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ABSTRACT

The standard multiple use calibration procedure due to Scheffe (1973)

states that with probability 1-a. the proportion of calculated confidence

intervals containing the true unknowns is at least 1-a In the long run. The

probability 1-a refers to the probability that the calibration experiment

results in a 'good' outcome. In Scheffe's formulation a good outcome Involves

both coverage of the true underlying regression curve and an upper confidence

limit for a , the scale parameter. Scheffe's procedure Is fairly difficult for

practitioners to apply because It relies.on tables that are not easy to use. A

simpler notion of 'goodness' which only requires the calibration experiment to

result in coverage of the underlying regression leads to easily calculated

confidence intervals for the unknowns. In addition, these intervals are

generally shorter than Scheffe's. An application example Is given to illustrate

the technique.

1. Introduction

A calibration curve Is often used to relate instrument readings to

established standards and thereby provide meaningful measurements. Accounting

for the resulting uncertainty from calibration is of central Importance. A

feature of critical interest is how often the calibration curve is to be used.

Most often, in our experience, the calibration curve will be used many times.

Consequently, the measurements will be correlated and this dependence must be

accounted for. Calibration procedures that account for such dependence have

been developed for the linear model by Lieberman, Miller, and Hamilton (1967)
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and Scheffe (1973). In this article we present a new method for coping with

multiple use calibration. Our method is based on a modification of the Scheffe

(1973) confidence statements, but the result is far simpler to Implement and

generally leads to shorter Intervals. Intervals akin to ours have been used by

scientists and engineers for some time without theorectIcal justification for

example, see Hockersmith and Ku (1964).

Consider for example the simple linear regression model. Assume that the

responses y are linearly related to predictors x with slope a1 and

intercept P., and that the responses are normally distributed with standard

deviation a . Symbolically, we write the model as

(1.1) Y " 0 1x + M.

-"N(0.1).

A training sample (or calibration experiment) of size N is used to construct

the classical least squares estimates (0, 1p.o) of i'aO jp 'a) and then the

calibration curve j0 + pIx Is formed with oS(x) denoting the estimated

standard deviation of the curve. The standard deviation of 80 + 02x is

defined to be oS(x), the estimated standard deviation is obtained if a Is

replaced by a. We denote the observations (y, ..... yN) of the experiment by Y

and use y to denote a specific outcome of Y.

After this calibration experiment is performed and the calibration curve is
S S

constructed, we typically observe a series of new "responses" y,y 2 .... which
s S

satisfy (1.1). The associated true values x1,x2..... are not observed but are
S S

to be estimated and confidence intervals for x1 ,X2.... are to be constructed.
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The usual estimate is x- (yj - p0 )/fil, and the remaining problem concerns

confidence intervals. In what follows, It Is convenient to write the true curve

as f(x) - j0 + P1 x and the constructed calibration curve as f(x) - + G1x .

The calibration region or the set of x's of interest will be denoted by I.

There Is fairly broad agreement on what to do in the case that a single

unknown x* is to be estimated based on y¥. A confidence interval for x*

can be obtained as follows: For given x * let J(x) be a (1-a).100% prediction

interval for the response y, I.e..

( -f) - 2 1/2a(x) - flx) t t N-211-,a/2}o llS (x))12

where tN- 2(l-a/
2 ) is the 1-a/2 percentile of the Student t-distribution with

N-2 degrees of freedom. For any given y, let K(y) be the set of x for

which y Is "correctly" predicted In the sense of being in the prediction

interval, i.e., K(y) a {xly s J(x)). Then we know that K(y*) is a valid 1-a

confidence interval for x*. In symbols,

Pr(x*4K(y*)) - Pr(y*&J(x*)) - 1-a.

Difficulties arise when one wishes to estimate a sequence of unknowns

Xl . from observations y1 ,y2 . . .... For this multiple use case, Scheffe

(1973) suggests modifying the prediction bands to be of the form

(1.2) Js(x) - (ylf(x) - O(cl+c 2S(x)) s y sf(x) + ;(c +c S(x)}.
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These generally lead to confidence Intervals for x given by K (Yj) -

{xlyj4J (x))); rarely in practice are these sets disconnected. The constants

c1 and c2 have to be chosen to satisfy uncertainty criteria required of the

confidence intervals.

