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1.0 OVERVIEW

1.1 Introduction

The goal of the current research effort is to develop a boundary element
method (BEM) analysis to study the effect of plasticity on the growth rate of
fatigue cracks. The investigation mainly focuses on the crack tip behavior of
two- and three-dimensional crack propagation and closure effects under cyclic
loading for cracks where the plastic zone size is large relative to the crack
size. This problem, known as small crack or small flaw problem, stems from
the rapid growth of small surface cracks, hence, the deviation from linear

elastic fracture mechanics (LEFM) predictions.

The United States Air Force has recognized the importance of the small
flaw modeling problem and (s currently funding an experimental study of
turbine engine materials at SwRI. The analytical study reported here
supplements this effort to provide a most complete utility of the work for the

Air Force.

Because of many unresolved issues related to the two-dimensional
analysis, a major portion of the current study is focused on two-dimensional
modeling issues. A significant issue in the study of fatigue crack growth is
the realization of crack closure phenomenon, first proposed by Elber {1,2],
where the residual plastic stretch left in the wake of an advancing crack
causes the crack surfaces to close during some portion of loading cycle. He
proposed that crack growth is effected by the portion of loading cycle over
which the crack remains open. This concept has been widely advocated in
explaining the behavior of short crack acceleration phenomenon. The
two-dimensional results, however, indicate that large amount of plasticity
with loss of constraint rather than residual or crack closure effects, leads
to the breakdown in LEFM conditions near the crack tip. The short crack
effects grow with increasing ratios of applied stress to yield stress, and for

decreasing crack tip constraint.
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o The growth of the surface or through crack is three-dimensional, where
the region near the free surface is governed by plane stress conditions, and
at the interior, the behavior is governed by plane strain conditions. The
small flaw acceleration problem may be due to the influence of
S three-dimensional surface flaw plasticity effects, an influence that is not
modeled by two-dimensional approaches. However, the task of modeling the
Q three-dimensional propagating crack is substantial. The only numerical study
reported to date is the limited investigation of Chermahini [3] using the
W finite element method. Unlike the two-dimensional boundary element modeling,
where the presence of the crack is taken care of by a fundamental solution
\ and, therefore, does not require the modeling of crack, the three-dimensional
modeling requires modeling of the crack surface. The elastic problems solved
] by using the BEM as reported here substantiates the advantage of the method
for this class of problems. However, the need to have small plastic cells to
¢ model the yielded region near the surface in an elastoplastic crack problem

imposes a very high numerical constraint. While this limitation has been

8 overcome to a certain extent in this study, a complete investigation requires
further research effort. Some numerical results of the three-dimensional

;‘ elastoplastic propagating crack are presented at the end of this report.
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. 2.0 TWO-DIMENSIONAL ELASTOPLASTIC FRACTURE MECHANICS MODELING
ﬁ 2.1 Problem Statement
N Figure 1 illustrates the correlating role of the elastic stress intensity
?; factor (K) for fatigue crack growth problems. Three different fatigue

specimens (A, B, C) were used to obtain baseline crack growth data: a standard
b! ASTM modified compact tension specimen, plus two center-cracked specimens of
different crack sizes and thicknesses. Two sets of surface crack growth data,
m& taken from replicas of the surface cracks on a full-size component, are
hg plotted in Figure 1 for smooth sections (D) and for notches (E).

- The fact that the data are correlated for a wide range of crack size,

) crack shape and local stress field confirms the usual applicability of linear
ﬁs elastic fracture mechanics (LEFM) for many problems. Other data, e.g., [4-7]
if clearly indicate that the elastic stress intensity factor from LEFM does not

o correlate all crack data for problems with high applied stress, relative to

. the material yield stress. The crack sizes for these data are quite small

compared to the crack sizes used for laboratory characterization of crack

growth.

Thus, there is a clear indication from the experimental data, that LEFM
mav apply over a wide range of geometric conditions but not over all
geometries. A recent review by Leis, et al. [4] attributes the so-called

small flaw modeling problem to a lack of crack tip similitude. Stated

T x

somewhat more broadly, the damage process in the critically stressed (or
strained) volume of material ahead of the crack is no longer independent of
scaling below a certain size, which will be seen to depend on the applied

~ stress level. Those who argue for the loss of similitude as the reason for
the loss of correlation in the small flaw regime must seek a new measure of

- damage within the critical material volume, a measure that reduces to LEFM for

the appropriate class of conditions.
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LA 2.1.1 Closure vs., Retardation

ﬁi The presence of a plastic zone ahead of all fatigue cracks is
generally ignored except for problems of overload and load ratio (R) effects.

fg Baseline fatigue crack growth (FCG) data is usually generated at low load
ratios (R = 0.1); this data intrinsically contains any effects of the plastic
zone. Generally, for LEFM applicability, the strain field surrounding the

o plastic zone is controlled by the elastic strain field, and is not a separable
influence.

The plastic zone becomes dominant for fatigue crack growth

problems where load history effects are important {8]. An overload is

sometimes seen as a modification of the residual stresses due to plasticity
ahead of the crack which changes the cyclic stress intensity factor range, or
a change in the range of loading for which the crack tip is closed (no fatigue
damage) [9-11]. The actual solutions reported herein will demonstrate the

complete duality of the residual stress and crack closure arguments.

The plastic zone, which remains along the crack surfaces after the

crack tip advances, is referred to as the plastic wake. Under cyclic

conditions, the tensile stretch of the material ahead of the crack tip exceeds
the amount of reversed plastic strain as the load is released. The excess of

!i plastic strain acts as an interference at the original crack plane, resulting

in crack surface closure, even at positive loading. If there is an additional

KA effect on the crack surface of interference due to mechanical locking of
. irregular crack surfaces, or due to significant oxidation, then the crack tip
may be wedged open under zero load.
- The actual fatigue process in the near crack tip region is, of
’ course, quite complex. Cyclic plasticity may be distributed (wavy slip) or
| may be concentrated (planar slip). The structure of the material may play a
K key role in the crack growth kinetics through grain size or grain boundary
. resistance to crack extension. The conditions at the crack tip vicinity in
regard to these phenomena may include cyclic strain and mean stress effects.
! [
4
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Thus, an understanding of the kinematics of the deformation and the state of

stress are likely to be es.ential to an understanding of the large crack

( versus short crack growth rate data.
2.2 Crack Tip Singular Fields

2.2.1 Review of BI or Elastoplastic Crack

The elastoplastic boundary-integral equation (BIE) method is used
K for the current study. The formulation of the BIE uses the elastic Green's
function to represent a planar body with a straight line, stress free crack
3 (12]. The plasticity is a classical von Mises plasticity formulation, as
‘ recently reported [13,14]). The resulting elastoplastic BIE formulation for
N the fracture mechanics problem has yielded some new and important insight into

the physical problem and will be briefly reviewed.

Figure 2 shows a finite plate with a central or edge crack which
is taken to be stress free. The plastic strains are assumed to be contained
within the discrete element region around the end of the crack; the
elastoplastic strains are taken to be piecewise constant within each of the
domain elements. Using the fundamental solution for a point load in an
infinite elastic plate containing a single straight crack of length 2a, the
Somigliana identity for the interior strain increment ¢4 for the
elastoplastic problem is given from [13]:

N ;

0. . " P
L O13deds + [ Sytyas + doltk1g % * Bygeg )

In Eq. (1), Dyjk and Sjjk are the symmetric parts of the gradients of the
boundary tractions (on the uncracked surface S) and boundary displacements due
to a unit load at an arbitrary interior point. The tensor Giklj are generally
the symmetric part of the gradient of the interior stress tensor due to the

elastic load.* This tensor kernel is highly singular and has been

gra—agay e

* This is true for three-dimensional elastoplasticity and for the flane
" stress kernel. The plane strain kernel is of a different form (13
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differentiated at the singular point boundary which is excluded from the
integral in a principal value sense. As a result of the differentiation at
the boundary of the exclusion region surrounding the singularity, one obtains
Ejk1j., an elastic constant tensor which differs for plane strain and plane
stress. The boundary data is given as the increment in boundary traction Ek

and boundary displacement ﬁj; the increment in plastic strains (inside plastic

domain A) is given by éklp.

