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OVERVIEW

Temperature fluctuations in the atmosphere lead to dencity fluctuations. The refractive
index is proportional to the density; tnerefore, there are stochastic variutions in the refractive
index that affect the propagation of electromagnetic waves. These fluctuations are evident in
the shimmering of images that we see above heated surfaces. These refractive index
fluc:nations have a profound effect on astronomical images viewed through large apertures and
severely affect the propagation of laser beams propagated through the atmosphere. Turbulence
causes the images seen through astronomical telescopes to be much larger than the diffraction-
limited size and to jitter in position. It also causes the return image amplitude to vary — an
effect referred to as "twinkling" in the popuiar press and scintillation in the technical literature.
In the propagation of laser beams through the atmosphere, turbulence can cause the beam to
break up and to be much larger than the diffraction size.

Many measurements have been made of the distribution of the turbulence in the atmosphere
versus altitude. It has been found that the turbulence profile varies with geographical location,
time of day, season, weather, and presence of high-altitude winds. Several turbulence models
have been proposed and are used in problems. The common models generally used are the
SLCSAT day and night models and a model that is generally referred to as the Hufnagel-Valley
model. The last model has two free parameters so that the strength of the turbulence can be
varied. That model is the one used most often in this report because of the ability to change
turbulence strengths and because of its convenient analytic properties.

Adaptive-optics systems were devised to overcome turbulence effects on laser-beam
propagation and imaging. In these systems, a bright source is propagated through the
atmosphere, and the distortion of the beam is measured. If the conjugate of measured phase
distortion is applied to a deformable mirror, the image will be corrected and a laser beam
bounced off the mirror will be predistorted so that its phase front will be flat after it traverses

the turbulent atmosphere. An adaptive-optics system does not, however, make a perfect




correction to completely overcome the effects of turbulence. There are only a finite number of
actuators on the deformable mirror, so that all scales of turbulence are not corrected. There can
be a time delay before the correction is applied, and the turbulence will change in that time.
The beacon source to determine the correction may not be in the same direction as the object to
be imaged or the direction one wants to propagate the laser. The turbulence changes in
different directions, and a correction made for a certain direction will not apply along another
ray path. The efiects of different turbulence along different paths are called anisoplanatic
effects. The angular difference between two ray paths for which the effect of turbulence is
starting to be significantly different is called the isoplanatic angle.

The thecry in this report was developed to aid the performance predictions and to analyze
the data in the experiments that were and will be performed with a variety of systems. A
variety of quantities of interest such as the Strehl ratio, the beam jitter, the beam profile, the
effect of diffraction, inner and outer scale sizes and system defects will be considered. As
concrete examples of the application of the theory it will be applied to several systems that are
being actively considered by the adaptive-optics community. One experiment uses a 69-
actuator adaptive-optics system with a 0.6-m aperture to propagate a corrected beam to a target
at a range of 600 km. Another system uses an adaptive-optics system that has a deformable
mirror with 241 actuators also with a 60-cm beam director. The corrected beam is directed at a
cooperative target satellite and the space shuttle. The target satellite is considered to be
launched into a 500-km orbit and contains a 4-m square target board with 85 sensors to sample
the amplitude of the corrected beam and a lead-ahead boom whose position can be changed
between passes. The boom supports 2 comne.c-cube array reflector for a beacon that will be
used to provide the information to drive the adaptive-optics optics system. The proposed
shuttle-based expcriment will be used to measure the energy received in a bucket and the angle
of arrival of a corrected laser beam. In addition, the analysis 1n this report is used to examine
some of the problems in performing a mirror-relay experiment in which a compensated beam is

bounced off an exoatmospheric mirror to a target. Also analyzed are possible experiments with

larger apertures that are in the meter and several meter size range.




mirror to a target. Also planned and analyzed is a much larger, several-meter aperture ground
system for an FEL (Free Electron Laser) experiment.

The simplest quar:™*":s to calculate are the phase and amplitude variance. The phase
variance can be used to find the wavetront tilt; which is of primary interest for many
applications. Knowing how close the image size or laser-beam intensity on axis is to the
diffraction-limited value is of great interest: this quantity is referred to as the Strehl ratio. If the
distortion is small, the Strehl ratio can be¢ approximated by the extended Maréchal formula
given by

SR = exp[- ¢°] .
where the quantity it the exponential is the phase variance in radians squared. This formula is
only accurate when the phase variance is below a few tenths. Formulas that are valid over a
larger range of phase distortion are developed in this report.