The Scheffe method, as does ours, involves an uncertainty statement that

encompasses two sources of error: one from the calibration experiment, the

other from the post calibration measurements. The data from the calibration

experiments are used to estimate f and a and one measure of uncertainty is

the probability of the calibration experiment producing a 'good' estimate of f

and a. Formally, Scheffe defines a 'good' set by

(1.3) GS " (J if(x)-f(x)I s c2oS(x) all xl and c/o 2 b)

where b and c2 are chosen so that the probability that the experiment is

good is 1-6 that is,

(1.4) P ,o 2 [Y.& GSO Z 1-6, all 0,02

(here p=(pOpl)). The connection between b. c2 and the c1 , c2 of (1.2) and a,

6 is spelled out in Scheffe (1973) and we do not repeat the details. The

meaning of (1.3) and (1.4) is clear: 'good' refers to f covered and a

bounded and the probability of 'good' outcomes is controlled to be at least 1-8.

The other level of uncertainty Involves the probability of covering the

true x* when a new observation y* in made. Using the intervals defined at

(1.2) Scheffe requires that. fiven a 'food' outcome the probability of covering
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the true x* is at least 1-a. In formal terms

(1.5) P8.02,x[(Ks(y*) D x* I_Y yj : 1-a

2
for all pa , all x*I, all I_¢OS -

If (1.5) holds then the long-run proportion of confidence intervals covering the

true unknowns (xj) will be at least 1-a If the calibration experiment resulted

in an outcome in GS. The choice of b and the inclusion of a bound on a In

the definition of GS is to allow the calculation leading to (1.5).

The choice of c1 and c2 that assures both (1.4) and (1.5) can be obtained

from tables in Scheffe's paper. However, as noted in Lechner, Reeve and

Spiegelman (1982), this table Is not easy for practitioners to use. The

difficulty is the need to compute the minimum and maximum of S(x) over the

region I of interest and this can be a formidable task in linear models more

general than (1.1).

Our approach is first define the 'good' set not by GS  but, by

AS

(1.6) G - (LI If(x) - f(x)l S csoS(x), all xtI),

where c2 is to be chosen to satisfy (1.8) below. This restricts attention to

whether the true f Is covered; a Is auxiliary to that concern. In Section 2

we show how this modification leads to a substantial simplification in the

calculation of confidence intervals for the unknown (xl). In fact, we take the

cI and c2 of (1.2) as
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(1.7) C1  tN-2(1-G/2)

c2 - (2F2,N2(2-8))1/2

(F2 N2 ((1-) is the 1-8 quantile of the indicated F distribution).

To get the second part of the uncertainty statement note that the choice of

c2 in (1.7) results in

(1.8) P ,o 2 [YG] k 1-8 for all po 2.

If we let

Z - max Ijf(x) - f(x)l/S(x),
x' I

XAL

so that G can be restated as (Z S c2o), then the intervals defined through

(1.2) with c1 , c2 taken from (1.7) satisfy

(1.9) PO'2, xs[K(y*) : x*IZ - z, G] Z 1 - a

for all p. 2 ,x*&I, and z. Note that the choice c1 , c2 of (1.7), or any choice

permitting (1.8) and (1.9) to hold, will differ from the c1 , c2  that satisfy

(1.4) and (1.5).

In our experience in practical case we get narrower intervals by our method

than by Scheffe's. This is borne out in the example in Section 3 below. Which

is more appropriate. G or G. , (1.5) or (1.9), for uncertainty statements is not

clear on prior grounds. Both formalize the long run conduct of post-

calibration experiments in terms of the outcomes of the initial calibration
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experiment. The simplicity of (1.1; and its consequences (1.8) and (1.9) appear

to us to have a decided advantage - practitioners understand the role of the F

and the t distributions and have immediate access to appropriate tables, the

uncertainty statements of (1.8) and (1.9) have little added conceptual

complications, and there are no extra computational difficulties in obtaining

the needed c1 . c2 . Indeed, there is a simple graphical explanation in Figure I

which shows how the confidence band on f and the error in y* combine to

produce the desired interval for x*. In Figure 1 the (1-6) confidence band is

given by the outer curves; on the y-axis there is a (1-a) interval with y* in

the center. By reflecting the endpoints of the latter interval through the

confidence band we get two points that surround x* and define the confidence

interval for x*. For these reasons of simplicity and utility we are compelled

to recommend use of G and the consequent easy and quick use of (1.7).

