,

-f and A is equitable for all the helping actions in ¥. (Cf. Lemma 7.)
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Ry Theorems 8 and 9 in Section 2.3 relate the definitions of simulates, simultane-

b ously simulates, and equitable to the notion of satisfaction. \
'.:tt .

) ¢
';:.;: 2.1 Safety \
s': !

Let A and B be automata. Throughout this paper, we only consider automata

'.:: such that each locally-controlled action is in a separate class of the action partition.

*::, (The definitions and results of this section can be generalized to avoid this assump-

;::: tion, but the statements and proofs are more complicated, and the generalization !
\
B is not needed for the proof of the [GHS] algorithm.) Let alt-seq(B) be the set of

W all finite sequences of alternating actions of B and states of B that begin and end

3 . . . . .

p with an action, including the empty sequence (and the sequence of a single action). ‘
Myl . . . . .

[ An abstraction mapping M from A to B is a pair of functions, S and .4, where & ‘.
i’a maps states(A) to states(B) and A maps pairs (s, 7), of states s of A and actions

X 7 of A enabled in s, to alt-seq(B). '
w4 .

a \
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Section 2.1: Safety
Given execution fragment e = somysy ... of A, define M(e) as follows.
o If e = 50, then M(e) = S(s0).

e Suppose e = 3g...8;17;i8i, 1 > 0. If A(s;_1,7;) is empty, then M(c) =
M(SO e Si—l)' If A(Si_],?’(l‘) = ‘Pltl . 'tm—-l‘roma then M(e) = ,M(SO - 3,‘_1)
A @1t1 ... tm_19mS(s;). The t; are called interpolated states of M(e).

¢ If ¢ is infinite, then Me) is the limit of M(sgm 81 ... s;) as ¢ increases without

bound.

We now define a particular kind of abstraction mapping, one tailored for show-
ing inductively that a certain predicate is an invariant of A, and that executions
of A map to (nontrivial) executions of B. (A predicate is a Boolean-valued func-
tion. If @ is a predicate on states(B). and S maps states(A) to states(B), then
(@ 0 S), applied to state s of A, is the predicate “@ is true in S(s),” and is also
written (Q(S(s)).) We give two sets of conditions on abstraction mappings, both of
which imply that executions map to executions, with the same sequence of external
actions. The first set of conditions applies when there is a single higher-level au-
tomaton immediately above. As formalized in Lemma 1, condition (2) ensures that
tne sequences of exteinal actions aice the same, and conditions (1) and (3) ensure
that executions map to executions, and that a certain prcdicate is an invariant for
the lower-level algorithm. A key point about this predicate is that it includes the
bigher-level invariant. Condition (1) is the basis step. Condition (3) is the inductive
step, in which the predicate, including the high-level invariant, may be used; part
(a) shows the low-level predicate is invariant, while parts (b) and {(c) show execu-
tions map to executions, by ensuring that if there is no corresponding high-level
action, then the high-level state is unchanged. and if there is a corresponding high-
lovel action, then it is enabled in the previous high-level state and its effects are
mirrored in the subsequent high-level state. Since executions map to executions.

the high-level invariant. when composed with the state mapping, is also invariant

for A.

Definition: Let 4 and B Le automata with the same external action signature. Let
M = (S. A) be an abstraction mapping from 4 to B, P be a predicate on states(4).

and @ be a predicate true of all reachable states of B. We say 4 simulates B via

M. P, and () if the following three conditions are true.

(1) If s 1s in start(A), then
() P(s)1s true, and

T

e Py . .
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Section 2.1: Safety .
)
(b) S(s) is in start(B). '
f
&
(2) If s is a state of A such that Q(S(s)) and P(s) are true, and mis any action of W
A4 cnabled in s, then A(s, 7)|cet(DB) = mlcrt(A). !,
!
(3) Let (s',7,5) be a step of A such that Q(S(s')) and P(s') are truc. Then $:
(a) P(s) is true, ‘!:.:
(b) if A(s',7) is empty, then §(s) = S(s'), and
(c) if A(s',7) = P1t1.. . tme1¥m, then S(s" gt .. tm_19mS(8) is an execu- ,:r
tion fragment of B. O j "‘
- A
iy
The first lemma verifies that if A simulates B via M, then M(e) is an execution ! :t
of B and a certain predicate is true of all states of e. o
{ ja W)
Lemma 1: If A simulates B via M = (8. A). P and @, then the following are truc ,j
for any execution € of A. N
)
(1) M(e) is an execution of B. '
)
..l
(2) (Q o S) A P is true in every state of c. !::;:
‘l
Proof: Let ¢ = sgmysy.... If (1) and (2) are true for every finite prefix ¢; = 54... 5,
of e, then (1) and (2) are true for e. We proceed by induction on z. We need to r-"'.
streugthen the inductive hypothesis for (1) to be the following: )

(1) M(e;) is an execution of B and S(s;) = t, where t is the final state in M(¢;).

|‘rl
'
(Throughout this proof, “conditious (1), (2) and (3)” refer to the conditions in n .:
the definition of “simulates”.) :
)
Basis: i = 0. (1) M(eg) = S(s¢). Since eg is an cexecution of A, sy is in A
start(A). Condition (1b) implies that S{sy) is in start(B), so M(ep) is an execution "
of B. Obviously, the assertion about the final states is true. iy
AL
(2) Condition (1la) states that P is true i so. Since S(s¢) is n start(B), it is " :
a reachable state of B, and Q(S8(sg)) is truc. E?
Q
~
Induction: 1 > 0. By the inductive hypothesis for (2), Q(S(si—1)) and P(s;_1) o'
are true. Thus, conditions (3a), (3b) and (3c) are true. Ny
"
’
(1) Let M(e;—1) = toerty...t; and M(¢;) = topity ... t,,. Obviously, m > . R
U
’ 1
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Section 2.1: Safety ::
i
Suppose m = j. Then M(e;) = M(ei—y) and is an execution of B by the :
inductive hypothesis for (1). We deduce that A(s;_.7;) is empty, so by condition ]
b), S(si) = S(si-;), and by the inductive hypothesis for (1), S(s,_;) = t;. @
Suppose m > j. By construction of M(¢;), A(si—y,mi) = @jsitjs1 - tmo1Pm- .\_:
and t,, = S(s;). By the inductive hypothesis for (1), S(s;—1) = t;. By condition g
. (3¢), tjpj+1...@mtm is an execution fragment of B. Thus, M(e;) is an execution ~.i
of B. Obviously, the assertion about the final states is true. N
(W)
(2) By the inductive hypothesis for (2), (Q o S) A P is true in every state of :),‘
€i, except (possibly) s;. By condition (3a), P(s;) is true. The final state in M(¢;) E‘ﬁ
i1s S(s;). Since, by part (1), M(e;) is an execution of B and &(s;) equals the final ® ’
state of M(e;), S(s;) 1s a reachable state of B. By definition of @, Q(S(s;)) is "':::.
true. O :‘:f
o
Next we suppose that there are several higher-level versions, say By and B,, of ‘ |
automaton A, each focusing on a different task. There are situations in which it is (:"_
impossible to show that A simulates B, without using invariants about B;’s task, ';
and it is impossible to show that A simulates By without using invariants about : ::
B,’s task. One could cast the invariants about B,'s task as predicates of A, and vl
use the previous definition to show A sir-ulates By, but this violates the spirit of N
the lattice. Instead, we define a notion of simultaneously stmulates, which allows :E&
invariants about both tasks to be used in showing that A simulates B, and DB,. o
. The definition differs from simply requiring A to simulaie By and A to simulate ':"
B, in one important way: steps of A only need to be reflected properly in each »
higher-level algorithm when all the higher-level invariants are true (cf. condition !
(3)). -
o~
Definition: Let I be an index set. Let 4 and A4,. r € I. be automata with the \.'
same external action signature. For all » € I, let M, = (S;, A,) be an abstraction 9
mapping from A to A4,, and let Q. be a predicate true of all reachable states of A, . : \
Let P be a predicate on states(A). We say A simultaneously simulates {A, : r € I} EE
ma {M,:r €I}, P,and {Q, : r € I} if the following three conditions are true. )
'
(1) If s is in start(A), then \'s.
(a) P(s) 1s true, and "‘;:
(b) 8y(s) 1s in start(A,) for all r € . E';
(2) If s is a state of A such that A o, Q.(S,(s)) and P(s) are true, and 7 15 any .#
action of A enabled in s then A, (s, m)ert(A,) = wleat(d) forall r € I. Ny
N
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Section 2.2: Liveness

(3) Let (s',m,s) be a step of A such that A, o, Q- (S(+")) and P(+') are true. Then
(a) P(s) is true,
(b) if A.(s',7) is empty, then S,(s) = S,(s'), for all r € I, aud
(c) if A (s',7) = @1ty oo tm_19m, then Sp(s")prt) oot 19, Sr(~) is an exe-
cution fragment of A,, for all r € I. 0

The statement “A simultaneously simmulates {4,.d;} via {M,. M,}. P and
{Q1,Q2}" is weaker than the statement “A simulates 4, via M, P aud ;. and
A simulates A via M, P and @,” because the hypotheses of conditious (2) and

(3) in the simultaneous definition require that a stronger predicate be true.
Lemma 2 shows that the safety properties of interest are still preserved.

Lemma 2: Let I be an index set. If A simultaneously simulates {A, :r € I} via
{My :r €I}, P,and {Q, : r € I}, where M, = (S,, A,) for all r € I, then the

following are true of any execution e of A.
(1) M(e) is an execution of A, for all v € I.

(2) Arer(Qro8r) A P is true in every state of e.

2.2 Liveness

The following notation is introduced to define the basic liveness notion, “equi-

table”, and to verify that this definition has the desired properties.

We define an execution e = sg7mys; ... of automaton A to satisfy § — (T, X).
where S and T are subsets of states{ A) and X is a subset of states(A) X acts(4),
if for all ¢ with s; € S, there is a j > 7 such that cither s, € T or (s;,7,47) € X.
In words, starting at any state of ¢. eventually ecither a stite in T is reached. or a

state-action pair in X is reached.

If M = (S5,.A) is an abstraction mapping from 4 to B, then for each locally-
controlled action ¢ of B, we make the following definitions: E, is the set of all
states s of A such that ¢ is enabled in §(s); D, is states(4) — E.; D:P is the set of
all states t of B such that ¢ is not enabled in t; X, is the set of all pairs (s, ) of
states s of A and actions 7 of A such that ¢ 1s in A(s, 7); and X, is states(B) x {¢}.

Definition: Suppose M is an abstraction mapping from A to B. Let ¢ be a locally-
controlled action of B. If every fair execution of A satisfies states(A) — (D,, X.,),
then A is equitable for ¢ via M. If 4 is equitable for o via M for every locally-
controlled action  of B. then 4 is equitable for B. O

10
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Section 2.2: Liveness

The next lemma motivates the equitable definition — in the induced exezution
of B, if ¢ is ever enabled, then eventually ¢ either occurs or becomes disabled.

Lemma 3: Suppose A simulates B via M. Let ¢ be a locally-controlled action of
B. If A is equitable for ¢ via M, then M(e) satisfies states(B) — (D.,, X,), for
every fair execution e of A.

Proof: Let M = (S, A). Let e = s¢m1s1... be a fair execution of A, and let
M(e) = toprt; .... For any ¢ > 0, define mndez(7) to be j such that M(sg...s,) =
to...t;. Choose ¢ > 0.

Case 1: t; is not interpolated. Choose any ! be such that indez(!) = ¢. Then
ti = S(s1), as argued in the proof of Lemma 1. Suppose there is an m > [ such that
Sm € Dy. Then thereis a j = indexz(m) > 1 such that t; = S(s ), and by definition
of D, t; is in D,,. Suppose there is an m > [ such that (sm,mm41) € Xy, Then
there is a j = index(m) > @ such that ©; = ¢, by definition of X, and (¢;,¢;41)

. e
is 1n .X‘p.

Case 2: t; is interpolated. Let i’ be the smallest integer greater than ¢ such
that t; is not interpolated. If either a state in D', or ¢ occurs between 7 and ¢ in
M(e), then we are done. Suppose not. Then the argument in Case 1, applied to t;.
shows that eventually after ¢;/, and thus after t;, either a state in D:; or ¢ occurs

in M(e). O

The next lemima is the analog of Lemma 3 for simultaneously simulates. (D,

and X:D are defined with respect to M,..)

Lemma 4: Suppose A simultancously simulates {4, : r € I} via {M, : v € I}.
Let ¢ be a locally-controlled action of A, for some r. If A is equitable for ¢ via

M. then M, (e) satisfies statcs(B) — (D{;. X|,), for every fair execution ¢ of A.

The rest of this subsection describes three methods of verifying that A 1s eq-
uitable for action ¢ of B. Lemma 5 describes the first method, which is to 1dentify

an action of A that is essentially the “same™ as .

Lemma 5: Suppose M = (S. A) is an abstraction mapping from A to B. ¢ is a
locally-controlled action of B. and p is a locally-controlled action of A4 such that,

for all reachable states s of A.
(1) p is enabled in s if and onlyv if ¢ is enabled in state S(s) of B. and
(2) if p is enabled in s, then p is inclnded i A(s.p).

11
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Section 2.2: Liveness

Then A is equitable for ¢ via M.

Proof: Let e = sgms; ... be a fair execution of A. Choose ¢t > 0. If 5, € D, we
are done. Suppose s; € E,. By assumption, p is enabled in s,. Sinee e 1s fair, there
exists j > ¢ such that either m; = p, in which case A(s;_;,7;) includes ¢, or clse
p is not enabled in s;, in which case ¢ is not enabled in S(s;). Thus, ¢ satisfies
states(A) — (Dy,, Xy). O

The second method uses the following definition, which is shown in Lemma 6

to imply equitable.

Definition: Suppose M = (S, A) is an abstraction mapping from A to B. If ¢ is
a locally-controlled action of B, then we say A is progressive for ¢ via M if there
is a set ¥ of pairs (s,1) of states s of A and locally-controlled actions 3 of A, and
a function v from states(A) to a well-founded set such that the following are true.

(1) For any reachable state s € E, of A, some action ¥ is enabled in s such that

(s,%)isin W.

(2) For any step (s',m,s) of 4, where s’ is reachable and in E,, (s',7) € X, and
s€ E,,

(a) v(s) < o(s"),

(b) if (s',7) € T, then v(s) < v(s'), and

(c)if (s',7) & ¥, ¥ is enabled in s, and (s',9) is in ¥, then ¥ is enabled in s
and (s,%) isin 0. O

Lemma 6: If A is progressive for o via M, then A is equitable for ¢ via M.

Proof: Let M = (S, A). By assumption. » is a locally-controlled action of B. and
there exist ¥ and v satisfying conditions (1) and (2) in the definition of “progres-
sive”.

Let € = sgmys1... be a fair execution of 4. Choose ¢+ > 0. If s; € D, we are

@
done. Suppose s; € E,. Assume in contradiction that for all j > ¢, (s;,741) € X,
and s; € E,. By condition (1). there is an action ¢ enabled in s; such that (s;,v")
is in ¥. By condition (2c¢). as long as (s;.7;4,) € ¥, ¢ is enabled in s;;; and
(sj+1,%) € ¥, for j > 7. Since c is fair, there is 7; > 7 such that (s, —1.7m;,) € L.
By conditions (2a) and (2b), v(s;,) < v(s;). Similarly, we can show that there is
1o > 1; such that ©(s;,) < v(s; ). We can continue this indefinitely, contradicting

the range of v being a well-founded set. O
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Section 2.2: Liveness W

by
0
The next lemma demonstrates a third technique for showing that A is equitable :'»:
o
for locally-controlled action ¢ of B, in a situation when there are multiple higher- R
level algorithms. The main idea is to show that there is some action p of D that q",
is “similar” to ¢ (cf. conditions (2) and (3)) such that C is progressive for p using
certain helping actions (cf. condition (4)), and A is equitable for all the helping o
actions for p (cf. condition (5)). By “similar”, we mean that if ¢ is enabled in the ;}
. B-image of state s of A, then p is enabled in the D-image of the C-image of s; and 1
if p occurs in the D-image of the C-image of the pair (s, 7), then ¢ occurs in the '2
B-image of (s', 7). Condition (1) is needed for technical reasons. (For convenience, ..j
we define abstraction function M applied to the empty sequence to be the empty :::
sequence. To avoid ambiguity, we add the superscript AB to E,, D, and X, when 2
they are defined with respect to the abstraction function from A to B.) o
4
.
Lemma 7: Let A, B, C and D be automata such that M ap = (S4B, AaB) is an .::
abstraction function from A to B, and similarly for M sc and Mcp. Let ¢ be a :::
locally-controlled action of B. Suppose the following conditions are true. s
(5]
o
(1) M sc(e) is an execution of C for every execution e of A. :;
) ".
1 .3_
(2) There is a locally-controlled action p of D such that for any reachable state !
sof A, ifs € E{:B, then Sac(s) € EED. :;'
o
4
(3) If (s',m,s) is a step of A, s’ is reachable, and p is in Mcp(M sc(s'ms)), b

then ¢ is in Aap(s', ). '

(4) C is progressive for p via M¢p, using the set ¥, and the function v,. ';E

"

) - Y

\ (5) A is equitable for ¢ via M ¢, for all actions 1 of C such that (t,) € ¥, ':g?

for some state t of C. A

T

Then A is equitable for ¢ via M 4p. z‘!

|':§

Proof: Let e = s¢gms;1... be a fair execution of A. Let M ac(e) = toprty.... By ::‘:\

assumption (1), t,, is a reachable state of C for all m > 0. For any 7 > 0, define

indez(i) to be m such that M c(se71 ... 8) =top1...tm. :

Choose 2 > 0. If 5, € DﬁB, we are done. Suppose s; € E::B. Assume in "o

contradiction that for all j > 1, (s;,741) € X“’,‘B and s; € E":". Let m = index(?). X

By assumption (2), there is a locally-controlled action p of D such that ¢, EED o«

: for all n > m. By assumption (3), (t,,¥n+1) € X,,CD for all n > m. ‘.E
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Section 3: Problem Statement ‘
1
i
By assumption (4), C is progressive for p via M¢p, using set ¥, and function ,t::;:
v,. Thus, there is a locally-controlled action ¥ of C enabled in Sac(si) = tm such :“::::
that (t,,%) € ¥,. By assumption (5), A is equitable for ¢ via M 4. Since c is fair
and s; € E,}?(', by Lemma 3 there exists ¢ o- 1 such that cither (s, 2y, 7,,) ¢ .\',;,"' es'o'
. . Y
or s;, € D$C. Let m; = index(sy). :::::‘.
0N
. o . £
Case 1: (8i,~1,7i,) € X,fc. Then Asc(si,-1,7i, ) includes 9. Since ¢, is :::ﬁ:‘
reachable, t, € E'E'D, and (tn,@on+1) & XPCD for all n > m, we conclude that w"‘
Vp(tm,) < vp(tm), by parts (2a) and (2b) of the definition of “progressiv2". :.l::
} "‘:i
Case 2: s;, € DQC. Since t, is reachable, t, € EED, and (t,,Pns1) & XSD ;::‘:::
. {
for all n > m, by part (2¢) of the definition of “ progressive”, the only way ¢ can "‘
go from enabled in £,, to disabled in ¢, is for some action in ¥, to occur between ';“'
. My
@m+1 and Yn,,. By part (2b) of the definition of “progressive”, vp(tm,) < vo(tm). t":::',
e
LAM]
Similarly, we can show that there exists 12 > ¢; such that v,(Sac(si,)) < "':3'
v,(Sac(si,)). We can continue this indefinitely, contradicting the range of v, being s
a well-founded set. O %s
¢
o
2.3 Satisfaction ?&g
0
The next theorem shows that our definitions of simulate and equitable are "
sufficient for showing that A satisfies B. v::.
St
gy
Theorem 8: If A simulates B via M, P and Q and if A is equitable for B via M, ::':‘
then A satisfies B. N
b
Proof: We must show that for any fair execution e of A, there is a fair execution 12:.{
f of B such that sched(e)|ext(A4) = sched(f)|ext(B). Given e, let f be M(e). We ' :::l:
verify that M(e) is a fair execution of B with the desired property. Lemma 1, part .‘::
(1), implies that f is an execution of B. Choose any locally-controlled action ¢ of .
B. By Lemma 3, if ¢ is enabled in any statc of f, then subsequently in f. either ; :"i:
a state occurs in which ¢ is not enabled, or ¢ occurs. Thus, f is fair. Finally, .::::
sched(e)lext(A) = sched(f)lext(B) because of condition (2) in the definition of ":,'::
“simulates”. 0 ¥ .
P 7'
The next theorem is the analog of Theorem 7 for simultaneously simulates. )
Mt
Theorem 9: Let I be an index set. If A simultaneously simulates {A, : r € I} via &V‘
{M, :r €I}, Pand {Q, : r € I}, and if A is equitable for A, via M, for some by
r € I, then A satisfies A,.. 2
14
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Section 3: Problem Statement

3. Problem Statement
We define the minimum spanning tree problem as an external schedule module.

For the rest of this paper, let G be a connected undirected graph, with at
least two nodes and for each edge, a unique weight chosen from a totally ordered
set. Nodes are V(G) and edges are E(G). For each edge (p,q) in E(G), there are
two links (i.e., directed edges), (p,q) and (g, p). The set of all links of G is denoted
L(G). The set of all links leaving p is denoted L,(G). The weight of (p, ¢) is denoted
wi(p, q); wt({p,q)) is defined to be wt(p, ¢); and wt(nil) is defined to be .

The following facts about minimum spanning trees will be useful.
Lemma 10: (Property 2 in [GHS]) The minimum spanning tree of G is unique.

Proof: Suppose in contradiction that T} and T, are both minimum spanning trees
of G and Ty # T». Let e be the minimum-weight edge that is in one of the trees
but not both. Without loss of generality, suppose e is in E(T;). The set of edges
{e} U E(T,) must contain a cycle, and at least one edge, say €', of this cycle is not
in E(Ty). Since € # ¢’ and €' is in one but not both of the trees, wt(e) < wt(e').
Thus replacing €' with e in E(T}) yields a spanning tree of G with smaller weight
than T3, contradicting the assumption. 0

Let T(G) be the (unique) minimum spanning tree of G.

An ezternal edge (p, q) of subgraph F of G is an edge of G such that p € V(F)
and ¢ € V(F).

Lemma 11: (Property 1 in [GHS]) If F is a subgraph of T(G), and e is the
minimum-weight external edge of F, then e is in T(G).

Proof: Suppose in contradiction that e is not in T(G). Then a cycle is formed by
e together with some subset of the edges of T(G). At least one other edge e’ of this
cycle is also an external edge of F. By choice of e, wt(e) < wt(e’). Thus, replacing
¢’ with e in the edge set of T(G) produces a spanning tree of G with smaller weight
than T(G), which is a contradiction. a

The M ST(G) problem is the following external schedule module. Input actions
are {Start(p) : p € V(G)}. Output actions are {InTree(l), NotInTree(l) : l €
L(G)}. Schedules are all sequences of actions such that

e no output action occurs unless an input action occurs;

AR S :&3\&*&%&%



Section 4: Proof of Correctness

. ¢ if an input action occurs, then exactly one output action occurs for each ! €

L(G);
o if InTree({p,q)) occurs, then (p,q) is in T(G): and

e if NotInTree({p,q)) occurs, then (p, q) is not in T(G).

4. Proof of Correctness

The verification of Gallager, Humblet and Spira’s minimum-spanning tree al-
gorithm [GHS] uses several automata, arranged into a lattice as in Figure 2.

j;
AN

Figure 2: The Lattice

Each element of the lattice is a complete algorithm. However, the level of detail
in which the actions and state of the original algorithm are represented varies.
Working down the lattice takes us from a description of the algorithm that uses
global information about the state of the graph, and powerful, atomic actions, to a
fully distributed algorithm, in which each node can only access its local variables.
and many actions are needed to implement a single higher level action. A brief
overview of each algorithm is given below; a fuller description of each appears later.

HI is a very high-level description of the algorithm, and is easily shown in
Section 4.1 to solve the M ST(G) problem. GHS is the detailed algorithm from
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Section 4: Proof of Correctness 5::3

Ui

| [GHS]. We show a path in the lattice from GHS to HI, where each automaton in Es;fz::
" the path satisfies the automaton above it. By transitivity of satisfaction, then GHS :a:':‘
{ will have been shown to solve MST(G). 8
s

The essential feature of the state of HI is a set of subgraphs of G, initially 'é:k;}

the set of singleton nodes of G. Subgraphs combine, in a single action, along ::::::‘

b minimum-weight external edges, until only one subgraph, the minimum spanning """
tree, remains. .§§

\ 2
The COM automaton introduces fragments, each of which corresponds to a '.::lf

subgraph of HI, plus extra information about the global level and core (or identity) dai

of the subgraph. Two ways to combine fragments are distinguished, merging and ' 9

absorbing, and two milestones that a fragment must reach before combining are ’J"z:i:

identified. The first milestone is computing the minimun-weight external link of ::ife;

the fragment, and the second is indicating readiness to combine. ':Efc:"

The GC automaton expands on the process of finding the minimum-weight :E:E:Ef

external link of a fragment, by introducing for each fragment a set testset of nodes ':3:'.:’::

that are participating in the search. Once a node has found its local minimum- ::::“;

weight external link, it is removed from the testset.

TAR and DC expand on GC in complementary ways. DC focuses on how the :::::‘
nodes of a fragment cooperate to find the minimum-weight external link of the whole R E"'%
. fragment in a distributed fashion. It describes the flow of messages throughout iy
the fragments: first a broadcast informs nodes that they should find their local L
minimum-weight external links, and then a convergecast reports the results back. ::u::,‘:
In contrast, TAR is unconcerned with specifying exactly when each node finds its "E::'.Z
local minimum-weight external link, and concentrates on the details of the protocol '.:::‘
performed by a node to find this link. :
"0 :t

NOT is arefinement of COM that expands on the method by which the global ‘
level and core information for a fragment is implemented by variables local to each ""E"'. )
node. Messages attempt to notify nodes of the level and core of the nodes’ current ‘1‘ !
fragment. :::.:
t.u,

CON, an orthogonal refinement of COM, concentrates on how messages are a:‘s..:
used to implement what happens between the time the minimum-weight external w3
link of an entire fragment is computed, and the time the fragment is combined with _',.‘

another one. ooty
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Section 4.1: HI Solves MST(G)

Finally, the entire, fully distributed, algorithm is represented in automaton
GHS. It expands on and unites TAR, DC, NOT and CON.

The path chosen through the lattice is HI, COM, GC, TAR, GHS. Why
this path? Obviously, GHS must be shown to satisfy one of TAR, DC, NOT
and CON. However, it cannot be done in isolation; that is, invariants about the
other three are necessary to show that GH S satisfies one. (As mentioned in Section
2.1, the invariants about the other three could be made predicates about GHS,
but this approach does not take advantage of abstraction.) Thus, we show that
GH S simultaneously simulates those four automata. To show this, however, we
need to verify that certain predicates really are invariants for the four. In order to
do this, we show that TAR and DC (independently) simulate GC, and that NOT
and CON (independently) simulate COM . Likewise, in order to show these facts,
we need to know that certain predicates are invariants of GC and COM, and the
way we do that is to show that GC simulates COM, and that COM simulates HI.
Thus, it is necessary to show safety relationships along every edge in the lattice.

The liveness relationships only need to be shown along one path from GHS to
HI. After inspecting GHS and the four automata directly above it, we decided on
pragmatic grounds that it would be easiest to show that GHS is equitable for TAR.
One consideration was that the output actions have exactly the same preconditions
in GHS and in TAR, and thus showing GH S is equitable for those actions is trivial.
Once TAR was chosen, the rest of the path was fixed.

First, the necessary safety properties are verified in Section 4.2. We show that
COM simulates HI (Section 4.2.1), that GC simulates COM (Section 4.2.2), that
TAR simulates GC (Section 4.2.3), that DC simulates GC (Section 4.2.4), that
NOT simulates COM (Section 4.2.5), that CON simulates COM (Section 4.2.6),
and that GH S simultaneously simulates TAR, DC', NOT and CON (Section 4.2.7).

Section 4.3 contains the liveness arguments. To show the desired chain of
satisfaction, we show that COM is equitable for HI (Section 4.3.1), that GC is
equitable for COM (Section 4.3.2), that TAR is equitable for GC (Section 4.3.3),
and that GHS is equitable for TAR (Section 4.3.6). In Section 4.3.6, the technique
of Lemma 7 is used in several places; thus we need to show that DC is progressive

for an action of GC (Section 4.3.4), and that CON is progressive for several actions
of COM (Section 4.3.5).

Section 4.4 puts the pieces together to show that GHS solves MST(G).

18
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Section 4.1: HI Solves MST(G)

4.1 HI Solves MST(G)

The main feature of the HI state is the data structure F'ST (for “forest”),
which consists of a set of subgraphs of G, partitioning V(G). The idea is that
the subgraphs of G are connected subgraphs of the minimum spanning tree T(G).
Two subgraphs can combine if the minimum-weight external link of one leads to
the other. The awake variable is used to make sure that no output action occurs
unless an input action occurs. The answered variables are uscd to ensure that at
most one output action occurs for each link. InTree({p, ;) can only occur if (p, q) is
already in a subgraph, or is the minimum-weight external edge of a subgraph (i.e.,
is destined to be in a subgraph). NotInTree({p,q)) can only occur if p and ¢ are in
the same subgraph but the edge between them is not.

Define automaton HI (for “High Level”) as follows.

The state consists of a set F'ST of subgraphs of G, a Boolean variable
answered(l) for each [ € L(G), and a Boolean variable awake.

In the start state of HI, FST is the set of single-node graphs, one for each
p € V(G), every answered(l) is false, and awake is false.

Input actions:

e Start(p), p € V(G)
Effects:

awake := true

Output actions:

o InTree({p,q)), {p,q) € L(G)

Preconditions:

awake = true

(p,q) € F or (p, ¢) is the minimum-weight external edge of F,
for some F € FST
answered({p.q)) = false
Effects:

answered({(p,q)) := true

o NotInTrce({p,q)), (p,q) € L(G)
Preconditions:

aweke = true
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‘. R
(N
p,q € F and (p,q) € F, for some F € FST :.:j
answered((p, q)) = false E::‘
Effects: ‘”
answered((p, ¢)) := true B
2]
Internal actions: :“:
XY
!U:!
o Combine(F,F',e), F,F' € FST, e € E(G) .
Preconditions: X

awake = true

F#F .N,‘

~ is an external cdge of F’ -

e is the minimum-weight external edge of F' i

Effects: o,i::k

FST := FST — {F,F'} U{F U F' U ¢} ',:

)

%)

Define the following predicates on states(HI). (A minimum spanning forest 3

of G is a set of disjoint subgraphs of G that span V(G) and form a subgraph of a :E:E
minimum spanning tree of G.) Wt
:'-:

N
e HI-A: Each F in FST is connected. %

0 ¥

e HI-B: FST is a minimum spanning forest of G. \ ":
OQ‘

)

Let Py; = HI-A A HI-B. HI-B implies that the elements of F'ST form a par- "E:
tition of V(G). Lemma 10 and HI-B imply that F'ST is a subgraph of T(G). . DA
A

Theorem 12: HI solves the M ST(G) problem, and Py is true in every reachable l.:t
state of HI. ) :f
Y

Proof: First we show that Py is true in every reachable state of HI. If s is a
start state of HI, then Pyyy is obviously true. Suppose (s', 7, 3) is a step of HI and o

Py is true in ¢'. If # # Combine(F, F',¢), then, since FST is unchanged, Py is ;
obviously true in s as well. G
St
Suppose m = Combine(F,F' e¢). DBy the precondition, F # F' e is the ?'
minimum-weight external edge of F’, and e is an external edge of F' in s'. By 's:
HI-A, F and F' are each connected in s'; thus, the new fragment formed in s by W
joining F' and F' along e is connected, and HI-A is true. Since by HI-B and Lemma ,':
10, F and F’ are subgraphs of T(G), and since by Lemma 11 e is in T(G), the new b ‘
FST is a minimum spanning forest of G, and HI-B is true. :E:
W,
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Section 4.1: HI Solves MST(G)

We now show that HI solves M ST(G). Let € be a fair execution of HI. The
use of the variable awake ensures that no output action occurs in e unless an input
action occurs in e. The use of the variables answered(l) ensures that at most one
output action occurs in e for each link /. Suppose InTree((p,q)) occurs in e. Then
in the preceding state, either (p, ¢) is in F or (p, ¢) is the minimum-weight external
edge of F', for some F' € FST. By HI-B and Lemmas 10 and 11, (p,q) is in T(G).
Suppose NotInTree({p.q)) occurs in e. Then in the preceding state, p and ¢ are in
F and (p,q) is not in F', for some F' € F'ST. By HI-A, there is path from p to ¢ in
F. By HI-B and Lemma 10, this path is in T(G). Thus {p,¢) cannot be in T(G),

or else there would be a cycle.

Suppose an input action occurs in e. We show that an output action occurs in
e for each link. Let e = s¢m8;.... Obviously, 7; is an input action. Only a finite
number of output actions can occur in e. Choose m such that =, is the last output
action occurring in e. (Let m = 1 if there is no output action in e.) It is easy to
see that s, = s; for all # > m. Since an input action occurs in e before s,,, awake
= true in s,,. |[FST| =1 in s,,, because othcrwise some Combine(F, F', ¢') action
would be enabled in s,,, contradicting e being fair. Let FST = {F}. By HI-A and
HI-B, F = T(G) in 8;,. Furthermore, answered(l) is true in s,, for each [, because
otherwise some output action for ! would be enabled in s,,, contradicting e being
fair. Yet the only way answered(l) can be true in s,, is if an output action for [

occurs in e. O

4.2 Safety

Each algorithm in the lattice below HI is presented in a separate subsection.
Each subsection is organized as follows. First, an informal description of the algo-
rithm is given, together with a discussion of any particularly interesting aspects.
Then comes a description of the state of the automaton, both explicit variables, and
derived variables (if any). A derived variable is a variable that is not an explicit
element of the state, but is a function of the explicit variables. We employ the con-
vention that whenever the definition of a derived variable is not unique or sensible,
then the derived variable is undefined. The actions of the automaton are specified
next. Then predicates to be shown invariant for this automaton are listed. The
abstraction mapping to be used for simulating the higher-level automaton is de-
fined next. All our state mappings conform to the rule that variables with the same
name have the same value in all the algorithms. The only potential problem that
might arise with this rule is if a derived variable is mapped to an explicit variable,
but the derived variable is undefined. Although we will prove that this situation
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Section 4.2.1: COM Simulates HI

never occurs in states we are interested in, for completeness of the definition of
state mapping one can simply choose some default value for the explicit variable.
Often it is useful to derive some predicates about this automaton’s state that follow
from the invariant for this automaton and the higher-level one; these predicates
are true of any state of this automaton satisfying the invariant and mapping to a
reachable state of the higher-level algorithm. The proof of simulation completes the
subsection.

4.2.1 COM Simulates HI

The COM algorithm still takes a completely global view of the algorithm,
but some intermediate steps leading to combining are identified, and the state is
expanded to include extra information about the subgraphs. The COM state con-
sists of a set of fragments, a data structure used throughout the rest of the lattice.
Each fragment f has associated with it a subgraph of G, as well as other informa-
tion: level(f), core(f), minlink(f), and rootchanged(f). Two milestones must be
reached before a fragment can combine. First, the ComputeMin(f) action causes
the minimum-weight external link of fragment f to be identified as minlink( f), and
second, the ChangeRoot( f) action indicates that fragment f is ready to combine,
by setting the variable rootchanged( f). This automaton distinguishes two ways that
fragments (and hence, their associated subgraphs) can combine. The Merge(f,g)
action causes two fragments, f and g, at the same level with the same minimum-
weight external edge, to combine; the new fragment has a higher level and a new

core (i.e., identifying edge). Thc Absorb(f, g) action causes a fragment ¢ to be en-
gulfed by the fragment f at the other end of minlink(g), provided f is at a higher
level than g¢.

Define automaton COM (for “Common”) as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

o subtree( f), a subgraph of G;
core( f). an edge of G or nili;
level( f), a nonnegative integer;
manlink(f), a link of G or nil;

rootchanged( f), a Boolean.
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Section 4.2.1: COM Simulates HI

The state also contains Boolean variables, answered(l) one for each I € L(G). and

Boolean variable awake.

In the start state of COM, fragments has one element for each node in V(G); for
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level( f) =0,
minlink( f) is the minimum-weight link adjacent to p, and rootchanged(f) is false.

Each answered(l) is false and ewake is false.

Two fragments will be considered the same if either they have the same single-

node subtree, or they have the same nonnil core.
We define the following derived variables.

e For node p, fragment(p) is the element f of fragments such that p is in
subtree( f).

e A link (p,q) is an ezternal link of p and of fragmeni(p) if fragment(p) #
fragment(q); otherwise the link is internal.

o If minlink(f) = (p,q). then minedge( f) is the edge (p,q), minn-de(f) = p, and
root( f) is the endpoint of core( f) closest to p.

e If (p, q) is the minimum-weight external link of fragment f, then mw-minnode(f)
= p and mw-roof( f) is the endpoint of core( f) closest to p.

e subtree(p) is all nodes and edges of subtree(fragment(p)) on the opposite side
of p from core(fragment(p)).

e gisa child of p if g € subtree(p) and (p,q) € subtree(fragment(p)).
Input actions:

o Start(p). p€ V(G)
Effects:

awake := true
Output actions:

o InTree({p,q)), {r.q) € L(G)
Preconditions:

awake = true

(p.q) € subtree(fragment(p)) or (p,q) = minlink(fragment(p))
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Section 4.2.1: COM Simulates HI

answered({p. q)) = false
Effects:
answered({p, q)) := true

o NotInTree({p.q)), (p.q) € L(G)
Preconditions:
fragment(p) = fragment{q) and (p.q) & subtree( fragment(p))
answered((p, q)) = false
Effects:
answered((p, ¢}) := true

Internal actions:

o ComputeMin(f), f € fragments
Preconditions:
manlink(f) = nil
[ is the minimum-weight external link of f
level( f) < level( fragment(target(!)))
Effects:
manhink(f) =1

e ChangeRoot( f), f € fragments
Preconditions:
awake = true
rootchanged( f) = false
minlink( f) # nil
Effects:
rootchanged(f) := true

o Merge(f.g). f.g € fragments

Preconditions:
f#y
rootchanged( f) = rootchanged(g) = truc
minedge( f) = minedge(q)

Effects:
add a new element h to fragments
subtrec(h) := subtree( f) U subtree(yg) U minedge( f)
core(h) := manedge( f)
level( ) := level(f) + 1
manlink(h) := nil
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Section 4.2.1: COM Simulates HI

rootchanged(h) := false
delete f and g from fragments

o Absorb(f,g), f,g € fragments

Preconditions:

rootchanged(g) = true -
. level(g) < level(f)

fragment(target(minlink(g))) = f

Effects:
subtree( f) := subtree(f) U subtree(g) U minedge(g)
delete g from fragments

‘Bia §2a £'a $% 854"

Define the following predicates on states of COM. (All free variables are uni-

versally quantified.)

o COM-A: If minlink(f) = [, then [ is the minimum-weight external link of f,

and level( f) < level(fragment(target(l))).

o COM-B: If rootchanged(f) = true, then minlink(f) # nil.

o COM-C: If awake = false, then minlink( f) # nil, rootchanged( f) = false, and

subtree( f) = {p} for some p.

o COM-D: If f # g, then subtree(f) # subtree(g).

o COM-E: If subtree(f) = {p} for some p, then minlin. f) # nil.

o COM-F: If |nodes(f)| = 1, then level( f) = 0 and core( f) = nil; if |nodes(f)| >

1, then level(f) > 0 and core(f) € subtree(f).

Let Pcoar be the conjunction of COM-A through COM-F.

In order to show that COM simulates HI, we define an abstraction mapping
M = (81, A4;) from COM to HI. Define the function §; from states(COM) to

states(HI) as follows. In conformance with our convention (cf. the beginning of

Section 4.2), the values of awake and answered(l) (for all I) in §;(s) are the same
as in s. The value of F.ST in S (s) is the multiset {subtree(f): f € fragments}.

Define the function A; as follows. Let s be a state of COM and 7 an action

of COM enabled in s.

o If m = Start(p), InTree(l), or NotInTree(l). then A (s, 7) = 7.
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Section 4.2.1: COM Simulates HI ,'
W)
i
e If 1 = ComputeMin(f) or ChangeRoot( f), then A,(s,m) is empty. ':::':':
"%

g'l
o If m = Merge(f,g) or Absorb(f,g), then A;(s,w) = Combine(F, F', e). where "-':::
F = subtree(f) in s, F' = subtree(g) in s, and e = minedge(g) in s. .,‘
M ‘::;
The following predicate is true in every state of COM satisfying (Pyyc S;) A ‘:%‘:f
Pcom- (Le., it is deducible from Pcops and the HI predicates.) :}:.::
e COM-G: The multiset {subtree(f): f € fragments} forms a partition of V(G), ;s&
and fragment(p) is well-defined. R l":'
o
atet
Proof: Let s be a state of COM satisfying (Py; 0 S1) A Pcon. In Si1(s), FST = ,;':::
{subtree(f): f € fragments}. By HI-B, F ST forms a partition of V(G). By COM- .'
D, the multiset {subtree(f): f € fragments} = FST, and thus it forms a partition ,:‘:‘E',
of V(G). Consequently, fragment(p) is well-defined. O :’:::‘:.::
Wiy
Lemima 13: COM simulates HI via My, Pcoa, and Pyy. "g
NS
Proof: By inspection, the types of COM, HI, M; and Pcop are correct. By "\,;"" 1
Theorem 12, Py is a predicate true in every reachable state of HI. ".'?.a':
o)
ol

)
(1) Let s be in start(COM). Obviously, Pcoa is true in s, and S;i(s) is in -
start(HI). :..':::
e
W
(2) Obviously, A, (s, 7)lext(HI) = wlext(COM) for any state s of A. . ::
oty o
(3) Let (s',m,s) be a step of COM such that Py is true of S;(s') and Peooas xxn
is true of s’. We consider each possible value of «. :::::::
l':.:‘:
OOy
i) 7 is Start(p), InTree(l), or NotInTree(l). A;(s',7) = 7. Obviously, .::::;S
Pcom 1s true in s, and S1(s')wS;i(s) is an execution fragment of H1I. Py ‘
Nrne,
ii) 7 is ComputeMin(f) or ChangeRoot(f). A,(s', 7) is empty. Obviously. }:@
S1(s") = 81(s). Obviously, COM-A, COM-B, COM-D and COM-F are true in s. < l
By COM-C for ComputeMin(f) and by precondition for ChangeRoot(f), awake = "'-?
true in s', and also in s; thus, COM-C is true in s. .
fu:, ]
Obviously, COM-E is true in s for any fragment f' # f. f 1 = ComputeMin(f), (f.: \

. O

then minlink(f) # nil in s, and COM-E is vacuously true in s for f. If = = -‘;:: ;
ChangeRoot( f), then by COM-B, minlink(f) # nil in s’ and also in s, so COM-E “.
is vacuously true in s for f. ..‘:::{
%
o )
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Section 4.2.1: COM Simulates HI .:w'.{q
iii) 7 is Merge(f,g). et

(3¢c) Ai(s',m) = Combine(F, F',e), where F = subtree(f) in s', F' = subtree(g) .

in s', and e = minedge(g) in s', for some fragments f and g.
Claims about s':

f # g, by precondition. =
rootchanged( f) = rootchanged(g) = true, by precondition. A
minedge( f) = minedge(g), by precondition.
awake = true, by Claim 2 and COM-C. R
manedge( f) # nil and minedge(g) # nil, by Claim 2 and COM-B
minlink( f) is an external link of f, by COM-A and Claim 5. s:‘,:’::
minlink(g) is the minimum-weight external link of g, by COM-A and Claim 5. (e,

NSOt W

Let F = subtree(f), F' = subtree(g) and e = minedge(g). 0N
Claims about S1(s'): (All depend on the definition of S;.)

8. awake = true, by Claim 4.

9. F # F', by Claim 1 and COM-D.

10. e is an external edge of F, by Claims 3 and 6.

11. € is the minimum-weight external edge of F’, by Claim 7.

By Claims 8 through 11, Combine(F, F', €) is enabled in S, (s'). Obviously, its
effects are mirrored in &;(s).

(3a) More claims about s':

12. level(f) > 0, by COM-F.
13. subtree(f') and subtree(g') are disjoint, for all f' # ¢', by COM-G.

Claims about s:

14. subtree(h) = subtree(f) U subtree(g) U minedge( f), by code.

15. core(h) = minedge( f), by code.

16. level(h) = level( f) + 1, by code.

17. minlink(h) = nil, by code.

18. rootchanged(h) = false, by code.

19. f and ¢ are removed from fragments, by code.

20. awake = true, by Claim 4.

21. subtree(f') and subtree(q') are disjoint, for all f' # ¢', by Claims 13, 14 and 19.

...........



Section 4.2.1: COM Simulates HI

22. |nodes(h)| > 1, by Claim 14. e
23. level(h) > 1, by Claims 12 and 16. i
24. core(h) € subtree(h), by Claims 14 and 15. "

COM-A is vacuously true for h by Claim 17. COM-B is vacuously true for 7 W
by Claim 18. COM-C is vacuously true by Claim 20. COM-D is true by Claim 21. ":':‘
COM-E is vacuously true for h by Claim 22. COM-F is true for & by Claims 22, 23 e
and 24. .

iv) = is Absorb(f,g). :,:;

i
(3c) Ay(s',m) = Combine(F, F',e), where F' = subtree(f) in ', F' = subtree(g) 3‘
in s', and e = minedge(g) in s', for some fragments f and g. | J

Claims about s’: o

1. rootchanged(g) = true, by precondition. !
2. level(g) < level( f), by precondition. A
3. fragment(target(minlink(g))) = f, by precondition. Al
4. f # g, by Claim 2. A
5. minlink(g) is an external link of f, by Claims 3 and 4. W
6. minlink(g) # nil, by Claim 3. )

7. minlink(g) is the minimum-weight external link of g, by Claim 6 and COM-A. i‘,tgt
8. awake = true, by Claim 1 and COM-C. -

Let F' = subiree(f), F' = subtree(g) and e = minedge(g).
Claims about S1(s'): (All depend on the definition of S;.) R

9. awake = true, by Claim 8. .
10. F # F', by Claim 4 and COM-D. B
11. € is an external edge of F', by Claim 5. o
12. e is the minimum-weight external edge of F', by Claim 7. )

By Claims 9 through 12, Combine(F, F', e) is enabled in S;(s’). Obviously, its X
effects are mirrored in S;(s). o

(3a) COM-A: If minlink( f) = nil in s'. then the same is true in s, and COM-A '
is vacuously true for f. Suppose minlink{ f) = [ in s’. Let f' = fragment(target(l)).

More claims about s': s

28 o
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Section 4.2.2: GC Simulates COM

13. level(f) < level(f'), by COM-A.

14. f' # g, by Claims 2 and 13.

15. minedge(f) # minedge(g), by Claim 14.

16. minlink(f) is the minimum-weight external link of f, by COM-A.

17. If ' #£ minedge(g) is an external edge of g, then wt(e’) > wt(minedge(f)). Pf:
wt(e') > wit(minedge(g)) by Claim 7, and wt(minedge(g)) > wit(minedge(f)) by
Claims 5, 15 and 16.

Since minlink(f) is the same in s as in s', Claims 16 and 17 imply that in s,
manlink( f) is the minimum-weight external link of f. The only fragment whose level
changes in going from s’ to s is ¢ (since ¢ disappears). Thus, Claim 14 implies that
in s, level(f) < level(f'). Finally, COM-A is true in s.

The next claims are used to verify COM-B through COM-F.
More claims about s':

18. subtree(f') and subtree(g') are disjoint, for all f' # ¢', by COM-G.
19. level(g) > 0, by COM-F.

20. level(f) > 0, by Claims 2 and 19.

21. |nodes(f)| > 1, by Claim 20 and COM-F.

22. core(f) € subtree(f), by Claim 21 and COM-F.

Claims about s:

23. awake = true, by Claim 1.

24. subtree(f) in s is equal to subtree(f) U subtree(g) U minedge(g) in s', by code.
25. subtree(f') and subtree(g') are disjoint, for all f' # ¢', by Claims 18 and 24.
26. |nodes(f)| > 1, by Claims 21 and 24.

27. level(f) > 0, by Claim 20.

28. core(f) € subtree(f), by Claims 22 and 24.

COM-B is unaffected. COM-C is vacuously true by Claim 23. COM-D is true
by Claim 25. COM-E is vacuously true for f by Claim 26. COM-F is true for f by
Claims 26, 27 and 28. o

Let Pé’OM = (Pyro8)) A Pecou.
Corollary 14: P/.,,, Is true in every reachable state of COM.
Proof: By Lemmas 1 and 13. W]
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WY RN

4.2.2 GC Simulates COM

i

-~

-

The GC automaton expands on the process of finding the minimum-weight
external link of a fragment, by introducing for each fragment f a set testset( f) of
nodes that are participating in the search. Once a node in f has found its minimum-
weight external link, it is removed from testset( f). A new action, TestNode(p), is
added, by which a node p atomically finds its minimum-weight external link —
however, the fragment at the other end of the link cannot be at a lower level than

p’s fragment in order for this action to occur. The new variable acemin(f) (for

“accumulated minlink”) stores the link with the minimum weight over all links
external to nodes of f no longer in testset(f). ComputeMin(f) cannot occur untii
testset( f) is empty. When an Absord(f, ¢) action occurs, all the nodes formerly in
g are .. 1ded to testse?(f) if and only if the target of minlink(g) is in testset( f). This
version of the algorithm is still totally global in approach.

Define automaton GC (for “Global ComputeMin”) as follows.

The state consists of a set fragments. Each element f of the set is called a
fragment, and has the following components:

o subtree( f), a subgraph of G;
core( f), an edge of G or nil;
level( f), a nonnegative integer;
mainlink(f), a link of G or nil;
rootchanged(f), a Boolean;
testset(f), a subset of V(G); and

o accrman(f), a link of G or nil.

The state also contains Boolean variables, answered(l), one for each I € L(G), and
Boolean variable awake.

