AD-4788 192

(&

Technical Report 1036

Heuristics
for Job-Shop
Scheduling

L ~ Kenneth Alan Pasch

MIT Artificial Intelligence Laboratory

DTIC
N ELLECTE iR
@ AUG 2 91988 & B

W o

H

i e s BEST AVAILABLE COPY
DISTIIBUTION STATEMENT

Approved {or public release;
Diztribution Unlimited

A

S L e e N P vt i e s . b

“wa a Yo PR

,,,,,, s - AR LI ~ TS R e sy -‘-"‘Q‘N\\! NIATANLTL Y LAY e
P P A SRS R Y y."-\"' W AN Y NN \.\‘_‘.‘k\'\\"\ T AT AN RS
P A vi%e e M.t - A A T B N R L S o S S e R T }
] ,‘,I ,,,,,,, O A T T L ) ] -_. R g‘ ‘,"‘hh o ‘\_ A .\\ o \1‘ \.~ ‘.“ T e . R
: o ‘ AR NGO AKS 'y N, O AN :

E R LT RPN AT T IE PEoy VO e L nwy o it S 1T



’

[IE R R J RSP O IR

HE S ONY nUMOER .- - BEF ORY COMPLE Imr,. FORM

2. GOVY ACCESYWON NO | 2 RLCW!I.NY 3 CAYALDG NUMUCR
AT=TR 1036

T(H_f t arnd Subu!l
. 0 3. YYPE OF MEPORY & PERIOD COvVERED

Heuristics Yor Job=shop Scheduling technical report

§. PERPOMMING ORG, REPORT HUMBER

AU uum.)

8. CONTAMACT OR GRAANT HUMBER(s)

Kenneth Alan Vasch NOOQ.14-86-K~-0685
NOOO14-85-K-0124

9. PENFORMIHG ORGANIZATION NAME AND ADDRESS 1o,

EMEN T PROJECT, YASK

[
Artificial Intelligence Laboratory CRoRC Ui WuMEERs

545 Technology Square
Cambridge, MA 02139

-{
~|

1. CONTROLLING OFFICE NAME ANP ADDRESS 12. REPORT OATE
Advanced Research Projects Agency January 1988
1400 Wilson Blvd. 13. HUMBER OF PAGES
Arlington, VA 22209 163

TMONITORING AGENCY NAME & AODRESS(I] ditlerent lrom Contrelling Olfice) 18. SECUMITY CLASS. rof this report)

Office of Naval Research

UNCLASSIFIED
Information Systems .. : .
Arlington, VA 22217 T3a. ?éfk;ﬂf{'CAno"’°°'"°“‘m"°

. DISTRIBUTION STATEMENT (of thie Report)

" Distrlbution is unlimited

. DI3TRIBUTION STATEMENT (of (Ne abairact entered In Bloch 20, 11 ditiaront fram Report)

Unlimited

SUPPLEMENTARY NOTES

None

. KEY WORDS (Continue on reverae oide I neceseary and identily by dlock numbar)

scheduling .
job~shop
heuristic
geometric

" A"’i‘:r:g }r::;.”}'x:ga:?;g't;’r:x.n"g”:;;;;;g;n‘l:{;"szl.t;t:::s"ro.;.i,le classic General Job-Shop
Scheduling Problem are investigated. The first method is iterative. A sampling of
the solution space is used to decide which of a collection of space pruning constraints
are consistent with “good” schedules. The selected space pruning constraints are
then used to reduce the search space and the sampling is repeated. This approach
can be used either to verify whether some set of space pruning constraints can prune
with discrimination or to generate solutions directly.

DD 5", 1473  rottion or 1 nov 315 OpsOLETE UNCLASS I FIED

S/N 0:02-014- 88011

SEGURITY CLASSIFICATION OF YHIS PAGE ("hen Dets l-mm

B R R T T U R
.'.‘i)‘.-f.-.",-t."»-'.' o . o S -t :

it s O .



: Block 20 cont.

o Schedules can be represented. as trajectories through a cartesian space. Under
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b average this method significantly outperforms an array of the Priority Dispatch Rules
when the objective criteria is that of Minimum Maximum Lateness . It also compares
! favorably with a recent iterative relaxation procedure.
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Abstract

~ Two methods of obtaining approximate solutions to the classic General Job-Shop
Scheduling Problem are investigated. The first method is iterative. A sampling of
the solution space is used to decide which of a collection of space pruning constraints
are consistent witha“good”'as/chedules. The selected space pruning constraints are
then used to reduce the search space and the sampling is repeated. This approach
can be used either to verify whether some set of space pruning constraints can prune
with discrimination or to generate solutions directly.

Schedules can be represented as trajectories through a cartesian space. Under
the objective criteria of Minimum Maximum Lateness a family ofa"good”ss_ched ules
(trajectories) are geometric neighbors (reside within some tube’?i in this space. This
second method of generating solutions takes advantage of this adjacency by pruning
the space from the outside in thus converging gradually upon this™*tube™ On the
average this method significantly outperforms an array of the Priority Dispatch Rules
when the objective criteria is that of Minimum Maximum Lateness . It also compares
favorably with a recent iterative relaxation procedure. ( lce) —
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.:: Chapter 1 3
]
L 4
A :
.'.. )
; ,
B
‘ Two methods of obtaining approximate solutions to the classic General Job-Shop ;
S Y
e Scheduling Problem are investigated. The first method is iterative. A sampling of ’
i ;
::'. the solution space is used to decide which of a collection of space pruning constraints .
A h
or are consistent with “good” schedules. The selected space pruning constraints are
“'" .r
:2': then used to reduce the search space and the sampling is repeated. This approach :'
3‘ \ - . . . 1
}::: can be used c:.ther to verify whether some set of space pruning constraints can prune \
.I'i' ]
! with discrimination or to generate solutions directly. '
:::: Schedules can be represented as trajectories through a cartesian space. Under A
) b
:'ﬁ‘; the objective criteria of Minimum Maximum Lateness a family of “good” schedules A
s" 4 .:
o (trajectories) are geometric neighbors (reside within some “tube”) in this space. This o
: |2
::i.. second method of generating solutions takes advantage of this adjacency by pruning A
L) )
E:. the space from the outside in thus converging gradually upon this “tube.” On the
:;' \ average this method significantly outperforms an array of the Priority Dispatch Rules !
‘-. when the objective criteria is that of Minimum Maximum Lateness . It also compares )
R )
,j::f favorably with a recent iterative relaxation procedure. g
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;;i':f‘ 1.1: General Problem Description 2

e

\:;:.:

X 1.1 General Problem Description

0o

ML)

::::;: One way of representing 3 superset of the scheduling problems considered in this

]

.:::::E' thesis is with a PERT/CPM network. This representation will be introduced

\'A l‘

;\: and will then be specialized down to the Job-Shop Scheduling problem. Typi-

Ak

;:::' cal applications are the scheduling of construction projects and research programs.

3

:i::": The term PERT/CPM is an abbreviation for Program Evaluation and Review

lagi'a-
L Technique/Critical Path Method. This representation was devised by the US Navy

Y

:E:::u to help plan and expedite the development of the Polaris Missile. A PERT network

4]

'::‘,:‘:‘: is a graphical representation of how the activities of a project are related. Activities

e

Rt require resources for their processing and can represent either a single event (pour

@

:u';::n concrete) or a given operation repeated on a batch of parts (paint these widgets).

l'.."

:."«'.:‘ In one incarnation, the Activity On Node (AON) variety, the nodes of the graph

."".

",‘.'.'3 correspond to activities while the directed edges correspond to precedence relations.

‘:.»::: The usual interpretation of one of these precedence relations is that the activity at

o

f:,':i: the tail of the directed edge must be completely finished being processed before the

o

::::;: activity at the head can be started. The edge lengths in an AON PERT network

,“.,',‘ have no significance. Shown in Figure 1.1 is a AON PERT network relating activities

"

:::',?. A; through A,.

)

::':'l The nodes of the AON PERT network represent activities to be processed.

These are usually labeled with information specified from the project data and with

)

.' -

:.: information computed from the network. Project data includes, the nature of the

)

e activity, the processing time of the activity (one exact number or some distributional

LA 4

() information usually no more complex than optimistic and pessimistic estimates of

W

f:',::k processing time), and the amount, type and cost of (possibly multiple) resources

’|::'| !
:'ﬁ.‘t ’
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1.1: General Problem Description 3
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N L]
st !
'.5 3
t: Figure 1.1: Activity On Node (AON) PERT network A
: ’
. required to process this activity. Note that dummy nodes Dy and D; have been !

. ;
::j added to the start and to the end of the network. Early Start Times (EST), Late ‘:

‘%lc ;
oy Start Times (LST) and Slacks are defined and can be computed from the network as ::
" i
& follows. To compute the EST of an activity (the earliest time at which an activity can

g

‘;?. be started without violating precedence constraints) assume the dummy start node "
/&’l. A\
:‘:: is finished at time 0. Then for nodes who's predecessors have all been assigned Early EX
o ‘
My Start Times set the EST of the node to the max of the EST+(Process Time)’s of all d
o the predecessor nodes. This will result in assignment of EST to all nodes including '-‘
) K
;; the dummy finish node. To compute the LST’s (the latest time at which an activity :f
';i’ 4 .
ol can be started without increasing the length of the overall project) set LST=EST of A
. \3

n the finish node, then for nodes who’s successors have all been assigned LST’s, set the \‘

.‘36 i ) W
::E LST of the node to the minimum of the LST-(Process Time)’s of all the successor .:
)
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1.1: General Problem Description 4

nodes. Note that the nodes are visited in Topological order. An activity’s slack is
then defined as the difference LST-EST. This slack indicates the amount of freedom
allowed in scheduling this activity without extending the overall length of the project
or violating precedence constraints. Note that some slacks are dependent.

Note also, if the EST’s, LST’s and slacks are computed as described above, then
there will be a chain (of width 1 or more) of activities from start to finish which
have slack values equal to 0. This chain or path is the so called Critical Path.
Assuming that infinite resources are available, this Critical Path determines the
overall duration of the project. In order to shorten the project duration one or more
activities along the Critical Path must be shortened. The Critical Path Method
(CPM) is a tool used to find the most cost effective way to shorten (“Crash”) the
Critical Path assuming that there is some time/cost tradeoff for each activity.

Instead of being explicitly represented as activities and precedence relations one
of these networks can be thought to be composed recursively in terms of series,
parallel and N subgraphs [14]. These subgraphs are shown if Figure 1.2. The overall
structure of a network can then be encoded as a tree with Series (S), Parallel (P) and
N (N) nodes with activities as leaves. The tree encoding of the network of Figure 1.1
is shown in Figure 1.3. Note that there is an implied ordering in the branches of the
S and N nodes.

In the previous discussion it was assumed that infinite amounts of the resources
required to process the activities were available at some cost. Specializing this as-
sumption down to finite amounts of each resource gives rise to the class of resource
constrained network problems. In these problems the Critical Path may or may not
d~*ermine the overall project duration. This is because some activities may have

te wait for resources to become available. Therefore, instead of allocating cash in a
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1.1: General Problem Description 6

A3 A4

Al A2 A6

AS A7

Figure 1.3: Tree Representation -f an AON PERT Network

effort to reduce the Critical Path the objective is to find an allocation of the avail-
able resources to activities such that some criteria is optimized (e.g. overall project

duration).

Specialization of the resource constrained network problem to the case where each
activity requires only a unit quantity of one resource gives rise to the Job-Shop type
problem with arbitrary precedence relations (Also, in a Job-Shop Scheduling problem
there is only one unit of each resource available.). Specialization of the problem
further to-require the network to consist of Parallel linear chains of activities results
in the classic Job-Shop Scheduling problem. Each of the chains defines a “job.” In
this case the resources are the machines in a “shop.” If each of the jobs visits the

machines in the same order then the shop is termed a Flow Shop; if the jobs are free

to visit the machines in any order then the shop is termed a General Shop. In this

e .
P e e e
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1.1: General Problem Description 7

thesis only problems of the General Job-Shop variety will be considered. Note that
specifying a linear order of the activities on each machine fully specifies a solution
to the scheduling problem.

The precedence relations used in the PERT network representation have the
property of transitivity. If activity A; precedes A; and A; precedes A, then A;
precedes A,. Explicitly computing the precedences among all nodes in the network
is called the transitive closure. In contrast, reducing the set of precedence relations
to a minimum by eliminating redundant precedence relations is called the transitive
reduction.

Closely related to the PERT network representation for a Job-Shop Scheduling
problem is the Disjunctive Graph representation (Figure 1.4). The directed edges of
the disjunctive graph correspond exactly to the precedence relations of the PERT
network of Figure 1.1. The Disjunctions are unresolved precedence relations, their
orientations are yet to be determined. The disjunctions are typically shown as dotted
lines or as a pair of parallel directed edges each with an opposite orientation. When
taken together, the precedence relations and disjunctions among a set of activities
which all require the same resource form a complete graph. There is either a prece-

dence relation or a disjunction between each pair of activities in this set. For the
network shown, grouping the activities according to resource required results in the

following sets: {A;, A}, {42, A4s,A7} , and {A4,, Ag} .

When the scheduling algorithm which processes this graph is finished, each of the
disjunctions will have been “settled” - one of the two possible precedence relations
will have been chosen. The precedence relations will then form complete graphs on
each set of activities requiring the same resource. Performing a transitive reduction

on the final graph results in a linear chain of precedence relations through each of
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L

Figure 1.4: Disjunctive Graph
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1.1: General Problem Description 9

Figure 1.5: AOE Pert Network

these sets. Thus a linear ordering of activities is specified at each machine. Note that
as the algorithm proceeds, the graph becomes a progressively more ordered partially
ordered set.

There exists a dual formulation of the PERT network termed the AOE (Activity
On Edge) PERT network (Figure 1.5). The directed edges in these networks corre-
spond to activities instead of precedence relations. The nodes correspond to “project
milestones” or the event that the preceding activities are finished being processed.
More care must be taken in formulating the AOE style network than a AON networks
because in some cases dummy activities must be introduced to achieve the desired
precedence relations. In particular, the AOE equivalent of the AON N subgraph

requires such a dummy activity (see Figure 1.6).
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Figure 1.6: AOE Series, Parallel and N Subgraphs
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3 1.2: Specific Problem Description 11

:‘ 1.2 Specific Problem Description
3«:, The General Job-Shop scheduling problem is an abstraction of a discrete-parts, batch
::: or lot production process. Typically, orders exist for a number n of jobs (com-
‘. modities) to be produced, each of which is to be processed on all of m available
:E: machines (processing facilities). In general, each job may take a different path
*:;’ through the shop. The goal is to specify an ordering for the jobs at each ma-
. chine such that both the technological constraints of the jobs are satisfied and a
;‘;:i measure of schedule goodness is maximized. An instance of one of these prob-
E.EE lems can be specified using the notation of Rinnooy Kan [73] as the four-tuple
:::' {n, m, Special-Constraints, Objective-Criteria}. In this notation, n is the number
;; of jobs and m is the number of machines. Special-Constraints such as G (general
{:;':‘: flow of jobs through the shop) and d (each job has an arrival date and a due date)
‘:ff define the problem’s structure while Objective-Criteria is the measure of optimality
"y (e.8- Lmaz = Minimum Maximum Lateness ) used to compare schedules.
igg It is assumed that only short term detailed scheduling is to be done. The man-
::ﬁi ufacturing facility has a fixed amount of equipment as determined by some method
o of long range planning. And that short range aggregate planning has been done by
:,:.:E a system such as MRP resulting in a product mix specification consistent with the
':ZEES goals and limitations of the facility. MRP (Material Requirement Planning) is an
"_." inventory control system which starts by forecasting end-item demand, then devel-
'Széi': ops a master production schedule, and then explodes this schedule using a bill of
:::SE%E materials. These gross requirements are then compared to existing inventory levels
® to determine net requirements. This static specification is to be contrasted with the
;SEE?: dynamic case where jobs arrive unpredictably.
S
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a.
,;‘: In addition to this basic scenario, the following limiting restrictions are assumed
é::'.: to apply. Each job is composed of a sequence of individual activities the partial

zis: ordering of which is specified by precedence relations. Each activity requires a certain

:’1, fixed amount of time for its processing and these processing times are sequence

::B: independent. There is no pre-emption of activities from machines (i.e. once an

:;:::: activity begins being processed its processing continues until completion). Each job

'::: is assumed to have an arrival date and a due date. All machines are independent
{‘... and can process only one activity at any given time.

