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Chapter 1

Introduction

The kinematic control of kinematically redundant manipulators has become an

important subject of study, owing to the growing interests in redundant robot

manipulators. Unfortunately, most of the existing control algorithms are in a

differential form based on the pseudoinverse matrix, subject to usual problems

resulting from linearization. The algorithms that instead use a direct mapping,

are not compact and closed-form, and not applicable to all manipulators. Fur-

thermore, little is known about the relationship between direct mapping methods

and the differential approach for redundant manipulators. One motivation of this

thesis is the desire to develop such a compact yet general formula that enables

direct mapping, and to understand the relationship between this formula and

* algorithms in differential form.

Another motivation comes from the observation that the degree of redundancy

cannot sufficiently describe how far a manipulator is from singularity. In other

words, with the same degree of redundancy, there are relatively different degrees

of distance from singularity. Surprisingly, little research, to our knowledge, has

dealt with this fact. Hence, to develop a satisfactory concept of relative degrees

of redundancy is another major purpose. Then, from this concept, we derive
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a practical performance measure that can be used for singularity avoidance or

dexterity achievement in the redundant manipulators.

The introduction is organized as follows. In Section 1.1, we present the back-

ground of the motivations mentioned above. In Section 1.2, then, we define the

problems and objectives of this thesis. Finally, in Section 1.3, we present the

overview of the organization of this thesis.

1.1 Background Study

1.1.1 Inverse Kinematics For Trajectory Control

Manipulator Kinematics

Manipulator kinematics is a study of manipulator arm motions, from which one

finds the relationship between the movement in the workspace and the movement

in the joint space. As illustrated in Figure 1.1, the importance of kinematics in

Xref Inverse -ref 6 8ower T Robot 0 Forward x
Kine- mplifier Manipu- Kine-
matics lator matics

9

Figure 1.1: The Schematic Diagram Of The Manipulator System.

manipulator trajectory control is clear. It is in workspace coordinates that specific
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tasks we desire are usually expressed; whereas it is in the joint coordinates that

the actuator movements are described. Therefore, kinematics is a fundamental

tool directly connected to the performance in manipulator trajectory control.

Forward Kinematics and Inverse Kinematics

Manipulator kinematics, hence, includes two important problems. One is to find

the location' of the manipulator in workspace coordinates from its joint coor-

dinates and the other is to find the joint coordinates from the location in the

workspace coordinates. The former is called the forward kinematic problem; the

latter, being the inverse problem, is called the inverse kinematic problem.

Of the two problems, the forward kinematic problem is the simpler one since

a set of joint coordinates unambiguously determines a unique location in the

workspace. Furthermore, the solution can usually be expressed in a symbolic

form, which can be easily evaluated given a set of joint coordinates (Paul,1981).

The inverse kinematic problem, on the other hand, is more complicated because,

given a location in the workspace, there are multiple sets of corresponding joint

coordinates. More importantly, there do not exist, in general, closed-form solu-

tions, except for some kinematic structures of manipulators. Pieper(1968), by

the way, presented the criteria that guarantee the existence of a closed-form solu-

tion. Thus, if a manipulator structure does not belong to this category, one has

to find solutions by numerical methods, typically iterative ones.

Resolved Motion Method and Inverse Kinematic Method for Non-

Redundant Manipulators

To numerically solve the inverse kinematic problem, there are two approaches: one

that uses the linear relationship between the differential joint displacement and

'location consists of position and orientation.

9



differential end effector displacement; and one that uses the direct mapping from

workspace to joint space. The former, originally proposed by Whitney(1969,1972)

and subsequently used by(Paul,1981; Featherstone,1983), is called the Resolved

Motion Method; while the latter, investigated by (Albala,1979; Konstantinov et

al,1982; Gupta et al,1985; Goldenberg et al,1985; Angeles,1985; Wampler,1986),

is simply called the Inverse Kinermatic Method.

More specifically, the Resolved Motion Method first differentiates the desired

trajectory of the end effector to obtain velocity. Then, this Cartesian velocity is

mapped into the joint velocity, using the inverse of the Jacobian matrix. Finally,

the joint velocity is integrated to determine the joint displacement.

The iterative Inverse Kinematic Method, on the other hand, directly solves

the nonlinear kinematic equations, without linearizing them, for a given location

in workspace. Note, however, that the updating process at each iteration step of

a numerical method for solving the nonlinear kinematic equations can be viewed

as an incremenal process like the Resolved Motion Method. With this view,

then, the essential difference between the two approaches may be considered the

number of iterations: The Resolved Motion Method can be considered a one

"-iteration Inverse Kinematic Method without any built-in convergence criteria.

Comparison of the two methods

The Resolved Motion Method, thus, has some weak points:

" The method has intrinsic inaccuracy because of the linear approximation

characteristics of the Jacobian matrix; thus it accumulates errors, which

become larger as the velocity increases.

" The method, being a rate equation, is not self-starting: given a location of

the end effector, corresponding joint values cannot be determined without

using other methods.

010



The Inverse Kinematic Method without closed-form solution, on the other

hand, usually requires more computational effort than the other method. So

this method is not efficient when high accuracy is not needed. Even when high

accuracy is required, in order to be practical for the real-time control purpose,

the method may need some additional numerical schemes such as interpolations

between knot points (Paul,1975; Paul,1979; Taylor,1979). Moreover, for some

applications that require to resolve joint velocity and acceleration as well, it has

an intrinsic disadvantage. Yet, the Inverse Kinematic Method is still attractive

because of the direct mapping from the workspace to joint space, fixing the afore-

mentioned problems of the other method.

1.1.2 Kinematically Redundant Manipulators

Kinematic Redundancy

A kinematically redundant robot manipulator is a manipulator that has more

degrees of freedom than necessary to place the end effector at a desired location.

For example, if we want to place the end effector in a three dimensional-space,

we need six degrees of freedom: three for translation and three for orientation.

Thus, a robot manipulator with more than six degrees of freedom is kinematically

redundant in the three-dimensional space.

Use of Redundancy

The major advantages of adding redundant degrees of freedom to a robot manip-

ulator are as follows:

1. One achieves greater dexterity in maneuvering in a workspace with obsta-

cles.

2. One can avoid singular configurations of the manipulators.

*111 M . .. . .
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Because of these significant advantages, an increasing amount of research has fo-

cused on the kinematically redundant manipulator, and the progress in this field

has been rapid. More specifically, to avoid obstacles, several researcher such as

(Yoshikawa,1984; Maciejewski,1985; Espiau,1985; Nakamura,1985; Baillieul,1986)

have used the kinematical redundancy. Meanwhile the effort to avoid singular-

ity through the use of redundant manipulators is found in the works by (Whit-

ney,1972; Yoshikawa,1984; Hollerbach,1985,Baillieul,1985; Luh et al,1985; Naka-

mura,1985a). Besides, the use of the kinematic redundancy has been proposed for

constraining the joint variables within their physical limits (Liegeois,1977), or for

minimizing joint torques (Hollerbach,1985), or for minimizing the kinetic energy

due to joint velocity (Whitney,1972).

Redundancy control

Mathematically, the inverse kinematic problems of redundant manipulators are

under-determined problems: more variables(joint variables) than constraints(kinematic

equations). In order to solve equations we need to impose extra constraints.

These additional constraints sometimes tend to be imposed out of necessity to

fully specify the under-determined condition; or sometimes are used, on purpose,

to achieve additional performances objectives as mentioned above. The former

tendency was shown in (Whitney,1972), where the joint velocity was obtained by

using the pseudoinverse of the Jacobian matrix to resolve the under-determined

joint velocities.

The latter case, active use of redundancy called the redundancy control, was

first proposed by Liegeois (Liegeois,1977). He used, in addition to the same pseu-

doinverse term as above, the null space term, where he included the gradient

vector of a scalar function that represents the desired performance. This gradi-

ent vector by the way, if used with the null space of the Jacobian matrix, forces

12
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the joints to move toward the direction where the scalar function has the op-

timal value at that instant. This formulation of solution, owing to the ease of

including the desired performance, has been rather extensively used to achieve

various performances as mentioned above (Klein and Huang,1983; Maciejewski

and Klein,1985; Nakamura,1985a; Hollerbach and Suh,1986).

Resolved Motion Method and Inveirse Kinematic Method

In much of the research just mentioned - regardless of whether the null space is

actively used or not, or regardless of which performance is desired - the motion

is resolved in the differential form. More specifically, the differential displacement

(or velocity) of the end effector is mapped into the differential joint displace-

ment (or velocity) now by using the pseudoinverse of the Jacobian matrix, and

then incrementally determines the joint displacement. This technique, thus, is

essentially the same as the Resolved Motion Method in the nonredundant case;

the only difference is that the pseudoinverse is used instead of the inverse of the

Jacobian matrix. 2

In contrast to this direction of research, relatively little research for kine-

matically redundant manipulators, e.g., (Benati et al,1982; Hollerbach,1985; Oh

et ai,1984; Benhabib et al,1984,1985) has involved the direct mapping - the

counterpart of the Inverse Kinematic Method in the nonredundant case. In the

redundant case too, there exist in general no closed-form solutions; only if cer-

tain conditions are met by the manipulator structure, then a part of solution is

given. For example, in (Benati et al,1982, Hoilerbach, 1985) only some of the

joint variables were obtained symbolically. To obtain these solutions the manip-

ulator structure and the number of degrees of freedom were fixed, explicitly in

(Hollerbach,1985) and implicitly in (Benati,1982).

-Hence we will call tins resolhition technique the Resolved Motion Method, too.

13
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Comparison of the two methods in the redundant case

Of the two methods, the Resolved Motion Method and the Inverse Kinematic

Method, the advantages(and disadvantages) of the one method over the other in

the nonredundant case were compared in the previous subsection. The comparison

still holds in the redundant case, since each of the methods is essentially the same

as its counterpart in the nonredundant case.

In addition, another significant drawback in the Resolved Motion Method was

pointed out in (Klein,1983): the lack of repeatability, the ability to repeat the

same joint values for repeated end effector motion. This problem, however, does

not occur when direct mapping is used.

6 Meanwhile, an additional difficult task for Inverse Kinematic Method, on the

other hand, is to rationally (or optimally) use the extra degrees of freedom when

achieving the additional objectives. Often, this optimization procedure being

rather complicated, the overall inverse kinematic process results in a series of

iterative procedures. This time, the shortcoming is not so serious in the Resolved

Motion Method, because of the simple null space expression.

Therefore, the comparison clearly shows that one method is complementary

to the other, indicating one desired direction in which a kinematic control formula

should be developed: a formula that provides with the direct mapping, and that

is as concise and general as the Resolved Motion Method.

1.1.3 Performance Measure For Singularity Avoidance

Using a quantitative measure that represents the desired performance is a ben-

eficial method for the analysis, design, and control of engineering systems, as

follows:

14
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" one can evaluate the performance of a given system and analyze the system,

by estimating this measure; or

" one can design a system that achieves the performance in a certain degree,

by maximizing(or minimizing) this measure; or

" one can control, on the on-line basis, a given system to achieve it, by max-

imizing the measure at each moment,

without having to rely solely on experience and intuition.

In the robotic system, also, various performance measures have been incorpo-

rated to quantify desired performance features listed in the previous subsection.

Dexterity measure

One of these performances was the ability to avoid singularity, or in a broader

sense the ability to dexterously move the end effector to an arbitrary location

within the workspace, without getting into singular configurations. To quan-

titatively represent the ability, which may be called dexterity, several perfor-

mance measures have been proposed (Yoshikawa, 1985a, 1985b; Uchiyama,1985;

Maciejewski,1985; Salisbury; 1982). These measures are the determinant, the

condition number, and a few combinations of singular values, of the Jacobian

matrix J - through which, by the way, the end effector movement is achieved.

Determinant

In linear algebra, the determinant of a matrix has been an important measure

used to test the invertibility of the matrix and its nearness to singularity. Ac-

cordingly the determinant of the Jacobian matrix has been tried for the dexterity

measure for both nonredundant and redundant manipulators. For nonredundant

manipulators, for instance, the determinant has been used as a measure of de-

generacy for the analysis of the wrist configurations(Paul and Stevenson, 1983).

15



For redundant manipulators, on the other hand, Yoshikawa(1984) has proposed

a measure called manipulability defined as the square root of the determinant of
jjT .This measure is viewed as a generalized concept of the determinant, because

of the followings:

" the manipulability reduces to the regular determinant in the nonredundant

case.

" the manipulability become zero, when workspace rank reduces at singularity,

just as the regular determinant of a square Jacobian matrix does.

" since the singular values of jjT have the square values of those of J, the

determinant of jjT may be regarded as if it were the square of the regular

determinant of a square Jacobian matrix.

Condition number

Meanwhile, since the condition number of the Jacobian matrix is another im-

portant measure that also indicates the nearness of a matrix to singularity, it

has been proposed for a dexterity measure(Salisbury,1982). It is noteworthy that

this measure was initially used to determine the configuration that minimizes the

propagation from the torque error to the force error - equivalently, the velocity

error propagation from joint space to workspace - for nonredundant manipula-

tor.

Singular values

The determinant and the condition number can be also expressed in terms of sin-

gular values of the Jacobian matrix: the former is the product of all the singular

0values, the latter the ratio of the largest to the smallest singular value. Since

the minimum singular value becomes zero when the matrix is singular, and ap-

proximately determines the worst limits of the two measures, the value itself was

suggested as a new measure(Klein,1985). In addition to its simple expression,

16
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the measure has a relatively clear physical meaning: it may be interpreted as

the minimum responsiveness in end effector velocity due to a unit change in joint

velocity(Klein,1985).

Besides, the geometric mean and harmonic mean of singular values have been

proposed for the dexterity measures(Yoshikawa,1985b), which may be viewed es-

sentially as variations of aforementioned measures.

Common features

The features common to all these measures are as the following:

" They indicate the presence of singularity: when singular, the value of these

measures become zero, except for the condition number, the value of which

becomes infinity.

" Their absolute values - inverse of the value in the case of the condition

number - appear to represent, in one way or another, the farness or dis-

tance from singularity. That is, the larger the value, the farther is the

manipulator from a singularity.

In the case of redundant manipulators, however, these measures do not ex-

plicitly indicate the successive changes in the available degrees of freedom as long

as the workspace rank is preserved. For instance, suppose we have a five d.o.f.

manipulator which is to move in a three-dimensional workspace, hence having

two degrees of redundancy. Although the manipulator happens to lose one degree

of freedom, or even two, the measures do not necessarily indicate that fact.

Problems when losing d.o.f.

