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Abstract

Consider the lifelengths Ty,...,Tx of k components subjected to a randomly
varying environment. They are dependent on each other because of their com-
mon dependence on the environment. The parameters of the model are the
distribution of the random process which describes the environment and a set
of rate functions which determine the probability law of T4,..., Tk as a function
of the distribution of the environment. We find conditions on the parameters of
the model which imply that T,...,T) are associated. Other conditions which
imply that Ty,...,T, have the multivariat- aging properties IHR (increasing
hazard rate) and NBU (new better than used) are also described. Also two such
models are compared. In particular, we characterize the parameters of these
models so that stochastic ordering between the two vectors of resulting lifetimes
can be obtained.
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1. INTRODUCTION

Consider the lifelengths Ty,...,Tx of k components subjected to a randomly
varying environment. They are dependent on each other hecause of thcir com-
mon dependence on the environment. In the model introduced by Cinlar and
Ozekici (1987) to handle such dependence, the cumulative hazard functions of
the components are made functionals of the environment process and jointly
satisfy a differential equation. Therefore, the joint probability law of the life-
lengths is specified by the probability law of the environment process X and
the intrinsic aging rates r;(z,a1,...,ax), t € {1,...,k}, where the latter stands
for the instantaneous failure rate of the component + at an instant when the
environmental state is z and the intrinsic ages (the cumulative hazards) of the
components 1,...,k are a;,--- ,ar respectively. We shall make these precise

shortly, in Section 2.

Our aim is to explore the dependence of the lifelengths on the function
r = (r1,...,rx) and the process X. In Section 3, we examine the effects of
replacing r and X by another function # and another process X, in both cases
seeking results on stochastic dominance. Also in that section is a characteriza-
tion of “association” (in the sense of Esary, Proschan and Walkup (1967)) for

the lifelengths in terms of the association of the process X.

In Section 4, we consider multivariate aging properties of the lifelengths con-
ditioned upon the history # of the environment until ¢, and also, conditioned
upon the history G; of the environment and failures during [0,t]. In particu-
lar, we obtain conditions for the lifelengths to have the “multivariate increasing
hazard rate” property with respect to the filtration (%) or (G;), and also the

“multivariate new better than used” property, again with respect to (#) or (Gt).




2. PRELIMINARIES

In this section we give an overview of the model introduced by Cinlar and
Ozekici (1987). Throughout here and the paper, (1, X, P) is a complete proba-
bility space. We write R, for [0, o), call a number or vector a positive [negative]
if @ > 0ja < 0,, and call a function f increasing [decreasing] if f(z) < f(y) for

z <ylz >y

Let (E, £) be a measurable space. Elements of E are called the environmental
states. We suppose that, for each z € E, the singleton {z} belongs to £. There
is a distinguished point in E, denoted by é, which stands for the state that
causes no aging. We let X = {X(¢);t € R} be a stochastic process with state

space (E,£); it represents the environment process.

The set of all components is epresented by K = {1,...,k}. We let 4 =
{A(t);t € R.} be an increasing continuous process taking values in R ; its ith
component, namely 4; = {A4;(t);t € R.}, is called the intrinsic age process of

component t, it plays the role of a random cumulative hazard function.

We let Sy,..., Sk be independent of X and of each other and have the standard
exponential distribution (with mean 1). The lifelength of component 7 is modeled

by
(2.1) T; = inf{t : A,’(t) > S,'}, 1€ K,

that is, the component i fails when its intrinsic age runs over its “intrinsic
lifelength” S;. We write S = (Sy,...,8%) and T = {Ty,...,Tk) for the vectors

of intrinsic lifelengths and lifelengths.

In this formulation, the dependencies between the lifelengths and their joint

dependence on the environment are reflected via the intrinsic age process A.

R ———— - — e———
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Regarding the latter, the main assumption of Cinlar and Ozekici (1987) is as

follows.

(2.2) HYPOTHESES. (i) For each component ¢ there exists a positive measur-

able function r; on F X R’j_ such that

(2.3) dAi(t) = ri(X(t),At))dt, t>0,:€ K.

(ii) We have r;(z,a) > O for each i € K, a € R, and all z € E except = = §.

For z = §, we have r;(z,a) = 0 for all 7 and a.

The basic hypothesis is the first one: the intrinsic age process A is a functional
of the environment process X. The second hypothesis is a regularity condition, it
is meant to ensure that (2.3) has a unique solutic* A for each starting condition;

in particular, it singles out é as the only state that causes no aging.