In the start state of COM, fragments has one element for each node in V(G);
for fragment f corresponding to node p, subtree( f) = {p}. core( f) = nil, level(f) =
0, minhink(f) is the minimum-weight link adjacent to p, rootchanged(f) is false,
testset( f) is empty, and accmin(f) is nil. Each answered(l) is false and awake is
false.
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i
Input actions: iht
Ol
DOt
e Start(p), p € V(G) ®
Effects: ':::s::
awake := true "t::'::
o
DN
Output actions: O
" .
o InTree((p,q)). (p,q) € L(G) 0
Preconditions: 'é:::::‘
awake = true 5{:3:‘,
(p,q) € subtree(fragment(p)) or {p, q) = minlink(fragment(p)) d
] DO
answered({p, q)) = false 12:;1‘,4
Effects: :::::'.‘
U
answered((p, q)) := true ‘:t?;:.
o NotnTree((p,q)), (p,a) € L(G) o
e ‘.'l ;Q
Preconditions: "ﬁ:’t
fragment(p) = fragment(q) and (p, q) & subtree(fragment(p)) l:':::::
L)
answered((p, q)) = false o
Effects: .
answered((p,q)) := true :‘.::
Wy
A0
Internal actions: \ ,:':
DO
o TestNode(p), p € V(G) 3;';:
Preconditions: ‘n'.
)
-—let f = fragment(p) — ,-;.‘
p € testset(f) el
if (p,q), the minimum-weight external link of p, exists i
then level( f) < level(fragment(q)) ‘
Effects: "
testset( f) := testset(f) — {p} .3-:‘
if (p, ¢), the minimum-weight external link of p, exists K )
and wit(p, q) < wt{accmin(f)) -('.:
" X3
then acemin(f) := (p,q) :‘:_',
o
o ComputeMin(f), f € fragments “‘3
Preconditions: AN
manlink( f) = nil hatpen
o
St
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Section 4.2.2: GC Simulates COM

accrman( f) # nal
testset(f) = 0

Effects:
manlink(f) 1= acemin(f)

accmin(f) := nal

e ChangeRoot(f), f € fragments
Preconditions:
awake = true
rootchanged(f) = false
manlink(f) # nil
Effects:
rootchanged(f) := true

o Merge(f,g), f,g € fragments
Preconditions:

f#9
rootchanged(f) = rootchanged(g) = true
minedge( f) = mincdge(g) # nil
Effects:
add a new element h to fragments
subtree(h) := subtree(f) U subtree(g) U minedge(f)
core(h) := minedge( f)
level(h) := level( f) + 1
manlink(h) := nil
rootchanged(h) := false
testset(h) := nodes(h)
accmin(h) := nil
delete f and g from fragments

o Absorb(f,q), f,g € fragments

Preconditions:
rootchanged(g) = true
level(g) < level(f)
— let p = target{minlink(g)) —
fragment(p) = f

Effects:
subtree( f) 1= subtree(f) U subtree(g) U minedge(q)
if p € testset(f) then testset(f) := testset(f) U testset(g)
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delete g from fragments

Define the following predicates on the states of GC. (All free variables are
universally quantified.)

o GC-A: If acemin(f) = (p,q), then (p,q) is the minimum-weight external link
of any node in nodes(f) — testset(f), and level( f) < level(fragment(q)).

e GO-B: If there is an external link of f, if minlink(f) = nil, and if testset(f) =
0, then acemin(f) # nil.

o GC-C: If testset(f) # 0, then minlink(f) = nal.
Let Pgc = GC-A A GC-B A GC-C.

In order to show that GC simulates COM, we define an abstraction mapping
My = (8,3, Az) from GC to COM. Define the function S; from states(GC) to
states(COM) by simply ignoring the variables accmin(f) and testset(f) for all
fragments f when going from a state of GC to a state of COM.

Define the function A, as follows. Let s be a state of GC and 7 an action of GC
enabled in s. If 7 = TestNode(p), then Ay(s,n) is empty. Otherwise, A(s,7) = =.

Recall that Phpss = (Puro S1) A Peom- I Pgop(S2(s)) is true, then the
COM predicates are true in Sy(s), and the HI predicates are true in S;(S2(s)).

Lemma 15: GC simulates COM via My, Pgc, and Phopy-

Proof: By inspection, the types of GC, COM, M,, and Pgc are correct. By
Corollary 14, Pbg ), is a predicate true in every reachable state of COM.

(1) Let s be in start(GC). Obviously, Pgc is true in s, and Si(s) is in
start(COM).

(2) Obviously, Az(s, w)|ext(COM) = rlext(GC).

(3) Let (s',7,s) be a step of GC such that Py is true of S,(s’) and Pgc is

true of ¢'.

i) 7 is Start(p), InTree(l), NotInTree(l), or ChangeRoot(f). Obviously.

S, (s )8, (s) is an exeeution fragment of COM, and Pge- is true in s.

ii) # is ComputeMin(f).
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(3a) Obviously, Pgc is still truc in s for any f' # f. GC-A is vacuously true
for f in s, since accmin(f) is set to nil. GC-B is vacuously true for f in s, since
minlink(f) # nil. By COM-C, aswake = true in S3(s’) and thus in §'; the same is
truc in s, so GC-C(a) is true in s for f. GC-C(b) is vacuously true for f in s, since

testset( f) = 0.
(3C) A2(3', 71’) =Tm.
Claims about s':

. testset(f) = 0, by precondition.

acemin(f) # nil, by precondition.

. level(f) < level(fragment(target(accmin(f)))), by Claim 2 and GC-A.
accmin(f) is the minimum-weight external link of f, by Claim 2, GC-A, and
Claim 1.

5. level(f) < level(fragment(target(l))), where [ is the minimum-weight external
link of f, by Claims 3 and 4.

N

Using Claim 5, it is easy to see that Sy(s')wSy(s) is an execution fragment of
COM.

iil) 7 is TestNode(p).

(3a) Obviously, Pgc is still true in s for any f' # f. Inspecting the code verifies
that GC-A and GC-B are still true in s for f as well. By GC-C(b), minlink(f) = nil

in s'; GC-C is true for f in s because minlink( f) is not changed.
(3b) A,(s’, ) is empty, and obviously S,(s') = Sa(s).
iv) 7 is Merge(f,g).

(3a) Obviously, Pgc is still true in s for any f' other than f and ¢g. GC-A is
vacuously true in s for &, since accmin(h) = nil. GC-B is vacuously true in s for
h, since testset(h) # 8. GC-C is true in s for h since minlink(h) = nil.

(3c) Az(s'.m) = 7. Obviously, Sp(s')7S,(s) is an execution fragment of COM.
v) 7 is Absorb(f,g).
(3a) Obviously, Pgc is still true in s for any f' other than f and g.

In going from s’ to s, testset( f) is either empty in both or non-empty in both,

manlink( ) remains the same, and the truth of the exiotence of an external link of
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Section 4.2.3: TAR Simulates GC %
]
."r
f either stays true or goes from true to false. Thus GC-B and GC-C are true in s ::1::‘
for f. .!!&
[
We now deal with GC-A. If acemin(f) = nil in s, then the same is true in s, :?.:
so GC-A is vacuously true for f in s. :::c
"l
.‘
. Assume acemin(f) = (r,t). Let minlink(g) = (¢,p). :‘%
"
Claims about s’: g:
o .
1. level(g) < level(f), by precondition. 'g:
2. fragment(p) = f, by precondition. -
3. level(f) < level(fragment(t)), by GC-A. : :::,
4. fragment(t) # g, by Claims 1 and 3. :'.n‘:'
5. (q,p) # (t,r), by Claim 4 and COM-A. E;;:f
6. wt(q,p) < wt(l), for any I # (g,p) that is an external link of g, by COM-A. W
7. If p ¢ testset(f), then wt(r,t) < wit(g,p), by Claim 5 and GC-A. %3
8. If p & testset(f), then wt(r,t) < wi(l), for any [ that is an external link of g, by ::::
v
Claims 6 and 7. :::
:.:.
g
If p & testset(f) in s’, then any node p’' € nodes(f) is not in testset(f) in s
exactly if, in s', p' is either in nodes(f)— testset(f) or in nodes(g). Claim 8 implies '
that in s, (r,t) is still the minimum-weight external link of any node in f that is Y
not in testset(f). ~
. ¢
If p € testset(f) in s, then any node p’ € nodes(f) is not in testset(f) in s W
. exactly if p' is in nodes(f)— testset(f) in s'. Thus in s, (r,t) is stiil the minimum- ::l::.
weight external link of any node in f that is not in testset( f). :'.:::
X
.'0
Since g is the only fragment whose level changes in going from s' to s, Claim 4 :
implies that level(f) < level(fragment(t)) in s. Thus, since accmin(f) = (r,t) in s, N
GC-A is true in s for f. ;:
‘P‘
(3¢c) Ay(s,wm) = m. Obviously Sy(s')rSy(s) is an execution fragment of ‘_t
COM. Q P
y .,
%t
Let P('J(. = (Pé'OM 082) A Pee. Y "
Ehe:
Corollary 16: P/, . is true in cvery reachable state of GC'. " |
Proof: By Lemmas 1 and 15. o $
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Section 4.2.3: TAR Simulates GC

4.2.3 TAR Simulates GC

This automaton expands on the .nethod by which a node finds its local
minimum-weight external link. Some local inforination is introduced in this ver-
sion, in the form of node variables and messages. Three FIFO message queues are
associated with each link (p,¢q): tarqueuve,((p,q)), the outgoing queue local to p;
tarqueueyq({p, q)), modelling the communication channel; and tarqueue,({p, ¢)), the
incoming queue local to q. The action ChannelSend(l, m) transfers a message m
from the outgoing local queue of link I to the communication channel of /; and the
action ChannelRecv(l,m) transfers a message m from the communication channel

of link [ to the incoming local queue of /.

Each link ! is classified by the variable lstatus(l) as branch, rejected, or un-
known. Branch means the link will definitely be in the minimum spanning tree;
rejected means it definitely will not be; and unknown means that the link’s status

is currently unknown. Initially, all the links are unknown.

The search for node p’s minimum-weight external link is initiated by the ac-
tion SendTest(p), which causes p to identify its minimum-weight unknown link as
testlink(p), and to send a TEST message over iis testlink together with information
about the level and core (identity) of p’s fragment. If the level of the recipient
¢’s fragment is less than p’s, the message is requeued at ¢, to be dealt with later
(when ¢’s level has increased sufficiently). Otherwise, a response is sent back. If
the fragments are different, the response is an ACCEPT message, otherwise, it is »
REJECT message. An optimization is that if ¢ has already sent a TEST message over
the same edge and is waiting for a response, and if p and ¢ are in the same fragment.
then ¢ does not respond — the TEST message that ¢ already sent will inform p that

the edge (p, q) is not external.

When a REJECT message (or a TEST in the optimized case described above) is
received, the recipient marks that link as rejected, if it 1s unknown. It is possible
that the link is already marked as branch, in which case it should not be changed

to rejected.

When a ChangeRoot( f) occurs, minlink(f) is marked as branch; when an
Absorb( f, g) occurs, the reverse link of minlink(g) is marked as branch. As soon as
a link ! is classified as branch, the InTree(l) output action can occur; as soon as a

link [ is classified as rejected. the NotInTree(l) output action can occur.

The requeuing of a message is a delicate aspect of this (as well as the original)

algorithm. When p receives a message that it is not yet ready to handle, it cannot
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Section 4.2.3: TAR Simulates GC

simply block receiving any more messages on that link, but instead it must allow
other messages to jump over that message. as the following example shows. Suppose
p is in a fragment at level 3, ¢ is in a fragment at level 4, p sends a TEST message
to ¢ with parameter 3, and before it is received, ¢ sends a TEST message to p with
parameter 4. When p receives ¢’s TEST message, it is not ready to handle it. When
q receives p’s TEST message, it sends back an ACCEPT message. In order to prevent
deadlock, p must be able to receive this ACCEPT message, even though it was sent
after the TEST message. Thus, the correctness of the algorithm depends on a subtle
interplay between FIFO behavior, and occasional, well-defined, exceptions to it.

The following scenario demonstrates the necessity of checking that lstatus(l) is
unknown before changing it to rejected, when a TEST or REJECT is received. (The
reason for the check, which also appears the full algorithm, is not explained in
[GHS].) Suppose p is in fragment f with level 8 and core ¢, ¢ is in fragment ¢ with
level 4 and core d, and (g,p) is the minimum-weight external link of ¢g. First, ¢
determines that (g¢,p) is its local minimum-weight external link. Then p sends a
TEST(8, ¢) message to p, which is requeue, since 8 > 4. Eventually, Compute Min(g)
occurs, and minlink(g) is set equal to (¢, p). Then ChangeRoot(g) occurs, and (g, p)
is marked as branch. Then Absorb( f, g) occurs, and (p, g) is marked as branch. The
next time that ¢ tries to process p’s TEST(8, d) message, it succeeds, determines that
(g, p) is not external, since d is the core of ¢’s fragment, and sends REJECT to q. But
q had better not change the classification of (g, p) from branch to rejected. Similarly,
when p receives ¢’s REJECT message, it had better not change the classification of

(p,q) from branch to rejected.
Define automaton TAR (for “Test-Accept-Reject”) as follows.

The state consists of a set fragments. Each element f of the set is culled a

fragment, and has the following components:
o subtree( f), a subgrapt - G;
e core(f), an edge of G or nil;
o level(f), a nonnegative integer;
o minlink(f), a link of G or nil;
e rootchanged(f), a Boolecan; and

o testset(f). a subset of V(G).

"a.0bg 4%
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Section 4.2.3: TAR Simulates GC
For each node p, there is a variable testlink(p), which is either a link of G or nil.
For each link (p, ¢), there are associated four variables:
o Istatus({p, q)), which takes on the values “unknown”, “branch” and “rejected™:
o tarqueuey,((p, q)), a FIFO queue of messages from p to ¢ waiting at p to be sent;

o tarqueueyy((p,q)), a FIFO queue of messages from p to ¢ that are in the com-
munication channel; and

o tarqueueg((p,q)), a FIFO queue of messages from p to ¢ waiting at ¢ to be
processed.

The set of possible messages M is {TEST(l,c) : | > 0,c € E(G)} U {ACCEPT.
REJECT}.

The state also contains Boolean variables, answered(l), one for each [ € L(G),
and Boolean variable awake.

In the start state of TAR, fragments has one element for cach node in V' (G); for
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level( f) = 0.
manlink(f) is the minimum-weight link adjacent to p, rootchanged(f) is false, and
testset( f) is empty. For all p, testlink(p) is nil. For each link [, Istatus(!) = unknown.
Thie message queues are empty. Each answered(]) is false and awake is false.

The derived variable tarqueue((p,q)) is defined to be tarqueue,((p,q)) || tar-
quetepq((p, 9)) || tarqueve,({p,q)). '

The derived variable acemin(f) is defined as follows. If minlink(f) # nil, or
if there is no external link of any p € nodes(f) — testset(f), then accmin( f) = nil.

Otherwise, accmin(f) is the minimum-weight external link of all p € nodes(f) —
testset( f).

Input actions:

o Start(p), p € V(G)
Effects:

! Given two FIFO queues ¢, and ¢, define ¢;]|¢2 to be the FIFO queuc obtained
by appending ¢2 to the end of ¢;. Obviously this operation is associative.

38

N VLG

e R Ay LA e L NN AR IS "'.r“\r".r‘.f"f'-'-‘

S
-



LN e vre e e A7 ettt T T Y T I R S T N S R T T X T T I e o T P P TR T WL W W W ST

KN

e:t‘

B

S:: Section 4.2.3: TAR Simulates GC
i

N awake := true

KX

. Output actions:

J
k o InTree({p,q)), (p,¢) € L(G)

e Preconditions:

) Istatus((p,q)) = branch
;" answered({p, q)) = false
e Effects:

.'- i answered((p, q)) := true
R

" e NotInTree({p,q)), (p,q) € L(G)
y ' Preconditions:

:&:‘ Istatus((p,q)) = rejected
y answered({p, q)) = false
3" Effects:

::: answered({p.,q)) := true
‘ E Internal actions \and a procedure):
N.

- o ChannelSend((p,q),m), (p,q) € L(G), me M
T Preconditions:

e

y m at head of tarqueuey((p, ¢))
[ Effects:
’ dequeue(tarqueue ,({p, 9)))

u" enqueue(mn, tarqueue,,((p, q)))

)A

:: o ChannelRecv((p,q),m), (p.q) € L(G),me M
B Preconditions:

7 m at head of tarqueue,,({p,q))

Effects:

dequeue(tarqueue , ((p.q)))

s
a

ol & g o

enqueue(m, tarquene, ({p, q)))

xl

.‘,..'

o SendTest(p), p € V(G)
Preconditions:
p € testset( fragment(p))
testlink(p) = nil
Effects:

execute procedure Test(p)
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2 e Procedure Test(p), p € V(G) f
: — let f = fragment(p) — 3
! if I, the minimum-weight link of p with Istetus(!) = unknown, exists then |
‘ testlink(p) =1 \
. enqueue(TEST(level( f), core(f)), tarqueue,(l)) | ::
] else | ;‘
i remove p from testset( f) M
" testlink(p) := nil ] )
X ‘
o ReceweTest({q,p),!,c), {p,q) € L(G) .
E: Preconditions: ;:
TEST(I, ¢) at head of tarqueue,((q,p))
3 Effects: ::
A dequeue(tarqueve,((g,p))) ::
.' if | > level(fragment(p)) then ‘,
enqueue(TEST(!, ¢),tarqueune,((q, p)))
K else ¥
; if ¢ # core(fragment(p)) then ‘
A enqueue(ACCEPT, tarqueue,((p, q))) n
hy else | )
, if Istatus((p,q)) = unknown then lstatus((p, ¢}) := rejected ._
:: if testlink(p) # (p, ¢) then "
enqueue(REJECT,tarqueuce,({p, q))) "
: else execute procedure Test(p) ] .:
‘ o ReceiveAccept({q,p)). (g,p) € L(G) 3
s Preconditions: -
k) ACCEPT at head of tarqueue,((q, p)) ¢
s Effects:
I dequeue(tarquevey((q,p)))
%E testlink(p) := nil "a
f remove p from testset( fragment(p)) ':‘
| N
) e RecetveReject({q,p)), (¢,p) € L(G) )
" Preconditions: '!:.
REJECT at head of tarqueuey({(q,p)) A
’;' Effects: ::
‘ dequeue(tarqueuc,({q,p)))
¥ if lstatus((p,q)) = unknown then lstatus({p, q)) := rejected "
[} ¢
5 40 :'
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Section 4.2.3: TAR Simulates GC
execute procedure Test(p)

o ComputeMin(f), f € fragments
Preconditions:
minlink( f) = nil
accrin( f) # nil
testset(f) =0
Effects:
minlink(f) := acemain(f)

o ChangeRoot(f), f € fragments

Preconditions:
awake = true
rootchanged( f) = false
minlink(f) # nil

Effects:
rootchanged(f) := true
Istatus(minlink(f)) := branch

o Merge(f,g), f,g € fragments
Preconditions:

f#9
rootchanged(f) = rootchanged(g) = true

minedge(f) = minedge(g)
- Effects:

add a new element h to fragments

core(h) := minedge(f)

level(h) := level(f) + 1
manlink(h) := nil
rootchanged(h) := false
testset( h) := nodes(h)

delete f and g from fragments

o Absorb(f,9), f,g € fragments
Preconditions:
rootchanged(g) = true

level(g) < level( f)
let (q.p) = manlink(y)

fragment(p) = f
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Section 4.2.3: TAR Simulates GC

Effects:
subtree( f) := subtree(f) U subtree(g) U mincdge(y)
if p € testset(f) then testset(f) := testset(f) U nodes(g)
Istatus({p,q)) := branch
delete g from fragments

A message m is defined to be a protocol message for link (p,q) in a state if m
is one of the following;:
(a) a TEST message in tarqueue({(p,q)) with Istatus({p, q)) # rejected.
(b) an ACCEPT message in tarqueue({q, p))
(c) a REJECT message in tarqueuve({q,p))
(d) a TEST message in tarqueue({q.p)) with Istatus((q,p)) = rejected.
A protocol message for (p,¢) can be considered a message that is actively helping
p to discover whether (p, ¢) is external.

Define the following predicates on states of TAR. (All free variables are uni-
versally quantified.)

e TAR-A:
(a) If Istatus(({p, q)) = branch, then either (p,q) € subtree(fragment(p)) or min-
link (fragment(p)) = (p,q).

(b) If (p,q) € subtree(fragment(p)), then Ilstatus((p,q)) = Istatus((q,p)) =
branch.

e TAR-B: If Istatus({p,q)) = rejected, then fragment(p) = fragment(q) and
(p,q) & subtree( fragment(p)).

o TAR-C: If testlink(p) # nil, then

(a) testlink(p) = (p, q) for some ¢;

(b) p € testset(fragment(p));

(c) there is exactly one protocol messuge for (p, ¢);

(d) if Istatus((p,q)) # branch, then (p.¢) is the minimum-weight link of p with
[status unknown;

(e) if Istatus((p,q)) = branch, then Istatus((g,p)) = branch and testlink(q) #
{¢,p)-

e TAR-D: If there is a protocol message for (p, q), then testlink(p) = (p, q).

o TAR-E: If TesT(, ¢) is in tarqueue((p,¢)) then
(a) (p,q) # core(fragment(p));
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Section 4.2.3: TAR Simulates GC

(b) if Istatus({p,q)) # rejected, then ¢ = core(fragment(p)) and I = level(frag-
ment(p)); and
(c) if Istatus({p,q)) = rejected, then ¢ = core(fragment(q)) and [ = level( frag-

ment(q)).

o TAR-F: If ACCEPT is in tarqueue({p,q)), then fragment(p) # fragment(q) and
level (fragment(p)) > level( fragment(q)).

e TAR-G: If REJECT is in tarqueue({p,q)), then fragment(p) = fragment(q) and
Istatus ((p,q)) # 1nknown.

o TAR-H: rootchanged(f) is true if and only if Istatus(minlink(f)) = branch.

o TAR-I: If p ¢ testset(fragment(p)), then either no (p,q) has Istatus({p,q)) =
unknown, or else there is an external link (r,t) of fragment(p) with level(frag-
ment(p)) < level( fragment(t)).

e TAR-J: If awake = false, then lstatus((p,q)) = unknown.
Let Prag be the conjunction of TAR-A through TAR-J.

In order to show that TAR simulates GC, we define an abstraction mapping
M; = (83,.A3) from TAR to GC. Define the function S3 from states(TAR) to
states(GC) by ignoring the message queues, and the testlink and Istatus variables.
The derived variables acemin of TAR map to the (non-derived) variables acemin of
GC. Define the function Aj; as follows. Let s be a state of TAR and 7 an action
of TAR enabled in s. The GC action TestNode(p) is simulated in TAR when p
receives the message that tells p either that this link is external or that p has no

external links.
o If 7 = ReceiveAccept({q,p)). then A;(s,7) = TestNode(p).

o If 7 = SendTest(p) or ReceiveReject({q,p)), then As(s,m) = TestNode(p) if
there is no link (p,r), r # ¢, with lstatus((p,r)) = unknown in s; otherwise,

A;(s, ) is empty.

o If 7 = ReceiveTest({q,p),l,c), then A3(s,m) = TestNode(p) if | < level(frag-
ment(p)), c = core(fragment(p)), testlink(p) = (p, g). and there is no link (p, ),
r # . with Istatus((p,r)) = unknown in s; otherwise, A3(s, ) is empty.

o If 1 = ChannelSend((p,q),m) or ChannelRecv({(p,q),m), then As(s,w) is
cmpty.
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Section 4.2.3: TAR Simulates GC

o For all other values of 7, A3(s,7) = 7.

The following predicates are true in every state of TAR satisfying (P~ 083) A
Prar. Recall that Pl = (Phop © S2) A Paer. If PG (Ss(s)) is true, then the
GC predicates are true in S3(s), the COM predicates are true in S2(S3(s)), and the
HI predicates are true in §1(S2(S3(s))). Thus, these predicates are derivable from
Prar, together with the HI, COM and GC predicates.

e TAR-K: If testlink(p) = (p,q), then Istatus((p, q)) # rejected.
Proof: By TAR-C(d) and TAR-C(e).

e TAR-L: If minlink(f) = nil and [ is an external link of f, then Istatus(l) =
unknown.

Proof: By TAR-A(a), if lstatus(l) = branch, then ! is internal. By TAR-B, if
Istatus(l) = rejected, then [ is internal. O

e TAR-M: If TEST((, ¢) is in tarqueue({p,q)), then ! > 1 and c # n:l.

Proof: Let f = fragment(p) and g = fragment(q).
1. TesT(l,¢) is in tarqueue({p,q)), by assumption.

Case 1: lstatus((p,q)) # rejected.
Istatus({p, q)) # rejected, by assumption.
c = core( f) and | = level(f), by Claim 2 and TAR-E(b).
testlink(p) = (p, ¢), by Claims 1 and 2 and TAR-D.
p € testset(f), by Claim 4 and TAR-C(b).
manlink( f) = nil, by Claim 5 and GC-C.
subtree( f) # {p}, by Claim 6 and COM-E.
core( f) # nil and level( f) # 0, by Claim 7 and COM-F.
. level(f) > 1, by Claiin 8 and COM-F.
10. ¢# nil and [ > 1, by Claims 3, 8 and 9.

© 0N oUW

Case 2: Istatus({p,q)) = rejected.
11. Istatus({p, ¢)) = rejected, by assumption.
12. ¢ = core(g) and | = level(g), by Claim 11 and TAR-E(c).
13. testlink(q) = (¢, p), by Claims 1 and 11 and TAR-D.
14. g € testset(g), by Claim 13 and TAR-C(b).
15. minknk(g) = nil, by Claim 14 and GC-C.
16. subtree(g) # {¢}, by Claim 15 and COM-E.
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Section 4.2.3: TAR Simulates GC

17. core(g) # nil and level(g) # 0, by Claim 16 and COM-F
18. level(g) > 1, by Claim 17 and COM-F.
19. ¢ # nil and I > 1, by Claims 12, 17 and 18. O

e TAR-N: If tEsT(l,c) is in tarqueue({g,p)) and ¢ = core(fragment(p)), then
fragment(p) = fragment(q).

Proof:

1. TesT(l,¢) is in tarqueue({g,p)), by assumption.

2. ¢ = core(fragment(p)), by assumption.

3. ¢ # nil, by Claim 1 and TAR-M.

4. If lstatus({q, p)) # rejected, then c = core(fragment(q)), by TAR-E(b).

5. If Istatus({q, p)) # rejected, then fragment(q) = fragment(p), by Claims 2, 3 and
4, and COM-F.

6. If Istatus({q,p)) = rejected, then fragment(q) = fragment(p), by TAR-B. O

o TAR-O: If minlink(f) # nil, then there is no protocol message for any link of
any node in nodes(f).

Proof:

1. manlink(f) # nil, by assumption.

2. testset(f) = 0, by Claim 1 and GC-C.

3. testlink(p) = nil for all p € nodes(f), by Claim 2 and TAR-C(b).

4. There is no protocol message for any link (p,q), p € nodes(f), by Claim 3 and
TAR-D. O

e TAR-P: If TEsT(l,c) is in tarqueue((g, p}), c = core(fragment(p)), testlink(p) =
(p,q), and Istatus({q,p)) # rejected, then a TEST(!',c') message is in tar-
queue((p, q)) and Ilstatus({p,q)) = unknown.

Proof:

1. TesT(l,c) is in terqueue({q, p)), by assumption.
2. ¢ = core(fragment(p)), by assumption.

3. testlink(p) = (p, q), by assumption.
4

L
L J
. Istatus((q, p)) # rejected, by assumption. ‘i\".;‘
5. fragment(p) = fragment(q), by Claims 1 and 2 and TAR-N. l...‘.:
6. No ACCEPT message is in tarqueue({q,p)), by Claim 5 and TAR-F. \_.
7. The TEST(/,c) message in tarqueue({g,p)) is a protocol message for (q,p), by .‘
Claim 4. Y
8. testlink(q) = (q,p), by Claim 7 and TAR-D. : A
4
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. i

9. lstatus({g,p)) # branch, by Claims 3, 8 and TAR-C(e). '::
10. Istatus({g, p)) = unknown, by Claims 4 and 9. ,&"g
oy

11. No REJECT message is in tarqueune({q.p)), by Claim 10 and TAR-G.
12. There is exactly one protocol message for (p, ¢), by Claim 3 and TAR-C(c).

H _
13. A TeEST(!',c’) message is in tarqueue((p,q)) and Ilstatus({p,q)) # rejected, by ‘:EE
Claims 6, 7, 11 and 12. ::::‘
14. Istatus((p, q)) # branch, by Claims 3 and 8 and TAR-C(e). b
15. Istatus((p, ¢)) = unknown, by Claims 13 and 14. " B
Claims 13 and 15 give the result. O - ‘.':
":
Lemma 17: TAR simulates GC via M3, Prag, and Pg. -
e
Proof: By inspection, the types of TAR, GC, M3, and Ppsg are correct. By ::E:
Corollary 16, P is a predicate true in every reachable state of COM. ::::
.i‘q.
bt
(1) Let s be in start(TAR). Obviously, Prar is true in s, and S3(s) is in .
start(GC). f;ﬁ
5
(2) Obviously, As(s, 7)|ext(GC) = w|ext(TAR). o
O

(3) Let (s',m,s) be a step of TAR such that P is true of S3(s’) and Pryp :
is true of s’. Condition (3a) is only shown below for those predicates that are not
obviously true in s. .s‘,
;

)
i) = is ChannelSend((p,q),m) or ChannelRecv({p,q),m). As(s’,7) is ’ “'
~me empty. (3a) and (3b) are obviously true. E::
‘ -
ii) = is Start(p) or InTree(l) or NotInTree(l). ::;

(3c) As(s'.m) = m. If 7 = InTree(l), then by TAR-J and TAR-A(a),  is ]
enabled in S3(s'). If # = NotInTree(l), then by TAR-J and TAR-B, 7 is enabled in ::

%

S3(s'). Thus, S3(s')7S3(s) is an execution fragment of GC. ‘E::
(3a) Obviously, Prag is still true in s. ‘:"

iii) 7 is SendTest(p). Let f = fragmeni(p) in s'. '.:::
Case 1: There is a link (p.q) with Istatus({p,¢)) = unknown in s'. ?:E
(3b) A3(s'.m) is empty. It is easy to see that S3(s') = S3(s). ig‘
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Section 4.2.3: TAR Simulates GC

(3a) By TAR-D and precondition that testlink(p) = nil, there is no protocol
message for any link of p in s'.

TAR-C(c): In s, there is exactly one protocol message for (p,q), namely the
TEST message in tarqueue((p,q)).

TAR-D: The TEST message added in s is a protocol message for (p,q), and is
not a protocol message for any other link. By the code, testlink(p) = (p, q).

TAR-E(a): By TAR-A(b), (p,q) ¢ subtree(f). By COM-F, (p,q) # core(f).

Case 2: There is no link (p,q) with Istatus({p,q)) = unknown in s'.
(3c) As(s',m) = TestNode(p).
Claims about s':

1. p € testset( f), by precondition.
2. manlink(f) = nil, by Claim 1 and GC-C.
3. There is no external link of p, by Claim 2, TAR-L, and assumption.

By Claims 1 and 3, TestNode(p) is enabled in S3(s’).
Claims about s:

4. p & testset( f), by code.
5. There is no exzernal link of p, by Claim 3 and code.
6. accmin(f) does not change, by Claim 5.

By Claims 4, 5, and 6, the effects of TestNode(p) are mirrored in S;(s).

(3a) TAR-I: By assumption for Case 2, p has no unknown links in s', and the
same is true in s. '

iv) 7 is ReceiveTest({(q,p),l,c). Let f = fragment(p) in s'.

Case 1: 1 < level(f), ¢ = core(f), testlink(p) = (p,q), and there is no link
(p,7), r # q, with lstatus({p,r)) = unknown in s'.

(3c) Az(s'.m) = TestNode(p).

Claims about s
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Section 4.2.3: TAR Simulates GC

X 1. ¢ = core(f), by assumption.

::. 2. testlink(p) = (p, q), by assumption.

- 2 There is no link {p,r). » # q with Istatue {p.7)) = unknown, by assumption.
,:: 4. TEST(l,c) 1s in tarqueue((g,p)), by preconditions.

N 5. p € testset(f), by Claim 2 and TAR-C(b).

oy, 6. minlink(f) = nil, by Claim 5 and GC-C.

i 7. No link {p,r), r # ¢, is external, by Claims 6 and 3 and TAR-L.

' 8. (p,q) is not external, by Claims 2, 3 and 4 and TAR-N. :
i: By Claims 5, 7 and 8, TestNode(p) is enabled in s'.

*;‘. Claims about s: -
u 9. p ¢ testset( f), by code.

" 10. There i1s no external link of p, by Claims 7 and 8 and code.

3‘ 11. eceman( f) does not change, by Claim 10.

EI

tf By Claims 9, 10 and 11, the effects of TestNode(p) are mirrored in s.

i‘, (3a) TAR-B: The only case of interest is when lstatus((p,q)) changes from

E‘ unknown in s’ to rejected in s. By TAR-N, f = fragment(q) in s' and the same is

::: still true in s. By TAR-A(b), (p,q) & subtree(f) in s’, and the same is still true in

::E s.

Wl TAR-D:

3

:Ea Claims about s':

D

2 1. TeST(!,¢) is in tarqueue({q,p)), by precondition. -
" 2. ¢ = core( f), by assumption.

t:’." 3. testlink(p) = (p, ¢), by assumption.

::E 4. There is exactly one protocol message for (p, ¢}, by Claim 3 and TAR-C(c).

0y 5. There is no protocol message for any link (p,r), r # ¢, by Claim 3 and TAR-D.

ﬁ.:: Case A: Istatus({g,p)) = rejected. The TEST(I,c) message in tarquecue({q,p))

::: is the protocol message for (p,q) in s'. Since it is removed in s, by Claims 4 and

o 5 there is no protocol message for any link of p in s. Concerning ¢: by TAR-K,

k. testiink(q) # (¢, p); thus, the predicate is still true for ¢ in s, even if lstatus((p, q))

::: is changed to rejected.

(%

:I‘:E Case B: lstatus({(g,p)) # rejected.

&

3 G. A tesT(l'.c') is in tarqueune({p,q)) and lstatus((p,q)) = unknown. by Claims 1,

:',: 2, 3, assumptions for Case B. and TAR-P.
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7. testlink(q) = (q,p), by Claim 1, assumption for Case B and TAR-D.

In s, the TEsT(:',¢') message in tarqueue((p,q)), which exists by Claim 6, be-
comes a protccol message for (g, p), since Istatus({p,q)) is changed to rejected. By
Claim 7, testlink(q) has the correct value. By Claims 4 and 5, the predicate is
vacuously true for p in s.

TAR-E(c): The only case of interest is when lstatus({p, ¢)) goes from unknown
in s’ to rejected in s, while there is a TEST(!',c') message in tarqueue((p,q)). By
TAR-E(b), ¢’ = core(f) and I' = level(f) in s'. By TAR-N, fragment(q) = f. Thus
¢’ = core(fragment(q)) and I' = level(fragment(q)).

TAR-I: By the assumption for Case 1 and code, p has no unknown links in s.

TAR-J: The TEST message in tarqueue({q,p)) is a protocol message for ei-
ther (p,g) or (g,p). Without loss of generality, suppose for (p,g). By TAR-
D, testhnk(p) = (p,q), and by TAR-C(b), p € testset(f). Thus, by GC-C,
minlink( f) = nil, and by COM-C awake = true.

Case 2: 1 > level(f), or ¢ # core(f), or testlink(p) # (p,q), or there is a link
(p,7), 7 # q, with Istatus({p,r)) = unknown in s'.

(3b) Asz(s',7) is empty. The only variables that are possibly changed are
Istatus({p, q)), tarqueue’s, and testlink(p), none of which is reflected (directly) in
the state of GC. Thus acemin(f) does not change and S3(s') = S3(s).

(3a) TAR-B: As in Case 1.

TAR-C(b): If testlink(p) # nil in s, then by inspecting the code, the same is
true in s’. So the predicate is true in s because it is true in s'.

TAR-C(c): If | > level(f) in s', nothing affecting the predicate changes in going
from s’ to s. Suppose ! < level(f) in s'.

Claims about s':

1. TesT(l,c) is in tarqueue({q,p)), by precondition.
Case A: c # core(f). |

2. lstatus({q, p)) # rejected, by TAR-E(c).
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Section 4.2.3: TAR Simulates GC

3. The TEST(l,c) message in tarqueue((q,p)) is a protocol message for {(q,p), by
Claim 2.

The ACCEPT message added in s is a protocol message for (¢,p). There is no
change that affects the truth of the predicate for p.

Case B: ¢ = core(f).
Case B.1: testlink(p) # (p, q).

4. There is no protocol message for (p, q), by TAR-D.

5. The TEST(l,c) message in tarqueue((g,p)) is a protocol message for (g,p), by
Claim 4.

The REJECT message added in s is a protocol message for (¢,p). No change
affects the truth of the predicate for p.

Case B.2: testlink(p) = (p, q).

6. There is a link (p,r), r # ¢, with Istatus((p,r)) = unknown, by assumption for
Case B.2.

7. There is no protocol message tor (p,r), by Claim 6 and TAR-D.
Case B.2.1: lstatus({q,p)) # rejected.

8. There is a TEST(!',¢') message in tarqueue((p, q)) and Ilstatus({p, ¢)) = unknown,
by assumptions for Case B.2.1 and TAR-P.

9. The TEST(l,c) message in tarqueue({g,p)) is a protocol message for (g, p), by
assumptions for Case B.2.1.

The TEST(!', ¢') message of Claim 8 becomes a protocol message for (g, p) in s,
since Istatus((p, q)) is changed to rejected. Concerning p: testlink(p) = (p,r) in s,

and a TEST message is added to tarqueue((p,r}) and is the sole protocol message
for (p,r) by Claim 7.

Case B.2.2 lstatus({(q, p)) = rejected.

10. The TEsT(l, c) message in tarqueue((q, p)) is the protocol message for (p, q), by
assumptions for Case B.2.2. '

11. testlink(q) # (q,p), by assumption for Case B.2.2 and TAR-K.

The predicate is true for p in s because the TEST(!, ¢) message, which was the
sole protocol message for (p, ¢) by Claim 10, is removed in s; testlink(p) is now (p, ),
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Section 4.2.3: TAR Simulates GC ":.‘;
)
and (p,r) has exactly one protocol message, by inspecting the code. No change is .:i:::
L]
made that affccts the truth of the predicate for ¢, by Claim 11. .!::?:!
]
TAR-D: If | > level(f) in ', nothing affecting the predicate changes in going q:.:
from s' tu s. Suppose [ < level(f) in &' ?l:.'::;
A0
. , G
Claims about s': hotes
e
1. TesT(l,¢) is in tarqueue({q,p)), by precondition. ::::"'::
OO
..Qv .‘
Case A: ¢ # core(f). ':::':3%
D YOU
2. Istatus({q, p)) # rejected, by assumption for Case A and TAR-E(c). .
Y
3. testlink(q) = (¢, p), by Claims 1 and 2 and TAR-D. :::E:
JOUS
bt
Then testlink(q) is still (¢, p) in s, and there is an ACCEPT message in tarqueue({p,q)). * :E‘
No change affects the truth of the predicate for p. "
Case B: ¢ = core(f). :'
ek
Case B.1: testlink(p) # (p,q)- o‘lé:
A ANl
4. The TEsT(l,c) message in tarqueue({q,p)) is a protocol message for {(g,p), by ,.‘
'l

assumptions for Case B.1 and TAR-D. !

5. testlink(q) = {q,p), by Claim 4 and TAR-D. v, .‘"::
.'l:’ h
Then in s, there is a REJECT message in tarqueue((p.q)) and testlink(q) is still e
{(q,p). No change affects the truth of the predicate for p. NG
{ ..,:
: ‘
Case B.2: testlink(p) = (p.q). :\ ::

G. There is a link (p,7). r # ¢. with lstatus((p,7)) = unknown, by assumption for i
Case 2. :::"::‘f'
7. There is exactly one protocol message for (p,q), by TAR-C(c). ':‘_:; \
' :.‘ ‘u‘" 8
I-“:-.-’P ‘
Case B.2.1: lstatus((q,p)) = rejected. oy

8. testlink(q) # (g,p), by TAR-K.

No changes affect the truth of the predicate for ¢. For p: The TEST(/, ¢) message
in terquenc({q.p)) is the protocol message for {p,¢). It is removed in s. A TEST
message is added to tarqueue((p,7)) in s, where lstatus({p.r)) = unknown, and

testlink(p) = (p,r) by code.
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Section 4.2.3: TAR Simulates GC A
0"
1!
Case B.2.2: Istatus((q,p)) # rejected. |§:
9. A TEST(l',c'") message is in tarqueue((p,q)) and lstatus((p,¢)) = unknown, by i
Claim 1, the assumption for Case B.2.2 and TAR-DP. ;._’,r
10. testlink(q) = {¢,p), by Claim 8 and TAR-D. \;
2R
For ¢: In s, since lstatus({q, p}) is changed to rejected, the TEST(l', ¢') message ;v" .
in tarqueue({p,q)) (of Claim 9) becomes a protocol message for (¢.p). This is OK Ry
by Claim 10. o
Ny
)
For p: The TEsT(!, ) message of Claim 9 is the protocol message for (p,q). :';,‘:
The rest of the argument is as in Case B.2.1. NG
@
TAR-E: (a) Suppose a TEST message is added to tarqueue({p,7)). As in 7 = W
SendTest(p), Case 1. (c¢) As in Case 1.
4N
TAR-F: The only case of interest is when an ACCEPT message is added to .i-s...
tarqueve({p,q)) in s. ®
o
Claims about s': iy
2
o
1. tesT(l,¢) is in tarqueue({q,p)), by precondition. e
2. 1 < level(f), by assumption. _‘
3. ¢ # core(f), by assumption. 4
4. lstatus({q, p)) # rejected, by Claims 1 and 3 and TAR-E(c). ‘?,
5. ¢ = core( fragment(q)), by Claims 1, 4 and TAR-E(b). L
6. | = level(fragment(q)), by Claims 1, 4 and TAR-E(b). ’ ‘_
7. core( f) # core( fragment(q)), by Claims 3 and 5. .
8. level(f) < level(fragment(q)), by Claims 2 and 6. - }::
N
)
Claims 7 and 8 are still true in s. '
8
TAR-G: The only case of interest is when a REJECT message is added to : :.‘:;
tarqueve({(p,q)). l.::l?
Claims about s': & N
1. TEST(],¢) 1s in tarqueue({q,p)), by precondition. :"\-‘
2. ¢ = core( f), by assumption. :::
3. testlink(p) # (p,q), by assumption. :3"‘ X
4. If Istatus({q,p)) # rejected. then ¢ = core(fragment(q)), by Claim 1 and TAR- ‘.-‘
E(b). i
v
Ny
» o
l.'.l'
oy
4
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Section 4.2.3: T AR Simulates GC

. If lstatus({q, p)) # rejected, then f = fragment(q), by Claim 4 and COM-F.
. If lstatus({q, p)) = rejected, then f = fragment(q), by TAR-B.
. [ = fragment(q), by Claims 5 and 6.

-] & ot

Claim 7 is still true in s.

TAR-I: The only case of interest is when p is removed from testset(f). But
when that happens, there are no unknown links of p.

TAR-J: Suppose lstatus((p,q)) is changed to rejected. As in Case 1.
v) 7 is ReceiveAccept({q,p)). Let f = fragment(p) in s’
(3¢) Az(s',7) = TestNode(p).

Claims about s':

ACCEPT is in tarqueue({g,p)), by precondition.

fragment(q) # f, by Claim 1 and TAR-F.

level( f) < level(fragment(q)), by Claim 1 and TAR-F.

. {p,¢) is an external link of f, by Claim 2.

testlink(p) = (p, ¢), by Claim 1 and TAR-D.

p € testset( f), by Claim 5 and TAR-C(b).

minlink( f) = nil, by Claim 6 and GC-C.

lstatus({(p, q)) # branch, by Claims 4 and 7 and TAR-L.

. {p,q) is the minimum-weight link of p with Istatus unknown, by Claims 5 and 8
and TAR-C(d).

10. (p, ¢) is the minimum-weight external link of p, by Claims 7 and 9 and TAR-L.

TTO Ot W

©

By Claims 6, 10, and 3, TestNode(p) is enabled in s'.
Clarms about s:

11. p & testset( f), by code.
12. {p.q) is the minimum-weight external link of p, by Claim 10.
13. If wt(p,q) < wt(accmin(f)) in s', then acemin(f) = (p,¢) in s, by Claims 11

and 12.

By Claims 11 and 13, the effects of TestNode(p) are mirrored in s.
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s Section 4.2.3: TAR Simulates GC'
s:
:‘, (3a) TAR-D: In s', ACCEPT in tarqueue((q, p)) is a protocol message for (p, ¢). \
::; By TAR-C(c) and TAR-D, it is the only protocol message for any link of p in s'. :
& Thus in s, there is no protocol message for any link of p, and the predicate is
o vacuously true in s for p. No other node is affected.
N
]
::: TAR-I: By Claims 3 and 4, it is OK to remove p from testset(f).
X
f vi) 7 is ReceiveReject({q,p)). Let f = fragment(p) in s'. .
o :
i Case 1: There is a link (p,r), r # ¢, with lstatus({p,r)) = unknown. i
Wy -8
k) 2
b, (3b) Aj3(s',7) is empty. Obviously S3(s') = S3(s). i
3:: (3a) Claims about s': ;
‘t' ¢
‘i‘
::: 1. REJECT is in tarqueue((q,p)), by assumption.
X 2. The REJECT in tarqueue({q,p)) is a protocol message for (p,q), by Claim 1.
3 3. testlink(p) = (p, q), by Claim 2 and TAR-D. :
_ j 4. There is only one protocol message for (p, ¢). by Claim 3 and TAR-C(c). A
@ 5. There is no protocol message for any other link of p, by Claim 3 and TAR-D. )
n 6. p € testset(f), by Claim 3 and TAR-C(b). 3
;:‘ TAR-B: Suppose Istatus({p, q)) goes from unknown in s’ to rejected in s. By
. , _ i
] TAR-G, f = fragment(q) in s'. By TAR-A(b), (p,q) & subtree( f) in s'. Both facts ;
;.: are still true in s. '
L .
" .
) TAR-C(b): By Claim 6.
o TAR-C(c): In s, testlink(p) = (p,r), and the TEST message is the sole protocol
i message for (p,r) by Claim 5. 1
W TAR-D: In s, the REJECT message is reinoved and a TEST message is added to
T tarqueue((p,r)) with lstatus((p,”)) = unknown. So there is a protocol message for
\ (p,r) and no other link of p by Claims 4 and 5. By code, testlink(p) = (p,r). :
0
I ¥
. TAR-E(a): Suppose a TEST messge is added to some tarqueue({p,r)). As in ;
'.,: 7w = SendTest(p), Case 1. 3
TAR-E(c): The only case of interest is when lstatus((p,q)) goes from un-
L known in s' to rejected in s. But by Claims 2 and 4, there is no TEST message
:S in tarqueue((p.q)) in &' if (status({p,¢)) = unknown. \
W
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Section 4.2.3: TAR Simulates GC
TAR-I: By Claim 6, the predicate is vacuously true.

TAR-J: Suppose Ilstatus({p, ¢)) is changed from unknown to rejected. Similar
to m = Receive Test({q, p), 1, c), Case 1, with REJECT being the protocol message for

(p,q)-

Case 2: There is no link (p,r), r # ¢. with lstatus({p.7)) = unknown.
(3c) As(s',7) = TestNode(p).
Claims about s':

REJECT is in tarqueue({q,p)), by precondition.

testlink(p) = (p, q), by Claim 1 and TAR-D.

p € testset(f), by Claim 2 and TAR-C(b)

minlink( f) = nil, by Claim 3 and GC-C.

. fragment(q) = f, by Claim 1 and TAR-G.

. {p,q) is not external, by Claim 5.

. There is no external link (p,r), r # ¢, of p, by Claim 4, TAR-L, and assumption
for Case 2.

N o @

By Claims 3, 6 and 7, TestNode(p) is enabled in s'.
Cleims about s:

8. p & testset(f), by code.
9. There is no external link of p, by Claims 6 and 7 and code.
10. acemin( f) does not change, by Claim 9.

By Claims 8, 9 and 10, the effects of TestNode(p) are mirrored in s.

(3a) TAR-B: Same as Case 1.

TAR-D: In s, testlink(p) = nil. We must show there is no protocol message
for any link of p. In «', the REJECT message in tarqueue((g,p)) is the sole protocol
message for any link of p. as in Case 1. The REJECT message is removed in s and

no protocol message 1s added.

TAR-E(c¢): Asin Case 1.
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Section 4.2.3: TAR Simulates GC

TAR-I: By assumption for Case 2 and code, there are no unknown links of p

m s.
TAR-J: As in Case 1.
vii) = is ComputeMin(f).

(3¢) A3(s',m) = m. Since accmin(f) = nil in s because minlink(f) = nil in s,
it is easy to see that = is enabled in S3(s’) and that its effects are mirrored in S3(s).

(3a) TAR-H: By GC-A, accmin(f) = [ is an external link of f in s'. Since
minlink(f) = nil in s', lstatus(l) # branch by TAR-A(a). Also, by COM-B,
rootchanged(f) = false in s'. Thus in s, rootchanged(f) = false and Istatus(min-

lnk(f)) # branch.
viii) 7 is ChangeRoot(f).

(3c) Az(s',m) = w. It is easy to see that 7 is enabled in S3(s’) and that its
effects are mirrored in S3(s).

(3a) Only TAR-A(a), TAR-H and TAR-J are affected. Obviously TAR-A(a)
and TAR-H are still true in s. For TAR-J: by precondition ewake = true in s’, and

1s still true in s.
ix) = is Merge(f,g).

(3¢c) A3(s',w) = 7. After noting that accmin(h) = nil in s because testset(h) =
nodes(h) in s, it is easy to see that 7 is enabled in S3(s’) and that its effects are
mirrored in S;(s).

(3a) TAR-A(b): The predicate is true for 2~ by TAR-H.
TAR-B: The predicate is true for h by TAR-H.

TAR-C: By GC-C, no r in nodes(f) or nodes(g) is in testset(f) or testset(g) in
s'. By TAR-C(b), testlink(r) = nil for all such r. So the predicate is vacuously true
in h.

TAR-E(a): By TAR-O. there is no TEST message in tarqueue({p,q)) or in
tarquene({q,p)), where (p,q) = minlink(f), in s’. Since (p, q) = core(h) in s, done.

TAR-E(b): By TAR-O. there is no TEST(/, ¢) message in tarqueue((p,q)) with
Istatus((p, q)) # rejected in s, for any p in nodes(f) or nodes(g). Thus, the same is

true in s for any p in nodes(l). and the predicate is vacuously true in s for /.
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Section 4.2.3: TAR Simulates GC'

TAR-E(c): If TEST(],¢) is in tarqueue({p,q)) and lstatus((p,q)) = rejected in
s', then it is a protocol message for (¢,p) in s'. By TAR-O, fragment(q) is neither
f nor g in s'. So the predicate is still true in s.