Losing degrees of freedom may not in itself be a serious drawback, as long as

the workspace rank is fully preserved so that the desired location of the end

effector can be achieved by joint variables. Yet, what may be of more concerns

17



are potential problems that are expected to arise - from the similar experience

in the nonredundant case - when degrees of freedom are lost. More specifically

speaking, in the nonredundant case, the point where the degrees of freedom are

lost - namely the singular point - is in fact the boundary of switching from one

set of joint solution to another (Uchiyama,1979). Once that switching happens,

the manipulator tends to stay in the new kind of joint configuration different

from the previous kind, thus causing another pattern of repeatability problem.

Besides, when the switching arises, usually there are accompanying discontinuity

in motion, resulting in large joint velocities. The same problems are expected

in the redundant case, since in this case too there exist multiple solutions of

different kinds (Borrel,1986) whose boundaries are the points where the degree of

-eedom decreases. It appears, however, that these nontrivial problems tend to be

veiled because of the fact that owing to the redundancy the switching can happen

without causing the more serious problem, singularity. To our knowledge, there

have not appeared any analysis on these problems for redundant manipulators,

and any performance measures that are intended to prevent them.

1.2 Objectives

The objective of this thesis, broadly speaking, is to study trajectory control of

kinematically redundant manipulators, focusing on the kinematic problems men-

tioned in the first subsection.

To this end there are two major goals. The first goal is to develop a general

closed-form method for the inverse kinematics of manipulators with kinematic

redundancy. This method is similar to the formulation of the Resolved Motion

method, in actively using kinematic redundancy; but it is different in choosing

direct mapping from the workspace to joint space. Under the first goal, however,

*18
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to understand the relationship between the inverse kinematic method and resolved

motion method is another intended purpose.

The second goal is to analyze the aforementioaed relative distance of redun-

dant manipulators, and to derive from this analysis a performance measure that

represents the dexterity of manipulator including singularity overcoming. This

performance measure is intended to be used either with on-line kinematic control

methods including the one developed from the first goal, or for off-line design

purposes. Besides, the relationship between the resulting measure and already

existing measures is to be examined.

1.3 Overview of the Thesis

In Chapter 2, a closed-form formula for inverse kinematics of kinematically re-

dundant manipulators is to be derived using the Lagrangian multiplier method.

This formula consists of a set of equations which, if added to the kinematic equa-

tions, fully constrain the initially under-determined problem. The mathematical

meaning and applications of the formula are examined. Then the relationship

between the formula and already existing similar methods is investigated.

In Chapter 3, the qualitative relationship between the new method and the

Resolved Motion Method is examined. Then in the light of the relationship, the

repeatability problem is focused on.

In Chapter 4, the qualitative results obtained in Chapters 2 and 3 are verified

through numerical experiments. Finally numerical efficiencies of the two methods

are compared.

In Chapter 5, we propose a new concept representing the distance from sin-

gularity for kinematically redundant case. This concept is obtained by observing

the structure of the Jacobian matrix of redundant manipulators. Then, by using

01
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the concept, we derive a new dexterity measure that can be used with either the

the formula obtained in Chapter 2 or the Resolved Motion Method.

In Chapter 6, the new performance measure is compared with two existing

performance measures: the manipulability measure and the condition number.

After their qualitative relationships are examined, the numerical experiments are

made with redundant manipulators to compare the effectiveness of each measure

in achieving dexterous movements. In the comparison, at the same time, the

repeatability problem, as well as the ability to preserve the kind of joint solutions

are to be observed.

Finally, in Chapter 7, concluding remarks are to be made.
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Chapter 2

The Proposed Method for the
Kinematic Control

2.1 Introduction

In this chapter, we derive a general closed-form formula for the kinematic control

of redundant manipulators by using the Lagrangian multiplier method. This

formula, more specifically speaking, consists of an additional set of constraints

beside the kinematic equation.

The key features of this formula, beside its conciseness, are that it can contain

the performance measure as easily and generally as the Resolved Motion Method

with null space can (Liegeois,1977); and at the same time it is an inverse kine-

matic method. Among inverse kinematic methods for redundant manipulators,

we find similar approaches that use performance measures; but they lack some

of the features this formula has. Benati et a] (Benati,1982) suggested a method

using a general quadratic performance measure to be optimized, the resulting

control algorithm of which is quite complicated because of including the measure.

Benhabib et al (Benhabib,1984,1985) also used performance measures to achieve
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additional performances. These measures are optimized with a searching algo-

rithm under constraints on joint variables. The resulting algorithm becomes also

complicated.'

Rather, among the approaches using the Resolved motion method, we find

additional constraints in similarly concise forms, which could be also used in the

inverse kinematic method. Baillieul(Baillieul,1985), in the process of deriving a

rate equation called the extended Jacobian Method, obtained null space expres-

sions similar to the formula proposed here. Luh and Gu(Luh,1985) proposed

another expression of the null space in a generic form. We will investigate more

in detail about the relationship between the proposed formula and these methods.

After deriving the formula in Section 2.2, we will examine in Section 2.3 its

mathematical meaning and characteristics, as well as computational aspects in

Section 2.4. Then the relationship between the formula and the aforementioned

methods is covered in Section 2.5, and finally some concluding remarks are made

in Section 2.6.

2.2 Derivation of the Proposed Equation

In this section, we will derive extra equations which, together with the kinematic

equations of the manipulator, can fully specify the under-determined problem.

The kinematic equation for the redundant manipulator is given as the following

vector equation:

x f(9) (2.1)

* where x is an m-dimensional vector representing the location of the end effector

with respect to the base coordinate system in the workspace, 9 is n-dimensional

vector representing joint variables, and f is a vector function consisting of m

'if there were no con. traint.s on joint variahles, the .agnrithIil would be simpler.
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0
scalar functions, with m < n. (2.1) may be rewritten as

F(0) f(0)- x (2.2)

=0

Let H(O) be the aforementioned criteria function(or performance measure) with

continuous first-order partial derivatives with respect to joint variables, which

quantitatively represents the desired performance.

Let us define the Lagran6ian function L(O) as ,he following:

L(0) = ATF(0) + H(0) (2.3)

where A is an m-dimensional Lagrangian multiplier vector. At the stationary

0 points of L,
3L -T3F JH

3 0 T F0 4H (2.4)0

where the rn x n matrix, ' is the Jacobian matrix J (Whitney,1972). In (2.4),

as x is expressed in the base coordinate system, so are the Lagrangian function

and the Jacobian matrix. The second term in the right hand side(r.h.s.) of (2.4)

is the transpose of the gradient vector h such as
h|

h = (h1, h2,...,) T  
(2.5)

h. = O_ , (Z'= 1, 2, n)

Thus, (2.4) becomes the following:

ATJ -_T

Transposing, we get

JTA -h
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or
(jI)T A, hi

(J2)T A2  h2

(2.6)

(jn)T An h,

where (Jt)T denotes the transpose of i*-th column vector of the Jacobian matrix.

In (2.6), we have n linear equations with m unknowns, Aj,A 2, .., A,. Selecting m

linearly independent equations from (2.6), which may be chosen to be, without

loss of the generality, the first m equations, we have,

(j1)T A, h

S(J2)T A2  h2

(2.7)

(Jm)T Anth

Inverting, we obtain A, as

A, (jl)T h

A2  (j2)T h

A,, (jm,)T hm

Substituting this into the rcrnaining n -m equations in (2.6), we have

(Jm+l)T (j1)T hi h.+i

(jmn+2)T (j2)T h2",

(2.8)

(jn)T (jm) T hm, ,

24



For brevity, let us denote

[ (jl)T (J,+1)T hi h.+ I

(j2)T (jm+2)T hm+2

,Jm ; Jn-m n h ;hn-m

(j-)? (jn)r L hm n 

Adding hn-m, and multiplying both sides of (2.8) by -1, we have

Jn-mJm-'hn - hn-m = 0

which may be alternatively expressed as

[ininm-I :-I _MI hm 0
Shn-m I

where ln-m is an identity matrix of rank (n - m). If we denote

Z [JnmJm- -In-rnl (2.9)

Then (2.8) becomes

Zh = 0 (2.10)

where Z and h are defined as above. If we combine the kinematic equation, (2.1),

with (2.10), as a system of equations, we get

, x =f(e) (.1

Zh =0

Since Z is an (n - m) x n matrix, and h is an n-dimensional vector, (2.10)

consists of (n - m) scalar equations with n unknowns, 0. On the other hand,

the kinematic equation, (2.1), has m scalar equations. Therefore, (2.11) has n

independent nonlinear equations which now fully specify the n unknowns.

Note that finally we have derived the expected formula, Equation 2.11 -- a

simple yet general formula that provides with a direct mapping from workspace
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to joint space. In (2.11), the additional set of constraints, (2.10), resolve the

redundancy -- at the inverse kinematic level - in such a way that, under the

kinematic constraint of (2.1), the criteria function, H(9), may be minimized.

Note also that (2.11) has to be solved numerically.

2.3 Characteristics

In this section, we will examine the additional set of constraints, with the kine-

matic equation, more in depth. The fact that the matrix Z consists of the elements

of J alone implies that it may have a close relationship with the Jacobian matrix.

*Then, what is the relationship? The following theorems gives the answer.

Theorem I The rank of Z defined in (2.10) is n - m

Proof:

The rank of any matrix is the dimension of its largest nonsingular submatrix.

Since In-r is the largest nonsingular matrix for Z, the rank of Z (and Zr , too)

is n - M.

T ,rem 2 JZT _ 0

Proof:

jZ T  -J T  T (Jm-l)T(Jn-m-l)T
t J- -IU_ (212
=0

Here, Theorem 2 shows that all the column vectors of ZT are orthogonal to J,

whereas Theorem I tells us that the number of the column vectors are equal to the

rank. Thus, column vectors of ZT(or row vectors of Z) are a set of basis vectors

which span the null space of J. From this fact, we may conjecture that Equation
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(2.10) could be the direct counterpart of the homogeneous solution term of the

Resolved Motion Method, which also uses the null space to resolve the redundancy.

This conjecture will be proved in Chapter 3, where the relationship between the

proposcd formula and the Resolved Motion Method will be focused on more in

detail.

In (2.10), note that the matrix Z depends on the intrinsic kinematic property

of a manipulator, while h depends on an arbitrarily imposed property. There-

fore, if a symbolic form of Z is available - which is not very difficult, once the

Jacobian matrix can be expressed in a symbolic form - we have only to replace

h, depending on the desired performance, without having to derive the equation

all over again. For example, consider a seven degrees of freedom robot having the

following Jacobian matrix as shown in (Luh,1985):

-a 2c 23  12 S3 + a3 a3 0 0 0 0

a3 s 23 + 12C2  0 0 0 0 0 0

-a 3S2 3  -12C3  0 1 0 0 0

-S 23  0 0 0 0 -S 4 C4 5

0 1 1 00 c4  S4S5

C23 0 0 0 1 0 Cs

where 12, 13, and a 2 . a 3 represent the link parameters, while the variables with

subscripts are defined as

s, sin(O ), s j .. , n(O, + Oj + ... + Ok), (2.13)

C,- cos(O,), c,.k cos( , O + ... + +k) i,j,..,k = 1,2,3

Substituting the Jacobian matrix into (2.10), and symbolically manipulating

with MACSYMA(Macsyma Manual), we have Z in the following form:

Z N 0 a 3 85 (12S3 -r a3 )Sn a312C3S5 1283S4C5 1283C4 ";5 - 12Sep4s (a3s23 + 12C2)

Note that we have derived an expression of Z, apart from h.

27

4l l16



In (2.10), any criteria function may be used, as long as the function can be

reduced to an expression in terms of joint variables only. For instance, consider the

following criteria function, H(9), for the obstacle avoidance problem(Nakamura, 1985)2:

H - ko W /{Co(xi) - 1} + ki Ij 1/(02, - , (2.14)
i=l 1=1

where ko and kj are scaling factors; xi = (x1i, X2i, X3 )T is the position of the i-th

point among I points on the manipulator; 0),,. is the limit of j-th joint; and the

model of the obstacle in the workspace, Co(xi), is defined as,

Co(X,) =- Zkc y (2.15)
k=1 "

where xk,rk, and s are the center coordinate, radii, and roundness exponent

of the obstacle object. Note that we can reduce H to a function of 0 only, by

transforming x, into f,(O) using (2.1), and thus can apply (2.10) to it.

2.4 Computational Consideration

In this section, an analysis will be made with regard to the computational effort

required to solve (2.11). Much of the analysis is based on the various results of

the research on computational efforts. So one can find more detailed discussions

in the references cited in this subsection.

For the sake of generality, we consider the general manipulator without any

special geometry, thus assuming that J and Z are not given in the symbolic form.

A special geometry that allows the symbolic form, of course, would enable much

more efficient computations.

The computational effort will be measured in terms of arithmetic operations

such as addition, subtraction, multiplication, and division. Furthermore, we as-

sume that the four arithmetic operations require approximately the same amount

21.ie problem wais originllly tIeated ii the dynantic co.text by using a potential function.
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of computation time, and the effort required to evaluate trigonometric functions

is negligible as compared to the total computational effort.

2.4.1 Motion strategy

In order to compute the joint trajectory for a given Cartesian path, We need.

briefly speaking, to take the following procedures: we first determine via points

on the path; then obtain, by using inverse kinematic methods, corresponding

points in the joint space; and finally concatenate these angles to generated the

joint trajectory.

How to generate the via points, and how to determine an appropriate number

of the points are important subjects in the motion planning area. Too many via

points result in a wasteful computation and slow motion, whereas too few result

in inaccurate trajectory control. In addition to deciding the via points, how to

generate intermediate points between the via points is another important issue.

Usually interpolation methods are used to generate intermediate points, which

we will call knot points.

When obtaining joint values corresponding to a via point, we use iterative

methods if a symbolic solution is not available. So, determining joint angles for a

via point involves a number of iteration steps; each step in turn requires a series of

computations. Hence, the total computational effort, Ntoata, required for a given

trajectory is obtained in general as the following:

Ntota= Neo, + N'k=

Nk Nite .aionNep

where Nco,, is the computational effort for concatenating knot points either in

workspace or joint space, Ne,, the number of via points, Nk the computational

effort for inverse kinematics at each point, Nert,,n the number of iterations at
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the point, and N,tp the computational effort at each iteration step. Assuming

that, as compared to the other term in Nt,,tI, Neon is relatively small, we will only

discuss each of remaining terms, in a reverse order.