:.: This family of problems has been studied extensively and a variety of types of

;l: :} algorithms have been developed for it. Many forms of the problem are known to be

f" NP-hard [73]. In other words, it is widely believed that no algorithm exists (although

:::::? one could theoretically exist) which is capable of solving these or any other NP-hard

::E:éa problems in an amount of time which is some polynomial function of the size of

O

. the input data. Consequently, exact methods were developed for relatively small

'EEE. problems, while heuristic methods were developed for large problems. One thread

:i:j{ which is common to most of these algorithms is that they use the addition of a time

” ordering or precedence constraint as a method of pruning the solution space. Using
E§§. such constraints allows a partial (or complete) solution (schedule) to be represented

j:.: as a partially ordered set of activities.

=3 For example, this time ordering is explicit in the case of algorithms which branch

:& and bound on disjunctions or perform relaxation by interchanging the order of activ- )
%3:':& ities along a Critical Path. In the case of algorithms which run in a simulation type

«'::': environment the time orderings of the activities are fixed in a topological order. ‘
:&' An assumption underlying the use of these precedence constraints is that the sets L
:E::t: of sequences representable as partially ordered sets is rich in the sense that local rules :
i )
i ;
;=a;:
Y ';-
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I 1.2: Specific Problem Description 13

can make progress toward a solution without the need for excessive backtracking. It !

seems that under certain circumstances this is the case while in others it is not, as

o S

evidenced by the narrow success of most algorithms.

Fox and Kempf [34], [35] propose a provably complete language of sequences in

which arbitrary sequencing constraints can be expressed succinctly using the prece-

3

:{ dence relation >, the negation operator not combined with the logical connectives .
E? and and or. Actually, a nand or nor connective along with the precedence relation > ‘
'; would be sufficient. Fox and Kempf used the language in connection with the offline

::: generation of alternative “opportunistic” schedules for later use on line. Their objec- b
;’:E' tive was to generate offline sets of schedules which will offer maximum opportunity ‘
- to accommodate for uncertainty in the order of parts arrival at an assembly station. y
i Such a language allows more freedom in the selection and utilization ot constraints ,(‘
':» when designing algorithms for sequencing problems. E
':' A common assumption is that the goal is to find a provably “optimal” sequence :
’;i: or a quantifiably close approximation. This is a narrow view as it focuses only upon '.‘
::E some cost and neglects the other aspects such as robustness; perhaps a family of goo ‘V
o schedules could be found such that small variations in shop operation or problem b
e specification could be accommodated. The constraints that are typically used to \
:lg';z build and describe solutions usually preclude the specification of such families. t
E‘:: In this thesis two heuristics will be developed. The first one (H1/CT) is iterative ::
i and based on Monte Carlo Sampling. Information gained from the generation of .
;:Sis sample schedules is used to prune the search space via some given set of pruning ';
!::2 constraints. Under certain objective criteria, H1/CT is observed to converge upon 3
‘ a family of good schedules. Choosing a schedule from the “middle” of this family

:.E%é should result in a schedule which is insensitive to small variations in shop conditions 3
.:
o :‘
o ;
ha "
L

o :
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Y

{j., (other reasonably good alternative schedules can be easily reached from this one).
:: Another use for heuristic H1/CT is to test whether some set of pruning constraints
4

. is capable of selectively eliminating undesirable schedules from the search space.

4

o, Heuristic H2 is a one pass procedure which is tuned to converge upon a region
A of the search space containing a high density of low Minimum Maximum Lateness
L}

:E schedules. In the chosen representation this region is a “tube” connecting the origin
)

:: and the far corner of a cartesian space.
{

: 1.3 Literature Review

b

) . .
‘ In order to compare previous work with the two heuristics developed in this thesis
W and to describe the various algorithms uniformly, it is now necessary to introduce the
:' concept of a cartesian completion space. Related to a job shop scheduling preblem
; is a cartesian space (first introduced by Akers [5] and later used by Hardgrave and
, Nemhauser [52]) in which position along an axis corresponds to the degree of com-
Ll

K pletion of a job. Shown in Figure 1.7 is a two dimensional job space representation
]

: of a two job problem. Each of the coordinate axes corresponds to a “job.” Each job

consists of a linear chain of activities and is drawn in the AOE (Activity On Edge)

¥

N style. The length of each edge corresponds to the processing time of the associated
)

) activity. Any point along the length of a job defines a state of completion of the job.
0 A trajectory through this space corresponds to a schedule, whica starts from a state
:: of zero completion at the origin and goes to a state with all jobs completed at the
i

R far corner.

Thus, 2ny point in the space corresponds to each of the jobs being in a partially
i

L2 completed state. A trajectory through this space can be mapped directly to a sched-
L
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END

Job 2

le
- START

" Job1—>
&

i Vgt .

K Figure 1.7: Example space associated with a 2 job problem

o
-
g2

N ule. When a trajectory traverses only one coordinate direction only one job is being

o processed. Similarly, when a trajectory is advancing in multiple dimensions the jobs

RO . 2

are being co-processed. The processing time for each piecewise linear segment of
the trajectory can be found by finding the maximum of the projections of it on to

'y the coordinate axes. Total schedule completion time is then the summation of these

e e - -

PO maxima over the piecewise linear segments.

o The shaded regions are infeasible states of completion due to resource constraints.

T Obstacles include the area up to but not including the lines (2D case) which form

- W -

e their boundaries. For example, the first activity of Job 2 and the last activity of

R Job 1 require the same resource which is available in quantity 1.

:::\0 A survey of some of the established methods used to generate solutions for the
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N

; problem of Job-Shop Scheduling follow. When appropriate, a brief description of
:: the algorithm in the context of a completion space will be given.

E: Since the problem is NP-hard (73], research has focused in two general areas,
".o exact (and usually computationally intense) methods to find “optimal” solutions
:i‘ to small problems and heuristic (and usually computationally simple) methods to
E.. find approximately optimal solutions to large problems. The heuristics developed
:: in this thesis are of intermediate complexity and thus fall between the two areas.
t‘.’ Branch and bound methods have traditionally been used to find exact solutions. The
E.: performance of the branch and bound method depends heavily upon the strength of
:: the lower bound used to estimate the cost of completing a partial solution. If the

bound is exact (not an estimate) then an optimal solution can be found directly. If

fod

the lower bound is inexact then some barren branches will be explored even though

o -
...;"-m‘-y.‘

they do not lead to an optimal solution. If the bound used is not a lower bound but

.

an approximation accurate to some known accuracy, then an approximately optimal

L solution (within this known accuracy) can be found. Surveys of categorization and

-
e ™

complexity of algorithms and problems over various objective criteria can be found

in (9], [24], (26], [49], [67], [73] and [77).

,t, Some of the steps of an example branch and bound algorithm can be visualized
X in a 2D completion space as follows. Assume the algorithm is to branch and bound
on disjunctions along the current critical path. The first step is to find the critical
1: path. Sta_rt a trajectory at the origin of the space and proceed diagonally (along

a 45 degree line) (ignoring obstacles along the way) or as near to this direction as

-

possible until the state of total completion is reached. This trajectory corresponds to

q

9 the schedule (possibly infeasible) which would result by assuming that there are no
Y

‘ resource limitations and that each activity is scheduled to start as soon as possible
)
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1.8: Literature Review 17

consistent with the given precedence constraints. The second step is to locate the
disjunctions along this critical path. Each intersection of the trajectory with the
previously ignored obstacles corresponds to a disjunction along the critical path.
Next, tentatively “settle” one of the disjunctions (each disjunction corresponds to
an obstacle). This “settling” of a disjunction (addition of a precedence relation) is
equivalent to requiring all subsequent trajectories to detour around the obstacle in
a given direction. A new critical path (trajectory) is then found and the process
repeated. It is usually necessary at some point to backtrack and try some of the
alternative detours.

One of the simplest and still widely used tools to aid a human scheduler is the
Gantt Chart. This chart is a graphical display of how resources are allocated to activ-
ities over time. This technique is puzzle-like because the scheduler has to rearrange
the boxes representing the processing of various activities by the resources until a
good enough schedule is obtained. Schedule quality reflects the skill and experience
of the scheduler.

Time is represented explicitly along the x-axis and either precedence constraints
within a job or resource limitations are enforced by the non-overlapping of the boxes
depending whether the y-axis corresponds to resources or jobs respectively. The
" 1man scheduler must take care of the other constraint.

For an example of such a chart where the resource limitations are enforced graph-
ically see Figure 1.8. In this chart each row of boxes (activities) corresponds to
operations scheduled to be done on an individual machine. The numbers in the
boxes are an arbitrary numbering of the activities. Job 1 is composed of activities
1 through 10; job 2 is composed of activities 11 through 20 and so on. The empty

space between boxes is idle time inserted between activities so that the precedence
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relations will not be v:»lated. The schedule shown is one feasible solution for the no-
torious {10, 10, G, Makespan} problem found in [47]. The makespan for this example )

solution is 985.
%
i

Very small problems can be solved by using brute force to enumerate all the pos-
sible sequences. Slightly larger problems can be solved by enumerating the dominant

members of equivalence classes of sequences. Erschler et al [32] take a “pyramidal”

O
o i
R - -

approach specific to single machine problems. Akers and Friedman [5] discuss how to

reduce the set of schedules using only non-numerical means. Giffler and Thompson

:: [46] exploit dominance by enumerating all of the members of the set of so called Ac- ;E
E tive Schedules. The defining characteristic of an Active Schedule is that no activity ‘:‘
( can be re-scheduled to start at an earlier time without forcing some other activity to
3; start at a later time. The set of all Active Schedules is smaller than the related set of '.j
; Non-Delay Schedules. Although the size of the set of schedules is reduced, it is still :,',
‘ not small enough to allow practical enumeration of a moderate {6,6,, } size problem :
-: (6 jobs each 6 activities long). Hardgrave and Nemhauser [52) show how trajectories :
z corresponding to the Active Schedules map into the completion state space. ;
: Much effort has been put into the generation and evaluation of priority dispatch- N
; ing rules [24]. These rules are used to rank the jobs waiting in a queue for processing. :‘t
i: This type of scheme is attractive because only a small amount of locally available E’;E
]: information is needed to make the queueing decisions and changes in the shop or N
problem specification have no effect on the partial solution generated so far. These :::
:‘; rules are usually based on some job or queue attribute believed to be relevant to E:i
Z': the generation of good schedules. Some example rules are the Shortest Processing :;E:
4: Time (SPT) rule, the First Come First Served rule, the Least Work in Next Queue '5:53
;:: rule, and the Random rule (see Section 5.4 for definitions of these and other rules). Eg?
n o
:
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oy, Figure 1.8: Solution shown in Gantt Chart form for a 10 job 10 machine problem.
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The average performance of some of the rules, most notably SPT, is better than

the Random rule; however the performance of a particular rule on a given problem

:: instance is unpredictable.
)
;‘: In addition to being used directly in & running shop, the priority dispatch rules

have been used as the basis of simulation studies. Moore and Wilson [65] and Weeks
" and Fryer (85] have evaluated the relative performance of sets of rules. Nugent [66]
. evaluated the merits of adding some randomness to the dispatch rules and Bunnag
L (15] used computer search to determine what weighted combination of rules gives
oy good performance for a typical problem. Additionally, much work has been done to
» provide simulation environments [20], [31], [71] and [83], and modeling systems [12],
(37] and [38].
N Priority dispatching can be mapped into the completion space as follows. Start

' a trajectory at the origin and proceed diagonally until the corner of an obstacle is

encountered. Use a dispatch rule to decide which way to detour around the obstacle.
o, Continue is this fashion until the state of total completion is reached. Following this
" procedure generates one member of the class of the so called Non-Delay Schedules. In

other words, if some machine is idle and its queue is not empty, then one activity will

N be selected via the dispatch rule and started immediately. This is to be contrasted
y
:', with the class of Active Schedules in which it is possible to have a schedule in which
)
:', a machine remains idle even though its queue is not empty. The supposition is that

-
-

waiting a little time now might enable one to avoid excessive idle time later.

&

Various randomized searching strategies have been explored. The strategy is

SR
-’

-,

simple, sample schedules are generated and then compared with the best schedule

-
L]

generated so far. Sampling with equal probability from the set of all schedules does

b not give good results, consequently efforts in this area have concentrated on biasing
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the sampling procedure so as to increase the probability of generating better schedules
(hopefully without excluding the best schedules). One way to bias the procedure is
to sample from the class of non-delay schedules. This is the same type of schedule
as generated by using the priority dispatch rules, and could in fact be generated by
using the Random dispatch rule. Here, as many activities are processed in parallel
as possible until some conflict arises (a queue with more than one element in it).
This conflict is then resolved by choosing at random from among the elements of the
queue. This sampling scheme increases the probability of generating schedules which
have fewer conflicts to resolve. |

Another alternative, taken by Giffler and Thompson [47], is to sample from the
set of Active Schedules. In an Active Schedule, an activity’s processing may be
delayed even though it and the necessary resources are immediately available. The
activity is delayed in favor of some other job which will become available later.
Another characteristic of Active Schedules is that no activity can be rescheduled
to start at an earlier time without forcing some other activity to start at a later
time. Choosing at random when there is more than one choice again increases the
probability of generating schedules with fewer conflicts to resolve, unfortunately in
numerical problems (as opposed to those with unity processing times) this biasing
does not necessarily work out to advantage. And although given enough samples this
method is guaranteed to come up with the optimal solution, the computational cost
is prohibifive as problem size increases. Also, in most cases, the odds of producing
a superior schedule are greater when sampling from the set of non-delay schedules
than when sampling from the set of Active Schedules.

Yet another alternative is to bias the sampling based on some quality or measure

thought to be relevant to a good schedule. Toward this end Nugent [66] prioritized
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the activities in a queue using a dispatch rule and then applied a geometrically
decreasing probability to choosing successive elements in the queue. It was found
that the distributions of schedules obtained via these randomized dispatch rules were
improved from those of purely random selection and a significant fraction of the
samples were better than those for the unrandomized dispatch rule. The conclusion
was that a fixed amount of randomization helps, but that the optimal amount of
randomization varies among problem instances.

A Bayesian approach has been used to estimate the likelihood of obtaining a
better schedule with the next sample. In this approach, some a priori distribution
of schedule attributes is chosen. Then information gained by sampling is used to
update the assumed distribution. If the assumed distribution is general enough it will
asymptotically converge to the actual distribution. This updated distribution can
be used to estimate the probability of obtaining a better sample than the best found
so far. One of the problems with this type of approach is finding a computationally
tractable a priori distribution. According to Rinnooy Kan (73] this method is only
of academic interest because it depends on asymptotic results and is only applicable
to structured situations.

Some less structured approaches to solution generation (modification) come under
the headings of Relaxation [1], Interchange, Neighborhood Search [56] and Annealing.
In these methods, some (possibly random) change is made in an existing solution.
This produces a new schedule which is in some sense close to (a neighbor of the
original schedule in some space) the initial solution. Perhaps this change is made by
interchanging the order of two activities which lie along the Critical Path of a PERT
network. The objective function of interest is then evaluated on this new schedule;

if there is an improvement, then the modified schedule is accepted (Relaxation) and
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the process is repeated. If the value of the objective function is degraded then the
schedule is accepted (Annealing [55],(64]) with some probability depending upon the
annealing schedule. If the annealing schedule is selected correctly, then the algorithm
will not get stuck in a local minimum.