Note that A is determined by X and, hence, is independent of the vector
S. Therefore, it follows from (2.1) and the independence of the exponential

variables S; from each other that

(2.4) P{T > t|X} = exp [— Z Ag(t,-)] , t€ R’i.
€K

This justifies the term “random cumulative hazard function” for each A;. How-
ever, we prefer to call A; the intrinsic age process of i. Then (2.1) can be read as
follows: each component is endowed with an intrinsic lifelength, the component
ages in response to the environmental factors in a manner intrinsic to its own
function and nature, it fails when its intrinsic age runs over its allotted intrinsic
lielength. In particular, (2.3) defines r;(z,a1,...,ak) to be the intrinsic aging

rate of the component ¢ at a time when the environment is in state z and the
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intrinsic ages of the components 1,...,k are a;,...,ax respectively. It follows

from (2.3) and (2.4) that we also have

(2.5) ri(z;a1,-.-,ak)

= lim LPT <t 4ulTi > 0.X(8) = 2, AL(2) = ay, ..., A(t) = ax),
ul0u

that is, r;(z,a) is the hazard rate for component 1 as a function of the environ-
mental state z and the intrinsic age vector a. We write r = (ry,...,r) and call
it the intrinsic aging rate function. Aside from the probability law of X, it is

the only parameter in the model.

If r(z,a) is free of z, then A becomes deterministic and (2.1) shows that
T;,..., Ty are independent. If r(z, a) is frec of a, then A becomes a k-dimensional

additive functional of X.

A function r from ExRﬁ into Rﬁ will be called an tntrinsic aging rate function
if it satisfies Hypothesis (ii) of (2.2). Given such a function r and the process

X, the diffcrential equation (2.3) together with
(2.6) A(0) =0

specifies the aging vector A(t) for all ¢t > 0, and the latter specifies the lifelength
vector T via (2.1) from intrinsic lifelength vector S of standard exponentials.

Thus, there exists a functional L such that
(2.7) T = L(X,r,S).

The functional L is defined implicitly via (2.1) and (2.3); it is called the lifelength
functional. This paper is a study of the dependence of L on its arguments X

and r.




3. DEPENDENCL ON ENVIRONMENT AND AGING RATES

In this section we discuss the dependence of the lifelength vector T =
L(X,r,S) on the environment process X and the intrinsic aging rate function r.
Here, and for the remainder of the section, we assume that the state space E' is

a complete separable metric space.

(3.1) THE®REM. Let r and # be intrinsic aging rate functions and let T’ =
L(X,r,S) and. T = L(X,#,85). Assume that ¢t — X(t) is piecewise continuous
and that either r or 7 is continuous on E x R*. Suppose that, for each { € K

and z € F,
3.2 a,a € RE ,a > @,a; = &; = ri{z,a) > #i(z,a).
+ \

Then, T < T.

(3.3) REMARK. Suppose that r > 7 and that either a — r(z,a) or a —
#(z,a) is increasing for every z. Then, the condition (3.2) of the preceding
theorem is satisfied and T < T. For instance, if r > 7 and @ — r(z,a) is
increasing for each z, then r(z,a) > r(z,a) > #(z,a) for all a > &, and hence

(3.2) holds.

(3.4) REMARK. Suppose that r and # are as in the preceding theorem and
(3.2) is satisfied. Suppose that T = L(X,r,S) and T = L(X,#,5) where X and
X have the same probability law, and so do S and §, and S is independent
of X (as S is of X). Then, the conclusion of the preceding theorem is that T
is dominated by T stochastically, that is, Ef (Y Ef (T) for every increasing

function f from RE into R,.

Proof of Theorem (3.1). Fix r and #. Suppose first that (3.2) holds with a

strict inequality: r;(z,a) > #;(z,@). Let A be the solution of (2.3) and let A be




o
the solution of (2.3) with 7 replacing r, both with A(0) = A(0) = 0. Now, T is
defined by (2.1), and T is defined by (2.1) with A replacing A. Thus, to show

that T < T, it is sufficient to show that 4 > A. Or, equivalently, it is sufficient

to show that the random variable
(3.5) r = inf{t: A;(t) < As(t) for some i}
is equal to +oo identically.