2.4.2 Computational Effort at Each Iteration Step

If (2.11) is to be solved numerically, the computational effort at each iteration

step, Ntep(or N, in this case), is evaluated as follows:

N, = NFK + Nj 4- Nh + N,.1 (2.16)

where NFK denotes the computational effort required for the forward kinematics,

(2.1), Ni the effort to obtain the Jacobian matrix, Nzh for Zh in (2.10), and N,.t.

the effort needed by the numerical method for solving the system of nonlinear

equations.

For the general manipulator with revolute joints - no significant difference

is expected when a few prismatic joints are included - NFK is given as (Ange-

les,1985)

NFK = NR + NT (2.17)

NR = 36(n- 1) 4; NT = 16(n- 1) +2

where NR and NT indicate the computational efforts required to compute orien-

tation and position of the end effector'.

Nj for the general manipulator, with Waldron's scheme, is given as (Orin,1984)

Nj - 45n - 93 (2.18)

Since we have not, at this point, chosen a specific criteria function from a variety

of choices, let us simply assume that we have derived h with relatively a small

3 We derived these general formula on the hasis of the computation algorithm in (Angeles,1985).

Slightly different formula can result depending on different computation details
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amount of computation as compared to the other parts of computation. If we

assume at the same time that a symbolic form of Z is not available, Zh in (2.10) is

more efficiently computed by first solving for A in (2.7) with Gaussian eliminatior,

and then substituting it as in (2.8). Thus, Nzh is given as follows:

Nzh = NG + N,

N +3 "2 N, = (n- m)(2m-1) (2.19)-3 -2 6'

where NG is the effort for Gaussian elimination(Nakamura,1985), and N, is that

for the substitution.

If we use, for example, MINPACK-1, one of the well-known software packages,

to solve the system of nonlinear equations, the computational effort, N,.,, becomes

(MINPACK Manual)

, .i = 11.5n 2

This package, by the way, is primarily based on an improved version of Powell's

hybrid method, a method that combines the Newton-Raphson method with the

steepest descent method (MINPACK Manual).

Consequently, the total effort of computation for the general manipulator with

kinematic redundancy per iteration for the proposed method becomes as follows:

N, = m3 + 11.5n2 - - - + 96n - 139 (2.20)
3 2 6

As an example to show the total computational effort as well as the relative

significance of each part in it in a realistic situation, let us evaluate the effort when

n = 7 and m = 6. According to aforementioned estimations, we have N, = 1306,

in which, NFK = 318, Nj = 222, Nzh = 202, N,,i = 564.

2.4.3 Number of Iterations

The number of iterations required for a system of nonlinear equations depends on

several factors. Among these, there are some major ones such as the initial esti-



mate of solution, the particular updating algorithm being used, and the distance

of the estimate at the present step from singularities.

In the inverse kinematic context when the end effector is successively passing

adjacent points, the initial estimates are usually good enough to use such a fast

converging algorithm as the Newton-Raphson method. For applications with

poor initial estimates, however, we need some correctional algorithms such as

the steepest descent method. Alternatively, we may use a method that combines

the Newton-Raphson method and steepest descent method, such as the Powell's

hybrid method mentioned in the previous subsection.

With the Powell's method, solving a system of nonlinear equations that con-

* sists of trigonometric functions - thus very similar to the kinematic equations

- is reported to require from about 12 to 15 iterations for systems of up to nine

equations(Rabinowitz,1970). This data shows a good agreement with the result

by Benhabib et al(1986), which reports that the number of iterations for seven

degrees of freedom redundant manipulators is less than 15.

2.4.4 Minimum Number of Via Points

One extreme approach to control the motion of the end effector is to obtain joint

solutions at every sample interval. Obviously it requires considerable amount of

real time computation. One possible way to improve the approach is to compute

the joint solutions at every kth interval and then to interpolate on joint angles

(Taylor,1979). The difficulty with this way is that the number k that guarantees

a certain deviations, when interpolation is performed, from the desired path is

changing from point to point. So a fixed k small enough to ensure a given deviation

everywhere in the workspace requires still considerable amount of computation.

Another approach (Benhabib,1986) is to precompute joint solutions for suf-

ficiently large amount of via points in the Cartesian coordinates off-line, and to
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interpolate joint angles on-line. This approach may also waste computations and

storages, since this sufficient amount is not the same everywhere. In addition,

this approach requires us to know the path and corresponding via points well in

advance, so that we might execute the motion without much delay.

Then there follows a natural question: What is the number of via points

that is minimal yet guarantee a given deviation? An effective solution to this

question is found in Taylor's algorithm called Bounded Deviation Joint Path (

Taylor,1979). This algorithm computes, for a given straight line segments in

Cartesian coordinates, nearly minimal number of via points and corresponding

joint solutions, in a recursive way.

This algorithm requires one of inverse kinematic methods. Furthermore, it ap-

pears to require, if not explicit, a fixed transformation from the Cartesian space

to joint space. As we will show in the following chapters, the proposed formula

with the kinematic equation has the property of the fixed transformation. There-

fore this useful algorithm is expected to help the proposed formula efficiently and

accurately control kinematically redundant manipulators. We list the algorithm

in Appendix 1. In Chapter 4, we test the algorithm in conjunction with the

proposed formula.

On the other hand, there has not been, to our knowledge, any application

of the algorithm to the kinematically redundant case. In this sense, the appli-

cation of the algorithm may be considered an extension of the algorithm to the

kinematically redundant case.

2.5 Comparison with Other Methods

In this section, the proposed formula corresponding to equation (2.10) will be

compared with two existing null space expressions: the expression used by Luh
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and Gu and the extended Jacobian method. The relationships will be investigated

on the basis of these comparisons.

2.5.1 Relationship with Luh's Expression

Luh and Gu (Luh,1985) proposed a null space matrix which is defined as

SN, = (n, '" n,)

where ns (i 7- 1,2..--, n - m) are orthogonal to every row vector of the Jacobian

matrix, so that for each n,, Jn, = 0.

Comparing this equation with (2.12), we see immediately that N, is a generic

* form of ZT; or conversely, Z' is a specific expression of N,. Since how to find N,

was not given, the formulation of Z in (2.9) provides with a systematic mean to

determine N,.

2.5.2 Relationship with Extended Jacobian Method

Baillieul, in the process of deriving a rate equation called the extended Jacobian

Method, presented another method to resolve the redundancy, also at the inverse

kinematic level (Bailleu1,1985,1986). This method derives the additional con-

straints by using the orthogonality characteristics between the gradient vector of

the criteria function and the null space matrix of J at the optimum, as

(I - J+J)h = 0 (2.21)

where J is the pseudoinverse of J as mentioned before.

From the resulting fully specified system of equations, one derives the new

Jacobian matrix, called the extended Jacobian, by partially differentiating with

respect to the joint variables, just in the same way as in the nonredundant case.
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Among the n scalar equations in (2.21), only n - m equations are independent

constraints to be determined; for the rank of the null space matrix is n - m. The

detailed procedures of determining the n - m constraints and their concrete func-

tional forms are not known yet, except for the case n m + 1. When n m + 1,

that is, for the manipulator with just one redundant degree of freedom, a con-

straint is derived, through a series of procedures, as the following (Baillieul,1985)

G() njh (2.22)

=0

where

nj = ( IA 2 , .., ,") T (2.23)
zA, = (-1)'+ det(P , J2, ..IJ -1 1 +1 1_1,in )

where det(.) is the determinant, with jk the k-th column vector of the Jacobian

matrix.

It is shown in Appendix 2 that (2.10) reduces to (2.22) in the case that n

m + 1. Considering this fact and that Z in (2.10) is a null space matrix of rank

n - m, we may regard (2.10) as a concrete expression of n - m independent

constraints.

2.6 Conclusion

To sum up, we have obtained a closed-form formula for the inverse kinematics

of redundant manipulators. It was demonstrated that the proposed formula is

concise in form, general in application, and easy to include the desired perfor-

mance. It was shown that the matrix, Z, in the formula consists of a set of the

* basis vectors of the null space of the Jacobian matrix. The comparison of the for-

mula to the other methods shows that the formulation provides with a systematic

mean to obtain Luh's null space matrix and that the formula serves as a concrete

expression for the general case of Baillieul's formulation. Whether the formula is
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effective as a kinematic control method will be tested in experiments in Chapter

4.
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Chapter 3

Relationship with Resolved
Motion Method

3.1 Introduction

In Chapter 2. we proposed a formula that resolves the kinematic redundancy

at the inverse kinematic level, by using the null space. The similarity of the

formula to the null space term of the Resolved Motion Method led to a conjecture

that the former may be the counterpart of the latter at the inverse kinematic

level. In this Chapter, we will investigate their relationship and try to prove

that the conjecture is correct. Not only for that, we will also derive from the

proposed formula the counterpart at the differential level. In addition, we will

compare the numerical efficiencies of the two methods, too. In conjunction to

the comparison, we will discuss the repeatability problem in the Resolved Motion

Method, which was pointed out in (Baillieul,1985; Klein,1983), and examine if

the proposed formula solves it.
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3.2 Resolved Motion Method

In this section, we first introduce the Resolved Motion Method for the redundant

case and review its characteristics. Then the causes of repeatability problem in

this method will be analyzed.

3.2.1 The Method and Its characteristics

The kinematic equation for manipulators given in (2.1) is again,

x - f(0) (3.1)

* where x is an m-dimensional vector representing the location of the end effector

with respect to the base coordinate system in the workspace, 0 is n-dimensional

vector representing joint variables, and f is a vector function consisting of m

scalar functions.

As mentioned in Section 1.1.1, the Resolved Motion Method first derives the

differential relationship by differentiating the kinematic equation with respect to

time as

*=Ji (3.2)

where the Jacobian matrix J defined as J is an m x n matrix (Whit-

ney,1972). T hen by inverting the matrix, we obtain the joint velocity, 9. For the

nonredundant case(n m), J being square, we can have 9 as

9 = J-x.

*. For the redundant case, however, since n > m, J does not exist. Instead,

we use a generalized inverse, J+, as (Ben-Israel and Greville, 1980),

-* (3.3)

38

0 
'A1 ,



where J+ is defined as

j+ = jT(jjT)-I. (3.4)

This matrix, known as Moore-Penrose pseudoinverse, has by the way the following

properties:
JJ+J = J

J+JJ+ = J+

(j+J)T =j+j

(jj+)T = jj+

The most general solution to (3.2) is known to be (Ben-Israel,1980)

= J+i + a(I - J+J)h (3.5)

where (I - J+J) is the null space of J, with a a gain constant, and h an arbitrary

vector. Equation (3.5) gives a way to resolve the redundancy at the velocity level.

We may call the first term in the r.h.s. a special solution, and the second term a

homogeneous solution.

Lidgeois(Lidgeois,1977) developed a formulation of resolution of redundancy,

such that a scalar criteria function may be minimized, by setting to the vector h

the gradient vector of the criteria function, H as in (2.5). He expresses (3.5) in

terms of the infinitesimal displacement, as

df = J+dx + a(I - J+J)h (3.6)

6 = adt

In (3.6)(or (3.5)), at time t, the special solution first moves the end effector to a

location x(t). Then, the homogeneous solution, on the other hand, forces joints

* to have self-motion to achieve an equilibrium (or optimum), 0', where H has a

local minimum, for x(t). In practice, however, it takes a certain amount of time,

6t, for the joint variables to reach 0', when the end effector has already moved

to a new location, x(t + 6t) -- thus requiring a new 9 . Therefore, the joint
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variables never reach the optimal configuration, but continuously trail behind

with a slight difference in the direction of the end effector displacement, dx. In

other words, if the end effector would stay at a location sufficiently long, the

joints could eventually ,chieve the optimal configuration corresponding to that

location. This analysis appears helpful for understanding the following problem.

3.2.2 Repeatability Problem

The repeatability in the robotics context may be defined as the ability to give

the same joint values for a given location in workspace, regardless of the path of

end effector to that location. In mathematical terms, the repeatability means the

fixed transformation from the workspace to joint space. The lack of repeatability,

of course, can be a considerable drawback in robot manipulators which perform

cyclic tasks, because, as the end effector traces the cyclic path, joint variables

evolve into states which cannot be predicted in advance.

Klein and Huang (Klein and Huang,1983) noted this problem in (3.3), the

Resolved Motion Method without null space term. Baillieul mentioned the same

problem in (3.6), the method with null space term (Baillieul,1985). Then what

would be exactly the reason for this problem? The above analysis on the charac-

teristics of the method may help understand the reason.

More specifically, the analysis implies that the problem is caused by the fol-

lowing two factors:

1. Because of the directionality of dx in the special solution, the joint variables

have different values depending on the direction of the repeated path -

6 for instance, a cyclic path - in the workspace. Note, however, that the

repeatability can be preserved when tracing only one direction of the cyclic

path even in the presence of this factor (Baillieul,1985).
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2. Because of the irreters:bilty of the homogeneous solution part, they never

return to the initial configuration, once the joint variables reach a steady

state trajectory near to the optimal trajectory, 9(t)'. This situation can

happen at the initial transient period when initially guessed joint values

are far from the optimum; for the optimal joint values cannot be known in

advance.

Beside these factors, as briefly mentioned in Section 1.1.3., another pattern

of repeatability problem can exist when, among the multiple joint configurations,

transition from one configuration to another happens. About this pattern of

repeatability, we will discuss more in detail later.

To sum up, our analysis on the characteristics and the repeatability problem of

the method may lead to a conclusion: if we stay in one kind of joint configuration,

and if we trace the equilibrium(or optimal) joint values 9 (t), then we can pre-

serve the repeatability. Then this conclusion, together with the aforementioned

conjecture between the two methods, brings about another question: What is

the relationship between the equilibrium states, 0(t), and the states that satisfy

Equation (2.11)? The following section gives the answer to this question.

3.3 Relationship between the Two Methods

In this section, we will investigate the relationship between the proposed formula

and the Resolved Motion Method. More specifically, we will try to give the

answer to the question raised in the previous section: the relationship between the

equilibrium states of the Resolved Motion Method and the solutions of Equation

(2.11). At the same time, we will derive a rate equation, or differential relationship

like the Resolved Motion Method, from Equation (2.11).
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3.3.1 Equilibrium State

In the Resolved Motion Method expressed in (3.6), if the end effector stays at a

location sufficiently long, the joints arrive at the equilibrium, stopping the self-

motion. Hence we have dO = 0, in addition to dx = 0 - the condition for fixed

end effector location. Therefore, from (3.6) we have

(I - J+J)h : 0.