TAR-F: If ACCEPT is in tarqueue({p,q)) in &', it is a protocol message for (g, p)
in s'. By TAR-O, fragment(q) is neither f nor ¢ in s'. If fragment(p) is neither
f nor g in s, then the predicate is still true in s. Without loss of generality,
suppose fragment(p) = f in s'. By TAR-F, level(f) > level(fragment(q)) in s'.
Then fragment(p) = h # fragment(q) in s, and level(k) (in s) > levcl( f) (in s') >
level(fragment(q)) (in s’ and s).

TAR-H: By code, rootchanged(h) = false. Since minlink(h) = nil by code,
Istatus (minlink{f)) # branch.

TAR-I: For nodes in h, the predicate is vacuously true since testsetf(h) =
nodes(h). For nodes not in h, the predicate is still true since the level of every
node formerly in nodes(f) or nodes(g) is increased.

x) 7 is Absorb(f,g).

(3c) As(s',m) = w. It is easy to see that 7 is enabled in S3(s'). Below we show
that acemin(f) is the same in s as in ', which together with inspecting the code,
shows that the effects of 7 are mirrored in S3(s).

Let {g,p) = minlink(g). If p € testset(f) in s', then every node in nodes(g) in
s’ is added to testsef(f) in s. No change is made to any of the criteria for defining
aceman( f).

Suppose p & testset(f) in s'. If minlink(f) # nil in s', then the same is true in
s, and eccmin(f) = nil in s’ and s. Suppose minlink(f) = nil in s’

Claims about s':

level(f) < level(g), by precondition.
p € nodes(f), by precondition.
p & testset(f), by assumption.

W e

manlink( f) = nil, by assumption.

g € nodes(q), by COM-A.

f # ¢, by Claim 1.

accran( f) = (r,t), for some r and ¢, by Claims 2 through 6.

fragment(t) # g, by Claims 1 and 7 and GC-A.
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Section 4.2.3: TAR Simulates GC

9. (r,t) # (p,q), by Claims 5 and 8.

10. wt(r,t) < wi(p,q), by Claims 2, 3, 5, 6, 7, and 9 and GC-A.

11. wit(p,q) < wi(u,v) for any external link (u,v) of g, by COM-A.

12. wi(r,t) < wt(u,v) for any external link (u,v) of ¢, by Claims 10 and 11.

By Claims 7, 8 and 12, acemin(f) = (r,t) in s.

(3a) TAR-A(b): The predicate is true in s for f by TAR-H.
TAR-B: The predicate is true in s for f by TAR-H.

TAR-C(b): By GC-C, since minlink(g) # nil, testset(g) = @ in s’. By TAR-
C(b), testlink(p) = nilin s for all p € nodes(g). There is no change for p € nodes(f)
in s’ in going from s’ to s. Thus the predicate is true in s for f.

TAR-C(e): Suppose (g,p) = minlink(g) in s’ and Istatus({p, ¢)) becomes branch
in s. By TAR-H, Istatus((q, p)) = branchin s'. Asin TAR-C(b), testlink(q) # (q,p),
so the predicate is still true in s.

TAR-E(a): OK because core(f) does not change.

TAR-E(b): Let (q,p) = minlink(g) in s'. If we can show Istatus((p,q)) #
rejected in s', we'd be done. If Istatus((p, ¢)) = rejected in s', then fragment(p) =
fragment(q). This contradicts level(g) < level( f), which implies that g # f.

TAR-E(c): Suppose TEST(l,c) is in tarqueue((p,q)) and Ilstatus({p,q)) = re-
jected in &', for some link (p,q) in L(G). This is a protocol message for (g, p).
By TAR-O, fragment(q) # ¢ in s'. Thus fragment(q) is the same in s’ and s, and
¢ = core(fragment(q)) and | = level( fragment(q)) in s.

TAR-F: Suppose ACCEPT is in tarqueue((p,q}) in s', for some link {p, ¢) in L(G).
This is a protocol message for (¢,p). By TAR-O, fragment(q) # g in s'. By TAR-F,
fragment(p) # fragment(q) in s'. By preconditions, level(g) < level(f), so it cannot
be the case that fragment(p) = g and fragmeni(q) = f.

Suppose fragment(p) = g. Since level(fragmeni(p)) in s is greater than it is in
s', and since fragment(q) # f in s', the predicate is still true in s.

Suppose fragment(q) = f. Since fragmenit(q) is the same in s as in s’, and since

fragment(p) # ¢ in s'. the predicate is still true in s,
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Section 4.2.3: TAR Simulates GC

If fragment(p) # g and fragment(q) # f in s', the predicate is obviously still
true in s.

TAR-G: Suppose REJECT is in tarqueue((p,q)) in s, for some link (p, ¢) in L(G).
This is a protocol message for (¢, p). By TAR-O, fragment(q) # ¢ in s'. By TAR-G,

fragment(p) # g in s/, since otherwise fragment(p) = fragmenit(q) = g in s'. So the
predicate is still true in s.

TAR-H: Let (g, p) = minlink(g). Since level( f) > level(g) by COM-A, (p,q) #
minlink(g). So it is OK to set Istatus((p,q)) to branch.

TAR-IL: First note that if there is some node r € nodes(f) — testset(f) in s’
with an unknown link, then by TAR-I there is an external link (t,u) of f, and

level(f) < level(fragment(u)). Thus fragment(u) # g, so in s, the predicate is still
true for nodes that were in nodes(f) in s'.

To show that the predicate is true in s for nodes that were in nodes(g) in s': we
only need to consider the case when p ¢ testset(f) in §', i.e., when nodes formerly in
nodes(g) are not added to testset(f). Since level( f) > level(g), minlink(f) # (p,q),
by COM-A. Thus, by TAR-A(a) and TAR-B, Istatus({p, g)) = unknown, and the
argument in the previous paragraph holds.

To show that the predicate is true in s for nodes that are not in either nodes(f)
or nodes(g) in s, it is enough to note that the only relevant change is that the level
of every node formerly in nodes(g) is increased. O

Let PT’I‘AR = (Péc o] 83) A Prar.
Corollary 18: Py ,p is true in every reachable state of TAR.

Proof: By Lemmas 1 and 17.
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4.2.4 DC Simulates GC

This automaton focuses on how the nodes of a fragment cooperate to find the
minimum-weight external link of the fragment in a distributed fashion. The variable
minlink(f) is now a derived variable, depending on variables local to each node,
and thc contents of message queues. There is no action ComputeMin(f). The two
nodes adjacent to the core send out FIND messages over the core. These messages
are propagated throughout the fragment. When a node p receives a FIND message.
it changes the variable destatus(p) from unfind to find, relays FIND messages, and
records the link from which the FIND was received as its inbranch(p). Then the node
atomically finds its local minimum-weight external link using action TestNode(p) as
in GC, and waits to receive REPORT(w) messages from all its “children” (the nodes
to which it sent FIND). The variable findcount(p) records how many children have
not yet reported. Then p takes the minimum over all the weights w reported by its
children and the weight of its own local minimum-weight external link and sends
that weight to its “parent” in a REPORT message, along inbranch(p); the weight and
the link associated with this minimum are recorded as bestw#(p) and bestlink(p),
and dcstatus(p) is changed back to unfind. When a node adjacent to the core has
heard from all its children, it sends a REPORT over the core. This message is not
processed by the recipient until its dcstatus is set back to unfind. When a node p
adjacent to the core receives a REPORT(w) over the core with w > bestwi(p), then
manlink( f) becomes defined, and is the link found by following bestlinks from p.

The ChangeRoot( f) action is the same as in GC. When two fragments merge, a
FIND message 1s added to one link of the new core. A new action, AfterMerge(p, q).
adds a FIND message to the other link of the new core. When an Absorb(f,g)
action occurs, a FIND message is directed toward the old g along the reverse link of
minlink(g) if and only if the target of minlink(g) is in testset(f) and its dcstatus is
find.

This algorithm (as well as the original one) correctly handles “leftover” REPORT
messages. Recall that a REPORT message is sent in both directions over the core
(p,q) of a fragment f. Suppose the root p reccives its REPORT 1nessage first, and
the other REPORT message, the “leftover” one. which is headed toward ¢, remains
in the queue until after f merges or is absorbed. Since the queues are FIFO relative
to REPORT and FIND messages, the state of ¢ remains such that when the leftover

REPORT message is received, the only change is the removal of the message.

Define automaton DC (for “Distributed ComputeMin™) as follows.
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Section 4.2.4: DC Simulates GC e,

The state consists of a set fragments. Each element f of the set is called a qi‘.:
fragment, and has the following components: X

o subtree( f), a subgraph of G;

15
8%
A
o core(f), an edge of G or nil; ::3%
o level(f), a nonnegative integer; :i."";:
W)
i
o rootchanged(f), a Boolean; and l.:::f
Pt
“(G‘
o testset(f), a subset of V(G). ""’
XK
For each node p, there are the following variables: ::'f
b
o dcstatus(p), either find or unfind; ::;4
i
e findcount(p), a nonnegative integer; '.‘,
o
.":"l
o bestlink(p), a link of G or nil; :E:::E
) 0,‘ .
3t
o bestwi(p), a weight or oo; and "-
o inbranch(p), a link of GG or nil. ‘ '.‘?t:
-
For each link (p, q), there are associated three variables: ::g:'f
B!
o dcqueue,({(p,q)), a FIFO queue of messages from p to ¢ waiting at p to be sent; e
A
. o dcqueueyg((p,q)), a FIFO queue of messages from p to ¢ that are in the com- ‘.:::‘
munication channel; and "'I::':
ol
Y th
o dcqueney({p,q)), a FIFO queue of messages from p to ¢ waiting at ¢ to be _
processed. :‘s
\
, N
The set of possible messages M is {REPORT(w) : w a weight or co} U {FIND}. m
Wk
The state also contains Boolean variables, answered(l), one for each ! € L(G), b
and Boolean variable awake. """:
ot
In the start statc of DC', fragments has one element for each node in V(G); for ;E",
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level(f) = 0, “;
rootichanged(f) is false, and testset( f) is empty. For each p, destatus(p) = unfind, o.;l‘;':;
findcount(p) = 0, bestlink(p) is the minimum-weight external link of p, bestwi(p) is ::::.“'
§,
o
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Section 4.2.4: DC Simulates GC

the weight of bestlink(p), and inbranch(p) = nil. The message queues are empty.
Each answered(l) is false and awake is false.

The derived variable dcqueue((p,q)) is defined to be dequeune,({p,q)) || de-
queuepg((p, q)) || dequeue,((p,q)).

A REPORT(w) message is headed toward p if either it is in dcqueue({(q,p)) for
some ¢, or it is in some dcquene({q,r)), where ¢ € subtree(r) and r € subtree(p). A
FIND message is headed toward p if it is in some dequeue({q,r)) and p is in subtree(r).
A message is said to be in subtree( f) if it is in some dequeune({q, p)) and p € nodes( f).

Now minlink( f) is a derived variable, defined as follows. If nodes(f) = {p}, then
manlink( f) is the minimum-weight external link of p. Suppose nodes(f) contains
more than one node. If f has an external link, if dcstatus(p) = unfind for all
p € nodes(f), if no FIND message is in subtree(f), and if no REPORT message is
headed toward mw-root(f), then munlink(f) is the first external link reached by
starting at muw-root(f) and following bestlinks; otherwise, minlink(f) = nil.

Also accmin(f) is a derived variable, defined as in TAR as follows. If
manlink( f) # n2l, or if there is no external link of any p € nodes(f) — testset(f),
then acecmin( f) = nil. Otherwise, acemin(f) is the minimum-weight external link
of all p € nodes(f) — testset(f).

Note below that ReceiveFind({q,p)) is only enabled if AfterMerge(p,q) is not
enabled; without this precondition on ReceiveFind, p could receive the FIND before

sending a FIND to ¢, and thus ¢’s side of the subtree would not participate in the
search.

Input actions:

o Start(p), p € V(G)
Effects:

awake ;= true
Output actions:

o InTree((p,q)), (p,q) € L(G)
Preconditions:
awake = true

(p.q) € subtree( fragment(p)) or (p,q) = minlink(fragment(p))
answered((p, ¢)) = false
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Section 4.2.4: DC Simulates GC

Effects:
answered({p,q)) := true

o NotlnTree((p,q)), (p.q) € L(G)
Preconditions:
fragment(p) = fragment(q) and (p, q) ¢ subtree(fragment(p))
answered((p, q)) = false
Effects:
answered((p,q)) := true

Internal actions:

o ChannelSend({p,q),m), (p,q) € L(G), me M
Preconditions:
m at head of dequeue,((p, q))
Effects:
dequeue(dcqueue,((p, q)))
enqueue(m, dequeue,,((p, q)))

o ChannelRecv((p,q),m), {p,q) € L(G),m&e M
Preconditions:
m at head of dcqueueyq((p,q))
Effects:

dequeue(dcqueue,,({p, q)))
enqueue(m, dequeue,((p, g)))

o TestNode(p), p € V(G)
Preconditions:
— let f = fragment(p) —

p € testset(f) e
if (p,¢), the minimum-weight external link of p, exists [::::‘\
then level( f) < level(fragment(q)) hj',}.f,
destatus(p) = find ',',:::- ]

Effects: '-"f:‘
testset( f) := testset(f) — {p} R
if (p,q), the minimum-weight external link of p, exists then ALY

if wi(p.q) < bestwt(p) then | f-g-,
bestlink(p) := (p, q) ey
bestwt(p) := wi(p,q) ] -
cxecute procedure Report(p) ':{:" 2
S
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Section 4.2.4: DC Simulates GC

o ReceiveReport({q, p),w), {q,p) € L(G)
Preconditions:
REPORT(w) message at head of dequeue,((q,p))
Effects:
dequeue(dcquene,((q,p)))
if (p, q) # inbranch(p) then |
findcount(p) := findcount(p) — 1
if w < bestwt(p) then |
bestwi(p) := w
bestlink(p) := (p, q) |
execute procedure Report(p) ]
else
if destatus(p) = find then enqueue(REPORT(w), dcquene,y((q, 1))

o RecewveFind({q,p)), {¢,p) € L(G)
Preconditions:
FIND message at head of dequeune,({q, p))
AfterMerge(p,q) not enabled
Effects:

dequeue(dcqueue,((q, p)))
destatus(p) := find

inbranch(p) := (p, q)

bestlink(p) := nil

bestwi(p) := oo

—let S = {(p,7): (p,r) € subtree(fragment(p)),r # q} —
findcount(p) := |S|

enqueue(FIND, dequeue,(l)) for all 1 € §

o Procedure Report(p), p € V(G)
if findcount(p) = 0 and p ¢ testset(fragment(p)) then |
dcstatus(p) := unfind
enqueue(REPORT(bestwi(p)), dequeue ,(inbranch(p))) |

e ChangeRoot(f), f € fragments
Preconditions:
awake = true
rootchanged( f) = false
manlink( f) # nal

Effects:
G4
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Section 4.2.4: DC Simulates GC ':::::
)
rootchanged(f) := true :E:
K
|
o Merge(f,q), f,9 € fragments XN
Preconditions: o
R
f # g ..::‘:
rootchanged( f) = rootchanged(g) = true N
minedge( f) = minedge(g) “"
Effects: 4 ::
add a new element k to fragments ::::&:
subtree(h) := subtree(f) U subtree(g) U minedge( f) ‘g:..‘z
core(h) := minedge(f) s
level(h) := level(f) + 1 :il:‘.
nth
rootchanged(h) := false ::.;:;:
testset(h) := nodes(h) ::‘::::
— let {p,q) = minlink(f) — "
enqueue(FIND, dcqueue,((p,q))) ';:
delete f and ¢ from fragments EE:‘:S:.:‘
Wik
o AfterMerge(p,q), p,q € V(G) . U
Preconditions: !‘
(p.q) = core(fragment(p)) ]
FIND message in dcqueue({g,p)) o
no FIND mcssage in dcqueue((p, g)) ‘
destatus(q) = unfind
no REPORT message in dcqueue({q,p)) o
)
Effects: :

enqueue(FIND, dequeue,((p,q)))

& x -
® Y
- SC O X

o Absorb(f,g), f.g € fragments

Preconditions: f':.‘:
o

rootchanged(g) = true :.t_:?v
level(g) < level(f) 3y

— let {q,p) = minlink(g) - -
fragment(p) = f
Effects:
subtree( f) := subtree( f) U subtree(g) U minedge(g)
if p € testset(f) then |
testset( f) = testset( f)U nodes(q)
if destatus(p) = find then |
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Section 4.2.4: DC Simulates GC

ej enqueue(FIND, dequeue,({p, q)))
“ findcount(p) := findcount(p) + 1] ]
: delete g from fragments
3 Define the following predicates on states(DC'), using these definitions.
u A child ¢ of p is completed if no node in subtree(q) is in testset(fragment(p)).
g and no REPORT is headed toward p in subtree(q) or in dequeuve({g,p)). Node p is up- .
:: to-date if either subtree( fragment(p)) = {p}, or the following two conditions are met:
X (1) following inbranches from p leads along edges of subtree(fragment(p)) toward and
4 over core(f), and (2) if p € testset(fragment(p)), then destatus(p) = find. Given
X node p, define C}, to be the set {r : either r = p and p & testset(fragment(p)), or r
¥ is in subtree(q) for some completed child ¢ of p}.
2: All free variables are universally quantified, except that f = fragment(p), in
A:' these predicates. (The fact that an old REPORT message, in a link that was formerl,
< the core of a fragment, can remain even after that fragment has merged or been
‘ absorbed, complicated the statement of some of the predicates.)
T,
:’ e DC-A: If REPORT(w) is in dequeue((q,p)) and inbranch(p) # (p, q), then

(a) if (p,q) = core(f), then a FIND message is ahead of the REPORT in
v dequeue({g,p));
" (b) {g,p) = inbranch(q);
:: (c) bestwi(q) = w;
::1 (d) destatus(q) = unfind;
‘ (e) every child of ¢ is completed;
. (f) ¢ & testset(f); and
‘ (g) if (p,q) # core(f), then destatus(p) = find, and ¢ is a child of p.
by
4 ¢ DC-B: If REPORT(w) is in decqueue({q,p)) and inbranch(p) = (p, q), then
N (a) either (p, q) = core( f) or p is a child of ¢; and
:: (b) if (p, q) # core(f), then destatus(p) = unfind.
K)
:: e DC-C: If REPORT(w) is in dcquene({q,p)) and (p,q) = core(f), then

. (a) ¢ is up-to-date;
| (b) destatus(q) = unfind; and
\ (c) bestwt(q) = w.

e DC-D: If FInD is in dequence({q, p)), then
(a) if (p.q) # core(f) then pis a child of ¢ and destatus(q) = find;

K
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Section 4.2.4: DC Simulates GC o)

o)

(b) destatus(p) = unfind; and E.

(c) every node in subtree(p) is in testset(f). 3

b

e DC-E: If p € testset(f), then a FIND message is headed toward p. or destatus(p) ‘

= find, or AfterMerge(q,r) is enabled, where p € subtree(r). .'x

e DC-F: If (p,q) = core(f) and inbranch(q) # (gq.p), then either a FIND is in ]
dequeve({p,q)), or AfterMerge(p, q) is enabled. ‘

~3

o~

J e DC-G: If AfterMerge(p,q) is enabled. then every node in subtree(q) is in -
b ‘""
testset( f). X

o4

e DC-H: If destatus(p) = unfind, then -

(a) destatus(q) = unfind for all ¢ € subtree(p); and ..:ﬁ

(b) findcount(p) = 0. “‘

n~]

o DC-I: If destatus(p) = find, then
(a) p is up-to-date; and

-

A}" ™.

(b) either a REPORT message is in subtree(p) headed toward p, or some ¢ € '
subtree(p) is in testset( f). :
e DC-J: If dcstatus(p) = find and core(f) = (p,¢q), then a FIND message is in ;"
dequeve((p,q)). or destatus(g) = find, or a REPORT message is in dequene({q. p)). o3
o
\
e DC-K: If p is up-to-date. then :ﬂ_
(a) findcount(p) is the number of children of p that are not completed; Ny
' (b) if bestlink({p) = nil. then bestwi(p) = oc. and there is no external link of !
any node in C,,. _ §
(¢) if bestlink(p) # nil, then following bestlinks from p leads along edges in G
subtree( f) to the minimum-weight external link [ of all nodes in C): wt{l) = ':‘
bestwi(p), and level( fragment(target(1))) > level( f). ;L
-
e DC-L: If nbranch(p) # nil, then inbranch(p) = (p,¢) for some q, and (p,q) € "
subtree( f). iy
e DC-M: findcount(p) > 0. N
s
e DC-N: If muw-minnode( f) is not in testset( f), then mw-minnode( f) is up-to- )
date. '
e DC-O: The ounly possible values of degreue({p,¢)) are empty, or ¥IND. or N
REPORT. or FIND followed by reporT (0157 if (p,q) = core(f)), or REPORT -~
s - L . f
followed by Finn (ouly if (p.gq) # core(f)). :_:
Ly
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Section 4.2.4: DC Simulates GC

Let Ppc be the conjunction of DC-A through DC-O.

In order to show that DC simulates GC. we dcfine an abstraction mapping

.\'14 = (S4,A4) from DC to GC.

Define the function S, from states(DC) to states(GC) by ignoring the message
queues, and the variables dcstatus, findcount, bestlink, bestwt, and inbranch. The
derived variables minlink and accmin of DC' map to the (non-derived) variables
manlink and accmin of GC.

Define the function A4 as follows. Let s be a state of DC and 7 an action of
DC enabled in s. The GC action ComputeMin(f) is simulated in DC when a node
adjacent to the core, having already heard from all its children, receives a REPORT
message over the core with a weight larger than its own bestwt. Then the node
knows that the minimum-weight external link of the fragment is on its own side of
the subtree.

e Suppose 7 == ReceiveReport({(q,p),w). If (p,q) = core(f) and destatus(p) = un-
find and w > bestwit(p), then A4(s, 7) = ComputeMin(fragment(p)). Otherwise
Ay(s, ) is empty.

o If m = ChannelSend({q,p},m), ChannelRecv({q,p},m), ReceiveFind({g,p)) or
AfterMerge(p,q), then A4(s, ) is empty.

e For all other values of m, A4(s,7) = 7.

The following predicates are true in any state of DC satisfying (P§~0S;)A Ppe-.
Recall that Pie = (PLop 0S2)APoc. If Pl (S4(s)) is true, then the GC predicates
are true in Sy(s), the COM predicates are true in S2(Sy(s)), and the HI predicates
are true in 81(S2(S4(s))). Thus, these predicates are deducible from Ppc, together
with the GC, COM and HI predicates.

e DC-P: If REPORT(w) is at the head of dequeue({q,p)) and (p, ¢) = core(f) and
destatus(p) = unfind, then
(a) if w < bestwt(p), then the minimum-weight external link ! of f is closer to
q than to p, and wi(l) = w;
(b) if w > bestwt(p). then the minimum-weight cxternal link [ of f is closer to
p than to ¢, and wt(l) = hestwit(p); and

)
(c) if w = bestwt(p). then w = oo and there is no external link of f.
Proof:
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Section 4.2.4: DC Simulates GC :
s
1. REPORT(w) is at head of dequeue({q,p)), by assumption. "séf
2. decstatus(p) = unfind, by assumption. f,‘
3. (p,q) = core(f), by assumption. .
4. ¢ is up-to-date, by Claims 1 and 3 and DC-C(a). ',:::.";
5. destatus(g) = unfind, by Claims 1 and 3 and DC-C(b). e
L
6. w = bestwi(q), by Claims 1 and 3 and DC-C(c). !‘::Eﬁ
7. q & testset(f), by Claims 4 and 5. '_
8. No FIND is in dcqueue({q, p)), by Claims 1 and 3 and DC-O. ’31':::
' 9. p is up-to-date, by Claims 2, 3, 4 and 8 and DC-T. ::,."'.
10. p & testset(f), by Claims 2 and 9. '.::;:’:
11. findcount(p) = 0, by Claim 2 and DC-H(b). .h
12. findcount(q) = 0, by Claim 5 and DC-H(b). ::::,.;
13. All children of p are completed, by Claims 9 and 11 and DC-K(a). c:::f
14. All children of ¢ are completed, by Claims 4 and 12 and DC-K(a). '?::::
15. If bestwt(p) = oo, then there is no external link of subtree(p), by Claims 9, 10 ol
and 13 and DC-K(b) and (c).
16. If bestwt(p) # oo, then following bestlinks from p leads to the minimum-weight '...:o,
external link ! of subtree(p) and wit(l) = bestwi(p), by Claims 9, 10 and 13, and $::."
DC-K(b) and (c). o
17. If bestwt(q) = w = oo, then there is no external link of subtree(q), by Claims 4, . X
6, 7 and 14 and DC-K(b) and (¢). :;:«’
18. If bestwi(q) = w # oo, then following bestlinks from ¢ leads to the minimum- :::
weight external link ! of subtree(q) and wt({) = w, by Claims 4, 6, 7 and 14 and |:-
. e
DC-K(b) and (c). P
*3;;’;5,
Claims 3 and 15 through 18 give the result, together with the fact that edge ,‘ !
weights are distinct. 0 :'.
¥
e DC-Q: If a REPORT is at the head of dequeue((q, p)) and is not headed toward P
mw-root( f), then inbranch(p) = {p,q). B g‘:
\- l‘r
Proof: If (p,g) = core(f). then inbranch(p) = (p,q) by DC-A(a). Suppose E \
(p.q) # core(f), and, in contradiction, that inbranch(p) # (p,q). By DC-A(g). :_
destatus(p) = find, and by DC-I(a) p is up-to-date, i.e., following inbranches from p ».»
leads toward and over core( f). Thus the REPORT in dequene({g, p)is headed toward :ﬁ:
both endpoints of core( f), contradicting the hypothesis. O ',:k_
: 7-‘ )
e DC-R: If destatus(p) = find, then no REPORT is in dcquene(snbranch(p)). h:\
Prooj. Let inbranch(p) —~ {p.q).
69
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Section 4.2.4;: DC Simulates GC

::; 1. dcstatus(p) = find, by assumption.

::: 2. pis up-to-date, by Claim 1 and DC-I(a).

3. Following inbranches from p leads toward and over core( f), by Claim 2.

N 4. Either (p,q) = core(f), or inbranch(q) # (q, p), or no REPORT is in dequeue((p, q)),
" by Claim 3 and DC-B(b).

:E, 5. If (p,q) = core(f), then no REPORT is in dcqueue((p,q)), by Claim 1 and DC-C{b).
R 6. If inbranch(q) # (g,p), then no REPORT is in dcqueue({p,q)), by Claim 1 and
o DC-A(d).

é’;‘: 7. No REPORT is in dcqueue({p, ¢)), by Claims 4, 5 and 6. O
33? e DC-S: At most one FIND message is headed toward p.

» Proof: Suppose a FIND message is headed toward p.

::.; 1. A FIND is in dequeue({g, 7)), by assumption.

f%: 2. p € subtree(r), by assumption.

w 3. dcstatus(r) = unfind, by Claim 1 and DC-D(b).

“ 4. destatus(t) = unfind for all ¢ € subtree(r), by Claim 3 and DC-H(a).

;?. 5. No FIND message is in dcqueue((t,u)), for any (¢,u) € subtree(r), by Claim 4 and
gﬁ DC-D(a).

LY .

e If (¢,r) = core(f), Claim 5 proves the result. Suppose (g,r) # core(f).

A

3::. 6. (¢,r) # core(f), by assumption.

;:" 7. dcstatus(q) = find, by Claims 1 and 6 and DC-D(a).

" 8. dcstatus(t) = find for all ¢ between ¢ and the endpoint of core(f) closest to ¢, by
, Claim 7 and DC-H(a).

:" 9. No FIND message is in dcqueue((t,u)) for any (¢, u) between core(f) and ¢, by

Claim 8 and DC-D(b).

g Claim 9 completes the proof. O
o

W . o .
b e DC-T: If (p,q) = core(f). no FIND is in dequeue({p,q)), p is up-to-date, and
:. . dcstatus(g) = unfind, then ¢ is up-to-date.
L
! ‘l

Proof:

3:: 1. (p,q) = core(f), by assumption.
:‘:: 2. No FIND is in dcqueue({p.q)), by assumption.

.‘-: 3. p is up-to-date, by assumption.

! 4. destatus(q) = unfind, by assumption.

¥ 5. No FIND is headed toward ¢, by Claims 1 and 2 and DC-D(a).
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Section 4.2.4: DC Simulates GC

. No FIND is in dcqueue((q, p)), by Claim 3 and DC-D(b) and (c).

. AfierMerge(p,q) is nut enabled, by Claim 6.

inbranch(q) = (g, p), by Claims 5 and 7 and DC-F.

. q & testset(f), by Claims 4, 5 and 7 and DC-E.

10. ¢ is up-to-date, by Claims 1, 8 and 9. O

-] O

© o

Lemma 19: DC simulates GC via My, Ppc, and Pj.

Proof: By inspection, the types of DC, GC, My, and Ppc are correct. By Corol-
lary 16, P4 is a predicate true in every reachable state of GC.

(1) Let s be in start(DC). Obviously, Ppc is true in s, and S4(s) is in
start(GC).

(2) Obviously, A4(s, w)|ext(GC) = w|ezt(DC).

(3) Let (s',m,5) be a step of DC such that P4, is true of S4(s’) and Ppc is
true of s’. For (3a) we verify below only those DC predicates whose truth in s is
not obvious.

i) = is Start(p), ChangeRoot(f), InTree(l), or NotInTree(l). A (s',7) =
7. Obviously S4(s')wS4(s) is an execution fragment of GC and Ppc is true in s.

ii) 7 is ChannelSend(l,m) or ChannelRecv(l,m). A4(s',7) is empty.
Obviously Ss(s) = S4(s') and Ppc is true in s.

iii) 7 is TestNode(p). Let f = fragment(p) in s'.

(3c) As(s',m) = m. Obviously, 7 is enabled in S4(s'). To show the effects
are mirrored in S4(s), we must show that accmin(f) is updated properly (which is
obvious) and that minlink(f) is unchanged. Since p € testset(f) in s', minlink(f) =
nil in s' by GC-C. If acemin(f) # nil, or if p has an external link in s', then
accman(f) # nil in s, and minlink(f) is still nil in s. If some q # p is in testset( f)
in s', then by DC-E either a FIND is in subtree(f) or dcstatus(q) = find; since the
same is true in s, menlink(f) is still nil in s. Finally, if acemin(f) = nil, p has no
external link, and p is the sole element of testset(f) in s', then f has no external
link in ' or in s, and minlink( ) is still nil in s.

(3a) Two cases are considered. First we prove some facts true in hoth casces.

Claims about s':

71
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Section 4.2.4: DC Simulates GC

" !
S‘ 1. dcstatus(p) = find, by precondition. :
N 2. p € testset(f), by precondition. ]
" 3. If (p,u), the minimum-weight external link of p, exists, then level(f) < g
:: level( fragment(u)), by precondition. '
;g 4. p is up-to-date, by Claim 1 and DC-I(a). q
j: 5. No FIND is headed toward p, by Claim 1 and DC-D(c). t
" 6. If (p,r) = core(f), then no REPORT is in dcqueue({p,r)), for any r, by Claim 1 ‘
, and DC-C(b). -
2 7. If a REPORT is in dcqueue({p,r)), then inbranch(r) = (r,p}, for any r, by Claim ‘
" 1 and DC-A(d). .
:2 8. AfterMerge(r,t), where p € subtree(t), is not enabled, by Claim 1 and DC-H(a). '

. 9. If bestlink(p) = nil, then bestwt(p) = oo and there is no external link of any node
:: r, where r is in the subtree of any completed child of p, by Claims 2 and 4 and :
| DC-K(b). ;
i 10. If bestlink(p) # nil, then following bestlinks from p leads to the minimum-weight :
: external link [ of all nodes r, where r is in the subtree of any completed child of p; .
., wi(l) = bestwt(p) and level(f) < level(fragment(target(l))), by Claims 2 and 4 and
5 DC-K(c).

0

i g
;r Case 1: findcount(p) # 0 in s'.

s

E. More claims about s':

W t
“ 11. findcount(p) # 0, by assumption. .

X 12. findcount(p) > 0, by Claim 11 and DC-M. '
:‘ 13. Some child r of p is not completed, by Claimms 4 and 12 and DC-K(a). T
l‘ 14. There is a child r of p such that either some node in subtree(r) is in testset( f), “,

: or a REPORT is in subtree(r) or dequeue((r,p)) headed toward p, by Claim 13.

. !
N DC-A(c¢): By Claim 7, changing bestwt(p) and removing p from testset( f) are g
3 OK. 1
N |
" DC-C: By Claim 6, changing bestwt(p) is OK.

] DC-D(c): By Claim 5, removing p from testset(f) is OK.

DC-G: By Claim 8 and the fact that decstatus(p) is still find in s. removing p
s from testset( f) is OK.

1}
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Section 4.2.4: DC Simulates GC ::::'::

'..l

DC-I(b): By Claim 14, removing p from testset( f) is OK. E.g-:'?

DC-K: (b) By Claim 9 and code. (¢) by Claims 3 and 10 and code. 'a:

A

D

DC-N: If p is mw-minnode(f), then by Claim 4, removing p from testset(p) is S;EEE:E:

OK. i

i

iy

Case 2: findcount(p) = 0in s'. Let (p,¢) = inbranch(p). .j;"::;

‘:‘l"o‘

More claims about s': "’

15. findcount(p) = 0, by assumption. %E:%

16. If (p,q) = core(f) and inbranch(q) # (g,p), then a FIND is in dcqueue({(p,q)), '.'O:Q{

by Claim 5 and DC-F.
17. All children of p are completed, by Claims 3 and 15 and DC-K(a).

IS

18. If (p, g) # core(f), then destatus(q) = find, by Claim 1 and DC-H(a). .::;:{',;

19. If REPORT is in dcqueue({q, p)), then (p,q) = core(f), by Claim 4 and DC-B(a). :.::::';‘
(]

20. No REPORT is in dcqueue({p,q)), by Claim 1 and DC-R. :::::‘,:

21. If FIND is in dcqueue({p,q)), then (p, ¢) = core(f), by Claim 4 and DC-D(a). ""

22. Every node r # p in subtree(p) has dcstatus(r) = unfind, by Claims 1 and 17 |:::"l‘5

and DC-I(b). gt

23. Every node r # p in subtree(p) has findcount(r) = 0 by Claim 22 and DC-H(b). .:;‘\:3

!2‘-'. )

DC-A: By Claim 7 and the fact that inbranch(p) = (p, q¢), we need only consider L 1

e, ()

the REPORT added to dcqueune((p,q)). (a) by Claim 16. (b), (c) and (d) by code. ».”\*-:f\‘

{ (e) by Claim 17. (f) by code. (g) by Claims 4 and 18. N
Loy

R

DC-B for REPORT added to dcqueune({p, ¢)): If inbranch(q) = (g, p), then (p,q) = "':.

core( f), by Claim 4. NS

20

DC-B for REPORT that might be in decqueue((g, p)): by Claim 19. Q\R_ ¢

R

DC-C: By Claim 4, inbranch(p) is the only relevant link; by Claim 20, the new Bl

message is the only REPORT in that queue. (a) by Claim 4. (b) and (c) by code. ey

‘f Lal ¢

20

DC-D(a) and (c): By Claim 5, it is OK to change dcstatus(p) to unfind and :‘;t"",

remove p from testset(f). -;:-_ :
@

DC-E: The addition of a REPORT to dcqueue({p,¢)) in s cannot cause After- . ::E"."O

Merge(q, p) to go f=om enabled in s’ to disabled in s, by Claim 1. "




Section 4.2.4: DC Simulates GC

DC-F: Cf. DC-E.

DC-G: By Claim 8 and the addition of REPORT to dcqueue({p,q¢)), removing p
from testset( f) is OK.

DC-H: (a) By Claim 22 and code. (b) By Claim 23.

DC-I(b): Suppose r # g¢ is some node such that p € subtree(r) and destatus(r) =
find in s'. By Claim 4, removing p from testset(f) is compensated for by adding
REPORT to dequeue((p,q)).

DC-J: By Claim 4, the only link of p that can be part of core(f) is (p,q). If
(p,q) = core(f) and destatus(q) = find, then the fact that dcstatus(p) becomes
unfind in s is compensated for by the addition of REPORT to dequeue((p,q)).

DC-K(b) and (c): As in Case 1.

DC-N: As in Case 1.

DC-0: By Claims 20, 21 and code.

iv) 7 is ReceiveReport({q,p),w). Let f = fragment(p) in s'.

(3b)/(3c) Case 1: (p,q) = core(f) and dcstatus(p) = unfind and w > bestwit(p)
in s'. A4(s', ) = ComputeMin(f).

Let (r,t) be the minimum-weight external link of f in s'. (Below we show it

exists.)
Claims about s':

REPORT(w) is at the head of dequeue({q,p)), by precondition.
(p,q) = core(f), by assumption.

destatus(p) = unfind, by assumpuion.

w > bestwi(p), by assumption.

No FIND is in dequeue({g, p)), by Claim 1 and DC-O.

q is up-to-date, by Claims 1 and 2 and DC-C(a).

pis up tc date, by Claims 2, 3, 5 and 6 and DC-T.

. destatus(g) = unfind. by Claims 1 and 2 and DC-C(b).

. bestwt(q) = w, by Claims 1 and 2 nad DC-C(c).

10. p = mw-root( f) (so (r,t) exists), by Claims 1, 2, 3 and 4 and DC-P(b).
11. manlink(f) = nil, by Claims 1 and 10.

OO O
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Section 4.2.4: DC' Simulates GC ‘
i
12. findcount(p) = 0, by Claim 3 and DC-H(b). !
13. findcount(q) = 0, by Claim 8 and DC-H(b). .
14. Every child of p is completed, by Claims 7 and 12 and DC-K(a). Yo
15. Every child of ¢ is completed, by Claims 6 and 13 and DC-K(a). :b.:
16. p & testset(f), by Claims 3 and 7. ::‘:
17. ¢ ¢ testset(f), by Claims 6 and 8. A
. 18. testset(f) = @, by Claims 14 through 17. ,‘;
19. acemin(f) = (r,t), by Claims 11 and 18. :‘:“
L]
th
By Claims 11, 18 and 19, ComputeMin(f) is enabled in s'. ,:'
Y.
Now we must show that the effects of ComputeMin(f) are mirrored in s. All ,.
that must be shown is that minlink(f) and accmin(f) are updated properly. :":'
s
More claims about s': :::
O

20. dcstatus(u) = unfind, for all u € subtree(p), by Claim 3 and DC-H(a).

21. destatus(u) = unfind, for all u € subtrce(q), by Claim 8 and DC-H(a). !
22. No REPORT is headed toward p in subtree(p), by Claim 14. ;
23. No REPORT is headed toward ¢ in subtree(q), by Claim 15.

24. Only one REPORT is in subtree(p), by DC-O. .

25. No FIND is in subtree(f), by Claim 18 and DC-D(c). :.:

26. Following bestlinks from p leads to (r,t), by Claims 7, 10, 14 and 16 and DC-K(b) ':::

and (c). l':f.
]

By Claims 10 and 20 through 26, minlink(f) = (r,t) in s. By Claim 19, this is s,

the correct value. Thus, acemin(f) = nil in s. ."f

_ - r’

3

Case 2: (p,q) # core(f) or destatus(p) = find or w < bestwt(p) in s'. Ay(s',7) nyt,

1s empty. We just need to verify that minlink(f) and acemin( f) are unchanged in ":',

order to show that §;(s') = Sy(s). _‘
Subcase 2a: (p,q) # core(f) in s'. :‘

\

Suppose (p, q) = inbranch(p) in s'. By DC-B(b), dcstatus(p) = unfind, so the T
only effect is to remove the REPORT. By DC-B(a), p € subtree(q), so this REPORT E

message is not headed toward mw-root( f) in s'. Thus minlink( f) is unchanged, and .:
accmin( f) is also unchanged. '

¢

Suppose (p, q) # inbranch(p) in <’ ,

..‘:

B .-
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Section 4.2.4: DC Simulates GC

Claims about s':

REPORT(w) is at the head of dequeune({g,p)), by precondition.
(p,q) # inbranch(p), by assumption.

(p,q) # core(f), by assuption.

dcstatus(p) = find, by Claims 1, 2 and 3 and DC-A(g).

p is up-to-date, by Claim 4 and DC-I(a).

Ll e

Following inbranches from p leads toward and over core( f), by Claim 5.

A REPORT message is headed toward mw-root( f), by Claims 1 and 6.
minlink( f) = nzl, by Claim 7.

9. If core(f) = (p,t) for some ¢, then FIND is in dequeuve((p,t)), destatus(t) = find,
or REPORT is in dcqueue((t,p)), by Claim 4 and DC-J.

®» =N oo

Claims about s:

10. subtree(f), core( f), nodes(f), and testset( f) do not change, by code.

11. REPORT is in inbranch(p), by code.

12. Following inbranches from p leads toward and over core( f), by Claims 6 and 10
and code.

13. If p # mw-root(f), then REPORT is headed toward mw-root( f), by Claims 11
and 12.

14. If p = mw-root(f), then rIND is in dequeve((p,t)), destatus(t) = find, or REPORT
is in dequeune((t,p)), where (p,t) = core(f), by Claim 9 and code.

15. manlink( f) = nil, by Claims 13 and 14.

16. aceman(f) does not change, by Claims 8, 10 and 15.

Claims 15 and 16 give the result.

Subcase 2b: (p,q) = core(f) and destatus(p) = find in s'. Since REPORT(w)
is at the head of dequenc({q, p)), DC-A(a) implies that inbranch(p) = (p,q). The
only change 1s that the rREPORT wmessage 1s requened. Obviously manlink( f) and

aceman( f) are unchanged.

Subcase 2¢: (p,q) = core(f) and destatus(p) = nntind and w < bestwi(p) in
s'. As in Subcase 2b, wmbranch(p) = (p.q). The ouly change is that the reprory
message 1s removed. If w = bestwt(p). then hy DC-P(e), there is no external link of

fins" orin s. Thus manhink( f) and aceman( f) are both »il in s" and s.
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Section 4.2.4: DC Simulates GC

Suppose w < bestwi(p). By DC-P(a), ¢ = mw-root(f). Thus the REPORT

message in dcqueue((q,p)) is not headed toward mw-root(f) in s', and no criteria

for minlink(f), or acecmin( f) changes.

(3a) Case 1: (p,q) = inbranch(p) in s'.

Suppose dcstatus(p) = find. By DC-D(b), no FIND is in dequeue({g,p)) in s'.
so by DC-O, dcqueue({q,p)) contains just the one REPORT message in s'. Since the
only effect is to requeue the message, the DC state is unchanged.

Suppose dcstetus(p) = unfind. The only change is the removal of the REPORT
message from dcqueune({g, p)). By DC-B(a), either (p, g) = core(f), or p € subtree(q)
in ¢'. In both cases, the REPORT is not headed toward any node whose subtree it is
in.

DC-I(b): By remark above.

DC-J: Even though RTPORT is removed from dcqueue({q,p)), destatus(p) =
unfind in s.

DC-K(a): By remark above, removing the REPORT does not affect the com-
pleteness of any node’s child.

Case 2: (p,q) # inbranch(p). Let (p,r) = inbranch(p).
Ci.ims about s':

REPORT(w) is at head of dcqueue({q,p)), by precondition.

(p,q) # inbranch(p), by assumption.

(p,q) # core(f), by Claims 1 and 2 and DC-A(a).

(g, p) = inbranch(q), by Claims 1 and 2 and DC-A(b).

w = bestwt(q), by Claims 1 and 2 and DC-A(c).

dcstatus(q) = unfind. by Claims 1 and 2 and DC-A(d).

Every child of ¢ is completed, by Claims 1 and 2 and DC-A(e).

q & testset( f), by Claims 1 and 2 and DC-A(f).

9. destatus(p) = find, by Claim 3 and DC-A(g).

10. If REPORT is in dcqueue(p,t), then inbranch(t) = (t,p), for any t, by Claim 9
and DC-A(d).
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Section 4.2.4: DC Simulates GC

11. p is up-to-date, by Claim 9 and DC-I(a).

12. inbranch(p) leads toward and over core( f), by Claim 11.

13. ¢ is an uncompleted child of p, by Claims 1, 2 and 12.

14. findcount(p) > 1, by Claims 11 and 13 and DC-K(a).

15. Only one REPORT is in dcqueue({g,p)), by Claim 1 and DC-O.

16. g is up-to-date, by Claims 4, 8 and 12.

17. If REPORT is in dcqueue((p,t)), then (p,t) # core(f), for all ¢, by Claim 9 and
DC-C(b).

18. If bestwi(p) = oo, then there is no external link of p (if p & testset(f)) or of any
node in the subtree of any completed child of p, by Claim 11 and DC-F(b) and (c).
19. If bestwit(p) # oo, then following bestlinks from p leads to the minimum-
weight external link [ of all nodes in Cp; wi(l) = bestwi(p); and level(f) <
level( fragment(target(l))), by Claim 11 and DC-F(b) and (c).

20. If w = oo, then there is no external link of subtree(q), by Claims 5, 7, 8 and 16
and DC-K(b) and (c¢).

21. If w # o0, then following bestlinks from ¢ leads to the minimum-weight external
link [ of subtree(q); wt(l) = w, and level( f) < level(fragment(torget(l))), by Claims
5, 7, 8 and 16 and DC-F(b) and (c).

Subcase 2a: p € testset(f) or findcount(p) # 1 in s'.
More claims about s':

22. p € testset(f) or findcount(p) # 1, by assumption.

23. If findcount(p) # 1, then findcount(p) > 1, by Claim 14.

24. If findcount(p) # 1, then some child ¢ # ¢ of p is not completed, by Claims 11
and 23 and DC-K(a).

25. If findcount(p) = 1, then p € testset(f), by Claim 22.

DC-A(c): by Claim 10, any change to bestwi(p) is OK.
DC-C: By Claim 17, changing bestwi(p) is OK.
DC-F: Cf. DC-G.

DC-G: Removing REPORT from dcqueune({q,p)) does not cause AfterMerge(p,q)
to become enabled, by Claim 3.

DC-I(b): Let  be somne node such that p € subtree(t) and dcstatus(t) = find in
s'. By Claims 24 and 25, either a REPORT message is in subtree(p) headed toward

78
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Section 4.2.4: DC Simulates GC

p (and hence toward t), or some node in subtree(p) (and hence in subtree(t)) is in
testset( f).

DC-J: The removal of the REPORT message is OK by Claim 3.

DC-K(a): Since findcount(p) is decremented by 1, we just need to show that the
number of uncompleted children of p decreases by 1: by Claim 1, ¢ is not completed

in §'. By Claims 7, 8 and 15 and code, ¢ is completed in s.
DC-K(b) and (c¢): by Claims 18, 19, 20 and 21 and code.

DC-M: By Claim 14 and code.

Subcase 2b: p & testset(f) and andcouni(p) = L.

26. p ¢ testset(f), by assumption.

27. findcount(p) = 1, by assumption.

28. No rFInND is headed toward p, by Claim 9 and DC-D(b).

29. If (p,r) = core(f) and inbranch(r) # (r,p),then FIND is in dcqueue({p,r)), by
Claim 28 and DC-F.

30. No REPORT is i1 dequeue({p,r}), by Claim 9 and DC-R.

31. Every child of p but ¢ is completed, by Claims 11, 13, 27 and DC-K(a).

32. No FIND is in dcqueue({p,t)), t # r, by Claims 7, 8 and 31 and DC-D(c).

33. If REPORT is in dcqueue((r,p)), then (p,r) = core(f), by Claim 9 and DC-B(a)
and (b).

34. If (p,r) # core(f), then dcstatus(r) = find, by Claims 9 and 12 and DC-H(a).

35. If FIND is in dcqueue({p,r)), then (p,r) = core(f), by Claim 12 and DC-D(a).

DC-A: By Claim 10 and the fact that inbranch(p) = (p,r)), we need only
consider the REPORT added to dcqueune((p,r})). (a) by Claim 29. (b), (¢) and (d) by
code. (e) by Claim 31 for any child of p except ¢: by Claims 7, 8 and 15 and code
for ¢. (f) by Claim 8. (g) by Claims 12 and 34.

DC-B for REPORT added to dcqueue({p,r)): if inbranch(r) = (r.p), then by
Claim 12, core(f) = (p, 7).

DC-B for REPORT in dequeune({r,p)): By Claim 33, core( f) = (p.r).

DC-C: By Claim 12, inbranch(p) is the only relevant link; by Claim 30. the
new message is the only REPORT message in its queue. (a) by Claim 11. (b) and (¢)

by code.
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Section 4.2.4: DC Simulates GC

DC-D(a): By Claims 32 and 35, changing dcstatus(p) to unfind is OK.