The relaxation process can be visualized in the completion space by starting
with a trajectory corresponding to any complete feasible schedule. Then, using
a modification rule, jump a portion of the trajectory over one or more obstacles.
Interchanging the order of two activities along a critical path [63] corresponds to
jumping over a single obstacle.

A variety of search techniques have evolved over the years. These methods can be
either exact or heuristic depending the strictness of the bounds used in the various
branching decisions and whether or not one is content with the best schedule found
so far. See [11] for an overview of search strategies. In the Operations Research
literature, search algorithms can be found under the headings of Branch and Bound
and Implicit Enumeration. These searches are usually carried out in either a depth
first mode [10] or beam search mode [39] as complexity of the problem usually pre-
cludes using breadth first mode. These algorithms usually based either on settling
disjunctions along a critical path or on resolving which activity to schedule next
during Active Schedule generation. Some examples of application of the branch and
bound technique can be found in [17], [19], [48].

The main difficulty with these approaches is that it is hard to find a lower bound
which on ;)ne hand is strict or tight enough to prune the search space effectively at
an early stage and on the other hand is not too computationally expensive. Conse-
quently, the majority of work in this area has been in the development of stricter and

more efficient bounds. In the extreme case the computation of the bounds themselves
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e

"f-'b is NP-hard [58). Baker [8] studied the tradeoffs of various bounds used in flow-shop

'::i: branch-ard-bound and elimination algorithms. Brooks [13] used a lower bound as

:5;3 a decision rule for developing a single solution. Work has also been done using a

:;:: relaxed lagrangian transformation of the problem to generate stricter lower bounds

:;:; [33]. Picard [70] used a related time dependent traveling salesman problem to com-

%::: pute bounds. The difficulty in obtaining tight lower bounds may in part be due to

:::E choice of type of constraint to add. In general, the overall run time of this type of

{}A algorithm is not predictable.

1;,:3 Many operations researchers have approached the problem from a more theoret-

::?:E ical point of view. Usually an optimal or near optimal solution is sought using a

‘ simplified model of actual shop conditions. One technique, dynamic programming

E':: used by Schrage and Baker [76] on a one machine problem, recursively decomposes

“.:.:': the problem into subproblems, solves each unique subproblem once, then selectively

,;:," recombines the solutions. This technique is limited to small problems. A dynamic

f::' programming approach suitable for two job problems presented in the completion

::E: space can be found in [80]. Here the subproblems correspond to trajectory segments

:::: between the outer corners of the obstacles which can be connected with a straight ]
:;':: line. Lawler [59] used a series parallel decomposition on a single processor problem. )
:Ei::. Another type of decomposition is hierarchical. Problems are decomposed into differ- ‘\
.:‘.;: ent levels of some hierarchy (e.g. capacity planning, long range, short range, detailed 3
scheduling (4] and Gershwin et al (42], (43], [44], (45], have worked in making an inter- X
E::: mediate level of a decomposition dynamically adapt to changing (breakdown/repair) ',
i&?‘ shop conditions. Lipton [60], [61] used a hierarchical approach with rescheduling }
while Dempster [28] used a two stage approach. 3
% The dynamic programming approach can be interpreted as a search through a .E
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graph superposed on the completion space. Consider a scheduling problem in which
all the activities have integer processing times. Then the start and finish times of
each activity must occur at integer times regardless of the schedule. At all other
times a number of the jobs are being co-processed. Then the set of all possible
combinations of start and stop states of activities is included in a regular lattice on
the space at unit spacing. The possible transitions from lattice point to lattice point
are defined by allowing an increment of unity in one or multiple coordinate directions
(no lattice points can exist within an obstacle). This corresponds to processing one
or multiple jobs for one time unit. The dynamic programming problem is to find
the least cost path to each lattice point. This is accomplished by formulating the
cost of the path to a given lattice point in terms of the costs of the paths to other
immediately reachable lattice points which are closer to the origin. Davis [25], [27]
used this approach to transform a PERT [86] network problem into a shortest route
problem (with a combinatorial number of cities).

Relatively recently Petri Nets have started being used to model and analyze
scheduling systems [75), [18], [74]. These Nets were originally developed [69], [72]
with the intent of modeling interlocking concurrent computation systems in a time
independent manner. In the Petri Net representation both resource limitations and
sequencing constraints can be treated uniformly, although some modifications need
to be made to represent time considerations. These nets or their associated matrices
can be used to derive certain invariants and characteristics of the system. These nets
are equivalent to Vector Addition Systems. In a Petri Net representation of a Job-
Shop scheduling problem, the vectors correspond to the possible trajectory segments
in the completion space representation. If the scheduling problem being represented

has only integer processing times, then the vectors being added combine to point to

(N (..‘ ‘. .

A0 3 A' | l .
‘l“ﬂt .'n *"x’ l.\ by 'o\, t ) "!‘. I‘ W l

LX) .

"' ' l‘: "4 ! ! \'.‘\'. .' "..'.. .i't‘:'. . \' OO ."“ .". X - %.:‘::‘ .‘.\; .' ...l.

I'. ¢
Rt

0‘.

g
U
1



)

:?:' 1.3: Literature Review 26

5

o

» the lattice points defined in the previous paragraph.

R An exact polynomial-time (in certain problem characteristics) algorithm has re-

RN

::; cently been improved upon by Sidney and Steiner [78]. This algorithm is applicable

i?i

:." to the total weighted completion time problem, the total discounted cost problem,

e the least-cost fault detection problem, and the jump number problem. In this algo-

f "

3::3 rithm, dynamic programming along with a partial-order decomposition allows exact

3 ..

;::: solution of sequencing problems with worst case complexity n{“+!). Where n is the
-( number of activities to be scheduled and w is the Dilworth number associated with

L

i:E" the Graph P formed by the n activities (nodes) and precedence relations (edges).

Sy

i:' The Dilworth number is defined to be equal to the minimum number of chains needed

)

.I L) . . . . .

to partition the vertices of P. This algorithm increases the number of sequencing

1.

j;: problems (those with a reasonable value of w) that can be solved in practical time;

)

iy

;:‘:' however this class does not include those of the Job-Shop variety. For example, a X
LA !
R {10,10,,} problem (10 linear chains of activities each 10 activities long) would be of

?‘i‘ complexity 100(2°+1), The Dilworth number w is also equal to the dimensionality of t
'1‘ 4
’:: the completion space associated with the problem. X
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; Cartesian Representation

\ Chapter 2

o T o w0,
-

"3 In Chapter 2 I will extend the representation introduced in [6] to provide a frame- ;
.v work on which to construct subsequent results. Then, in Chapter 3, I will develop .:
;:: within this framework an iterative heuristic (H1/CT) based on Monte Carlo Sam- "
; pling. Results obtained using heuristic H1/CT serve to justify the formulation of :
:’:: heuristic H2. This second heuristic (H2) is presented in detail in Chapter 4. In y
IEE Chapter 5 the performance of heuristic H2 will be documented. It’s performance :
.‘n“ will be tested under various objective criteria in relation to the Priority Dispatch
‘Z:" Rules and in relation to some biased search techniques. In Chapter 6 there will be ,’
‘?:': conclusions about heuristics H1/CT and H2, and about the ideas of adjacency of :
‘ solutions and the types of constraints used to prune the search spaces. .
i :
"J‘i 2.1 Cartesian Completion Space '
" ‘
" The idea of using a cartesian completior space to represent both the resource limita-
12:3 tions and the precedence constraints of s¢ > eduling problems was introduced by Akers g
E:E::‘ [6). Subsequently, an algorithm was developed for two job (2D space) problems by ':
i e
s 27
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)
R
ot Szwarc [80] and an atte:npt was made to extend the results to the 3D case. The

ide~ was to first optimally solve eacl of the individual 2D problems defined on three

::‘ orthogonal faces of the 3D space. Then, the individual solutions were to be combined
:3’ i to yield an optimal trajectory through the 3 space. The problem with this approach
;;:-.?,' is that only 2 projections are necessary to uniquely describe a trajectory in 3 space.
i?::." There is nothing in the formulation which guarantees the consistency of the third
235:, subproblem solution with the other two.

!*rﬂ Hardgrave and Nemhauser [52] suggested using a set of extremal trajectories
.;::j; to define a region of the space within which the optimal solution lies. In the 2D
;;Ej case, these trajectories are found by starting a pair of trajectories from the origin
- and proceeding “diagonally” through the space. When trajectory 1 encounters an
‘::';{" obstacle it always branches in coordinate direction 1. When trajectory 2 encounters
::.:'.:".:‘: an obstacle it always branches in coordinate direction 2. These two trajectories
;“:’ define a “cone” shaped region with the apex at the origin. This procedure can then
‘é, . be repeated starting from the state of total completion and working backwards. The
E; optimal solution then lies within the intersection of these two regions.

Wi This procedure is well defined for the 2D case, but is unmanageable for higher

X dimensional problems. In the 2D case, the boundaries of the regions are defined by

:: easily generated trajectories while i". the higher dimensional cases the regions are

). .

;" defined by n — 1 dimensional hyper-surfaces. In Appendix 1 is the derivation of the ,

:..ls volume fraction of the space enclosed by such a generalized “cone.” The bottom line

' a

L2 g

WY is that even though the amount of space which remains to be searched is greatly '
‘/- t

s reduced, the complexity of the remaining space is still formidable. '
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2.2: Capabilities and Limitations of the Representation 29

2.2 Capabilities and Limitations of the Repre-

sentation

The completion state space incorporates both the resource constraints and the prece-
dence constraints of the Job-Shop Scheduling problem uniformly. And although
efficient results can be obtained in 2D problems, its usefulness in more complex
problems is to aid intuition and qualitative reasoning.

One of the limitations of this state space is that time is not explicitly represented.
This makes it difficult to merge into the space time based constraints such as arrival
dates, due dates and time specific availability of equipment. In order to utilize this
type of constraint, some processing of the space needs to be done such as finding
the minimum cost path to each interesting point in the space thereby establishing
a unique time value there. More generally, such a value can be established for any
path dependent function such as one which includes the effect of sequence dependent
set-up times.

For the constraints which are represented (precedence and resource limitations)
the space is a true state space. Each point in the space corresponds uniquely to the
degrees of completion of the various jobs. Therefore, all of the techniques applicable
to such a formulation can be used. For example, any function with a unique value
for some state of completion can be immediately defined at each point in the space.
An example of this would be in-process inventory costs.

When an arbitrary configuration of precedence relations is allowed, some corners
of the space are truncated. This is because the partial ordering of activities defined
by the precedence relations excludes certain states of completion from being feasible.

The number of lines emanating from the leading corner of an obstacle corresponds
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to the number of alternative activities which could be scheduled at this point. For

example, consider a trajectory encountering the leading corner of an obstacle in a

i - -

p two dimensional problem. At this point, the trajectory can branch in one of the !
X two possible directions around the obstacle. Each of these directions corresponds to ¢
choosing one of the two activities in a queue. ]

2.3 Obstacles in N-Space

i I I
-,

. In the classic Job-Shop Scheduling Problem, it is assumed that resource availability is ‘:;
[ L]
é limited to one machine of each type. A resource which is available in quantity j gives §
i) ]
rise to a basic obstacle of dimensionality j + 1 in the space. In a two dimensional .
't .
: (two job) problem with unit resource availability the resulting obstacles are two :"
X 4t
\ dimensional rectangles (See the top left box of Figure 2.1). In a three dimensional ‘ ;
) h\
' (three job) problem with unit resource availability the obstacles are defined as the Y
:: uniou of individual 2D obstacles (found on the 2D faces of the 3 space) which have ;::
" '!
by been projected through the remaining third dimension thus forming rectangular bars E::
t t
! (See the top center box of Figure 2.1). In general, basic j + 1 dimensional obstacles 37
" defined in the unique j+1 dimensional subspaces are projected through the remaining W
. h
E n — (j + 1) dimensions to form the obstacles. $$
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by Figure 2.1: Types of obstacles resulting from different resource constraints
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y Heuristic H1/CT

(“
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o Chapter 3
it
;
g
)
iy
°® In this Chapter I will present heuristic H1/CT. This heuristic is built upon Monte
o
1::: Carlo sampling (see Appendix C). Based on a set of samples taken, the search space
'ﬁ 3
:'t: is pruned such that undesirable schedules are eliminated thereby yielding a more
e 8
K
favorable distribution for subsequent sampling. This heuristic has three uses. The
first use is to generate a single solution. This is accomplished by keeping the best
‘ schedule found among all the samples taken. The second use is to prune down the
search space thus leaving a reduced problem with more desirable properties. If the
::: size of the resultant space is sufficiently small, then it may be possible to employ an ‘
:i‘,’i exact method to search it. Alternatively, choosing some schedule from the middle of
" A
24 the remaining space should yield a robust schedule. Presumably, other schedules of :
o good quality are near the chosen one. Therefore, if the chosen schedule gets slightly 3
L% - 3
‘; off track, then it is likely that it’s quality will not degrade drastically. And the third :f
': use is to test whether some set of constraints is capable of pruning the space effectively :f
B (hence the /CT in the name for Cconstraint Tester). If the set of constraints used is -
.“, ]
fyf: appropriate for the problem, then the distributions of schedule quality seen during .:
KN \]
; :
32 ‘
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successive iterations should improve. If the distributions do not improve, then it is
probably not worthwhile pursuing the use of the given set of constraints. Thus one
; could avoid, for example, the frustration of developing a branching indicator and a
lower bound for a branch and bound algorithm based on this set of constraints which

3.1: Definition of Heuristic H1/CT 33 g

is unlikely to perform well.

3.1 Definition of Heuristic H1/CT
' b
4

; This heuristic is defined as follows: .
4 ...
)j Step 1. Generate a collection of pruning constraints. E
¢ g
- Step 2. Generate k new sample schedules. ?
.i Step 8. Pick the ] best samples from all samples generated. 3
A D
;Q! 4t
:;S Step 4. Apply as many of the pruning constraints as possible Without removing space :
[4 (]
i containing the ! best samples. i
.’ Step 5. Repeat Steps 2,3,4 for a fixed number of iterations. :,‘
f:% s;
3 3.2 Explanation and Interpretation of Steps ;
Ny B
&

W

o Steps 1 through 4 will now explained in more detail. 3
L':'e ;
~ Step 1. The constraints used here are in one to one correspondence with the
:,“ _ t
;::: set of 2D obstacles residing on the 2D faces of the cartesian space. Every trajectory )
L';.' X
‘;::: (schedule) in this space detours one of two ways around each obstacle. The con- y
f’:" :
' straints to be imposed are of the following form: all subsequent trajectories (sched- .
'“2: ules) shall detour this way around a certain obstacle. This is equivalent to settling '
a0 b
13»:: a disjunction. N
»f:l q
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3.2: Ezplanation and Interpretation of Steps 34

Of course it is possible to use other constraints, but they must meet certain re-
quirements. First of all, it must be possible to determine whether a given constraint is
consistent with some set of sample schedules. Otherwise, Step 4 can not be executed.
Second, the technique used to generate sample schedules must be able to function
when an arbitrary (but technologically consistent) subset of the constraints is im-
posed (Technnlogically consistent meaning that some feasible schedule exists within
the pruned space). This is necessary to insure that the sample schedule generator
will not get stuck in a dead end or trap (petri-net terminology).

Step 2. Here the schedules will be generated using a random queueing heuristic
in tke context of a simulation of a Job-Shop. Equal priorities are assigned to all
activities Qqueued at a machine and one is chosen at random. In the completion space
this is equivalent to starting a trajectory at the origin, traversing diagonally until
some obstacle is encountered, then choosing at random which way to detour around
it. Here, the number of schedules generated k is typically 100.

One might possibly consider other sampling schemes such as biasing the random
priority dispatch rule towards one of the other dispatch rules. Alternatively, one
might sample from the set of Active Schedules or some biased version thereof.

Step 3. One must decide upon a measure of schedule optimality. Here, the two
measures considered are makespan and flowtime. Choosing the [ (typically 10) best
schedules is simply a matter of selecting the schedules with the best values of the
optimality criterion. As it turns out, the choice of optimality criterion has a profound
effect on the convergence of this heuristic.