It is proved in Appendix 3 that this equation holds if and only if (2.10) holds; thus

the proposed formula is the necessary and sufficient condition to be satisfied when

(3.6) has converged to its equilibrium states. In other words, (2.11) gives the exact

O_ equilibrium state, the optimal joint configuration, at which (3.6) will eventually

arrive by self-motion for a fixed end effector location. Thus, we may regard (3.6)

in the Resolved Motion Method as an approximated equation linearized at states

that are exactly determined by (2.11). Note that the above equation is the same

as the extra set of constraints proposed by Baillieul (Baillieul,1986).

The practical implication of this relationship would be that we can obtain the

equilibrium joint values either by solving (2.11) or by making sufficient iteration

of null space term of Resolved Motion Method with fixed end effector location.

However, as mentioned in Section 1.1.1, Resolved Motion Method, being a rate

equation, is not self-starting: given a location of end effector, corresponding equi-

librium joint values cannot be determined without using other methods.

When approaching the equilibrium, the speed of convergence is determined by

the value of 6: the larger the value, the faster is the convergence. The value of

* a, however, has an upper-limit, above which the equation becomes numerically

unstable, not to mention that the manipulator cannot respond because of the

torque limitation.
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3.3.2 Differential Relationship

The proposed formula and the kinematic equation, in contrast to the Resolved

Motion Method, are a set of state equations or equilibrium equations that maps

from one space to another. Yet, these equations have in themselves all the neces-

sary informations about motion such as velocity and acceleration. Then how do

we derive motion from these state equations? More specifically, how do we derive

the joint velocity from these equations?

This question, obviously, is practically important, because often we need to

know joint velocity beside joint displacement. For example, when the dynamic

control is needed, or when the motion is specified in terms of end effector velocity,

it is more convenient to obtain joint velocity, by using the differential relationship,

than to obtain joint displacement.

To derive the joint velocity from (2.11), we have at least two ways:

1. Differentiate the equation with respect to time. Then, the Kinematic equa-

tion part becomes the well known Jacobian equation, x = Ji, while the

second part becomes 0 = J,., where J,. = 3zh. Combining these, the

resulting equation becomes

where

Je [;J J,

Inverting the above equation gives the joint velocity. Here, J, is so called

the extended Jacobian matrix by Baillieul (Baillieul,1985,1986)

2. Since J is given, use the pseudoinverse method in (3.6).
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The first way, although conceptually simple, turns out to be an inefficient

method, because J, is a very complicated matrix - see the expression in (Bail-

lieul,1985). In the second way, on the other hand, we need to evaluate J+ from

J, which requires a substantial computation effort - note that we cannot make

use of Z already obtained with another intensive computation.

Instead, we can derive joint velocity by using the following relationship, the

proof of which is in Appendix 5:

0

where 1, is the identity matrix of rank m and JE is defined as

JE [~](3.8)
Then the null space matrix is determined as

' z jIJ+J = J-1 01 (3.9)

Z

Substituting these matrices into (3.6), we have

JE [Zhj (3.10)

By this way, we can make use of the already obtained Z, and thus saving compu-

tation time.

3.3.3 Summary

* The relationship between (2.11) and (3.6) may be clearly summarized in the fol-

lowing block diagram. The comparison of numerical efficiency for one iteration is

treated in the next section, whereas the overall computation efforts are compared

in Chapter 4 and Chapter 7.
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Inverse Kinematics, Resolved Rate

direct x = f(0) i x0, 00 should be initially givenmapping

x - 0 9: Zh =0 (I-J+J)h 0atx 0 +6x

differential JE1  =J* + a(I - J+J)h
mapping Zh

Figure 3.1: The Relationship Between The Proposed Method And The Re-

solved Motion Method; The Direct Mapping And The Differential Mapping

3.4 Computational Consideration

In light of the relationships between the two methods, each of them can be used

as an alternative of the other to solve both the equilibrium states and differential

variables. More specifically, we can obtain the equilibrium state with the Resolved

Motion Method, instead of the proposed method, by iteratively applying the

homogeneous part of (3.6). Joint velocities, on the other hand, can be obtained

with (3.10) instead of the Resolved .Motion Method, too. Then in obtaining

these, how do the two methods compare computationally? To answer this, the

two methods will be compared in the following subsections.

3.4.1 Obtaining equilibrium States

In comparing the two methods, the following two questions should be answered:

1. how many arithmetic operations per iteration does each method require?
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2. how many iterations are necessary for each method to achieve the same

degree of accuracy(and repeatability) from the same initial condition?

The former question will be briefly examined here by first evaluating the num-

ber of operations per iteration for the Resolved Motion Method, and then com-

paring it with that for the proposed method already obtained before. The latter,

on the other hand, was partly answered in Section 2.4.4 for the proposed method.

Yet since the number of iterations for Resolved Motion Method is not known, the

complete answer can be made through a computation example for a special case

in the following chapter.

As in Chapter 2, it is assumed that the numerical value h is provided at each

iteration step with relatively small amount of computation.

The computational effort, N1 , required for the proposed method at each iter-

ation step was obtained in (2.20) as

23 m
N, = -m -t 1.5n + 2nrm--- + 96n - 133

3 2 6

On the other hand, the total computational effort required for the Resolved Mo-

tion Method, X2, at each iteration step or integration step, may be expressed

as

N2 = Ne(Nj + N.) + Nb (3.11)

where Nj is the effort required to compute the Jacobian matrix; N., the effort

required to evaluate the r.h.s of (3.6), once the Jacobian matrix is given; and

N , the number of times of evaluations of (3.6); Nb, the effort for numerical

integrations. For the general manipulator, Nj is given in (2.18) as

N = 45n - 93 (3.12)

and N is evaluated in (Nakamura,1985a) as,

N. 2m -+nm 2 5nm+ -n (3.13)
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N,,,, together with Nh, depends on the specific numerical integration method to

be used. For example, fourth-order Runge-Kutta method requires that Nv = 4

and Nb = 13n; while most predictor-corrector methods require that N, = 2 and

Nb = 23n(Hamming,1973). Considering that N 2 heavily depends on the sum of

N,, and Nj, the latter method is much more efficient.

Therefore, N2 with the predictor-corrector method, is given as

_~ m nn z +ln r 2 +ll 4
N 2 = - -,2nM2-+1nm+2M 2 

+ll1- -m- 186 (3.14)
3 3

On the other hand, Runge-Kutta method requires

N 2 = m 3 + 4nm 2 + 2Onm + 4m 2 + 189n - 8m - 372 (3.15)

When n =- 7 and m = 6, N2 = 1867 for the predictor-corrector method and N2

3503 for Runge-Kutta method, while N, = 1306 again. In this comparison, we see

that, if the predictor-corrector methods are used for the numerical integration,

the Resolved Motion Method requires about 43% more computational effort than

the proposed method per iteration, when n = 7 and m = 6.

3.4.2 Obtaining Joint Velocity

The comparison of computational efficiency of the two differential relationships

is quite straightforward: the only differences are the integrands in the r.h.s. of

(3.6) and (3.10). Therefore we have only to compare the computational efforts

for these terms; the remaining terms are exactly the same.

For the Resolved Motion Method, the effort for the terms, N, is again,

N 2 2m 3 +nm 2 + 5nm + m2 2m n

*3 3

Meanwhile, for (3.10), the corresponding part denoted, Nj,, is obtained as

follows:

N,, = Nz± + NG, (3.16)
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where Nzh is the effort required to compute Zh, and N(, is the effort for Gaussian

elimination when inverting JE. Nzh was evaluated in (2.19), which is again

Nzh = NC + N,

N( =2, + . .N, = (n- m)(2m- 1)3 2 C ,

where Nr is the effort for Gaussian elimination(Nakamura.]l&Wa), and N8 is that

for the substitution of Lagrangian multiplier.

Meanwhile, N.,0 is obtained simply by substituting m for n in NG-, resulting

in

Ncn 2n 3n 2  7n
3 2 6

Hence, Nj, becomes

2n 3  3n 2  13n 2m 3  m 2  m'V_ I= _ -- - - -- + 2rim (3.17)

3 2 6 3 2 6

The total computational effort N 3 for (3.17) was initially given as

N 3 = N.,(N, + N,,) + N

Assuming that the predictor-corrector method is used, and substituting for Nj

and Nb respectively, N 3 becomes

4n 3  5 4m 3  2 m
,V 3 + 3n 2 -107-n+ -- 3+4nm-186 (3.18)

3 3 3 3

Again when n = 7 and m = 6, N 3 = 1597, as compared to N 2 = 1867, requiring

about 15% less computational effort.

3.5 Conclusion

Summing up, we have introduced the Resolved Motion Method and observed that

the deviation from equilibrium states is due to linear approximation characteris-

tics. The repeatability problem was analyzed on the basis of this understanding.
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We concluded that the proposed formula provides with equilibrium states that

preserve the repeatability. The equilibrium states are also the states at which the

Resolved Motion Method is considered as a linearized equation. In addition, the

differential relationship was derived from the proposed formula. The computation

efforts for one iteration with the two method were compared.
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Chapter 4

Numerical Experiment on
Kinematic Control Methods

4.1 Introduction

In Chapter 2, we have derived a closed-form formula for inverse kinematics of

kinematically redundant manipulators that can achieve additional performances

represented in the performance measures. In Chapter 3, we have investigated on

the relationship between the formula and the Resolved Motion Method, focusing

on the repeatability problem. Although most of the results obtained appear rather

obvious, some important points had better be verified through experiments.

In this chapter, therefore, we will make numerical experiments or simulations

to confirm some of the important results. To this end, we select a kinematically

redundant manipulator and apply (2.10). The resulting system of equations is

solved numerically for x(t), the end effector location. In parallel to using (2.11),

the Resolved Motion Method method is applied to the same manipulator with the

same tip motion. The points we try to examine or verify through the simulation

are as follows:
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1. Whether the resulting system in (2.11) gives kinematically correct joint

variables for a given x, achieving the additional performance represented

by the criteria function we select.

2. How the present method compares to the Resolved Motion Method in terms

of accuracy, repeatability, and computational efficiency.

3. Whether the present method gives, in fact, the same equilibrium states as

the Resolved Motion Method will eventually reach.

In the comparison of computational efficiency, we consider two situations:

when solving the steady state equilibrium states with fixed tip location, and

when obtaining joint trajectories with tip moving along the Cartesian path.

4.2 System Description

We use the same manipulator presented in the paper (Yoshikawa,1984) for the

sake of comparison with data obtained in that paper: a 3 degrees of freedom

manipulator with the end effector moving in the (z, y) plane; thus kirematically

redundant. The schematic diagram with necessary parameters is in Figure 4.1.

The desired performance is to avoid singularity. A good criteria function for

this objective may be the manipulability(Yoshikawa,1984,1985a), which is given

asI

H = det(JJT) (4.1)

The kinematic equation is given as

X = 1181 + 12812 + 138123 (4.2)

Y = l1 cI + 12c12 + 13cI23
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y

11 = 0.60 m
1= 0.85 m

13 = 0.20 m

x

Figure 4.1: The Schematic Diagram Of The Redundant Manipulator

6 where 11, 12, and 13 represent the length of each link, while the variables with

subscripts are denoted in the same way as in Equation 2.13, which is again,

si= sin(e,), 8j j...kh = sin(Oj + 9, + ... + 0k)?

C= cos(0,), cj,...jk= eo.(9,+89,+ ... + 9), i,j, ..,k =1,2,3

Then, the Jacobian matrix is obtained as

VC 1 2 3 + ULC12 + C1  VC1 2 3 + UC12  VIC123 (43(-VS12S - U8S12 - 81 -VS12 3 -UtL 12  -VS123 J

where
12 13
1 , l11

Here, links length are normalized in order to simplify expressions as well as to

make the analysis more general.

Equation (4.1), after algebraic manipulations, reduces to

2a H U 2v 2 + 282333UV +23 3sV2 + 282 82 3UV + 2 U2
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By partially differentiating, we obtain the gradient vector, h = (hi, h2 , h 3 )T, with

h, =0

h 2 = 2(C2 ssaU + 82233)v2 + 23223uv + 822u2

h3 = 2(SssU2 + 823SU + 8223)v 2 + 2C23 2Uv

Meanwhile, (2.9) is simplified to,

Z = [s3uv - Ssuv - 823V 823V + S2u]

By applying (2.10), we get

2u~v(s 2sss3 - C238) + uvs(232 3 2s 33 - 3822338s) + 2svS 2833+

uv'(C33 - C22) + 2uv'(s 2 s2233 - c22 3 ) - u V322s 3 - 2usVs233 (4.4)

=0

where the same definition as in (4.2) is used for the subscripts.

The system of equations, (4.2), and (4.4) now fully specify the originally under-

determined system of equations, (4.2), while maximizing the criteria H in (4.1).

The system of equations may be solved either purely numerically, or by symbol-

ically reducing variables - in this example, 01 - and then by using numerical

methods. Incidentally, this example suggests that it is possible to reduce vari-

ables, thus reducing the order of the system of nonlinear equations, after resolving

the redundancy first with all the joint variables.

4.3 Procedures

The task is to trace a square path - thus a cyclic path. As shown in Figure 4.3,

* the z-y coordinates of the four vertices of the command path in the workspace

are successively given counterclockwise from the upper-left vertex as follows:

(446.00, 91.514),(446.00,-8.486), (546.00,-8.486),(546.00, 91.514),

where the units are mm.
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The system of equations were numerically solved for joint values, with regard

to consecutive equidistant points on the command path - in this example, 100

segments each side - in the counterclockwise direction. As mentioned before,

the MINPACK-1 subroutine was used to solve the system of nonlinear equations.

The subroutine, by the way, allows only one set of local solutions, among multiple

sets of solutions.

Meanwhile, the Resolved Motion Method in (3.5) is also applied to this ex-

ample for the same path, which the end effector is to track with a constant

speed of 10mm/sec. (3.5), a system of differential equations, was solved with

the fourth order Runge-Kutta integration method, together with the LINPACK

subroutines, with the integration time step size, At = 0.01 seconds. We can also

use the predictor-corrector method for the better efficiency at the cost of the non

self-starting disadvantage and more complex program.

The simulation for the Resolved Motion Method was made with initial joint

angle values of (-40.5006, 141.6408, 78.4169) in degrees, which are far from equi-

librium states, that were deliberately selected to examine repeatability. The same

initial value was also used as the initial guess for the above nonlinear equations

for fair comparison of the two methods.

In addition to tracking the square path, another path was traced in order to

compare the efficiency in the case when obtaining the joint trajectory is required.