Equation (1) should be seen as the complete statement regarding
the elastoplastic field problem. That is, the total strain field is
mathematically complete. The stresses obtained from (1) can be shown to fully
satisfy equilibrium at all interior points. The requirement on the plastic
strain increments is only that they be no more singular than a 1/R
singularity, where R is the distance from the crack tip, (true for perfect
plasticity at crack tips), as discussed in [13]. The plastic strains are
allowed to be discontinuous and permit a slip line interpretation for fully

developed plasticity problems.

2.2.2 Strain Intensity Factor

The total strain field in Eq. (1) contains both explicit and
implicit singular behavior near the crack tip. The details of the singular
behavior are discussed in detail in [13] and are now briefly outlined. The
boundary terms in Eq. (1) explicitly depend un the inverse of the square-root
of the crack tip distance near the crack tip. The influence of plastic strain

is discussed in [11,12] for both singular and non-singular plastic strains.

When the plastic strains are non-singular, then the total strain
contribution from the integral in Eq. (1) is also inversely proportional to

the square-root of the crack tip distance. For such problems the total strain
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contains the same singular tehavior as for the LEFM problem. A stress
intensity factor result, based on the strain singularity is given from [10]
as:

p

[od r

Vo
—
-
—
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In Eq. (2) the mixed mode (Mode I and Mode II) stress intensity factors are

given as simple vector products of the boundary data with the boundary vector

potentials, Ry and Li, and the inner product of the total plastic strains with

the volume potential tensor Mjj, taken over the domain of plastic strainms.

=3

For the case of singular plastic strains, Eq. (1) reduces to a

homogeneous integral equation containing only the plastic singularity. The

=4

H order of the singularity is shown in (10] to be implicitly determined, based

on the numerical results for the strain hardening characteristic of the

e

material. The limit on the order of the singularity for convergence of the

ni volume integral in Eq. (1) has been shown to correspond to the plastic strain
singularity for perfect plasticity (1/R).
ﬁ; Equation (2) provides a unique means for investigating the plastic
zone of a stationary or propagating fatigue crack. At any state of plastic
‘; strains, Eq. (2) may be used to compute a strain intensity factor at the crack
A tip. The plastic strain distribution for a given crack size affects the
rz residual stresses ahead of the crack. This residual stress effect may be
calculated from Eq. (2) by increasing the crack length parameter "a" to a + Aa,
u? and then by allowing an elastic iteration of the numerical solution; the
elastic iteration is required to satisfy the traction-free boundary conditions
:} on the new crack surface. The procedure is entirely equivalent to calculating
| the residual stress effect for any elastic crack propagating through a plastic
;% strain distribution due to prior load history (see [15]). 1In the case of the
plastic strains due to the crack itself, Eq. (2) has been analytically shown
i: [13] to be nonconvergent at ga = 0 ; numerical data in [15] confirmed this. The
;
|
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interpretation at 4a>0, Eq. (2) provides a direct means for calculating the
, effect of all prior plastic strains on the crack tip stress intensity factor.
4 It should be noted that while Eq. (2) is reported in terms of stresses, it is
directly computed from the strain field limit approaching the crack tip times
1 the material stiffness matrix. Thus, the result is in reality a strain
intensity factor. The stresses have no singular interpretation for

elastoplastic fracture mechanics analysis.

The direct application of this mathematical condition is to
calculate retardation effects and crack closure effects for fatigue crack
. overload conditions. The details of the overload retardation and closure
calculations, as well as an exploration of the implications for fatigue crack

growth are reviewed in the following sections of this text.

2.2.3 (Crack Opening Displacement

The Somigliana identity for the interior displacements in
elastoplastic fracture mechanics problem is given as:

. . . P
co= - T t L dA
. a, : 149495 + £ Uyytqas + <£> 15kC 3k (3)

where T{j and Ujj are the boundary tractions and displacements on the

- uncracked surface S for point loads applied in each of the Xy directions. The
tensor zijk is generally the interior stress state for the elastic cracked body

! due to the point loads. The displacement in Eq. (3) may be evaluated on the
boundary of the crack, without major algorithmic problems. It is easily

! shown, following the same procedures as in [l3], that the crack opening field
near the crack tip contains a square-root-R behavior due to the boundary data,

) and a term due to the (singular) plastic strains. X

The crack opening displacement result exactly parallels the one
above for the total strains. Thus, the effect of the plastic strains on crack
opening displacement is directly linked to the effect of plastic strains on

the strains ahead of the crack tip. Thus, if the plastic strains are bounded, ;
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or the elastic crack tip is extended to a+4a, the total crack opening field

- near the crack tip is dependent on the square-root of the crack tip distance,
i' R. For the elastoplastic fracture mechanics solution, the near crack tip
behavior will depend on the implicit crack tip singularity of plastic strains.

e The numerical results will expand on this more fully.

2.2.4 Plastic Slip Line Solutions

The last area of potential exploitation of the elastoplastic BIE

! formulation for the fracture mechanics problem is its use in modeling fully
developed plastic fields. As discussed in {16], the elastoplastic field is
theoretically hyperbolic, such that the plastic strains may be discontinuous

along characteristic lines whose directions depend on the solution geometry.

o The BIE formulation in Eq. (1) admits such discontinuous plastic
0 strains without difficulty. The derivation of Eq. (1) requires only that the
plastic strains be integrable in the volumetric sense; no derivatives of the

plastic strains are required. The boundary terms in Eq. (1) are the result of

e

an integration of the displacement gradients through the divergence theorem.

The application of the divergence theorem only requires that the displacements

Vi

be continuous and differentiable, a condition satisfied by compatibility.

An example of the application of Eq. (1) and, more specifically,
Eq. (2) to a problem of a discontinuous plastic field was given in [12] for
the problem of a modeled weld bead with a narrow zone of high residual plastic
strain. The application was to the computation of crack tip stress intensity
factors for cracks within the plastic field, and for crack tips extending

beyond the plastic field. The solution was essentially exact.

N The implications of this result are not yet fully explored.
However, it {s clear that the BIE formulation for this class of problems
admits the possibility of modeling slip line plastic strain solutions without

the need for special domain elements or special element refinement near the
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zone of discontinuity. This contrasts with the finite element method which
requires the use of many small elements along such lines of discontinuity for

any degree of accuracy.

2.3 Model Problems for Short and Long Cracks

2.3.1 Stationary Crack Modeling

The material is assumed to be elastic-perfectly plastic. The
modulus is taken to be 30*106 psi while the yield stress is taken to be 50
ksi. These are arbitrary constants and none of the conclusions specifically
depends on these values. The stationary load case refers to a load/unload
cycle at the original crack length. Cyclic crack modeling refers to a
locad/unload cycle, a crack extension by some increment, and then another
load/unload sequence, etc. A validation model for the load application phase
using the elastoplastic BIE code is reported in (14], and is repeated in
Figure 3. The results were compared in Figure 3 to numerical FEM results from

ADINA to establish the validity of the results.

Two crack lengths are used in the current study, based on a desire
to have small-scale and large-scale yielding. The crack lengths are taken to
be 10.0" and 0.1" with applied stress intensity factors (elastic) of 20 ksi.
vin. The plate is taken to be 1000" wide and long to minimize the effects of
finite geometry. Based on a Dugdale model, the plastic zone size for plane
stress is 0.062" for both crack sizes. The plane strain value might be

estimated to be one-third of that size, or 0.021".

Thus, in the case of the large crack, the normalized size of the
plastic zomne (rp/a) is 0.0063, while for the short crack case the value is
0.63. Clearly, the two problems do not possess similitude of the plastic
strain fields and may serve as good comparisons for large crack and short

crack results.
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LIRRY Figure 2 shows the domain discretization currently used for

:; . analysis of the stationary (non-propagating) crack. The mesh is much cruder
(‘ t than used in the study reported previously [13] but produces essentially the
é same plastic strain results. The loading was applied incrementally to an

:: 3__8 equivalent elastic stress intensity factor of 20 ksi./in and thereby removed

! incrementally. The plastic strains at the crack tip are thereby reversed, but

o no recycling of the loading is performed.