DC-E: The addition of the REPORT to decqueune({p,r)) in s cannot cans~

AfterMerge(r,p) to go from enabled in s’ to disabled in s, because destatus(p) =
find in s’ by Claim 9.

s
DC-F: Cf. DC-E. ‘:‘,
DC-H(a): By Claims 7 and 8, no node in subtree(q) is in testset( f). By Claim ) .::;
31, no node in subtree(t), for any child ¢ # ¢ of p, i1s in testse?(f). By Claim 23, .'E
p € testset(f). ',, ]
Kol
DC-H(b): By Claim 27 and code. »
7
|"'
DC-I(b): Let t # p be such that p € subtree(t) and destatus(t) = find in s'. By Wt
Claim 12, removing the REPORT from dcqueue((q, p)) is compensated for by adding ::‘.
the REPORT to decqueue((p,r)).
DC-J: By Claim 12, the only link of p that can be part of core(f) is (p,r). If ::'
(p,r) = core( f) aud destatus(q) = find in s, then changing dcstatus(p) to unfind in , ?"
s is compensated tor by adding the REPORT to dequeunce((p,r)). :'\'
DC-K: As in Subcase 2a. ‘
i
Y
DC-M: Claim 27 and code. Pl
>
DC-0O: by Claim 30 and DC-0 and cc le. -
A
v) 7 is ReceiveFind({q,p)). Let f = fragment(p). H
R
S
(3b) A4(s',7) is empty. To show that S4(s') = S4(s), we just need to show E-.‘
that manlink( f) and accmin(f) are unchanged. Because of the FIND message, Y
minlink(f) = mil in s', and manlink(f) = nil in s since destatus(p) = find. Since :‘?
there is no change to minlink(f), nodes(f), testset(f), or subtree(f), acemin(f) is 1'.‘1.:.
wnchanged. A
A"():"
(3a) Claimns about s': T
o
1. ¥iND is at head of dequene({(q,p)), by precondition. .r\
2. AfterMerge(p.q) is not enabled, by precondition, 3‘;‘
3. If (p,q) # core(f). then pis a child of ¢, by Claim 1 and DC-D(a). » '
4. I (p.q) # core( ), then destatus(y) = find, by Claim 1 and DC-D(a). ;
80 o
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)
" 5. dcstatus(p) = unfind, by Claim 1 and DC-D(b).
4 6. Every node in subtree(p) is in testset( f), by Claim 1 and DC-D(c).
7. No REPORT is in dcqueue({p,r)) with inbranch(r) # (r,p), for all r, by Claim 6
and DC-A(f).
;" 8. If REPORT is in decqueue({p,r)), then (p,r) # core(f). for all r, by Claim 6 and

DC-C.
"
- 9. If REPORT is in dcqueue((g,p)), then (p,q) = core(f), by Claim 1 and DC-O.

s 10. If (r,p) € subtree(f), r # ¢, then r is a child of p, by Claim 3.
vE 11. No REPORT is in dcqueue((r,p)), r # ¢, with inbranch(p) # (p,r)), by Claims 6
K and 10 and DC-A(f).
12. No REPORT is in dcqueue({r,p)), r # ¢, with inbranch(p) = (r,r), by Claim 10
" and DC-B(a).
13. If (p,r) € S, then r is a child of p, by Claim 10.
.; 14. dcstatus(r) = unfind for all r € subtree(p), by Claim 5 and DC-H(a).
. 15. If (p,q) # core(f), then dcstatus(r) = find, for all r such that ¢ € subtree(r),
by Claim 4 and DC-H(a).
- 16. dcqueue((p,r)) is either empty or contains only a REPORT for all r such that
|- (p.r) € S. by Claims 5 and 13 and DC-D(a) and DC-O.
. 17. If (p.q) # core(f), then following inbranches from ¢ leads toward and over
. core( f), by Claim 4 and DC-I(a).
.: DC-A(a): By Claim 7, we need not consider any REPORT in a link leaving p.
~ By Claim 11 we need not consider any REPORT in a link coming into p, except for

- {g.p). Since inbranch(p) is set to (p.q) in s. removing FIND from decqueue({q.p)) is
5 OIL.

DC-B: By Claim 9 and 12, changing destatus(p) is OK.
DC-C: By Claim 8. changing destatus(p) and bestwt(p) is OK.
DC-D: (a) by Claim 13 and code. () by Claim 14. (c) by Claim 6.

DC-E: By Claim 12 and code (adding 1IND messages and setting destati | p)

to find). removing FIND from dequeue((q. p)) is OK.

.
) DC-F: As argned for DC-I{a). the only possible link of p that is part of corc( f)

;: s [poq). Sinee code sets anbranch{p) to {p. q). remmoving the Fixn is OK,

~ DC-Hewi: M ipoq) = core( f). then chaneing destatus(p) to find is O I (pL g1 £
o coret foothen Clati 15 implies that it s O to change destatus(p) to find.
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Section 4.2.4: DC Simulates GC

DC-I: (a) If (p,q) = core(f), then code gives the result, since inbranch(p) is sct
to (p,q) and dcstatus(p) is set to find. If (p,q) # core(f), then Claim 17, the fact
that p is a child of ¢ by DC-D(a), and code give the result. (b) by Claiin 6.

DC-J: By Claims 1 and 2.

DC-K: (a) findcount(p) = |S| = number of children of p. None is complete, by
Claim 6. (b) and (c) are true by code, since no children are complete.

DC-L: by code and Claim 3.
DC-M: by code.

DC-0O: Removing the rFIND from dcqueune({q,p)) is OK. Adding FIND to dc-
queue({p,r)), (p,7) € S, is OK by Claim 16.

vi) 7 is Merge(f,g).

(3c) Ay(s',7) = 7. Obviously 7 is enabled in S4(s’). Effects are mirrored in
S4(s) if we can show acemin(h) = minlink(h) = nil in s. Inspecting the code reveals

that in s, a FIND message is in subtree(h), so minlink(h) = nil, and nodes(h) =

testset( h), so accmin(h) = nil.
(3a) Claims about s':

. f # g, by precondition.
. rootchanged( f) = true, by precondition.
. rootchanged(g) = true, by precondition.
. minedge( f) = minedge(g), by precondition.
5. minlink(f) # nil, by Claim 2 and COM-B.
Let (p,q) = manlink(f).
. minlink(g) = {q,p), by Claims 1, | and 5.
. No REPORT is headed toward root( f), by Claim 3.
. No REPORT is headed toward root(g), by Claim 6.
). No FIND is in subtree( f), by Claim 5.
. No FIND is in subtree(g). by Claim 6.
. destatus(r) = unfind for all r € nodes( f), by Claim 5.
2. destatus(r) = unfind for all » € nodes(q), by Claim 6.
. {p. ¢) 1s the minimum-weight external link of f. by Claim 5 and COM-A.
. {g.p) 1s the minimum-weight external link of ¢, by Claim 6 and COM-A.
5. testset{ f) = @, by Claim 5 and GC-C.
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Section 4.2.4: DC Simulates GC

16. testset(g) = @, by Claim 6 and GC-C.

17.  If REPORT is in dcqueue({r,t)), then inbranch(t) = (t,r), tor all (r,t) €
subtree( f), by Claims 9 and 11 and DC-A(a) and (f).

18. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r,t) €
subtree( f), by Claims 10 and 12 and DC-A(a) and (f).

19. If REPORT is in decqueue({r,t)) and (r,t) = core(f), then r = root(f), by Claim
7.

20. If REPORT is in dcqueue((r,t)) and (r,t) = core(g), then r = root(g), by Claim
8.

21. If REPORT is in dcqueue({r,t)) and (r,t) # core(f), then ¢ is a child of r, for all
(r,t) € subtree(f), by Claim 17 and DC-B(a).

22. If REPORT is in dcqueue((r,t)) and (r,t) # core(g), then t is a child of r, for all
(r,t) € subtree(g), by Claim 18 and DC-B(a).

23. If REPORT is in dcqueue({r,t)), then (r,t) is not on the path between root( f)
and p, for all (r,t) € subtree(f), by Claims 5, 7, 13, 15 and 17 and DC-N.

24. If REPORT is in decqueue((r.t)), then (r,t) is not on the path between root(g)
and ¢, for all (r,t) € subiree(g), by Claims 6, 8, 14, 16 and 18 and DC-N.

25. dcqueue((p,q)) is empty, by Claim 13 and DC-A(g), DC-B(a) and DC-D(a).
26. dcqueue({g,p)) is empty, by Claim 14 and DC-A(g), DC-B(a) and DC-D(a).
27. findcount(r) = O for all r € nodes(f), by Claim 11 and DC-H(b).

28. findcount(r) = 0 for all r € nodes(g), by Claim 12 and DC-H(b).

Claims about s:

29. subtree(h) is the old subtree( f) and subtree(g) and (p, ¢), by code.

30. core(h) = (p,g), by code.

31. testset(h) = nodes(h), by code.

32. dcqueue((p,q)) contains only a FIND, by Claim 25 and code.

33. No FIND is in any other link of subtree(h), by Claims 9, 10 and 29.

34. dcstatus(r) = unfind for all r € nodes(h), by Claims 11, 12 and 29.

35. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r,t) €
saubtree(h), by Claims 17, 18, 25, 26 and 29.

36. If REPORT is in dcqueue((r,t)), then t is a child of r, for all (r,t) € subtrce(h).
by Claims 21 through 26 and 28.

37. AfterMerge(q, p) is enabled, by Claims 30, 32, 33 and 34.

38. dequene({q.p)) is empty. by Claim 26.

39. findcount(r) = 0 for all r € nodes(h), by Claims 27, 28 and 29.

DC-A: Vacuously true. by Claim 35.
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Section 4.2.4: DC Simulates GC

DC-B: By Claims 34 and 36.
DC-C: By Claims 30, 32 and 38.

DC-D: The only FIND is in dcqueue((p, ¢)), by Claims 32 and 33. (a) by Claim
30. (b) by Claim 34. (c) by Claim 31.

DC-E: By Claim 32 for subtree(q); by Claim 37 for subtree(p).
DC-F: By Claims 32 and 37.

DC-G: By Claim 31.

DC-H: (a) by Claim 34. (b): by Claim 39.

DC-I: Vacuously true by Claim 34.

DC-J: Vacuously true by Claim 34.

DC-K: By Claims 31 and 34, none is up-to-date.
DC-M: By Claim 39.

DC-N: Vacuously true by Claim 31.

DC-O: By Claim 30.

vii) 7 is AfterMerge(p,q). Let f = fragment(p).

(3b) A4(s',7) is empty. We just need to show that accmin(f) and minlink(f)
do not change. The FIND message(s) imply that minlink(f) = nil in both s’ and s.

Since there is no change to minlink( f), nodes( f), testset( f). or subtree( f), accmin( f)
does not change.

(3a) Claims about s':

(p,gq) = core(f), by precondition.

FIND is in dcqueue({g,p)), by precondition.

No FIND is in dequeue({p,q)), by precondition.

dcstatus(q) = unfind, by precondition.

No REPORT is in dequeue({q, p)), by precondition.

Every node in subtree(q) is in testset( f). by Claims 1 through 5 and DC-G.
p € testset( f), by Claim 2 and DC-D(c).
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8. No REPORT is in dequeue({p, q)), by Claim 7 and DC-C.

9. dcqueue((q,p)) consists solely of a FIND, by Claims 2 and 5 and DC-O.
10. dcqueuve({p,q)) is empty, by Claims 3 and 8 and DC-O.

11. (p, q) € subtree(f), by Claim 1 and COM-F.

Claims about s:

12. (p,q) = core(f), by Claim 1.

13. Every node in subtree(q) is in testset( f), by Claim 6.

14. dcqueue((q,p)) consists solely of FIND, by Claim 9.

15. dcqueue((p,q)) consists solely of FIND, by Claim 10 and code.
16. dcstatus(q) = unfind, by Claim 4.

17. AfterMerge(p,q) is not enabled, by Claim 15.

18. AfterMerge(q,p) is not enabled, by Claim 14.

DC-D: (a) by Claim 12. (b) by Claim 16. (c¢) by Claim 13.

DC-E: By Claim 15 (FIND in decqueue({p,q)) replaces AfterMerge(p,q) being
enabled).

DC-F: By Claim 15 (FIND in dcqueue({p,q)) replaces AfterMerge(p,q) being
enabled).

DC-G: vacuously true by Claims 17 and 18.
DC-0O: By Claim 15.
viii) 7 is Absorb(f,g).

(3c) A4(s',m) = 7. Obviously = is enabled in S4(s'). Effects are mirrored in
S4(s) if we can show that acemin(f) and minlink( f) do not change.

Case 1: p € testset(f) in s’. By GC-C, minlink(f) = nil in s'. By inspecting
the code, a FIND message is in subiree( f) in s, so minlink(f) = nil in s also.

Suppose accmin(f) = nil in s'. Then there is no external link of any q €
nodes(f)—testset(f)in s'. Since testset( f) does not change and no formerly internal

links become external, accmin(f) = nil in s also.

Suppose accmin(f) = (g,r) in s'. By GC-A, level(f) < level(fragment(r)). So
by precondition, fragment(r) # g. Since all of nodes(g) is added to testset(f), there
is no change to nodes(f) — testset(f). Thus acemin( f) is unchanged.
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Section 4.2.4: DC Simulates GC

Case 2: p ¢ testset(f) in s'.
Claims about s':

. rootchanged(g) = true, by precondition.
2. level(g) < level( f), by precondition.

. minlink(g) = (q,p) # nil, by precondition.

. fragment(p) = f, by precondition.

. destatus(r) = unfind for all r € nodes(g), by Claim 3.

. No FIND message is in subtree(g), by Claim 3.

. No REPORT message is headed toward mw-root(g), by Claim 3.

. root(g) = muw-root(g), by Claim 3 and COM-A.

. wt(l) > wt(g,p) for all external links ! of g, by Claim 3 and COM-A.
. I minlink(f) = (r,t), then level(fragment(t)) > level( f), by COM-A.
. If manlink(f) = (r,t), then g # fragment(t), by Claims 2 and 10.
. I acemin(f) = (r,t), then level(fragment(t)) > level( f), by GC-A.
. If acemin(f) = (r,t), then g # fragment(t), by Claims 2 and 12.

If minlink(f) = nilin s', then obviously it is still nil in s. Suppose minlink(f) =
(r,t) in s'. By Claims 5, 6, 7, 8 and 11 (and code), minlink(f) = (r,t) in s as well.

If acemin(f) = (r,t) in §', then it is unchanged in s by Claims 9 and 13.
Suppose accmin(f) = nil in s'. If this is because minlink(f) # nil in s, then,
since we just showed that minlink(f) does not change, accmin(f) is still nil in s.
Suppose accmin(f) = nil not because minlink(f) = nil, but because no node in
nodes( f) — tests :2{ f) has an external link. But by the assumption for this case,
p & testset(f). yet it is in nodes(f) by Claim 4, and (p, ¢) is an external link of p
by Claim 3 and COM-A.

(3a) We consider two cases. First we prove some facts true in both cases.
Claims about s':

. Tootchanged(g) = true, by precondition.
. levellg) < level( f), by precondition.
. manlink(g) = (¢, p), by precondition.

1

2

3

4. p € nodes( f), by precondition.

5. No REPORT is headed toward root(g), by Claim 3.
6

. No FIND is in subtree(q), by Claim 3.
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Section 4.2.4: DC Simulates GC

-]

. destatus(r) = uufind, for all r € nodes(g), by Claim 3.

. {g,p) is the minimum-weight external link of ¢, by Claim 3 and COM-A.

. testset(g) = @, by Claim 3 and GC-C.

10. ¢ is up-to-date, by Claim 9 and DC-N.

11. Following bestlinks from ¢ leads toward and over core(g), by Claim 10.

12. If REPORT is in dcqueue((r,t)), then inbranch(t) = (t,r), for all (r,t) €
subtree(g), by Claims 6 and 7 and DC-A(a) and (f).

13. If REPORT is in dcqueue((r,t)) and (r,t) = core(f), then r = root(g), for all
(r,t) € subtree(g), by Claim 5.

14. If REPORT is in dcqueue({r,t)) and (r,t) # core(f), then t is a child of r, for all
(r,t) € subtree(g), by Clain. 9 and DC-B(a).

15. If REPOLT is in dcqueue((r,t)). then (r.t) is not on the path between root(g)
and ¢, for all (r,t) € subtrce(g), by Claims 3, 5, 8. 9 and DC-N.

16. No REPORT is headed toward ¢, by Claims 5, 14 and 15.

17. dcqueue({p,q)) and dcqueue({q,p)) are empty, by Claim 8 and DC-A(g), DC-
B(a) and DC-D(a).

© o

Case 1: p ¢ testset(f).
More claims about s':

18. p ¢ testset(f), by assumption.
19. AfterMerge(r,t), where p € subtree(t), is not enabled, by Claim 18 and DC-G.
20. No FIND is headed toward p, by Claim 18 and DC-C(a).

DC-A: By Claim 12, vacuously true for any REPORT in old ¢ For a REPORT
that could be in some dcqueue((r,t)) with p € subtree(t): (e) by Claims 16 and 17.

DC-B: By Claim 16, change in location of core for nodes formerly in g is OI.

DC-D(a): by Claim 6, change in location of core for nodes formerly in g is OK.
By Claim 20, it is OK not to add nodes(g) to testset(f).

DC-G: By Claim 19, vacuously true.
DC-H(a): By Claim 7.

DC-K: Choose any up-to-date node r in nodes(f) in s. By Claims 7 and 11
and code, no node that is in nodes(g) in s' is up-to-date in s. Thus » 1s in nodes(f)

., )
in &', and is up-to-date.
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Section 4.2.4: DC Simulates GC

(a) If r = p, then findcount(p) is changed (incremented by 1) if and only if the
number of children of p that are not completed is chauged (increased by 1). If r £ p,
then neither findcount(r) nor the number of children of r that are not completed is
changed.

(b) Suppose bestlink(r) = nil in s. Then the same is true in s'. By DC-K(t),
bestwi(r) = oo and there is no external link of C, in s'. In going to s, there is no
change to bestwt(r), and no internal links become external.

(c) Suppose bestlink(r) # nil in s. Then the same is true in s'. Let [ be the
minimum-weight externai link of C, in s'. By DC-K(c), following bestlinks from r
leads to I, wt(l) = bestwt(r), and level(h) > level( f), where h = fragment(target(1)),
in s'. By the precondition on level(g), h # ¢ in s', and thus [ is still external in s.
If p¢ C, in &, then C, is unchanged in s, and the predicate is still true. Suppose
p€ C,in s'. By COM-A, wt(p,q) is less than the weight of any other external link
of g, and thus wt(!) is less than the weight of any external link of g in s’. Thus
adding all the nodes of g to C; in going to s does not falsify the predicate.

DC-O: By Claim 6, the former core(g) is OK.

DC-N: Let ! be the minimum-weight external link of f in s'. If [ # (p, q), then
wi(l) < wi(p, q), and by Claim 8, wt(!) < wt(l') for any external link !’ of g. Thus,
in s, ! is still the minimum-weight external link of s, and DC-N is true in s.

Now suppose [ = (p,q). By DC-N and Claim 18, p is up-to-date. But by DC-
K(b) and (c), bestlink(p) = (p, q) and level(f) < level(g), wich contradicts Claim
2.

Case 2: p € testset(f).
More claims about s':

21. p € testset(f), by assumption.

22. For all {r,t) such that p € subtree(r) and inbranch(t) = (t,r), no REPORT is in
dequeue((r,t)), by Claim 21 and DC-A(e).

23. A FIND is headed toward p, or destatus(p) = find, or AfterMerge(r,t) is enabled,
where p € subtree(t), by Claim 21 and DC-E.

DC-A(e): by Claim 22, the addition of uncompleted child ¢ to p is OK.
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Section 4.2.5: NOT Simulates COM
DC-B: As in Case 1.
DC-D: As in Case 1.
DC-E: By Claim 23.
DC-G: By code, since all of nodes(g) is added to testset(f).
DC-H: By Claim 7.
DC-K: As in Case 1.
DC-M: By code, since findcount(p) is incremented.
DC-N: By code, since all of nodes(g) is added to testset( f).
DC-0O: By Claim 17 and code. O
Let Py = (Pge 0 S4) A Ppe.
Corollary 20: Pj, is true in every reachable state of DC.

Proof: By Lemmas 1 and 19. a

4.2.5 NOT Simulates COM

This automaton refines on COM by implementing the level and core of a
fragment with local variables nlevel(p) and nfrag(p) for each node p in the fragment,
and with NOTIFY messages. When two fragments merge, a NOTIFY message is sent
over one link of the new core, carrying the level and core of the newly created
fragment. The action AfterMerge(p,q) adds such a NOTIFY message to the other
link of the new core. A ComputeMin(f) action cannot occur until the source of
manlink( f) has the correct nlevel, and the target of minlink( f) has an nlevel at least
as big as the source’s. The preconditions for Absord( f,g) now include the fact that
the level of fragment ¢ must be less than the nlevel of the target of minlink(g).
When an Absorb( f,g) occurs, a NOTIFY message is sent to the old fragment g, over
the reverse link of minlink(g), with the nlevel and nfrag of the target of minlink(g).

Define automaton NOT (for “Notify™”) as follows.

The state consists of a set fragments. Each element f of the set is called a

fragment, and has the following components:
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Section 4.2.5: NOT Simulates COM 9

e

o

o subtree( f), a subgraph of G;

ik
o minlink(f), a link of G or nil; and ey
'
e rootchanged(f), a Boolean. ::'é'::‘;
.‘ll:
For each node p, there are associated two variables: W ..'c"
)
o nlevel(p), a nonnegative integer; and hAN
o
v
e nfrag(p), an edge of G or nil. :EE
SN
For each link (p, ¢), there are associated three variables: ®
oy
Myl
o ngueve,({p, q)), a FIFO queue of messages from p to ¢ waiting at p to be sent; .: ,':'
th
)
o nqueneyrg({p,q)), a FIFO queue of messages from p to ¢ that are in the com- N
munication channel; and L4 7
vy
Ale,
o nqueueq({p,q)), a FIFO queue of messages from p to ¢ waiting at ¢ to be \'
processed. L
The set of possible messages M is {NoTiFY(l,c) : | > 0,c € E(G)}. The state "
also contains Boolean variables, answered(l), one for each ! € L(G), and Boolean pht
variable awake. '|‘~
M) f
In the start state of NOT, fragments has one element for each node in V(G); for <
fragment f corresponding to node p, subtree( f) = {p}, minlink( f) is the minimum- ‘;’:,(‘.
weight link adjacent to p, and rootchanged( f) is false. For each node p, nlevel(p) = 0 ) ;-",‘_‘
and nfrag(p) = nil. The message queues are empty. Each answered(l) is false and o
awake is false. -;l
g
We say that a message m is in subtree( ) if m is in some nqueue((q,p)) and %‘:. !
p € nodes(f). A NOTIFY message is headed toward p if it is in nqueue((g,r)) and f‘-::
p € subtree(r). The following are derived variables: oy
@
O
¢ Yor link (p, ), nqueue((p, q)) is defined to be nqueue,({p,q)) || nqueuve,,({p, q)) P,v‘.
[l nqueue,((p, q)). Y
AW
e For fragment f, level( f) = max{l : nlevel(p) = [ for p € nodes(f), or a '."
NOTIFY(l, ¢) message is in subtree( f) for some c}. NGV
N
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Section 4.2.5: NOT Simulates COM

e For fragment f, core(f) = nfrag(p) if nlevel(p) = level( f) for some p € nodes(f),
and core(f) = ¢, if a NOTIFY(level( f), c) message is in subtree( f).

As for the DC action ReceiveFind, ReceiveNotify({q,p),!,¢) is only enabled if
AfterMerge(p,q) is not enabled, in order to make sure that ¢’s side of the subtree

1s notified of the new information.

Input actions:

- e Start(p), p € V(G)
Effects:
awake := true

Output actions:

o InTree((p,q)), (p,q) € L(G)
Preconditions:
awake = true
(p,q) € subtree(fragment(p)) or (p, q) = minlink(fragment(p))
answered((p, q)) = false
Effects:

answered({p,q)) := true

 NotInTree({(p,q)), (p,q) € L(G)

Preconditions:

fragment(p) = fragment(q) and (p, q) & subtree(fragment(p))
answered({p, q)) = false

Effects:
answered((p,q)) := true

Internal actions:

o ChunnelSend({(p,q),m), (p,q) € L(G), m € Al
Preconditions:
m at head of nqueue,({p,q))
Eftects:

dequeue(nqueue ,({p,q)))
cnquene(m. nqueve , ((p,¢)))

o Channellcco({p,q),m), (p.q) € L(G),me M

Preconditions:
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Section 4.2.5: NOT Simulates COM

m at head of nquenep,({p, q))
Effects:
dequene(ngquene, ((p,¢)))

enqueue(ni, nqueue, ((p, q)))

o ReceiveNotify({q,p),l,¢), {g,p) € L(G), | > 0, c € E(G)
Preconditions:
NOTIFY(l, ¢} at head of nqueune,({q, p))
AfterMerge(p,q) not enabled
Effects:
dequeue(nquene ((q,p)))
nlevel(p) := |
nfrag(p) 1= c
—let S = {{p,r): (p,r) € subtree(fragment(p)),r # ¢}
enqueue(NOTIFY ([, ¢), nqueue,(k)) for all k € S

o ComputeMin(f), f € fragments

Preconditions:
manlink(f) = nal
(p, q) is the minimum-weight external link of f
nlevel(p) = level( f)
level( f) < nlevel(q)

Effects:
minlink(f) : =1

e ChangeRoot(f), f € fragments
Preconditions:
awake = true
rootchanged( f) = false
manlink( f) # nil
Effects:

rootchanged( f) := true

o Merge(f,g), f,g9 € fragiments
Preconditions:
F#y
rootchanged( f) = rootchanged(q) = true
manedqge( f) = minedge(q)
Effeets:

add a new clement I to fragments
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Section 4.2.5: NOT Simulates COM

subtree( h) := subtree(f) U subtree(g) U minedge(f)
manlink(h) := nil

rootchanged(h) := false

— let (p,q) = minedge(f) —
enqueue(NOTIFY(nlevel(p) + 1,(p, q)), nquene,({p, q)))
delete f and g from fragments

o AfterMerge(p,q), p,q € V(G)

Preconditions:
(P, q) = core(fragment(p))
NOTIFY(nlevel(p) + 1,(p, q)) message in nqueue((q,p))
no NOTIFY(nlevel(p) + 1,(p, ¢)) message in nqueve((p, q))
nlevel(q) # nlevel(p) + 1

Effects:
enqueue(NOTIFY(nlevel(p) 4 1,(p, q)), nqueue,({p, q)))

o Absorb(f,q), f,g € fragments

Preconditions:
rootchanged(g) = true
— let (g, p) = minlink(g) —
level(g) < nlevel(p)
fragment(p) = f

Effects:
subtree(f) := subtree(f) U subtree(g) U minedge(g)
enqueue(NOTIFY(nlevel(p), nfrag(p)), nqueue ({(p, q)))
delete g from fragments

Define the following predicates on states of NOT. (All free variables are uni-

versally quantified.)

o NOT-A: core(f) is well-defined. (Le.. the set of all ¢ such that a NOTIFY(lev-
el(f).c) is in subtree(f) or some p € nodes(f) has nlevel(p) = level(f) and
nfrag(p) = ¢, has exactly one element.)

NOT-B: If ¢ € subtree(p), then nlevel(q) < nlevel(p).

NOT-C: If (p, q) = core(f), then nlevel(p) > level( f) — 1.

NOT-D: If minhink(f) = (p, q), then nlevel(p) = level(f) < nlevel(q).

NOT-E: If nfrag(p) = core(fragment(p)), then nlevel p) = level( fragment(p)).
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Section 4.2.5: NOT Simnulates COM

o NOT-F: Either nlevel(p) = 0 and nfrag(p) = nil, or else nlevel(p) > 0 and
nfrag(p) € subtree(fragment(p)).

o NOT-G: If nlevel(p) < level(fragment(p)), then either a NoTIFY(level (fray-
ment(p)), core(fragment(p))) message is headed toward p, or clse AfterMergce
(q,7) is enabled, where p € subtree(r).

e NOT-H: If a NOTIFY(!, ¢) message is in nqueue({q, p)), then
(a) nlevel(p) < I;
(b) if (p, q) # core(fragment(p)), then nlevel(q) > I
(c) if ¢ = core(fragment(p))) then | = level(fragment(p));
(d) if NoTIFY(l', ') is ahead of the NoTIFY(l,¢) in nqueune({q,p)), then I' < I
(e) pis a child of g, or (p,q) = core(fragment(p));
(f) if (p, ¢) = core(fragment(p)), then | = level( fragment(p));
(g) ¢ € subtree(fragment(p)); and
(h) 1> 0.

Let Pyor be the conjunction of NOT-A through NOT-H.

In order to show that NOT simulates COM, we define an abstraction mapping
M5 = (S5, As) from NOT to COM. Define the function S5 from states(NOT) to
states(COM) by simply ignoring the message queues, and mapping the derived vari-
ables level( f) and core( f) in the NOT state to the (non-derived) variables level( f)
and core(f) in the COM state. Define the function Ay as follows. Let s be a state
of NOT and 7 an action of NOT enabled in s.

o If 7 = ChannelSend(k,m), ChannelRecv(k,m), ReceiveNotify(k,l,c), or After-
Merge(p,q), then Az(s,7) is empty.

e For all other values of 7, As(s,7) = .

The following predicates are true in any state of NOT satisfying (P, 085)A
Pnor. Recall that Pl = (Pgy o S)) A Peos. If Pl (Ss(s)) is true, then the
COM predicates are true in Ss(¢), and the S1 predicates are true in S3(Ss(s)). Thus,
these predicates follow from Pyor, together with the HI and COM predicates.

o NOT-I: If p = minnode( f), then no NOTIFY message is headed toward p.

e NOT-J: For all p, at most one NOTIFY (I, ¢) message is headed toward p, for a
fixed 1.

Lemma 21: NOT simulates COM via M5, Pyor, and Pl
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Section 4.2.5: NOT Simulates COM

Proof: By inspection, the types of NOT, COM, M5, and Pnyor are correct. By
Corollary 14, Pip s is a predicate true in every reachable state of COM.

(1) Let s be in start{(NOT). Obviously Pyor is true in s and Ss(s) is in
start(COM).

(2) Obviously, As(s, )|ezt(COM) = w|ext(NOT).
(3) Let (s',m,s) be a step of NOT such that Pfq,, is true of Ss(s') and Pnyor

is true of s’. Below, we only show (3a) for those predicates that are not obviously

true in s.

i) 7 is Start(p), InTree(l), NotInTree(l), or ChangeRoot(f). As(s',7) =
7. Obviously, 85(s')7Ss(s) is an execution fragment of COM, and Pyor is true in

S.

if) 7 is ChannelSend(l,m) or ChannelRecv(l,m). As(s',7) is empty.
Obviously, Ss5(s’) = Ss(s), and Pnor is true in s.

iii) = is ReceiveNotify((q,p),l,c). Let f = fragment(p).

(3b) As(s',w) is empty. To show that S;(s) = Ss(s'), we only need to show
that level(f) and core( f) don’t change. By NOT-H(a), nlevel(p) < !l in s', and thus
nlevel(p) # level(f). So changing nlevel(p) is OK. Also, since nlevel(p) and nfrag(p)
are set to [ and ¢, removing the NoTIFY({, ¢) from nqueue((g, p}) is OK.

(3a) NOT-A: By code.

NOT-B: By NOT-B, nlevel(q) < nlevel(r) for all r such that ¢ € subtree(r) in
s'. By NOT-H(b), if (p, q) # core(f), then nlevel(q) >l in s'. Since nlevel(p) = ! in

s, the predicate is true.
NOT-C: Since this predicate is true in s’ and fact that nlevel(p) increases.

NOT-D: As argued in (3b), nlevelp) < 1 < level(f). By NOT-D, p #
minnode(f) in s', or in s. Suppose p = target(minlink(g)) in s', for some g. Since

nlevel(p) increases in going from s' to s, the predicate is still true in s.

NOT-E: By NOT-H(c), ¢ = core(f) umnplies that [ = level(f) in s'. So in s,
c = nfrag(p) = core(f) implies that [ = nlevel(p) = level( f).

NOT-F: By NOT-H(g), ¢ # nil, and by NOT-H(h), [ > 0 in s’. Thus in s,
¢ = nfrag(p) # nil and 1 = nlevel(p) # 0.
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Section 4.2.5: NOT Simulates COM £

i

NOT-G: The NoTIFY(], ¢) message removed from nqueue({g, p)) is replaced by ;::E

the NOTIFY(!, c) messages added to nqueue({p,r)), for all (p,r) € S. ::f::
NOT-H: Suppose NOTIFY(!, ¢) is added to nqueue(p,r) in s. (Le., {p,7) € S.) ;;

.l.’

Claims about s': .‘:2
. by

1. NoTIFY(l, ¢) is at head of nqueue({(q, p)), by precondition. b
2. p € subtree(q) or (p,q) = core(f), by Claim 1 and NOT-H(e). ‘.,
3. r € subtree(p), by Claim 2 and definition of S. : ::
4. nlevel(r) < nlevel(p), by Claim 3 and NOT-B. 'Ew
5. nlevel(p) < I, by Claim 1 and NOT-H(a). o
6. If NoTIFY(!', ') is in nqueue({p.~)). then I’ < [, by Claims 3 and 5 and NOT-H/b). _
7. nlevel(r) < I, by Claims 4 and 5. ..af
o

(a) by Claim 7. (b) by Claim 3. (d) by Claim 7. (e) by Claim 3. (f) vacuously ‘,:
true by Claim 3. (c), (g) and (h) since the same is true for the NOTIFY(l,¢c) in A}
nqueue({g, p)) in s'. R
""

iv) = is ComputeMin(f). :S

J

(3c) As(s',m) = m. Obviously = is enabled in Ss(s’), since by definition

nlevel(q) < level(fragment(q)). The effects are obviously mirrored in Ss(s). ";
3

(3a) By the preconditions, NOT-D is true in s. No other predicate is affected. '{

.;:

v) = is Merge(f,g). - B

o

(3c) As(s',m) = m. Obviously 7 is enabled in S5(s'). To show that its effects are .:':f
mirrored in Ss(s), we show that level(h) and core(h) are correct. Let minlink(f) = ':‘::
(p,q) and [ = level(f) in s'. '::!:
Claims about s': 3
&

1. minedge( f) = minedge(g), by precondition. ::\
2. level(g) = I, by Claim 1 and COM-A. e
3. rootchanged(f) = true. by precondition. -
4. minlink(f) # nil, by Claim 3 and COM-B. 8

5. nlevel(p) = I, by Claim 4 and NOT-D. 0.

6. nlevel(r) < for all r € nodes(f), by definition of level( f). k
7. If NOTIFY(m, =) is in subtree( f), then m < I, by definition of level( f). .,

8. rootchanged(q) = true, by precondition. :'i:s
|‘:::
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Section 4.2.5: NOT Simulates COM o

9. minlink(g) # nil, by Claim 8 and COM-B. 0
)

10. nlevel(q) = I, by Claims 2 and 9 and NOT-D. :*

11. nlevel(r) <l for all r € nodes(g), by definition of level(g). N

12. If NOTIFY(m, ¢) is in subtrce(g), then m < I, by definition of level(g). ::E:

13. (p, q) is an external link of f, by COM-A. :E::

14. nqueue((p,q)) and nqueue({q, p)) are empty, by Claim 13 and NOT-H(e). %

Claims about s: o,

15. nlevel(r) < 1 + 1, for all r € nodes(h), by Claims 6 and 11 and code. :3:

- 16. The only NOTIFY message in subtree(h) with level greater than [ is the NOTIFY(/+ "a:::
L)

1, (p,q)) message added to nqueue((p, q)), by Claims 7, 12 and 14 and code. o::;
17. level(h) = I + 1, by Clairas 15 and 16. s

18. core(h) = (p,q), by Claims 15 and 16. 3::‘:

5'e,

Claims 17 and 18 give the result. :':,:‘

6% .4

N

Y

(3a) Only fragment h needs to be checked. L

1S

o

NOT-A: By Claims 15 and 16. R

NOT-B: As argued in the proof of NOT-I, nlevel(r) = | for all r on the path ‘“'

from core( f) to p, and all r on the path from core(g) to ¢. Since these are the only ’_‘.

nodes affected by the change of core, the predicate is still true in s. ::,

¢ !

NOT-C: By Claims 5, 10 and 17. o
¢

lnd

NOT-D: vacuously true since minlink(h) = nil by code. "‘,

» l.‘

NOT-E: By NOT-F and Claim 13, nfrag(r) # (p,q) for all r in nodes(f) or "'4‘

nodes(g). So the predicate is vacuously true.
NOT-F: No relevant change.

NOT-G: If r is in nodes(g) in s', the predicate is true in s because of Claims 17
and 18 and the NoTIFY(! + 1, (p,q)) added to nqueuve((p, ¢)) in s. If r is in nodes( f)
in s', then AfterMerge(q, p) is enabled in s, by code and Claims 5, 10, 14 and 18.

NOT-H for the NOoTIFY(I+1,(p, ¢)) added to nqueue({p,q)): (a) nlevel(q) < I+1,
by Claim 15. (b) By Claim 18. (¢) By Claim 17. {d) Vacuously true by Claim 14.
{¢j By Ciaim 18. (t) By Claims 17 and 18. (g) By code. (h) By COM-F, ! > 0, so
[+1>0.

o
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Section 4.2.5: NOT Simulates COM )
|".
NOT-H for any NOTIFY(!', ¢') message in subtree( f) in s’ (similar argument for ',',u,
g): (a), (d), (g) and (h) No relevant change. :::::
i
(b) Suppose the message is in a link of core(f) = (r,t). Suppose p € subtree(t).
By NGT-I, the message is not in nqueue({r,t)). As argued in the proof of NOT-I. ':fr
nlevel(t) = I. If the message is in nqueue({t,r)), then, since I’ < [, the predicate is ::‘.::
true in s. :\:",
..I.-
‘B
(¢) By Claim 13 and NOT-H(g), ¢' # (p,¢q), so the predicate is vacuously truc :?‘j
in s. ‘é::
| . i
(e) The only nodes for which the subtree relationship changes are those along G
the path from core(f) to p. By NOT-I, there is no NOTIFY message in this path.
A
W
(f) Vacuously true, by Claim 18. e
oz::q
"
vi) 7 is AfterMerge(p,q). Let f = fragment(p). s;
(3b) As(s") is empty. Obviously Ss(s’') = Ss(s). e
(3a) Let | = nlevel(p) + 1 and ¢ = (p, q). ,;f
S
NOT-A: Obvious. s
A%
Y
NOT-B, C, D, and E: No relevant changes. .::3
‘l‘"
‘4
NOT-G: The NoTIFY(l,c) message added to nqueue((p,q)) in s compensates \:‘:
for the fact that AfterMerge(p, q) goes from enabled in s' to disabled in s. ' Q
r)}»
NOT-H: Let ¢ = (p,q) and ! = nlevel(p) + 1. Consider the NOTIFY(/, ¢) added . '::J,;
to nqueve({p, q)). *:3
3
1. (p,q) = core( f), by precondition. ]
2. NoTIFY(l, ¢) is in nqueue({¢,p)), by precondition. .':‘,
6
3. No NoTIFY(l, ¢} is in nqueue({p, q)), by precondition. '.':‘\
4. nlevelq) # 1, by precondition. §
5. I = level(f), by Claims 1 and 2 and NOT-H(f). ' '
6. nlevel(q) < I, by Claims 4 and 5. '
7. If NoTIFY(!', ') is in nqueve({p,q)), then !’ = [, by Claims 1 and 5 and NOT-H(d). 4
8. If NoTIFY(!', ') is in nguewe({L, ), thar ' — ¢, Uy Claiu @ and NOT-A. 'd;
9. No NOTIFY is in nqueue((p, q)), by Claims 3, 7 and 8. : ‘
10. nlevel(p) > 0, by NOT-F. -?';.
W
W
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Section 4.2.5: NOT Simulates COM "‘:".

g'.:‘;.

(%A

(a) by Claim 6. (b) vacuously true, by Claim 1. (c¢) by Claim 5. (d) by Claim : :::f

9. (e) by Claim 1. (f) by Claim 5. (g) by Claim 1 and COM-F. (h) by Claim 10. : "'

vii) 7 is Absorb(f,g). Sy

o :!::

(3c) A(s',m) = . ’:::E

Claims about s': ’
¢

1. rootchanged(g) = true, by precondition. ’::::

o

2. level(g) < nlevel(p), by precondition. ."‘:ir
3. fragment(p) = f, by precondition.

4. nlevel(p) < level(f), by Claim 3 and definition of level. :::;:;:

5. nlevel(r) < level(g), for all r € nodes(g), by definition of level. :{:g:ﬁ
6. If NOoTIFY(/, c) is in subtree(g), then | < level(g). by definition of level. s:t.g‘
7. {g.p) is an external link of g, by COM-A. --!‘
8. nqueue({p,q)) and nqueue({g,p)) are empty, by Claim 7 and NOT-H(e). \

,c.::g

Bv Claim 4, 7 is enabled in Ss(s’). The effects of # are mirrored in Ss(s) ‘:" :s

if core( f) and level(f) are unchanged; by code and Claims 6, 7 and 8, they are ::::::E
unchanged. [}

o E’

(3a) Let | = nlevel(p) and ¢ = nfrag(p) in s'. o

%

AN
More claims about §': h “v‘!:
@
9. f # g, by Claims 7 and 3. ‘
10. level(f) > 0, by Claims 2 and 3 and COM-F. @ :'
11. core(f) € subtree(f), by Claim 10 and COM-F. e
L%
12. nfrag(r) # core(f), for all » € nodes(g), by Claim 11 and NOT-F. s
13. nlevel(q) < level(g), by definition. e
14. nfrag(p) € subtree(f), by Claims 2 and 10 and NOT-F. '::::::
NOT-A: by code and Claims 6, 7 and 8. =
NOT-B: Same argument as for Merge(f,g). \2:
P
NOT-D: No relevant changes. ..:«;\: ‘
« 'y
NOT-E: By Claim 12, vacuously true for nodes formerly in nodes{g). .
i
NOT-F: No relevant changes. ‘::
"y
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Section 4.2.5;: NOT Simulates COM

NOT-G: Suppose nlevel(p) = level(f) in s'. By code, in s there is a
NOTIFY(level( f),c) message headed toward every node formerly in nodes(g).

Suppose nlevel(p) # level(f) in s'. By NOT-G, either a NoTirY(level(f), )
message is headed toward p in s', and thus is headed toward all nodes formerly in
nodes(g) in s, or AfterMerge(r,t) is enabled in s’ with p € subtree(t), and thus in s,
AfterMerge(r,t) is still enabled and every node formerly in nodes(g) is in subtree(t).

NOT-H for the NoTIFY(l, ¢) added to nqueue({p, ¢)): (a) by Claims 2 and 12.
(b) by code. (c¢) by NOT-E. (d) vacuously true by Claim 8. (e) q is a child of p, by
Claim 11. (f) vacuously true, by Claim 11. (g) by Claim 14. (h) by Claims 2 and
10.

NOT-H for any NoTIFY(!',c') in subtree(g) in s': (a), (d), (g) and (h): no
relevant change. (b) and (e) same argument as for Merge( f,g). (¢) vacuously true,
by Claim 11. (f) vacuously true, by code. O

Let PI'VOT = (PCOM o 85) A Pyor.
Corollary 22: Py, is true in every reachable state of NOT.

Proof: By Lemmas 1 and 21. a
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Section 4.2.6: CON Simulates COM

4.2.6 CON Simulates OM

This automaton concentrates on what happens after minlink(f) is identified,
until fragment f merges or is absorbed, i.e., the ChangeRoot(f,g), Merge(f,g) and
Absorb(g, f) actions are broken down into a series of actions, involving message-
passsing. The variable rooichanged(f) is now derived. As soon as ComputeMin(f)
occurs, the node adjacent to the core closest to minlink(f) sends a CHANGEROOT
message on its outgoing link that leads to minlink(f). A chain of such messages
makes its way to the source of minlink(f), which then sends a coNNECT(level(f))
message over minlink(f). The presence of a CONNECT message in minlink( f) means
that rootchanged(f) is true. Thus, the ChangeRoot(f) action is only needed for
fragments f consisting of a single node. Two fragments can merge when they have
the same minedge and a CONNECT message is in both its links; the result is that one of
the CONNECT messages is removed. The action 4fterMerge(p,q) removes the other
CONNECT message from the new core. (A delicate point is that ComputeMin(f)
cannot occur until the appropriate AfferMerge(p,¢) has, in order to make sure old
CONNECT messages are not hanging around.) Absorb(f,g) can occur if there is a
CcONNECT(!) message in minlink(g), and minlink(g) points to a fragment whose level

is greater than [.
Define automaton CON (for “Connect”) as follows.

The state consists of a set fragments. Each element f of the set is called a

fragment, and has the following components:
o subtree(f), a subgraph of G;
e core(f), an edge of G or nil;
| e level( f), a nonnegative integer; and
o minlink(f), a link of G or nil.
For each link (p, ¢), there are associated three variables:
o cqueue,({p,q)), a FIFO queue of messages from p to ¢ waiting at p to be sent;

o cqueuneyy({p,q)), a FIFO queue of messages from p to ¢ that are in the commu-

nication channel; and

o cqueuney,({p,q)), a FIFO queuc of messages from p to g waiting at ¢ to be

processed.
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Section 4.2.6: CON Simulates COM

The set of possible messages M is {connec(l) 1 1 > 0} U {cuaNGERoOT}. The
state also contains Boolean variables, answered(l), one for cach { € L(G), and

Boolean variable awake.

In the start state of COM , fragments has one element for cach node in V(G): for
fragment f corresponding to node p, subtree(f) = {p}, core(f) = nil, level( f) = 0,
and minlink( f) is the minimum-weight link adjacent to p. The message queues are

empty. Each answered(l) is false and awake is false.

The derived variable cqueue((p,q)) is cqueneg((p,q)) || cqueueyn ((p,q)) || ¢
queuep({p,q)). For each fragment f, we define the derived Boolean variable
rootchanged(f) to be true if and only if A CONNECT message is in cqueune({p.q)),
for some external link (p,q) of f. Derived variable tominlink(p) is defined to be
the link (p,q) such that (p,¢) is on the path in subtree(fragment(p)) from p to
minnode( fragment(p)).

Message m is defined to be in subtree(f) if m is in cqueue({g,p)) and p €
nodes( f).

Input actions:

o Stari(p), p € V(G)
Effects:

awake := true
Output actions:

e InTree({p,q)) (p,q) € L(G)
Preconditions:
awake = true
(p, q) € subtrce(fragment(p)) or (p,¢) = minlink(fragment(p))
answered((p, ¢)) = false
Effects:

answered({p, ¢)) := true

o NotInTree({p,q)). (p.q) € L(G)
Preconditions:
fragment(p) = fragment(q) and (p, q) & subtrec( fragment(p))
answered((p.q)) = false
Effects:

answered({p,q)) = true

102

...... Wy h‘.""o.l.l STl N b wile WYy l‘v.l'u D ' Wby tl\,l‘n \

o
}.'-E’-ffr.’.-:

>
S
!

® 2

. Ao W
AVARNEL RO



R SRR AR W IO MO AR R UROR TN CROAIUTUN T PO PR N RO IO P RO O O R RO “hat gty YR Von ARY (WY WYX

Section 4.2.6: CON Simulates COM
Internal actions:

e ChannelSend((p,q),m), (p.q) € L(G), me M
Preconditions:
m at head of cqueuey({p,q))
Effects:
p dequeue( cqueue,({p, q)))
enqueue(m, cqueue,o({p, g)))

o ChannelRecv((p,q),m), (p,q) € L(G),me M
Preconditions:
m at head of cqueueyy({p,q))
Effects:
dequeue(cqueue,, ((p,9)))
enqueue(m, cqueue((p, q)))

e ComputeMin(f), f € fragments
Preconditions:
minlink(f) = nil
| is the minimum-weight external link of subtree(f)
level( f) < level( fragmeni(target(1)))
1no CONNECT message is in cqueue(k), for any internal link k of f
Effects:
minlink(f) := 1
— let p = root(f) —
if p # minnode(f) then enqueue(CHANGEROOT,cqueuep(tominlink(p)))
else enqueue(CONNECT(level(f)), cqueuep(minl'ink(f)))

e ReceiveChangeRoot({q,p)), {¢,p) € L(G)

Preconditions:
CHANGEROOT at head of cqueue,((g,p))

Effects:
dequeue( cqueuey({q,p)))
— let f = fragment(p) —
if p # minnode(f) then cnqnvuo((,‘IIANGEROOT,cqueucp(tominlink(p)))
else enqueue(cONNECT(level(f)). cqueue,(minlink(f)))

e ChangeRool(f), f € fragments
Preconditions:

awake = true
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Section 4.2.6: CON Simulates COM

rootchanged( f) = false
subtree( f) = {p}
Effects:
enqueue(CONNECT(0), cqueue,(minlink( f)))

o Merge(f,g), f,g € fragments
Preconditions:

coNNECT(]) in cqueue({p,q)), (p,q) external link of f

cONNECT(!) at head of cqueue,({q,p)), (¢,p) external link of ¢
Effects:

dequeue(cquerey({g,p)))

add a new element A to fragments

subtree( h) := subtree(f) U subtree(g) U minedge( f)

core(h) := minedge( f)

level(h) := level(f) + 1

minlink(h) := nil

delete f and g from fragments

o AfterMerge(p,q), p,q € V(G)
Preconditions:
fragment(p) = fragment(q)
coNNECT(!) at head of cqueuey({q, p))
Effects:

dequeue(cqueuney((q,p)))

o Absorb(f,9), f,g9 € fragments

Preconditions:
— let p = target(minlhink(g)) -
coNNECT(!) at head of cqueue,(minlink(g))
I < level(f)
f = fragment(p)

Effects:
dequeue( cqueune,(minlink(g)))
subtree( f) 1= subtree( f) U subtree(g) U minedge(g)
delete g from fragments

Define the following predicates on states of CON. (All free variables are uni-

versally quantified.)
e CON-A: If awake = false, then cqueune({q,p)) is empty.
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Section 4.2.6: CON Simulates COM

CON-B: If rootchanged(f) = false and minlink( f) # nil, then either subtree( f)
= {p}, or else minnode(f) # root(f) and there is exactly one CHANGEROOT

message in subtree( f).

CON-C: If a CHANGEROOT message is in cqueue((g, p)), then minlink(f) # nil,
rootchanged(f) = false, p is a chila of ¢, and minnode(f) € subtree(p), where

f = fragmeni(p).

CON-D: If a conNECT(!) message is in cqueue(k), where k is an external link
of f, then k = minlink(f), | = level(f), and only one CONNECT message is in

cqueuve(k).

CON-E: If a coNNECT(!) message is in :queue((p,q)), where (p,¢) is an internal
link of f. then (p.q) = core(f), | < lewel(f), and only one CONNECT message is

in cqueuc({p,q)).

CON-F: If minlink( f ) # nil, then no CONNECT message is in cqueue(k), for any
internal link k of f.

Pcon be the conjunction of CON-A through CON-F.

In order to show that CON simulates COM, we define an abstraction mapping

= (8¢, Ag) from CON to COM.

Define the function Sg from states(CON) to states(COM) by simply ignoring

the message queues, and mapping the derived variables rootchanged(f) in the CON
state to the (non-derived) variables rootchanged(f) in the COM state.