To analyze the performance of astronomical telescopes and adaptive-optics systems, one is
interested in finding the effect of turbulence on the jitter, twinkling, Strehl ratio, and beam
profile. These problems are more difficult than finding the phase and amplitude variances. In
order to solve these problems one has to analyze Maxwell's equations with turbulence effects
present, which results in stochastic differential equations. These equations are formidable:
general solutions do not exist. Tatarski! has developed ways to simplify these equations; and
combine them with the Rytov approximation, thus making the problem tractable. The use of
the Rytev approximation makes the solution for the amplitude valid only if the amplitude
fluctuations are not very large. For large amplitude fluctuations, a different, more complicated
theory is needed. Fortunately, for most astronomical problems and most problems associated
wi*'i adaptive-optics systems, the amplitude fluctuations are small, and the simpler theory
applias.

Saying that the solution is tractable does not mean that the solution is easily obtained.

Unfortunately, the analysis to obtain the final form of the answer is usually quite difficult, and
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some ingenuity is involved in each problem. The final answer is also not in a very convenient
form — being a complicated multiple integral. This expression is usually evaluated
numerically, and the answer expressed in terms of graphs for a range of parameter values.
These calculations have to be redone for new turbulence or wind models, zenith angles, and
parameter values. The solutions in some cases have been made more general, as in the papers
of Fried? and Tyler? by defining normalized quantities; the tabular and graphical nature of the
answers, however, make these results difficult to use in systems-analysis codes. For
complicated problems, in which there are several independent parameters, even the
representation of the results of these integrations is difficult.

For these reasons, a new approach to solving these problems was developed. In this
report, a powerful method is presented to allow one to evaluate the phase and log-amplitude
variance, power spectral densities, Strehl ratios, and beam profiles for an electromagnetic wave
propagating in a turbulent media.

This method is based on the Rytov approximation. Therefore, it applies to most phiase
problems and can be used to evaluate the scintillation when it is not large. This analysis is not
applicable to nonlinear effects such as those produced by thermal blooming. The effect of
defects of an adaptive-optics system including various types of anisoplanatism can be included.
Anisoplanatism can include displaced apertures, apertures pointing in different directions, or
two beams taking different paths because of a difference in wavelengths, and time delay. The
normal optical aberrations can also be found or subtracted from the results. Results can be
obtained for collimated or focused beams. The effect of point and distributed sources can also
be calculated. These effects can be considered simultaneously in many cases.

The approach is based on simplifying the expressions for phase variance, structure
function, and power spectral density so that they can be writter., regardless of the problem, in

the following forms:
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Phase and scintillation variance:
2 L
¢ 2 2 G
[ 2'2] = 0.2073k 2[a= 2= ) [dR £ x)[ca Tr, &, 2)
0 i

Phase and log-amplitude structure function:

D¢(d.)-l 2L 2 2 Cp { D}
b 0.4146A0£d. cic)far for ¢ f1-cost® - ap ]1:[Fi(r‘<‘,:)

Power spectral density:

L 2 00
2 C(2)redeUe -1 ®c 9 :
F(w)= 1303 k*w [ d=—2 cYp (2L ),
(w) 3 ow{) “2( :) {) -\/Cz_ ] f( v(z).{ca ; FI( * z}

In these expressions, C ,2,(: ) is the strength of turbulence versus propagation distance, f( K)
is the transverse turbulence spectrum, v(z) is the wind velocity, Cp and C, are functions
that depend on whether the beam is collimated, focused at the source or at the target, and
H F i (K, ) is the product of transverse spatial filters. The turbulence spectrum can contain
in’ner and outer scale effects. The essential difference between various problems is the choice
of filter functions. In this report, filter functions are derived to extract any Zemike mode such
as piston and tilt, to account for any form of anisoplanatism, and to consider point and
distributed sources for adaptive-optics systems. Using these three formulas, the solution to an
individual problem can be written down very quickly in the form of a triple integral for the
structure function and variance of phase and amplitude related quantities. This is a significant
simplification over previous techniques; however, in addition, it is shown how to perform
these integrations to generally obtain simple expressions that do not contain any integrals. The

integration technique will now be briefly described.