: g: In order to define the size of the plastic zone in an unambiguous
3; L manner, use is made of the concept of elastic crack extension through the
{ :? plastic strains for the stationary crack analysis. For this analysis, the

¢ b stress (strain) intensity factor is computed using Eq. (2) for various crack

p :-_:‘ extensions; the plastic zone taken from that for the the original crack size

’ o and the above loading conditions and material properties.

‘ S'§ Figures 4 and 5 show the resulting values of elastic stress

V intensity factors. As discussed in [14], the computation for (2) treats the
: 'i prior load plasticity as a residual strain distribution and provides the

effect of the residual strains on the stress Intensity factor for various

', ::: crack lengths. The elastoplastic solution is first obtained so that a plastic
..: b strain distribution is known. Then the BIE code is exercised in a strictly

. l elastic sense. The crack size is incremented by'" 4 a" into and through the

. ' plastic zone of the previously analyzed elastoplastic condition. Each elastic
: \‘ calculation from Eq. (2) is then a computation of any elastic stress intensity
j » factor, including the effect of the prior elastoplastic zone. The resulting
e stress intensity factor, while not strictly physical, directly computes the

fJ» - effect of the previous plasticity on the crack tip strain field for the larger
. :;:', size crack. Thus, this is an unambiguous estimate of the residual plastic

¥ zone effect for propagating fatigue cracks. The closest parallel to previous
‘ ~ crack modeling strategies is the estimate of overload plasticity effects on

E b-:' the elastic stress intensity factor for the fatigue load condition [8].
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Table 1 compares the estimated plastic zone size from these

results to the Dugdale (plane stress) and plane strain plastic zone sizes.

Table 1

e Comparison of Plastic Zone Sizes
r
9 Long Crack Iplest.) xplcal.)
i Plane Stress 0.063 0.060
s& Plane Strain 0.021 0.025
iy
g Short Crack

Plane Stress 0.063 0.110

Plane Strain 0.021 0.080

As can be seen, the BIE results compare quite favorably to the estimates for
the long crack case but not for the short crack case. The effect of the
plastic strains for the short crack case is substantially greater than for the
long crack case; the difference between the plane strain and plane stress
plastic zones is quite diminished. These results seem quite consistent with

the expectation.

2.3.2 (Crack Extension Modeling

Figure 6 shows the domain discretization for the plastic strains

used for a study of the crack propagating as in fatigue. That is, the crack

[

is incrementally loaded to 20 ksi./in and unloaded at each crack size. The

yield stress in compression is taken to be the same as in tension (no

)

kS
2

Bauschinger effect). The original crack tip is as shown for the length "a".

-

In the current study, crack tip plastic strains are allowed to reverse before

Ly
"

b the crack is extended. This strain reversal accounts for what others model as

the interference of the plastic wake for a propagating crack [4,6].

e

The surfaces of the crack are not constrained against

inter-penetration upon further unloading to zero load. By reversing the

s e

b

Byt \ GO K AR ¥, 1 OO : SOUOGOR) ¥ Tatte Ny 0 O Q0 0
A AT N O N KRR AR RO LN R A RN O O DR IR L e PR R ORI R WK




P

e

“E R N

w2y 2

%

P

LI

<

ta
-~
~

w

o

v,

1 W W Wy W Wy r,,r“r.!ﬁ.‘.'
R R N S RN AP A
A, ! :

1000 in
| |
a = 10 in. (Long Crack) |
a = 0.1 in. (Short Crack

T m— e ——

_+____ av4 s Val __v

I
"
I
|
|
|
I
I
I
|
]

Figure 6.

0.1 in.

Domain Discretization for Propagating Crack

1000 in.




%

a» X

"l

ﬁ*?'J e f')'f’-'f‘*'i-' o

plastic strains near the crack tip during unloading and before the crack has

been extended, the primary effect of crack surface interaction on the plastic
strains in the wake is computed. Somewhat higher cyclic plastic strains are
predicted very near the crack tip, due to the additional plastic strain
occurring at loads lower than the load at which closure occurs. The bulk of
the closure effect beyond reversing the plastic strains for the material just
ahead of the crack tip prior to extension is the elastic problem of loads on
the crack surface to maintain zero closure. This nonlinear contact stress
problem is fully reversible upon load application and does not affect the

plastic results.

The crack length is increased after unloading so the crack tip
will be at the next domain element boundary (0.0125 units long in the domain
mesh used). Extension of the crack is achieved in the elastoplastic BIE code
by assigning a new length to "a" and then by a single iterative cycle to
achieve elastic load redistribution. Thus, the traction free condition on the
crack surface is exactly satisfied without any mesh changes. The load/unload
cycle is repeated, followed by crack extension, etc. until the crack
plasticity results stabilize. The stabilization of the cyclic plastic zone
took about 2 to 3 crack extensions. Stability of the numerical results was

greater for the plane strain than for the plane stress condition.

Figures 7 and 8 plot the results obtained by calculation of the
stress intensity factor from Eq. (2) for various elastic crack tip locations
displaced from the tip of the analyzed crack size ("a + 4 a"). As in the case
of the stationary crack reported above, the computation of stress intensity
factor is a direct calculation of the effect of prior plasticity on a

propagating fatigue crack.

In all problems only three extensions of the crack showed that the
plastic strains had converged acceptable to a steady-state condition,
particularly for the long crack solution. In fact, the cyclic results did not

differ much from the monotonic results. The plane stress results for the
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at
$j short crack showed the weakest convergence, both in terms of the crack
- extension comparisons but also in terms of the numerical algorithm. The short
‘ crack, plane stress case has the weakest constraint on the plastic strains,
- and this would seem a reasonable source of the difficulty.
o
Ny

It can be seen that the computed plastic stress intensity factors
!? are somewhat oscillatory for short crack extensions. The oscillations occur

when the crack extension is inside the smallest crack-tip domain element.

However, by ignoring the plastic strain (Eq. (2)) within the smallest domain

s

element, the elastic stress intensity factor is made regular as seen in Figure

- 9. The Figure shows increasingly negative values of strain intensity factor
QE from Eq. (2) as the smallest domain element is reduced in size. This

" divergence in K occurs as expected due to the higher order plastic singularity
:é in crack tip strain. What was not expected was the apparently small (perhaps
5} indefinitely small) zone over which the divergence affects the calculated K in
N

Eq. (2). This zone was seen to reduce as the domain element as the crack tip

was reduced. This implies a discontinuity in the behavior of Eq. (2) for
small 4a. At 4a-0, the result is divergent. For 4a>0, the result seems to

converge to finite values of K for small da,

The cross-data points in Figure 9 correspond to values from Eq.
(2) obtained by setting the plastic strain in the smallest element to zero.
It is seen in Figure 9 that the effect of the plastic strain in the first and
smallest domain element zone at the crack tip is limited to 4a values only

within that element.

2.3.3 Closure vs, Retardation Results

The crack tip opening was calculated from Eq. (3) for both
stationary (monotonic loading) and propagating cracks. The algorithm is based
on monitoring the displacement at a pre-defined point on the crack surfaces at

a distance of .00001" behind the crack tip. This is an arbitrary location but

R
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4 reflects the experimental capability [11]. Similitude is not maintained as
0.0001/a equals 10-6 for the long crack case and equals 10-%4 for the short

crack case.

K Loading for crack closure monitoring is applied elastically, as
the plastic effect cannot resume until after the crack tip is open. The load
at which the displacement at this monitoring location goes from negative
(overleaving of the crack) to positive is defined as the crack tip opening
load. Interpolation of the numerical results was used to select this point.
The load for opening is then converted into an equivalent elastic stress

intensity factor corresponding to crack opening.