The path tried is a straight line path connecting z = 0.1m, y = Om and z =

1.6m, y = Om, along which the tip reciprocates. The proposed formula is used

to obtain joint angles corresponding to the via points determined with Taylor's

algorithm mentioned in Section 2.4.4. The via points of the Resolved Motion

* _Method, on the other hand, are simply the equidistant points determined by line

segments(the constant tip speed multiplied by the integration time step). Thus,

with this method, the equidistant via points are determined either by varying tip
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speed or the integration time step. For the proposed formula, hence, the deviation

is automatically bounded within a specified value, whereas for the other method

the the deviation is controlled by varying the tip speed or time step with trial

and error.

4.4 Results

The numerical results of simulations are plotted and listed in Figure 4.2, 4.3 and

Tables 4.1, 4.2, 4.3:

" Figure 4.2 is the plot of joint variables solved with the two methods. Note

that the 3-D trajectory of joint variables is represented with two 2-D plots:

01 vs. 02 and 01 vs. 03.

* On the other hand, Figure 4.3 shows actual trajectories, with the two meth-

ods, of the end effector in the workspace, as compared to the command

path. The actual trajectory was determined by forward kinematics with

joint values obtained by each method.

* Figure 4.4 shows the accuracy and corresponding computational effort to

achieve it, with the two methods. The task is to reciprocate a horizontal

straight line. Again, the proposed formula was used in conjunction with

Taylor's algorithm. Since the Resolved Motion Method may be viewed as

a one-time iteration method, the iteration number for this method in the

figure is in fact the number of integration steps required to cover a given

line-segment.

* Table 4.1 enables one to numerically compare the accuracy of the tip loca-

tion, and observe the irreversibility factor due to the homogeneous solution

term of (3.6), at the transient period. For the purposes, we have selected,
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from the data in Figures 4.2, 4.3, five sets of data, which correspond to

the consecutive vertices of the square path - counterclockwise from the

upper-left one, when the tip begins to trace at the very first cycle.

Table 4.2 shows the comparison of the accuracy and repeatability when

tracing opposite directions in the steady state. In order to obtain the data,

the tip was made to reciprocate a straight line segment, which was set to the

left vertical side of the square path, after the first two cycles of the square

path, when the transient effect appeared negligible.

" Table 4.3 verifies the relationship proved in Appendix 2: the solution with

the Resolved Motion Method becomes equal to that with the proposed

method after sufficient time, provided that dx = 0. The four vertices were

selected for the comparison, as in Table 4.1. To obtain the data with the

Resolved Motion Method, the tip was commanded to stop at each vertex,

where it made the self motion through iterations of the homogeneous term

of (3.6), until the joints converged to an equilibrium configuration. At each

vertex, about 25 iterations were needed to converge to the joint values ob-

tained with the proposed method, within the accuracy of 10 - 4 in degree,

with 6 = 10, which provides about the upper-limit speed of convergence

without causing numerical instability.
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13800-

Resolved Motion

S134.00-

132.00-

132.00-

130.00- .....

128.001 ___

%10*2500 -20.00 -15.00 -10.00 -5.00
theta 1 (dog.)

S102.00-
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92.00- Resolved Motion ................
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* Figure 4.2: Joint trajectories obtained with the two methods: The Three Dimen-

sional Trajectory Is Represented With 01 vs. 02 and 01 vs. 03 Trajectories.
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Figure 4.3: The command path and actual workspace trajectories

obtained with the two methods
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Figure 4.4: The Achievable Accuracy Of Tip-Location With The Two

Methods With Relative To The Iteration Numbers.
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Table 4.1: The comparison of accuracy and repeatability obtained
with the two methods at the first cycle, when transient effect is visible.

X(mm) Y(mm) 01(deg) 02(deg) 0s(deg)

Command Path : 446.00 91.514
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
RM Method : 446.00 91.514 -40.5006 141.6408 78.4169

Command Path : 446.00 -8.4866
Proposed Method : 446.00 -8.4866 -13.4927 135.1801 101.6627
RM Method : 445.74 -6.5824 -14.0445 135.3160 101.2448

Command Path : 546.00 -8.4866
Proposed Method : 546.00 -8.4863 -7.1232 128.0020 92.1837
RM Method : 545.52 -6.8216 -7.1924 127.9635 92.4919

Command Path : 546.00 91.514
Proposed Method : 546.00 91.514 -17.0753 127.4846 91.4484
RM Method : 545.73 92.947 -17.0519 127.3890 91.7938

Command Path : 446.00 91.514
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
RM Method : 445.97 93.167 -25.7427 134.4867 100.7127

4
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Table 4.2: The comparison of accuracy and repeatability obtained
with the two methods at the steady state, when the tip reciprocates
a vertical line-segment.

X(mm) Y(mm) 01 (deg) 02 (deg) 0s(deg)

Command Path : 446.00 91.514
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
RM Method : 445.89 93.140 -25.7472 134.4929 100.7206

Command Path : 446.00 -8.4866
Proposed Method : 446.00 -8.4866 -13.4927 135.1801 101.6627
RM Method : 445.63 -6.6244 -14.0476 135.3249 101.2557

Command Path : 446.00 91.514
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
RM Method : 445.60 92.912 -25.4178 134.3821 101.2799

Command Path : 446.00 -8.4866
Proposed Method : 446.00 -8.4866 -13.4927 135.1801 101.6627
RM Method : 445.57 -6.6184 -14.0526 135.3293 101.2610
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Table 4.3: The comparison of solutions: Proposed Method vs. RM
Method. For RM Method, self-motion was iteratively made by setting
dx=O.

X(mm) Y(rnm) 01(deg) 0 2 (deg) 03(deg)

Command Path : 446.00 91.514
Proposed Method : 446.00 91.514 -25.5116 134.4894 100.8165
RM Method : 446.00 91.514 -25.5115 134.4894 100.8164

Command Path : 446.00 -8.4866
Proposed Method : 446.00 -8.4866 -13.4927 135.1801 101.6627
RM Method : 446.00 -8.4868 -13.4927 135.1801 101.6626

Command Path : 546.00 -8.4866
Proposed Method : 546.00 -8.4863 -7.1232 128.0020 92.1837
RM Method : 546.00 -8.4863 -7.1232 128.0020 92.1837

Command Path : 546.00 91.514
Proposed Method : 546.00 91.514 -17.0753 127.4846 91.4484
RM Method : 546.00 91.514 -17.0752 127.4846 91.4484
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4.5 Discussions

From the results of simulations, we may evaluate the proposed method in terms

of accuracy and repeatability by comparing it with the Resolved Motion Method.

We can also derive some useful ideas from the relationship between the two meth-

ods.

Accuracy

As shown in Table 4.1 and Figure 4.3, the proposed method gives joint vari-

ables which exactly correspond to the commanded z and y, while maximizing

the criteria function to avoid singularities. Clearly, we see that the accuracy in6
the workspace achieved with the proposed method is better than that with the

Resolved Motion Method.

Therefore, the proposed method provides useful means for accurate position

control of the end-effector, when the manipulator is kinematically redundant.

Repeatability

Table 4.2 and Figure 4.2 show that the repeatability is not preserved with the

Resolved Motion Method because of the two factors mentioned in Section 3.2.2:

the initial joint variables which are far from optimal joint values(Figure 4.2) and

the dependence on the direction, clockwise or counterclockwise, of the path to be

traced (Table 4.2).

On the other hand, it is obvious that the proposed method preserves the re-

peatability regardless of direction. In other words, the method provides a fixed

*- transformation from workspace to joint space. The property of fixed transfor-

mation is useful not only for the prediction of joint variables, but also for the

precomputation of position dependent terms such as the Jacobian matrix and the
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inertia matrix (Raibert and Horn,1978).

Computational Effort

As mentioned before, the comparison of computational efficiency was made in two

situations: when solving the steady state equilibrium states with fixed tip loca-

tion, and when obtaining joint trajectories with tip moving along the Cartesian

path. The two cases will be discussed separately.

For Equilibrium State

The number of iterations to achieve the accuracy of 10 - 4 in degree by the proposed

method with MINPACK-1 is about from 10. On the other hand, the number of

*iterations required for the same accuracy by the Resolved Motion Method is about

25 1 - thus about 2.5 times more iterations than the proposed formula.

It is not immediately clear how the two method will compare for manipulators

with more degrees of freedom. Yet, we expect the Resolved Motion Method

would require a similarly larger computational effort than the proposed method,

considering the following factors:

As quoted in Section 2.4.3, the proposed formula requires about 15 iterations

for manipulators with up to none degrees of freedom. At the same time, it is

not quite probable that the Resolved Motion Method requires less iterations

for more degrees of freedom case;0

" Moreover the former requires about 43% more computation per iteration

than the latter.

For Trajectory Generation

'This number is based on the Runge-Kutta method. An efficient step-size control with the

predictor-corrector method may reduce the number of iterations.
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From the simulations, it turned out to be the deviation with the Resolved Mo-

tion Method is nearly proportional to the length of equidistant segments. This

length in turn is directly proportional to the number of integration steps, Natep,

or equivalently computational efforts. in other words, for a given straight line

segment, Ax, the number of integration steps, or iteration number, is estimated

as,
Nate,,- IAxll

I116t
where x is the speed of the tip motion, 6t the integration time step, and 11.11
represents the Euclidean norm of vectors. We can reduce, of course, Notp by

increasing the speed of tip motion and time step at the cost of accuracy and

numerical stability.

On the other hand, the deviation with the proposed formula, if Taylor's algo-

rithm is used, decreases exponentially with a base of 2 to 4 as the length between

two via points halves - by adding one via point in the middle. Figure 4.5 shows

the change of deviation as via points changes.

Thus, as Figure 4.4 shows, with sparse via points, the deviation resulting from

the Resolved Motion Method is smaller than that with the proposed method,

provided the same computational effort is applied. When the via points become

more than a certain number, the situation reverses. In the simulation, the break

point is when the number of via points for the proposed method becomes about

* 17, where the deviation is about 30mm, assuming total sum of lengths of links is

1M.

Since the proposed method requires about 9 iterations for a via point, the

total number of iterations is about 160. Hence, if the accuracy required is within

a deviation of less than 30mm per average link length of im, the proposed method

gives more accurate trajectory than the Resolved Motion Method.

In the case for more degrees of freedom manipulators, the comparison is ex-
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Figure 4.5: The Change of Deviation From the Desired Path, As the

Via Points Changes. Note That The Deviation Is Changing Expo-

nentially.

66

6r

-- - -- -



pected to be similar, because of almost the same reasonings made above, when

the equilibrium state case was considered.

Relationship between the Two Methods

The result in Table 4.3 shows a nearly perfect agreement of both solutions, ver-

ifying that (2.11) in tiLe proposed method is the equilibrium equation at which

(3.5) will finally arrive.

Because of the relationship between the two methods, we may use them in-

terchangeably as follows:

The exact equilibrium state can be determined either with the proposed

* method, or with the Resolved Motion Method by setting dx = 0. The latter,

however, would require more computations than the former, as discussed

before.

e The incremental displacement dl, which (3.5) of the Resolved Motion Method

easily provides, can be also obtained by using (3.10).
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Chapter 5

Development of A DexterityI
Measure

5.1 Introduction

The benefits of using a quantitative measure in engineering systems are well

known. As mentioned in Section 1.1.3, a quantitative measure provide us with

a rational basis upon which we can, without having to rely on experience and

intuition alone, analyze, design, and control the systems.

In robot systems, too, various performance measures have been tried, which

were listed in Chapter 1. In the subsequent chapters, these measures, in a generic

form denoted as H, have been taken into account, when using kinematic control

methods for redundant manipulators.

In this chapter and next, we focus on a certain desired performance, dexterous

4t

configuration, and develop a corresponding measure, dexterity measure. This

performance, however, becomes in fact quite ambiguous unless the concept of

dexterity is more precisely defined. The concept of dexterity, when proposed byI
Klein(1984), appeared to mean (I)the goodness of linear system of the differential
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relationship, as indicated by the determinant or condition number of the Jacobian

matrix; or (2)a natural appearance resulting from evenly distributed joint angles,

represented by summing the squares of the deviation of actuators displacements

from their midpoint.

According to this definition, the least dexterous configuration would be proba-

bly the singular configuration; for at singularity not only is the condition of linear

system at its worst, but also awkward appearances happen owing to lining-up or

folding of links. In this sense, therefore, dexterity may be viewed as a degree of

farness or distance from singularity. In the thesis, the meaning of dexterity is

explicitly specified as the distance from singularity.

S The distance from singularity, as mentioned in Section 1.1.3, may be repre-

sented with one of the following measures derived from the Jacobian matrix: the

determinant(or the manipulability measure for the redundant case), the condi-

tion number, and the singular values. Yet, in the case of redundant manipula-

tors, it was discussed that these measures cannot explicitly indicate the successive

changes in the degree of redundancy. This inability to indicate its change, consid-

ering that the degree of redundancy is an important constituent of the distance

from singularity, is an obvious shortcoming for distance measures. Furthermore,

even for a particular degree of redundancy, there appear relative differences in

the distance from singularity that have been unnoticed. Therefore, we feel that

a satisfactory dexterity measure should not only include the feature of indicating

the change in the degrees of redundancy, but also represent relative differences in

a particular degree of redundancy.

* In order to better understand the degree of redundancy and the relative dif-

ferences, we first review in Section 5.2, the concept of singularity, and some basic

knowledges about the degree of redundancy. Then, in Section 5.3, we derive a

new concept from observation of redundant manipulators. From this concept, a
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new performance measure will be developed in Section 5.4. The property of this

measure will be discussed in Section 5.5. Finally some concluding remarks will

be made in Section 5.6.

5.2 Review of Singularity and Redundancy

This section presents reviews on two basic concepts, singularity and kinematic

redundancy, which are necessary for better understanding the distance from sin-

gularity in the redundant manipulators.

5.2.1 Singularity

Singularities can be easily observed by examining the differential relationship,

(3.2), which is again,

,i= (5.1)

where G is n-dimensional vector representing joint variables, x is m-dimensional

vector representing end effector location.

For the nonredundant case(n = m), the Jacobian matrix J is a square ma-

trix. When the Jacobian matrix becomes singular, a manipulator is said to be at

singular point.

Hence at singular point, the determinant of J, det(J) equals zero. This simple

fact. t-,%,, ther with the fact that the determinant is a continuous function of joint

variables, provides with some important insights:

1. When det(J) 0- 0, the rank of J being reduced, the arm loses corresponding

degrees of freedom, with the results that it cannot move in some directions

by' any combinations of small motions in the joints.

'Much of discussions here is based on the personal note on singularity by Professor B.K.P.

Hrn,,,, tile autlor' supervil.
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2. Thus, as arm approaching this point, small movements in those directions

require very large displacements in joint space.