Step 4. For each of the ! best schedules found, a binary string was generated with
one digit for each of the obstacles. A “0” digit implies detouring one way around the

associated obstacle, and a “1” digit implies detouring the other way. These binary
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strings were then compared. If the ith digits were the same across the ten binary
strings, then all ten of the I best schedules detoured the same way around the given u

o obstacle, and subsequent schedules were required to detour around the given obstacle

the same way.

o Technically, it is necessary to insist upon total agreement among the ith digits of

,:él: the strings to guarantee that the pruned space contains feasible schedules. However,

‘:‘ many experiments were performed in which only 9/10ths agreement was required, r
-"h‘ all of which retained feasible schedules.

§'§ Some results obtained using heuristic H1/CT serve as a motivation for the way

E:EE heuristic H2 is implemented. The following experiments were designed to show that

‘ a family of good schedules are geometric neighbors in the completion space represen-

‘:“ tation. For each schedule, there is a corresponding trajectory through the space, and

..’: there exists a “tube” connecting the origin to the far corner within which the density

of good schedules is relatively high. Consequently, heuristic H2 has been designed
iyl to converge upon such a “tube” full of good schedules.

;%EE; The addition of a precedence relation to a problem specification corresponds
B to the removal of a “corner” of the completion space as shown in Figure 3.1. The
“:;E: removed corner contains states of completion which become technologically infeasible
;::535 when the precedence constraint is added.

‘:‘:;'2’ A set of precedence relations added to a problem can be interpreted as the spec-
‘f .:v' ification of an n-dimensional “tube” as follows. In each of the ( ) 2D subspaces of
:i.;,i the n job problem (form a unique 2D space from each unique pair of jobs) delete
‘Ii:’f: the corners corresponding to the relevant precedence relations added. The unpruned
:E: region in each of the (';) 2D spaces is the projection of tke tube (nD) on to the 2D
~f::t:; space.
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End
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Figure 3.1: Two spaces which could result when the precedence is set
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. 3.3 Experiments

i 1N

v (Tﬁ

:::‘,;‘: A number of experiments were performed using heuristic H1/CT to determine whether
A

:a,:: ) or not the addition of precedence constraints would prune the space effectively under
N

the optimality criteria of makespan and flowtime. There is one precedence constraint
R in the constraint set for each pair of activities which require the same resource for

processing.

The experiment is set up as follows: First a set of schedules is generated using

;:i,i"" the Random priority dispatch rule in an event based Job Shop simulation. For these
’.-;,b:
!i; experiments the number of sample schedules generated per iteration was 100. Next,

the makespan is computed for each of these 100 sample schedules. They are then

:{‘.‘;,.: sorted by increasing value of makespan (for plotting purposes). The best 10 schedules
.Q’IE;E‘ (those with minimal values of makespan) were then selected. Precedence relations
,'\ !:-;:'.f which were common to all 10 schedules were then used to prune the space. The
:i:: sampling scheme was then repeated within the pruned space lumping the 10 best
"‘%}: samples in with the new samples.

~::§: The distributions of schedule makespans (obtained using Random priority dis-
',;;'&::'. patching) for the original problem and for the pruned versions of it are displayed
‘;":3:;‘: using quantile plots. In these plots a separate curve is formed for each set of 100
,:,';:}": samples taken. The value of the objective function for each member of the set is
Z*Z:i‘:;{ plotted versus its position in the sorted data set. The quantile is closely related to
éf;g::‘ the percentile. If the value of the objective function is z at the 30th quantile then
E:f%g;: . 30% of the samples have objective function values < z. Results were obtained for a
[ - {6,6,G, } problem [47] using the objective criteria of makespan and flowtime. Three
:S%E:E}‘.\ curves are plotted in Figure 3.2.
i
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The first (top) curve represents a random sampling before any additional prece-
dence constraints have been added to the problem. The second curve represents a
random sampling after the precedence constraints common to the best 10 of the first
100 samples have been used to prune the space. And the third curve represents a
random sampling after the precedence constraints common to the best 10 schedules
of the second sample set have also been added.

The distributions indicate that a class of good schedules have certain precedence
relations in common for this {6,6,G, Makespan} problem. This suggests that an
algorithm which successively reduced the search space by adding selected precedence
relations could successfully prune regions of the search space characteristic to unde-
sirable schedules while keeping regions favorable to good schedules.

This shows that trajectories corresponding to a group of good schedules under
the makespan criterion lie near one another in the associated nD completion space.
This can be seen as follows. Consider any 2D subspace of the space: some of the
corners of this 2D space will have been deleted as a result of the precedence relations
added leaving a relatively narrow connected region from origin to end. Intersecting
the projections of these regions would result in a nD tube which connects the origin
to the state of total completion of all jobs (end). All of the schedules in the pruned
problem lie within this tube. Note that there will be obstacles adjacent to and

intersecting portions of the tube. Shown in Figure 3.4 are the 2D spaces associated
with the _{6,6,G,Makespan} problem. The borders of the non-deleted space are
outlined with dotted lines. The origin of each subspace is in the lower left, and the
projections of the 10 best trajectories upon which the the last pruning operation was

based are shown as solid lines.

Heuristic H1/CT was applied to 50 {10,10, G, Makespan} problems in order to
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test it's performance relative to Monte-Carlo sampling. The best solution obtained
by H1/CT throughout all of the iterations was compared to the best solution obtained
by Monte-Carlo sampling. There were 100 samples taken during each of 3 iterations
of H1/CT for a total of 500 samples, and there were 500 samples taken in the Monte-
Carlo approach. The average improvement over the Monte-Carlo approach for the

30 problems was 1.0%. If this experiment was repeated on a similar 50 problems,

then the average improvement would fall with 95% confidence into the intervai 0.3%
to 1.7%.

Figure 3.3 shows the results of a repeat of the experiment on the {6,6,G, } prob-

lem but under the flowtime criterion. Results were quite different for this case. The
precedence relations common to the 10 best sample schedules pruned the space rather
indiscriminately. This situation is improved only slightly with the next iteration and
the distribution would have been more favorable if no pruning had been done. This
suggests that the type of constraint used (adding precedence relations) to prune the
search space is not appropriate for this case. In other words, the orientation of a
group of precedence relations is insufficient to characterize a set of lesser flowtime
schedules (Even though the precedence relations added were consistent with the 10
best flowtime schedules found). That is, the pruning that was done during the first
iteration decreased the probability of generating good schedules during the subse-
quent iteration. This suggests that both good and bad schedules were eliminated
as a result of the pruning. Therefore, an algorithm which successively reduces the
search space by adding selected precedence relations would be unlikely to succeed as

the reduced space would include only a small fraction of good schedules.

Whether or not heuristic H1/CT converges depends heavily upon the spatial dis-

tribution of good schedule trajectories through the space. As was seen under the
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° Figure 3.4: Pruned 2D Subspaces
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makespan criterion, a high density of good schedules was found to lie within a tube
connecting the origin to the state of total completion in the cartesian space. Such
a tube can be specified by a set of precedence relations. The spatial distribution
of good flowtime schedules could not be captured (characterized) by a set of prece-
dence relations. Certain problem structures may influence the spatial distribution of
schedule trajectories a predictable manner. See Appendix D for an example where
the effects of and strategies to compensate for symmetry introduced into the problem

structure are shown.
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Heuristic H2

Chapter 4

Based on the results of Chapter 3 a heuristic (H2) was developed for specifying
precedence constraints so as to converge upon a region of the completion space con-
taining a high density of “good” schedules under the objective criterion of Minimum
Maximum Lateness. When each job has the same arrival date and the same due date

this criterion is equivalent to the makespan criterion.
4.1 Definition of Heuristic H2

The heuristic is defined as follows:
Step 1. Generate a collection of the obstacles (disjunctions).
Step 2. Update the Early Start Times and the Late Start Times of each activity.
Step 3. Select an obstacle for deletion.
Step 4. Delete the selected obstacle (resolve the selected disjunction).

Step 5. Repeat Steps 2,3,4 until no obstacles remain.
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; 4.2 Explanation and Interpretation of Steps

S Steps 1 through 4 will now be explained both in ter.ns of disjunctions and in terms
!;':; of obstacles.

Step 1. Each obstacle in the space corresponds to a possible conflict over a scarce
.,:v resource. In the classic Job-Shop Scheduling problem each activity requires a single
type of machine for it’s processing and there is only one of each type of machine
available. In order to generate a collection of the obstacles, find all pairs of activities
S which require the same machine yet are in different jobs. Each pair also corresponds
Fe to a disjunction (an unresolved precedence relation between the elements of the pair).

) . er . . . . . .
Py Step 2. An activity's Early Start Time is the earliest possible time at which

o
et

the processing of an activity can be started without violating job arrival times or

o
S

the precedence relations between activities. These times are computed assuming that

e

o
" o=
.
-
-

unlimited resources are available. An activity’s Early Start Time is the maximum of
“".:\:o the Early Start Time plus processing time of the activity's immediate predecessors
A (i.e. the Early Finish Times of the immediate predecessors) and the activity’s arrival
= date (if it has one). To find an activity’s Late Start Time first find the minimum
%),g Late Start Time of the given activity’'s immediate successors. Then subtract the
‘:)"&f? given activity's processing time from the minimum of the previous result and the
K given activity’s due date.

Wity Step 3. For each obstacle compute the following two quantities from the pair of
"a""n:' activities (A4;, A;) which gave rise to the obstacle. The two quantities are the slacks
between the two activities for their two possible orderings. If activity 4; precedes 4;

< then the slack is the Late Start Time of A, minus the Earlv Finish Time of A,. If

v's. ? activity 4, precedes A, then the slack is the Late Start Time of A, minus the Early
\S
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il
2
”
! .. . . . . .
S Finish Time of A,. The maximum of these two slacks is the Max-Slack associated
o with the obstacle while the minimum is the Min-Slack. Select the obstacle with the
3t
W N . - . e .
";e smallest value of Min-Slack. If there is a tie in Min-Slack value then break the tie
i"
o on the basis of largest Max-Slack.
i:i Figure 4.1a shows what this selection process looks like in a two dimensional
]
# . . . . .
_p;' example space. Figure 4.la shows a number of trajectories used in the obstacle
¥
Kl . . . . . .
», selection process. These trajectories were obtained by ignoring all but one obstacle
L4
e and finding the longer of two possible trajectories around this remaining obstacle.
¥ :
0 This process was then repeated on each of the obstacles to yield the trajectories ‘
K
h shown. (The length of a trajectory is determined by summing the maxima of the
projections of it’s piecewise linear segments on to the axes.) Then the obstacle .
4 i
:: associated with the longest of these paths is selected for deletion. The longest path ¢
Q2 y
;’:: is easily determined by visual inspection to be the one with the minimum amount of 3
Lt N
. co-processing (diagonal segments). :
N )
v . . . 0
;:' Step 4. The “longest™ path selected in Step 3 is actually a lower bound on "
1"y ’!
' . . . ]
::: the schedule length (makespan) for trajectories (schedules) which detour around the )
1, L
. same side of the obstacle as the longest path. In all of these schedules activity A, is
D
“ .. : '
’,v: processed before activity 4;. The space is pruned such that these “longer” schedules ¢
U
R : . . X
::E can no longer be generated. This pruning is accomplished by requirirg that activity 3
A always be processed before activity 4,. The pruned region of the space shown in
) (1
) . . . . )
3 the lower left of Figure 4.2 corresponds to states which become infeasible as a result {
X )
o of requiring that A, precede A,. The lower right of Figure 4.2 shows how the space R
J
would have been pruned if we had required that 4, precede 4,. These two possible
0 =
:: pruning operations correspond to the two possible ways of “settling™ a disjunction. &
i
’ : . : . : : »
i, Figure 4.1b shows the space divided into regions associated with the selected -
!: .c'i
]
3 N
g
\J
¥ »
ii: N
.. LY
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i
{'i‘*': obstacle. Any trajectory which passes through regions A and then (' must be at
’:::; least as long as the longest path computed above. Those trajectories which also pass
:233;; through region B are even longer. Note that there is also a simple _upper bound on
;:l::: length” for paths which traverse through the union of regions A, B, and ('. This
':$§ is simply the path along the outer boundary of the space. The closer the obstacle
;S:::; under consideration is to the outer limits of the space, the less difference there is
':::::: between these simble upper and lower bounds on the path length. In the limiting
i-:.:;:'.:, case of an obstacle wedged into the corner the lower bound is equal to the upper
5:;::3; bound.
,i:%;":’: Consider a trajectory which starts out in region A, then enters region D and
;::;'::: finally enters region (". Regardless of wliat obstacles were previously ignored in D,
:::':::"E the path segment through D can be no longer than that of a vertical segment along
E?:‘:i'::. the inner boundary of A from the crossover point to the corner of the obstacle added
,2;%;‘“'- to a horizontal segment along the lower boundary of C' from the corner of the obstacle
'EE::::'! to the crossover point in C'. Therefore, it is likely that deleting the corner of the
:::::EE: space including the obstacle and a portion of region B, which consequently limits
‘) ‘" trajectories to those passing through D, will result in the pruning of an undesirable
Eig;::. set of schedules.
EE:::‘: The above mentioned bounds and approximate results get weaker when applied
'h‘ to obstacles residing in the inner regions of the space. Therefore in order to maximize
.:EEEEEES the effectiveness of the bounds used, obstacles at the outskirts are deleted first then
R
i';'g%igié the space is gradually pruned from the outside inward. This way, the obstacles under
" a consideration will lie near the outskirts of the space. Figure 4.3 shows the obstacle-
E:i;é: less space resulting from repeated application of the selection and deletion process.
,éz.::: Also shown is one of a set of possible trajectories through the space.
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END

START

Figure 4.3: Trajectory Through Pruned Space

This bound or branching indicator has been used by other researchers (e.g. P*
'73] pg. 123) as a node selection criterion for a branch and bound algorithm. In this

application, the obstacle which both lies on the critical path and has the minimum

value of P* is chosen to branch upon (In H2 an obstacle is selected from the set of
all undeleted vbstacles. not from only those on the critical path.). It (P*) has been
found to be unsatisfactory for this purpose because it is a relatively weak branching
indicator and because the resultant search tree can be very deep (m( ) See section
4.7). I believe this weakness is caused by limiting the selection process to obstacles
along the critical path. Because the critical path (trajectory) lies near the body
diagonal of the space and not near the outer edges, this weakness is not surprising.
Instead of using this as a branching indicator this bound is used by H2 as a selection

rule. It has the effect of choosing obstacles which lie near the outer regions of the
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':: space. These obstacles are deleted first, then those close to the outer edges are
K deleted. The overall effect is to slowly converge about a tube shaped region of the
¥

) space.

2

" 4.3 Intuitive Explanation of Heuristic H2

B

ZE: Heuristic H2 looks for what seems to be the most detrimental decision possible - (this
( “ decision would either lengthen the critical path or maximally reduce slack somewhere
:f;‘:i in the network of activities). It then makes the decision complimentary to this most
ZZ:‘:‘ detrimental one. In other words, it avoids the worst possible decision at any given
!\ point.

:.:;.: Making such a decision leaves open more options for future decisions. This hap-
*.::’;;’ pens two ways. First, in general there is more slack left in the network than would
o be if the worst possible decision was made. Second, in general this decision does
1:2; not decrease the number of subsequent decisions to be made (transitive closure of
",

::ES; the decisions precedence relations added] so far usually does not restrict any of the
e remaining decisions). So, in some sense, small decisions are made. The graphical
,::‘:,: interpretation is this: Usually when a 2D obstacle is deleted along with its appro-
': priate corner of the space, only that one particular obstacle is deleted. Note, that
’:""! when the obstacle and corner are deleted only a relatively small portion of the total
E:‘E‘: space is removed.

:j:-.‘ By always working near the outer fringes of the space, the relatively simple bound
::E:: (which the decisions are based upon) are improved. The outer edges of the space are
% involved in subsequent calculations which would not be the case, if for example, the
L) .