-

The results for the propagating crack are shown in Figures 10 and
11. The methodology used for the residual solution is obtained for a given
crack size, then the BIE code elastically computes the effect of the plastic
o strains on the crack opening load for various elastic extensions of the crack.
This corresponds then to calculating the effect of the plastic wake on crack
y closure. It should be recalled that the elastoplastic loading and unloading
are done for a given size crack so that the effects of interference of the

plastic wake from both sides of the crack is taken fully into account (see

(71).

o The numerical data in Figures 7-8 and 10-11 show a very important
piece of insight into the fatigue crack growth problem. Namely, the effect of
the plastic wake on the apparent stress intensity factor for crack opening is

identical (with a sign change) to the effect of the residual stress ahead of

.

- the crack on retardation of the stress intensity factor. Apparently, Kanninen
and his coworkers reported the same finding for the super-dislocation

- plasticity model discussed in Chapter 8 of his book [6]. The theoretical

reason for this is clearly seen from Eqs. (1) and (3), which relate to crack
tip strain field and crack opening displacements. The strain fileld Eq. (1) is
computed by differentiation of the displacement field Eq. (3) resulting in a

mathematical equivalence for any elastoplastic field.
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The duality of residual stress and crack closure effects was also
found for the case of the stationary crack subjected to an elastoplastic
load/unload solution. The application of this result would be for overload
modeling, with the conclusion that accurate modeling of retardation and
closure effects of the overload would produce identical effects on the crack
tip cyclic response. This is true during fatigue crack propagation with
plastic wake effects, as crack tip opening occurs as the last event after the

rest of the crack has been opened during loading [6,7].

2.3.4 Crack Opening Displacement

Figure 12 plots normalized crack opening displacements for the
long crack under plane strain conditions at the crack length of a=10.0. The
displacements are normalized by the elastic crack opening displacement

function:

2K 172
u H/a(Zeu-w) (4)

where r is the crack tip distance and H = E, E/(1 - vz) for plane stress and plane
strain. The solutions are plotted during loading unloading and show the crack
opening during loading at K = 5 ksi./in, which is elastic due to the finite
size of the smallest domain element for plastic strain modeling, at K = 10
ksi./in and at 20 ksi./in. The exact solution is seen to fit the elastic
behavior of the crack tip solution out to a value of r/a = 0.01. At higher
stress intensity factors, the crack opening displacement is seen to be
increasingly compliant, resulting in higher displacements over a length from
the crack tip somewhat larger than the plastic zone size of the problem.
During unloading, only a portion of the plastic stretch is reversed, thus, the
ratio of computed to elastic crack opening displacement becomes progressively
higher. The same behavior was observed for both plane strain short crack and

plane stress long and short crack cases.
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Figure 12. Stationary Crack: Normalized Crack Opening Displacement--
Plane Strain, Long Crack (a=10)
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Figure 13 plots the same results for the case of the crack which has been
extended by 0.0025a. The plastic wake effect has the result of reducing the
crack opening displacements to the elastic values down to r/a < 0.001. Given

a reasonable hypothesis that cyclic crack extension is associated with crack

tip cyclic deformation, then the cyclic crack opening displacement values for
the long crack plane strain results indicate that the LEFM model should be
applicable. Of course, this is just as expected. The role of the elastic
strain field for the small-scale yielding problem is to force the plastic zone

to conform to the deformation of the elastic singularity, near the crack tip.

The conformance is clearly achieved during the unloading when reversed

plasticity is incurred.

=

Figure 14 plots the same type of COD data for the short crack

00

problem where the crack is extended by 0.25a. The effect of plasticity on

crack opening compliance is now seen by the reduction of the COD below the
o elastic value, thus, achieving closure at positive loading. Therefore, the
crack opening displacement values for short crack results indicate that the
o’ LEFM model is not applicable. The data also shows large relative crack

opening near the crack tip, indicative of blunting.

»

The plane stress COD solution for both long and short cracks are
- plotted in Figures 15 and 16, respectively. The plane stress results show an
enduring plastic wake for both long and short cracks; the difference between

5 the plane strain and plane stress results is decreased. The increased plastic

wake size for plane stress is due to diminished constraint. It should be

) noted that, realistically, the plane stress condition occurs omnly at very thin
plates or at a very small layer at the boundary. Similitude for long crack

o fracture mechanics, therefore, implies that plane strain elastoplastic

| behavior must be occurring for real, three-dimensional cracks.
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:b :j 2.3.5 Long and Short Crack Results

h

¥ ii The two model problems considered in this study are for equally

!b applied elastic stress intensity factors. In the short crack case, this

3

J

N N results in a ratio of applied stress to yield stress of slightly more than
N 71%. At this load level, the elastoplastic plane strain, long crack results

_ _.4. o,

X L] 3
s 51

predict that the crack responds in accordance with LEFM.

The short crack results show that the effect of plastic wake on

£33

COD at a region near the crack tip is predicted to be significant for the

plane strain and plane stress cases. The plastic wake for short cracks is

" N\

. :5 seen to be the result of high, unreversed crack tip stretch plasticity. The
& Vs
* fact that the crack tip stretch within the scale of the cyclic crack tip zone
) F{ is greater than the LEFM prediction may provide the mechanics for increased
3
N2
q short crack fatigue crack growth. The increased crack tip stretch shows up
T physically as a plastic wake.
XS
:3 . 2.4 (Closure and Growth of Crack
) ‘v{
( One of the important rspects of the fatigue crack analysis is to
ot Tn correlate and predict the rate of growth of cracks for given combinations of
Ot
q: " geometry, material properties, and load history. Many theories have been
y
; I' proposed to predict the crack growth rate of cracks that fall under the small
? * scale yield categories. Most of the current models are based on the concept
: e that average growth per loading cycle can be related as a power low function
[ A
'j ) of the stress intensity factor, K [17,18]. However, under large scale
‘; yilelding conditions, accurate prediction of crack growth is not possible even
1.4 Yh\'
a‘ N with the use of modified forms of stress intensity factors. Many alternative
o W\ parameters such as strain based stress intensity factors (e.g., [19,20]),
i ol \v
ff A crack opening displacements (e.g., [21-24]), equivalent stress intensity
|! . factors (e.g., [25-27]), and J-Integrals (e.g., [28,29]) have been suggested
" .. for the investigation of fatigue crack growth where LEFM is not applicable.
: .. However, since first noted by Elber, crack closure concept is considered as a
; 2 very important criterion in explaining the propagation of the crack. He used
>
v‘ .’
)
v
>
. >
K
P
i
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an effective stress intensity factor, corresponding to the portion of loading

over which the crack remains open, as a correlating parameter. In this

-, =2 B

section, we further study the effect of crack closure on crack growth. A

detailed study of crack closure under plane stress conditions using finite

SYor

element method has been reported recently by McClung [30].

McClung’s investigation focussed on crack closure and factors that

O,

control its magnitude for constant amplitude of stress level. He noted the
pronounced decrease in normalized opening stress with increasing maximum
stress that is largely ignored in many experimental research. Also, he

confirmed an earlier finding by Iyyer and Dowling [31,32] that the ratio, U,

Ny 2

of the effective stress over which the crack remains open to the total applied

stress depends on the maximum stress amplitude.

' LW

Five crack lengths ranging from 0.07 in. to 10 in. were selected to

examine the dependence of U on the maximum stress amplitude in the current

o

study. In addition to the constant stress amplitude case, S(max),

investigated by McClung, crack closure due to constant stress intensity factor

o2

amplitude case, K(max), under plane stress as well as plane strain conditions

were studied. For K(max) case, the value of maximum stress was reduced

555

progressively with crack advance. The values of the ratio of maximum stress
-~ amplitude to the yield stress at the initial crack length for various cases

considered are given below.