3. At singular points, since the determinant is a continuous function, its sign

changes. The change of sign, considering the determinant is the ratio of

differential volume of Cartesian coordinates to that of joint coordinates,

indicates a change from one kind of solution to another. In fact, just as

a change of sign in a continuous function cannot occur without passing

through zero, so the arm cannot change from one kind of solution to another

without passing through singularity. This property was also discussed in

(Uchiyama,1979)

4. At a singularity, thus, two different kinds of solution become one kind;

hence, the number of different solutions is reduced.

5. Items 3 and 4 can be explained in terms of Riemann sheets: multiple solu-

tions correspond to multiple sheets each of which represents the mapping

from joint angles to Cartesian coordinates; and singular points correspond

to the folds.

The first two items, by the way, may explain why keeping far from singularity is

closely related to dexterity.

From the fact that the determinant becomes zero at singularity, it functions in

a sense, as an indicator of the presence of a singular point. Besides, the absolute

value of the determinant, if geometrically interpreted, represents the volume of

parallelepiped made of n column vectors (or row vectors) of the Jacobian matrix.

This interpretation, together with the fact that at singularity the parallelepiped

collapses and the volume becomes zero, ;s in fact the basis of the idea that the

determinant is a measure of distance from singularity.
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One disadvantage of using determinant, however, as an indicator of singular-

ity is that, once the rank of J is reduced, it does not distinguish between one

state of singularity and another although their remaining ranks are different; the

determinants of both of them are equally zero. The more accurate indicator for

this purpose would be probably the remaining rank, or degree of freedom, itself.

For redundant manipulators, it was pointed out in Section 1.1.3 that the

measure equivalent to det(J) is the manipulability measure, Vdet(JJT). Yet, this

measure, as mentioned in Section 5.1, cannot indicate the change in the degrees

of redundancy, which will be reviewed in the following subsection.

5.2.2 Kinematic Redundancy

The degree of redundancy r is formally defined as

r -n--rn (5.2)

where n is the degree of freedom, and mn the rank of workspace. In linear algebra

(Strang,1980), the degree of redundancy corresponds to the dimension of null

space of the Jacobian matrix, the degree of freedom to the dimension of its column

space, and the workspace rank to the dimension of its row space. In other words,

the degree of redundancy is the maximum number of linearly independent vectors

in the null space, e,, defined as

Jei 0 (5.3)

But, we find that this definition is not sufficient for describing the concept of

redundancy.

For instance, consider the following Jacobian matrix representing a three de-

grees of freedom planar redundant manipulator consisting of three two-dimensional

column vectors, P',JP, and JP as

j - (j' I 2 jIj 3 ).
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If the second and the third links line up, that is J3 = cJ 2 with c any nonzero

constant, we know we do not have any redundancy left. However, the null space

vector that satisfies (5.3) is obtained as

e--(0 c -1),

which is a nonzero vector. Thus, according to the definition, the degree of redun-

dancy is one, whereas the observation indicates there is no redundancy. Then, how

can we explain this difference? The discrepancy can be resolved if we modify the

meaning of n in (5.2), as the available degrees of freedom. But, as mentioned in

Section 5.1, it turns out that this modified definition is still inadequate to describe

the relative differences in the distance within the same degree of redundancy.

5.3 A New Concept of Distance from Singular-

ity in Redundant Case

In this section, we will observe some Jacobian matrices of kinematically redundant

manipulators, and identify relative differences in the distance from singularity. On

the basis of the observations, we will propose a new definition of the distance from

singularity.

Again, the kinematic equation of a kinematically redundant manipulator is

generally given as follows:

x = f(O)

where x C Wm, and 0 E W" with with m < n. Then, tE<! Jacobian matrix from

the equation, which is given as J E Rmn, may be denoted in general as,

j = [j,, j2, .., y,, jm l-,.., jnl

where Jk is k-th column vector. If m linearly independent vectors are chosen,

without loss of generality, as the first m column vectors of J, then, from linear al-
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gebra, the remaining n - m vectors Jm- J,.., are linear combinations of J1 ,...,J"'

(Strang,1980).

Observations show that how many of these m vectors are included in the

linear combination for each of the remaining n - m vectors determines how far

from singularity a given configuration of the manipulator is at the moment.

To illustrate the point, let us select a manipulator with one degree of redun-

dancy, i.e., n - m - 1, where

j =jl,j 2 ,..jrnjn+l

Consider the following three cases of linear combinations for J,,+I:

1. jdm- = a1j 1

2. Jm-' = a1jl + a2 J2

3. Jn = a1j] + a2J2 -r ... + amJm

where a,'s, (i = 1,2,..,m) are arbitrary nonzero constants. What are then the

differences among these cases?

According to the formal definition in (5.2), the degrees of redundancy for the

three cases are the same, one. Alternatively, if the modified definition is used,

then the manipulator in Case 1 has no redundancy, whereas those in Cases 2 and

3 have equally one degree of redundancy. However, a careful observation reveals

that there still exists another difference in the distance from singularity between

Cases 2 and 3. The differences among the three cases may be explained as follows:

1. In Case 1, the manipulator gets into singularity, reducing its rank (< in), if

;any two of the first m column vectors happen to line up.

2. In Case 2, singularity arises if any two, except for J and 2 , of the m

column vectors line up.
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3. In Case 3, it preserves its rank (= rn), although any two of the column

vectors happen to line up.

In other words, the chance for the manipulator to get into singularity decreases

by degrees, as the number of linearly independent vectors to be included in the

combination increases. These differences in chances of getting into singularity

make the relative differences, within the same degrees of redundancy, in the dis-

tance from singularity. Meanwhile, how many of J, j 2 ,..jm appear in each of

j,,l .. , jn uniquely determines the number of distinct combinations of rn lin-

early independent column vectors, or the number of distinct submatrices of rank

rn in the Jacobian matrix. Hence, this number of submatrices also represents the

margin from singularity; the larger the number, the less is the chance of getting

into singularity. Of course, the number reduces successively as the number of

lining-up of column vectors increases. Of the equivalent two, to determine the

number of submatrices would be much easier than to select rn vectors and to

examine how many of the rn vectors are included in the remaining n - rn vectors.

Note, at the same time, that the observation is not confined to this particular

example of one degree of redundancy case, but evidently true for general cases,

where the degree of redundancy is more than one.

As another example, consider the following five jointed robot having a three

dimensional workspace and thus two degrees of redundancy, where the Jacobian

matrix is given as,

J = (J1 j 2 j 3.14JSl

where J,'s are again the three dimensional column vectors. If Ji, J 2 ,and JP are

selected as linearly independent vectors, then j 4 and J5 are, in general, repre-

sented as

j4 = cIJ + c 2 j 2 
-- c 3 j 3

J d1J' + d2j' - d3 J3
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Depending on how many and which of c,'s and di's are zero, we have different

numbers and combinations of linearly independent vectors appearing in J4 and

J. At the same time, this number and combination of vectors determine the

number of submatrices of rank 3 in the Jacobian matrix. The Table 5.1 shows

the relationship between the number of submatrices and the number(and the

combination) of linearly independent vectors.

It is noteworthy that the number of submatrices successively reduces from the

maximum, 10, to the minimum, 1, depending on the number and combination of

linearly independent vectors. Again, even within the same degree of redundancy,

there are different number of submatrices. Clearly this number of submatrices

differentiates the relative distance from singularity.

In addition, note that the absolute value of determinant of each submatrix,

called minor, represents the distance from its own degenerating state. Therefore,

the overall distance with relative to singularity should consider the value of each

minor of the Jacobian matrix. In other words, in addition to the number of

submatrices of rank m, the chance of singularity is even less, as each submatrix is

farther from singularity, that is, as each minor has larger absolute value.

The above observations directly lead to a definition of distance from singularity

as follows:

Definition

The distance from singularity is represented as the number of distinct

nonsingular submatrices of rank m and the magnitude of determinant

!of each submatrix, or the magnitude of each minor of the Jacobian

matrix.
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5.4 The Derivation of A New Performance Mea-

sure

In this section, on the basis of the distance concept developed, we will derive a

performance measure for the kinematic control purpose. More specifically, from

the concept the following objectives are to be met to achieve the desired perfor-

mance:

* to keep the number of distinct nonsingular submatrices of rank

m as large as possible;
4

* to make, and at the same time, the magnitude of each minor as

large as possible.

As an index that explicitly represents these objectives, we propose the follow-
ing measure:

fi 1i /p ,

H =lAt (5.4)

where A,'s for i = 1,2,..,p, with p nCm, are minors of rank m of the Jacobian

matrix. Clearly, this measure contains in its expression the two elements of the

distance, the number and the magnitude of distinct minors, in such a way that

its increase automatically achieves the above two objectives. To be more specific,

since the measure has nonzero values only if all of the minors are nonzero, keeping

it greater than zero guarantees the maximum number of distinct submatrices. At

the same time, since the measure cannot have a large value unless each minor is

large, increasing the measure tends to increase the magnitude of each, as a whole.

Furthermore, since the measure, being a product, becomes smaller if the minors

have uneven values - some too large and some too small -- it prevents any minor

from being dominantly large at the cost of forcing others to be too small.
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In (5.4), the exponent 1/p is primarily used so that, when n - m, the measure

might reduce to the absolute value of determinant. We find a similar treatment,

in (Yoshikawa.,1984), where the manipulability measure is defined by applying

the exponent of 1/2 to det(JJ T ). Of course, if exponents are used, then physical

interpretations for the measure become different. About this, we will discuss

more in the following section. Besides, the use of an exponent, when the measure

is used in the null space of Resolved Motion Method, results in a different time

response of convergence toward the optimal joint configuration. Except for these,

the essential characteristics are not changed.

5.5 The Property of The Measure

Examining the new measure, we find the following important properties:

" When m = n, i.e., for nonredundant manipulators, the measure reduces to

H - Idet(J)I

which is the same as that proposed by (Paul and Stevenson,1983). From a

*property of the determinant, the measure is conceptually interpreted as the

volume of a parallelepiped in m-dimensional space, the edges of which come

from the rows - or equivalently columns - of the Jacobian matrix, J.

" When n > rn, thus, the measure represents the geometric mean of the

volumes of p parallelepipeds made of each combination of m column vectors

out of n.

* The points where A, = 0 determine the boundary between one kind of

joint configuration(or solution) and another kind. These points are also the

points where some of the column vectors in A, are linear combinations of

the remaining ones in A,, and thereby causing the minor to become zero.
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Note that the last property may be considered an extension, to the redun-

dant case, of the nonredundant case in Section 5.2, where the points satisfying

det(J) = 0 determines boundaries. This property in fact was used by Borrel and

Liegeois(Borrel,1986) to determine the boundaries of different kinds of joint solu-

tions. These boundaries then divide the joint space into subsets, called aspects,

each of which consists of the kind of joint solution or configuration.

In addition to determining aspects, by using this property, we can make the

joint configuration stay within a preferred aspect. More specifically, by keeping

A, from zero, we preserve the kind of joint solutions for redundant manipulators.

Then why do we need to make the joint configuration stay within an aspect?

Some of the reasons have been mentioned in Section 3.2.2, Section 5.2, and Sec-

tion 1.1.3, which are summarized as the following:

" The switching of aspects can cause a kind of repeatability problem.

" When the switching occurs, discontinuity in motion and awkward configu-

rations may accompany.

Clearly, now that maximizing the performance measure directly prevents Ai

from zero, it immediately aims at these problems. In other words, by virtue of

its property, the new performance measure is expected to help solve these. How

the measure achieves the expected performances is one of the main issues in the

following chapter.

5.6 Conclusion

To sum up, we have defined the desired performance, the dexterous configuration,

and developed the concept of the distance with relative to singularity for redun-

dant manipulators. On the basis of this concept we derived a new performance
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mreasure to help achieve the performance. In addition, fromn the analysis of the

properties of the measure, we expect that the measure may )e useful for prevent-

inig the repeatability problem and other problems due to switching of aspects.
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Table 5.1: The relationship between the number of linearly indepen-

dent vectors in representing the remaining vectors and the number of

submatrices in the Jacobian matrix.