The choices of c I and c2 can be improved at the expense of added

analysis and computation (see Remarks I and 2 of Section 2). If the model (1.1)

is replaced by a multiple regression with p variables including the intercept,

1/2
then cI = tN-p(1-a/2) and c2 - (pFp,N-pl-8))

2. Derivation of Results

Assume f follows a multiple regression model with p parameters. As

noted in (1.6) of Section I we regard a good outcome of the calibration

experiment as one that is in G. Our first step is to call on standard least

squares theory and note that the requirement

-7-



P[G] - P[I(f(x) - f(x)/S(x)I :S c2a all x4I] : 1-6

Is fulfilled If c2 - (pFpN-p(1-6))1/2  (this can be seen in Scheffe. 1973).

Ideally we would like the smallest possible c2 but the present choice Is

simple and adequate for now. We note that Scheffe uses a multiple 7 of this

c2  for some .95 < v < 1.2 whose choice depends on S(x), p, N.

Recall from Section 1 that G can be expressed as (yIZ S c2o) where Z Is

defined following (1.8). The independence of f and a. which comes from the

assumption of normality, Implies that Z and a are Independent random

variables. This independence and straightforward calculation produces

(2.2) P[Z S c 2 o. a a q I Z - z)

- P(z S c 2a, a 2 q)

M min [PEG^ a: z/c 2 . P(a 01qJ

k P(O k z/c2] P[o z q]

P[z S c2a I z - z] PEO Z qJ.

By dividing the two ends of (2.2) we get

(2.3) PE[ 2 q I Z S c2 a. Z - zI Z P(; k q).

Let A - (Z - z. Z S c2 a). Then

P[K(y) x I A ] - P[f(x)-f(x)-c 2oS(x)-oc 1 : o4 S Oc1+f(x)-f(x)+c 2oS(x)IA z]

(2.4) 2 P[-oc I S C& S oc 1I Az] - J((Clt)-(-CIt))dH(t)
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where H = the conditional distribution of a/c given A . The integrand inz

(2.4) is clearly increasing in t and we have Just shown in (2.3) that

H(t) :5 P[a/c :S t] .

Hence the right side of (2.4) is at least as large as

J(Vclt) - (-C1 t))d P[o/a : t] = P[ItN-p S CI].

Choose cI . tN- (1-x/2) and obtain the result: given Z. G the probability of

covering the unknown x is at least 1-a.

Remark 1. The use of c2 - (PFp,N-p(8))1 /2 is only made for simplicity.

It is known (Wynn and Bloomfield, 1971; Knafl, Sacks, and Ylvisaker, 1985) that

better choices of c2 can be made to provide statements like (1.8). An

immediate consequence of the arguments here is that such a c2 combined with

C, = tN-p(1-a/2) also provides useable confidence bounds and narrower ones than

described above.

Remark 2. Examination of (2.4), especially going from the second to the

third expression, reveals that improvement can be obtained by using the

monotonicity properties of the t distribution to replace the third term by

P[-20s~x~c. 2-c 1o'o04 <c 1ajOW

This leads to choosing cI  to satisfy
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(2.5) P[-cl-2c2 S(x)<tNp<cl] 1-a.

Finding c1  to satisfy (2.5) requires knowledge of S(x). Since the x's are

unknown, this is unrealistic but we can replace S(x) by sin S(x) - S (say)
x

and then use t-tables to find c so that

P(-cl-2c2 SoctNp<cl
] 

- 1-.

Unless So - 0. such a c1  Is smaller than tN-p(1-a/2). A less precise but

practical approach Is to replace S(x) by S(x) where x - f-(y) and treat

S(x) In (2.5) as If it were non-random. This gives data-dependent c1  but

leads to nominal values of confidence that should be close to correct.

Remark 2 is a relatively simple computation and its Implementation can lead

to substantial savings In the lengths of intervals. This is clearly indicated

in the example presented In Section 3, see Table 2. We do not over-emphasize

Remarks 1 and 2 because our concern is to make clear the advantage of the quick

and easy use of (1.7). Our recommendation overall would be to employ Remark 2

as well because it is relatively easy to carry out. Implementing Remark 1 Is

unlikely to yield great benefits unless the degree p Is bigger than 1 or the

problem is one where nonparametric calibration (see Remark 4 below) is needed.