B‘; Crack Length, a S(max)/S(yield)
(9
i 0.07 0.8
0.10 0.71
! 0.20 0.50
o)
0.50 0.32
- 10.00 0.07
!
ﬁ
)
.
(]
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2 4.1 Constant Stress Intensity Factor Amplitude Loadin

:
As explained in Section 2.3, the crack was extended by arbitrary
i increments of 0.0125 in. at zero load and incrementally loaded to the maximum
value and unloaded, subsequently. In the first study, the value of K(max) was
EE kept constant. As noted previously in Figures 14-16, the crack remained
closed during a portion of the loading cycle. The crack closing stresses were
!! computed by monitoring the maximum load at which the crack surfaces initiate
h contact during the unloading cycle. It was generally observed that the
N initial contact occurred at or near the location of last crack tip before the
current extension. The crack closing stress normalized with respect to the
maximum stress amplitude is plotted during crack extension in Figure 17 for
the plane stress case and in Figure 18 for the plane strain case. The results
indicate that after an initial increase, the crack closing loads stabilize, .

generally after about 5 increments.

To see the dependence of the crack opening stress on the maximum
stress amplitude, the stable crack closing stresses normalized with respect to
the maximum stress for different maximum stress amplitudes are plotted in
Figure 19 for the plane stress case and in Figure 20 for the plane strain
case. The results indicate that the normalized crack closing stress increases
with increase Iin maximum stress amplitude. In other words, the normalized
crack closing stress increases with decreasing crack length, going from long
crack to short crack. These findings are inconsistent with the finite element
method crack opening stress results reported for the plane stress case using

constant amplitude loading {30,33].

To examine the difference in the crack opening and closing

stresses, the crack was reloaded at the final crack length without crack
extension. A comparison of the normalized crack opening and closing stresses
shown in Figure 21 indicates that whereas the crack opening stresses are
higher than the closing stresses for the plane stress case, the values are
essentially identical for the plane strain case. However, the crack opening

stresses still show increase with increase in applied maximum load.
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Figure 17. Crack Closing Stresses Through Extension--
Plane Strain, Constant K (max)
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& Plane Stress
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Figure 18. Crack Closing Stresses Through Crack Extension--
Plane Stress, Constant K (max)

DatiegFe, T, Fly Fodle 8 iy . " QOO RORCIN i e gy 5 Fe e e et bty
Y "7-’@:‘-‘55&,@#.‘0.‘. A ?of‘!:!'!:..‘?nf'!o!:!-‘.‘,'::".c"?:'.‘?-.‘.‘-:ﬂ:"&!‘!u,‘?a"l? ALy



39

0.5

! Normalized Crack Opening/Closing Stress
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Figure 19. Crack Closing Stresses at Stable State--
54 Plane Stress, Constant K (max)
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Normalized Crack Closing Stress
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Figure 20. Crack Closing Stresses at Stable State--

Plane Strain, Constant K (max)
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Opening Vs Closing Loads
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Figure 21. A Comparison of Crack Closing and Opening Stresses at Stable State
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2.4.2 Congtant Stress Amplitude Loading

The same investigation was conducted at constant stress loading.
The normalized crack closing stresses for various crack extensions are plotted
in Figure 22 for the plane stress case and in Figure 23 for the plane strain
case. The results secm to stabilize after about 10 crack increments, however,
, the stabilization is weaker for this loading than the constant K loading
reported earlier, especially for short crack cases. The normalized crack
.9 closing stresses for various stress amplitudes for the plane stress case shown
in Figure 24 indicate that the closing stresses decrease with increasing
applied maximum loads, which is consistent with the results reported by
McClung [30] and Ogura, et al., [33] for high stress amplitudes. The
plane strain results in Figure 25 also indicate decrease in closing stresses

at high stress amplitudes.

y It should be noted that there are discrepancies in the modeling
approaches used by the finite element method [30,33) and the current BEM

approach. In the finite element method the crack extension was simulated by a

i

node release scheme at the maximum load level and the crack opening stresses

were computed during the subsequent loading cycle. In the current approach

e~

the crack was extended to zero load and the closing levels were monitored
during the unloading cycle. Also, in the finite element scheme, the crack
surface at contact was fixed against further displacement in the plane normal
to the crack surface, whereas the cracks were allowed to interpenetrate in the
BEM modeling. While the first modeling inconsistency is not expected to have

‘ substantial influence on the results, the second modeling difference may be
the cause of the discrepancies in the results, since the premature closing of
crack changes the crack tip locations. The crack tip singularity which drives
the reversed plastic strain effectively vanishes at the initial crack tip, as
a consequence, the development of reversed plastic strain is greatly

restrained. Nevertheless, the fact that different crack opening/closing
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CRACK CLOSING STRESSES
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Figure 22. Crack Closing Stresses-- f
Plane Stress, Constant S (max) \
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Figure 23. Crack Closing Stresses--
Plane Strain, Constant S (max)
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Figure 24. Comparison of Crack Opening/Closing Stresses for
Constant K and Constant S Cases--Plane Stress
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2ty

behavior for different loading situation (i.e., constant S(max) vs. constant

K(max)) using the same approach suggests different correlation between crack

opening/closing stress and maximum stress amplitude.

Q? 2.4.3 Long vs, Short Crack Results
b

Of the crack cases considered, two situations corresponding to

;
-1

crack lengths of 10 in. and 0.1 in. were studied in detail. The long crack

case corresponds to a ratio of applied maximum stress to yield stress of about

SE 0.71 and the short case corresponds to a ratio of 0.07. Given a reasonable
assumption that cyclic crack extension is associated with crack tip

“: deformation, thereby, with the crack opening displacements, the results

‘ reported earlier for the long crack plane strain constant K case (Figure 13)

bj predict that the crack responds in accordance with LEFM. The same conclusion
can be drawn from the normalized crack opening displacement for the constant

Egg stress case plotted in Figure 26.

The short crack results in Figure 14 and 16 for the constant K case and

LY

in Figures 27 and 28 for the constant stress case show the effect of plastic

wake on COD at the region near the crack tip as a result of high, unreversed

EA AN

crack tip stretch plasticity. The plane stress results for both long (Figures

15 for constant K, and Figure 29 for constant S) and short (Figure 16 for

¥

constant K, and Figure 28 for constant S) cracks show enduring plastic wake

o for both cases. The higher stretch within the scale of the cyclic crack tip

L]
-

Eﬁ zone than the LEFM prediction may provide the mechanics for increased short
crack fatigue crack growth.

lg On the other hand, the measure of the closure, evaluated in terms of

Eg crack opening/closing stress levels, does not seem to provide the explanation

v for fatigue crack growth. The amount of plastic wake affects crack closure,

K; but the closure seems not to be the cause of increased fatigue crack damage.

I Yet, the amount of closure is an indication of the excess crack tip damage and
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Pigne Stain, Long Crack, a=10.1, JL
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Pigne Stress. Short Crock, 6=0 2. UL
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thus serve, in a secondary manner, as a correlating parameter for short crack
growth rate data. It i{s hypothesized that stretch, rather than closure is the

concern in predicting the short crack growth rates observed in testing.
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3.0 THREE-DIMENSIONAL FRACTURE MECHANICS MODELING

3.1 Qverview of LEFM and BEM Analysis

Material deficiencies in the form of pre-existing flaws initiate cracks
and fractures in structures. The presence of a crack in structural element
generally induces high stress concentration at the crack tip and thereby
reduces the strength of the structure. Fracture mechanics provide
satisfactory means for the characterization of this local crack tip stress
fields as well as the elastic deformations of the material in the neighborhood
of the crack. In LEFM, the inelastic deformation in the vicinity of the crack
tip due to stress concentrations is deemed to be small compared to the size of

the crack and other characteristic lengths.

Elastic modeling of crack tip behavior makes use of deformation due to
three primary modes of loading as illustrated in Figure 30. The three modes
are: the opening mode (Mode I) due to normal stress, sliding mode (Mode II)
due to in-plane shear stress, and tearing mode (Mode III), due to out-of-plane

shear.