CI C2 C3  * *** * 0 0 * 10 **-0 0 * 0**

d, d2 d3 ~ ~ *0**** * *0 ~ 0 0

INo. of sub- 10 98 8 7 6

Lmatrices (5C 3) ]___ ___I___ ______

Notes: A B__ C DIE F

No. of sub- 5 4 4 3 2 1

* ~~~matrices _ _ __ __ _

~Notes: G H_ __ _ K IL
*represent any nonzero value

Notes:

A All of c,'s and d.,'s are nonzero.

B Only one among C,'s and d's is zero.

C Any two of either c,'s or d's zero.

D One of c,'s and one of d3's are zero with iI

E Two of either c,'s or d 's are zero and one of the other parts, d,'s or c 's, is zero with

- ~ F One of c,'s and one of d's are zero with Z'j

G Two of either c,'s or d 's are zero and one of the other parts, d3 's or c3 s, is zero with

H Two of both c1 s 'and d1 's are zero, with one overlappingZj

I All of either c, 's or d, 's are zero.

J One of both c,'s and d3 's are nonzero, with 1'-

K Only one of either c,'s or d.,'s is nonzero.

L All of c,*s and d,'s are zero. 8
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Chapter 6

Relationship and Comparison
with other Measures

6.1 Introduction

In this chapter, we test the new performance measure developed in the previous

chapter in order to see if it indeed helps achieve the desire performance. Also we

will examine if it has the ability of avoiding repeatability problem and problems

due to switching of the kinds of solutions.

To this end, first, we investigate the qualitative relationships of the new mea-

sure with two major performance measures introduced in Section 1.1.3: the ma-

nipulability measure and the condition number. We will also focus on the afore-

mentioned property of preventing the switching of aspects. Then, we will try

to confirm, through numerical simulations for three different manipulating situa-

tions, the points so far derived.
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6.2 Relationship with Other measures

In this section, we investigate the relationship between the proposed measure and

each of the two measures: first the manipulability measure and then the condition

number.

6.2.1 the relationship to the manipulability measure

From the fact that both represent the distance from singularity, we intuitively

see that the new measure and the manipulability measure are somewhat related

to each other. However, what is more precise relationship between the two? The

* following theorem answers the question:

Theorem 3 For any matrix, J E gR"" n , with m < n,

P

det(JJT) = Z A, 2

t=1

where A 8', i = 1,2,..,p, with p = nCm, are again minors of rank m of the

matriz J.

The proof for the theorem is in Appendix 4. Since the manipulability measure,

H1, is defined as

H, = det(JJT)

it is expressed in terms of minors as follows:

H, = A (6.1)

* whereas the new measure expressed in (5.4) is again,

iH = IPAil"

Comparing the two measures, we note the following differences:
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1. Geometrically, the manipulability measure may be interpreted as the Eu-

clidean norm of the vector representing the present state in the Al - A 2 -

... -AP coordinates system, or as the distance from the origin to the

present state in that coordinate system. The new measure, on the other

hand, represents the radius of sphere whose volume is equal to that of the

hyper-hexahedron made from the Ai, i = 1, 2,. , p coordinates in the same

coordinate system.

2. As mentioned in Section 5.5, the new measure cannot have a large value

if the value of each A, is uneven; whereas the other can have still a large

value only if some of dominant minors have large values. The manipula-

bility measure can have, in the extreme, some zero minors, as long as the

workspace rank is preserved.

Hence the new measure tends to give more balanced minors than the ma-

nipulability measure, not to mention prevents minors from being zero, thus

directly controlling over switching of aspects; whereas the manipulability

measure does not have an immediate effect on switching of aspects.

3. Note that the manipulability can be also expressed as(Yoshikawa,1985)

H, m~H 1 =1 0k a

* where 0h is the k - th singular value.

This expression shows that the measure has exactly the same form as the

new measure in that it is a product; the difference is that the manipulabil-

ity measure is the product of the singular values representing workspace,

whereas the new measure the product of minors representing the joint space.

This difference implies, in a sense, that the former concentrates on pre-

serving the workspace rank while the latter on degrees of freedom of joint
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space. Since keeping maximum degrees of freedom of joint space automat-

ically preserves the workspace rank, the latter has the more sufficient yet

strict requirements.

To illustrate the second difference, let us consider the same redundant manip-

ulator in Chapter 4, which is to locate the end effector at a certain x - y position.

At the end effector location, there exist infinite numbers of configurations or sets

of joint values that enable the position, each determining a distinct Jacobian

matrix and thus a distinct set of minors.

These sets of minors accordingly determine a curve in the Al - A2 - A3 coor-

dinate system, as shown in Figure 6.1. Applying the proposed method for inverse

kinematics, when the end effector is located at x = 0.2m y = Om, we can obtain

Lwo sets of joint values that maximizes the two measures. Then their correspond-

ing sets of minors are plotted in the same curve in Figure 6.1. From the resulting

minor values plotted in the figure, one may confirm the predicted tendency: the

new performance measure gives somewhat more balanced minor values than the

manipulability measure. This tendency was also confirmed, although different in

degrees depending on the locations within the workspace: the more noticeable as

the tip moves toward the outer or inner workspace limits.

6.2.2 Relationship with the condition number

The relationship with the condition number, however, is not so clear as that with

the manipulability measure, because of the difficulty in deriving such a pair of

simple expressions as (5.4) and (6.1). As well known, the condition number H 2 is

defined as

H2 - (6.2)

where ar,,, and a,,. are minimum and maximum values of singular values, respec-

tively. As pointed out in the above subsection, since the singular values represent
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the workspace rank, this measure, too, concentrates its concern on preserving the

workspace rank. More specifically, minimizing the condition number, in effect,

results in maximizing am,. Since nonzero value of , guarantees the workspace

rank, the measure after all tries to preserve the workspace rank. And as long

as it is preserved, it does not concern about what happens within the redundant

degrees of freedom.

6.3 Comparison of Performance measures

In this section, the new measure is quantitatively compared with the two other

measures. To this end, some numerical experiments are tried for the case of a

three degrees of freedom planar manipulator as in Chapter 4.

The points we try to examine through the experiments are as follows:

1. whether the new measure, if used for the kinematic control, helps achieve

the desired performance, that is to overcome singularity;

2. whether the measure contributes to preserve the aspect, the kind of joint

configurations, and how preserving the aspect relates to the repeatability

problem;

3. what other effects the transition of aspects brings about.

5To examine the first point, the ability to overcome singularity, simulations for the

following two cases are tried: when the manipulator has a nearly singular config-

uration; and when the end effector touches the base. To examine the second and

third points, on the other hand, the end effector is made to radially reciprocate

between the base and outer limits of the workspace.

For the kinematic control in the experiments, the two equivalent methods, the

proposed method or the resolved motion method, were alternately used depending
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Manipulator With Links of Equal Length

on the necessity and convenience of each experiment.

6.3.1 Overcoming singularity

The two experiments examining the ability of overcoming singularity are made

with a manipulator that has three revolute joints with the equal length of 0.55m,

as shown in Figure 6.2. In this case, since u = 1 and v = 1 in (4.3), the Jacobian

matrix becomes

( C123 + C12 + C1  C123 + C12 C123

-8123 - 812 - 81 -S123 - $12 -8123)

Escaping from a nearly singular configuration

In the first experiment, starting from a nearly singular configuration of 0 =

[-90, 179.50, 0 .1T, the manipulator is made to have the self-motion with each

of the three performance measures, and the respective results are compared.
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Since the successive change of configurations - as time goes on - is to be

examined, the resolved motion method in (3.6), which appears the more suitable

for this purpose between the two kinematic control methods, is used with a = 10.

Of the measures, by the way, in order to avoid a large value of null space term,

the condition number is not directly minimized; instead, its inverse is maximized.

That is because the condition number has a large value at the initial state, result-

ing in a large value of h - it is proportional to the condition number - which,

in turn, causes a very large value of null space term.
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II
The result of the experiment is given in Figures 6.3, 6.4, 6.5, where the change

9' of configurations and the time response of each measure are shown. From this

result, it is clearly demonstrated that each measure, if included in the null spaceI

term, makes the manipulator get out of the singular configuration, driving joint

values toward the state where the measure has the maximum value for the tip

location. The effect of including the performance measures becomes even more

obvious, if the self-motion without the measures is considered, when no self-motionI

happens at all because the r.h.s of (3.6) is zero. The speed of convergence for the

condition number case is noticeably slower than those of the two other measures,

both of which are almost the same.

At the steady state, whereas the condition number has a considerably different

one, the new measure and the manipulability measure have optimal configurations

that look surprisingly similar. Yet a close inspection shows that they are slightly

different. The reason for these similar configurations is as follows. The optimal

condition, Zh = 0, for each measure is in general quite different from one another.

Even for the manipulator in Figure 6.2 with such a particularly symmetric geom-

etry, joint solutions for each measure are different. However, the above optimal

condition for each measure turns out to be satisfied only at locations (x, y) of end

effector satisfying x2 + y2 = 12, with a particular joint values Of 02 = 03 = 900 or

02 = 83= -90*. Here I is the value of equal length of the three links of givenI

When passing the base

9 I]

Whereas the previous experiment examines the self-escaping ability, the present

one examines the behavior of the manipulator when the tip touches the base,

forming a closed kinematic chain - a triangle. This case is of interest because
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of the triangle with respect to the base, as long as the tip stays at that location.

This intuition can be easily confirmed if the projection matrix, I - J+J, in the

homogeneous solution term of (3.6), is symbolically derived. To be more specific,

when the tip is located at the base, the Jacobian matrix in (3.2) is modified as

the following symbolic form:

J = ( 2 3 (6.3)

0 j22 j23)

from which the projection matrix can be derived as,(10 0
I-J+J= 0 0 (6.4)

0 0 0 0

Clearly, through the projection matrix, only 01 is affected by the gradient of

performance measures, h, resulting in a rigid body rotation of the triangle with

respect to the base, without making any other changes in the configuration.

Then, is it impossible for the manipulator to get into and out of the configura-

tion? In other words, can we obtain the inverse kinematic solution that resolves

the motion when the tip is passing the base? The answer for the question is that,

although the homogeneous term becomes ineffective with the tip at the base, it

is still possible for the manipulator to get into and out of the point. The reason

for the answer may be analyzed as follows:

9 When the tip approaching the base, the homogeneous solution term, al-

though diminishing, still exists, continuing the effort to achieve the optimal

configuration, until the very point of the base.

9 When the tip getting out of the base, on the other hand, now that the

projection matrix is given as in (6.4), the homogeneous term does not con-

tribute to overcoming the closed chain configuration. Yet, since the rank is
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still preserved, the pseudoinverse J+ is available, which can be derived from

(3.4) as
(0 0'

J = j23 -js (6.5)

-j22 12

Since, in this matrix, the second and the third row vectors are linearly

independent, we may have a differential tip displacement in any direction

we like in the workspace.

* Then, once the tip is apart from the base - no matter how small the

distance may be - the homogeneous term immediately begins to restore

* its effectiveness.

To sum up, at the base, where the particular solution term is still well defined,

this term drives the tip out of it, while the homogeneous term is momentarily in-

effective; at the remaining region in the workspace, on the other hand, both terms

are effective. Furthermore, between the two regions, the respective transitions of

the two terms are smooth without discontinuity.

One may suspects that the overcoming ability could have come from the inez-

act tip location - the tip can be slightly off the base - due to the linearization

characteristics of (3.6). On the other hand, inexact Jacobian matrix may have

made it possible for the tip to get out of the base, which, with the exact Jacobian

matrix, might be impossible. But these are not the cases, because both the Jaco-

bian matrix in (6.3) and the pseudoinverse in (6.5) are exact expressions defined

at an exact point, the base. Rather, the ability comes from intrinsic back-up

* function of kinematic redundancy.

The aforementioned analysis is well confirmed in the following experiment.

In the experiment, the tip is made to move along the straight line starting from

x - [0. 2 , O]T to [- 0 .2 , 0]T, passing the base, [0, O]T, with units in meters. Together
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with the tip motion, the three measures are included in the inverse kinematic

method proposed in Chapter 2, which was proved to give the exact equilibrium

solution, thus excluding the effect of inaccuracy in both the tip location and the

Jacobian matrix.

From the result shown in Figures 6.6, we see that with the three measures the

manipulator had no difficulty to treat the point. We may conclude that the use

of redundant manipulator seals the hole in the workspace at the origin, where,

without the kinematic redundancy, singularity is unavoidable.

In the Figure, one may note the smoothness of motion when the new measure is

used, as compared to motions with the other measures: When the other measures

are used, the motions approaching the base from x = [0.2, 0]T are rather jerky -

see the abrupt changes in 01. The reason for the smoothness is not very clear right

now; but we can guess that keeping minors to be balanced prevents the abrupt

changes in the joint angles.

6.3.2 Preserving the aspect and its effect to the repeata-

bility problem

In the following experiment, we examine whether the manipulator, with the new

performance measure, can preserve the aspect indeed, by comparing to the cases

with other measures. The manipulator to be used for the purpose is the same one

0 -as used in the previous chapter: the three degrees of freedom planar manipulator

with revolute joints of 11 = 0.6, 12 = 0.85, and I = 0.2 with units in meters.

In the experiment, the tip is made to reciprocate radially between the base and

* the outer limit, where the manipulator fully extends. Here, the tip motion is so

made, not because the radial motion itself is of primary concern, but because it is

a way of scanning the workspace to examine the ability to preserve the aspect. To

be more specific, a series of configurations corresponding to the tip reciprocating
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in one radial direction represent, owing to rotational symmetry, those in all the

other directions, thus covering the whole workspace. Of course, the rotational

symmetry lies in the fact that the new performance measure, together with the

other measures, depends on 82 and e3 only, and is independent of e1 - hence,

one optimal configuration for a fixed tip location is symmetrical to another for

the other tip location of the same distance from the base.

Of the two kinematic control methods, the proposed method, being the more

convenient one for obtaining the equilibrium states, is mainly used together with

the three measures. When applying the method, to solve the successive joint con-

figurations as the tip reciprocates, the present joint values are used as the initial

* conditions for the next tip location. The very first joint configurations corre-

sponding to the starting point of the tip, by the way, are determined by obtaining

the global minimum. To do this, we first find out, for comparison, all the local

minima by providing with every possible initial condition for solving the system

of nonlinear equations, (2.11). These initial conditions, in turn, may be deter-

mined by finely tessellating the joint space, that is, the domains of joint variables,

01, 02, 03. In parallel to this, all the local maxima at each tip location are obtained

with the proposed method, in order to cross-examine if the successive generations

of joint values are indeed correct. In addition to the joint configurations, cor-

responding minor values are obtained to examine the correlation between joint

configurations and minor values.

Tn Figures 6.7, 6.9, 6.11, the optimal joint configurations based on each of the

performance measures and the value of each measure are plotted.

Corresponding minor values are plotted in Figures 6.8, 6.10, 6.12.

As shown in the figures, each performance measure has two distinct sets of

configurations that, depending on the tip location, alternately give the global op-

timum. Hence, each of the two sets of configurations has its own corresponding

S
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performance measure curve: the one, consisting of mostly the ladder-shaped con-

figurations, corresponds to the curve with a solid line; and the other, consisting