:;::,:', first obstacle considered for deletion was near the center of the space.
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4.4 Extension to Higher Dimensions

The above heuristic, although presented in two dimensions, can easily be applied
to higher dimensionality problems. Figure 4.4 shows an example three dimensional.
three job space. This corresponds to a “3x3 Job Shop” problem. Only two obstacles
are shown for clarity. The bar shaped obstacle results from two activities (the first
activity of Job 2 and the first activity of Job 3) which require the same resource.
The cross shaped one results from three activities in different jobs each of which
requires the same resource. This obstacle is formed by the intersection of three
rectangular bar segments thereby forming a three dimensional cross. In the classic
Job-Shop Scheduling problem (each job visits each machine once) there are three
of these cross shaped obstacles nested together with the protruding ends trimmed
to form the space. These obstacles occupy a large fraction of the volume of the
space. This density issue is dealt with in detail in Appendix A. An unobstructed
region of the three dimensional space corresponds to a situation in which all three
jobs can be co-processed. A unobstructed plane formed between the bar shaped
extensions of neighboring obstacles corresponds to a situation in which two jobs can
be co-processed. And a line corresponds corresponds to a situation in which only
one job can be processed. These unobstructed regions, planes and lines are available

for traversal by trajectories.

Instead of working directly in this three dimensional space, the heuristic is ap-
plied to the ('z‘) = 3 unique two dimensional subspaces (non-redundant faces of the
three cube each of which corresponds to a unique pair of jobs). These are shown
in Figure 1.5. Each of the 2D obstacles is considered separately as in the previous

2D case, but when the bounds are computed the entire 3D space is used with the
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, Jobl ——p

N Figure 4.4: Example Space Associated With A Three Job Problem
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.
Ky
3 . . . . .
R capacity constraints relaxed on all machines. The only relevant constraints at this
: point are those from the single obstacle component in the 2 space and the outer
N
. edges of the 3D space.
3,
D . . . .
In the three dimensional example, it was assumed that only one of each machine ;

\ tvpe was available. This gave rise to the 3D cross type of obstacle. If one assumes
K
:: that two of each machine type is available then the obstacle consists of only the
;' center of the cross (see Figure 2.1). In this case. the heuristic as described above
;, could not be applied and another similar heuristic which uses a three dimensional
K
¥ base case would be required.
¥
A
q
! 4.5 Correctness Sketch
)
’.:l
A Does following the steps of this heuristic guarantee that some technologically feasible
%
B schedule will be generated? The answer is yes, and the question can be rephrased
]
v . . . . .
" negatively in two different ways. One. when the space is pruned can the pruning occur
K
¥ such that the resulting space is composed of disjoint regions? Two, (equivalently) is
#

it possible to generate a directed cycle of precedence relations?
¢
:: Shown in Figure 4.6 is how successive pruning operations could result in the
| o
v
) separation of the space into disjoint regions. First the upper left is deleted along
%

with the lower right hand obstacle. Then the lower right is deleted along with the
1,1 . . . .
s upper left hand obstacle. This resultant space is composed of the small upper right
)
! . . .
:' and lower left regions with no possible path between them and consequently no
W -

possible feasible schedule.
nX
:: To show that this cannot happen. we resort to a Gantt chart representation of
"
b the problem. Here the task is to show that a directed cycle is not generated as a
i P g
A.
o
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::; Figure 4.6: Pruning which results in disjoint regions d
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result of the addition of some precedence relation. In order to generate a directed

cycle by the addition of a single precedence relation, there must already exist a

&) linear sequence of two or more activities (ordering of some activity with respect to
] itself is not considered). Such a sequence is shown in Figure 4.7. Activity A, is
| constrained to precede the (possibly zero-length) sequence of activities 4; the last
\ of which precedes activity A,.

:‘ It is assumed that activities 4, and A, are members of different jobs and that we
(8 are seeking to order these two activities by the addition of a precedence relation. The
EE current relationship of the two activities (A; ~ A;) was assumed to be established
:{: implicitly | via transitivity) at some previous step of the algorithm. In order to decide
L

;i whether 4, should precede 4, or vice versa the “slack” between these two operations
:,:' is computed for the two possible configurations (See Section 4.1). The precedence
:E:. relation is then added in the orientation corresponding to the larger slack. The top
;‘. of Figure 4.7 indicates the slack calculation for the case of activity A, preceding
E;: activity A,. This is simply the Late Start Time of activity 4, minus the Early
E:'S Finish Time of activity 4,. These times are annotated in the figure.

t

i The slack for the alternative configuration (A; > 4,) can be computed as Late
s'é:: Start Time of A4, minus the Early Finish Time of 4;. This can be expressed
:. ’ in terms of the precious calculation as shown in Figure 4.7b. The Early Finish
° Time of activity A, is equal to the Early Finish Time of activity 4, plus the sum
:'3' of the processing times of the intervening activities A; plus the processing time of
% activity A;. Similarly. the Late Start Time of activity A, is equal to the Late
E‘ Start Time of activity 4, minus the sum of the processing times of the intervening
’E:.: activities A, minus the processing time of activity A;. Subtracting the Farly Finish
r::: Time of activity A, from the Late Start Time of activity A, is strictly less than
o

b
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SLACK-IF(A1,A2) = LST(A2) - EFT(A1)

Al Eﬂ...[‘ A2

| |
EFT(AL) LST(A2)

(a)

LST(Al)

K\A—/\

SLACK-IF(A2,A1) = [ LST(A2) - SUM(P(Aj)) - P(A1) | -
[ EFT(A1) + SUM(P(AJ)) + P(A2) ]

\/Y“\J

EFT(A2)

= LST(A2) - EFT(A1) - [ P(A1) + P(A2) + SUM(P(Aj)) |

= SLACK-IF(A1,A2) - [ P(Al1) + P(A2) + SUM(P(A))) |

(b) ‘
Figure 4.7: Gantt Chart for Correctness Proof g
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PR R

the slack computed for the acyclic orientation of the precedence.

s
'
3 4.6 What Is Different About This Algorithm?
*
K
. Heuristic H2 is most closely related to the algorithms which can be interpreted in
N
:s: the completion space. These algorithms can be grouped into two classes. The first
B
R . . . .
‘o class includes those which start a trajectory at the origin and subsequently delete '
4]
r the space adjacent to the evolving trajectory (e.g. priority dispatching). The second
4‘ y
:: class includes those which generate the tube by pruning out large regions of the space
k)
]
‘\: adjacent to the current critical trajectory (as found by the Critica! Path Method)(e.g. f
Q‘ a
[
° branching and bounding on disjunctions along the critical path). In these two classes,
;20 the early pruning operations are major ones. In other words, relatively large numbers
iy \
P of alternatives are precluded early on. If these decisions were not correct, then the )
)
s algorithm must either backtrack or fail to find an optimum.
B The algorithm developed in this thesis falls into a third class. In this class the
1'. {
3 tube is gradually converged upon by pruning away small pieces from the outer edges
3
§
2 of the space. With this approach the first decisions are minor ones precluding only
;:” relatively small numbers of well bounded alternatives. Thus it is likely that the :
o
!=| pruning decisions made early on by heuristic H2 are correct ones. The outside in
oy . : . '
1 approach just described is not attractive for use in branch and bound algorithms
]
X because the large number of decisions made corresponds to a relatively deep search i
o~ !
:Fﬁ tree.
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§

BT

.:::. .

e 4.7 Complexity

o . - . . .

™ One drawback is that heuristic H2 has to explicitly deal with every 2D obstacle in

<:5'

3:23 every subspace. This results in the majority of cpu time being expended iterating

: through the collection of obstacles.

R

;,::., The steps of heuristic H2 as defined in Section 4.1 follow:

o

0
;:f’ Step 1. Generate a collection of the obstacles (disjunctions).
v

e Step 2. Update the Early Start Times and the Late Start Times of each activity.

X P

o

RS

:::::' Step 3. Select an obstacle for deletion.

?l‘_‘i

o . .

o Step 4. Delete the selected obstacle (resolve the selected disjunction).

Yy

AN

b“

‘.{3:. Step 5. Repeat Steps 2,3,4 until no obstacles remain.

R

:: 3 For a complexity analysis assume that we have an {n,m, G, L,,.} problem. Here

S

:::' there are n jobs each of which is a linear chain of m activities. Each job must visit

Q"'

:::‘ each machine exactly once. The nm activities can be collected into groups of size n

e

B (one group for each resource) in O(nm) time. This O(nm) time is an estimate (in

W

;E::: terms of input problem size) of how many cpu cycles (or memory cells) are required

W

:s:: to compute the desired result. Typically, constant factors and terms which grow

"h"

Py relatively slowly with input problem size are omitted from such estimates. Then ('2')

é' obstacles are generated from each of these groups. Step 1 is only performed once

Y

“.x and takes O(nm + m(';)) = O(n?*m) time.
07 : . ,

\ Step 2 involves updating the slacks in a PERT network graph. This can be done in

G O(Vertices + Edges) (2] time. There are O(nm)Vertices and O(nm)Edges to start

[

K ' and O(n*m)Edges added as the algorithm proceeds (one for each deleted obstacle.) .
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4.7: Complezity 61

Therefore step 2 takes O(2nm + n*m) = O(n’m) time. Step 3 is merely adding 2
new edge to the PERT network graph which takes constant time.

Steps 2 and 3 are repeated once for each obstacle resulting in O(n*m?) for an
overall estimate of run time. If one assumes that the problem is “square” (i.e. n = m)
then the time complexity is O(a®) where there are a activities to be scheduled. From
the point of view of the number of obstacles o = m(';) the complexity is O(o?).

Preliminary experiments indicated that much cpu time was being expended trying
to update sections of the PERT network graph that were not affected by the latest
edge added. To alleviate this, a quick slack updating procedure was developed. In
this procedure, the effects of adding a new edge were propagated only as far as
necessary. This procedure could take longer in the worst case but on average takes
less time than the procedure which always processes the entire graph. Experience
shows that problems involving a couple of hundred activities can be processed in a

few minutes on a Symbolics 3650 Lisp Machine equipped with 2 Megabytes of core
memory.

The quick slack update procedure is as follows. Starting from the tip of the prece-
dence relation just added propagate Early Start Times forward by giving preference
to the activities which will be most affected. This effects an implicit topological sort-
ing because no activity can be affected more than the largest change in Early Start
Times and guarantees that the updating is performed in a correct order. Propagat-
ing large effects first supersedes smaller propagated effects, therefore each node will
be visited a maximum of one time.

Then repeat the procedure propagating Late Start Times starting from the tail of
the precedence relation added in a backwards direction toward the beginning of the

graph. The activities being processed are inserted into a “heap” [2] using the change

ol A l. e ‘! t.
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b

y

’: in the activity’s slack as a “key.” Using a heap allows an element to be inserted
:: and allows the element with the maximum “key” to be removed in O(log(n)) time
E if there are n elements in the “heap.”

e: To put the complexity of H2 into perspective, consider the complexity of some
:’g of the existing algorithms. First consider the prospect of complete enumeration.
2 Assuming that we are trying to solve a {n,m, G, } problem, there is a simple upper
;: bound on the number of distinct possible sequences. This is given by (n!)™. This
‘\;‘,, bound could be attained by structuring the problem such that all the jobs visit the
: machines in the same order. Then the n jobs could be ordered independently at each
é of the m machines.

- Second consider a Branch and Bound algorithm which branches on disjunctions.
M In an {n,m, G, } problem, each of the m activities in a job requires a unique machine
:}: for processing. There are ('2') disjunctions associated with each of the m machines
.' for a total of m(;‘) disjunctions. This is an upper bound on the maximum depth
E; of the Branch and Bound search tree. The search tree is binary because any given
E:' disjunction can be resolved in two ways. The computation of the lower bound used
" in branching decisions range in complexity from trivial to NP-hard.

:: Third, consider a Branch and Bound algorithm based on the generation of Active
;" Schedules. In this case, the depth of the search tree is bounded by the maximum
o number of conflicts which can occur on all machines. This maximum depth is nm and
j reflects the possibility of all the n jobs conflicting at each of the m machines. Again
;’z computation of the lower the bounds used branching decisions range in complexity
s from trivial to NP-hard.

Forth, consider a Dynamic Programming approach. For a single machine problem
E: ({n,1,G,}) a convenient representation to use is the n dimensional completion space.
'0
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One dimension represents each job with the lengths of the axes corresponding to
the processing times of the various jobs. Since there is only one machine available
for processing, trajectories are constrained to follow the edges of the space. The
Dynamic Programming formulation is to find the optimal cost trajectory to each of
the vertices in terms of the immediate predecessor vertices. In this case there are 2"
possible vertices to visit.

When there is more than one type of machine available, the situation is more
complex. We no longer have a lattice of vertices defining the endpoints of the tra-
jectory segments. This is because the trajectories are no longer constrained i the
edges of but may traverse diagonally through regions of the space. There is a way
around this though. If we are willing to constrain the problem to have only integer
processing times, then each of the n coordinate axes can be divided at unit intervals.
This divides the space up into unit n cubes. All trajectory segments are guaranteed
to have as endpoints the vertices of these n cubes. There are approximately mp + 1
vertices along the length of any given axis; p vertices for each activity of approxi-
mate processing time p and one point at the end. The total number of vertices is
approximated by (mp + 1)".

Fifth, consider a Priority Dispatch Rule being used in a simulation environment.
Here, similar to the Branching and Bounding on Active Schedules, there is an upper
bound on the maximum number of conflicts which can occur. This bound is mn.
Associated with each of the conflict resolutions is the computation of the Dispatch
Rule. This ranges from a trivial constant (e.g. a due date) to looking ahead to the
next queue to possibly some function of all of the activities. In general relatively
simple indicators are used. Priority Dispatching could be thought of as a depth first

search of the search tree associated with Branching and Bounding based on Non
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4.8: Local Rule 64

Delay Schedules. Perhaps the Lower Bounds developed for the Branch and Bound

algorithms could be adapted to form more sophisticated Dispatching Rules.
Similar to Priority Dispatching, Heuristic H2 can be thought of as a depth first

search of the search tree associated Branching and Bounding on disjunctions. In this

case the maximum depth is attained and is given by m(',')

4.8 Local Rule

Heuristic H2 is a local rule in the sense that only a relatively small amount of
information (slack) is used in deciding where and how the space will be pruned. In
some cases, the use of a local rule can be proved to lead to an optimal solution; but in
the case of heuristic H2 some simple counterexamples show that this is not the case
(see Section 4.11). This is no surprise considering the problem is NP-Hard. What is
surprising is how well it works given the nature of the “bounds” (local rule) used to
decide where and how to prune the space. There exist a spectrum of lower bounds
developed over the years ranging from ones as simple as the rule used in H2 to ones
which are NP-hard.

Adams et al [1] used bounds (which were NP-hard) in an iterative procedure
involving some redoing of earlier decisions. First, all machines but one were ignored
and the activities scheduled on the remaining machine. Then, leaving the order-
ing of these scheduled activities intact, activities requiring the next machine were
scheduled and so on. Periodically, activities scheduled on one machine were freed up
and then rescheduled as a method of relaxation to accommodate for factors which
were not accounted for earlier. Heuristic H2 produced a superior schedule on the

{10,10, G,Makespan} problem found in [47] even though the local rule used by H2
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was trivial in comparison to the lower bound used by Adams. i

4.9 Rate of Pruning

In Figure 4.8 is shown an estimate of the number of feasible states of completion
within the cartesian space as heuristic H2 proceeds. This particular graph was from
the {10,10,G,Makespan} problem found in [47]. For this problem there are 450
disjunctions to be settled. If one were to define 11 points along each of the coordinate
axes (one at the beginning and end of each activity), then a lattice of points (states of
completion of activities) would be defined by choosing one coordinate (point) along

each axis. The graph is an estimate of the number of such lattice points left in the

cartesian space as the 450 disjunctions are successively settled. This estimate was
obtained using the numbering scheme in [76]. Notice that the number of remaining

lattice points is almost a constant fraction of the number from the previous iteration.