Define the function Ag as follows. Let s be a state of CON and 7 an ac-

tion of CON enabled in s. If the miniinum-weight external link of f is ndjacent
to core(f), then ComputeMin(f) causes ComputeMin(f), immediately followed by
ChangeRoot( f), to be simulated in COM. Otherwise, ChangeRoot( f) is simulated
when the source of minlink(f) reccives a CHANGEROOT message.

e If * = ChannelSend({(p,q).m), ChannclRecv({p,q),m), or AfterMerge(p,q),

then Ag(s,7) is empty.

o If 7 = ComputeMin(f) and mw-root( f) = mw-minnode(f) in s, then As(s.m)

VAT

= ComputeMin(f) t ChangeRoot( f). where t is identical to Sg(s) except that

manlink( f) equals the miniimum-weight external link of f in ¢.
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Section 4.2.6: CON Simulates COM 4

"]

4,

o If 1 = ComputeMin(f) and mw-root{ f) # muw-minnode( f) in s, then Ag(s, 7) l':.
,

= ComputeMin( f). h ::
Al

e If 1 = RecewveChangeRoot((g,p)) and p = minnode(fragment(p)) in s, then :
Ag(s,m) = ChangeRoot( fragment(p)). ¢:
o

ity

e If 1 = ReceiveChangeRoot({q,p’; and p # minnode(fragment(p)) in s, then 2 v
As(s, 7) is empty. ol

e For all other values of 7, Ag(s,7) = 7. ,
\':'-r
Recall that Pipy = (Puro S1) A Pcom. I Poop(Se(s)) is true, then the :‘::,,
COM predicates are true in Sg(s), and the HI predicates are true in S;(Ss(s)). ;

Lemma 23: CON simulates COM via Ms, Pcon, and PlLo -

Y S

Proof: By inspection, the types of CON, COM, Ms, and Poon are correct. By
Corollary 14, Pl is a predicate true in every reachable state of COM.

» o

re

(1) Let s be in start(CON). Obviously Pcon is true in s and Sg(s) is in ::,

start(COM). e
)

¥

(2) Obviously, Ag(s, 7){ext(COM) = mlext(CON).

ol

(3) Let (s',m,s) be astep of CON such that Pl is true of Sg(s’) and Pcon :;. :‘

is true of s’. Below we show (3a) only for those predicates that are not obviously .:

true in s. . 1

o4

i) = is Start(p), InTree(l) or NotInTree(I). As(s’,7) = m. Obviously, ‘\
Se(s')rS6(s) is an execution fragment of COM, and Poon is true in s. R
i

ii) = is ChannelSend({(q,p),m) or ChannelRecv((q,p),m). Ay(s’,7) is >
empty. Obviously, Sg(s') = Sg(s), and Pcon is true in s. NGy
N

)

iti) = is ComputeMin(f). ﬁ
Case 1: mw-root( f) # mw-minnode( f) in s'. ;

(3b) Ac(s'.7) = 7. Obviously Ss(s')7Ss(s) is an execution fragment of COA[. ';‘;

:s:

(3a) Claims about s': b
]

1. manbink( f) = nul, by precondition. ‘sr:

i
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Section 4.2.6: CON Simulates COM

[ is the minimum-weight external link of f, by precondition.

level( f) < level(fragment(target(l))), by precondition.

No CONNECT message is in cqueue(k), for any internal link k of f, by precondition.
p = mw-root( f), by assumption.

p # mw-minnode( f), by assumption.

awake = true, by Claim 1 and COM-C.

No CHANGEROOT mesage is in subtree( f), by Claim 1 and CON-C.

. mw-minnode( f) € subtree(p), by Claim 5.

10. rootchanged( f) = false. by Claim 1 and COM-B.

O M NO o e

Claims about s:

11. minlink(f) = I, the minimum-weight external link of f, by Claim 2 and code.
12. level(f) < level(fragment(target(l))), by Claim 3.

13. p = root(f), by Claims 5 and 11.

14. p # minnode( f), by Claims 6 and 11.

15. awake = true. by Claim 7.

16. Exactly one CHANGEROOT message is in subtree( f), by Claim 8 and code.

17. minnode(f) € subtree(p), by Claims 9 and 11.

18. rootchanged( f) = false, by Claim 10.

19. No CONNECT message is in cqueue(k), for any internal link k of f, by Claim 4.

CON-A is true by Claim 15. CON-B is true by Claims 13, 14, and 16. CON-C
is true by definition of tominlink, Claims 17, 18 and 11. CON-D and CON-E are

true since no relevant changes are made. CON-F is true by Claim 19.

Case 2: mw-root( f) = mw-minnode(f) in s'.

(3b) Ag(s',7) = 7 t ChangeRoot(f). where t is identical to Se(s’) except that

manlink( f) equals the minimum-weight external link of f in %.
Claims about s':

1. munlink( f) = nil, by precondition.

2. | is the minimum-weight external link of f, by precondition.
3. level(f) < level(fragment(target(l))), by precondition.

4. awake = true, by Claim 1 and COM-C.

3. rootchanged( f) = false, by Claimn 1 and COM-B.
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Section 4.2.6: CON Simulates COM

Claims about t:

6. minlink(f) is the minimum-weight external link of f, by definition of .
7. awake = true, by Claim 4.

8. rootchanged( f) = false, by Claim 5.

Claims about s:

9. minlink(f) is the minimum-weight external link of f, by code.

10. A CONNECT message is in cqueue(minlink( f)), by code.

11. rootchanged(f) = true, by Claims 9 and 10.

By Claims 1, 2 and 3, « is enabled in Sg(s’). By Claim 6 (and definition of t),
the effects of m are mirrored in ¢t. By Claims 6, 7, and 8, ChangeRoot( f) is enabled
in t. By Claim 11 (and definition of ¢}, the cffects of ChangeRoot( f) are mirrored in
Ss(s). Therefore, Sg(s’)r t ChangeRoot( f)Ss(s) is an execution fragment of COM.

(3a) More claims about s':

12. No CHANGEROOT message is in subtree( f), by Claim 1 and CON-C.

13. No CONNECT message is in any cqueue(k), where k is an external link of f, by
Claim 1 and CON-D.

14. No CONNECT message is in any cqueune(k), where k is an internal link of f, by
precondition.

More claims about s:

15. awake = true, by Claim 4.

16. No CHANGEROOT message is in subtree( f), by Claim 12.

CON-A is true by Claim 15. CON-B is true by Claim 11. CON-C is true by
Claim 16. CON-D is true by Claims 9, 10, and 13 and code. CON-E is true because
no relevant changes are made. CON-F is true by Claim 14.

iv) 7 is RecciveChangeRoot({q,p)). Let f = fragment(p).
Case 1: p # minnode(f) in s'.

(3¢) Ag(s', ) is empty. Below we show that rootchanged( f) is the same in s’

and s, which implies that Sg(s) = Sg(s’).
Claims about s':
1. A CHANGEROOT message is in cquewe((q,p)), by precondition.
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3.

2. {p,q) € subtree( f), by Claim 1 and CON-C. o

Claims about s:
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Section 4.2.6: CON Simulates COM 4

rootchanged( f) = false, by Claims 1 and 2 and CON-A. ]

4. rootchanged( f) = false, by Claim 1 and code. ?
l‘g.
N
Claims 2 and 4 give the result. :-.,e.f
e
o
) (3a) Let {p,r) = tominlink(p). ':'.:
'Q
9l
More claims about s': >
(A
5. awake = true, by Claim 1 and CON-A. '.:i.;
6. minlink(f) # nil, by Claims 1 and 2 and CON-C. ,2':-;
7. minnode( f) € subtree(p), by Claims 1 and 2 and CON-C. K]
8. There is exactly one CHANGEROOT message in subtree(f), by Claims 2, 3 and 6 ..\
and CON-B. 8
9. r is a child of p and minnode(f) € subtree(r), by definition of tominlink(p). R
W
¥
More claims about s: %
2
10. awake = true, by Claim 5. .,.
11. There is exactly one CHANGEROOT message in subtree( f), by Claim 8 and code. "
X 12. 7 is a child of p, by Claim 9. 0
13. minlink(f) # nil, by Claim 6. o
14. (p,r) # core( ), by Claim 9. g:f
15. minnode(f) € subtree(r), by Claims 7 and 9. ‘
!
CON-A is true by Claim 10. CON-B is true by Claim 11 and assumption for N
Case 1. CON-C is true by Claims 4, 12, 13, 14 and 15. CON-D, CON-E and CON-F T
are true because no relevant changes are made. ] ‘::
!
Case 2: p = minnode(f) in s'. -.
By
(3b) Ag(s',m) = ChangeRoot( f). '.;:
3
Claims about s’ : b )
{ Xl
¢
1. A CHANGEROOT message is in cqueuc({g,p)), by precondition. "f
(0
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Section 4.2.6: CON Simulates COM

p = minnode( f), by assumption.

awake = true, by Claim 1 and CON-A.

minlink( f) # nil, by Claim 1 and CON-C.

rootchanged( f) = false, by Claim 1 and CON-C.

minlink(f) is an external link of f, by Claim 4 and COM-A.

S Gk

By Claims 3, 4 and 5, ChangeRoot( f) is enabled in Sg(s').
Claims about s:

7. A CONNECT message is in cqueue(minlink(f)), by code.
8. minlink(f) is an external link of f, by Claim 6.
9. rootchanged( f) = true, by Claims 7 and 8.

By Claim 9, the effects of ChangeRoot( f) are mirrored in Sg(s).

So Sg(s') ChangeRoot(f) Se(s) is an execution fragment of COM.

(3a) More clatms about s':

10. pis a child of ¢, by Claim 1 and CON-C.

11. Exactly one CHANGEROOT message is in subtree( f), by Claims 5, 4, 10 and

CON-B.

12. No CONNECT message is in any cqueue(k), where k is an external link of f, by

Claim 5. -R
13. No CONNECT message is in any cqueue(k), where k is an internal link of f, by

Claim 4 and CON-F.

More claims about s:

14. qwake = true, by Claim 3.

15. No CHANGEROOT message is in subiree( f), by Claims 1, 10 and 11 and code.
16. No CONNECT message is in any cqueue(k), where k is an internal link of f, by
Claim 13.

CON-A is true by Claim 14. CON-B is true by Claim 9. CON-C is true by
Claim 15. CON-D is true by Claims 7, 8, 12 and code. CON-E is true because no
relevant changes are made. CON-F is true by Claim 16.

v) = is ChangeRoot(f).
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::c':::'
)
(3b) Ag(s',7) = m. :":,::
b
Claims about s': L
o
1. awake = true, by precondition. :::::::‘
2. rootchanged( f) = false, by precondition. '::::'.:
3. subtree(f) = {p}, by precondition. Y]
4. minlink(f) # nil, by Claim 3 and COM-E. =
5. minlink(f) is an external link of f, by Claim 4 and COM-A. Y
'.":;e
Claims 1, 2 and 4 imply that = is enabled in Sg(s’). “!::
8
Claims about s: :.*l:"’
0:::0:0
6. minlink(f) is an external link of f, by Claim 5. .:q:::":
7. A CONNECT message is in cqueue(minlink(f)), by code.
8. rootchanged(f) = true, by Claims 6 and 7. E%
Y',"\‘—' A
Claim 8 implies that the effects of 7 are mirrored in Sg(s). ggk
et
So Sg(s')7Ss(s) is an execution fragment of COM. X
o
o
(3a) More claims about s': l‘z?:‘
:\'Q
9. No CHANGEROOT message is in cqueue({g, p)), for any ¢, by Claim 3 and CON-C.
)
10. No CONNECT message is in any cqueue(k), where k is an external link of f, by . .‘
Claim 2. ‘.'c.:
11. No CONNECT message is in any cqueue(k), where k is an internal link of f, by I;'.:::':E
Claim 3. ®
More claims about s: S?‘::i
12. awake = true, by Claim 1 and code. :::::::;
13. No CHANGEROOT message is in cqueue({q, p}), for any ¢, by Claim 9. :‘.R:‘
\
14. No CONNECT message is in any cqucue(n), where n is an internal link of f, by """
Claim 11. W
W
W
CON-A is true by Claim 12. CON-B is true by Claim 8. CON-C is true by S0
Clain 13. CON-D is true by Claims 6, 7 and 10 and code. CON-E is true because :' :::
no relevant changes are made. CON-F is true, by Clains 6 and 14. ";
o T
vi) 7 is Merge(f,g). ey
Y “::?
’ '
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Section 4.2.6: CON Simulates COM
(3b) Ag(s',7) = .
Claims about s':

A conNEcT(!) message is in cqueue({p,¢)), by precondition.

(p,q) is an external link of f, by precondition.

A conNNEcT(!) message is in cqueue((g,p)), by precondition.

(g.p) is an external link of ¢, by precondition.

f # g, by Claims 2 and 4.

rootchanged( f) = true, by Claims 1 and 2.

rootchanged(g) = true, by Claims 3 and 4.

{p,q) = minlink(f), by Claims 1 and 2 and CON-D.

. {g,p) = minlink(g), by Claims 3 and 4 and CON-D.

10. minedge(f) = minedge(g), by Claims 8 and 9.

11. If £ # minlink(f) is an external link «f f, then no CONNECT message is in
cqueue(k), by CON-D.

12. If k& # minlink(g) is an external link of g, then no CONNECT message is in
cqueune(k), by CON-D.

© PN T W

By Claims 5, 6, 7 and 10, 7 is enabled in Sg(s'). By Claims 11 and 12 and
definition of h, rootchanged(h) = false in s, so the effects of 7 are mirrored in S¢(s).
Thus, Se(s’')7Ss(s) is an execution fragment of COM.

(3a) More claims about s':

13. awake = true, by Claim 1 and COM-A.
14. No CHANGEROOT message is in subtree(f), by Claim 6 and CON-C.
15. No CHANGEROOT message is in subtree(g), by Claim 7 and CON-C.

16. No CONNECT message is in cqueue( k), for any internal link &k of f, by Claim 8
and CON-F.

17. No CONNECT message is in cqueue(k), for any internal link k of g, by Claim 9
and CON-F.

18. Exactly one CONNECT message is in cqueue({p,q)), by Claims 1 and 2 and
CON-D

19. Exactly one CONNECT message is in cqueue({q,p)), by Claims 3 and 4 and
CON-D.

20. [ = level(f), by Claims 1 and 2 and CON-D.

Claims about s:

*wa . =
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Section 4.2.6: CON Simulates COM

21. awake = true, by Claim 13 and code.

22. minlink(h) = nil, by code.

23. No CHANGEROOT message is in subtree(h), by Claims 14 and 15 and code.

24. No CONNECT message is in cqueue(k), for any external link k of h, by Claims
11 and 12 and code.

25. Exactly one CONNECT message is in cqueue((p, q)) and (p, ¢) = core(h), by Claim
18 and code.

26. ! < level(h), by Claim 20 and code.

27. No CONNECT message is in cqueue({g,p)), by Claim 19 and code.

28. No CONNECT message is in any non-core internal link of h, by Claims 16 and
17 and code.

CON-A is true by Claim 21. CON-B is true by Claim 22. CON-C is true by
Claim 23. CON-D is true by Claim 24. CON-E is true by Claims 25, 26, 27 and
28. CON-F is true by Claim 22.

vii) 7 is AfterMerge(p,q). As(s’, ) is empty. Obviously, S¢(s) = Se(s'),
and Pcop is true in s.

viii) = is Absorb(f,g).
(3b) Ag(s',m) = .
Claims about s':

(¢, p) = minlink(g), by assumption.

A conNEcT(!) message is in cqueue(minlink(g)), by precondition.

l < level(f), by precondition.

f = fragment(p), by precondition.

minlink(g) is an external link of g, by Claim 1 and COM-A.

rootchanged(g) = true, by Claims 2 and 5.

l = level(g), by Claim 2 and CON-D.

level(g) < level(f), by Claims 7 and 3.

. If a CONNECT message is in cqueue({p, q)), then (p, q) = minlink( ), by Claims 4
and 5 and CON-D.

10. If a CONNECT message is in cqueue((p,q)), then level(f) < level(g), by Claim 9
and COM-A.

11. No CONNECT message is in cqueue((p,q)), by Claims 8 and 10.

12. No CONNECT message is in cqueue( k), for any external link & # minlink(g) of g,
by CON-D.

© 0N oW
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By Claims 6, 8, 4 and 1, 7 is enabled in Sg(s'). By Claims 11 and 12,
rootchanged( f) remains unchanged, and the effects of 7 are mirrored in Sg(s). Thus,
Ss(s')7Se(s) is an execution fragment of COM.

(3a) More claims about s':

13. ewake = true, by Claim 2 and CON-A.

14. 1 > 0, by COM-F.

15. level(f) > 0, by Claims 7, 8 and 14.

16. |nodes(f)| > 1, by Claim 15 and COM-F.

17. No CHANGEROOT message is in subtree(g), by Claim 6 and CON-C.

18. No CONNECT message is in cqueue(k), where k is an internal link of g, by Claim
1 and CON-F.

Claim about s:
19. awake = true, by Claim 12 and code.

CON-A is true by Claim 19. CON-B is true since by Claims 16 and 17 no
relevant changes are made. CON-C is true since by Claim 11, 12 and 17 no relevant
changes are made. CON-D is true since by Claim 12 no relevant changes are made.
CON-E is true since by Claims 11 and 18 no relevant changes are made. CON-F is
true by Claim 18 and code. |

Corollary 24: Pf,y Is true in every reachable state of CON.

Proof: By Lemmas 1 and 23. O

4.2.7 GHS Simultaneously Simulates TAR, DC, NOT and CON

This automaton is a fully distributed version of the original algorithm of [GHS].
(We have made some slight changes, which are discussed below.) The functions of
TAR, DC, NOT and CON are united into one. All variables that are derived in
one of these automata are also derived (in the same way) in GHS. In addition,
there are the following derived variables. The variable dcstatus(p) of DC is refined
by the variable nstatus(p), and has values sleeping, find, and found; initially, it is
sleeping. The awake variable is now derived, and is true if and only if at least one
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node is not sleeping. The fragments are also derived, as follows. A subgraph of G is
defined to have node set V(G) and edge set equal to all edges of G, at least one of
whose links is classified as branch and has no CONNECT message in it. A fragment is
associated with each connected component of this graph. Also, testset(f) is defined
to be all nodes p such that either testlink(p) # nil, or a FIND message is headed

toward p (or will be soon).

The bulk of the arguing done at this stage is showing that the derived variables
(subtree, level, core, minlink, testset, rootchanged) have the proper values in the
state mappings. In addition, a substantial argument is needed to show that the
implementation of level and core by local variables interacts correctly with the
test-accept-reject protocol. (See in particular the definition of the TAR action
mapping for Receive Test, and the case for ReceiveTest in Lemma 25.) It would be
ideal to do this argument in NOT, where the rest of the argument that core and
level are implemented correctly is done, but reorganizing the lattice to allow this

consolidation caused graver violations of modularity.

The messages sent in this automaton are all those sent in TAR, DC, NOT
and CON, except that NOTIFY messages are replaced by INITIATE messages, which
have a parameter that is either find or found, and FIND messages are replaced by

INITIATE messages with the parameter equal to find.

Some minor changes were made to the algorithm as presented in [GHS]. First,
our version initializes all variables to convenient values. (This change makes it
easier to state the predicates.) Second, provision is made for the output actions
InTree(l) and NotInTree(l). Third, when node p receives an INITIATE message,
variables inbranch(p), bestlink(p) and bestwt(p) are only changed if the parameter
of the INITIATE message is find. This change does not affect the performance or
correctness of the algorithm. The values of these variables will not be relevant until
p subsequently receives an INITIATE-find message, yet the receipt of this message
will cause these variables to be reset. The advantage of the change is that it greatly

simplifies the state mapping from GHS to DC.

Our version of the algorithm is slightly more general than that in [GHS]. There,
each node p has a single queue for incoming messages, whereas in our description,
p has a scparate queue of incoming messages for each of its neighbors. A node p
in our algorithm could happen to process messages in the order, taken over all the
neighbors, in which they arrive (modulo the requeueing), which would be consistent
with the original algorithm. But p could also handle the messages in some other
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order (although, of course, still in order for each individual link). Thus, the set of
executions of our version is a proper superset of the set of executions of the original.

A small optimization to the original algorithm was also found. (It does not
affect the worst-case performance.) When a CONNECT message is received by p
under circumstances that cause fragment ¢ to be absorbed into fragment f, an
INITIATE message with parameter find is only sent if testlink(p) # ni! in our version,
instead of whenever nstatus(p) = find as in the original. As a result of this change,
if nstatus(p) = find and testlink(p) = nil, p need not wait for the entire (former)
fragment g to find its new minimum-weight external link before p can report to
its parent, since this link can only have a larger weight than the minimum-weight

external link of p already found.

The automaton GH S is the result of composing an automaton Node(p), for all
p € V(G), and Link(l), for all | € L(G), and then hiding actions appropriately to
fit the M ST(G) problem specification.

First we describe the automaton Node(p), for p € V(G). The state has the
following components:

e nstatus(p), either sleeping, find, or found;
e nfrag(p), an edge of G or nil;
e nlevel(p), a nonnegative integer;
e bestlink(p), a link of G or nil;
e bestwt(p), a weight or oo;
o testlink(p), a link of G or nil;
e inbranch(p), a link of G or nil; and
e findcount(p), a nonnegative integer.
For each link (p, q) € L,(G), there are the following variables:
o lstatus({p, q)), either unknown, branch or rejected,

o queue,((p, q)), a FIFO queue of messages from p to ¢ waiting at p to be sent;
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it
o queuey({g,p)), a FIFO queue of messages from ¢ to p waiting at p to be pro- :'.::;‘
cessed; and ¥, .‘
[
¢ answered({p,q)), a Boolean. ”f
1t
b
The set of possible messages M is {CoNNEcT(!) : | > 0} U {iNITIATE(], ¢, 5¢) : :::‘::::‘
DA A
1> 0,c € E(G), st is find or found} U {TEsT(l,¢) : | > 0,c € E(G)} U {REPORT(w) : it
w is a weight or co} U {ACCEPT,REJECT, CHANGEROOT}. vyt
3%
)
In the start state of Node(p), nstatus(p) = sleeping, nfrag(p) = nil, nlevel(p) = g.':::,
0, bestlink(p) is arbitrary, bestwt(p) is arbitrary, testlink(p) = nil, inbranch(p) is ;::3;
arbitrary, findcount(p) = 0, lstatus(l) = unknown for all € L,(G), answered(l) = 3
false for all | € L,(G), and both queues are empty. ::::'::“
|:}‘|‘6
)31
Now we describe the actions of Node(p). .:::g:é
'l.'\’.*
Input actions: L 3
’ 0
l'g.i‘c
o Stari(p) .Q:\ﬁ‘e
Effects: g q'?‘:
s: o
if nstatus(p) = sleeping then execute procedure WakeUp(p) ®
o ChannelRecv(l), | € Lp(G), me M e |
Effects: :
enqueue(m, queue (1)) 'ﬁ::
. NAMA
Output actions: s;:':j'g
o InTree(l), l € L,(G) ;».
Preconditions: &- W
answered(l) = false
Istatus(l) = branch P
Effects: g\*
o )
answered(l) := true N
[ ]
o NotInTree(l), l € Lp,(G) AN
Preconditions: ,J:.':E o
N
answered(l) = false :'.:.. t
Istatus(l) = rejected gt
Effects: T
e
answered(l) := true e
't,:
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

e ChannelSend(l,m), 1 € L,(G),m e M
Preconditions:
m at head of queue,(l)
Effects:
dequeue(queue (1))

Internal actions:

e ReceiveConnect({g,p),!), (p,q) € Lp(G)
Preconditions:
conNECT(]) at head of queue,({g,p))
Effects:
dequeue(queue, (g, 7))
if nstatus(p) = sleeping then execute procedure WakeUp(p)
if | < nlevel(p) then [
Istatus({(p, q)) := branch
if testlink(p) # nil, then [
enqueue(INITIATE(nlevel(p), nfrag(p),find), queue,({p,q)))
findcount(p) := findcount(p) + 1]
else enqueue(INITIATE(nlevel(p), nfrag(p).found), queue,({(p,q))) |
else
if Istatus({p,q)) = unknown then enqueue(CONNECT(!), queue,({g, p}))
else enqueue(INITIATE(nlevel(p) + 1,(p, ¢), find), queue,((p,q)))

o Receivelnitiate({(q,p),l,c, st), (p,q) € L,(G)
Preconditions:
INITIATE(, ¢, st) at head of queue,({g,p))
Effects:
dequeue(queue, (g, p))
nlevel(p) := 1
nfrag(p) := c
nstatus(p) := st
—let S = {(p,r) : lstatus({p, 7)) = branch, r # q} —
enqueue(INITIATE(], ¢, st), queue ,(k)) for all k € S
if st = find then |
inbranch(p) := (p,q)
bestlink(p) := nil
bestwi(p) := oo
execute procedure Test(p)
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findcount(p) :=|S| ]
® ReceiveTest({(q,p),!,c), (p,q) € Ly(G) i
Preconditions: |:'
: TEST(!, c) at head of queue,({q,p)) ;:
' Effects: i:*
‘ dequeue(queue,((g, p})) i
. if nstatus(p) = sleeping then execute procedure Wake Up(p) e
" if I > nlevel(p) then enqueue(TEST(], ¢), quene,({(g,p))) |:
else .;
if ¢ # nfrag(p) then enqueue(AccEPT, queue,((p,q))) '
. else | Iy
' if lstatus((p,q)) = unknown then lstatus((p,q)) := rejected :‘:

if testlink(p) # (p, q) then enqueue(REJECT, queue,((p,q))) é
else execute procedure Test(p) | ‘

\‘ ® ReceweAccept({q,p)), (p,q) € L,(G)

Preconditions: Ry

ACCEPT at head of queue,({q,p)) "

Effects: .-

( dequeue(queue,({g, 7)) 2
: testlink(p) := nil ":

' if wt(p,q) < bestwt(p) then | by

! bestlink(p) := (p,q) 4

: i bestwt(p) := wt(p,q) ] b

execute procedure Report(p) '

o RecewveReject({q,p)), (p,q) € L,(G) '

Preconditions: : '

REJECT at head of queue,((q, p))

' Effects: 'ff

dequeue(queue ,((q, p))) 3

if Istatus((p,q)) = unknown then Istatus({p, ¢)) := rejected oy

execute procedure Test(p) tn

¢ ReceiveReport({q, p),w), (p,q) € L,(G) 3

; Preconditions: o

REPORT(w) at head of queuey((q,p)) '

Effects: N

' dequeue( queue,((g, p))) N
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if (p, q) # inbranch(p) then | '::
findcount(p) := findcount(p) — 1 '
if w < bestwt(p) then | "}
bestwi(p) := w s.:
bestlink(p) := (p, q) | 'iq::'
execute procedure Repori(p) ] ::::
else 2
if nstatus(p) = find then entueue(REPORT(u' queue,({q,p))) , A
else if w > bestwt(p) then execute procedure ChangeRoot(p) b
4
¢ ReceiveChangeRoot({(q,p)), (p.q) € Ly(G) .":
Preconditions: ) “
CHANGEROOT at head of queue,({q,p)) -:.:':
Effects: a‘.'.',
dequeue(queue,({g,p))) i
execute procedure ChangeRoot(p) 3
&
Procedures :.‘::
0
o WakeUp(p) :':::.
— let (p,q) be the minimum-weight link of p -— ,'.
lstatus({p,q)) := branch )
nstatus(p) := found ,::‘:
enqueue(CONNECT(0), queue,({p, q))) :
{
o Test(p) X
if I, the minimum-weight link of p with lstatus(l) = unknown, exists then | .'
testlink(p) := | ':?
enqueue(TEST(nlevel(p), nfrag(p)), queue (1)) | i
else [
testlink(p) := nil 'JA
execute procedure Report(p) | :.(-
%
e Report(p) hD)
if findcount(p) = 0 and testlink(p) = nil then | o
nstatus(p) := found E \
enqueue(REPORT{ vestw!(p)), queue,(inbranch(p))) ] ru
)
e ChangeRoot(p) ‘I
if lstatus(bestlink(p)) = branch then N
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enqueue(CHANGEROOT, queue ,(bestlink(p}))

else |
enqueue(CONNECT(nlevel(p)), queue ,(bestlink(p)))
Istatus(bestlink(p)) := branch |

Now we describe the automaton Link((p, q}), for each (p, ¢) € L(G).

The state consists of the single variable queue,,({p, q}), a FIFO queue of mes-
sages. The set of messages, M, is the same as for Node(p). The queue is empty in
the start state.

Input Actions:

o ChcnnelSend({p,q),m), me M
Effects:

enqueue(m, queuepq( (p,q)))

Output Actions:

o ChannelRecv({p,q),m), m € M
Preconditions:
m at head of queuepy((p, ¢))
Effects:

dequeue(queue, ({p,q)))

Now we can define the automaton that models the entire network. Define
the automaton GHS to be the result of composing the automata Node(p), for all
p € V(G), and Link(l), for all | € L(G), and then hiding all actions except for
Start(p), p € V(G), InTree(l) and NotInTree(l), | € L(G).

Given a FIFO queue ¢ and a set M, define ¢|M to be the FIFO queue obtained
from ¢ by deleting all elements of ¢ that are not in M.

Derived Variables:

o queve((p.q)) is quency((p.q)) | queuen((p,0)) || quene,((p,a)).

o tarquency({p,q)) is queue,((p,q))|Mr1.an, where Mpap is the set of all pos-
sible messages in TAR; similarly for tarquewe,,({(p.q)) and tarqueney({p.q)).
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

Similar definitions are made for the dcqueue’s, nqueue’s, and cqueue’s, except
that for the dequeue’s, each INITIATE(!, c,find) message is replaced with a FiND
message, and for the nqueue’s, cach INITIATE(L, ¢, %) message is replaced with o
NOTIFY(!, c) message.

o awake is false if and only if nstatus(p) = sleeping for all p € V(G).

o For all p € V(G), destatus(p) = unfind if nstatus(p) = sleeping or found, and
destatus(p) = find if nstatus(p) = find.

e MSF is the subgraph of G whose nodes are V(G), and whose edges are all
edges (p, q) of G such that either (1) Istatus({(p,q)) = branch and no CONNECT
message is in queue((p, q)), or (2) lstatus({q,p)) = branch and no CONNECT
message is in queue({p,q)).

¢ fragments is a set of elements, called fragments, one for each connected com-
ponent of MSF.

Each fragment f has the following components:
o subtree( f), the corresponding connected component of M SF;
o level(f), defined as in NOT;
o core( f), defined as in NOT;

o testset(f), the set of all p € nodes(f) such that one of the following is true:
(1) a FIND message is headed toward p, (2) testlink(p) # nil, or (3) a CONNECT
message is in queue({q,7)), where (q,7) = core(f) and p € subtree(q);

o nmunlink(f), defined as in DC;
e rootchanged( f), defined as in CON; and

o accmin(f), defined as in TAR and DC.

Define the following predicates on states(GHS). (All free variables are univer-
sally quantified.)

o GHS-A: If nstatus(p) = sleeping, then
(a) there is a fragment f such that subtree( f) = {p},
(b) queuel({p,q)) is empty for all ¢, and
(c) lstatus({p,¢)) = unknown for all ¢.
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D]

!‘:'c,
e GHS-B: If connect(l) is in queue({q,p)), lstatus({(p,q)) # unknown, and no :":::S
CONNECT is in queue({p,q)), then ::',::
(a) the state of queue({g,p)) is cONNECT(!) followed by INITIATE(! + 1,(p, ¢). | 3
find); o
(XN
(b) queue({p,q)) is empty; .:;E:
(c) nstatus(q) # find; and :::::
(d) nlevel(p) = nlevel(q) = I. .i"
[
e GHS-C: If a CONNECT message is in gueue(l), then no FIND message precedes .:"
the CONNECT in queue(!), and no TEST or REJECT message is in queue(/). :.:,:‘
i
o GHS-D: If nrT1ATE(], ¢,find) is in subtree(f), then | = level(f). -y
¥ '1‘.
¢ GHS-E: If inITIATE(], ¢, st) is in queue({p,q)) and (p,q) = core(fragment(p)), :::3:
then st = find. e
)
oot
o GHS-F: If TEST(l, ¢) is in queue({q, p)), then nlevel(q) > I. ®
e
e GHS-G: If AcCEPT is in queue((q, p)), then nlevel(p) < nlevel(g). %
)
o GHS-H: If testlink(p) # nil, then nstatus(p) = find. 5
. 4
d
e GHS-I: If p is up-to-date, then nlevel(p) = level(fragment(p)). o
ol
. 5-J: If p is up-to-date, p & testset(fragment(p)), and (p, ¢) is the minimum- ,:?;:t
. weight xternal link of p, then nlevel(p) < nlevel(q). '::::
o GHS-K: If subtree(f) = {p} and nstatus(p) # sleeping, then rootchanged(f) = 3
true. l:
"
Let Pgys be the conjunction of GHS-A through GHS-K. 2:‘ )
2
We now define M, = (S;, A;), an abstraction mapping from GHS to z, for :
t = TAR, DC, NOT and CON. S, should be obvious for all z, given the above £
derived functions. We now define A, (s, ) for all z, states s of GHS, and actions s,::
7 of GHS enabled in s. o
2
o © = InTree(l) or NotInTree(l). A (s,7) = = for all z. 5:‘,:_
<
o 7 = Start(p). Let f = fragment(p). '_:-_’».
N
Case 1: nstatus(p) = slecping in s. For all v, A (s,7) = Stari(p) t: _'
ChangeRoot( f), where t, is the same as S;(s) except that ewake = true in {,. :E'::
t’i:
123 e
et
‘\:’
el

R it A ANME A G ARR L SR SIS TS ph




R SRR IR AN IO R L RS KA R R N U Y WL WU MUV VLU U TR IO PO R KA N Y h VLY VWU Vi) NUVOY Y UM I RE YN TR T

R Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON
" Case 2: nstatus(p) # sleeping in s. A,(s,7) = 7 for all .

o © = ChannelRecv(k,m). For all z, A.(s,7) is empty, with the following ex-

W ceptions: If m = coNNECT(!) or CHANGEROOT, then Acon(s,7) = =. If
p m = INITIATE(], ¢, st), then Anor(s,T) = ChannelRecv(k,NOTIFY(!, c)), and if
‘z: st = find, then Apc(s,n) = ChaennelRecv(k,FIND). If m = TEST, ACCEPT or
' REJECT, then Aragr(s,n) = m. If m = REPORT(w), then Apc(s,n) = .

4 o m = ChannelSend(k,m). Analogous to ChannelRecv(k,m).

%

K o m = ReceweConnect({q,p),!). Let f = fragment(p) and ¢ = fragment(q).
)

L+ (Later we will show that the following four cases are exhaustive.)

;‘: Case 1: nstatus(p) = sleeping in s. If (p,q) is not the minimum-weight ex-
’;: ternal link of p in s, then A;(s,m) = ChangeRoot(f) for all z. If (p,q) is the
18,

! minimum-weight external link of p in s, then, for all z, A;(s,7) = ChangeRoot( f)

3‘ { SI(S)'

::: Case 2: nstatus(p) # sleeping, | = nlevel(p), and no CONNECT message is in
X queue((p, q)) in s. If lstatus((p,q)) = unknown in s, then A,(s,7) is empty for all
o z. If Istatus((p,q)) # unknown in s, then Arap(s,n) is empty, and A,(s,7) =
f:: AfterMerge(p,q) for all other z.

A

h

;:. Case 3: nstatus(p) # sleeping, | = nlevel(p), and a CONNECT message is in

queune({p,q)) in s. A;(s,7) = Merge(f,g) for all z.

;:E Case 4: nstatus(p) # sleeping, and | < nlevel(p) in s. A,(s,7) = Absorb(f,g)
'.:' for all z.
.l
\.!
, o m = Receivelnitiate({(q,p), !, c. st).
s
f:' Arar(s, ) = SendTest(p) if st = find, and is empty otherwise.
)
o,
h
{ If st # find, then Apc(s, ) is empty; if st = find and there is a link (p.r)
. such that lstatus((p,r)) = unknown in s, then Apc(s, ) = ReceiveFind((q, p)); if
:: st = find and there is no link (p,r) such that lstatus({p,r)) = unknown in s, then
';:‘ Apc(s,n) = ReceiveFind({(q,p)) t TestNode(p), where t is the state of DC resulting
:E: from applying ReceiveFind((q,p)) to Spc(s).
,n. Anor(s,7) = RecerveNotify((q,p), (. ¢).
D
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Acon(s, ™) is empty.
o 7 = ReceiveTest({q,p),l,c). Let f = fragment(p).
Case 1: nstatus(p) = sleeping in s.

A7 ar(s,7) = ChangeRoot(f) t =, where t is the same as Star(s) except that
rootchanged( f) = true and Ilstatus(minlink(f)) = branch in ¢.

A:(s,m) = ChangeRoot( f) for all other z.
Case 2: nstatus(p) # sleeping in s.

Arar(s.7m) = m if | < nlevel(p) or nlevel(p) = level(f) in s, and is empty

otherwise.

Apc(s,m) = TestNode(p) if | < nlevel(p), ¢ = nfrag(p), testhink(p) = {p,q),
and Istatus((p,r)) # unknown for all r # ¢, in s, and is empty otherwise.

A.(s, ) is empty for all other z.
o 7 = ReceiveAccept({q,p)).

Arar(s,m)=m.

Apc(s,n) = TestNode(p).

A.(s,7) is empty for all other z.
o 1 = ReceiveReject({q,p)).

Arar(s,m)y=m.

Apc(s,m) = TestNode(p) if there is no r # ¢ such that Istatus({p,r)) = un-

known in s, and is empty otherwise.
A.(s,m) is empty for all other z.
e m = ReceiveReport({q,p),w). Letl f = fragment(p).

Case 1: (p.q) = core(f), nstatus(p) # find, w > bestwt(p), and Istatus
(bestlink(p)) = branch in s.

Apc(s,m) = .
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON
A;(s,m) = ComputeMin(f) for all other z.

Case 2: (p,q) = core(f), nstatus(p) # find, w > bestwit(p), and Istatus
(bestlink(p)) # branch in s.

Apc(s,m) = m tpc ChangeRoot(f), where tpc is the state of DC resulting

from applying 7 to Spc(s).
Acon(s,m) = ComputeMin(f).

A (s,7) = ComputeMin(f) t, ChangeRoot(f) for all other z, where ¢, is the
state of = resulting from applying Compute Min(f) to S,(s).

Case 3: (p,q) # core(f) or nstetus(p) = find or w < bestwi(p) in s.
Apc(s,7m) = .
A.(s,m) is empty for all other z.
e m = ReceiveChangeRoot({q,p)). Let f = fragment(p).
Acon(s,7) = m.

For all other z, A;(s,m) = ChangeRoot( f) if lstatus(bestlink(p)) # branch in
s, and is empty otherwise. -

For the rest of this chapter, let I be the set of names {TAR, DC, NOT,CON}.
The following predicates are true in any statc of GH.S satisfying A ¢;(P} 0 S:) A
Pspus. Le., they are derivable from Igys, together with the TAR, DC, NOT, CON,
GC, COM and HI predicates.

e GHS-L: If AfterMerge(p,q) is enabled for DC or NOT, then a CONNECT mes- .
sage is at the head of queue({q,p)). .
w Ml
Proof: First we show the predicate for DC. Let f = fragment(p). ‘Q
1. (p,q) = core(f), by precondition. N
2. FIND is in decqueue((q,p)), by precondition.
3. No FIND is in dcqueue({p,q)), by precondition. Ve
4. dcstatus{q) = unfind, by precondition. 3."
5. No REPORT is in dcqueue({q,p)), by precondition. ‘\.)E\
6. q € testset( f), by Claims 1 through 5 and DC-G. ®
7. testlink(p) = nil, by Claim 4 and GHS-H. ‘:E::
%
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

8. A CONNECT is in queue({g,p)), by Claims 1, 3, 6 and 7.

9. (p,q) € subtree(f), by Claim 1 and COM-F.

10. No INITIATE(*, *,found) is in queue({q,p)), by Claim 1 and GHS-E.

11. No CHANGEROOT is in queue({g,p)), by Claim 1.

12. No ACCEPT is in queue({(g,p)), by Claim 9 and TAR-F.

13. CONNECT precedes any FIND, TEST, or REJECT in queue({q, p}), by Claim GHS-C.

Claims 5, 8, 10, 11, 12 and 13 give the result.

For NOT, we show that if AfterMerge(p,q) for NOT is enabled, then After-
Merge(p,q) for DC is enabled.

. (p,q) = core(f), by precondition.

NOTIFY(nlevel(p) + 1,(p, q)) is in nqueue({g,p)), by precondition.

. No NoTIFY(nlevel(p) + 1,(p, q)) is in nqueue((p, ¢)), by precondition.
nlevel(q) # nlevel(p) + 1, by precondition.

INITIATE( nlevel(p) + 1,(p, q),find) is in queue({q,p)), by Claims 1 and 2 and
GHS-E.

6. nlevel(p) + 1 = level(f), by Claim 5 and GHS-D.

7. No INITIATE(*, *,find) is in queue({p,q)), by Claims 3 and 6 and GHS-D.
8. ¢ is not up-to-date, by Claims 4 and 6 and GHS-L.

9. destatus(q) # find, by Claim 8 and DC-I(a).

10. No REPORT is in queue({g,p)), by Claims 1 and 8 and DC-C(a).

S

By Claims 1, 5, 7, 9 and 10, AfterMerge(p,q) for DC is enabled. O

o GHS-M: If testlink(p) # nil or findcount(p) > 0, then no FIND message is
headed toward p, and no CONNECT message is in queue({g,r)), where (gq,r) =
core(fragment(p)) and p € subtree(q).

Proof:

1. testlink(p) # nil or findcount(p) > 0, by assumption.

nstatus(p) = find, by Claim 1 and either GHS-H or DC-H(b).

. destatus(t) = find for all ¢t between ¢ and p inclusive, by Claim 2 and DC-H(a).
. No FIND message is headed toward p, by Claim 4 and DC-D(b).

. No coNNECT is in queue((q,7)), or Istatus((r,q)) = unknown, or CONNECT is in
queue({r,q)), by Claim 3 and GHS-B(c¢).

G. (q,7) € subtree(fragment(p)), by COM-F.

7. Istatus({r,q)) # unknown, by Claim 6 and TAR-A(D).

8. If CONNECT is in queue({r,q)) then no CONNECT is in queue({(g,r)), by Claim 6.

=W W

(7}
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

9. If no CONNECT is in queue({r,q)) then no CONNECT is in queue({g,r)), by Claims
5 and 7.

Claims 4, 8 and 9 give the result. 0

Lemma 25: GHS simultaneously simulates the set of automata {TAR,DC,NOT,
CON} via {M_ : z ¢ I}, Pgus, and {P, : x € I}.

Proof: By inspection, the types are correct. By Corollaries 18, 20, 22 and 24, P,
is a predicate true in every reachable state of z, for all z.

(1) Let s be in start(GHS). Obviously Pgus is true in s and S.(s) is in
start(z) for all z.

(2) Obviously, A.(s, w)|ext(z) = n|ext(GHS) for all z.

(3) Let (s',x,s) be a step of GHS such that A_c; P;(S:(s")) and Pgrs(s')
are true. By Corollaries 18, 20, 22 and 24, we can assume the HI, COM, GC, TAR,
DC, NOT and CON predicates are true in s', as well as the GHS predicates. Below,
we show (3a), that Pgpus is true in s (only for those predicates whose truth in s is

not obvious), and either (3b) or (3c), as appropriate, that the step simulations for
TAR, DC, NOT, and CON are correct.

i) = is InTree((p,q)). Let f = fragment(p) in s'.
(3a) Obviously, Pgis is true in s.
(3b)/(3c) A (s',7) = = for all z.

Claims about s':

answered((p,q)) = false, by precondition.

Istatus({p, q)) = brauch, by precondition.

nstatus(p) # sleeping, by Claim 2 and GHS-A(c).

awake = true, by Claim 3.

(p,q) € subtree(f) or (p,q) = minlink(f), by Claim 2 and TAR-A(a).

N

7 is enabled in §,(s') by Claims 1 and 2 for + = TAR, and by Claims 1, 4 and
5 for all other . Obviously, its effects are mirrored in S,(s) for all z.

il) 7 is NotInTree((p,q)). Let f = fragment(p) in s'.
(3a) Obviously, Pgys is true in s.
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON
(3b)/(3c) Az(s,m) = 7 for all z.
Claims about s':

answered((p, q)) = false, by precondition.
Istatus({p, q)) = rejected, by precondition.
nstatus(p) # sleeping, by Claim 2 and GHS-A(c).
awake = true, by Claim 3.

fragment(p) = fragment(q) and (p, q) # subtree( f), by Claim 2 and TAR-B.

R ol i o

7 is enabled in S;(s') by Claims 1 and 2 for z = TAR, and by Claims 1, 4 and
5 for all other z. Obviously its effects are mirrored in §,(s) for all z.

iil) 7 is Start(p). Let f = fragment(p).

Case 1: nstatus(p) # sleeping in s’. A,(s’,m) = = for all z. Obviously
S:(s")rS.(s) is an execution fragment of z for all z, and Pgyg is true in s.

Case 2: nstatus(p) = sleeping in s'.

(3b)/(3c) For all x, A,(s',7) = 7 t, ChangeRoot(f), where t, is the same as
S:z(s") except that awake = true in t,. For all z, we must show that 7 is enabled
in S;(s') (which is true because = is an input action), that its effects are mirrored
in t; (which is true by definition of t,), that ChangeRoot(f) is enabled in ¢,, and
that its effects are mirrored in S,(s).

Let ! be the minimum-weight external link of p. (It exists by GHS-A(a) and
the assumption that |V(G)| > 1.)

Claims about s':

1. nstatus(p) = sleeping, by assumption.

2. subtree(f) = {p}, by Claim 1 and GHS-A.

3. minlink(f) = [, by Claim 2 and definition.

4. Istatus((p, q)) = unknown, for all ¢, by Claim 1 and GHS-A(c).
5. rootchanged( f) = false, by Claim 4 and TAR-H.

Claims about t;, for all x:

awake = true, by definition.
subtree( f) = {p}, by Claim 2.
rootchanged( f) = false, by Claim 5.

e

@»
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

9. minlink(f) = [, by Claim 3.

ChangeRoot( f) is enabled in tcon by Claims 6, 7 and 8. For all other z,
ChangeRoot( f) is enabled in ¢, by Claims 6, 8 and 9.

Claims about s:

10. coNNECT(0) is in queue(l), by code.
11. lstatus(!) = branch, by code.
12. rootchanged(f) = true, by Claims 10 and 11 and choice of I.

For most of the other derived variables, it is obvious that they are the same in s’
and s. Although nstatus(p) changes, dcstatus(p) remains unchanged. Even though
Istatus(l) changes to branch, MSF does not change, since a CONNECT message is in
quene(l).

For © = TAR, the effects of ChangeRoo#( f) are mirrored in S;(s) by Claims
11 and 12. For ¢ = CON, the effects of ChangeRoot( f) are mirrored in S.(s) by
Claim 10. For all other z, the effects of ChangeRoot(f) are mirrored in S,(s) by
Claim 12.

(3a) More Claims about s':

13. Istatus({q,p)) # rejected, for all ¢, by Claim 2 and TAR-B.

14. If Istatus((q,p)) = branch, then a CONNECT is in queue({(q,p)), for all g, by
Claim 2.

15. testset(f) = @, by Claim 3 and GC-C.

16. testlink(p) = nil, by Claim 15.

17. queue(l) is empty, by Claim 1 and GHS-A(b).

GHS-A is vacuously true since nstatus(p) = found in s.

GHS-B: vacuously true for CONNECT added to queue(!) by Claims 13 and 14;
vacuously true for any CONNECT already in queue(reverse(l)) by Claim 10; vacuously
true for any CONNECT already in queue({(q,p)), for any ¢ such that (p,q) # I, by
Claim 4.

GHS-C is true by Claim 17 and code.
GHS-H is vacuously true by Claim 16.
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

No change affects the others.

iv) m is ChannelRecv(k,m) or ChannelSend(k,m). Obviously Pgys(s)
is true, and the step simulations are correct.

v) 7 is ReceiveConnect({(q,p),l). Let f = fragment(p), and g = fragment(q)
in s'. We consider four cases. We now show that they are exhaustive, i.e., that
| > nlevel(p) is impossible. First, suppose (g, p) is an external link of g. By CON-
D, | = level(g) and (q,p) = minlink(g). By NOT-D, level(g) < nlevel(p). Second,
suppose (g,p) is an internal link of ¢ = f. By CON-E, (p,q) = core(f), and
I < level(f). But by NOT-C, nlevel(p) > level(f) — 1.

Case 1: nstatus(p) = sleeping. This case is divided into two subcases. First we
prove some claims true in both subcases. Let k be the minimum-weight external

link of p.
Claims about s':

CcONNECT(!) is at head of gueuey({g,p)), by precondition.
nstatus(p) = sleeping, by assumption.
subtree( f) = {p}, by Claim 2 and GHS-A.
rootchanged( f) = false, by Claim 2, GHS-A(c) and TAR-H.
minlink(f) = k, by Claim 3 and definition.
awake = true, by Claim 1 and CON-A.
No FIND is in queue({g,p)), by Claim 3 and DC-D(a).
f # g, by Claim 3.
(g, p) is an external link of g, by Claim 8.
. minlink(g) = (g,p), by Claims 1 and 9 and CON-D
. level(g) < level( f), by Claim 10 and COM-A.
. 1 = level(g), by Claims 1 and 9 and CON-D.
. level(f) = 0, by Claim 3 and COM-F.
{ €0, by Claims 11, 12 and 13.
. { =0, by Claim 14 and COM-F.
. nlevel(p) = 0, by Claims 3 and 13.

I B

e e e e e T e
Y UL R W N = O

Subcase 1a: (p,q) # k. By Claim 2 and GHS-A(c), lstatus({p,q)) = unknown
in §’, and the same is true in s. This fact, together with Claims 15 and 16, shows

that the only change is that the CONNECT(!) message is requeued.
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

(3a) Pgus can be shown to be true in s by an argument very similar to that
for 7 = Start(p), Case 2, since the only change is that the CONNECT(]) message is
requeued. Claim 7 verifies that GHS-C is true in s.

(3b)/(3c) Forall z, A,(s', ) = ChangeRoot(f). Forz = CON, ChangeRoot( f)
is enabled in S;(s') by Claims 6, 4 and 3; for all other z, it is enabled by Claims 6,
4 and 5.

Claims about s:

17. lstatus(k) = branch, by code.
18. coNNECT(0) is added to the end of queue(k), by code.
19. rootchanged(f) = true, by Claims 17 and 18 and choice of k.

For most of the other derived variables, it is obvious that they are the same in s'
and s. Although nstatus(p) changes, dcstatus(p) remains unchanged. Even though
Istatus(k) changes to branch, M SF does not change, since a CONNECT message is
in queue(k).

The effects of ChangeRoot(f) are mirrored in §;(s) by Claims 17 and 19 for
z = TAR, by Claim 18 for + = CON, and by Claim 19 for all other z.

Subcase 1b: (p,q) = k.

(3b)/(3¢) For all z, A,(s',7) = ChangeRoot(f) t, Merge(f.g), where t; is the
result of applying ChangeRoot(f) to S,(s'). ChangeRoot( f) is enabled in S,(s’) by
Claims 6, 4 and 3 for z = CON, and by Claims 6, 4 and 5 for all other z. Its effects
are obviously mirrored in t,.