of mostly 'N'-shaped configurations, to the curve with a broken line. For conve-

nience, let us denote the former configurations A, and the latter configurations

B.

Besides, note that the mirror-image sets of Configurations A and B with re-

spect to the x-axis, although having the same values of the corresponding measure,

are not included in the figures, for brevity. Of course, there are still additional sets

of configurations that, corresponding to local maxima instead of global maxima,

are not shown in the figures either.

What do we find from the resulting configurations? Let us examine the con-

figurations generated by each performance measure one after another.

The Manipulability Measure

Figure 6.7 shows the two configurations and corresponding values of performance

measure, when the manipulability measure is used. In the figure, depending on the

tip location, each of the two configurations alternately assumes larger performance

measure value than the other. In the region between z = 1.1m and z = 1.6m,

however, the two configurations become identical, having the same performance

measure values. Then what happens with the two configurations, when the tip Is

coming out of this region of the identical configuration? To answer this question,

we need more careful observations as follows.

In Configurations A, the initial configuration is preserved within almost the

whole workspace except for the region between the base and x = 0.1m. That is,

except for this region, the initial shape does not change, regardless of wherever

the tip location may be, and to whatever direction - toward or outward from

the base - the tip may move.
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In Configuration B, on the other hand, where the tip starts from near the base,

the initial configuration is preserved only if the tip is located within a certain dis-

tance from the base, about 1 m; outside the location, the configurations shift or

merge into Configuration A. And once merged, configurations corresponding to

subsequent tip motions stay within Configuration A, never returning to Configu-

ration B.

Here, we observe that the manipulator has switched the aspect or the kind

of joint solutions. Moreover the configuration, once switched from one aspect

to another, does not return to the initial configuration: the expected repeatabil-

ity problem. Then, what happened to the minors when this switching of aspect

occurred? Did they change their sign indeed, passing through zero values? Fig-

ure 6.8 clearly shows that is the case: the tip location where merging happens is

the place where one of the minors changes its sign.

The Condition Number

In the case of the condition number, the situation is even more complicated.

In this case, Configurations A consists of successive joint configurations, where

the tip starts from near outer limit of the workspace toward the base, whereas

Configuration B represents the movements in the opposite direction from the

base. Differently from the manipulability case, in both Configurations A and B,

the initial configurations are merged into the other. Furthermore, the locations

where mergings occur are different: about z = 0.7m for Configuration A; and

x = 1.3m for Configuration B. And within z = 0.7m, or outer than z = 1.3m, the

two configurations are identical, giving the same measure curve.

Hence, the repeatability problem occurs, between x = 0.7m, and x = 1.3m,

when the tip reverses its direction after experiencing a merging. Again, the mi-

nor curve in Figure 6.10 shows that, when the switchings occur, signs of minors

98

11 Id 1



change.

The New Measure

When the new performance measure is used, there still exist two distinct config-

urations. One thing particularly noticeable is that there is no switching for both

configurations; there is no repeatability problem at all. Because of no merging

effects, the initial configurations are distinctly preserved showing also distinct

measure curves. As expected, the minor curve in Figure 6.12 clearly shows t!at

there is no sign change at all for the three minors. We see from this an obvious

consequence of using a measure that has a direct control over each minor value;

the property mentioned in Section 5.5 has an immediate effect.

Besides, we can observe, as compared to cases with the other measures,

smoother movements near base, which remind us of the previous experiment

results when passing the base.

6.3.3 Discontinuity effects

As mentioned in Section 5.5, when merging of configurations or switching of

aspects occur, discontinuous joint motion was predicted.

To confirm the prediction, we obtained joint velocities of both configurations

for each measure. Here the tip is made to move with a constant velocity of

0.1(m/aec). To resolve the velocity, we used the Resolved Motion Method.

Figure 6.13, 6.14, 6.15 show the resulting velocity curve corresponding to

the configurations obtained in the previous subsection. As expected, the two

*configurations of the new measure and Configuration A of the manipulability

measure, where there is no switching, show quite smooth joint velocity trajectories

as plotted in Figures 6.13 and 6.15.
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For the remaining cases, where switchings occur, the velocity trajectory is gen-

erally rugged, confirming our prediction. Yet, the degrees of ruggedness for the

two measures are different. A careful observation reveals the following: for the

manipulability measure, the merging happens through some intermediate config-

urations, reducing the degree of discontinuity; whereas, for the condition number,

the switching happens instantaneously with few intermcdiate states, resulting ir1

much larger values of joint velocity.

It is not very clear right now why this difference exists. We will probably

be able to get some clue, if the gradients of the two measure are first expressed

in symbolic forms and then each term is examined to pinpoint the cause of the

abrupt switching. To have the symbolic expressions for this inspection appears

to be possible, although quite complicated, in this particular manipulator case.

6.4 Conclusion

Summing up, the new measure has been compared with the two other measures,

both qualitatively and quantitatively. The result of analysis on qualitative rela-

tionship agrees well with the experimental results.

To summarize these results, all the measures showed the ability to overcome

singularity by successfully treating the two locations: the location corresponding

to almost straight line configuration and the base or the origin. The essential

difference between the new measure and the other ones is its ability to explicitly

prevent the minors from becoming zero. This ability in effect prevents the merging

of configurations and switching of aspects, which in turn enable to prevent the

repeatability problem and impulsive motions. In addition, the extra care, built

in the new measure, about the balanced values of minors appears to contribute

to noticeably smooth movements near the base.
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Chapter 7

Conclusion

In this thesis, some important aspects of kinematic control problems have been

investigated. These aspects may be categorized into two main themes: One is the

formulation of a new general the inverse kinematic method for redundant arms.

The other is the development of a new dexterity measure.

Finding a concise yet general formulation is important for the exploitation of

kinematic redundancy. Furthermore, the fact that the equation is formulated at

the inverse kinematic level is significant because it has the advantage of directly

mapping from workspace to joint space. The relationship between the new formu-

lation and existing ones such as the Resolved Motion Method has been analyzed.

Among various desired performances, the dexterous configurations are not

yet well understood. By explicitly defining the dexterity as the distance from

the kinematic singularity, one can have a good springboard for approaching this

rather ambiguous concept. This distance concept in fact helps illuminate the

less known fact that for a particular degree of redundancy there are different

degrees of distance from singularity. This finding in turn immediately leads to a

performance measure for controlling this distance. An analysis of the relationship

of the new measure with similar measures confirms that our approach is sound
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and useful.

In the light of these two themes, each chapter is reviewed as follows. Chapter

2 covers the derivation of the proposed formula, the interpretation of its charac-

teristics, and estimation of computational efficiency. In addition, the new formula

was there compared to the existing formula and it is shown that the new formula

is a general, yet concrete expression of the others.

In Chapter 3, we qualitatively compared this formula with the Resolved Mo-

tion Method. From the comparison we analytically showed that the proposed

formula is in fact a direct mapping counterpart of the other method. That is,

the proposed formula was proved to provide directly the equilibrium states at

which the joint variables in the other method eventually arrive if the end effec-

tor is made to stop at a fixed location. In addition, Resolved Motion Method

was shown to lead to non-repeatable behavior. We also proposed a differential

relationship, equivalent to the other method, yet based on the proposed formula,

which is shown to be slightly more efficient.

In Chapter 4, numerical experiments were made to verify the theoretical and

qualitative results so far obtained. Also the numerical efficiency of the new

method was compared with the Resolved Motion Method. The theoretical re-

sults confirmed through the simulations were as the following:

" the Resolved Motion Method is a linearized equation approximated at the

equilibrium points that are exactly determined by the proposed formula;

" the repeatability problem persists in the Resolved Motion Method in tran-

sient period as well as at the steady states.

In addition, a practical way to use the proposed formula in a real time control sit-

uation was considered in conjunction with an efficient joint interpolation method

devised by Taylor. Tho comparison of efficiency with the other ,ptlnd %hv'.'

that the proposed formula is more efficient when higher accuracy is required.
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In Chapter 5, we have defined the concept of dexterity as a distance from

singularity. Then we reviewed the concept of singularity and redundancy for

further investigation of the distance concept. We have illustrated that there are

different degrees of distance from singularity in the same degree of redundancy,

showing that the conventional concept of redundancy is not sufficient to describe

this distance. The new distance concept we derived was the number of nonzero

minors as well as the magnitude of each minor. On the base- of the new concept,

a new performance measure was derived.

In Chapter 6, we have related the new performance measure with the manip-

ulability measure and the condition number. Having investigated the qualitative

relationship, we pointed out that the other measures do not have the ability to

explicitly prevent minors from becoming zero. Through another series of nu-

merical experiments, the effect of this ability was clearly confirmed. Whereas

the two other measures without this ability showed repeatability problem and

discontinuous motions, the new measure consistently overcame these problems.
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Appendices

Appendix 1: Taylor's Bounded Deviation Algo-

rithm

In this Appendix, we briefly introduce Taylor's bounded deviation algorithm. The

algorithm consists of two parts: one part is to generate appropriate numbers of

via points and joint angles that guarantee given deviation from Cartesian path;

the other part interpolates the joint angles to obtain better resolution. The first

part is summarized in the following scheme.

Taylor's Bounded Deviation Joint Paths

1. Compute the joint values 00 and 01, corresponding to xo and xi, respectively.

2. * Compute the joint space midpoint, 0,, = (01 + 01)/2, and use it to

compute f,, = f(0,).

* Also, compute the workspace midpoint, x, = (x0 + x 1)/2

3. Compute the deviation between fm and x,,, 6 = Ixm - fIl

4. If 6 < 6 "' , we are done. Otherwise, compute the joint value 0, f -'(x,);

and apply steps 2-4 recursively, for the two segments (x0 - xm) and

(Xm, , x,).
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Here, the deviation may be defined as a Euclidean norm of position errors

from the desire path. Once the generation of via point is complete, then the joint

angles obtained in the process of executing the scheme is now used to generate

more intermediate joint angles by interpolation methods. When applying the in-

terpolation methods, if the tip is off the ends of line segments determined by via

points, linear interpolation is used. At the transition area from one line segments

to another, on the other hand, the quadratic interpolation is used for smooth

transitions. This interpolation strategy is implies that the joint velocity is con-

stant at off the transition area, whereas near the transition the joint acceleration

made constant.

Appendix 2: The Derivation of The Extended Ja-

cobian Method

In this Appendix, we will prove that (2.10) reduces to the extended Jacobian

method, when n = m + 1.

The additional equation to resolve the redundancy in the extended Jacobian

method is given (Baillieul,1985) in (2.22) and (2.23) as

G(8) njh (A.1)
=0

where
nj =
L i/k = (- l)i+1det(J', j2,.J i-I, Ji+1 .. ,J n.

and where jk is the k-th column vector of the Jacobian matrix, J, derived from

(2.1). When n = m + 1, our result, (2.10), is specified as

G2 (0) = (jn)rJm-l, -1]h (A.2)
II =0

where (jn)T is the transpose of the n-th column vector of the Jacobian matrix,

J. JmI can be derived as

Jm-- Am (A.3)
DmA
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where Am is the adjoint matrix of Jm and Dm is the determinant of Jm- Thus

Am is expressed as

Cofl Cof21  ... Cofm\

Am Cof12  Cof 22  ... COf,,,2 A4)

COfirn COf 2 ,. C.. Cfm

where Cofi, is the cofactor of j,, of the Jacobian matrix, J. From (A.2),(A.3),

and (A.4), we get

(dn)Tj._ ,  1 (jn)T A', (jn)T A 2,...(jn)T Aml (A.5)
- M DM -

where A, is the i-th column vector of Am. Since

TJ A' =I- jiCofll + j 2,1Cofl2 + .. + janCOfim

1"-A

we get likewise
_ (j,)Ta A' -A (A.6)

From the definition of A,, we get

'!' = det(jm T )
= det(Jm) (A.7)

Therefore,
((jfl)Tjm-,_) - A, A2  1) (A.8)

Since Jm is nonsingular -- and thus /A is nonzero, we can multiply by it on both

sides of (A.2), resulting in (2.22). Thus we have proved that (2.10) is a general

expression which yields the additional equation in the extended Jacobian method.

Appendix 3: The Relationship with Resolved Mo-

tion Method At Equilibrium State

From Lemmas I and 2, it was shown that column vectors of ZT are a set of basis

vectors which are orthogonal to J. Thus, row vectors of J, together with column

vectors of ZT constitute the basis of n-dimensional vector space.
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Accordingly, any n-dimensional vector h can be represented as

h = jTh, + ZTh 2  (A.9)

where h, and h2 are arbitrary vectors of m and n - m dimensions, respectively.

Premultiplying (A.9) by J, we have

Thus,

h, = (JJT)-'Jh (A.10)

Similarly, if we multiply (A.9) with Z and solve for h 2 , we get I
h2 = (ZZT)-IZh (A.11)

From (A.9) to (A.11), we obtain the following relationship:

(I JT(jjT) -'J)h = ZT(ZZT)-Zh

or, from (3.5),

(I - J+J)h z ZT(ZZT)-'Zh (A.12)

For a constant location of the end effector (no tip motion), when dx =O, (3.6),

with (A.12). becomes

d = ZT(ZZT) -Zh (A.13)

If Zh = 0 as in (2.10), then from (A.13), dO = 0, which means that joint variables

reach an equilibrium state - or a stationary state - which is mostly the optimal

configuration for a given tip location. Conversely, if df = 0, we have Zh = 0;

since the rank of ZT(ZZT) - l in (A.13) is n - m and Zh is an (n - m)-dimensional

vector.

Therefore, Zh = 0, (2.10), of the proposed method is the necessary and suffi-

cient.condition to be satisfied when (3.6) nf0- RM method reaches its equilibrium



Appendix 4: Proof of Theorem 3

In this appendix, we make a proof of Theorem 3. The Jacobian matrix is expressed

as the following:

11z I11

Then En=, j,2 ... nE

JJT( k= Iimkjl iiJm
2

In general, the determinant of an m x m matrix A is explicitly given as

where a1, is the element of A at i'-th row and j -th column, ur (a, 0,., v) with

distinct integers, a,,3, - -,v =1,2, - - -,m, PO is the permutation matrix, and

I ,means the sum is taken all m! permutations of or. Hence, the determinant of

jjT is

det (jj 2 ) F(Z jlIA~k)(YZ j2kJ,3k) .. (II jickju) det(Per)
0 k=1 k=I k=1

Expanding this, we have

U ki, ,.,=l

Here, note that terms that have non-distinct k,'s disappears. For instance, if

k2 k 1, then 1iGJ1/ 1  ,mvmdisappears when a 1 and ;3 2.

Thus, in Equation A.15, summation is applied only to the terms with distinct

k,'s. Note also that the number, p, of different sets of distinct k,'s is

p =nCm.

Rearranging Equation A.15, we have

de., ( jjT) J (Zj0ikj2k," j .mkdet (Pa)) (j*QkJo3k, ~J . kJ vk)
ki, ,k,,=i 0
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Here summation k .1 may be divided into

n P

E = :
k * k,,, -l t=1 (7,

where a, =(k, k2,. ,) is i-th set of p different sets consisting of Fr distinct

k,'s. Therefore Equation A.15 becomes

33k,, I C 2 J

If we denote a part of Equation A. 16 as

.N C ,J , ,/ e PU

Comparing this with Equation A.14 shows that A, is the determinant of the

transpose of the subrnatrix made of k,'s cLolumn vectors as

A, =det (~jkj jk2 ... jk. IT)

where P, is the k,-th column vector of the Jacobian matrix. Once a set of k,'s

is chosen, the absolute value of A, is fixed; only its sign changes as k,'s make

permutations. If we set the absolute value as jAj, Equation A.16 becomes

P
det (jj T ) -zZ~ Ai(Z Jk~J2k!, * ,J mk,,, det (PUM)

The facts that the determinant of a matrix is equal to that of transpose of the

*matrix and that jjT is positive definite imply that

p

det (jjT) F, AZ2 .

Q.EI. D.
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Appendix 5: Proof for Derivation of Joint Veloc-

ity from the Optimizing Equation

Since Z spans the null space of j, we have

ZJT = 0 (A.17)

Hence, multiplying both sides of (A.17) by (jjT)-1, we have

ZJT(JJT)- I =0 (A.18)

Using the relationship, J+ = ZJT(jjT) -1, we derive from (A.18)

0ZJ + = 0

Meanwhile the definition of the pseudoinverse matrix is again,

J J+ =Im

where Im is the identity matrix of rank m. Combining the above two equations

results in a composite equation,

where the composite matrix is denoted as

JE J (A.20)

Multiplying both sides of (A.19) by JE1 results in

QE. D.
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