4.10 Attempts at Increasing Performance

A number of alternative obstacle selection rules for heuristic H2 were evaluated before
arriving at the final selection rule. Presently, each obstacle O; has two values associ-
ated with it (see Section 4.2 Step 8). These values correspond to what slack would
exist between the two activities for the two possible orientations of the precedence
relation between them. The larger of these two slacks ié defined as Max-Slack while
the smaller one is Min-Slack. The obstacle with the smallest associated Min-Slack
is chosen for deletion first. If there is a tie then the obstacle with the largest value

of Max-Slack is chosen. Using the smaller of Max-Slack seems to make only a minor
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Figure 4.8: Estimate of number of states of completion remaining as heuristic H2

proceeds on a 10 job 10 machine problem
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difference, possibly improving the solution obtained in certain problem instances.

Some of the other (fruitless) alternative obstacle selection schemes tried are:

o Instead of breaking ties with the largest value of Max-Slack, ties were tem-
porarily ignored. This delaying of resolution of the most critical obstacles was

found to be detrimentai to performance.
e Choose the obstacle with the smallest Max-Slack.
e Choose the obstacle with the largest Max-Slack.
e Choose the obstacle with the largest Min-Slack.

One question which arises in problems of this sort is; is the solution locally
optimal? Even though the global optimum may not have been obtained it is desirable
that the solution be at least locally optimal, otherwise some simple modification
should be used to improve it.

In order to test the local optimality of the solutions obtained, a downhill only
relaxation routine was applied to some sample solutions. The relaxation is effected
by interchanging two adjacent activities along the critical path. In the test, the
interchange is accepted if the reordering results in a lower value of the objective
function, otherwise a reordering of another pair activities is tried. Applying this
procedure to some trial solutions resulted in little or no improvement indicating that

the initial solutions found by heuristic H2 were very near to or at a local optimum.

4.11 2D Counterexamples

When solving {2, m, G, Makespan} problems, heuristic H2 almost always finds an op-
timal solution. Several hundred randomly generated {2,5,G,Makespan} problems
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1! were tested before one was found on which heuristic H2 failed to find the optimal so-
lution. The optimal solution which was used for comparison was found via exhaustive
] enumeration. Figure 4.9 shows two problem instances in which the heuristic failed
to find an optimal trajectory. The numbers correspond to the order in which the
;;:; obstacles were selected for deletion. Obstacles number 1, 2, and 3 have already been
X deleted and which way to delete number 4 is under consideration. The two alter-
,:!: native trajectories shown in each case are rated with equal value by the decision
procedure and the suboptimal one was chosen by chance. In both cases the subopti-
M mal performance was due to ignoring the presence of the last obstacle when deciding

T how to delete the next to last oue.
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Figure 4.9: Suboptimal Trajectories in 2D Problems
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- Experiments and Results

o Chapter 5

t..
b
® 5.1 Experimental Objectives
1§
’ ¢
X : The objective of this chapter is to show how heuristic H2 performs as certain prop-
Ay
ool erties of the test problems are varied. Heuristic H2 will be benchmarked against an
:,w ¥ array of the priority dispatch rules and some biased search methods. These experi-
L)
X, ments are designed to show:
n
%
':: o Performance relative to the priority dispatch rules,
. . e Performance as problem dimensionality increases, and
»
s
'5 o Performance over various objective criteria.
s
o
’a|
;:;E 5.2 Measures of Performance
R
Z From the work of A. H. G. Rinnooy Kan the following collection of criteria form a
L{: reasonably rich set of regular measures which can be used (possibly in combination)
o
e as measures of schedule goodness.
T
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5.2: Measures of Performance

71

A regular measure f has the following property expressed in terms of C; the

completion time of Job;.

If

f(Cy,...,C0) < f(Cy,..., Cr) (5.1)
then

Ci < C; (5.2)

for at least one i.

These criteria are based on arrival times, completion times and due dates. They

can be combined to reflect a variety of shop operating costs [15], [73]. These six are:

Cmaa
= C:

E ws'Ct

Lm

XT;

L wT;

1

Max Completion Time or Makespan
Sum Of Completion Times or Flowtime
Weighted Sum Of Completion Times
Max Lateness

Sum Of Tardiness

Weighted Sum Of Tardiness

Lateness is the difference between a job’s due date and it’s completion time. The

tardiness is defined as the maximum of 0 and the lateness

. These criteria do not

include costs incurrad for the early completion of jobs.

An additional criterion which would be useful would be some measure of robust-

ness. This would measure cost sensitivity of the schedule either to minor variations in

problem data (some activity takes longer to process, etc.) or to major changes such

as shop reconfiguration (some machine breaks down). This would probably lead to
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i“ schedule specifications which included zlternative contingency sequences. This has

:g yet to be quantified.

" 5.3 Problem Structure/Sources

()

:‘: The test problems used in these benchmarking experiments were either obtaired

E%: from the literature [47], derived from such a problem by interchanging some of the

g activities, or by random means. The problems were either of the flow type or the

;;E. general type. In flow type problems, each job visits each machine once and all jobs

::" visit the machines in the same order. In the cartesian space representation, all the

. obstacles lie along the diagonals. In the general problem, again each job visits each

.= :'.: machine once, but any job can visit the machines in any order. In the cartesian space

3 representation, the obstacles are scattered about - one in each row and one in each

;‘ . column.

: : A {10,10,G, Makespan} problem was chosen from the literature as a basic test

-L: case [47]. This problem involves 10 jobs each 10 activities long and 10 different

' machines. It is an instance of the General Job Shop Scheduling Problem and a value

-, exists for the optimal makespan solution for it. This optimal makespan is 930 time

: o units. Additional problems were derived from this one by interchanging the order

’% of some activities within a job. From the same source came a {6,6,G,Makespan}

y problem with similar attributes. The optimal makespan for this problem is 55 time ]
J‘"‘ units. ;
Arrival dates and due dates were added to the problems to generate additional ‘
.‘ problems. The arrival date for the first job was set at 0, for the second at 10% of "
\ E the average job duration, the third at 20% and so on. The due dates were similarly E
7 :
|
R ;
]
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o
E:E::: skewed, and the average due date was set such that all the solution techniques had
H
Lo difficulty avoiding tardiness.
:a For problems that were generated totally randomly, either the flow or general
e
': constraints were imposed, a machine ordering was randomly chosen, and processing
Yh
’,.':f' times were independently generated from a flat probability distribution. In [47]
) ]
'::l‘ is specified a problem parameter R, the ratio of the longest to shortest (integer)
-:‘:é:., processing time. They used values of 2, 3, 5, 8, 10 and 15. When the ratio is 1 (equal
>‘ -".
( processing times for all activities), the distribution of objective function value over
Wiy
:.:: the schedules is approximately Gaussian. As the parameter R is increased, additional
A/
1,
:.‘: \‘ peaks appear in the distribution which makes the problem more unpredictable. In the
'.' N
S problems generated here, relatively large values of R (e.g. 10) were used. Processing
::‘,"Q: times were assumed to be flatly distributed within the range of 100 to 1000 time
" W
}::‘? ’ units.
‘ .
':‘1
}-‘l' [ 3 . .
i 5.4 H2 vs. Priority Dispatching
s
:"'l . s . . . . .
@!:h i The heuristic was benchmarked against an array of the traditional priority dispatch
,"),‘ rules. Each rule was used to generate a single solution for comparison against the
! ! ".
}::; solution obtained by heuristic H2. Fifty {10, 10, Gen, } problems were generated as
O
Yot . . . .. . . e
_(\i: described above with all jobs arriving simultaneously. The priority rules used for
W,
! comparison were:
e
s -F'.“_-(’ ¢ Earliest Due Date (DDATE) - The job with the earliest due date is chosen.
a0
‘ hthe ¢ Expected Work in Next Queue (XWINQ) - Look ahead to the next queue
&r’» that a job will visit. Add the job’s processing time to the sum of the processing
Kreds : o
‘E' "-\.({; times of the jobs in the next queue. Choose the job with the smallest value.
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e
®

Fewest Jobs in Next Queue (NINQ) - Look ahead to the next queue that

W a job will visit. Choose the job headed to the shortest next queue.

c:: ¢ Fewest Operations Remaining (FOPNR) - Choose the job with the small-

est number of operations remaining until completion.

o o First Come First Served (FCFS) - Choose the job which arrived in the

queue earliest.

X o Least Slack First (SLACK) - For each job subtract from the job’s due date
"y the current time and the processing time of the rest of the job. This is the
" slack. Choose the job with the least slack.

oy o Least Slack Per Operation (SOPN) - For each job, divide the slack by the

number of operations remaining. Choose the job with the least of these values.

o Least Work in Next Queue (WINQ) - For each job, sum up the processing
o times of the jobs in the next queue which the job is going to visit. Choose the

8 job with the minimum value.

¢ Least Work Remaining (LWRK) - Choose the job with the least total

::\‘: amount of processing left to be done. ‘
]

vl ¢ Modified Due Date (MDD) - For each job, compute max(1,(due date - y
KA current time)/total processing time of the rest of the job). Choose the job with
the smallest such value.

iy ¢ Process Time + (Slack / Operations Remaining) (PSOPN) A

vy ¢ Process Time + Expected Work in Next Queue (PWQP) !

nt N o . . -y
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5.4: H2 vs. Priority Dispatching 75

Process Time 4+ Work Remaining (PWRK)

Process Time / Operations Remaining (POPNR)

Process Time Difference J, J+1 (PSP)

Shortest Processing Time (SPT)

(Slack * Process Time) / Work Remaining (MSPON)

Work in Next Queue / Next Operation Process Time (PWQP)

Detailed descriptions of these rules and their relative merits can be found in [24].
Ties were broken using the First Come First Served rule.

Shown in Figures 5.1 and 5.2 are plots of the relative performance of the heuristic
aud dispatch rules under the makespan optimality criterion. Shown in Figures 5.3
and 5.4 is relative performance under the flowtime criterion.

Each individual plot shows the performance of the rule listed in the title position
relative to the best solutions found by all of the rules taken together. Problem number
increases along the x axis. For each of the fifty problems, the relative difference
between the solution found by the rule under consideration and the best solution
found for the problem was plotted along the y axis. If a given rule always found the
best solution then its curve would lie along the x axis. The plots for each rule all
use the same y scale to facilitate visual comparison. Next to each title are a mean
and a standard deviation summarizing the performance of that rule.

As can be seen from the plots, heuristic H2 outperforms the array of priority
dispatch rules under the criterion of makespan. Under the criterion of flowtime the
least work remaining rule is consistently best. Heuristic H2 is “tuned” to converge

upon a tube shaped region in the cartesian space. It does this by gradually pruning
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the outer regions of the space until a tube containing a single Early Start Time
schedule remains. This method is relatively robust, because as the final tube shape
is approached, there is a high density of low makespan schedules contained within
the tube. This is not the case under the flowtime criterion. A high density of low
flowtime schedules does not exist within such a tube. This accounts for the way
heuristic H2 performs under the flowtime criterion.

Shown in Figures 5.5 and 5.6 is a statistical reduction performed on the exper-
imental results which were shown in Figures 5.1 through 5.4. Each horizontal bar
represents a 95% confidence interval for the expected average difference in objective
function value over 50 {10,10,Gen,} problems. In these problems, all jobs arrive
at the shop simultaneously. The heuristic and the dispatch rules were each used to
generate a single solution to each problem. A random dispatching rule was run 500
times on each problem and the best values of makespan and flowtime were saved.
In general, the schedule which had the best makespan was not the same one as had
the best flowtime. For this reason, the random dispatching rule has an advantage
over the rules which generate only one solution. Additionally, an active schedule
generator was run 500 times on each problem and the best values of makespan and
flowtime were saved.

As can be seen from the plots, the heuristic outperforms the dispatch rules under
the criterion of makespan and comes close the the best makespans found by the
randomized search technique. Under the criterion of flowtime, the rules which are

based on amount of work remaining seem to do well.
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5.5 H2 vs. Priority Dispatching on Problems
with Due Dates

Another similar set of problems were explored. In these problems, arrival dates and
due dates were imposed such that each subsequent job arrived 20% later than and
was due 20% later than the previous job. Jobs were 10 tasks long with processing
times chosen from a flat distribution in the range from 100 - 1000. The first job
arrived at time 0, the second at time 1000, the third at time 2000 and so on. Shown
in Figures 5.7 through 5.14 is the relative performance of heuristic H2, the priority
dispatch rules, and two search strategies under the optimality criteria of max lateness,
tardiness, makespan, and flowtime.

Figures 5.15 through 5.18 show statistical reductions of the results of the exper-
imental data. Each horizontal bar represents a 95% confidence interval for the ex-
pected average difference in objective function value over 50 {10, 10, (Gen,Due-Date), }
problems. In these test problems, heuristic H2 outperforms all of the dispatch rules
and the two random searching strategies under the criterion of minimum maximum
lateness (Lmgz). Heuristic H2 performs well above average under the two criteria of

tardiness and makespan, and performs above average under the flowtime criterion.

5.6 Dimensionality Increasing

This experiment is designed to show how the performance of heuristic H2 varies with
increasing problem size. This comparison would be easy to make if optimal solutions
to all of the problems existed. For small problems an active schedule generation

scheme [46] is used to exhaustively search for an optimal solution against which to
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compare the heuristically obtained one. The maximum size problem which can be
comfortably enumerated this way is {4,4,,}.

) For medium to large sized problems the solution spaces will be characterized by

) examining distributions of solutions obtained by generating 500 sample schedules
‘:’ " using the Random priority dispatch rule. This sampling is a search technique which
E::' if continued for long enough would find the optimal solution. Here, 500 sample
:::E schedules were generated for each problem and the best one selected for comparison.
{.. See Appendix C for a discussion of the relative merits of sampling procedures.

z":' Shown in Figure 5.19 is a characterization of how the quality of solutions gen-
z;:! erated by heuristic H2 vary as problem dimensionality is increased. Looking at
' the bottom of the figure, heuristic H2 found the optimal solution for all 50 of the
';,: {2,5,Gen,Makespan} problems. For the {3,3, Gen,Makespan} problems, heuristic
5: H?2 found the optimum 49 times out of 50. For the {4,4,Gen, Makespan} problems,
;"" the heuristic found the optimum 41 times out of 50. For the {6,6, Gen, Makespan}
E.:; problems, the heuristic found the best solutions to 22 of the problems while the Ran-
2:: dom search found 32 of them (4 ties). And finally, for the {10,10, Gen, Makespan}
,':. case, heuristic H2 found the best solution 23 times, while the Random search found
f§. the best solutior 27 times (no ties). When the heuristic failed to find the best so-
o lution, the deviation from best was greater than when the Random search failed to
::.. fird the best. In summary, the makespans of schedules generated by the heuristic
N ) seem to get farther away from optimal as dimensionality of the problem increases,
:Q yet it still outperforms the dispatch rules under the criterion of makespan.
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. Conclusions
g
1
B Chapter 6
r
y
)
)
Ly t
) v
» ]
Visualizing algorithms in cartesian completion space helps to show some of the
5 similarities of existing algorithms that would otherwise not be apparent. If the '
» '
3 problem was represented as sequences, disjunctions or the vertices of a polytope :
4 }
, the similarities of the pruning methods would be obscured. Furthermore, insights 2
;: gained as to the location and adjacency of solutions helps to explain the performance :
:: characteristics of certain algorithms. E"
L)
) ]
o Heuristic H2 generates significantly better schedules than the priority dispatch v
9 rules on the Job-Shop Scheduling Problem when the optimality criterion is Ly '
2 )
“ Using heuristic H2 to generate a solution to the famous 10x10 Job-Shop Problem in i
'e‘ U .
4 [47] results in 2 makespan of 985. The optimal makespan for this problem is known ::
¢
M to be 930. A recent iterative relaxation procedure (“Shifting Bottleneck Procedure” 3
, [1]) SBI gives a makespan of 1015 for this problem. :E
L)
‘; The choice of optimality criteria affects the relative location of “good” solutions ;z'
p in the search space. In particular, under the Makespan criterion, the trajectories "
N | 0,
N corresponding to “good” solutions were found to be geometric neighbors in the com- ‘E:
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pletion space. A large fraction of the “good” solutions were found to lie within a
» “tube” through the space. Under the Flowtime criterion, the trajectories correspond-
ing to “good” solutions do not lie within a “tube” consequently an algorithm which
y tends to converge upon such a “tube” has little chance of succeeding. Therefore, the
o relationships of the locations of the “good” solutions in the solution space should be
" taken into account during algorithm design.