More claims about s':

20. k = (p,q), by assumption.

21. {p,q) is an external link of f, by Claim 8.

22. rootchanged(g) = true, by Claim 1 and Claim 9.

23. Only one CONNECT message is in queue({q.p)), by Claims 1 and 9 and CON-D.
24. lstatus((q, p)) = branch, by Claims 10 and 22 and TAR-H.

25. level(g) = 0, by Claims 12 and 15.

26. subtree(g) = {q}, by Claim 25 and COM-F.

27. nlevel(q) = 0, by Claims 25 and 26.
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

28. No INITIATE message is in queue({p, q}) or queue({q, p}), by Claims 9 and 21 and
NOT-H(e).

29. No CONNECT message is in queue({p,r)) for any » # ¢, by Claims 3 and 20 and
CON-D.

30. No CONNECT message is in queue({g, )) for any r # p, by Claims 10 and 26 and
CON-D.

Claims about t,:

31. f # g, by Claim 8.

32. rootchanged(f) = true, by definition of ..

33. rootchanged(g) = true, by Claim 22.

34. minedge(f) = minedge(g) = (p, q), by Claims 5, 10 and 20.

35. If £ = CON, then conNECT(0) is in cqueue((p,q)), by definition of £,.

36. If z = CON ., then coNNECT(0) is at the head of cqueue({g,p)), by Claims 1
and 15.

Merge(f,g) is enabled in ¢, by Claims 34, 35 and 36 for ¢ = CON, and by
Claims 31, 32, 33 and 34 for all other z.

As we shall shortly show, M SF has changed — the connected components
corresponding to f and ¢g have combined. Let h be the fragment corresponding to
this new connected component.

Claims about s:

37. No CONNECT is in queue({g,p)), by Claim 23 and code.

38. lstatus({g, p)) = branch, by Claim 24 and code.

39. (p.q) € MSF, by Claims 37 and 38.

40. subtree(h) is nodes p and ¢ and the edge between them, by Claims 3, 26 and 39.
41. INITIATE(1, (p, q),find) is in queue({p,q)), by code.

42. level(h) = 1, by Claims 16, 27, 28, 40 and 41.

43. core(h) = (p, q), by Claims 16, 27, 28, 40 and < .

44. conNECT(0) is in queue({p, q)), by code.

45. testset(h) = {p, q}, by Claims 41 and 44.

46. minlink(h) = nil, by Claim 45.

47. rootchanged(h) = false, by Claims 29, 30 and 40.

48. f and ¢ are no longer in fragments, by Claims 3, 26, 40 and 43.

The effects of Merge(f,g) are mirrored in §,(s) by Claims 40, 42, 43, 45, 46.
47 and 48 for ©+ = TAR, by Claims 40, 41, 42, 43, 45, 47 and 48 for ¢ = DC; by
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Section 4.2.7: GHS Simultancously Simulates TAR, DC, NOT, CON

Claims 40, 41, 460, 47 and 48 for = NOT'; and by Claims 40, 42, 43, 46 and 48 for
r=CON.

(3a) GHS-A: vacuously true for p by code. By Claim 1 and GHS-A(c).

!

nstatus(q) # sleeping in s'; since the same (5 true in s, changing ¢’s subtree does

not invalidate GHS-A(a).

GHS-B: Obviously, the only situation affected is the conNnNECT added to
queune({p, q)).

(a) queue({p,q)) has the correct contents in s because of the code and the fact
that queue((p,q)) is empty in s’ by Claim 2 and GHS-A(b).

(b) To show that gueue((q,p)) is empty in s, we n:ust show that it contains
only the coNNECT in s’. By Claim 1 and GHS-C, there is no TEST or REJECT
in queue((g,p)). By Claim 2 and GHS-H, testlink(p) = nil; thus, by TAR-D, no
ACCEPT is in queue({q, p}). By Claim 3, DC-A(g) and DC-B(a), there is no REPORT
in queue({g,p)). By Claim 3 and NOT-H(e). there is no NOTIFY in queue({g,p)).
By Claim 3 and CON-C, there is no CHANGEROOT in queue({g,p)). By Claim 1.
CON-D and CON-E, there is only one CONNECT in queue({q,p)).

\¢) nstatus(p) # find in s by code.
(d) By Claims 16 and 27, nlevel(p) = nlevel(q) = 0.

GHS-C: No FIND is in queue({p,q)) in s’ by Claim 3 and DC-D(a). No REJECT
is in queue((p,¢)) in s’ by Clain 3 and TAR-G. No TesT(/,c), for any [ and c. is
in queue({p,q)) in s', because by Cizims 25 and 13 and TAR-E(b) and TAR-E(c),
[ =0; yet by TAR-M, [ > 1.

GHS-D: By Claim 2.

GHS-E: By code for the INITIATE added to quene((p,4)). By Claim 28, this is

the only relevant message affected.

GHS-H is true in s since nstatus(p) goes from sleeping to found, and testlink(p)

is unchanged.

GHS-I: By Claim 45. p and q are both in testset(h) in s. We now show that
nstatus(p) # find and nstatus(a) # find. Then by Claim 40, no node in subtree(h) is
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON :::
(4
.
up-to-date, so the predicate is vacuously true (for 2). By code, dcstatus(p) = found. :::
By Claim 10 and GC-C, testset(g) = 0 in s’; by Claim 26, no REPORT message is in ne
subtree(g) in s'. Thus, by DC-I(b), dcstatus(q) # find in s'. By
)
‘, 3
GHS-J: vacuously true by Claims 40 and 45 for p and ¢q. No relevant change ':;.
u for any other node. :::
g !
L J
No change affects the rest.
A
_ &
o
,'h
Case 2: nstatus(p) # sleeping, | = nlevel(p), and no CONNECT message 1Is In 4
queue({p,q)) in s'. ":‘;
i
(%
Subcase 2a: lstatus({p,q)) = unknown in s’. The only change in going from s’ \ "
to s 1s that the CONNECT message is requeued. v
»
(3a) The only GHS predicates affected are GHS-B(a) and GHS-C. By TAR- .
A(DL), (p,q) # subtree(f). Thus, by DC-D(a), no FIND is in queue({g,p)) in s’, and E
the predicates are still true in s. X
(3by/(3c) A (s',7) is empty for all z. We now show that S (s') = S.(s) 3
for all z, by showing that cqueue({q,p)) contains only the one CONNECT message )
<
in s'. By TAR-A(b), (p,¢) is not in MSF. Thus, by CON-C, no CHANGEROOT '.:::
is in cqueuci{qg,p)). By CON-D and CON-E, only one CONNECT message is in N
- 7.
cqueune({q,p)). b
e
4
Subcase 2b: lstatus({p,¢)) # unknown in s'. Y.
)
(3b)/(3c) Arar(s'.7) 1s empty, and A, (s',7) = AfterMerge(p, q) for all other ?:'3_
I. &
| 5
Claims about s': ol
]
1. CONNECT is at head of queue,({q,p)), by precondition. oy
) ) N
2. nstatus(p) # sleeping. by assumption. NG
3. nlevel(p) = [ by assumption. _..r
4. No CONNECT 1s in quene({p.q)), by assunption. ;'-‘
5. Istatus((p.¢)) # unknown, by assumption. 73
6. If Istatus({p, q)) = rejected, then fragment(p) = fragment(q), by TAR-B. h,
5!
135 : :
n\,{-

- 3
.;\ ]
- . . . )
< o ). Ry Ly - - e o ‘ . :
|.“.!L "q.l’o,l A ‘.'.'. A lfo. . .'-".k Coat _\ '-'(f'\- o % _,\\f“ -u\f'\x\’-,{x’-."'."'\‘ \\.\.r__r,_- " - _‘."x T .\.\- LR CV RN '\ ]

"
L



Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

7. If Istatus((p,q)) = branch, then (p,q) € subtree(f), by Claim 4 and definition of
MSF.

8. (p,q) is an internal link of f, by Claims 5, 6 and 7.

9. (p,q) = core(f), by Claims 1 and 8 and CON-E.

10. NITIATE( nlevel(p) + 1,(p,¢)find) is in queue({q,p)), by Claims 1, 3, 4 and 5
and GHS-B(a).

11. No INITIATE(nlevel(p) + 1,(p, ¢), *) is in queune((p, ¢)), by Claims 1, 3, 4 and 5
and GHS-B(b).

12. destatus(q) # find, by Claims 1, 4 and 5 and GHS-B(c).

13. No REPORT is in queue({g,p)), by Claims 1, 4 and 5 and GHS-B(a).

14. nlevel(q) = I, by Claims 1, 4 and 5 and GHS-B(d).

AfterMerge(p,q) is enabled in S,(s') by Claims 9, 10, 11, 12 and 13 for z = D¢
by Claims 3, 9, 10, 11 and 14 for £ = NOT; and by Claims 1 and 9 for z = CON.

Claims about s:

15. connEcT(l) is dequeucd from queue,({g,p)), by code.
16. FIND is in queue({p, ¢)), by code.
17. INITIATE( nlevel(p) + 1,(p, ¢),find) is in queue({p, q)), by code.

The only derived variables that are not obviously unchanged are testset(f),
level(f) and core(f). Claims 15 and 16 show that testset( f) is unchanged. Claims
10 and 17 show that level(f) and core(f) are unchanged.

The effects of AfterMerge(p, q) are mirrored in S:(s) by Claim 16 for z = DC:
by Claim 17 for = NOT; and by Claim 15 for z = CON. It is easy to sec that

Star(s') = Srar(s).

(3a) GHS-A: By Claim 2, adding a message to a queue of p does not invalidate
GHS-A(b).

GHS-B: By Claim 8 and CON-E, there is only one CONNECT message in
queue({q,p)) in s'. Since it is removed in s, the predicate is vacuously true for
a CONNECT in queue((g,p)). By Claim 4. the predicate is vacuously true for a
CONNECT in queue((p, q)).

GHS-C: By Claim 4, vacuously true for quene((p,q)).
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON .“:
N
¥
GHS-D: By Claim 10 and GHS-D. nlevel(p) + 1 = level(f). This together with 'l:SE‘:
Claim 9 gives the result. -
GHS-E is true by code. ' L
OO
toe et
No change affects the rest. E::':E:E
-‘l’-‘E
i“;"l
. =
Case §: nstatus(p) # sleeping, | = nlevel(p), and a CONNECT message is in :::"2::‘.
queve({p,q)) in s'. $‘:;§'S
8
(3b)/(3c) AL (s',m) = Merge(f,g) for all z. e
i
RS
Claims about s': R
1. conNEcT(]) is at head of gqueue({g,p)), by precondition. “3
2. | = nlevel(p), by assumption. @S’:
3. cCONNECT(m) is in queue((p, ¢)), by assumption. :‘:.:::
4,
4. (p,q) is an external link of p, by Claims 1 and 3. , 't:::
5. (g, p) is an external link of ¢, by Claims 1 and 3. e
6. f # g, by Claim 4. 2
7. rootchanged(f) = true, by Claims 1 and 4. . o
8. rootchanged(g) = true, by Claims 3 and 5. ::E::.:
9. (q,p) = minlink(g), by Claims 1 and 5 and CON-D. '::u:::
10. {p, q) = minlink(f), by Claims 3 and 4 and CON-D. L
11. minedge(f) = minedge(g), by Claims 9 and 10. ::'::‘.‘
12. m = level(f), by Claims 3 and 4 and CON-D. ::i::
13. nlevel(p) = level(f), by Claim 10 and NOT-D. " .E;
14. m = [, by Claims 2, 12 and 13. ":
Merge(f,g) is enabled in Scon(s') by Claims 1, 3, 4, 5 and 14, and for all t:::;
other = by Claims 6, 7, 8 and 11. e
w
)
15. Only one CONNECT message is in queue({(q,p)), by Claim 1 and CON-D. ";
16. lstatus({q,p)) = branch, by Claims 8 and 9 and TAR-H. . v
o

17. Istatus((p, q)) = branch, by Claims 7 and 10 and TAR-H.
18. level(g) = I, by Claims 1 and 5 and CON-D.
19. If INtT1aTE(!', ¢, %) is in subtree( f), then I' < [, by Claims 12 and 14.

DAL

@
20. If INITIATE(Y, ¢, %) is in subtree(g). then ! < I, by Claim 18. o
21. nlevel(r) < 1for all r € nodes(f), by Claims 12 and 14. :$ "
SN
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Section 4.2.7: GH S Simultancously Simulates TAR, DC, NOT, CON

22. nlevel(r) <l for all r € nodes(g), by Claim 18.

23. No INITIATE message is in queue({(g,p)) or queue((p,q)), by Claims 4 and 5 and
NOT-H(e).

24. No CONNECT is in queue({r,t)), where r € nodes(f), and (r,t) # (p,q), by Claimn
10 and CON-D and CON-F.

25. No CONNECT is in queue({r,t)), where r € nodes(g) and (r,t) # (¢,p), by Claim
9 and CON-D and CON-F.

26. (p,q) # core(f), by Claim 4 and COM-F.

27. (p,q) # core(g), by Claim 5 and COM-F.

As we shall shortly show, M SF has changed —- the connected components
corresponding to f and ¢ have combined. Let h be the fragment corresponding to

this new connected component.
Claims about s:

28. No CONNECT is in queue({¢,p)), by Claim 15 and code.

29. Istatus((q,p)) = branch, by Claim 16.

30. (p,q) € MSF, by Claims 28 and 29.

31. subtree(h) is the union of the old subiree( f) and subtree(g) and (p, g), by Claim
30.

32. iNrTIATE({ + 1,(p, ¢),find) is in queue({p,q)), by Claim 2 and 17 and code.

33. if INITIATE(!', ¢, %) is in subtree(h), then I' <141, by Claims 19, 20, 23, 31 and
32.

34. nlevel(r) <l for all r € nodes(h), by Claims 21, 22 and 31.

35. level(h) = [ + 1, by Claims 33 and 34.

36. core(h) = (p, ¢q), by Claims 19, 20, 23, 31, 32, and 34.

37. coNNECT(!) is in queue({p, ¢)), by Claims 3 and 14

38. testset(h) = nodes(h), by Claims 31, 32 and 37.

39. manlink(h) = nil, by Claim 38.

40. rootchanged(h) = false, by Claims 24, 25 and 31.

41. f and g are no longer in fragments, by Claims 26, 27, 31 aund 36.

The effects of Merge(f,g) are mirrored in S,(s) by Claims 31, 35, 36, 38, 39,
40 and 41 for TAR; by Claims 31, 35, 36, 38, 40 and 41 for DC; by Claims 31, 39,
40 and 41 for NOT; and by Claims 28, 31, 35. 36, 39, and 41 for CON.

(3a) GHS-A: Vacuously true for p by assumption. Vacuously true for ¢ by
Claim 1 and GHS-A(b).
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

GHS-B: Obviously, the only situation affected is the CONNECT in queue({p, q)).

{a) We must show that in s, queue((p, ¢)) consists only of a CONNECT(!) mes-
sage. (The code adds the appropriate INITIATE message.) By Claim 3 and GHS-C,
no TEST or REJECT is in queue({p,q)). By Claim 4, DC-A(g) and DC-B(a), no
REPORT is in queue({p, ¢)). By Claim 23, no NOTIFY is in queue({p, ¢)). By Claim 4
and CON-C, no CHANGEROOT is in gueue({p, ¢)). By Claims 3 and 14, a coNNECT(!)
message is in queue((p, ¢)), and by CON-E and CON-F, it is the only CONNECT mes-

sage in that queue.

(b) A very similar argument to that in (a) shows that in s’, queue({g, p)) consists
only of a CONNECT(/) message. (Since it is removed in s, the queue is then empty.)

(c) If |nodes(f)] > 1, then dcstatus(p) # find by Claim 10. Suppose
subtree(f) = {p}. Obviously, no REPORT message is headed toward p in s'. By
Claim 10 and GC-C, testset(f) = @ in s'. Thus, by DC-I(b), destatus(p) # find in

s'. In both cases, nstatus(p) does not change in s.

(d) nlevel(p) = ! in s' by assumption. nlevel(q) = ! in s’ by Claims 9 and 18
and NOT-D. These values are unchanged in s.

GHS-C: By the same argument as in GHS-B(a), adding the INITIATE message
is OK.

GHS-D: by Claim 35.

GHS-E: By code, for the INITIATE added. By Claim 23, there are no leftover
INITIATE messages affected by the change of core.

GHS-1: We show no r € nodes(h) in s is up-to-date. By Claim 38, r is in
testset(h). By the same argument as in GHS-B(c), dcstatus(r) # find.

GHS-J: Vacuously true by Claim 38.

No change affects the rest.

Case 4. nstatus(p) # sleeping, and ! < nlevel(p) in &'
(3b)/(3c) AL (s',7) = Absorb(f,g) for all .
Claims about s':
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

D o .

e

N

by K

1. coNNECT(!) is at head of queue((q,p)), by precondition.
2. 1 < nlevel(p), by assumption. ::
3. lstatus({p,q)) = unknown, or a CONNECT is in quene((p,q)), by Claims 1 and 2 i
and GHS-B(d). 4
4. {q,p) is an external link of g, by Claims 1 and 3. o
5. minlink(g) = (q,p), by Claims 1 and 4 and CON-D. N
6. | = level(g), by Claims 1 and 4 and CON-D. et
: 7. rootchanged(g) = true, by Claims 1 and 4. "
; 8. nlevel(p) < level(f), by definition of level( f).
: 9. level(g) < level(f), by Claims 2, 6 and 8. 3
) 10. Istatus({g, p)) = branch, by Claims 5 and 7 and TAR-H.
> 11. If INITIATE(l', ¢, %) is in subtree(g), then I' < level(f), by Claims 6 and 9.
: 12. If INITIATE(!', ¢, %) is in subiree(f), then I' < level( f), by definition of level( f).
b 13. nlevel(r) < level(f), for all r € nodes(g), by Claims 6 and 9.
3 14. nlevel(r) < level(f), for all r € nodes(f), by definition of level( f).
15. No INITIATE message is in queue((g,p)) or queue({p,q)), by Claim 4 and NOT- s
. H(e). :
' 16. No CONNECT message is in queue({r,t)), where » € nodes(g), (r,t) # (g, p), by
'. Claim 5 and CON-D and CON-F.
17. f # g, by Claim 4. :
,» 18. 1> 0, by Claim 6 and COM.F. '
! 19. level(f) > 0, by Claims 18 and 9. N
. 20. core(f) # nil, by Claim 19 and COM-F. 3
X 21. core(f) € subtree(f), by Claim 20 and COM-F. B
22. If subtree(g) = {q}, then core(g) = nil, by COM-F. .
' 23. if subtree(g) # {q}, then core(g) € subtree(g), by COM-F. N
R 24. Only one CONNECT message is in queue({g,p)), by Claims 1 and 4 and CON-D. S
K 25. testset(g) = @, by Claim 5 and GC-C. .‘
26. testlink(r) = nil, for all r € nodes(g), by Claim 25. L
27. If testlink(p) # nil, then p € testset(f), by definition. s
v 28. If testlink(p) # nil, then nstatus(p) = find, by GHS-H.
. 29. If nstatus(p) = find, then no FIND message is headed toward p, by DC-D(b) and
- DC-H(a). :
' 30. Istatus({r,t)) # unknown, where (r,t) = core(f), by Claim 21 and TAR-A(D). :
| 31. If CONNECT is in queue({r.t)). then no CONNECT is in queue((t,r)), where pt
(r.t) = core(f), by Claim 21. ;
32. If nstetus(p) = find and p € subtree(r), then nstatus(r) = find, for all r, by N
DC-H(a).
:
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

33. If nstatus(p) = find, then no CONNECT is in queue({r,t)), where (r,t) = core(f)
and p € subtree(r), by Claims 30, 31 and 32 and GHS-B(c).

34. If nstatus(p) = find and p € testset(f), then testlink(p) # nil, by Claims 29 and
33.

Absorb(f,g) is enabled in S;(s') by Claims 7, 9 and 5 for TAR and DC; by
Claims 7, 6 and 2, and 5 for NOT; and by Claims 1, 6 and 9, and 5 for CON.

As we shall shortly show, M SF has changed — the connected components
corresponding to f and ¢ have combined. Let h be the fragment corresponding to
this new connected component. We shall show that h = f, i.e., that the core of h

in s is non-nil, and is the same as the core of f in s'.
Claims about s:

35. No CONNECT message is in queue({(q,p)), by Claim 24 and code.

36. Istatus({q,p)) = branch, by Claim 10.

37. (p,q) € MSF, by Claims 35 and 36.

38. subtree(h) is the union of the old subtree( f) and subtree(g) and (p,¢q), by Claim
37.

39. NTIATE(nlevel(p), nfrag(p), nstatus(p)) is in queue({p,q)), by code.
40. level(h) = old level(f), by Claims 11, 12, 13, 14, 15 and 38.

41. core(h) = old core(f), by Claims 11, 12, 13, 14, 15 and 38.

42. h = f, by Claim 41.

43. g € fragments, by Claims 38 and 41.

44. NoTIFY(nlevel(p), nfrag(p)) is added to queue,({p,q)), by code.

First, we discuss how testset(f) changes. If p € testset(f) in s’ because of a
FIND or CONNECT message, then every node in nodes(g) in s’ is in testset(f) in s
because of the same FIND or CONNECT message. If p € testset(f) in s' because
testlink(p) # nil, then a FIND message is added to queue((p,q}) in s, causing every
node formerly in nodes(g) to be in testse#( f). If p is not in testset(f) in s', then no
FIND message is headed toward p, and no CONNECT message is in gqueue((r,t)), with
p € subtree(r); thus, Claim 25 implies that in s, no node formerly in nodes(g) is in

testset( f).

By the previous paragraph, and inspection, the effects of Absord(f,g) are mir-
rored in S;(s) by Claims 36, 38, 42 and 43 for ¢ = TAR; by Claims 27, 28, 34, 38,
42 and 43 for x = DC; by Claims 38. 42, 43 and 44 for + = NOT; and by Claims
35, 38, 42 and 43 for z = CON.
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(3a) GHS-A is vacuously true in s by assumption that nstatus(p) # sleeping in

GHS-B: vacuously true for a CONNECT in gueue({g,p)) by Claim 35. By Claim
4 and CON-D, if CONNECT is in queue((p,q)), then minlink(f) = (p,q). But by
Claim 9 and COM-A, this cannot be. Thus the predicate is vacuously true for a
CONNECT in queue({p,q)).

GHS-D: Suppose nstatus(p) = find in s'. By DC-I(a), p is up-to-date, and by
GHS-1, nlevel(p) = level(f).

GHS-E: Vacuously true by Claims 4, 21 and 41.

GHS-I: As argued in GHS-J, no node formerly in nodes(g) is up-to-date in s.
No change affects nodes formerly in nodes(f).

GHS-J: Let r be any node in nodes(f) in s'. If r is up-to-date, r ¢ testset(f),
and (r,t) is the minimum-weight external link of r, then nlevel(r) < nlevel(t) by
GHS-J. By Claim 9, fragment(t) # g. Thus in s, (r,t) is still external. By DC-
L, inbranch(r) is in subtree(g) (or nil) for all r € nodes(g) in s'. By Claim 21,
core(f) € subtree(f) in s', and by Claim 41, core(f) is unchanged in s. Thus
following inbranches in s from any r formerly in nodes(g) does not lead to core( f),
so no r formerly in nodes(g) is up-to-date in s.

No change affects the rest.
vi) 7 is Receivelnitiate({(q,p),l,c,st). Let f = fragment(p).
(3b)/(3c) Case 1: st = find. Apar(s'.7w) = SendTest(p).

If there is a link (p, r) such that lstatus({p,r)) = unknown in s', then Apc(s’, 7)
= ReceiveFind({q, p)); otherwise Apc(s',7) = ReceiveFind({q,p)) t TestNode(p),
where ¢ is the state resulting from applying ReceiveFind({q,p)) to Spc(s').

Anor(s',7) = ReceiveNotify({q,p),!, ).
Acon(s',m) is empty.
Claims about s':
1. iNiTIATE(!, ¢, find) is at the head of queue,({q,p)), by precondition.
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

. (p,q) € subtree(f), by Claim 1 and DC-D(a).

minlink(f) = nil, by Claims 1 and 2.

. If lstatus({(p,r)) = rejected then fragment(p) = fragment(r), for all r, by TAR-B.
If lstatus({p,r)) = branch, then (p,r) € subtree(f), for all r, by Claim 3 and
TAR-A(a).

6. If (p,r) € subtree(f), then Ilstatus((p,r)) = branch for all r, by TAR-A(b).

7. If |S] = 0 and no Istetus((p,r)) is unknown, then p # mw-root( f), by definition
of mw-root and Claims 4, 5 and 6.

8. p € testset(f), by Claims 1 and 2.

9. dcstatus(p) = unfind, by Claim 1 and DC-D(b).

10. testlink(p) = nil, by Claim 9 and GHS-H.

11. I = level( f), by Claims 1 and 2 and GHS-D.

12. ¢ = core(f), by Claims 1 and 11 and NOT-A.

13. No other FIND message is headed toward p, by Claims 1 and 2 and DC-S.

14. core(f) # nil, by Claim 2 and COM-F.

G W

Let (r,t) = core(f).
15. (r,t) € subtree(f), by Claim 14 and COM-F.
Let p be in subtree(r).

16. If (p, q) # (r,t) then dcstatus(q) = find, by Claim 1 and DC-D(a).
17. If (p, q) # (r,t) then dcstatus(r) = find, by Claim 16 and DC-H(a).

~ A8 W (n.a) # (r.t) then either no CONNECT is in queue({r,t)), or lstatus({t,r)) =

unknown, or a CONNECT is in q-ugue-(.('ﬁrﬁb;‘CEihl‘l"i and GHS-B(c).

19. If (p,q) = (r,t) then either no CONNECT is in queue((r,t)), or lstatus({t,r)) =
unknown, or a CONNECT is in queue((t,r)), by Claim 1 and GHS-B(b).

20. Either no CONNECT is in queue((r,t)), or Ilstatus((t,r)) = unknown, or a
CONNECT is in queue((t,r)), by Claims 18 and 19.

21. Istatus((t,r)) # unknown, by Claim 15 and TAR-A(b).

22. If CONNECT is in queue((t,r)) then no CONNECT is in queue((r,t)), by Claim 15.
23. If no CONNECT is in queue((t,7)) then no CONNECT is in queue({r,t)), by Claims
20, 21 and 22.

24. No CONNECT is in queue((r,t)), by Claims 22 and 23.

25. If (p,q) # (r,t) then AfterMerge(p,q) is not enabled (for DC or NOT), since
(r,t) = core(f).

26. If (p,q) = (r,t) then AfterMerge(p,q) is not enabled (for DC' or NOT), by
Claim 24 and GHS-L.
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC', NOT, CON

27. If there is no unknown link of p, then there is no external link of p, by Claims
4 and 5.
28. If (p, q) # (7, ), then ¢ is up-to-date, by Claim 16 and DC-I(a).

SendTest(p) is enabled in Stagr(s") by Claims 8 and 10. ReceiveFind({g,p)) is
enabled in Spc(s’') by Claims 1, 25 and 26. ReceiveNotify({(¢,p),l,c) is enabled in
Snor(s') by Claims 1, 25 and 26.

Claims about t: (only defined when there are no unknown links of p in s')

29. p € testset(f), by Claim 8.
30. There is no external link of p, by Claim 27.
31. dcstatus(p) = find, by definition of ¢.

TestNode(p) is enabled in ¢ by Claims 29, 30 and 31.
Claims about s:

32. level(f) = 1, by Claim 11 and code.

33. core(f) = ¢, by Claim 12 and code.

34. No FIND message is headed toward p, by Claim 13 and code.
35. No CONNECT is in queue((t,r)), by Claim 24 and code.

N

36. There is no unknown link of p (in §') if and only if testlink(p) = nil (in s), by
Claim 10 and code.

37. There is no unknown link of p (in s') if and only if p ¢ testset(f) (in s), by
Claims 34, 35 and 36.

38. If |S| > 0 (in s') then a FIND message is in subtree( f), by Claim 5 and code.
39. If |S] = 0 and there is no unknown link of p (in s'), then p # mw-root(f) (in s),
by Claim 7 and code.

40. If |S| = 0 and there is no unknown link of p (in s'), then either a REPORT
message is headed toward mw-roof( f), or there is no external link of f (in s), by
Claims 28 and 39 and code.

41. If there is an unknown link of p (in s'), then nstatus(p) = find (in s), by code.
42. minhnk(f) = nil, by Claims 38, 40 and 41.

The changes (or lack of changes) to the remaining derived variables are obvious.

The effects of SendTest(p) are mirrored in St4g(s) by Claims 11, 12, and 37
for the changes, and Claims 32, 33, 3 and 42 for the lack of changes. If there is
an unknown link of p in &', then the effects of ReceiveFind({q,p)) are mirrored in
Spc(s) by Claims 5, 6, 36 and 37 for changes. and Claims 3, 11, 12, 32, 33, 37 and
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON :::‘:‘.:
!:l‘!f
42 for lack of changes. If there is no unknown link of p in s’, then the effects of ::',:
ReceiveFind((q,p)) followed by TestNode(p) are mirrored in Spc(s) by Claims 5, 6, '
36 and 37 for changes, and Claims 3, 11, 12, 32, 33 and 42 for lack of changes. The .‘
effects of ReceiveNotify({g,p),!,c) are mirrored in SyoT(s) by Claims 3, 4 and 42. ‘::;“
Scon(s') = Scon(s) by Claims 3, 11, 12, 32, 33, and 42. W
he
N
W]
Case 2: st # find.
WX
Anor(s',®) = ReceiveNotify({(q,p),1,c). Az(s', ) is empty for all other z. ..:‘

]
Claims about s': - i
1. NITIATE(/, ¢,found) is at the head of queuey({q, p)), by precondition. (_' .
2. (p,q) € subtree(f), by Claim 1 and NOT-H(e). -
3. nlevel(p) < [, by Claim 1 and NOT-H(a). .:{E
4. nlevel(p) < level(f), by Claims 1, 2 and 3. ,‘.’_:g.
5. p # minnode( f), by Claims 1 and 2 and NOT-I. :E,;':
6. If Istatus({p,r)) = branch, then (p,r) € subtree(f), for all r # ¢, by Claim 5 and A
AR-A(a). Y
7. If (p,r) € subtree(f), then Istatus({p,r)) = branch, for all r # ¢, by TAR-A(Db). ‘i
8. p is not up-to-date, by Claim 4 and GHS-I. .:QE;',E
9. nstatus(p) # find, by Claim 8 and DC-I(a). o
10. (p,q) # core(f), by Claim 1 and GHS-E. ot
11. AfterMerge(p,q) for NOT is not enabled, by Claim 10. - : :-,

By Claim 9, dcstatus(p) = unfind in both s’ and s, and thus minlink(f) is ..';'
unchanged. The changes, or lack of changes, to the remaining derived variables are o
b ] . K]
obvious E: ”::::
Ny

By Claims 1 and 11. RecesveNotify({q, p),!, ¢) is enabled in Syor(s'). Its effects :';:EE(

are mirrored in Syo7(s) by Claims 6 and 7. O]
N

It is easy to see that S,(s') = §,(s) for all other z. ::\.

2

- S e s

g

(3a) GHS-A: By DC-D(a), (p, g) € subtree(f). So by GHS-A(a), nstatus(p) # ;,:
sleeping in s'. Since the same is true in s, the predicate is vacuously true. ':".:
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON ,
2
: GHS-B: Vacuously true for a CONNECT in queue({¢,p)) by GHS-B(a) and the Py
# ¢
: fact that INITIATE is first in the queue. Vacuously true for a CONNECT in queue((p, q)) 4
; by GHS-B(b) and the presence of INITIATE in queue({g, p)). The only other situation <
. to consider is the addition of an INITIATE message to queue({p,7)), r # ¢, with _
' Istatus({p,r)) = branch. As shown in (b)/(c), (p,r) € subtree(f). By NOT-H(e), j
X either (p, q) = core(f) or p is a child of ¢, so (p,r) # core(f). Thus by CON-E, no ‘:
: CONNECT is in queue({p,r)), or in queue((r, p}). Y
N GHS-C: Adding a FIND message does not falsify the predicate. Suppose a TEST X
Y message is added to queue((p,r)). Then in s', st = find. )
X Bt
; ¢
by Case 1: (p,r) is an internal link of f. By TAR-A(b), (p.r) # subtree(f). By :

COM-F, (p,r) # core(f). By CON-E, no CONNECT is in queue((p,r)).
' N
' Y
‘ Case 2: (p,r) is an external link of f. Since there is a FIND message in subtree( f) g::
%: in ', minlink(f) = nil. By CON-D, no CONNECT is in queue((p,r)). t
1y ‘¢
A GHS-D: Since it is true for the INITIATE in queue((q,p)) in s, it is true for any ‘
¥ ,
K INITIATE added in s. 3
. 3
K. GHS-E: As shown in GHS-B, (p,r) # core(f). !
: GHS-F: By NOT-H(a), nlevel(p) increases, so the predicate is still true for any ]
2: leftover TEST messages. The predicate is true by code for the TEST message added. :
3 w4
¢ »3
’ GHS-G: Case 1: An ACCEPT is in queue((p,r)). By NOT-H(a), nlevel(p) in- N
creases, so the predicate is still true.
® '.
- st

, Case 2: An ACCEPT is in queue({r,p)). By TAR-D, testlink(p) = (p,r). By — ~— =~ - ¥
. GHS-H, nstatus(p) = find. But by Claim 9 (for both Case 1 and Case 2 of (3b)/(3c)), 4
i nstatus(p) # find. So there is no ACCEPT in queue((r.p)), and the predicate is "
E: vacuously true. ‘
' ‘
: GHS-H is true by code. N
K :
) ”
B GHS-I: Case 1: st = find. By code nlevel(p) = I, and by Claim 32 in Case 1 of ?
1 (3b)/(3c), 1 = level( f). )
A 4
! :
;, Case 2: st # found. By NOT-H(a), nlevel(p) < I. Thus nlevel(p) < level(f), o
" so by GHS-I, p is not up-to-date in s'. Since all inbranches remain the same in s .
X and nstatus(p) # find in s, p is still not up-to-date.
:. 3
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

GHS-J: Case 1: st = find. By Claim 37 in Case 1 of (3b)/(3c), p & testset(f)

in s if and only if there is no external link of p, so the predicate is vacuously true.

Case 2: st # find. As in GHS-I, Case 2, p is not up-to-date, so the predicate
is vacuously true.

vii) 7 is ReceiveTest((q,p),l,c). Let f = fragment(p).
Case 1: nstatus(p) = sleeping in s'.

{3b)/(3c) Arar(s'.m) = ChangeRoot(f) t m, where t is the same as STar(s")
except that rootchanged( f) = true and lstatus(minlink(f)) = branch in ¢.

A, (s'.m) = ChangeRoot(f) for all other z.
Claims about s':

TEST(l,c) is at the head of queue,({g.p)). by precondition.
nstatus(p) = sleeping, by assumption.

subtree( f) = {p}, by Claim 2 and GHS-A.

manlink( f) # nil, by Claim 3 and definition.
rootchanged( f) = false, by Claim 2, GHS-A(¢) and TAR-H.
level(f) = 0, by Claim 3 and COM-F.

nlevel(p) = 0, by Claims 3 and 6.

[>1, by TAR-M.

. 1 > nlevel(p), by Claims 7 and 8.

10. | > level(f), by Claims 6 and 8.

11. awake = true, by Claim 1 and GHS-A(b).

Claims about s:

Ll o

© MmN o o

12. The TEsT message is requeued, by Claim 9.

13. lstatus(minlink( f)) = branch, by code.

14. conNECT(0) is in queue(rninlink(f)), by code.

15. minlink(f) does not change (i.e., is still external), by Claims 13 and 14.
16. rootchanged(f) = true, by Claims 14 and 15.

ChangeRoot( f) is enabled in S;(s') by Claims 11, 3 and § for z = CON, and
by Claims 11, 4 and 5 for all other z.

TAR: Effects of ChangeRoot(f) are mirrored in t by its definition. 7 is enabled
in t by definition. Its effects are mirrored in St4gr(s) by Claim 12.
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC', NOT, CON

For all other z, the cffects of ChangeRoot( f) are mirrored in §;(s) by Claim
16 for DC and NOT, and by Claim 14 for CON.

(3a) Pgus is true in s by essentially the same argument as in = = Start(p).
Case 2.

Case 2: nstatus(p) # sleeping in s’.

(3b)/(3¢c) Arar(s',m) = = if | < nlevel(p) or nlevel(p) = level( f) in s'. and is
empty otherwise.

Apc(s',m) = TestNode(p) if | < nlevel(p), ¢ = nfrag(p), testlink(p) = (p,q)
and Ilstatus({p,r)) # unknown for all r # ¢, in s’, and is empty otherwise.

A (s',m) is empty for all other z.
First we discuss what happens to testset(f) and minlink( f).

We show testset( f) is unchanged, except that p is removed from festset(f) if
and only if | < nlevel(p), ¢ = nfrag(p), testlink(p) = (p,q), and there is no link
(p.r), r # ¢, with Istatus((p,7)) = unknown. If testlink(p) does not change from
non-nil to nil (or vice versa), then obviously testse#( f) is unchanged. The only
place testlink(p) is changed in this way is in procedure Test(p), exactly if there
arc no more unknown links of p; Test(p) is executed if and only if | < nlevel(p),
¢ = nfrag(p). and testlink(p) = (p,¢) in s'. Suppose testlink(p) is changed from
non-nil to nil. Since testlink(p) # nil in &', GHS-M implies that no FIND message is
headed toward p, and no CONNECT message is in queue((r.t)), where (r,t) = core(f)

and p € subtree(r). Thus in s. since testhnk(p) = nil, p is not in testset( f).

Now we show that minlink( f) does not change. If destatus(p) does not change,
and no REPORT message is added to any queue. then obviously minlink( f) does not
change. Suppose destatus(p) changes. and a REPORT nessage is added to a queue (in
procedure Report(p)). Then | < nlevel(p). ¢ = nfrag(p), testlink(p) = (p,q), there

are no more unknown links of p (so testlink(p) is set to ml), and findcount(p) = 0.
Claims about s':
1. testlink(p) = (p.q). by assumption.
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

nstatus(p) = find, by Claim 1 and GHS-H.

manlink( f) = nil, by Claim 2.

. If (p,r) = core(f), then a FIND message is in queue({p,r)), or destatus(r) = find,
! or a REPORT message is in queue((r,p}), by Claim 2 and DC-J.

5. p is up-to-date, by Claim 2 and DC-I(a).

w1

Claims about s:

6. If p # muw-root(f), then either there is no external link of f, or a REPORT is
headed toward mw-root(f), by Claim 5 and code.

7. If p = mw-root(f), then either a FIND is in queue((p,r)), or dcstatus(r) = find,
or a REPORT is in queue({r,p)), where core(f) = (p,r), by Claim 4 and code.

8. minlink(f) = nil, by Claims 6 and 7.

A T - -

Claims 3 and 8 give the result.

o i " W e

TAR: First, suppose [ > nlevel(p) and nlevel(p) # level(f).

Claims about s':

PR K KK F E

[ > nlevel(p), by assumption.

nlevel(p) # level(f), by assumption.

p is not up-to-date, by Claim 2 and GHS-1.

nstatus(p) # find, by Claim 3 and DC-I(a).

testlink(p) = nil, by Claim 4 and GHS-H.

There is no protocol message for (p, q}, by Claim 5 and TAR-D.

I

The TEST message in queue({q, p)) is a protocol message for (g, p), by Claim 6.
testlink(q) = (g, p), by Claim 7 and TAR-D.

There is exactly one protocol message for (g, p), by Claim 8 and TAR-C(c).
10. There is only one TEST message in tarqueue({g, p)), by Claim 9.

o -

-
LN oW

jo o

i ~y Claims 6 and 10, the TEST is the only TAR message in tarqueue((q,p))-
Si ..e the TEST message is requeued in GHS, tarqueue({q,p)) is unchanged. By

3 earlier remarks about testset( f) and minlink(t), and by inspection, the other derived
variables (for TAR) are unchanged. Thus, ST4r(s8’) = STAR(S),

Second, suppose ! > level(p) and nlevel(p) = level(f). Then the TEST mes-
sage is requeued in GHS and in TAR. By earlier remarks about testlink(f) and
minlink( f), and by inspection, Spap(s')7S7.4r(s) is an execution fragment of TAR.

L Third, suppose | < nlevel(p). Let g = fragment(q).

»
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

Claims about s':

1. TEST(/,c) is at the head of queuey({q,p)), by precondition.

2. 1 < nlevel(p), by assumption.

3. If Istatus({q,p)) # rejected, then ¢ = core(g) and ! = level(g), by Claim 1 and
TAR-E(b).

4. If Istatus({q,p)) = rejected, then ¢ = core(f) and [ = level(f), by Claim 1 and
TAR-E(c).

3. ¢ # nil, by Claim 1 and TAR-M.

Next we show that ¢ = core(f) if and only if ¢ = nfrag(p). First, suppose
¢ = core(f).

6. ¢ = core( f), by assumption.

7. If Istatus({g,p)) = rejected, then nlevelp) = level(f), by Claims 2 and 4 and
definition of level( f).

8. If Istatus({g, p)) # rejected, then core(g) = core(f), by Claims 3 and 6.

9. If lstatus({g, p)) # rejected, then c € subtree(g) and ¢ € subtree( f), by Claims 5,
6 and 8 and COM-F.

10. If Istatus({q,p)) # rejected, then f = g, by Claim 9 and COM-G.

11. If Istatus({gq,p)) # rejected, then ! = level(f), by Claims 3 and 10.

12. If Istatus({g,p)) # rejected, then nlevel(p) = level(f), by Claims 2 and 11 and
definition of level( f).

13. nlevel(p) = level(f), by Claims 8 and 12.

14. nfrag(p) = core(f), by Claim 13 and NOT-A.

15. nfrag(p) = ¢, by Claims 6 and 14.

Now suppose ¢ = nfrag(p).

16. ¢ = nfrag(p), by assumption.

17. ¢ € subtree(f), by Claims 5 and 16 and NOT-F.

18. If Istatus((q, p)) # rejected, then ¢ € subiree(g), by Claims 5 and 3 and COM-F.
19. If Istatus({q,p)) # rejected, then f = ¢, by Claims 17 and 18 and COM-G.

20. If Istatus({q,p)) # rejected, then ¢ = core( f), by Claims 3 and 19.

21. ¢ = core(f), by Claims 4 and 20.

7 is enabled in ST4g(s’) by Claim 1. We now verify that the effects are mirrored
in Stagr(s). By the above argument, ¢ # frag(p) if and only if ¢ # core(f). Thus.
the body of Receive Test for T AR is simulated correctly. Consider procedure Test(p).
If it is executed, then ¢ = nfrag(p) in s'. By Claim 21, nfrag(p) = core(f), and by
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

NOT-E, nlevel(p) = level(f). Thus the TEST messages sent in procedure Test(p)
in GHS correspond to those sent in TAR. By the discussion at the beginning of
Case 2, testset(f) is updated correctly, and minlink(f) is unchanged. The changes
or lack of changes to the other derived variables are obvious.

DC: First, suppose | < nlevel(p), ¢ = nfrag(p), testlink(p) = (p,q), and
Istatus({p,r}) # unknown for all r # ¢, in s'.

Claims about s':

TEST(l,c) is at the head of queue,({g,p)), by precondition.

l < nlevel(p), by assumption.

¢ = nfrag(p), by assumption.

testlink(p) = (p, q), by assumption.

. Istatus({p,r)) # unknown, for all r # ¢, by assumption.

. p € testset(f), by Claim 4 and TAR-C(b).

. manlink( f) = n:l, by Claim 6 and GC-C.

. If Istatus({p,r)) = branch, then (p,r) € subtree(f), for all r # ¢, by Claim 7 and
TAR-A(a).

9. If Istatus((p, q)) = rejected, then fragment(r) = f, for all r # ¢, by TAR-B.
10. ¢ = core(f), by Claims 1, 2 and 3 and the argument just given for TAR.
11. fragment(q) = f, by Claims 1 and 10 and TAR-N.

12. There is no external link of p, by Claims 8, 9, 11 and 5.

13. nstatus(p) = find, by Claim 4 and GHS-H.

® N oo W

TestNode(p) is enabled in Spc(s') by Claims 6, 12 and 13. Its effects are
mirrored in Spc(s) by the earlier discussion about, testset(f) and minlink(f) and
by Claim 12. (The disposition of the rest of the derived variables should be obvious.)

Now suppose [ > nlevel(p) or ¢ # nfrag(p) or testlink(p) # (p,q) or there is a
link (p,r) with Istatus({p,r)) = unknown and r # q. Then Spc(s’) = Spc(s) by
inspection and earlier discussion of testset(f) and minlink( f).

NOT and CON: We want to showS,(s') = S,(s) for z = NOT and CON.
The only derived variables for these two that are not obviously unchanged are
minlink(f) and rootchanged(f). (Because of the presence of the TEST message in
queuve({q, p), GHS-A(b) implies that awake = true in s', so changes to nstatus(p) do
not change ewake.) Since we already showed minlink( f) is unchanged, it is obvious

that reotchanged( f) is unchanged.
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Section 4.2.7: GH S Simultaneously Siinulates TAR, DC', NOT, CON

(3a) GHS-A is vacuously true by the assumption that nstetus(p) # sleeping.

GHS-B: First we show that if the hypotheses of this predicate are false for a
link in s/, then they are still false in s. The only way they could go from false
to true is by lstatus((p,q)) going from unknown to rejected. But since TEST is in
queue({q,p)) in s', by GHS-C no CONNECT is in queue((g,p)) in &', or in s.

Now we show that the state changes do not invalidate (a) through (d) for a
link, assuming that the hypotheses are true for that link in s'.

Case A: TEST is requeued. No change affects the predicate.

Case B: ACCEPT or REJECT is added to queune((p,q)). We already showed that
no CONNECT is in queue({q,p)). Because of the TEST in queue({q, p)), the precondi-
tions of the predicate are not true for a CONNECT in queue({p,q)) in s'.

Case C: TEST is added to some queune({p,r)). Since lstatus((p,r)) = unknown,
the preconditions are not true in &' for a CONNFCT in queue({r,p}). Since the TEsT
is added, testlink(p) = (p,q) in s'. By GHS-H, nstatus(p) = find in s'. So by
GHS-B(c¢), the preconditions are not true in s’ for a CONNECT in queue({p,r)).

Case D: REPORT is added to queue(inbranch(p)). Let (p,r) = inbranch(p) in s'.
As in Case 3, the predicate is vacuously true for a CONNECT in queue({p,r)). As in
Case 3, nstatus(p) = find in §', so p is up-to-date by DC-I(a). By GHS-I, nlevel(p) =
level( f). Since by DC-L, (p,r) € subiree( f), there cannot be an INITIATE( nlevel(p) +
1, *, %) message in queue({r,p)). By GHS-B(a), the preconditions are not true for a
CONNECT in queue({r,p)).

GHS-H: By code.

GHS-J: If p is removed from testset( f), then as in Claim 12 of (3b)/(3c¢) for
DC, there is no external link of p.

GHS-C: Case 1: rEIECT is added to quene({(p,q)). Then | < nlevel(p),
nfrag(p), and testlink(p) #£ (p,q)) in s'. As argued in Lemma 17, V(ufymg (3c) of
Case 1 for m = ReceiveTest, (p,¢) is an internal link of f. By TAR-E(a), (p,q) #
core( f), so by CON-E, uo CONNECT is in queune({p, q)).

Case 2: TEST is added to quene({p,r)). Then in &', I < nlevel(p). ¢ = nfrag(p).
testlink(p) = (p,q), and Istatus({p,)) = nuknown.
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON ‘
. "'
..' t
Case 2a: (p,7) is an internal link of f. By TAR-A(b), (p,r) & subtree(f). By , "
COM-F, (p.r) # core(f). By CON-E, no CONNECT is in queue((p,r)). -'f
» i
Case 2b: (p,r) is an external link of f. By GHS-H, nstatus(p) = find. Thus ",',E:
minlink(f) = nil. By CON-D, no CONNECT is in queue((p,r)). 4’:::!
. '.‘t
GHS-G: Suppose ACCEPT is added to queue((p,q)). Then! < nlevel(p)ins’. As e
argued in Lemma 17, verifying TAR-F for 7 = ReceiveTest, | = level(fragment(q)). i;;;c.;‘
By GHS-F, I < nlevel(q). So I = nlevel(q). :E::,;.‘:
!
No changes affect the rest. uﬁ':’,
LN
X
viii) 7 is ReceiveAccept({q,p)). Let f = fragment(p). ,::».‘
!.“l:}
(3b)/(3¢c) Arar(s',m) = m. Apc(s',m) = TestNode(p). A.(s',7) is empty for ,:é::
all other z. ::e'.‘
An argument similar to that used in 7 = ReceiveTest((q, p), 1, c), Case 2, shows ‘:;::::
that minlink( f) is unchanged. .E:S‘:i
fonyte
TAR: Claims about s': .'::
@
1. ACCEPT is at the head of queuep({g,p)), by precondition. :Ej
2. There is a protocol message for (p,q), by Claim 1. F‘\‘
3. testlink(p) = (p, ¢), by Claim 2 and TAR-D. o
4. No FIND message is headed toward p, by Claim 3 and GHS-M. %
5. No CONNECT message is in queue((r,t)), where (r,t) = core(f) and p € subtree(r), i
by Claim 3 and GHS-M. :.::::::
s
. i
Claims about s: '::‘h“

6. testlink(p) = nil, by code.

7. No FIND message is headed toward p, by Claim 4.

8. No CONNECT message is in queue({r,t)), where (r,t) = core(f) and p € subtree(r),
by Claim 5 and code.

9. p d testset(f), by Claims 6, 7 and 8.

7 is enabled in Spap(s') by Claim 1; its effects are mirrored in St4r(s) by
Claims 6 and 9, and discussion of minlink(f). (The disposition of the remaining

derived variables should he obvious.)