Consider the crack problem of Figure 31, representing an infinite plate
under triaxial stress. The stresses and displacements for traction free
cracks may be given as an infinite series in r, where r is the distance from

the crack tip. For the antiplane problem (see [6]), the near crack tip field

is given by:
93 Kt sin(8/2) 5
{032 : (2")1/2 cos(8/2) )
and
2K
up = ill(g;)1/2 sin(e/2) (6)
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5

where uj is the displacement,aij is the stress and s« is the shear modulus.

! The Mode I1II stress intensity factor, Kyyy, ls established by the far field
N )
[ boundary conditions and is a function of applied loading and the geometry of
:' the cracked body. The Mode III stress intensity factor is defined by:
L)
] Qt
!
3' " K, ;= lim{(2nr) /2 %)
% rrp ® LMHRee) Togs [y o)
&
I
:‘ an For the plane problem, assuming plane strain conditions,
i &
r o1 ! - sin(8/2)sin(36/2)
i 8
i K 8
g W 15 . 1 s cos(8/2) sin(e/2)cos(38/2) (8
b ﬁ 00 (2nr) 1 + sin(8/2)sin(36/2)
[}
L. and
&
My
. -
i .2
h u K 1/2 cos(8/2) [k - 1 + 2sin“(8/2)]
’ ! - —L (L (9
S u, 2u 2r sin(8/2) [k+1-2cosz(e/2)]
Y §
lJ
(}
y
. ! where K1 is the Mode I stress intensity factor, defined by:
3 (
)
l'
R
Hy ghn
W K, = lim {(21r)1/2022 } (10)
. r+o 8=0
vi ?
‘ & and
1
\
[ -
{ o k = 3-4v
L%

I
&

o™

oY

D
L)
¥

B ST

- o OOt s S AN L AR AT A S 1 SR S
VT RGN, -n\.n_ S0 ,u?'.o AT :‘.'30, T T Tt .:‘-.-!nb ihetly l‘,o?t.:' Wttty ..':'.. wh




(== A & 23

m T W=

57

The corresponding relationships for Mode II field are:
< -sin(8/2)[2+cos(8/2)cos(38/2)]
|9

5 2 T cos(8/2){1-5in(8/2)sin(38/2)] 1D
1 ,
2 (;"r) sin(9/2)cos(8/2)cos(38/2)

u, K sin(8/2)[k+1+2cosz(e/2)]
. e ,i2
BT ~cos(8/2) [k-1-25in%(8/2) ] 12
where Mode II stress intensity factor Kyp, is defined by:
1
K. = Lim {2ee) 20 ,] ) (13)
II r"O 930
3.1.1 Boundary Element Method for Fracture Mechanics Analysis

The analytical basis of the method is the transformation of the
governing equilibrium equation of an isotropic, homogeneous, elastic element
by an integral identity, using Betti'’s reciprocal work theorem. The identity

for the displacement at a point P(x) is given by (e.g., [34]):

(P)u,(P) = - [ T .(P,Qu
s U J

C; (Pluy (Q)ds(Q) + gUiJ(P,Q)tJ(Q)ds(Q) (14)

where tj(Q) and uj(Q) are the boundary values of traction and displacement,
Tij(P,Q) and Uij(P,Q) are tractions and displacements, respectively, in xi
directions at Q(x) due to orthogonal unit loads in the X4 directions at P(x).
The discontinuity term Cij is equal to 1/2 for smooth boundary points and can
be evaluated indirectly using rigid body translation as described by Cruse

(42], for non-smooth boundary points.

The utility of the method as a general practical solution tool is

facilitated by two approximations; one is the description of the boundary S by




k ,

E a finite number of surface elements, the second is the representation of the
field variables (uj,tj) and geometry by known interpolation functions within
p individual elements. In the present analysis, triangular and quadrilateral

elements are used for surface representation. The field variables, as well as

s

Y geometry, are represented by isoparametric quadratic interpolation functions.

Numerical evaluation of discretized integrals, as well as the use of special
crack tip elements employed in the current analysis, are described in a later

section.

o

) 3.1.2 BEM Modeling of Cracked Bodies

The numerical solution of Eq. (14) is straight-forward for a

general three-dimensional stress analysis. However, the presence of two

: coplanar surfaces preclude the use of the method for general solution of {
cracked bodies. Therefore, several different modeling strategies have been
employed for three-dimensional cracked bodies, as illustrated in Figure 32.
The first approach is to model the crack as an open notch as reported by Cruse

K (41). The major deficiency of this modeling approach is that the results .
become inaccurate when the surfaces are modeled too far apart, however, the

: system equation becomes badly conditioned when the surfaces are modeled too
close together. One form of avoiding this difficulty is the dislocation or t
traction BIE modeling approach as developed in different forms by Cruse [42],
Guidera and Lardner [45], Bui [38] and Weaver [49]. The singular nature of

s the integrals is this method poses difficulty in the numerical implementation

as reported by these authors. Significant improvements have been reported

' recently by Polch, et al. [48] and others. However, further research is

r—a—

required before the full potential of this utility can be realized.

Modeling of symmetric cracks is rather straight-forward since only

a symmetric part of the body that contains one crack surface needs to be
) modeled. Earlier application of this modeling has been reported by Cruse and
VanBuren [40]), Cruse [42], and Cruse and Meyers [44]). These results have been /

subsequently improved by using isoparametric interpolation functions by Cruse
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and Wilson {43]. The accuracy of the results has been further improved by the
use of special crack tip elements that accurately model the crack tip field.
Improved results using higher order interpolation functions for geometry and
field variables and special crack tip elements are also reported by Cruse and

Wilson [43]. A detailed description of special crack tip elements is given in

the following section.

A modeling strategy applicable for a general three-dimensional
non-symmetric crack is the sub-region model. In this approach, the body is
substructured into separate regions through the crack plane such that each
crack surface is in a different region. The overall solution is obtained by
satisfying compatibility and continuity conditions at the interface of the
regions except along the crack surface. Numerical results using this strategy
for two-dimensional structures have been reported by Blandford, et al. [37].

Results for three-dimensional bodies are reported in Section 3.2.

3.1.3 Use of Singular Elements

The accuracy of the numerical computations is enhanced by proper
representation of the field variables in the vicinity of the crack tip. It is
well-known that the crack tip opening displacement varies with square of the
distance (r) from the crack tip, whereas, the stresses produce 1//r

singularity. The crack tip elements are modified such that they capture these

variations.

It has been observed by Barsoum [36] that the placement of
midpoint nodes of the element sides emanating from the crack tip at quarter
points leads to the required displacement and stress variation in the finite
element method. By using quarter point (QP) elements (Figure 33) on both
sides of the crack in BEM, the displacements and tractions are made to vary in

physical space as:

(v)
{f } = A,+A /(r/1)¢A3(r/l) (15)
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where r is the normal distance from the crack tip, I is the element length in
that direction, and Aj, A2, A3 are functions of nodal displacements or
tractions. However, unlike the finite element method in which the tractions
(or stresses) are derived from the spatial derivative of displacements, the
displacements and tractions are independently approximated in BEM. The use of
quarter point elements on both sides of the crack front, thus, will give the
same variation for both displacements and tractions and, therefore, Eq. (15)
does not give the required singularity for crack tip tractions. The simplest
way to obtain this singularity appears through the use of singular shape
functions. However, the numerical integration scheme employed in the current
analysis requires subsegmentation of elements, as described in the following
section, which makes the implementation difficult. Instead, the traction
singularity is contrived by the multiplication of shape function by a

non-dimensional parameter v/(t/r) as:

t(r) = /(2/0)-t (16)

where ; is the normal traction defined by equation (15). The variation of

traction in these traction singular (TS) elements is then given by:

A,

t(r) = ——m—— & Ae A

172 17)
(c/2) (r/2)

3

The use of these special elements improve the accuracy substantially as seen

by the numerical results reported herein.
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3.1.4 Stress Intensjty Factor Evaluations

The stress intensity factors may be computed using displacements
or traction BEM solution from Eqs. 5-14. Mode I and Mode II stress intensity

factors are computed from:

K R 2x (18)
I or II = EF) v (r )uI or II(r‘)

where uy and uyy are decoupled displacements along Mode I and Mode II
directions at the quarter point, and r is the distance of the quarter point
from the crack front. Mode III stress intensity factors may be computed

similarly from:

2n)u

2x 19
e vt (19)

.y
Kiir =5 7 ¢

Alternatively, the stress intensity factors can be computed from
decoupled tractions at the crack front. As an example, the Mode III stress

intensity factor may be evaluated from:

KIII z /(ZRI)tIII (20)

where {,, is the decoupled nominal traction defined by Eq. (16). However, in
the present analysis, the stress intensity factors are computed using quarter
point displacements (Eqs. (18) and (19)), since the values using crack front
tractions (Eq. (20)) generally over-estimated the stress intensity factors by
about 10%. It is believed that one of the reasons for the discrepancy may be
that higher accuracy 1is needed for the integration of traction singular
elemert than the one used in the present analysis. Another reason may be
that, though the first term in Eq. (17) provides the required singularity, the
higher order terms of standard quadratic element expression (15), through

traction singular modification, are the suitable ones for the representation




- of traction variation. However, the use of traction singular modification

with quarter point elements improved the accuracy of the displacement based

stress intensity factors and are, therefore, used in the current analysis.