Since A(0) = A(0) = 0, we have r > 9. Suppose for the moment that 7(w) =¢
(where t < oo) for some outcome w € 1. Fix that w and simplify the notation

by putting
(3.6) = X(w),a=A(w,t),a=Alw,t).
In view of (2.3), the processes A and A are continuous, and the assumed

finiteness of t = 7(w) implies the existence of 1 € K and of a decreasing sequence

(tn) € Ry with limit ¢ such that
(3.7) Ai(w,tn) < Ai(w,t,) for all n.
Moreover, by the continuity of A and /i, we must have

(3’8) a > as a; = &i

The differentiability of A; and A; ensured by (2 3) implies that, since a; = &,

lim [Ai(wytn) - /ii(“)atn)]
n—oo b, —

39) = lim [As(wtn) — @i — fim —{Ay(w, tn) — ai]
oo t, —t iWslin i nioo b, — 1 \Wyln 1)

=r.~(:c, a) - ﬂ-(a:, &)

—~———— ———
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In view of (3.8) and the assumed strictness in condition (3.2}, this is strictly
positive. But, the first member of (3.9) must be negative in view of (3.7). This

contradiction shows that 7{(.v) cannot be finite.

Now relax the assumption of strictness in (3.2) but assume for a moment
that t — X(t) is continuous. Then t — r(X(t),A(t)) or t — 7(X(t), A(t))
is continuous by the hypothesis that either r or 7 is continuous. Suppose the
former. Fix an ¢ > 0in [0, 0c)* and define r(®) = r+e/n,n=1,2,.... Let A"
be the solution of (2.3) with (") replacing r and with A(™(C) = 0. Then by
the previous argument 4™ > A. By the continuity of r, A{") — A. Therefore

A > A in this case,

The proof for the case. in which t — #(X(t),A(t)) [rather than t —
r(z(t), A(t)] is continuous, is similar. The above argument can be used except

that 7 is replaced by 7#(") = #(1 ~ €/n) where € < 1 is fixed. This definition of

#(n) ensures that 7(*) > 0 as required in (2.2) (ii).

If t —» X(¢) is piccewise continuous, then lct t;,t;, ... be the successive iump
times of X. On each interval y,tz41), X is continuous and the previous argu-

ment can be applied to each such interval to show that A > 4. i

Dependence on environment

For the remainder of this section, we assume that the state space E is a
partially ordered Polish space (a complete separable metric space with a closed
partial ordering). Then, the space D = D(R,, E) of right-continuous left-limited
functions from R into E is again a partially ordered Polish space. A functional
g : D — R, is said to be increasing if w < W implies g(w) < g(w) for all paths

w,® € D, where < denotes the partial ordering.
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Let X and X be processes with paths in D. Then, X is said to dominate Y

stochastically provided that
(3.10) Eg(X) > Eg(X)

for every Borel measurable increasing functional g on D. This is obviousiy the
case if X(w,t) > X(w.f) for all w € N and ¢t € R;. More generally, if X
stochastically deminates X, then it follows from Theorem 1 of Kamae, Krengel,
and O’Brien (1977) that X and X can be “put on the same probability space
so that one dominates the other path by path”. More precisely, it is possible to
construct a new probability space (W, ,Q) and stochastic processes Y and Y’
defined on (W. G, Q) and having paths in D such that Y (w,t) > Y (w,t) for all
weWandt € R,, X and Y have the same probability law, and X and Y have
the same probability law. Of course, the new probability space can be enlarged
to accommodate k independent standard exponential variables independent of

Y and Y. These remarks will be useful in simplifying the proof of the following

theorem, which reduces to Theorem (3.1) when X = X.

Let D = ﬁ(R,,E) be the set of functions in D(R,, E) which are piecewise

continuous.

(3.11) THEOREM. Let X and X be processes with paths in D, let r and ¢
be intrinsic aging rate functions, and let S and S be k-vectors of independent
standard exponential variables independent of X and X respectively. Assume

that r and 7 are continuous on E X Rf . Suppose that
i) X dominates X stochastically,

i} z — r(z,a) is increasing for every a (or £ — 7(z, a) is increasing for every

a), and the condition (3.2) holds for every 1€ K and z € E.




9

Then. T = L(X,r,S) is stochastically dominated by T = L(X,F,S‘).

Proonf. In view of the foregoing remarks. by moving onto a new probability
space if necessary. we may and do assume that S = § and X(w,t) > X(w,t) for

all w and t.

Let A be as before, and define A as the sulution of (2.3) with X and r replaced
by X and 7, A(0) = A(0) = 0. As in the proof of Theorem (3.1), it is sufficient
to show that 4 > fi, or equivalently, that 7 defined by (3.5) is equal to +oo

identically.