N Typically, some natural (in the problem formulation) constraint (e.g. a disjunc-

tion or a time ordering) presents itself and is used as the basis of a solution generation

:: process. There is no a priori reason to believe that using this particular process to
:::: prune the solution space will yield the desired result. A possible consequence of
- this is that many of the “good” solutions will be unavoidably pruned as the process
,E? proceeds. Two possible results of this follow. By throwing away some of the “good”
;‘; solutions, it is now more difficult to continue the search. And, deciding which part
;:;' of the space to prune may be more difficult as the properties f the set under con-
35: sideration are less uniform thereby making the calculation of bounds more difficult.
g% Heuristic H1/CT can be used to test whether or not some set of constraints under
o consideration are capable of pruning with discrimination; that is, to selectively prune
;::: the space such that only the more desirable regions remain. This constraint testing
f"'éz can be accomplished without developing branching indicators and a lower bound
}::;i (some necessary components for a branch and bound algorithm).

i Symmetries in problem structure affect the spatial distribution of the trajectories
,:,.‘:ci corresponding to good schedules and should be taken into account during algorithm
:‘f:' design. Under the L., criterion, many “good” solutions were found to be adja-
',‘ cent in the cartesian space. Symmetries introduced into the problem cause certain
‘:;.! “mirror image” trajectories to be equivalent. This makes it difficult to converge to a
g
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relatively small region containing a set of “good” solutions. Therefore, either the set
of constraints used should be capable of describing these symmetries, or they can be

implicitly taken care of by having the resulting solutions map to other solutions via

) the symmetries.
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Suggestions for Future Work

o Chapter 7

7.1 Modify Heuristic H2
,:;g In heuristic H2, the constraint used to prune the space was the addition of a prece-
i»::;,:i dence constraint. This corresponds to the removal of a “2D corner” in completion
T’k space . In a 2D case, “removing a 2D corner” deletes the entire associated obstacle.
4:‘§ In a 3D case, “removing a 2D corner” deletes 4 out of 6 of the bar shaped extensions
: of the obstacle shown in Figure 4.4.
- The proposed modification is to use constraints which remove less than 4/6 of
1.,*:.:‘ the bar shaped extensions of the obstacles (“a 3D corner”). The remainder of
t j":t the obstacles is left for later consideration. Instead of pruning by adding a sin-
i gle precedence constraint, prune by imposing a boolean combination of precedence
': constraints. Given three activities which correspond to an obstacle consider the ad-
Ej dition of constraints of the form (4; < A4;) V (4; < A)), (4; < A) V (4; < A),
K (Ax < A;) V (Ax < Aj). These correspond to the three ways of deleting a “3D
?*:Ezi corner”. ‘
t:: As in heuristic H2, choose the constraint who’s compliment, if imposed, would
- 101
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result in minimum slack in the resulting network. The compliments of the three
constraints above are (4; < A;) A (Ar < A;), (Ax < A4;) A (A; < Aj), and (A; <
A.) A (A; < Ai). Implementing this would involve some method of encoding these
constraints, and keeping track of the implications of their combinations.

In general, for an nD problem one could consider deleting an “nD corner”, an
“(n—1)D corner” and so on down to one plus the number of available machines of a
given type. When there is more than one of each machine, say m, the lowest order
constraint which need be considered is of the form (A4; < 4;)V(A; < Ax)V...V(4; <
Aitm)-

Note that this approach reduces to heuristic H2 when the simplest possible con-
straints are used; if (4; < A;) generates the longest path then impose the constraint
(4; < 4).

One possible approach to utilizing a mixture of these constraints would be to
consider addition of the highest dimensional constraints first, then those of the next
highest dimension, down to the lowest order ones which need to be considered. Al-
ternatively, one could consider starting from 1 or more dimensions higher than the

lowest order ones which need to be considered.

7.2 Develop New Heuristics Modeled On Heuris-
tics H1/CT and H2

Heuristic H1/CT uses the addition of selected precedence relations to prune unde-
sirable regions of the search space. These selected precedence relations are capable
of describing a set of relatively good minimum maximum lateness schedules. Under

other objective criteria the distribution of good schedule trajectories through the
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space cannot be described using such a set of selected precedence relations. This was
. demonstrated for the flowtime criterion.
i Flowtime is minimized when there is a minimum of delay between successive
i activities in a job. By first processing all of the activities job 1, then all of the
N activities of job 2 and so on, one could generate a schedule of minimum flowtime.

" This schedule corresponds to a trajectory which traverses only the edges of the space.

y The addition of precedence relations tends to prune away the outside of the space
r and converges towards a tube, the opposite of what is needed under the flowtime
zs criterion. Alternative sets of pruning constraints need to be proposed and tested.
::‘ One method of pruning would be to reméve solid regions from the interior of the

space (“hollow it out” so to speak) in conjunction with some trimming from the

f:‘ outside. This type of pruning would tend to converge toward a shell like region.

L)

4

Na Heuristic H2 uses the “length” of certain trajectories through the space as the ba-

"1 g 8 p

Wb . . .

M sis of the pruning operations. These lengths were computed by summing up for each

Q' piecewise linear segment of the trajectory, the maximum of the segment’s projections

;:5'

% on to the coordinate axes. This is only one of many possible metrics that could be

Y

;‘3 used to assign weights to trajectories in the space. The particular “length” metric

o used by H2 is effective when the objective criterion is that of minimum maximum
-

:::i lateness. Perhaps alternative metrics could be used by heuristic H2 to find good

)‘Q 4
:t': solutions under other objective criteria. An example alternative metric would be to s

(N .
,_ weight the processing time of each activity (stretch the length along the coordinate

3 -

)

jﬂl“, axis associated with processing the given activity) by a work in process inventory
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7.3 Modify Heuristic H1/CT

Heuristic H1/CT operates by pruning as much of the search space as possible without
eliminating the £ best schedules found so far. It may be the case that potentially
good regions of the space are being pruned before they are even explored. Modify
the heuristic so that regions of the space are pruned only if both of the following
conditions hold. First, as before, never prune regions containing the k best schedules.
Second, only prune regions which are known (from the samples taken so far) to

contain inferior schedules.

7.4 Veronoi Approach

One way of approaching a scheduling problem is to convert it into a shortest path
problem and then solve it with some known optimization algorithm. Davis [25]
did this with a certain class of resource constrained PERT network problems. To
transform a PERT network first divide each activity into a chain of unit processing
time activities (this is contingent upon having only integer processing times) inserting
the necessary precedence relations between the unit activities. Any cut across this
network corresponds to some (integer) feasible partial state of completion of the
original tasks. Form a new network with these feasible states of completion as nodes.
The “distance” between any two adjacent nodes is one time unit. Find the shortest
path from start to end using a dynamic programming approach.

There are two problems with this. One, the activities must be of integer length.
Two, the activities cannot be very long and there must be a fairly large ratio of
precedence-relations to activities or else there will be a large number of partial states

of completion generated. In other words, a combinatorial problem in n tasks can be
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N transformed to a polynomial time problem in the number of nodes but the problem

o happens to have an unacceptably large number of nodes.

f;f‘, The proposition is to generate a network which has the least possible complexity,
”

s;f: yet has the property that any valid trajectory can be deformed to coincide with the
.: network. The problem then reduces to searching this network for the optimal path.
'V

:33 Consider the 3D cross shaped obstacle shown in Figure 4.4. I this was the only
;E:-' obstacle in the space, then the desired network could be defined as follows. Start
{ | with the rectangular network formed by the edges of the center of the 3D obstacle.
HS R

‘::: Then attach two additional edges; one from the origin of the space to the closest
.::‘,

:::: vertex of the rectangular network; and one from the far corner of the space to the
i.‘"

AL closest vertex of the rectangular network. If one deformed this network such that
P 8

L

R its edges were equidistant from the obstacle and the faces of the space then it would
b

;:: form a Veronoi diagram.

Q" ;

,:'J'i' In this 3D case there are 14 edges, 12 of which are associated with the rectangular
1:1: solid center of the obstacle and 2 connecting it to the rest of the space. In general
e .)

:;;: there are (n/2)2" edges on an n dimensional rectangular solid. There are 2" vertices
i

?f:': from each of which emanates n edges. Each edge is connected to two vertices hence
g;;:;:‘ the factor of 1/2. For a {10,10,Flow, } problem the desired network is formed by
A

9 the edges around the center of each of the 10 10D obstacles. Since this is a flow
4

:‘é‘: type problem, the obstacles line up along the body diagonal of the 10D space. This
o total number of edges in this case is 10(10/2)21° = 51,200. This is a relatively small
W

;:::‘ number of edges to search considering an upper bound on the number of distinct
R

:::g:: sequences associated with this problem is (10!)!° = 3.96F + 65. For the General
oV 0

R structure problem in which the obstacles do not line up along the body diagonal,
"

:;‘:::i: additional edges must be found to connect the various rectangular networks.
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'?

7.5 Normalize Path Probabilities For Random
. Sampler And Active Sampler

' The random and active samplers that I have been using have a tendency to gener-

v ate anti-symmetric schedules (when the symmetry considered is the inversion of all

) precedence relations in the problem specification). The solution sequences of this

;:: inverted problem should be the same as the original problem. Using either of these

‘:;; sampling schemes produces the various sequences with different probabilities for the

',g inverted problem versus the non-inverted problem.

:Ez The source of this discrepancy can be visualized on a rectangular 2D grid. Here

!::: a sequence corresponds to a random walk from the lower left of the grid to the

z',:“ upper right, with the steps taken either one to the right or one up. The probabilities

f‘::: agsociated with the branches at each branch point are equal.

".‘ As an extreme case consider a 1 (vertical step) x 100 (horizontal steps) grid.

'3 There are two ways to leave the origin each with 1/2 probability. At the other end

;:;s there are two ways to enter the destination. Note, that the probability of entering

o the destination from the bottom is (1/2)'%®, a ver; small number. However, in the

::{:: inverted problem, the probability of using this particular link is 1/2.

_',:‘:‘ A normalization scheme wherein the probability of taking a particular branch

A" is equal to the number of steps left in the branching direction divided by the total

:i": number of steps left to take resolves this anti-symmetric problem.

;EE The grid associated with an actual scheduling problem is by no means a regu- ‘

:f;: lar grid as assumed in the above example; it may be close enough such that this ‘

4’ scheme might do some good. It seems plausible, in that when considering which N

Wy task to schedule next, higher probability is given to the task which has many tasks :'
4
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constrained to follow it. This should reduce the probability of generating a schedule

in which one “job” is excessively delayed.

7.6 Cyclical Schedule Formulation

A slight modification of the heuristic might make it suitable for use in cyclical schedul-
ing problems. In these problems (described in [50]), the same mix of activities is to be
processed over some time period (e.g. daily) and there may be some partial ordering
among these activities. The objective is to find an ordering of activities which is of
minimum cost over the given time period when the Gantt chart of the final schedule
is repeated periodically.

In the 2 job case, the usual 2D space is wrapped around a torroid as shown in
Figure 7.1. A valid schedule corresponds to a continuous trajectory which avoids
the obstacles while making 1 twist around the major axis and one twist around the
minor axis.

Instead of computing the slacks between activity pairs by propagating arrival
and due date information through the activity network, propagate information from
one of the tasks under consideration around the network (consider the precedence
network to be wrapped around a cylinder - head touching tail) to the other task in
question. The slack between two tasks is how far apart two tasks can be displaced.
The rest of the algorithm would remain the same.
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Y Figure 7.1: Torroidal Completion Space 2
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|

kK 7.7 Representation Transformation

:;? Many algorithms that have been developed use as a basis of decision the setting of a
:::E precedence. Each decision can be interpreted as selecting a certain subset from the
i origiaal set of solutions. Depending upon the optimality criterion used, the rejected
5;;: subset may contain a disproportionate number of the good solutions.

f::.; It is proposed to use some transformation of the original precedence constraints
;';t which allows solutions which are similar in value to be in some sense adjacent (e.g.
:E:E Adjacent integers along the number line differ by only a single bit when represented
::*:is in Grey Code but may differ by many bits when represented in straight binary.)
'::;;: Hopefully, this would improve the performance of branch and bound algorithms
R by allowing easier characterization or bounds to be computed as the subsets under
:E:.::" consideration have more uniform properties. In the case of relaxation algorithms,
’:g:. since good solutions are adjscent, local neighborhood type searches should yield
,::;:i improved solutions.

:j;:: Consider representing a sequence as a binary string where each digit corresponds
::‘SE to the orientation of a precedence relation. In general, the good schedules will be
“.h» scattered between 0...0 and 1...1. Another way of stating the goal of solving one of
E,EEE: these problems is to find a 1 to 1 (bijective) mapping from the original binary strings
Sé;:j: to a set of string in which 0...001 corresponds to the best sequence, 0...010 to the
g next best and so on. Then, to find the good schedules simply map back starting
3:03::0: from 0...001 and counting up.
;S?E; A fully general mapping function should be able to map any element from the
' L first set to any arbitrary element of the second set. There are 2" elements in the first
:éigg set (n digits), and therefore (2")! possible transformations.
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7.8 Learning Boolean Functions/Transformations

=

Pose the scheduling problem as one of learning the characteristics of a good sched-

ule by observation and experimentation. Get some initial examples to learn from

- e e e W

via sampling. Formulate some hypothesis in some domain of characteristics being

-

ey

considered. Then do planned experiments. This is different from the usual learning

by example because it allows one to immediately test a current hypothesis instead

bs of waiting for a counterexample to be presented.
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Free Space Fraction

Appendix A

v

;

R

"

N The following is an analysis to show what fraction of the completion space is

" occupied by obstacles. The approach is combinatorial in nature and resembles the )
A

::t multinomial heorem because it involves expanding an expression of the form (a +

b b+ c+ ...+ g)". There are m (number of machines) terms inside of the parenthesis :
N0 and the exponent n is the number of jobs. the ratio of free space (space not occupied

il

;:. by obstacles) to the total volume is given by the following formula assuming that all

Wt

:;;‘ activity processing times are unity.

3 3
i M n<m X
g freeftotal=¢ ™ (A.1) )
:::: 0 n>m ‘
" Al - 3 L] 13 . . 3

The top of the first expression is read as m-falling-factorial-n which is like m! but

;:'0 consists of only the first n terms (e.g. (6)3 =6 % 5 = 4). f
¥ A simple 3D example shows how the above expression arises. Say that we have ‘
e

% four machines a,b,c,d. Each job visits each machine once, so for each job we can
" write a term of the form (a + b + ¢ + d) possibly with the elements permuted (i.e. 3
) §
:::.: (b + @ + ¢ + d)) but the order really doesn’t matter under the addition operator. If .
D)
ey "
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e

;o there are three jobs then we have three terms of the above form. Any rectangular
kg:s block in the job-space corresponds to the processing of one activity from the first job,
:EE: one activity from the second, and one activity from the third. There is a one to one
f'af correspondence between the individual terms in the expansion of (a + %+ ~+ d)® and
;:::: the 3-Dimensional rectangular blocks associated with the example 3-job problem.
;S:E!: Note that in the expansion there will be terms like a®, bc? and abd. Oniy terms of
::E:.: the form z'y'z! correspond to free space. Any term with a factor’s exponent greater
' than 1 means more than one machine of some given type is required if a schedule
;'.:!' trajectory is to enter this particular block of the space.