E

3.1.5 Evaluation of Discretized Boundary Integrals

s

In the present analysis, the geometry as well as field variables

are represented by isoparametric quadratic shape functions. The use of higher

- |

order interpolation functions, in general, preclude the use of analytical

integration and, therefore, numerical quadrature is used in the current

development. Non-singular Kernel function-shape function products, in

principle, can be directly approximated by the application of Gauss-Legendre
quadrature formula. However, to maintain a certain level of accuracy, element
subdivision may be required. Following Lachat and Watson [46], the minimum
element side length for a given error tolerance and quadrature order is
determined from error analysis. The element is then subdivided to satisfy

this requirement.

4 The non-singular integration is performed through a polar
coordinate transformation which eliminates the singularity. To accomplish

AN this, the element is subdivided through the singular point and the polar
coordinate system is constructed through the singular apex as described by

Banerjee and Raveendra ([35].

’ To achieve the required crack tip field variation, considerable

- mesh refinement at crack tip is necessary. Because of this non-gradual mesh
. refinement, the subdivision scheme employed for non-singular integration does
4 not always work efficiently. In order to avoid a large number of
subdivisions, a modified singular integration scheme is used for these f

non-singular integrations.
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K% 3.2 erical Mode ) astic Crack

ii The solution procedure outlined in the previous section has been applied
for the solution of many symmetric and non-symmetric cracked specimens. The

. numerical solutions obtained by using the current computer code CRX3D are
validated against known analytical solutions, in some cases, and are compared

to finite element solutions in other cases.

<18

3.2.1 C(Circular Crack

S o

Figure 34 shows the BEM map used for the analysis of a buried

q, circular crack problem. Due to symmetry, only one-eighth of the body was

. modeled. In addition, the symmetric planes of the body were not modeled. The
Q crack opening displacements using standard quadratic element and modified

.

v

crack tip elements are compared to analytical results in Figure 35 which

indicate that the results are improved by the use of modified crack tip

(5=

elements. The analytical solution plotted in the figure is for an infinite

body. To further assess the accuracy, the Mode I stress intensity factors

LA

were evaluated for standard and modified crack-tip element models. A
comparison with the empirical value that takes the finite dimension of body
into account demonstrated that the stress intensity factors using quarter

point element (QP) is approximately 5% in error, compared to standard element

JR A

results which is approximately 10% in error. Further enhancement was obtained

by using traction singular (TS) modification to the quarter point element,

-
s
LS,

which improved the stress intensity factor value to within 1% of the predicted

.

value.

3.2.2 Elliptical Surface Crack

-~ Figure 36 shows the BEM map for one-fourth of a finite cracked
plate. Whereas the symmetric Y-Z plane was not modeled, the X-Z plane was
modeled to allow the solution of elliptic buried and semi-elliptic surface

cracks to be modeled by a change in boundary condition. Figure 37 shows the

normalized Mode I stress intensity factor for buried crack using modified
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crack tip elements compared to the finite body solution. The figure indicates
that the accuracy of the solution was again improved by the use of the

traction singular model.

The semi-elliptic surface crack model was subjected to both
tensile and bending loads. Figures 38 and 39 show good agreement between
CRX3D results and the empirical Mode 1 stress intensity factors provided by

Newman and Raju [47]) for both loading cases.

3.2.3 Inclined Circular Crack

Due to the symmetry, only one surface of the crack was modeled in
the previous examples. However, as explained in the previous section, the
non-symmetric cracks were modeled using subregion modeling strategy. CRX3D

code was validated for non-symmetric crack cases by analyzing a circular crack

which is inclined 45% to the loading direction. Figure 40 shows the BEM model.

of one-half of the cracked body. Stress intensity factors for all three modes -

compared well to the infinite body analytical solution, as shown in Figure 41.

3.2.4 T-Joint with Elliptical Surface Flaw

The final example solved is a T-Joint section (Figure 42(a)) that
comprises a part elliptic surface flaw. A BEM model of one-half of the body
is shown in Figure 42(b)). Again, a substructure modeling strategy was used.
The body was modeled into four subregions to further improve the accuracy.
Figure 44 shows the Mode I stress intensity factor normalized with respect to
a two-dimensional plane strain model result (Figure 43). The behavior
indicates that while the stress intensity factor is higher at the free-surface
of the body, the solution at the mid-surface is comparable to the
two-dimensional solution as expected. Mode II and Mode III stress intensity

factors are also computed for the model and are shown in Figure 45.
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3.3 Elastoplastic Fracture Mechanics Modeling

As seen in the previous section, unlike the two-dimensional approach in
which the use of special fundamental solution that satisfies the stress free
condition at the crack surface eliminates the crack surface modeling, crack
surfaces are modeled in the three-dimensional approach. In modeling the
three-dimensional crack problem, the surface of the body is discretized into
quadrilateral and triangular elements over which the variables are
approximated by quadratic interpolation functions. The interior piastic
strains are modeled using rectilinear cells over which the plastic strains are
assumed constant. Due to the use of higher order interpolation functions, the
surface integrals in BIE, which cannot be evaluated analytically, are
evaluated numerically. The volume integrals, however, are evaluated
analytically. The elastoplastic boundary element solution approach involves
iterative solution of the displacement as well as the displacement gradient
forms of the boundary integral equation, as described in detail in the first
annual report. The boundary integral equation (BIE) corresponds to the
displacement gradient is deduced from the derivative of the displacement
equation, thus, the singularity of the integrands are increased. Generally,
the evaluation of these hyper-singular integrals are numerically challenging
for both singular and near singular cases. Especially for crack problems, one
must have small domain elements for proper plastic strain modeling. The need
to compute the near singular displacement gradient integrals at the centroid
of the domain cells which are close to the crack surface imposes a heavy

burden on the analyst. While adaptive transformation techniques are used to

i 9
Y ease the numerical burden and improve the accuracy of these integrals to some
extent, the magnitude of the problems is still substantial. Due to the
E constraint imposed by the need to accurately evaluate the hyper-singular
integrals and to limit the overall computing size a somewhat coarse mesh was
:i used in the current analysis.
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The model investigated in the current study is that of a center, through
crack of length 0.2 in. in a square plate of length 20 in, and thickness 2 in.
Due to symmetry, only one quadrant of the cracked body is modeled. This model
corresponds to the two-dimensional short crack case investigated in Section

2.0.