First assume that (3.2) holds with a strict inequality. Let 7 be defined by
(3.5) and suppose again that r(w) = t(t < co) for some w € 1. Pick 1 € K and
(t.) C R. so that (t,) decreases to t and (3.7) holds. With the notations (3.6)

supplemented by = X(w,t), (3.9) becomes

(3.12) lirn

n—oot, —{

[Ai(w,tn) — /i,—(w,tn)] = ri(z,a) — 7y(Z,a).

Since X dominates )A(, we have z = X(w,t} > X(w,t) = Z. Thus, the condition
(ii) implies that

ri(z,a) > ri(2,a) > 7i(E,a)
if £ — r(z,a) is increasing {and r;(z,a) > 7i(z,a) > 7i(%,4) if z — 7(z,a) is

increasing). It follows that the right side of (3.12) is strictly positive. But from

(3.7) it is seen that it is negative. Hence 7(w) cannot be finite.

The extension of the above argument to the case in which strictness in (3.2)

is not assumed can be done as in Theorem (3.1). ||

The preceding proof, with r = 7, yields the following technical result regarding

the lifelength functional L.
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(3.13) COROLLARY. Suppose that a — r(z,a) is increasing for every z €
E, that z — r(z,a) is increasing (respectively, decreasing) for every a € Ri and
that r is continuous on E xR% . Then, w — L(w,r, s), is decreasing (respectively,

increasing) in w € D for fixed r and s.
4. ASSOCIATION OF LIFELENGTHS

Let Z,,...Z» be random variables taking values in R*. Then, they are said

to be associated provided that the vector Z = (Z,,...,Z,,) satisfy
Cov(g(Z),h(Z)) 20

for all increasing functions g,h : R™*X™ — R for which the covariance exists.
A stochastic process Z = {Z(t);t € R,} with state space R" is said to be
associated in to. o if Z(t1),...,Z(t;) are associated for all integers m > 1
and times t;,...,¢t,, € R,.. Our aim in this section is to show that, if the
environment process X is associated in time and certain conditions hold for the
aging rate function r, then the lifelengths T,...,Tx are associated. We refer
to Esary, Proschan, and Walkup (1967), Barlow and Proschan (1975), Arjas
and Norros (1984), Shaked and Shanthikumar (1987) and references therein for
the usefulness of the concept of association for lifelengths, and to Barlow and

Proschan (1976) and Harris (1977) for examples of processes associated in time.

For the purposes of this section we assume that the environment process X

takes values in E = R™ and its paths belong to D as in-the preceding section.

(4.1) THEOREM. Suppose that X is associated in time. If z — r(z,a) is
increasing for every a € R% (or decreasing for every a € R%), a — r(z,a) is
increasing for every z € E = R", and r is continuous on E x Ri, then the

lifelengths Ti,...,Tx are associated.




-
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Proof. Fix r, suppose that r(z,a) is increasing in both z and a. Then, by
Corollary (3.13), the mapping w — L(w,r,s) from D into R is decreasing.
Thus. if ¢ and Ak are increasing functions from Rf‘r into R, then —g o L{w,r,s)

and —h o L(w,r,s) are increasing functions of w € D and we have
(4-2) Ego L(X,r,s)ho L(X,r,s) > Ego L(X,r,s)Eh o L(X,1,5)

by the assumption that X is associated in time. The same is true for the case
where z — r(z, a) is decreasing, by Corollary (3.13) and the association applied

directly to go L and ho L.

Let 4 denote the k-dimensional standard exponential (that is, the distribution
of S). By the independence of X and S, the integral of the left side of (4.2)
with respect to u(ds) is equal to Eg(T)h(T). Thus, (4.2) gives,

(4.3) Eg(T)h(T) > /u(ds)Eg o L(X,r,s)Eh o L(X,r,s).

On the other hand, it is obvious that s — L(w,r,s) is increasing, which implies
that s = Ego L(X,r,s) and s — Eho L(X,r,s) are increasing. Since Sy,..., Sk
are independent, they are associated. This in turn implies that the right-side of

(4.3) is greater than or equal to

/u(ds)Eg o L(X,r,s) /p(ds’)Eh o L{X,r,s")
= FEgo L(X,r,S)Eho L(X,r,S) = Eg(T)Eh(T).