Esé' The total number of blocks in this example is 43 = 64. The number of free blocks
,, can be computed by consideration of a series of choices involved in the expansion
j::'g of (a + b + ¢ + d)® which lead to terms of the form z'y'z'. The object is to find
',i:é the sum of coefficients of these terms in the final expansion. Note that this is equal
o to the sum of multinomial coefficients for terms of the form a‘b’c*d’ where one of
éEE: i, 7, k, 1 is equal to 0 and the others are equal to unity. In the interest of generality,
:5: the multinomial theorem is being avoided.

L Consider the following series of choices in the expansion.

%,; Choose one term from (a + b + ¢ + d) that won’t give a result with an exponent
:::E,‘ greater than 1 - there are 4 ways to do this. Choose a,bd,c or d.

::: ‘ Next choose one term from (a+b+c+d) that won’t give a result with an exponent
?' ' greater th_an 1 when multiplied by the previous choice. There are 3 ways to do this.
s _g There are 2 ways to choose the next factor and one way to choose the last.

‘f Then

[ J

4+3+2%1/4% = 3/8 is the free space fraction.
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X

ij: Note that if the number of choices (n = #jobs) is greater than m then an expo-
" nent greater than 1 is unavoidable - hence the n > m case in the volume fraction
";Es expression.

*j; This leads to the following question: If the volume fraction of free N-Space is 0
i.‘: then what space is left in which to plot trajectories? What happens if one has 3
,:S: machines and 4 jobs. Obviously not all 4 jobs can ever be co-processed. In other
E:‘E:. words there is no free 4D space. But what about 3D subspaces. It turns out that the
;x’ same formula is valid for this case also. Instead of letting n be the number of jobs,
:‘1.‘:‘&: let n be equal to the dimensionality of the subspace of interest. Then for a given
E:iz:' problem one can calculate how much of each dimensionality space is free.

‘:' Note that the above analysis was carried out for the one of each machine job-
‘;J; shop problem. It could also be easily modified for the case of more than one of each
;i::’:“:' machine (look for terms of different form) or more than one of certain machines.
’:‘:f:f Perhaps this type of calculation could be used to evaluate the usefulness of purchasing
:E::":i some new piece of equipment. If the new purchase would result in no increase in the
Z:}s,:‘ free space fraction then there is no point in purchasing it. One might also consider
EEE:‘:: free space increase per dollar spent as an indicator of relative merit of alternative
5';,;. purchases.

{:i;:‘ Coeflicients could be put in front of each a,d,c etc to reflect processing times
%g‘{::' thereby improving the accuracy of the calculation. Also, instead of simply using
,“"‘" a as a pri_mjtive term, use a term of the form aPT to represent the facts that we
‘::':: need machine a, person P, and tooling T to perform this operation. Of course this
:" i removes much of the symmetry from the calculations and mean that a computer
"'q might be required for the computation.
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& N-D Cone Fraction Derivation

;:'

E: Appendix B

o
r
‘e

;

l"

»

“ We will now estimate the fraction of the space contained within the boundaries

w; of a cone in n-space (completion space). Figure B.1 shows an example of a conical

}:': or pyramidal region in 3D space defined by two back to back pyramids. One has

."-.

2: its apex at the origin (shown using dotted lines), the second has its apex at the far

-.‘ corner and they meet at their bases. For this example it is assumed that the cube

¥

‘: is a units along each edge and the parameter b is allowed to vary from 0 to a thus

::2 defining the shallowness of the cone.

1.‘

The volume V;, of an n-D pyramid is defined as follows where B is the base and

o h is the height.

" !
A i
v h = N Bh '
. Vi —/; (B)(3)" " dz = — (B.1)

e - N
¥ The total volume V; for the cube is given by a™. ¢
i ’ N
,E: The volume of 2 back to back pyramids V3, along the diagonal is c:
i) U
ey 3

v, = B(h+hs) _ B/na’ _Ba (B.2) ;
\:, n n \/1_1 :
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Figure B.1: Three D Cone Example
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Then the volume fraction in terms of B the common base of the to pyramids, the

dimensionality of the space n and the edge dimension a is

L] V), B
"y B.

R a"‘v_ (B.3)
What is needed now is an expression for the base B. In the 2D case the base B,

;:' is simply 8/2 as shown in the top of Figure B.2.
;:i The base in 3D By is defined inductively in terms of B, as indicated in Figure B.2
. as follows.
e
i
0 B, < 3B, jncm&«m—om&d&» — Vir  (Ba)
° |Centroid(B;) — Centroid(B;)|
::z In general the base in n-space B, is given by
B, = CaBa; /o ‘(;-:)""dr = (,',,13,._,“;“_"—1 (B.5)
':9 Where C, is the number of B,_; which are involved in the integration, d is
ﬁ defined as |Centr¢;‘id(Bn) ~ Centroid(B '1)| and the exponent (n — 2) reflects the
dimensionality of B,,_;. This gives a recurrence relation for B, with the additional
:, terms C, and d,. These two quantities can be computed directly. Since C,, is the
‘°’ number of “faces” of B, it is also equal to the number of unique sets of n — 1 vertices
Y which can be selected from a set of size n. Then
‘
q;;: n n!
o= (a71) = 5w = .
o To compute d, take the magnitude of the difference between two vectors defined
*’: in the coordinate system of the far corner pointing to the centroids of B,, and B, _;. f
5
} ¢
t

. 1 &
!‘; 0‘9 ‘l'"i' ] ' 5 ‘ ‘1 [y 'A’ L] 'x‘ D'.
) e ‘ ter i

l‘g U0 “

':,u.‘ Q.Q DON \; !‘o o .u. .r" ' X .o o' . ‘.0 LXMWY Ho.‘u LI

R m-m-.-.
Y ’, NS ;Mt rg! 500 ,’t‘ AN NICRK “."s .‘u.
OO IIERS "I ' h 'u h‘ ek ‘a. ‘n' *k' *t' h‘ (A ‘n"" l,‘l




117

Y3’

3o Figure B.2: Base Calculation
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C’entr;z'd(B,.) =2+ %4+ + 44,
and (B.7)
Centroid(B,_,) = Lo+ A+ i

Then the Euclidean distance between these two centroids d,, is

e ’I(TI’TT) (B.5)

Substituting C, and d, into Equation B.5 gives

bB,._ 1n

(/n(n— 1)(n—-1)

Starting from the boundary c;mdmon B, = /2 and working out a few iterations

/
/

(B.9)

gives

Wnl

= B.
Jin— 1P (810)

Substituting this into Equation B.3 gives the fraction of the total volume enclosed
within the two back to back pyramids as

‘/27 = (n—-1) 1
v, = ¢ ) T and (B.11)
0 <t<1
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Notes on Random Sampling

Appendix C

There are a few issues concerning random schedule generation which should be

;é mentioned. The first issue is what class (set) of schedules one is sampling from. The
:3: second issue is how the sampling is biased within this set. The third is the distinction
R between the mode and the range of the sampling distribution. And the fourth issue
‘: concerns joint distributions.

z;‘ Ideally, one would like to sample from a set of schedules which is guaranteed to
K contain all the schedules of interest. This could be accomplished either by sampling
z::: from the complete set or by sampling from another set whose members somehow
,330 dominate the complete set under the optimality criterion being used. One complete
i::t set would he the set of all unique sequences. This set has infinite cardinality if one
z;:: allows delays in processing a given sequence. If one processes each activity as soon
:EEE as possible consistent with the given sequence, then each sequence corresponds to an
3?3 Early Start Schedule. These are the so called Semi Active Schedules.

2 The class of Non Delay schedules can be defined in the context of a Job Shop
%: simulation. These schedules are generated by having each machine never wait (delay)
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o

.

B to process some activity if there is an activity in the machine’s queue. The set of
o Non Delay Schedules is a subset of the set of Early Start Schedules.

N

!::: Given a set to sample from, the distribution of objective function values varies de-
.“i

$';: pending on how the sampling operation is performed. For example, consider sampling

with equal probability from the set of Non Delay Schedules. An experimental esti-

’,:‘ mate of such a distribution was obtained by using the Random priority dispatch rule
1}

'Q: to generate sample schedules from a {10,10,Gen, Makespan} problem. The proba-
e

( bility of obtaining any given sample schedule can be determined after the particular

gt

-

;::3 schedule has been generated. This is done by multiplying together the probabilities

)

:::: associated with each machine loading decision. Choosing one activity from a queue
¥

Ay of five activities contributes a factor of 1/5 to the overall probability of obtaining
X

:;: the particular sample schedule. These computed probabilities were used as weights

%

::.:n on the samples obtained. This weighted distribution is plotted in Figure C.1. This

o

,"!' is an estimation of the distribution of schedule makespans assuming that each Non
'::i Delay schedule is equally likely to be chosen.

]

o

Lﬁ:‘ Notice that using the Random priority dispatch rule (which assigns equal prob-
W g8 gns

e

R ability to choosing the various activities from a queue) introduces a biasing into the

? sampling procedure. The distribution from Figure C.1 is replotted in Figure C.2 in

)

13‘., quantile format along with sample distributions obtained using the Random priority

i

j_;::‘ dispatch rule and an active schedule generator.

o

nhy The biasing introduced by the Random dispatch rule significantly improves the

o

:::: expected makespan of the sample schedules in this case. This is because schedules

i

l::" having less conflicts which need to be resolved (shorter queues) have higher proba-

?-. bilities of being generated using this method.
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Figure C.2: Comparison of Distributions Obtained Using the Random Rule, a Nor-
malized Random Rule and an Active Schedule Generator
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o

,‘:" The distributions shown in Figures C.1 and C.2 are approximately Gaussian.
.:}::: Although the tails of the distributions have finite length the probabilities associated
SESZ: with the tails gets very small before the end of the tails is encountered. In [47] is
::E‘:':: suggested a method based on sampling for generating a schedule which falls with
":,::: some known confidence into a fraction of the area under the distribution. Suppose
E;}:E that the true distribution was known. One could partition the distribution into two
::22: parts. One part of area ¢ (starting with the left side of the left tail) and one of area
;_’.g 1 — a. Then any sample generated has probability a of falling within the range of
:%z}:::: the a area. The probability of at least one out of n samples falling within the a area
3255:::: is equal to 1—Probability of all samples falling in the (1 — a) area. This is simply
e 1—(1—a)™ Thusif ais 0.01 and n is 500 then the probability of generating at least
u::::; one sampie out of the 500 which lies within the top 0.01 of the area under the curve
'!'{E?% is 1— (1 — 0.01)°® = 0.993.

7 Suppose one of the samples lies within the range of the 0.01 area. This is not the
‘E;;Eg: same as being in the top 0.01 of the range of possible schedule values. Consider a true
:',‘:g;; Gaussian distribution and define area @ as the area under the left hand tail starting
!:“;‘:' 3 standard deviations from the mean. Then a is 0.0015, and having a sample fall
:;i‘:: within the range of this area means that it falls somewhere between minus infinity
:s:‘s:' and minus 3 sigma. This situation is somewhat exaggerated; in the case of the
.:."?‘ approximate Gaussian distribution mentioned above, having a sample fall within the
:‘;;: top 0.01 of the area under the distribution translates to being approximately within
:ES':E:EE the top 0.10 of the range of possible schedule values.

:J.:Eii? As illustrated, the distributions of Makespans values is approximately Gaussian;
this . also true of the distribution of Flowtime values. As a matter of fact they seem
ol 3‘ to be almost independent as evidenced by the scatter plot shown in Figure C.3.
R
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To generate this plot, first the makespan and flowtime of 1000 sample schedules
generated using the Random priority dispatch rule were computed. Then one data
point was plotted (flowtime vs makespan) for each schedule generated. Four percent

of the range was added to the data so that duplicate data points would not overprint.
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Applying H1/CT to a Problem

B with Symmetry

e Appendix D

) A 12 job by 6 machine problem was generated by making a copy of each of the jobs
. in a 6 job 6 machine problem ({6,6,,}). Experiments similar to those of Chapter 3.3
W using heuristic H1/CT were performed on this new problem using the criteria of
makespan and flowtime. For these experiments, first 200 sample schedules were
b randomly generated, then the top ten schedules according to the optimality criteria
N were selected. If all ten of these schedules had precedence relations in common,
W these common precedence relations were used to prune the original problem and the
5 sampling repeated. The results of these experiments are shown in Figures D.1 and '
i D.2. The_procedure produced mixed results in the case of the makespan criterion.
it After 242 of the 450 possible precedence relations were used to prune the space the
4 probabilities of generating very low makespan schedules was reduced. This situation

e improved during a subsequent iteration as shown by the solid curve.
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Figure D.1: H1 /CT applied to a 12 job 6 machine problem (makespan criterion)
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i

o : : .

o The mixed results in the above{12,6,G, Makespan} experiment were unexpected.
1:,-{,;;' One possible explanation for this is that a number of symmetries were introduced into

;.:i‘;:; the state space by including a copy of each job. As sample schedules were generated
:"é‘ and compared these symmetries were not taken into account thereby causing a lack
::::: of adjacency between schedule trajectories which would mirror on to one another.
:1::5::. Consider a 2-D subspace of the state space defined by a job and its copy as shown
::?EZ in Figure D.3. Notice that there is an axis of symmetry along the main diagonal. Any
.' ‘ trajectory segment which crossed the diagonal could be mapped into an equivalent
:,.é;::s (in terms of objective function value) trajectory on the opposite side of the diagonal.
igs‘gé: An experiment was performed in order to verify the above supposition. There
A,

) would be two ways in which to take these symmetries into account. One, the sample
::':E‘:':;: schedules could be generated as before and some post sampling processing could be
it’::&? done to mirror the trajectories into a canonical form suitable for the comparison
i step. Alternately, schedule generation could be restricted such that trajectories wure
‘,‘:E:? confined to one of the two regions defined by the diagonal of Figure D.3. The latter
E:;::;E of these two was chosen on the basis of ease of implementation.

::;'i’?' Notice that the obstacles all lie on the diagonal in Figure D.3 and that in order to
‘:;':‘é:i pass from one region to the other the trajectory must pass by one of these obstacles.
t',;u'g'\

But, negotiating these obstacles corresponds to making a machine loading decision
between two identical (in terms of objective function value of the completed sched-
Sl ule) alternatives. The sampling scheme was modified such that when this situation
RN

S occurred a unique choice was made (i.e. stay in the lower region or equivalently give
R

s, activities from Job 1 priority over those from Job 2).
RREK The correlation procedure was then repeated on the {12, 6, G, Makespan} problem

he :..:t‘: with the modified (to incorporate mirroring) random schedule generator. The results
¥

)
SO TR TR ED D] Vet e e T gk o J) St O 't N
JORLT N B RN X e N ) '.!'. eeatynty ""‘ .".‘l "l" OO0 IGAGA IS AN O SN
LRSI PP TN P PO I DU o Ty IS0t 3 ] (] (UM ! A A (AN MR AN
R ?“’9"‘03 ~"¢,"-§"dl‘ ‘(:*’nf"'-f‘*a."u:"2"0?“0"’?:090:“{"::‘” -"0!',t:.!':‘!l:"z":!.?.:'!‘}'M’!ﬂ:‘.‘a“l:‘,h"':'

Mot RS A
A N -3'5:3

W,




130

END

.
e

START Job 1 >

Figure D.3: Symmetric 2-D Subspace

N Y

-

P ey

a.
.
e}' ‘l';‘

(R0 ottt
”"e X é.\" ‘q‘ ‘n ':‘n""‘ Q,O Mottty " ’1 RN RRRITRINCRO c'u,

7"

.o gﬂ ’ ) .
' “ W, (% ’l‘ Q‘ l‘t‘ Q‘ L'.'\.‘LQ ‘n"l‘\il 5"‘"’.9“l'



131

of these experiments are shown in Figures D.4,D.5. These results are very similar
to those of the {6,6,G,Makespan} problem from which the {12,6, G, Makespan}

was composed. The distributions are seen to uniformly improve during successive

iterations.
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Figure D.4: Hi/CT modified to account for symmetry applied to a 12 job 6 machine

problem (makespan criterion)
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Figure D.5: H1/CT modified to account for symmetry applied to a 12 job 6 machine

problem (flowtime criterion)
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