Adequate modeling of crack tip requires small elements near the crack tip
region of a crack that is small compared to the overall geometry of the body.
Since a single region boundary element modeling approach will affect the
numerical stability of the solution adversely, the crack was modeled into two
regions, an inner region around the crack as shown in Figure 46, and an outer
region as shown in Figure 47. The interior plastic strains were modeled using
the cells shown in Figure 48. The material properties used are the same
values used for the two-dimensional case. Only the constant amplitude stress
loading is considered. Loading consisted of incremental loading up to a
maximum value corresponding to 20 ksi.,/in and subsequent unloading to zero
value. Crack is simulated by imposing zero boundary condition normal to the
crack plane along the plane that contains the crack except at the crack
surface. Crack extension is simulated by changing the boundary condition to

the appropriate new crack locations.
3.4 N al Results for Elastoplastic Crack

During the first loading cycle, the crack opening displacements were
monitored along the crack surface. The crack opening displacement normalized
with respect to the elastic value at the center of the crack is plotted in
Figure 49. The crack opening displacement at K = 5 ksi.;/in during the loading
cycle is essentially elastic due to the finite size of the smallest domain
element used for the plastic strain modeling. At the maximum load of K = 20
ksi.rsin, the plasticity causes the displacement to be higher than the elastic
value and this is seen for all crack points. The ratio of the crack opening
displacement computed during the unloading cycle is higher since only a

portion of the plastic stretch is reversed during unloading. The same plot at
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Figure 48. Domain Discretization
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the free surface shown in Figure 50 indicates similar behavior. However, as
seen in Figure 51, the crack opening displacements increase progressively from

the center of the crack (y/a=10) to the free surface (y/a=0).

The crack was extended by finite amounts of 0.125a and the loading cycle
was repeated at each of the new crack length. Equilibrium at the new crack
length was achieved by solving an elastic problem with previous plastic
strain, by a single iterative cycle. Figure 52 plots the crack opening
displacement normalized to the elastic values at the center crack during the
unloading cycle after extending the crack by 0.25a. The situation at the
center of the crack approaches plane strain conditions, however, unlike the
plane strain results reported earlier, these results indicate no closure. The
same plot at the free surface, Figure 53, where the condition corresponds to
plane stress situation, also indicates no closure. These results are
inconsistent with the expectations. The cells yielded at the maximum and
minimum loads are plotted in Figure 54. The stresses at no load during

unloading is compressive, therefore, it is reasonable to expect closure.

The crack opening displacement nearest to the crack tip during the
initial and final loading cycles are plotted in Figure 55 a:t the center of the
crack. The displacements are normalized to the elastic value at the maximum
load. The results show that when extended at zero load the crack barely
closes even though compressive stresses are present. During the subsequent
loading, the combination of reduced stiffness and small size of reversed
plasticity compared to the large amount of forward plasticity seems to cause
the crack to remain open at no load. Similar results are obtained for the
crack tip node at the free surface (see Figure 56). Since the size of the
plastic cells used in the three dimensional model case is much larger than
the two-dimensional model, a comparable two-dimensional model was created to
analyze the influence of mesh. However, the two-dimensional results for the
plane stress and plane strain cases, shown respectively in Figure 57 and 58,

indicate closure.
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In modeling the two-dimensional crack, the elastic solution to the crack
problem is ‘exact’, and the only approximation is the domain discretization
used for the plastic strain. In the three-dimensional case, however, both the
elastic crack problem and the plastic strains are approximated. Further, the
discretized integrals in the two-dimensional case were evaluated analytically,
whereas, the three-dimensional integrals, except the volume integrals, were
evaluated using approximate numerical procedures due to the use of higher
order interpolation functions. While the use of higher interpolation
functions for the surface modeling is known to give more accurate results, as
evidenced in Section 3.2, the need to compute the burdensome near singular
hyper-singular integrals accurately for displacement gradient appears to be
the cause for the inconsistencies of the results. It is believed that the
discrepancies between the two- and three-dimensional results are mainly a
numerical problem, rather than a difference in the mechanics of the problems.
Further research is required to refine the three-dimensional modeling problem

to complete the analysis.
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3,:: 4.0 PROGRAM ACCOMPLISHMENTS AND CONCLUSIONS
) ii The principal accomplishment of the project is the development of a
boundary element method analysis to investigate the effect of plasticity on
:p fatigue crack propagation of two- and three-dimensional cracks. The
~ two-dimensional approach, based on the use of a special fundamental solution
!’ which explicitly accounts for the presence of stress-free crack, was developed
! in a previously sponsored AFOSR contract. The approach is extended for the
§§ investigation of crack tip behavior during crack propagation under cyclic
loading. For the three-dimensional case, a previously developed computer
\ - program was modified to model fracture mechanics problems, this includes the
= use of substructuring for non-symmetric cracks and the use of special
~ crack-tip elements. The elastoplastic analysis uses volume discretization and
5; the volume contribution of the plastic strain is computed using an analytical

solution of a rectilinear cell that contains plasticity embedded in an

" infinite body. The major findings of the project are as follows:

ai (1) The plastic zone/residual plastic zone size for stationary and
propagating cracks is estimated by a new indirect method. This is, by

EQ computing the elastic stress intensity factor, due to crack extension

N

into prior plasticity, the influence region of residual plasticity is
il estimated. This gives an unambiguous estimate of the plastic zone and
) compares favorably with the Dugdale model prediction for small plastic

- zones.

(2) 1t is established that the effect of the plastic wake on the stress
intensity factor for crack opening (closure) is identical to the effect
of the residual stress of crack on the retardation of the stress
intensity factor. This is, crack retardation and closure are seen as
identical manifestation of the same plasticity process for both

o stationary and propagating cracks. Further, the BIE formulation gives

insight to the mathematical equivalence of these two effects.
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L) (3) It is proposed plastic stretch rather than crack closure is the cause of
v increased fatigue crack damage of smail cracks. The loss of constraint
"
( li going from long crack to short crack which is further diminished going
s
. from plane strain to plane stress causes increase in plastic stretch and,
R
¢ c; therefore, invalidity of LEFM. Nevertheless, the amount of closure is an
ﬁv indication of the excess crack tip plastic damage and, thus, may serve in
:, !! a secondary manner as a correlating parameter for short crack fatigue
¥
\ growth rate data.
X
~
o (4) Three-dimensional elastoplastic problem imposes high requirement on
- finding efficient means for the accurate evaluation of integrals and also
*.Jﬁ the size of the problem makes it computationally burdensome for any

numerical solution procedure.

vy

(5) The results establish BEM as a very attractive solution tool for the

elastic and elastoplastic fracture mechanics analysis, especially for the

% o P
g

two-dimensional case. Since only the plastic strain around the crack
rﬁ tip, rather than the entire field, as is the case in finite element

method, is approximated in the boundary element method, the results are,

K)
§ t{ generally, more accurate. Even though the domain modeling required for
s v the elastoplastic solution may appear to make the method inefficient, the
p 'I fact is that only the yielded region around the crack needs domain
' modeling and, therefore, compared to the overall problem the domain
Fi’ modeling is not substantial.

(6) Finally, the research results have been presented in a variety of
- technical symposia and will result in archival articles. The list of

articles and presentations resulted form the research is as follows:
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¢ 1. "A Comparison of Long and Short Crack Elastoplastic Response Using the
Ka Boundary Element Method,"” T.A. Cruse and S.T. Raveendra, Engineering
= Fracture Mechanics, to be published.
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"BEM Analysis of Problems of Fracture Mechanics," S.T. Raveendra and T.A.
Cruse, (Editors P.K. Banerjee and R.B. Wilson) DRevelopments in
Boundary Element Methods -5, to be published.

"Application of the Boundary Element Method to Inelastic Fracture
Mechanics,"” T.A. Cruse and S.T. Raveendra, (Proceedings of the

International Conference on Computationa! Engineering Science, Atlanta,

Georgia, April 10-14, 1988).

;R =

Eg 4. "Some Elastoplastic Fracture Mechanics Results Using Boundary Integral
Equations,” presented at First World Congress on Computational Mechanics

University of Texas at Austin, September 22-26, 1986.

3. "Boundary Element Fracture Mechanics Modeling," presented at the Fourth

International Conference on Numerial Methods in Fracture Mechanics, San

Antonio, Texas, March 23-27, 1987.

W
6. "Application of the Boundary Element Method to Nonlinear Stress
u' Analysis," presented at ASCE Engineering Mechanics Division Specialty
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