In such cases It would be necessary to incorporate substantial computations (see

Knafl, Sacks, Spiegelman, and Ylvisaker, 1984; Knafl, Sacks, and Ylvisaker,

1985) and would belie our use of the words "quick and~easy."

Remark 3. It Is straightforward to adjust the statements and procedure if

the calibration experiment !s performed in one laboratory but the calibrations

-10-



are carried on elsewhere. This situation leads possibly to two O's, one In the

calibration experiment, the other from new observations y*. Under usual

assumptions of independence, the modifications needed are easy to make.

Remark 4. ( Nonparametric calibration.) Knafl, et al. (1984) discuss

calibration when the mean of the responses f(x) does not follow a strict linear

model so that the use of a multiple regression as done above would be

inappropriate. Examination of the details of arguments used In that paper shows

that considerable simplification In computation can result by use of the 0 of

(1.6). We forego elaboration of the necessary technicalities.

3. Example

A simple example arises In atomic absorption spectroscopy for which there

are twelve data points as shown In Table 1. Figure 2a is a plot of the data of

Table 1. Figure 2b is a plot of the residuals from a straight line fit. These

figures Indicate that a straight-line fit to the data Is entirely reasonable.

We chose a = 0.10 and a = 0.003. Following Scheffe we would get calibrations

based on a - 0.003, c, - 2.32 and c2 = 2.36, see the discussion after equation

(1.6). As an exercise, the reader may wish to attempt the calculation of the

Scheffe constants and compare the effort Involved with that required to look up

our c1 = t10 (0.95) - 1.81 and c2 - (2F2 ,10 (0.90))1
/2 . 2.41. The calibration

intervals are given In Table 2 for selected values of y; these intervals

provide numerical evidence of our claim that the Scheffe intervals are typically

significantly longer. The difference In lengths Is due' to the difference

between G and Gs In (1.6) and (1.3).

-11-



01|

4. Acknowledgement

The authors thank Joan Rosenblatt and Keith Eberhardt for their helpful

comments and Robert Watters for providing the data used In the example of

Section 3.

The research by Carroll was supported by APOSR Contract AFOSR-F-49620-85-

C-0114. The research by Sacks was supported In part by ONR Contract N00014-85-

K-0357 and NSF Grant DMS-85-03793. Splegelman's research was supported by ONR

Contract N00014-83-K-0005 and NR-042544,

-12-



Table 1

Atomic Absorption Spectroscopy

z y
0.0 .045
0.0 .047
0.0 .051
0.0 .054
.050 .08e4
.050 .087
.100 .115
.100 .116
.200 .183
.200 -. 191
.500 .395
.500 .399

x - amount of copper in a dilute
acid solution measured In
micrograms/milliliter.

y - Instrument response In
absorbance units.

(The data have been rounded to three decimal place..)
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Table 2

Calibration Intervals: Scheffe'Compared with Section 2

y a new observation

xL a lower endpoint of calibration interval
xU a upper endpoint,

A a length of calibration interval

First row in each entry is Scheff" calibration; secondrow is calibration according to section 2; third row
uses remark 2; fourth row uses marks 1 and 2.

.06 .0011 .0313 .0302 Scheffe"
.0034 .0290 .0256 Section 2
.0045 .0279 .0233 Remark 2
.0051 .0273 .0222 Rearks 1U2

.10 .0592 .0883 .0292
.0615 .0860 .0245
.0626 .0849 .0223
.0631 .0845 .0214

.15 .1314 .1601 .0287
.1337 .1578 .0240
.1348. .1566 .0218
.1353 .1562 .0209

.22 .2316 .2614 .0298
.2340 .2591 .0251
.2351 .2579 .0229
.2356 .2574 .0219

.30 .3453 .3780 .0327
.3476 .3757 .0281
.3487 .3745 .0258
.3494 .3738 .0244

.38 .4586 .4949 .0363
.4608 .4926 .0318
.4619 .4914 .0295
.4629 .4904 .0275
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f(x) + (2F N(1-6))l /2

y* + tN(l1/2 2 )

-* t N-2 O1/2)a

Interval for x*

Figure 1



Ln

L.

L

0

M 0 

(ID =3

2:

Ez

0

T0

cq n0



L * =

0 ru
L

OIXJ

0 m4

0 0 ~ i

0 0

0 00