DC: More Claiins about s':
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON ]
A

4
10. p € testset( f), by Claim 3. o
11. ménlink(f) = nil, by Claim 10. )

12. fragment(q) # f, by Claim 1 and TAR-F.
13. level(f) < level(fragment(q)), by Claim 1 and TAR-F. e,
14. Istatus({p,q)) # branch, by Claims 11 and 12 and TAR-A(a). :g::‘
15. (p, q) is the minimum-weight external link of p with lstatus unknown, by Claims ::::
3 and 14 and TAR-C(d). "
16. If lstatus({p,r)) = rejected, then (p,r) is not external, for all r, by TAR-B.
17. If Istatus({p,r)) = branch, then (p,r) is not external, for all r, by Claim 11 and ;
TAR-A(a).
18. If {p,7) is external, then Ilstatus({p,r)) = unknown, for all r, by Claims 16 and "

17. [ ]
s

19. {(p,q) is the minimum-weight external link of p, by Claims 15 and 18. E:::
20. nstatus(p) = find, by Claim 3 and GHS-H. :::’
W
ht

TestNode(p) is enabled in Spc(s') by Claims 10, 19 and 13, and 20. Its effects '
are mirrored in Spc(s) by Claims 9, 19 and 6. W
WG
w,
NOT and CON: 1t is easy to verify that S,(s') = S;(s) for r = NOT and .:':n:
CON. WX
S g_:
g
)
(3a) GHS-A: By Claim 20, vacuously true in s. 5"'

X
GHS-B: Suppose a REPORT message is added to queue({p,r)) in s. Let (p,r) =
inbranch(p). By Claim 20 and DC-I(a), p is up-to-date in s'. By GHS-I, nlevel(p) = h‘r
level(f). By DC-L, (p,r) € subtree(f), so no INITIATE(nlevel(p) + 1, *,*) can be in f.
queue({p,r)) or queue({r,p)). By GHS-B(a), the preconditions for a CONNECT in E :u
queue({p.r)) or queue((r,p)) are not true in s’, or in s. -
it
B%.t
GHS-H: By code, testlink(p) = nzl. ' '.{
f\
GHS-J: By Claim 19 and GHS-G.
No changes affect the rest. :.» "

ot

1Y
ix) m is ReceiveReject({(q,p)). Let f = fragment(p). E X
(36)/(3¢) Aran(s'm) = . N
o

= e
154 ?:
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Section 4.2.7: GHS Simultaneously Simulates TAR, DC, NOT, CON

Apc(s',m) = TestNode(p) if there is no r # ¢ such that Istatus((p,r)) = un-

known in s, and is empty otherwise.
A,(s',m) is empty for all other z.

An argument similar to that in m = ReceiveTest({g,p),[, c). Case 2, shows that
manlink( f) is unchanged.

TAR: Claims about s':

REJECT is at the head of queue,((g,p)), by precondition.

There is a protocol message for {p, ¢), by Claim 1.

testlink(p) = (p, ¢}, by Claim 2 and TAR-D.

No FIND message is headed toward p, by Claim 3 and GHS-M.

5. No CONNECT message is in queue((r,t)), where (r,t) = core(f) and p € subtree(r),
by Claim 3 and GHS-M.

6. nstatus(p) = find, by Claim 3 and GHS-H.

7. nlevel(p) = level(f), by Claim 6, DC-I(a) and GHS-1.

8. nfrag(p) = core(f), by Claim 7 and NOT-A.

Ll

Claims about s:

9. If there is no link (p,r) with Istatus({p,r)) = unknown (in s'), then testlink(p) =
nil (in s), by code.

10. No FIND message is headed toward p, by Claim 4.

11. No CONNECT message is in queue({r,t)), by Claim 5.

12. If there is no link (p, r) with Istatus((p,r)) = unknown (in s'), then p ¢ testset(f)
(in s), by Claims 9, 10 and 11.

7 is enabled in S7ap(s') by Claim 1. Its effects are mirrored in Star(s) by
Claims 9, 12, 7 and 8, and earlier discussion of minlink(f).

DC: If there is a link (p,r) such that lstatus({p,r)) = unknown and r # g,
then it is easy to check that Spc(s') = Spc(s). Suppose there is no unknown link
(other than (p,g)).

More claims about s':

13. Istatus({p,r)) # unknown, for all r # ¢, by assumption.

14. minlink( f) = nil, by Claim G.