This completes the proof. ||

In the preceding theorem, the condition that X be associated in time is satis-
fied for processes X that have independent positive increments (e.g. increasing

compound Poisson processes, gamma processes, etc.). More generally, in the
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case of real-valued processes X, association in time holds if X is stochastically

monotone, that is, if
(4.4) E{g(X(t))|X(0) = z] < E[g(X(t))|X(0) = y]

for £ < y and g increasing Borel measurable (see Barlow and Proschan (1976)
and Harris (1977) for this). Thus, the preceding theorem remains true if X is a

real valued, stochastically monotone Markov process.
5. MULTIVARIATE AGING PROPERTIES

In this section 0, will denote an operator that shifts the time origin to ¢t. In

particular,
(5.1) 0,T; = max(0,7y — t), 1 . K.

The following properties were defined in Arjas (1981).

(5.2) DEFINITION. Let (X;) be a filtration. The lifelength vector T is said
to have a multivariate increasing hazard rate with respect to (X;) (abbreviated

as (¥,)-MIHR) if
(5.3) E[f(8:T) | X¢] > E[f(0uT) | Xu]

for all t < u and all positive increasing Borel functions f on R’jr. It is said to have
the multivariate new better than used property with raspect to (X,) (abbreviated

as (¥,)-MNBU) if
(5.4) E[f(T) | ¥o] > E[f(6:T) | ¥:]

for all t > 0 and all positive increasing Borel functions f on RE.
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Two special filtrations of interest to serve as (};) above are defined by

(5.5) Fi = o(A{0), X(s) :s < 1),

-

(5.6) Ge=Fvollir<sy 15 <t € K),

which are, respectively, the history of environment and age processes until ¢ and
the complete history of environment, ages, and failures until . Note that we

allow the initial ages A4;(0) to be non-zero random variables.

Our aim in this section is to discuss MIHR and MNBU properties of T with
respect to (7) and (G;) assuming that X is a Markov process with certain

properties. We start by some computations in the Markovian case.

Lifelengths in a Markovian environment

Let X be a temporally homogeneous Markov process with state space £ = R7}.
Suppose that its paths belong to D, the space of all right-continuous left-limited
functions from R, into E. Let A satisfy the differential equation (2.3), but with
the initial condition A(0) unspecified. It follows, then, that the pair (X, A4) is a
temporally homogeneous Markov process with state space E x Ri. As is usual

in the theory of Markov processes, we will write
P*{}=P{-|X(0) =z,A(0) =a}, z€E,acRj,

and will write E*® for the corresponding expectation operator. Note that P*?
does not put any conditions on the vector S of standard exponentials, except

that S is assumed to be independent of 7, that is, of the process (X, A).

The lifelengths T; are still defined by (2.1), which implies that some of the T}
can be 0 with a strictly positive probability. However, if it is given that T; > 0O,
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its probability law is the same as that of
(5.7) U; = inf{t : A,’(t) - A,‘(O) > S.‘}, 1€ K,

which fact follows from the independence of S from A and the memorylessness
of exponential variables. The following is a precise version of this circle of ideas.
Here, and below, for I € K and v € R’_‘,, we define vy € R’_i to be the vector

whose i-entry is v; or 0 according as ¢t € I ~r not.

(5.8) LEMMA. Let f be a positive Borel function on R% and put

(5.9) ¢g(z,a,1) = E**[f(T) | Si >a;fori€ I and S; <a;fori € K -1,
where £ € E, a € R%, and I ¢ K. Then,

(5.10) 9(z,a,I) = E** f(Uy).

Proof. Under P** we have A(0) = a. Thus, on {S; < a;} we have T; = 0

almost surely, and (5.9) becomes
(5.11) g(z,a,I) = E*¢[f(Ty) | Si > ai, €1l
On the other hand, on {S; > a;}, we have
T; = inf{t : A;(t) > S} = inf{t : A(t) ~— A;(0) > $;}

where S; = S; — a; since A;(0) = @, under P*?, By thg independence of S from
(X, A), and since S; is exponential, S; = Si — a; has the standard exponential
distribution as its conditional distribution on {S; > a;}. It follows that the
conditional distribution of Ty, given {S: > ai,7 € I}, under P*® coincides with
the distribution of Ur under P**. Hence, the right sides of (5.10) and (5.11) are

the same. ||
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(5.12) LEMMA. Let f and g be as in Lemma (5.8). Let u be the standard

1 exponential distribution on Ri, that is, u(ds) = exp(—s; — -+ — sx)dsy - - - ds.
Then.
!
b (5.13) E**f(T) =/ u(ds)g(z,a, I,a) = h(z,a)
R,

| where I,, = {1 € K :5; > a;}.
Proof. It is immediate from Lemma (5.8) by unconditioning. ||

> The proof of the next lemma follows from the Markov property of (X, 4).
1 Here,

(5.14) Rit)={i € K:T: > t},

is the set of components remaining alive at ¢.