15. If Istatus({p,r)) = branch, then (p,r) € subtree( f), for all r # ¢, by Claim 14
and TAR-A(a).

~~~~~

..........
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON P
W,
16. If Istatus((p,r)) = rejected, then fragment(r) = f, for all r # ¢, by TAR-B. ":;
17. fragment(q) = f, by Claim 1 and TAR-G. hh
18. There are no external links of p, by Claims 13, 15, 16 and 17. n!:',
19. p € testset(f), by Claim 3 and TAR-C(b). o,
Ll
ol
TestNode(p) is enabled in Spc(s’) by Claims 19, 18 and 6. Its effects are ::,:
L]
mirrored in Spc(s) by Claims 9 and 12. ‘:;:
NOT and CON: 1t is easy to show that Sy(s') = §z(s) for z = NOT and e
1t
:I:'.
(3a) GHS-A: Vacuously true by Claim 6. f’:::
X
. i
GHS-B: Either a TEST or a REPORT message is added. The argument is very ::E
similar to that in 7 = ReceiveTest({g, p),!,c), Case 2 of (a). 2
O3
GHS-C: Only affected if a TEST is added. The argument is very similar to that .‘.:f
in # = ReceiveTest({(q,p},!, c), Case 2 of (a). i:s
'y
GHS-H: The argument is very similar to that in 7 = ReceiveTest({q, p), [, c), -"
Case 2 of (a). it
3
%
GHS-I: Suppose p is removed from testset(f). By Claim 12, this only happens ‘:""
when there are no more unknown links. By Claim 18, p has no external links if % ':
there are no more unknown links. ) i
0,
by
No changes affect the rest. . '&
A
x) « is ReceiveReport({q,p),w). Let f = fragment(p). _
(3b)/(3c) Case 1: (p,q) = core(f), nstatus(p) # find and w > bestwit(p) in
s'. This case is divided into two subcases; first we prove some claims true in both 2
subcases. Let (r,t) be the minimum-weight external link of f in s'. (Below, we o
show it exists.) I
. Nt
Claims about s': '.‘:c_
o
A
1. REPORT(w) is at the head of queue({q,p)), by assumption. :',
2. (p,q) = core(f), by assumption. )
3. nstatus(p) # find, by assumption. "
156 ;
o
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

4. w > bestwi(p), by assumption.

5. ReceiveReport((q,p),w) is enabled in Spc(s'), by Claim 1.

6. ComputeMin(f) (for GC) is enabled in §4(Spc(s’)), by Claims 2, 3, 4 and 5 and
argument in proof of Lemma 19, Case 1 of verifying (3c) for 7 = ReceiveReport.

7. minlink(f) = nil, by Claim 6.

8. accmin(f) # nil, by Claim 6.

9. testset(f) = 0, by Claim 6.

10. ComputeMin(f) (for COM) is enabled in S2(S4(Spc(s’))), by Claim 6 and
argument in proof of Lemma 15, verifying (3c) for 7 = ComputeMin.

11. level(f) < level(fragment(t)), by Claim 10.

12. accmin(f) = (r,t), by Claims 8 and 9 and GC-A.

13. r is up-to-date, by Claim 9, DC-N, and choice of (r,t).

14. nlevel(r) = level(f), by Claim 13 and GHS-L.

15. nlevel( f) < nlevel(t), by Claims 9 and 13 and GHS-J.

16. No CONNECT message is in either queue of core( f), by Claim 9.

17. No CONNECT message is in any internal queue of f, by Claim 16 and CON-E.
18. inbranch(p) = (p, g}, by Claims 1 and 2 and DC-A(a).

19. p is up-to-date, by Claims 2, 9 and 18.

20. findcount(p) = 0, by Claim 3 and DC-H(b).

21. All children of p are completed, by Claims 19 and 20 and DC-K(a).

22. r € subtree(p), by Claims 1, 2, 3 and 4 and DC-P(b).

23. Following bestlinks from p leads along edges of subtree( f) to (r,t), by Claims 9,
19, 21 and 22, choice of {r,t), and DC-K(b) and (c).

The following remarks apply to both Subcase 1la and Subcase 1b: Compute-
Min(f) is enabled in S,(s') by Claims 7, 8 and 9 for x = TAR; by Claims 7, 14 and
15 (and definition of (r,t)) for ¢ = NOT; and by Claims 7, 11 and 17 for z = CON.
7 is obviously enabled in Spc(s’).

Subcase la: Istatus(bestlink(p)) = branch. Apc(s',7) = 7. Ag(s',m) =
ComputeMin( f) for all other z.

More Claims about s':

24. lstatus(bestlink(p)) = branch, by assumption.
25. bestlink(p) € subtree( f), by Claims 7 and 24 and TAR-A(a).
26. p #r = mw-minnode( f), by Claims 23 and 25.

Claimns about s:
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

27. The effects of = are reflected in Spe(s), by code.

28. The effects of ComputeMin(f) are reflected in S4(Spc(s)), by Claim 27 and
argument in proof of Lemma 19, Case 1 of verifying (3c) for # = ReceiveReport.
29. minlink(f) = (r,t), by Claims 28 and 12.

30. Following bestlinks from p leads to {r,t), by Claim 23.

31. tominlink(p) = bestlink(p), by Claims 30 and 24.

32. p # minnode(f), by Claims 29 and 24.

33. p = root(f), by Claims 2, 22 and 29.

By Claims 3, 4 and 17, procedure ChangeRoot(p) is executed in GHS. The
effects of ComputeMin(f) are reflected in S,(s) by Claims 29 and 12 for z = TAR;
by Claim 29 and choice of (r,t) for £ = NOT; and by Claims 29, 31, 32, 33 and
choice of (r,t) for z = CON. The effects of 7 are reflected in Spc(s) by Claim 27.

Subcase 1b: Istatus(bestlink(p)) # branch.

Apc(s',m) = m tpec ChangeRoot( f), where tpc is the result of applying 7 to
Spc(s').

Acon(s',m) = ComputeMin(f).

For all other z, A,;(s',7) = ComputeMin(f) t; ChangeRoot( f), where t, is the
result of applying ComputeMin(f) to S,(s").

More claims about s':

34. Istatus(bestlink(p)) # branch.

35. bestlink(p) = (r,t), by Claims 23, 34 and 7 and TAR-A(b).
36. p=r = mw-minnode f), by Claim 35.

37. nstatus(q) # sleeping, by Claim 1 and GHS-A.

38. awake = true, by Claim 37.

39. rootchanged( f) = false, by Claim 7 and COM-B.

Claims about t,, z £ CON:

40. If z = TAR, then minlink(f) = (r,t), by Claim 12.

41. If z = NOT, then minlink(f) = (r,t), by choice of (r,t).

42. If r = DC, then minlink(f) = (r,t), by Claims 6 and 12 and argument in proof
of Lemma 15, verifying (3c) for 7 = Compute Min.
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON ::.:::,
i'::l':
43. awake = true, by Claim 38. n:.:“if
44. rootchanged(f) = false, by Claim 39. X
The effects of = are mirrored in t pc and of ComputeMin(f) in tT4r and tyor ":E;,"
5 1.
by definition. ChangeRoot(f) is enabled in t, by Claims 40, 43 and 44 for z = T AR, ,,::ﬁ;;?
by Claims 41, 43 and 44 for £ = NOT; and by Claims 42, 43 and 44 for z = DC. ;:::f::
' it
Claims about s: a?
-.:‘ 4
Ry
45. minlink(f) = (r,t), by argument in proof of Lemma 19. Case 1 of verifying (3c) R
for 7 = ReceiveReport. é:::::
46. Ilstatus(bestlink(p)) = branch, by code. .!'
47. lstatus(minlink(p)) = branch, by Claims 35 and 45. iy
48. CONNECT is added to queue(bestlink(p)), by code. ,’o:::‘
49. rootchanged(f) = true, by Claims 45 and 48. ;::‘::'.:
ol
The effects of ChangeRoot(f) are mirrored in Sz(s) by Claims 47 and 49 for .‘
¢ = TAR; by Claim 49 for z = DC and NOT. The effects of ComputeMin(f) are .':,' :‘
mirrored in Scon(s) by Claims 36, 14 and 45. ':':‘:‘7
Wit
ul':l'
_ e
®
. 0 ‘§\
Case 2: (p,q) # core(f) or nstatus(p) = find or w < bestwt(p) in s'. !3%‘.:
& ‘I:‘,a
Apc(s',®) =m. A,(s',7) is empty for all other z. ‘3‘,7'.:
THVRY
Subcase 2a: (p,q) # core(f) in s'. Suppose (p,q) = inbranch(p) in s’. By DC- ".?b
B(b), destatus(p) = unfind. Thus, the only effect is to remove the REPORT message. d ;
h
Thus Spc(s')7Spc(s) is an execution fragment of DC. As proved in Lemma 19, ™ o
Case 2a of verifying (3b) for 7 = ReceiveReport, minlink(f) is unchanged. Thus ':f
S:(s') = S,(s) for all z # DC. 'y
W
Now suppose (p, q) # inbranch(p). "SE
Claims about s': S::
@
1. REPORT is at head of queue(({g,p)), by precondition. AN
2. (p,q) # core(f), by assumption. :;«”'
3. (p,q) # inbranch(p), by assumption. E::
4. destatus(p) = find, by Claims 1, 2 and 3 and DC-A(g). SO
5. pis up-to-date, by Claim 4 and DC-I(a). ;..,
6. ¢ is a child of p, by Claims 3 and 5. ::V
'
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

7. findcount(p) > 0, by Claims 1, 5 and 6 and DC-K(a).

8. No FIND message is headed toward p, by Claim 7 and GHS-M.

9. No CONNECT is in queue({r,t)), where (r,t) = core(f) and p € subtree(r), by
Claim 7 and GHS-M.

10. p € testset(f) if and only if testlink(p) # nil, by Claims 8 and 9.

Obviously, = is enabled in Spe(s’). By Claim 10 and inspection, the effects
of ® are mirrored in Spc(s). Since the proof of Lemma 19, Case 2a of verifying
(3b) for m = ReceiveReport, shows minlink(f) is unchanged, S.(s') = S:(s) for all
z # DC.

Subcase 2b: (p,q) = core(f) and nstatus(p) = find in s'. Since REPORT(w) is
at the head of queue({q,p)), DC-A(a) implies that inbranch(p) = (p,q). Thus, the
only change is that the REPORT message is requeued. Obviously Spc(s')rSpc(s)
is an execution fragment of DC, and S,(s') = §;(s) for all « # DC.

Subcase 2¢c: (p,q) = core(f), nstatus(p) = find and w < bestwt(p) in s'. As
in Subcase 2b, inbranch(p) = (p,q). The only change is that the REPORT message
is removed. Thus Spc(s')rSpc(s) is an execution fragment of DC. As proved in
Lemma 19, Case 2c of verifying (3b) for r = ReceiveReport, minlink(f) is unchanged
in s. Thus §,(s') = S;(s) for all z # DC.

(3a) Case 1: inbranch(p) # (p,q).

GHS-A: By DC-A(a), (p,q) # core(f). By DC-A(g), dcstatus(p) = find. The

predicate is vacuously true.

GHS-B: Only the addition of a REPORT message affects this predicate. The
argument is very similar to that in = = Recetve Test({q, p),!, c), Case 2, of (3a).

GHS-H: By code (in procedure Report(p)).

No change affects the rest.

Case 2: inbranch(p) = (p,q). If nstatus(p) = find or w < bestwt(p), then no
change affects any predicate. Suppose nstatus(p) # find and w > bestwi(p).
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

GHS-A: By DC-B(a), subtree(p) # {p}. By GHS-A(a), nstatus(p) # sleeping,

so the predicate is vacuously true.

GHS-B: Let (p,r) = bestlink(p) in s'. If lstatus((p,r)) = branch, then no change
affects this predicate. Suppose lstatus((p,r)) # branch. As shown in (3b)/(3c),
Claim 35 of Case 1b, bestlink(p) is the minimum-weight external link of f. Thus
Istatus({r,p)) # rejected by TAR-B, and if Istatus((r,p)) = branch, then there is a
CONNECT in queue({r,p)). So the predicate is vacuously true for the CONNECT added
to gqueue({p,r)). If there is a leftover CONNECT in queue((r,p)), then the predicate
is vacuously true because of the new CONNECT in queue((p,r)).

GHS-C: Let (p,r) = bestlink(p) in s'. Since bestlink(p) is external (as shown
in (3b)/(3c)), no REJECT is in queue({p,r)) by TAR-G. Also since it is external,
Istatus(({p,r)) # rejected by TAR-B. Suppose a TEST is in queue((p,7)). By TAR-
D, testlink(p) = {(p,r), and by GHS-H, nstatus(p) = find, which contradicts the
assumption for this case. Also since the link is external, no FIND is in queue((p,r))

by DC-D(a).

No change affects the rest.

xi) n is ReceiveChangeRoot({(q,p)).

(3b)/(3c) There are two cases. First we prove some facts true in both cases.
Claims about s':

CHANGEROOT is at the head of queue({¢,p)), by precondition.
manlink( f) # nil, by Claim 1 and CON-C.

rootchanged( f) = false, by Claim 1 and CON-C.

p € subtree(q), by Claim 1 and CON-C.

minnode( f) € subtree(p), by Claim 1 and CON-C.
nlevel(minnode(f)) = level(f), by NOT-D.

testset(f) = 0, by Claim 2 and GC-C

minlink( f) is the minimum-weight external link of f, by Claim 2 and COM-A.
. minnode( f) is up-to-date, by Claims 7 and 8 and DC-N.

10. p is up-to-date, by Claims 5, 7 and 9.

11. No REPORT message is headed toward mw-root( f), by Claim 2.

W e

© ;N o o

12. No REPORT message is headed toward p, by Claims 4 and 11.
13. dcstatus(p) = unfind, by Claims 7 and 12 and DC-I(b).
14. findcount(p) = 0, by Claim 13 and DC-H(b).
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON

| 15. All children of p are completed, by Claims 10 and 14 and DC-K(a). .::!
16. Following bestlinks from p leads along edges in subtree( f) to the minimunm-weight A
external link of subtree(p), by Claims 7, 10 and 15 and DC-I(b) and (¢). 2

Case 1: Istatus(bestlink(p)) # branch in s'. el
Acon(s',m) = . A (s',m) = ChangeRoot( f) for all other . Y
More claims about s': :?;
3

17. Istatus(bestlink(p)) # branch, by assumption.
18. bestlink(p) is not in subtree( f), by Claim 17 and TAR-A(b). ot
19. bestlink(p) = minlink(f), by Claims 5, 8, 16 and 18.
20. nstatus(q) # sleeping, by Claim 1 and GHS-A(b).
21. awake = true, by Claim 20. '

-
e O
-

= =

EE

o

Claims about s:

22. Istatus(bestlink(p)) = branch, by code.

23. CONNECT is in queue(bestlink(p)), by code. o

24, M SF does not change, Claims 22 and 23. §

25. bestlink(p) = minlink(f), by Claims 19 and 24. AN

26. rootchanged( f) = true, by Claims 23 and 25. ,
v

ChangeRoot( f) is enabled in S;(s') by Claims 2, 3 and 21, for all 2 # CON.
The effects of ChangeRoot(f) are mirrored in S;(s) by Claims 22, 25 and 26 for
r = TAR; and by Claim 26 for z = DC and NOT. 7 is enabled in Scon(s') by A
Claim 1: its effects are mirrored in Scon(s) by Claims 6 and 19.

N
Case 2: Istatus(bestlink(p)) = branch in s'. ﬁ‘.
s
..
Acon(s',m) =7. A (s, 7) is empty for all other . 3
b ‘
More Claims aebout s': ?

27. Istatus(bestlink(p)) = branch, by assumption.
28. Istatus(manlink(f)) # branch, by Claimn 3 and TAR H.
29. bestlink(p) is in subtree( f). by Claims 27 and 28 and TAR-A(a).
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Section 4.2.7: GH S Simultaneously Simulates TAR, DC, NOT, CON D

S
"

30. p # minnode( f), by Claims 16 and 29. E}’

31. bestlink(p) = tominlink(f), by Claims &, 16 and 29.
32. nlevel(p) = level(f). by Claim 10 and GHS-I. ! ,
k 4

Obviously, all derived (and non-derived) variables are unchanged, except
cqueues. Thus, §;(s') = S;(s) for all v+ £ CON. = is enabled in Scon(s') by b
Claim 1; its effects are mirrored in S,(s) by Claims 30, 31 and 32. s

(3a) GHS-A: By CON-C, (p,q) € subtree(f). By GHS-A(a), nstatus(p) #

sleeping in s', so the predicate is vacuously true in s.

GHS-B: Essentially the same argument as in # = ReceiveReport({q, p), w), Case
2 of (3a).

GHS-C: Essentially the same argument asin 7 = ReceiveReport({(q,p), w), Case
2 of (3a).

o

-~

No change affects the rest. O

S

-

Let P’GHS = /\IEI(P; 0S8;)A Pgys.

Ly
\ A

Corollary 26: P( ¢ is true in every reachable state of GHS.

s
‘. 'l 'l

,‘.,
-

Proof: By Lemmas 1 and 25. a
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Section 4.3.1: COM is Equitable for HI

4.3 Liveness

We show a path in the lattice along which liveness properties are preserved.
The pathis HI, COM, GC,TAR, GHS. In showing the edge from GHS to TAR,

it 1s useful to know some liveness relationships between GC and DC, and between

COM and CON.

The reason for considering liveness relationships in other parts of the lattice is
to take advantage of the more abstract forms of the algorithm. For instance, the
essence of showing that the GH S algorithm will take steps leading to the simulation
of ComputeMin(f) in TAR is the same as showing that DC takes steps leading to
the simulation of ComputeMin(f) in GC. (These steps are the convergecast of
REPORT messages back to the core.) DC is not cluttered with variables and actions
that are not relevant to this argument, unlike GHS. Thus, we make the argument
for DC to GC, and then apply Lemma 7 for the GHS to T AR situation.

For the same reason, we show that the progression of CHANGEROOT messages in
CON leads to the simulation of ChangeRoot(f) in COM, and that the movement
of CONNECT messages over links in CON leads to Absorb and Merge in COM, and

then apply Lemma 7.

4.3.1 COM is Equitable for HI

The main idea here is to show that as long as there exist two distinct subgraphs,
progress is made; the heart of the argument is showing that some fragment at the
lowest level can always take a step. This requires a global argument that considers

all the fragments.
Lemma 27: COM is equitable for HI via M.

Proof: By Corollary 14, (P70 S1) A Peoops is true in every reachable state of
Pcon. Thus, in the sequel we will use the HI and COM predicates.

For each locally-controlled action ¢ of HI, we must show that COM is equi-
table for ¢ via M.

i) ¢ is Start(p) or NotInTree(l). Since ¢ is enabled in 8;(s) if and only
if it 1s also enabled in s, and since A;(s,) includes p, for any state s, Lemma 5
shows that COM is equitable for ¢ via M.

i) ¢ is Combine(F,F’,e). We show COM is progressive for ¢ via M;:
Lemma 6 implies COM is equitable for o via M.
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Section 4.3.1: COM is Equitable for HI

Let ¥, be the set of all pairs (s, ) of reachable states s of COM and inter-
nal actions ¢ of COM enabled in s. For reachable state s, let v,(s) = (z,y, 2),
where z is the number of fragments in s, y is the number of fragments f with
rootchanged(f) = false in s, and z is the number of fragments f with minlink{ f)

= nil in s. (Two triples are compared lexicographically.)

(1) Let s be a reachable state of COM in E,. We now demonstrate that some
action ¢ is enabled in s with (s,9) € ¥,.

Claims:

1. awake = true in &1(s), by precondition.

2. F # F’ in §(s), by precondition.

3. awake = true in s, by Claim 1 and definition of &;.

4. There exist f and ¢ in fragments such that subtree(f) = F and subtree(g) = F'
in s, by Claim 2 and definition of S;.

5. f # g in s, by Claims 2 and 4.

Let I = min{level(f') : f' € fragments} in s. (By Claim 4, fragments is not
empty in s, so [ is defined.) Let L = {f' € fragments : level( f') = I}.

Case 1: There exists f' € L with minlink(f') = nil. Let ¥ = ComputeMin(f").
We now show 1 is enabled in s. By Claim 5, the minimum-weight external link (p, q)
of f' exists. By choice of I, level( f') < level( fragment(q)). Obviously (s,9) € ¥.,.

Case 2: For all f' € L, minlink(f') # nil.

Case 2.1: There exists f' € L with rootchanged(f') = false. Let ¢ =
ChangeRoot( f'). 1 is enabled in s by Claim 3 and the assumption for Case 2.
Obviously (s,¢) € ¥,.

Case 2.2: For all f' € L, rootchanged(f') = true.

il

Case 2.2.1: There exists fragment ¢’ € L with level(f') > [, where f'
fragment(target(minlink(g'))). (By COM-G, f' is uniquely defined.) Let 3 =
Absord(f',¢"). Obviously ¢ is enabled in s, and (s, ) € T,

Case 2.2.2: There is no fragment ¢' € L such that level(f') > I, where ' =
fragment(target(minlink(g’))). Pick any fragment f; such that level(f;) = . For
1 > 1. define f, to be fragment(target(minlink(fi_1))).

More clarms abowi &'
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Section 4.3.1: COM is Equitable for HI

6. f; is uniquely defined, for all # > 1. Proof: If 1 = 1, by definition. Suppose it is
true for i — 1 > 1. Then it is true for : by COM-G, since minlink(f;) is well-defined
and non-nil.

7. minlink(f;) is the minimum-weight external link of f;, for all : > 1, by COM-A.
8. fi # fi—1, for all 1 > 1, by Claims 6 and 7 and definition of f;.

9. If minedge( f;) # minedge( fi-;) for some : > 1, then f;y; is not among f;,..., fi,
by Claims 7 and 8, and since the edge-weights are totally ordered.

10. There are only a finite number of fragments, by COM-D aund the fact that V(G)
1s finite.

By Claims 9 and 10, there is an ¢ > 1 such that minedge( f;) = minedge( fi_;).
Let ¢ = Merge(fi, fi—1). Obviously 9 is enabled in s, and (s, %) € ¥,,.

(2) Consider a step (s', 7, s) of COM, where s' is reachable and in E,, (s',7) ¢
X, and s € E,.

(a) vp(s) < vy(s'), because there is no action of COM that increases the
number of fragments; only a Merge action increases the number of fragments with
minlink equal to nil or rootchanged equal to false, and it simultaneously causes the

number of fragments to decrease.

(b) Suppose (s',m) € ¥,. Then v,(s) < v,(s'), since Absorb and Merge de-
crease the number of fragments, ComputeMin maintains the number of fragments
and the number of fragments with rootchanged = false and decreases the number
with minlink = nil, and ChaengeRoot maintains the number of fragments and de-

creases the number with rootchanged = false.

(c) Suppose (s',7) ¢ V,, ¥ is enabled in &', and (s',¢4) € ¥,. Then ¢ is
still enabled in s, since the only possible values of 7 are Start(p), InTree(l) and
NotInTree(l), none of which disables ¢. By definition, (s,%) € P,.

¥_ .
»

,’.‘," "

=Y.
‘l
o s e

iii) ¢ is InTree((p,q)). We show COM is progressive for  via M|; Lemma
6 implies that COM is equitable for ¢ via M.

YN
- -Al 4

Let W, be the set of all pairs (s,9) of reachable states s of COA! and actions

v

Y of COM enabled in s such that 4 is either an internal action or is ¢.

PR L

For reachable state s, let v,(s) = vepmpine(r 7 ) (3).
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Section 4.3.2: GC is Equitable for COM “
ot
3
(1) Let s be a reachable state of COM in E,. We now demonstrate that some Z;t ¢
action v is enabled in s with (s,¢) € ¥,. '
If (p,q) € F for some F in §;(s), then (p,q) € subtree(fragment(p)) in s. Let '.::‘:
% = InTree((p, ). o
U
Suppose (p,q) is the minimum-weight external link of some F in S;(s). b
Then there is more than one fragment. Essentially the same argument as in 5
¢ = Combine(F,F' e) shows that some Absord(f’',g’'), or Merge(f;, fi+1), or ;,11
ChangeRoot( f'), or ComputeMin(f') is enabled in s. ‘ig;‘»./
Sy
(2) As in ¢ = Combine(F, F',e), after noting that = # InTree((p, q)). o .
DN
e
4.3.2 GC is Equitable for COM ,"'
ik
i
The main part of the proof is showing that eventually every node is removed .:o_:gf
from testset( f), so that eventually ComputeMin(f) can occur. As in Section 4.3.1, r.?
a global argument is required, because a node might have to wait for many other ::‘,’,?
fragments to merge or absorb until the level of the fragment at the other end of p’s "::
local minimum-weight external link is high enough. ;)- ,
Lemma 28: GC is equitable for COM via M,. IR
)
Noagh.
Proof: By Corollary 16, (P& ©S2) A Pge is true in every reachable state of GC. ._,
Thus, in the sequel we will use the HI, COM, and GC predicates. s
]
For each locally-controlled action ¢ of COM, we must show that GC is equi- ‘:
. table for ¢ via M. i
.'::
i) ¢ is not ComputeMin(f) for any f. Since ¢ is enabled in s if and only if ‘,
@ is enabled in S3(s), and since A, (s, ¢) includes ¢, for all s, Lemma 5 shows that e
GC is equitable for p via M,. ‘
J( (]
Yy
it) ¢ is ComputeMin(f). We show GC is progressive for ¢ via M,; Lemma ‘,-r.'.‘: :
6 implies that GC is equitable for ¢ via M,. ';L. '
Let ¥, be the set of all pairs (s, ) of reachable states s of GC and internal E’.:‘
actions 7 of GC enabled in s. For reachable state s, let v,(s) be a quadruple with .-"'
« ¥
the following components: -s_:
.
1. the number of fragments; o]
2. the number of fragments with rootchanged = false; )""f;
83
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Section 4.3.2: GC is Equitable for COM

3. the number of fragments with minlink = nil; and
4. the sum of the number of nodes in each fragment’s testset.

(1) Let s be a reachable state of GC in E,. So ComputeMin(f) is enabled in
S2(s). We now show that some 1 is enabled in s with (s,%) € ¥,,.

Let G be the directed graph defined as follows. There is one vertex of G for
each element of fragments in s. We now specify the directed edges of G. Let v and
w be two vertices of G, corresponding to fragments f' and g'. There is a directed
edge from v to w in G if and only if there is a node p in testset( f') whose minimum-
weight external link is (p, ¢), fragment(q) = ¢', and level( f') > level(g'). We will call
fragment f' a sink if its corresponding vertex in G is a sink. (It should be obvious
that there is at least one sink.)

Case 1: There is a sink f' such that testset(f') # 0. Let i = TestNode(p) for
sowe p € iestset(f'). Since f' is a sink, 1 is enabled in s. Obviously (s, %) € ¥,,.

Case 2: For all sinks f', testset(f') = .

Case 2.1: There is a sink f' such that minlink(f') = nil. Let 3 =
ComputeMin(f'). Since ComputeMin(f) is enabled iu S,(s), there are at least
two fragments, so there is an external link of f’. By GC-B, accmin(f’) # nil. Thus
¥ is enabled in s. Obviously (s,%) € ¥,.

Case 2.2: For all sinks f', minlink(f') # nil.

Case 2.2.1: There is a sink f' such that rootchanged(f') = false. Let v =
ChangeRoot(f'). Since ComputeMin(f) is enabled in Sy(s), minlink(f) = nil. By
COM-C then, eweke = true. Thus ¢ is enabled in s. Obviously (s,') € ¥.,.

Case 2.2.2: For all sinks f', rootchanged( f') = true. By COM-A, the following
two cases are exhaustive.

Case 2.2.2.1: There is a sink f' such that level(g') > level( f'), where ¢' =
fragment (target(minlink(f'))). Let & = Absorb(g', f'). Since f' is a sink, " is
enabled in s. Obviously (s,v) € ¥,,.

Case 2.2.2.2: For all sinks f', level(g') = level( f'), where ¢' = fragment(target
(manlink(f'))). Let m = min{level(f') : f' is a sink}. Let f' be a sink with
level(f') = m. and let ¢' = fragment(target(manlink(f'))). If ¢' is not a sink, then

from the vertex in G corresponding to ¢’ a sink is reachable (along the directed edges)




Section 4.3.3: TAR is Equitable for GC

whose corresponding fragment is a sink with level less than m, contradicting our
choice of m. Thus ¢’ is a sink. Since the edge weights are totally ordered, by COM-
A there are two sinks f' and g’ at level m such that minedge(f') = minedge(g’).
Let ¥ = Merge(f',g'). Obviously 9 is enabled in s, and (s,9) € ¥,,.

(2) Consider step (s, 7, s) of GC, where s’ is reachable and in E,,, (s',7) & X,
and s € E,.

(a) Obviously the external actions of GC do not change v,. This fact, together
with (b) below, shows that v,(s) < v,(s").

(b) Suppose (s',7) € ¥,,. If 7 = TestNode(p), then component 4 of v, decreases
and the rest stay the same. If # = ComputeMin(f'), then component 3 of v,
decreases and the rest stay the same. If 7 = ChangeRoot(f’), then component 2 of
v, decreases and the rest stay the same. If 7 = Merge(f’,g') or Absorb(f',g¢'), then

component 1 of v, decreases.

(c) Suppose (s',7) € o, ¥ is enabled in s', and (s',9) € ¥ . Since the only
choice for 7 is an external action of GC, obviously i is enabled in s and (s, ¥) € ¥,.
a

4.3.3 TAR is Equitable for GC

The substantial argument here is that a node p’s local test-accept-reject proto-
col eventually finishes, thus simulating TestNode(p) in GC. Again, we need a global
argument: to show that the recipient of p’ TEST message eventually responds to it,
we must show that the level of the recipient’s fragment eventually is large enough.
This proof is where the state component of the set ¥ in the definition of progressive
is used. The receipt of a TEST message will generally make progress, but if it is
requeued and the state is unchanged, no function on states can decrease; thus. we
exclude such a state-action pair from ¥,

Lemma 29: TAR is equitable for GC via Mj.

Proof: By Corollary 18, ( P5083)A Prar is true in every reachable state of TAR.
Thus, in the sequel we will use the HI, COM, GC, and TAR predicates.

For each locally-controlled action ¢ of 77C', we must show that TAR is equitable

for ¢ via M3.
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Section 4.3.3: TAR is Equitable for GC

i) ¢ is not TestNode(p) for any p, or InTree(l) or NotInTree(l) for
any l. Since ¢ is enabled in s if and only if v is enabled in 83(s), and since A3 (s, )
includes ¢, for all s, Lemma 5 implies that TAR is equitable for ¢ via M3.

ii) ¢ is TestNode(p). We show TAR is progressive for ¢ via M3; Lemma 6
implies that TAR is equitable for ¢ via M3. In the worst case, we have to wait for
the levels to have the correct relationship. This requires a “global” argument.

Let ¥, be the set of all pairs (s, 7) of reachable states s of TAR and internal
actions m of TAR enabled in s, such that if # = ReceiveTest({q,7),l,c), then in s
either level(fragment(r)) > I, or there is more than one message in tarqueue,({(gq,r)).

For reachable state s, let v,(s) be a 10-tuple of:

the number of fragments in s,
the number of fragments f with rootchanged(f) = false in s,
the number of fragments f with minlink(f) = n:l in s,

W=

the number of nodes ¢ such that g € testset(fragment(q)) in s,

(@1

the number of links [ such that either lstatus(!) = unknown, or else lstatus(l) =
branch and there is a protocol message for [, in s,

6. the number of links [ such that no ACCEPT or REJECT message is in tarqueue(l)
in s,

7. the number of links ! such that no TEST message is in tarqueue(l) in s,

8. the number of messages in tarqueue,({g,r)), for all (¢,r) € L(G), in s,

9. the number of messages in tarqueue,,({g,7)), for all (¢,7) € L(G), in s,

10. the number of messages in tarqueue,((¢,r)), for all {(¢,r) € L(G), that are
behind a TEST message in s.

(1) Let s be a reachable state of TAR in E,. We show that there exists an
action 1 enabled in s such that (s.y') € ¥ .

Let { = min{level(f) : f € fragments}.

Case 1: All fragments f at level | have rootchanged(f) = true. Then some
Absorb(f,g) or Merge(f,g) is enabled in s, as argued in Lemma 27, Case 2.2.1 for
@ = Combine. Let ¥ be one of these enabled actions.

Case 2: level(f) = | and rootchanged( f) # true, for some f € fragments.

Claims about s:
1. p € testset(fragment(q)), by precondition of ¢.
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Section 4.3.3: TAR is Equitable for GC
2. awake = true, by Claim 1 and GC-C and COM-C.

Case 2.1: minlink(f) # nil. Let ¢ = ChangeRoot(f). By Claim 2 and assump-

* tion for Case 2.1, # is enabled in s.

Case 2.2: minlink(f) = nil.
Case 2.2.1: testset(f) = 0.

3. Either there is no external link of f, or acemin(f) # nil, by GC-B and assumption
for Case 2.2.1.

4. fragment(p) # f, by Claim 1 and assumption for Case 2.2.1.

5. acemin(f) # nil, by Claims 3 and 4.

Let » = ComputeMin(f). It is enabled in s by Claim 5 and assumption for
Case 2.2.1.

Case 2.2.2: testset(f) # 0. Let g be some element of testset( f).

Case 2.2.2.1: testlink(q) = nil. Let ¢ = SendTest(q). It is enabled in s by
assumptions for Case 2.2.2.1.

Case 2.2.2.2: testlink(q) # nil. By TAR-C(a). testlink(q) = (g,r), for some r.
There is a protocol message for (g,), by TAR-C(c). So there is some message at the
head of at least one of the six queues comprising tarqueve({g,r)) and tarqueue((r,q)).
At least one of the following is enabled in s: ReceiveTest(k,l',c'), RecetveAccept(k),
ReceiveReject(k), ChannelSend(k,m), and ChannelRecv(k,m), where k is either
(g,") or (r,q), and m € M.

Suppose in contradiction that there is no 1 enabled in s such that (s,¥) €
¥,. That is, by definition of ¥, the only message in tarqueue((g,r)) (if any) is a
TEST(!', ¢’} in tarqueue,({g,r)) with {' > level(fragment(r)); and the only message in
tarqueue((r,q)) (if any) is a TEST(!", ") in tarqueue,({r,q)) with I" > fragment(q)).

Suppose the protocol message for {(g,r} is a TEST(I',c') in tarqueue({q,7)).
with lstatus({q,7)) # rejected. By TAR-E(b), I' = level(fragment(q)). Since
fragment(q) = f, I' = 1 by choice of f. But I' > level(fragment(r)), by defini-
tion of ¥, which contradicts the definition of [.

Suppose the protocol message for (g, ) is a TEST(I", ¢") in tarqueue({r, ¢)), with
Istatus((r,q)) = rejected. By TAR-E(c), I" = level(fragment(q)). But by definition
of W, I" > level(fragment(q)).

171

Y Ret Pav

e

oS

S

oS

-
-

]
-



R

v e e e

Wl

Section 4.3.3: TAR is Equitable for GC

(2) Let (s',7,3) be a step of TAR, where s’ is reachable and isin E,, (s',7) ¢

Xy, and s € E,.

(a) If (s',7) € U, then 7 is either InTree(l), NotInTree(l), or Start(p), or

else m is ReceiveTest({q,r),l,c) and in s, I > level(fragment(r)) and there is only
one message in tarqueue,({g,7)). In all cases, no component of v, is changed, so

Vo(8) = ve(s').

Part (b) below finishes the proof that v,(s) < v,(s').
X
(b) Suppose (s',7) € ¥,. We show v,(s) < v,(s').
K
e Suppose 7 = ChannelSend(l,m). Component 8 of v, decreases and components 'E;
1 through 7 do not change. ’:;
;
b
¢ Suppose 7 = ChannelRecv(l,m). Component 9 of v, decreases and components ;’\
1 through 8 do not change. iy
t
l‘q
e Suppose m = SendTest(q). Let (g,r) be the minimum-weight link of ¢ with "
Istatus unknown in s'. By precondition, testlink(q) = nil in s'. By TAR-D —
there is no protocol message for {¢,7) in s, so there is no TEST message in g";
tarqueue({(g,r)) in s'. One is added in s. Thus component 7 of v, decreases .
and components 1 through 6 do not change. If there is no link of ¢ with lstatus ‘:;,
unknown, then ¢ is removed from testset(fragmeni(q)). Thus component 4 of X
v, decreases and components 1 through 3 do not change. ;
S
o Suppose m = ReceiveTest({g,r),[,c) and in s’ either | < level(fragment(r)) or Ty
there is more than one message in tarqueue.({q,7}). )
™
Case 1: | < level(fragment(r)) and either ¢ # core(fragment(r)) or testlink(r) +# ;n
+
(r,q) in s'. ':
v‘,
Claims about s': e
)
1. TEST(/,c) message is in tarqueue({q,r)), by precondition. !
2. ¢ # core(fragment(r)) or testlink(r) # (r,q), by assumption. ::
3. If ¢ # core(fragment(r)), then Istatus({g,r)) # rejected, by TAR-E(c). >4
4. If testlink(r) # (r,q), then there is no protocol message for (r,q), by TAR-D. :‘
5. If testlink(r) # (r,q), then Istatus({q,r)) # rejected, by Claim 4 and definition. o
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Section 4.9.8: TAR is Equitable for GC

6. The TEST(l,c) message in tarqueue({q,r)}) is a protocol message for (g,r), by
Claims 2, 3 and 5.

7. testlink(q) = {g,r), by Claim 6 and TAR-D.

8. There is no ACCEPT or REJECT message in tarqueue((r,q)), by Claims 6 and 7
and TAR-C(c).

If Istatus({g,r)) is changed from unknown to rejected, then component 5 of
v, decreases and components 1 through 4 are unchanged. Otherwise, an ACCEPT
or REJECT message is added to terqueue((r,q)) in s, causing component 6 of v, to
decrease by Claim 8, while components 1 through 5 stay the same.

~C’ase 2: 1 < level(fragment(r)) and ¢ = core(fragment(r)) and testlink(r) =
(r,q)in s'.

Claims about s':

1. TEST(l,c) is in tarqueue({g,r)), by precondition.
2. ¢ = core(fragment(r)), by assumption.
3. testlink(r) = (r, q), by assumption.

Case 2.1: There is no link (r,t), t # ¢, with Istetus unknown in s'. Then ¢
is removed from testset(fragment(q)) in s, causing component 4 of v, to decrease
while components 1 through 3 do not change.

Case 2.2: There is a link (r,t), t # g, with Istatus({r,t)) = unknown in s'.
4. lstatus({r,q)) # rejected, by Claim 3 and TAR-K.
By Claim 4, Cases 2.2.1 and 2.2.2 are exhaustive.

Case 2.2.1: lstatus({r,q)) = unknown in s'. It is changed to rejected in s,
causing component 5 of v, to decrease and components 1 through 4 to stay the
same.

Case 2.2.2: Istatus((r,q)) = branch.

Case 2.2.2.1: The TEST(I, c) message in tarqueue({g,r}) is a protocol message
for (r,q).

5. The TEST(!, ¢) message in tarqueue({q,r)) is the only protocol message for (r,g),
by TAR-C(c¢).
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N ' ‘
A . "\
. Since the only protocol message for (r,¢) is removed in s, component 5 of v, )
: decreases and components 1 through 4 stay the same. e
)
Case 2.2.2.2: The TEsT(l, c) message in tarqueue({g,r)) is not a protocol mes- ['
; sage for (r,q). )
: 3
‘ 6. lstatus({g,r)) # rejected, by assumptions for Case 2.2.2.2. '
7. There is a TEST(!', ¢') message in tarqueue({r,q)) and Istatus({r,q)) = unknown,
: by Claims 1, 2, 3, 6 and TAR-P. 3
W
) i
1 But Claim 7 contradicts the assumption for Case 2.2.2. ! 3
I )
— - {
W
Case 3: 1 > level(fragment(r)) and there is more than one message in ::
tarqueue,((q,7)) in s'. All TEST messages in tarqueue,.({(g,7)) are protocol mes- ;{
. ]
sages for the same link, either (g,r) or (r,¢). Since by TAR-D and TAR-C(c) there A
, is never more than one protocol message for any link, this TEST(l,c) message is ’
) the only one. The TEST(l,c) message is put at the end of tarqueue.({g,r)) in s, o
p decreasing component 10 and not changing components 1 through 9.
N
D
! e Suppose m = ReceiveAccept({g,r)). Since r is removed from testset(frag- >
i
' ment(r)), component 4 of v, decreases while components 1 through 3 stay :
Y the same. M
) ‘ o
. . . d
! e Suppose m = ReceiveReject({g,r)). If there are no more unknown links, then ’*
: B

r is removed from testse#(fragment(r)), decreasing component 4 of v, and not
K changing components 1 through 3. Suppose there is another unknown link.

Claims about s':

e —

¥
¢
L 1. REJECT is in taerqueve({q,r)), by precondition. ; !
2. There is a link (r,t), t # ¢, with lstetus((r,t)) = unknown, by assumpticn. :
X 3. testlink(r) = {r,q), by Claim 1 and TAR-D. 2
\ 4. The REJECT in tarqueue((q,7)) is the only protocol message for {g,r), by Claim ::
¥ 3 and TAR-C(c). o
5. Istatus((r,q)) # rejected. by Claim 3 and TAR-K. :
p By Claim 5, Istatus({r,¢)) # rejected. If lstatus({r,q)) = unknown in s, it is :
: changed to rejected in s. If lstatus({r,q)) = branch in &', then it stays branch in s 6
) but there are no more protocol messages for (r, q) in <, by Claim 4. Thus component .
:' 5 of v, decreases while components 1 through 4 stay the sane. b
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Section 4.3.3: TAR is Equitable for GC

o Suppose 7 = ComputeMin(f). Component 3 of v, decreases and components

1 and 2 are unchanged.

¢ Suppose 1 = ChangeRoot(f). Component 2 of v, decreases and component 1

is unchanged.

e Suppose m = Merge(f,g) or Absorb(f,g). Component 1 of v, decreases.

(c) Suppose (s',7m) ¢ ¥, ¥ is enabled in s, and (s',¢) € ¥,. Then
¥ 1is still enabled in s and (s,) € ¥, since the only possibilities are: =
InTree(l), NotInTree(l), or Start(p), or clse @ = ReceiveTest({q,r),l,c) and in &',
I > level(fragment(r)) and there is only one message in tarqueue.({(g,)).

iil) ¢ is InTree((p,q)). We show TAR is progressive for ¢ via Mj3; Lemma
6 implies that TAR is equitable for ¢ via Mj3. We simply show that if (p, q)
minlink(f), but Istatus((p,q)) is not yet branch, then eventually ChangeRoot(f)

will occur.

Let ¥, be all pairs (s,1) of reachable states s and actions ¢ enabled in s such
that one of the following is true: (Let f = fragment(p) in s.)

o 1 = InTree({p,q)), or
o (p,q) = minkink(f) in s, and ¢ = ChangeRoot(f).

For reachable state s, let v,(s) be 1 if {p,g) = minlink(f) and ChangeRoct( f)
is enabled in s, and 0 otherwise.

(1) Let s be a reachable state of TAR in E,. We show that there exists an
action ¥ enabled in s such that (s,9) € ¥,,. Let f = fragment(p) in s.

Claims about s:

1. awake = true, by precondition of .

2. (p,q) € subtree(f) or (p,q) = minlink(f). by precondition of .
3. answered({p,q)) = false, by precondition of ¢.

4. Istatus((p,q)) # rejected, by Claim 2 and TAR-B.

By Claim 4, the following two cases are exhaustive.
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Section 4.3.3: TAR is Equitable for GC

Case 1: lstatus({p,q)) = branch. Let v = InTree((p,¢)). It is enabled in s by
Claims 1 and 3 and assumption for this case, and (s,1) € ¥,.

Case 2: Istatus({p,q)) = unknown.

5. minlink(f) = (p, ¢), by Claim 2 and TAR-A(a).
6. rootchanged( f) = false, by Claim 5 and TAR-H.

Let » = ChangeRoot(f). It is enabled in s by Claims 1, 5 and 6, and (s,¢) €
.

(2) Let (s',m,s) be a step of TAR, where ' is reachable and is in E,, (s',7) ¢
X, and s € E,.

(a) Suppose (s',7) ¢ ¥,. We show that no possibility for = can affect whether
or not ChangeRoot(f) is enabled, i.e., v (8) = vy(s'). This together with (b) below
shows that v,(s) < v,(s').

Case 1: ChangeRoot( f) is enabled in s'. No action sets awake to false. No
action (other than ChangeRoot(f)) sets roatchanged(f) to false. No action sets
minlink(f) to nil. f remains in fragments because 7 is not Absorb(g, f), Merge(f, g)
or Merge(g, f), for any g, since rootchanged( f) = false.

Case 2: rootchanged( f) is not enabled in s'. By precondition of ¢, awake is true
in s'. If rootchanged(f) = true in s', then the same is true in s, because the only
action that sets it to false is the Merge that created f. If minlink(f) = nilin s’, then
(p, @) # minlink(f), so even if minlink( f) becomes nonnil (by ComputeMin(f)), v,
remains 0.

(b) Suppose (s'.7) € ¥,. Since (s".7) ¢ X . 7 # InTree((p.q)). Thus
minlink(f) = (p.q) in ' and 7 = ChangeRoot(f). Obviously v, goes from 1 to
0.

(c) Suppose (s'.7m) € U, o is enabled in &', and (s',%) € ¥,. The same
argument as in {2a), Case 1, applies.
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Section 4.3.4: DC is Progressive for an Action of GC ,

iv) ¢ is NotInTree({p,q)). We show that TAR is progressive for ¢ via
Mj; Lemma 6 implies that TAR is equitable for ¢ via Mj3. The goal is to show
that if ¢ € nodes(fragment(p)) and (p,q) & subtree(fragment(p)), then eventually 3
Istatus({p,q)) = rejected. This requires a global argument, as for TestNode(p), 4
because it could be that some unknown link will never be tested until only one

fragment remains.

Let U, be Urestnode(p) U {(s, NotInTree({p,q})) : s reachable, NotInTree((p,q)) 5
enabled in s}. Yy
Let v,{8) = vTestNode(p)(s) for all reachable states s. ﬁ‘:
04
"
Let v, be the same as for TestNode(p). "
Bt
(1) Let s be a reachable state of TAR in E,. We show that there exists an ;
action 3 enabled in s such that (s,v) € ¥,,.
W
Istatus({p,q)) # branch, by TAR-A(a). If lstatus((p,q)) = rejected, then let 5‘
Y = NotInTree({p,q)).
]
Suppose [status((p,q)) = unknown in s. The rest of the argument is just like N
that for TestNode(p), except for the following cases. 'E
v
Case 2.1: ChangeRool(f) is enabled in s because awake = true by the precon- )
dition of . ¥
Case 2.2.1: We show that ComputeMin(f) is enabled in s by showing that &
there are at least two fragments, as follows. If there is only one fragment, then f = ‘
fragment{p), and p & testset(f) (since we assume testset( f) = 0). But since we also _’
assume Istatus((p, q)) = unknown, TAR-I gives as contradiction. Thus, there is an R
external link of f, and by GC-B, acemin( f') # nil. -:
(2) Like TestNode(p). after noting that = cannot be NotInTree((p.q)). O -
4.3.4 DC is Progressive for an Action of GC '.:
¢
G
The main idea is to show that REPORT messages converge on the core. Tlis :::
argunient 1s local to one fragmient.
Lemma 30: DC is progressive for ComputeMin( f) via M. )
177 4
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" Section 4.3.4: DC is Progressive for an Action of GC s
1. [ 3
2 ¢
K Proof: By Corollary 20, (P © S1) A Ppc is true in every reachable state of DC. 'S
A Thus, in the sequel we will use the HI, COM, GC and DC predicates. o
‘.‘. 3
. Let ¥, be the set of all pairs (s, 1) of reachable states s of DC and actions 1 of K
‘, DC such that in s, a REPORT(w) is in some dcqueue((g,p)) and either ¢ is a child of !
E p, or else destatus(p) = unfind and p = mw-root(f); and o € {ChannelSend({qg,p). 7
: REPORT(w)), ChannelRecv({q, p}, REPORT(w)), ReceiveReport({(q,p),w)}. x
b For reachable state s, let v,(s) be a quadruple with the following components: 3
E' v
! -
: 1. The number of nodes p € nodes(f) with dcstatus(p) = find. 4
K 2. The number of PEPORT messages in dcqueues({(q,p)), for all (p,q) € subtree(f) q
. such that either ¢ is a child of p or else p = muw-root(f) and destatus(p) = unfind. ;
. 3. The number of REPORT messages in dcqueuegp({g,p)) for all (p,q) € subtree(f) %
: such that either g is a child of p or else p = mw-root(f) and dcstatus(p) = unfind. ‘
e 4. The number of REPORT messages in dcqueue,((g,p)) for all (p,q) € subtree(f) 5
-1 such that either ¢ is a child of p or else p = mw-root( f) and dcstatus(p) = unfind.
)
):' (1) Let s be a reachable state of DC in E,. We show that there exists an "
& action 1 enabled in s such that (s,9) € ¥,,. :..
Claims about s: )
B, ';‘
v 1. minlink(f) = nil, by precondition. ¢
2. acemin(f) # nil, by precondition. :“
] 3. testset(f) = 0, by precondition. . 3
y 4. There is an external link of f, by Claim 2 and GC-A. .
X 5. No FIND message is in subtree(f), by Claim 3 and DC-D(c). :
. 6. If dcstatus(p) = find, then a REPORT message is in subtree(p) headed toward p, ‘
; for any p € nodes(f), by Claim 3 and DC-I(b). z
¢ Suppose a REPORT(w) is in some dcqueue((q,p)) and ¢ is a child of p. By
X DC-B(a), inbranch(p) # (p,q). Obviously, (p,q) # core(f), so by DC-A(g), ‘
o dcstatus(p) = find. By Claim 5 and DC-O, the REPORT(w) is the only message in ;
N dcqueue({g,p)). If it is in dequeueys({q, p)), let v» = ChannelSend({q,p), REPORT(w)); p
if it 1s in dequeuegp((q,p)). let b = ChanneclRecv({g.p), REPORT(w)); if it is in ;
: dequeuey({q,p)), let ¥ = ReceiweReport(w). Obviously, 1 is enabled in s, and '3
3 (s.) € T,y
n «
Suppose no REPORT is in any dequeune({q.p)) with ¢ a child of p. By Claim 6. K
4 destatus(p) = unfind for all p € nodes(f). Then by Claims 1, 4 and 3. a REPORT(w') 1s
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Section 4.3.4: DC is Progressive for an Action of GC

in dequeue({q, p)), where (p,q) = core(f) and p = mw-roo¥( f). By Claim 5 and DC-
0, the REPORT(w) is the only message in dcqueue({g,p)). If it is in dequeuey((g, p)),
let ¢ = ChannelSend({(q,p),REPORT(w)); if it is in dequeuegp({g,p)), let ¥ =
ChannelRecv({g, p), REPORT(w)); if it is in dcqueue,({q, p}), let % = ReceiveReport(w).
Obviously, 1 is enabled in s, and (s,9) € ¥,.

(2) Let (s', 7, s) be astep of DC, where s' is reachable and isin Ey, (s',7) € X,
and s € E,. We note the following claims about s'.

1. testset(f) = @, by precondition.
2. minlink(f) = nil, by precondition.
3. No FIND is in subtree(f), by Claim 1 and DC-D(c).

(a) To show v,(s) < vy(s'), we show that vy(s) = v,(s') if (s',7) € ¥y; this
together with part (b) below gives the result. Suppose (s',7) ¢ P,.

TestNode(p) is not enabled, for p € nodes(f), by Claim 1. ChangeRoot(f),
Merge(f,g), Merge(g, f), and Absorb(g, f) are not enabled, for ¢ € fragments,
by Claim 2. ReceiveFind({p,q)), AfterMerge(p,q), ChannelSend({p,q), FIND), and
ChannelRecv({p, q),FIND) are not enabled, for p € nodes(f), by Claim 3. Thus = is

none of the above actions.

If # = ChannelSend((g, p), REPORT(w)) or ChannelRecv({g,p), REPORT(w)), for
(g,p) € subtree(f), then v, is unchanged, since (s',7) ¢ ¥,,.

Suppose ™ = Receive Report({q, p),w).

Case 1: pis a child of ¢. By DC-A(a), inbranch(p) = (p,q). By DC-B(b),
dcstatus(p) = unfind. So the only change is the removal of the message. Since
p is a child of ¢, p # mw-root(f), so v, is unchanged.

Case 2: (p,q) = core(f) and p # mw-root( f). By DC-A(a), inbranch(p) = (p,q).
The only effect is that either the message is requeued (if destatus(p) = find), or the
message is removed (if destatus(p) = unfind); in both cases, v, is unchanged.

Case 3: (p,q) = core(f), p = mw-root( f), and dcstatus(p) = find. The only effect

is that the message is requeued, so v, is unchanged.

Suppose m = Merge(g, h). By precoudition, minlink(g) = minlink(h) # nil in
s'. So f # g and f # h. Obviously v, is unchanged.
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Section 4.3.5: CON is Progresive for Some Actions of COM

L S g Ll S Ry
A

Suppose # = Absorb(g,h). By precondition, minlink(h) # nil in s', so f # h '

by Claim 2. If f # g, then obviously v, is unchanged. Suppose f = g. As in ,
the proof of condition (3a) in Lemma 19 for viii) # = Absord, Case 2, no REPORT .
) message is headed toward minnode(h) and dcstatus(r) = unfind for all r € nodes(h) im
; in s'. Thus v, does not change. :':3
i
' The remaining actions (not mentioned above) obviously do not affect v,. .:.
)
: (b) Suppose (s',7) € U,. We show v,(s) < vy(s'). If ¥ = ChannelSend(l, m), '.
: component 2 of v, decreases and component 1 is unchanged. If ¥y = Channel- )
R Recv(l,m), component 3 of v, decreases and components 1 and 2 are unchanged. ‘::
: t
‘ Suppose 3 = ReceiveReport({g, p), w). j
iy
Case 1: ¢ is a child of p. By DC-B(a), inbranch(p) # (p,q). By DC-A(g). :&
destatus(p) = find. If findcount(p) = 1 in s', then component 1 of v, decreases. G
Otherwise, component 4 decreases and components 1 through 3 are unchanged. )
. Case 2: ¢ is not a child of p, p = mw-root(f), and dcstatus(p) = unfind. So
4 (p,q) = core(f). By DC-P, w > bestwt(p). But this contradicts (s',7) & X, ::E
; NG
- (c) Suppose (s',7) € ¥, 1 is enabled in s', and (s',9) € ¥,. We show that i ¢
is still enabled in s and (s,9) € ¥,. Since the queues are FIFO, there is no way to i
A disable 1. \
It remains to show that (s,%) is still in U, 3
A
One possible way (s, %) could no longer be in U, is if the position of mw-root( f) _,
: changes, i.e., if 7 is Merge(f,g), Merge(yg, f), Absord(f,g), or Absord(g, f), for some ;
H fragment g. But by Claim 2, minlink(f) = nil. Thus r cannot be Merge(f,gq), :‘
3, L]
b Merge(g, f), or Absorb(g, f). Suppose m = Abzorb(f,g). Let core(f) = (p,q), p = .
mw-root( f), and q be the endpoint of core(f) closest to target( minlink(g)) in s'. (
The minimum-weight external link of f has smaller weight than minink(y), which ~
» by COM-A is the minimum-weight external link of g. Thus mw-root( f) does not A
N change atter Absorb(f,q). ’
Another way is if the position of core( f) changes. This only happens if 7 is .
¥ Merge(f,q), Merge(g, f) or Absorb(g, f), which we showed is impossible. 0
i The third way is if destatus(p) cha:ges from unfind to find, where p = muw- .
’ root( f). This only happens if © = ReceiveFind({c,p)) for some ¢. But by Claim 3.
i no FIND is In subtree( f). and by DC-D{~). no FIND can be in an evternal link. 0O =
¥ 180 by
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Section 4.3.5: CON is Progresive for Some Actions of COM
4.3.5 CON is Progressive for Some Actions of COM

To show that CON is progressive for Merge and Absard, we just show that
4 the CONNECT message on the minlink makes it across. For ChangeRoot, we show
X that the chain of CHANGEROOT messages eventually reaches the minnode. These

arguments are all local to one fragment.

Lemma 31: CON is progressive for Merge(f,g), Absorb(f,g) and ChangeRoot(f)
via M6~

Proof: By Corollary 24. (Pgop © Se) A Pcon is true in every reachable state of
CON. Thus, in the sequel we will use the HI, COM, and CON predicates.

g i) ¢ is Merge(f,g). Let (p,g) = minedge(f). Let ¥, be the set of all
. pairs (s,%) of reachable states s of CON and actions 1 of CON enabled in s,
¢ such that ¥ € {ChannelSend((¢,p), coNNECT(])), ChannelRecv({q, p), CONNECT(!)),

Merge (f,9)}.

For reachable state s of CON, let v, (s) = (z,y), where z is the number of
messages in cqueue,({g, p)) in s, and y is the number of messages in cqueuey,({g, p))

in s.

(1) Suppose s is a reachable state of CON in E,. We show that there is a 1
- enabled in s such that (s,%) € ¥,,.

Claims about s:

f # g, by precondition.

minedge( f) = minedge(g) = (p, q), by precondition.

rootchanged(f) = true, by precondition.

rootchanged(g) = true. by precondition.

. A conNECT(!) message is in cqueue(k), for some external link k of f, by Claim

- a» > -

. A coNNECT(!) message is in cqueue((p,q)), by Claims 2, 5 and CON-D.
. A CONNECT(m) message is in cquene(k), for some external link k of ¢, by Claim

. A CONNECT(m) message is in cqueue((q, p)), by Claims 2, 6 and CON-D.
[ = level(f), by Claim 5 and CON-D.

» . m = level(g), by Clann 7 and CON-D.

. 11. level( f) < level(g), by Claim 2 and COM-A.

! 12, level(q) < level( f), by Claim 2 and COM-A.
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‘0

¥

13. level(f) = level(g), by Claims 11 and 12. '.'0

14. | = m, by Claims 9, 10 and 13. » '::

15. No CHANGEROOT message is in cqueue({g,p)), by Claim 1 and CON-C. 7

16. Exactly one CONNECT message is in cqueue({g, p)), by Claims 7, 8 and CON-D. ?":.

et

iyl
If conNECT(!) is in cqueueg({q,p)), then let » = ChannelSend((q,p),con- ﬁt
NECT(l)). If coNNECT(]) is in cqueueyy({g,p)), then let ¥ = ChannelRecv({q, p), 3 \

coNNECT(!)). If coNNECT(]) is in cqueuey((q,p)), then let s = Merge(f,¢). It is
easy to see in all cases that v is enabled in s and (s,%) € ¥,,.

X XA
TN

(2) Suppose (s',,s) is a step of CON, s' is reachable and in E,,, (s',7) € X, o8

:::
and s € E,. S
(a) The only actions that can increase v, are ComputeMin(g), and Change- :}
Root(g). (Even though ChannelSend({q, p),m) would increase y, it would simulta- 2 f
neously decrease z.) By Claim 2, ComputeMin(¢) is not enabled in s'. By Claim 4, :" ]
ChangeRoot(g) is not enabled in s'. )
(b) Suppose (s',7) € ¥,. Since (s',7) &€ X, m # Merge(f,g). Obviously, the ,:
other two choices for 1 decrease v,,. .i',:::
4
(c) Suppose (s',7) € V., ¢ is enabled in s’ and (s',9) € ¥,. We show 1 is "
enabled in s and (s,%) € ¥,. If y = ChannelSend or ChannelRecv, then it can only 5 ;:
be disabled by occurring. If » = Merge(f, g), then since s € E,, 9 is still enabled 5‘
in s (by the argument in part (1)). In all cases, (s,%) € U .. )
ii) v is Absorb(f,g). Let (¢.p) = minlink(g). Let ¥, be the set of all :':
pairs (s,%) of reachable states s of CON and actions » of CON enabled in s. b
such that ¢ € {ChannelSend({q, p), cONNECT(])), ChannelRecu({q, p), coNNECT(])), :\)‘
Absord (f,9)}. N
For reachable state s of CON, let v,(s) = (x,y), where x is the number of : z
messages in cqueuneg({(g, p)) in s, and y is the number of messages in cqueueg,({g, p)) t-?' .
| el
in s. i
N
(1) Suppose s is a reachable state of CON in E,,. We show that there is a ¢ N
enabled in s such that (s,) € ¥,,. .T.
NS
Claims about s: :\.‘:'r
.
1. level(g) < level( f), by precondition. :j
'y
- ']
182 N
=
°
' l’ w0
o,
SR N A A AN M IR PRI e N IR SN A T AT AL A S R oWy



"a.“-"ﬂ"""5W'&“'Y.l""'."b U MY U U N T R FU T, -.‘..'1...'. D 284 400 at R a 0 cUR L 00" 0u" JEnt $a® Bat ' ¥p?atav Ua? gV $a*

Section 4.3.5: CON is Progresive for Some Actions of COM

(g, p) = minlink(g), by assumption.

f = fragment(p), by precondition.

rootchanged(g) = true, by precondition.

A conNECT(!) message is in cqueue(k), where k is an external link of g, by Claim

A conNNEcT(l) message is in cqueue({g,p)), by Claims 2, 5 and CON-D.
No CHANGEROOT message is in cqueue((g, p)), by Claims 5 and 6 and CON-C.

NS o Ok N

If conNecT(l) is in cqueue,({g,p)), then let ¢ = ChannelSend({(g, p),con-
NEcT(l)). If coNnNecT(l) is in cqueuegy({q,p)), then let ¢ = ChannelRecv((q, p},
connecT(l)). If connEcT(]) is in cqueue,((g, p)), then let 7 = Absord(f,g). In all
cases, it is easy to see that i is enabled in s and (s,%) € ¥,.

(2) Suppose (s', T, s) is a step of CON, s' is reachable and in E, (s, 7) € X,
and s € E,.

(a) The only actions that can increase v, are ComputeMin(g), and Change-
Root(g). (Even though ChannelSend({q,p),m) would increase y, it would simulta-
neously decrease z.) By Claim 2, ComputeMin(g) is not enabled in s'. By Claim 4,
ChangeRoot(g) is not enabled in s'.

(b) Suppose (s',7) € ¥,,. Since (s',7) & X,, m # Absorb(f, g). Obviously, the

other two choices for ¢ decrease v,.

F)
- W

b

2

o

(c) Suppose (s',7) ¢ ¥, 1 is enabled in s’ and (s',¢) € ¥,. We show ¥ is s ¥
enabled in s and (s,9) € ¥,,. If = ChannelSend or ChannelRecv, then it can only ~3
be disabled by occurring. If 1 = Absord(f,g), then since s € E,, % is still enabled ;:f. ’
in s (by the argument in part (1)). In all cases, (s,%) € ¥, by definition. e
iii) ¢ is ChangeRoot(f). Let ¥, be the set of all pairs (s,3) of reach- .
able states s of CON and actions 3» of CON enabled in s, such that ¢ € r'::_f_
{ReceiveChangeRoot({q, p)), ChannelSend({q, p), CHANGEROOT), ChannelRecv ({g, p). .{:‘0’
NN

CHANGEROOT) : p € nodes(f)} U {ChangeRoot(f)}. ‘:-Eﬁ
at
For reachable state s of CON, let v,(s) be a triple defined as follows. If there : .‘ :
15 N0 CHANGEROOT message in subtree( f) in s, then vy(s) is (0,0,0). Suppose, in s, :E‘: 4
there is a CHANGEROOT message in cquene({(q,p)), where p € nodes(f). Then v(s) {_‘:,.‘\r'
18 et

ER

. . . L

1. the number of nodes in the path in subtree( f) from p to minnode( f) in s (counting g
. . e 'i.‘
the endpoints p and minnode( f)); \,\t :
b.':w
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Section 4.3.5: CON is Progresive for Some Actions of COM

2. the number of CHANGEROOT messages in cqueue,((r,t)), for all t € nodes(f) in
s; and
3. the number of CHANGEROOT messages in cqueuen((r, %)), for all £ € nodes(f) in

S.

(By CON-B and CON-C, there is only one CHANGEROOT message in subtree( f).
By COM-G, HI-A and HI-B, there is a unique path in subtree(f) from p to
minnode( f). Thus, v,(s) is well-defined.)

(1) We show that if s is a reachable state of CON in E,, then there is a v
enabled in s such that (s,9) € ¥,,.

Claims about s:

1. rootchanged(f) = false, by precondition of .
2. minlink( f) # nil, by precondition of ¢.

If |nodes(f)| = 1 (i.e., subtree( f) = {p}. for some p), then let 3y = Change-
Root(f). Obviously, ¢ is enabled in s and (s,¢") € ¥,. Now suppose |rnodes(f)] > 1.

3. minnode(f) # root(f), by Claims 1 and 2 and CON-B.

4. Exactly one CHANGEROOT message is in cqueue({q,p)), for some (p,q) €
subtree( f), by Claims 1 and 2 and CON-B.

5. (g,p) # core(f), by Claim 4 and CON-C.

6. No CONNECT message is in cqueue({g, p}), by Claim 5 and CON-E.

If the CHANGEROOT message is in cqueuey((q,p)), then let 1 = Channel-
Send({q,p), CHANGEROOT). If the CHANGEROOT message is in cqueueg,({q,p)),
then let ¥» = ChannelRecv({q,p), CHANGEROOT). If the CHANGEROOT message is
in cqueuey({(g.p)), then let ¢ = RecciveChangeRoot((q.p)). In all three cases, " is
enabled in s because of Claims 4 and 6. By definition, (s, ) € P,,.

(2) Suppose (s'.7,s) is a step of CON such that s’ is reachable and in E..
(s',7) & Xy, and s € E,.

(a) We show that if (s', 7) & ¥, then v,(s) = v(s"). Together with (b) below.

it implies that v,(s) < v, (s').

Since minlink(f) # nil in s', # # ComputeMin(f). Since rootchanged(f) =
false in s', m # Merge(f.g). Merge(q, f), or Absorb(g, f) for any g.
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Section 4.3.6: GH S is Equitable for TAR

Suppose m = Absord(f,g). First we show that minnode( f) is unchanged. By
COM-A, level(h) > level(f), where A = fragment(target(minlink(f))); by precon-
dition of Absord(f,g), h # g, and thus wt(minlink(f)) < wt(minlink(g)). Also by
COM-A, minlink(g) is the minimum-weight external link of g. Thus minlink(f) does
not change. Second, we show that no CHANGEROOT message is in subiree(g). By pre-
condition of Absord(f,g), rootchanged(g) = true. Then by CON-C, no CHANGEROOT
message is in subtree(g).

No other value of 7, such that (s',7) & ¥, affects v,,.
(b) Suppose (s',7) € ¥,. We show v,(s) < vy,(s').

If = ChannelSend({q, p), CHANGEROOT), then the second component of v, de-
creases while the first remains the same. If # = ChannelRecv({(q, p), CHANGEROOT),
then the third component of v, decreases while the first two remain the same.

Suppose m = ReceiveChangeRoot({q,p)). By CON-C and CON-B there is ex-
actly one CHANGEROOT message in subtree(f). Since (s,7) € X, p # minnode(f).
Thus, the first component of v,(s') is at least 1. The first component of v, decreases
by 1in s, by definition of tominlink(p). Thus vy(s) < v,(s’).

(c) Suppose (s',7) € ¥y, ¥ is enabled in s', and (s',1) € ¥,. We show ¢ is
enabled in s, and (s,y) € ¥,,.

Suppose ¥ = ChangeRoot( ).
Claims about s':

rootchanged( f) = false, by precondition of .

minlink( f) # nil, by precondition of .

subtree( f) = {p}, by precondition of .

No CHANGEROOT message is in cqueue({q, p)) for any ¢, by Claim 3 and CON-C.
Compute Min( f) is not enabled, by Claim 2.

Merge(f,g), Merge(yg, f), and Absorb(g, f) are not enabled for any ¢, by Claim

R A T o e

ReceiveChangeRoot({¢,p)) is not enabled for any ¢, by Claim 4.

By Claims 5. 6 and 7, 7 is no action that can disable ¢»; hence, ¥ is enabled in
s. By definition, (s,9) € ¥,,.
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Section 4.3.6: GHS is Equitable for TAR .Q

tX

"'

Suppose ¥ = ReceiveChangeRoot({q, p)). ChannelSend({q, p}, CHANGEROOT), o1 ,:.::::

ChannelRecv({q,p), CHANGEROOT). The only action that can disable ¢ is i itsclf. '::.::.:
Thus, 3 is enabled in s and (s,¢%) € ¥,,. '

4

. . Aoy,

4.3.6 GHS is Equitable for TAR : ::'5

0 ‘q:

The interesting arguments are for showing GHS is equitable for Send Test(p), ':.:::!‘

and for ChangeRoot(f) when subtree(f) is a singleton node. For SendTest(p), we Mo

show that an INITIATE-find message eventually reaches p. The big effort is for the :0':"}

. ) Al

ChangeRoot( f). We must show that eventually every node will be awakened, either ‘:".‘:"
by a Start action, or by the receipt of a CONNECT or TEST message. This requires ::E::,'
a global argument about the entire graph. This is another place in which the state .'

component of ¥ in the definition of progressive is needed, since it is possible for a e

message to be requeued, leaving the state unchanged. ‘::j‘.:

oy

Lemuna 32: GHS is equitable for TAR via Mt apg. t!é

. o

Proof: We show that GHS is equitable for cach locally-controiled action ¢ of ‘;,(-}’

TAR via Mrag. First, a point of notation: let Receive({g,p),m) be a syn- ,:g v

onym for ReceiveConnect({(¢,p),!) if m = conNecT(l), a synonym for Receive- "{. ;

Initiate( (g, p), 1, c, st) if m = INITIATE(], ¢, st), etc. ". :
.'a

By Corollary 26, P¢; g is true in every reachable state of GHS. Thus, in the ' 4

sequel we will use the HI, COM, GC, TAR, DC, NOT, CON and GHS predicates. ::
vkt

i) ¢ is InTree(l) or NotInTree(l). By Lemnma 3, we are done.

ii) ¢ is ChannelSend({(q,p),m). We show that GHS is progressive for ¢ via
M ar. Lemma 6 gives the result.

Let W, be the set of all pairs (s,%) of reachable states s of GHS and actions
v of GHS enabled in s such that m' is the message at the head of queue,({¢,p)) in
s, and ¥ = ChannelSend({q,p),m').

For reachable state s, let v,(s) be the number of messages in queue,({q,p))
ahead of the message at the head of tarqueune,({g, p)).

Verifyiug the progressive conditions is straightforward.

iii) ¢ is ChannelRecv({q,p),m). We show that GHS is progressive for
via M ap. Lemma 6 gives the result,
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Section 4.3.6: GH S is Equitable for TAR -

&

Let ¥, be the set of all pairs (s,1) of reachable states s of GHS and actions t

¥ of GHS enabled in s such that m' is the message at the head of queuegy({q,p)) A
in s, and ¢ = ChannelRec({(g, p),m'). 5'.
)

For rezchable state s, let v,(s) be the number of messages in queueg,({(q,p)) “,
ahead of the message at the head of tarqueuey,((q,p)). !;

Verifying the progressive conditions is straightforward.

iv) ¢ is ReceiveTest({(q,p),l,c), ReceiveAccept({(q,p)), or Receive- )

K .
\ Reject({q,p)). We show that GHS is progressive for ¢ via Mrar. Lemma 6 -
gives the result. v
; o
Let ¥, be the set of all pairs (s,%) of reachable states s of GHS and actions ».
)
, ¥ of GHS enabled in s such that m' is the message at the head of queuey({q,p)) in 1
s, and ¥ = Recewve({q, p), m).
g
For reachable state s, let v,(3) be the number of messages in queuey((g,p)) ?
; ahead of the message at the head of tarqueue,({q, p)). :
Verifying the progressive conditions is straightforward. ; ‘
{ «
‘ v) ¢ is SendTest(p). We show that GHS is progressive for ¢ via Mt 4p. ; ‘

Lemma 6 gives the result.

Let ¥, be the set of all pairs (s, 7) of reachable states s of GHS and actions v
of GH S enabled in s such that one of the following is true: (Let f = fragment(p).)

L3
.y e,
¥.

: » t
) e conNNECT(!) is in queue({g,r)), where (q,7) = core(f) and p € subtree(q), m is b
any message in queue({q,r)) that is not behind the CcONNECT(!) in s, and ¥ € " 1

{ ChannelSend({q,r),m), ChannelRecv({g,r), m), Receive({g,r),m)}. o
o
» n3
e An INITIATE(, ¢,find) message in queune((t,u)) is headed toward p and m is any 3;.'
message in queue((t,u)) that is not behind the INITIATE(/, ¢,find) in s, and ¢ € -]

' {ChannelSend((t,u),m), ChannelRecv({t,u),m), Receive({t,u), m)}. L
) =)
For reachable state s, v,(s) is a 7-tuple with the following components. o

o~
._;

)

If no CONNECT is in queue({q,r)), where (q,7) = core(f) and p € subtree(q) in

-~

s, then components 1 through 3 are 0. Suppose otherwise. By CON-D and CON-E,

! therc is only one CONNECT message in queue({gq,r)).
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Section 4.3.6: GHS is Equitable for TAR

1. The number of messages in gqueue,({g,)) that are not behind the CONNECT.
2. The number of messages in queuegr((g,7)) that are not behind the connEcT.
3

. The number of messages i queve,({¢, 7)) that are not hehind the connper.

If no INITIATE(!, ¢,find) is headed toward p, then components 4 through 6 are
0. By DC-S, there is at most one such message. Suppose such a message is in

queue((t,u)).

4. The number of nodes on the path in subtree(f) from u to p, including the
endpoints.

5. The number of messages in queue,((t,u)) that are not behind the INITIATE(/, c,
find).

6. The number of messages in queues, ((t,u)) that are not behind the INITIATE(], c,
find).

7. The number of messages in queue,((t, u)) that are not behind the INITIATE(/, c.
find).

(1) Let s be a reachable statc of GHS in E,. Thus, p € testset(f) and
testlink(p) = nil. By the definition of testset(f), cither a FIND message is headed
toward p in some queue({g,r)), or a CONNECT message is in queue({(g,7)), where
(q,7) = core(f) and p € subtree(q). In either case, let m be the message at the
head of quewns((t,u}). Let 1/ be ChannelSend((q,r),m) if m is in queue,((g,7}); let
Y be ChannelRecv({g,r),m) if m is in queue,,((g,7)); let ) be Receive({q,r),m) if
m is in queue,({g,r)). Obviously, 9 is enabled in s and (s,¢) € ¥,,.

(2) Let (s',7,s) be a step of GHS, s’ be reachable and in E,, (s',7) ¢ X,
and s € E,.

(a) We show that if (s', m) & ¥, then v,(s') = v,(s); together with (b) below,
this 1s enough. We consider all the ways that v, could change.

Can a cONNECT be added to queue({q.r)), with (¢.7) = core(f) by #? By
COM-F, (p,q) € subtree(f), so by TAR-A(b), Istatus({q,r)) = branch. Yet by
inspecting the code, we see that CONNECT is only added to a queue if its lstatus is
not branch, or if the source node is sleeping, in which case GHS-A(c¢) implies that
the Istatus is not branch.

Since we've assumed (s', 1) &€ P, no CONNECT can be removed from the rele-

vant queue,
For a given fragment f. core( f) never changes.
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Section 4.3.6: GH S is Equitable for TAR

Can the identity of fragment(p) change? Since p € testset(f) by the precon-
dition of ¢, minlink(f) = nil in s’ by GC-C. Thus no Absorb(g, f), Merge(f,g) or
Merge(g, f) is enabled in s'.

The number of messages in the same queue as the relevant CONNECT message
but not behind it cannot change, because the queues are FIFO (and (s',7) € ¥..).

Can a relevant INITIATE message be added? The only way it can is if either
a CONNECT message in queue({g,r)) with (¢,r) = core(f) and p € subtree(q) is
received, or if the same INITIATE message headed toward p is received. Since (s',7) &
U, 7 is neither of these actions.

Can the path from u to p change, where an INITIATE(], ¢,find) is in queue({t, u))
headed toward p? By definition of headed toward and HI-A and HI-B, there is a
unique path from u to p in s'. Since HI-A and HI-B are also true in s and since the
minimum spanning tree is unique (by Lemma 10), the same unique path from u to

p exists in s.

The number of messages in the same queue as the relevant INITIATE message
but not behind it cannot change, because the queues are FIFO (and (s',7) € ¥.,).

(b) It is easy to check that v,(s) < v,(s')if (s',7) € ..

(¢) No action % such that (s',¢) € ¥, can become disabled in s without

- occurring, since the queues are FIFO.

vi) ¢ is ComputeMin(f). We show that the hypotheses of Lemma 7 are
satisfled to get the result.

Let A=GHS,B=TAR,C = DC,D = GC, and p = ComputeMin(f) in the
hypotheses of Lemma 7.

(1) If e is an execution of GHS, then by Lemmas 1 and 25, Mpc(e) is an

cxecution of DC.

(2) Let s be a reachable state of TAR. If ¢ is enabled in St.4r(s), then as
arguied in Section 4.2.3 (TAR to GC), » is enabled in S3(STar(s)). By the way
the S’s are defined, S3(Sy ar(s)) = Si(Spc(s)), so p = ¢ is enabled in Sy (Spc:(s)).

(3) Suppose (s',m.s) is a step of GHS and s’ is reachable. If ¢ is not in
Ay yr(s',7), then p is not in My(Mpc(s'ms)) by inspection.
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Section 4.3.6: GHS is Equitable for TAR
(4) DC is progressive for p via My, using ¥, and v,, by Lemma 30.

(5) Let ¥ be such that (¢,%) € ¥, for some t. Possible values of ¥ arc
ChannelSend(l, REPORT(w)), ChannelRecv(l, REPORT(w)), and ReceiveReport(l, w).
Essentially the same arguments as in 1), i22) and 1v) show that GHS is progressive

for .

vii) ¢ is ChangeRoot(f) and subtree(f) is not {p} for any p. We show
that the hypotheses of Lemma 7 are satisfied to get the result.

Let A = GHS', B=TAR,C =CON, D = COM, and p = ChangeRoot(f) in
the hypotheses of Lemma 7.

(1) If e is an execution of GHS, then by Lemmas 1 and 25, Mcon(e) is an

execution of DC.

(2) Let s be a reachable state of TAR. Suppose ¢ is enabled in STagr(s). As
argued in Section 4.2.3 (TAR to GC), ¢ is enabled in S3(ST.4r(s)). As argued in
Section 4.2.2 (GC to COM), ¢ is enabled in u,(S3(STar(s))). By the way the S's
are defined, S2(S3(ST4r(3))) = Ss(Scon(s)), so p = ¢ is enabled in Ss(Scon(s)).

(3) Suppose (s',7,s) is a step of GHS and s' is reachable. If ¢ is not in
Arar(s',7), then p is not in Mg(Mcon(s'ns)) by inspection.

(4) CON is progressive for p via Mg, using ¥, and v,, by Lemma 31.

(5) Let % be such that (t,%) € ¥, for some t. Possible values of '
are ChannelSend(l, cHANGEROOT), ChannelRecv(l, CHANGEROOT), and Receive-
ChangeRoot(l). Essentially the same arguments as in 1), 227) and iv) show that

GHS is progressive for 3.

viii) ¢ is ChangeRoot(f), subtree(f) is {p} for some p. We show that
GHS is progressive for ¢ via Mrag. Lemma 6 gives the result.

Let U, be the sct of all pairs (s,v) of reachable states s of GHS and internal

actions ¥" of GHS enabled in s such that none of the following is true:

e v = ReceiveConnect({q.r},1) for some 4. r and . and in s, nstatus(r) #
sleeping. | > nlevel(r), Istatus({r,q)) = unknown, and only one message is

in queuer({q,r)).

o v = RecewweTest({q.r).l.c) for some ¢. r. | and c. and i s, nsfatus(r) #

sleeping. [ > nlevel(r), and only one message is m quewe, ({q.r)).
1 ] £ /| A

190

T TN NN e

: "—f‘.f\-"&;"f\-'-\-"-'-'.'-'

s
Wa a'q
Aol

Pl

s
55

8
o&:

14

oo
<4

.;r‘;;
A A 3
ol

PPy
x L

ot
=

o
M
ol

l".l‘ oy
XA K
S

A .t

...,
PR A
o

s 4
Pg ‘.
o

~ 7,
ol

LI S

.

fo 4

» ]
2%
F o |

~2
.'- ?

r
3
'
Pe
P
P4
<
s
Pl &



Section 4.3.6: GH S is Equitable for TAR

e v = ReceiveReport({g,r),w) for some ¢, r and w, and in s, inbranch(r) = (q,7).
nstetus(r) = find, and only one message is in queue,({g,r)).

For reachable state s, let v,(s) be the following tuple:

1. The number of fragments in s.

2. The number of fragments g with rootchanged(g) = false in s.

3. The number of fragments g with minlink(g) = nil in s.

4. The number of nodes ¢ € V(G) such that q € testset(fragment(q)).

5. The summation over all ¢ € V(G) of level(fragment(q)) — nlevel(q).

6. The summation over all ¢ € V(G) of findcount(q).

7. The number of links (g, r) such that either lstatus({¢,r}) = unknown, or wise
[status({q,r)) = branch and there is a protocol message for (g,r).

8. The number of links (g,r) such that no ACCEPT or REJECT is in queue({g,r)).

9. The summation over all fragments ¢ such that a CHANGEROOT is in some
queue({q,r)) of subtree(g) of the number of nodes in the path in subtree(g) from
r to minnode(g).

10. The number of fragments g such that AfterMerge(q,r) for DC is enabled for
some ¢ € nodes(g).

11. The number of messages in queue,({g, 7)), for all {g,7) € L(G).

12. The number of messages in queuey.({q,r)), for all (¢,r) € L(G).

13. The number of messages in queue,({g,r)), for all {¢,7) € L(G).

14. The number of messages in queue,({q,r)) that are behind a CONNECT or TEST,
for all {g,r) € L(G).

(1) Let s be a reachable state of GH S in E,,. We now demonstrate that some
action 1 is enabled in s with (s,%) € ¥,.

By preconditions of ¢, awake = true, minlink(f) # nil and rootchanged(f) =
false in s. By GHS-K, nstatus(p) = true in s. But since awake = true, there is some
noae q such that nstatus(q) # sleeping. Thus A, the set of all fragments g such that
nstatus(q) # sleeping for some ¢ € nodes(g), is non-empty. Let | be the minimum
level of all fragments in A, and let A; = {g € A : level(g) = {}.

The strategy is to use a case analysis as follows. For each case, we show
that there is some queue({g,r)) with some message m in it in s. Let ¢ be
chosen as follows. If some message m' is at the head of queue,({q,r})), let
i = ChannelSend({g,7),m'). U no message is in queuney({g,r)) and some mes-
sage m' is at the head of queue,,({q,7)). let ¥ = ChannelSend({g.r),m"). If no

message is in queneg((q.r)) or qu-ueqg ({q.i}}, then at least one message, namely m.,
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Section 4.3.6: GHS is Equitable for TAR g,
) A
; 4
V is in queue,({g,7)); let ¥» = Receive({g,p),m'), where m' is the message at the head .::
y U
of queue,({g,7)). i::
\ For each choice, 9 is obviously enabled in s. There are two methods to verify A
| that (s,%) € ¥,. Method 1 is to show that m is not CONNECT, TEST or REPORT. '7_
b Then, if » = Receive({g,r), m') and m' is CONNECT, TEST or REPORT, there is more c:'
than one message in queue.({g,r)). Method 2 is to show that some variable in s "
: has a value such that even if ¥ = Receive({q,7),m"), where m' is CONNECT, TEST :
t or REPORT, we have that (s,9) € ¥,,. y
[§ (3
‘ %
3 Case 1: There is a fragment g € 4; with testset(g) # 0. Let ¢ be some element -‘
of testset(g). By definition of testset(g), Cases 1.1, 1.2 and 1.3 are exhaustive.
i o
' Case 1.1: A coNNECT(l) message is in queue(r,t), where (r,t) = core(g) and :'.:
| q € subtree(r) in s. We use Method 2. By COM-F, (r,t) € subtree(yg), so by :::
! TAR-A(b), lstatus((t,r)) = branch. )
:
: Case 1.2: An INITIATE(], c.find) message is in some queue((r,t)) headed toward ‘{
’ q in s. By Method 1, we are done. b,
H! '
- '
‘ Case 1.3: testlink(q) # nil in s. By TAR-C(a), testlink(q) = (g¢,r) for some r. ‘
: By TAR-C(c), there is a protocol message for (g,r). X
[} d
¥ '.;
!
' Case 1.8.1: The protocol message is an ACCEPT or REJECT in queue({r,q)). By '
§ Method 1, we are done. . .'
.' ‘
Case 1.3.2: The protocol message is TEST(I',c) in queue({q,r)). Thus Istatus ‘
({g,7)) # rejected. By TAR-E(b), I' = l. If nstatus(r) = sleeping or { < nlevel(r), . h
. we are done, by Method 2. Suppose nstatus(r) # sleeping and [ > nlevel(r). By ',:c

definition of A;, | < level(fragment(r)), and thus nlevel(r) < level( fragment(r)). By
NOT-G, either a NOTIFY(level(fragment(r)) message is in some queue((t,u)) headed
toward r, in which case we are done by Method 1, or AfterMerge(t,u) is enabled
for NOT, with r € subtree(u). In the latter case, by GHS-L, a CONNECT is at the
head of queue({u,?)); the same argument as in Case 1.1 gives the result.

. -, e

N o ok LI g T
ax Y % j

Case 2: testset(g) = 0 for all g € A,.

' 1
i Case 2.1: There is a fragment g in A; with minlink(g) = nil. Since ¢ # f and .‘(
G is connected, there is an external link of ¢. Since testset(g) = @, by DC-D(c) no
! FIND message is in subtree(g). K
J M
v \
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Section 4.3.6: GH S is Equitable for TAR

Suppose dcstatus(q) = unfind for all ¢ € nodes(g). By definition of minlink(g).

a REPORT message is in some gueue({g,7)) headed toward mw-root(g). We are done
by Method 2.

Suppose dcstatus(q) = find for some ¢ € nodes(g). By DC-I(b), since
testset(g) = 0, a REPORT message is in some queue((r,t)) in subtree(q) headed
toward ¢. By DC-B(a), inbranch(t) # (t,7). We are done by Method 2.

Case 2.2: minlink(g) # nil for all g € A,.

Case 2.2.1: There is a fragment g in A; with rootchanged(g) = false. By GHS-
K, if subtree(g) = {q} for some g, then rstatus(q) = sleeping. By definition of
Ay, subtree(g) # {q} for any ¢. By CON-B, a CHANGEROOT message is in some
queue({g,r)) in subiree(g). We are done by Method 1.

Case 2.2.2: rootchanged(g) = true for all ¢ € A;. By CON-D, a CONNECT
message is in queue(minlink(g)) for all g € A;.

Case 2.2.2.1: There is a fragment g in A; with minlink(g) = (¢,r) and
level( fragment(r)) > L.

If nlevel(r) > I, we are done by Method 2. Suppose nlevel(r) < I. Essentially
the same argument as in Case 1.3(b) gives the result.

+ Case 2.2.2.2: For all fragments g in Ay, level( fragment(target(minlink(g)))) <
I. By COM-A, level(fragment(target(minlink(g)))) = [ for all g € A;.

Case 2.2.2.2.1: There is a fragment g in A; such that minlink(g) = (g,7), and
fragment(r) ¢ A;. By definition of A;, nstatus(r) = sleeping, and we are done be
Method 2.

Case 2.2.2.2.2: For all fragments ¢ in 4;, fragment(target(minlink(g))) € A:.
As argued in Lemma 27, Case 2.2.2 of verifying (1) for ¢ = Combine, there are two
fragments g and h in A; such that minedge(g) = minedge(h) = (¢q,7). By TAR-H,
Istatus({r,q)) = lstatus({g,r)) = branch. By Method 2, we are done.

(2) Let (s', 7,3) be astep of GHS, where &' is reachable and in E,, (s',7) ¢ X,.
and s € E,.
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Section 4.3.6: GH S is Equitable for TAR

(a) We show that if (s'.7m) € ¥, then v,(s) = vy,(s'); together with part ()
below, this gives the result. ¥, is defined to include all the state-action pairs that

change the state. Thus, if (s'.7) € ¥, then s = &', and obviously v,(s) = v ().

(b) Suppose (s, 7) € ¥,. The breakdown of cases in this argument is essentially
the same as in the proof of the safety step simulations in Lemina 25. The notation
“Component 12” in a case means that component 12 of v, decreases in going from

s’ to s, and coniponcnts 1 thivugh 11 are unchanged.
o © = ChannelSend({q,r),m). Component 11.
o m = ChannelRecv({(gq,r), m). Component 12.
o m = RecewveConnect({q,r),!).

Case 1: nstatus(r) = sleeping in s'. If (¢,7) is not the minimum-weight external
link of r, then: component 2. Otherwise, component 1.

Case 2: nstatus(r) # sleeping, | = nlevel(r) and no CONNECT is in queue({r,q))

in s'.

Suppose Istatus({r,q)) = unknown. Since (s',7) € ¥,,, another message is in
queue({g,r)). By CON-D, CON-E and GHS-C, the other message is not a CONNECT
or TEST. Component 14.

Suppose Istatus((r,q)) # unknown. Since DC simulates AfterMerge(r,q), nei-
ther AfterMerge(r,q) nor AfterMerge(q,7) is enabled in s. Component 10.

Case 3: nstatus(r) # sleeping, | = nlevel(r), and CONNECT is in queue({r,q))
in s'. Component 1.

Case 4: nstatus(r) # sleeping and ! < nlevel(r) in s'. Component 1.
e m = Receivelnitiate({q,r),l,c,st). By NOT-H(a), > nlevel(r). Component 3.
o m = RecetveTest({q,r),l,c). Let g = fragment(r).

Case 1: nstatus(r) = sleeping in s’. Component 2.

Case 2: nstatus(r) # sleeping in s'.
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Section 4.3.6: GH S is Equitable for TAR

Case 2.1: | < level(g), and either ¢ # core(g) or testlink(r) # (r,q) in s'. If an
ACCEPT is added, then component 8. If a REJECT is added, then either component

7 or component 8.

Case 2.2: 1 < level(g), ¢ = core(g), and testhnk(r) = (r,¢) in s'. If there is no
link (r,t), t # q, with lstatus({r,t)) = unknown, then component 4. If there is such
a link, then component 7.

Case 2.3: | > level(g) in s'. Since (s,7) € ¥, there is another message in
queue,((g,r)). By TAR-C(c) and GHS-C, the other message is not CONNECT or
TEST. Component 14.

e 7 = ReceiveAccept(langleq,r)). Component 4.

o m = ReceiveReject({g,r)). If there is no link (r,t), t # g, with lstatus({r,t)) =
unknown, then component 4. If there is such a link, then component 7.

o 7 = ReceiveReport({g,r),w).

Case 1: (q,r) = core(g), nstatus(r) # find and w > bestwt(r) in s'. If
lstatus(bestlink(r)) = branch, then component 3. Otherwise, component 2.

Case 2a: (q,r) # core(g) in s'. If inbranch(r) = (r,q), then component 13.
Otherwise, component 6.

Case 2b: (q,r) = core(g) and nstatus(r) = find in s'. The only change is
that the REPORT message is requeued. We show that there is no other message in
queue({g,r)), and thus (s',7) ¢ ¥,. First note that by COM-F, (q,r) € subtree(g).
By GHS-B, no CONNECT is in the queue. By DC-O, no INITIATE(*, *,found) is in the
queue. By GHS-E, no INITIATE(*, *,find) is in the queue. By TAR-E(a), no TEsT
or REJECT is in the queue. By DC-0, no other REPORT is in the queue. By TAR-F,
no ACCEPT is in the queue. By CON-C, no CHANGEROOT is in the queue.

Case 2¢: (g,7) = core(), nstatus(r) = unfind, and w < bestwt(p). Component
13.

o ™ = ReceiveChangeRoot({q,r)). If Istatus(bestlink(r)) # branch, then compo-
nent 2. Otherwise, component 9.

(c) Suppose (s',7) & ¥, ¥ is enabled in s', and (s',¢) € ¥,,. Since (s',7) &
., s = 3. Obviously, ¥ is enabled in s and (s,v) € V.
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Section 4.4: Satisfaction

ix) ¢« is Merge(f,g). We use Lemma 7. The same argument as in viz), with
p = Merge(f,g) and (3) as below, gives the result.

(3) Let ¥ be such that (¢,v) € ¥, for some ¢t. Possible values of 3 are
ChannelSend(k, conNECT(!)), ChannelRecv(k, cONNECT(])), and Merge(f,g). Es-
sentially the same arguments as in i:), ¢2¢) and iv) show that GHS is progressive

for 3.

x) p is Absorb(f,g). We use Lemma 7. The same argument as in viz), with
p = Absorb(f,g) and (3) as below, gives the result.

(3) Let ¥ be such that (t,v) € ¥, for some ¢t. Possible values of 3 are
ChannelSend(k, conNECT(])), ChannelRecv(k,CONNECT()), and Absord(f,g). Es-
sentially the same arguments as in i), 12:) and 7v) show that GHS is progressive

for . O

4.4 Satisfaction
Theorem 33: GHS solves MST(G).

Proof: By Theorem 12, HI solves M ST(G). By Lemmas 13 and 27 and Theorem
8, COM satisfies HI. By Lemmas 15 and 28 and Theorem 8, GC satisfies COM.
By Lemmas 17 and 29 and Theorem 8, TAR satisfies GC. By Lemmas 25 and
32 and Theorem 9, GHS satisfies TAR. Thus, since “satisfies” and “solves” are
defined using subsets of schedules, GHS solves MST(G). O
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Appendix

In this Appendix, we review the aspects of the model from [LT] that are relevant
to this paper.

An snput-ontput automaton 4 is defincd by the following four components. (1)

There i1s a (possibly infinite) set of states with a subset of start stutes. (2) There is
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a set of actions, associated with the state transitions. The actions are divided into
three classes, tnput, output, and internal. Input actions are presumed to originate
in the automaton’s environment; consequently the automaton must be able to react
to them no matter what state it is in. Output and internal actions (or, locally-
controlled actions) are under the local control of the automaton; internal actions
model events not observable by the environment. The input and output actions are
the ezternal actions of A, denoted ext(A). (3) The transition relation is a set of
(state, action, state) triples, such that for any state s’ and input action =, there is
a transition (s',7,s) for some state s. (4) There is an equivalence relation part(A)
partitioning the output and internal actions of A. The partition is meant to reflect
separate pieces of the system being modeled by the automaton. Action = is enabled
in state s’ if there is a transition (s', 7, 3) for some state s.

An ezecution e of A is a finite or infinite sequence sgmys;... of alternating
states and actions such that sq is a start state, (s;—y,7;,s;) is a transition of A for
all 7, and if e is finite then e ends with a state. The schedule of an execution e is
the subsequence of actions appearing in e.

We often want to specify a desired behavior using a set of schedules. Thus we
define an ezternal schedule module S to consist of input and output actions, and a
set of schedules scheds(.S). Each schedule of S is a finite or infinite sequence of the
actions of S. Internal actions are excluded in order to focus on the behavior visible to
the outside world. External schedule module S’ is a sub-schedule module of external
schedule module S if S and S’ have the same actions and scheds(S') C scheds(S).

Automata can be composed to form another automaton, presumably modeling
a system made of smaller components. Automata communicate by synchronizing on
shared actions; the only allowed situations are for the output from one automaton
to be the input to others, and for several automata to share an input. Thus,
automata to be composed must have no output actions in common, and the internal
actions of each must be disjoint from all the actions of the others. A state of the
composite automaton is a tuple of states, one for each component. A start state
of the composition has a start state in each component of the state. Any output
action of a component becomes an output action of the composition, and similarly
for an internal action. An input action of the composition is an action that is input
for every component for which it is an action. In a transition of the composition
on action 7, cacl component of the state changes as it would in the component
automaton if m occurred; if 7 is not an action of some component automaton,
then the corresponding state component does not change. The partition of the
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composition is the union of the partitions of the component automata.

Given an automaton A and a subset II of its actions, we define the automaton
Hiden(A) to be the automaton A' differing from A only in that each action in 11
becomes an internal action. This operation is useful for hiding actions that model
interprocess communication in a composite automaton, so that they are no longer

visible to the environment of the composition.

An execution of a system is fair if each component is given a chauce to make
progress infinitely often. Of course, a process might not be able to take a step cvery
time it is given a chance. Formally stated, execution e of automaton A is fair if for
each class C of part(4), the following two conditions hold. (1) If e is finite, then no
action of C is enabled in the final state of e¢. (2) If ¢ is infinite, then either actions
from C appear infinitely often in e, or states in which no action of C is enabled
appear infinitely often in e. Note that any finite execution of A is a prefix of some
fair execution of A.

The fair behavior of automaton A, denoted Fairbehs(A), is the external sched-
ule module with the input and output actions of A, and with the set of schedules
{alext(A) : o is the schedule of a fair execution of A}.! A problem is (specified by)
an external schedule module. Automaton A solves the problem P if Fairbehs(.4)
is a sub-schedule module of P, i.e., the behavior of A visible to the outside world is
concistent with the behavior required in the problem specification. Automaton A
satisfies automaton B if Fairbehs(A) is a sub-schedule module of Fairbchs(B).

' If o is a scquence from a set S and T is a subset of S, then a|T is defined to
be the subsequence of a cousisting of elements in 7.
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