(5.15) LEMMA. Let X be a temporally homogeneous Markov process. Let
| f,g, and h be related by (5.9) and (5.13). Then

" (5.15) E{f(6:T) | G¢) = 9(X(t), A(), R(2)),

(5.16) E(f(6.T) | 7] = (X (1), A(2)).

Increasing hazard rates

(5.17) THEOREM. Let X be a temporally hoinogeneous Markov process
with state space £ = R™. Suppose that

a) r(z,a) increases in z and in a and is continuous,

b) X is stochastically monotone
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c) the paths of X belong to D(R,,R") and zare increasing.
Then, T has the (#;)-MIHR and (G;)-MIHR properties.

Proof. i) Let f be an increasing function on Ri and let ¢ and h be defined
by (5.9) and (5.13). To show that (5.13) holds with ¥; = % or G;,t > 0, it
is sufficient to show that (5.15) and (5.16) are decreasing in ¢. Since X and A
are increasing processes (the assertion on X is via the assumption (c)) and R
is decreasing, this amounts to showing that g and h are decreasing in their first

two arguments and ¢ is increasing in its last argument.

ii) It is easy to see that g(z,a,I) increases as I increases: if ] C J then

Ur < Uy and f(Up) < f(U,).

ili) Fix @ and I. Since r — r(z,a) is increasing, the random vector U; is a
decreasing functional of X (by (3.13)). By the assumed stochastic monotonicity
of X, this implies that g(z, a, I) decreases in z. Further, in view of (5.13), k(z, a)

decreases in z.

iv) Fix z and I. Let a < @, and let A and A be the solutions of (2.3) starting
from @ and & respectively. As before in Theorem (3.1), using the assumption

that r(z,a) is increasing in a, we see that A < A. This implies that

(5.15) ZAL) = r(X(0), A1) < (X(0), A(0) =

| &

t/i(t).

.

Integrating over (0,¢] we see that A(t) — A(0) < A(t) — A(0). Thus, in view of
the definition (5.7) of U, we have U > U where U corresponds to A as U does
to A. It follows that f(U;) > f(lj[) and, since the law of U under PZ*% is the
same as that U under P*%, we have that 9(z,a,I) > g(z,&,I). Hence, g(z,a,I)

decreases in a.




-
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Finally, fix z and let a < &. Consider the formula (5.13) for h. For any s € Ri,
Ia=1{i:8 >a;}D{i:s >a;} = I, and hence, g(z,a,I,.) > g(z,a, ). It

follows from (5.13) that h(z,a) > h(z,a), that is, h(z, a) decreases in a. ||

Note that the conditions of Theorem (5.17) imply the conditions of Theorem
(4.1) [See the discussion following the proof of Theorem (4.1)]. This is not
surprising: Using ideas such as in Norros (1985) it can be shown that if T has

the (G:}-MIHR property then T1,..., T} are associated.

In the preceding proof we had the assumnption that the paths of X are increas-
ing. For proving the generally weaker property MNBU, we may replace it with

something weaker.

(5.19) THEOREM. Let X be a temporally homogeneous Markov process
with state space E = R™. Suppose that the condition (a) and (b) of Theorem
(5.17) hold, and that

(¢") X(0) € X(t) almost surely for each t and the paths of X belong to
D(R,,RM).

Then, T has the properties (#;)-MNBU and (G:)-MNBU.

Proof. Here we have #, = Go = 0(X(0)A(0)). And, by the computations of
Lemma (5.8),

EUS(T) | Go] = (X (0), A(0), K)
So, we need to show (by (c')) that

9(X(0), A(0), K) > g(X(t), A(t), R(t))

and that
h(X(0), A(0)) > A(X(t), A(t)).

T ———— <~ - -
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But these follow from the proof of Theorem (5.17). !!

Theorem (5.19) applies to “new” components by setting A(0) = 0 with prob-

ability one.

Note that (¢} holds whenever E = R} and P{X(0) =0} = 1.
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