The angle integration in the transverse-spectrum space can usually be easily performed so

that these problems are reduced to the evaluation of a double integral.




- =

The evaluation of the integral over the spatial-transform space becomes increasingly
difficult as the number of independent parameters in the integrand increases. For single
parameter problems. the integral over the transverse spatial spectrum or ¢ can be put in the

form

Hs)=[ay HOy) y*7

0
This is the Mellin transform of H(y); it is simply evaluated by lookup in a Mellin transform
tabls followed by evaluating the resultant expression for a specific value of s. The number of
Mellin transforms needsd to solve turbulence problems is surprisingly small, and the
transforms for all problems considered to date are listed in the report. Fer problems with two
parameters, a more complicated procedure must be used. A convolution theorem is used to

convert the integral into an equivalent one in the complex plane of the form

H(x =-2—l7.7j‘ds x~ 5 L(s)

where L(s) is the ratio of Gamma functions and the path of integration goes from -ico to +ico
along a path determined by the specifics of a particular problem. The utility of this form stems
from the property that the only singularities of the integrand are poles of numerator Gamma
functions which occur when their arguments are negative integers. This property allows this
integral to be evaluated very easily using pole-residue integration by closing the path of
integration in the direction determined by the properties of the integrand. The result is a
Taylor-series solution for the value of the integral. For large values of the parameter, this
series may converge slowly, and an asymptotic series is found in those cases. The asymptotic
series is the sum of the residues of the poles on the other side of the path of integration plus a
contribution from the steepest desceat path. This is easily evaluated. It is found that usually
fe'wer than ten terms, and often one or two terms, give &n accurate value of the integral, and
there is an overlap of the range of validity of the two series, therefore, allowing one to

represent th solution over the entire parameter range with a few terms.




For problems containing more than two parameters, it is shown that the integral can be
transformed into one in several complex planes. The technique of pole-residue integration is
generalized in this report so that power series solutions are also obtained in those cases. In the
process of evaluating the integrals the natural parameters of the solution emerge, which allows
one to obtain physical insight into the nature of the interactions of the various parameters.

After performing this integration, the problem has now been reduced to an integration along
the propagation direction. It is shown that for the Hufnagel-Valley model of turbulence this
integral can often be evaluated analytically. Therefore, by using these methods, the solutions
of turbulence problems are usunlly expressed as the sum of a few terms that do not contain any
integrals. For some problems the last integration must be performed numerically. This is just
a single integration and does not have numerical difficulties associated with it.

These techniques can be augmented to find the Strehl ratio and beam profile. The extended

Huy_ens-Fresnel approximation can be used to show that the beam profile and Strehl ratio can

be written as
Beam profile:
S U kD7 @ D(d)
In(r)=?{jda K(a)exp[z 7 -3
Strehl ratio:

D(@
SR = 21_ﬂ [a@ K(a)exp [— —(—2—)]

where K (a) is the moduiation transfer function of a circular aperture. The integration is over
a circular aperture of unit radius. The problems of finding the beam shape and Strehl ratio are
more complicated, since the structure function appears in the exponential of an integral. Simple
solutions cannot be found for all values of Strehl ratio; however, they can be found in the
regime that is of most interest for adaptive-optics probiems. It is shown that by using the
techniques that were developed to find the previous quantities plus an expansion in Gegenbauer

polynomials that the expression for the Strehl ratio when it is greater than 0.3 can be written as




SR = exp[—o%] g8(E)

where g(E ) is a polynomial expression, 0; is the phase variance, and E depends on the
particular problem being solved. The same techniques can be used to obtain series solutions
for the beam profile.

The mathematical analysis leading to the results is formidable to many, since it uses
mathematical concepts that are not normally part of the education of an engineer or physicist.
Once the time is spent to master these techniques, however, the application of the m:thods that
are developed is rather straightforward. Flow diagrams of how to use this approach to solve
problems are given. In fact, the method is so consistent that it should be possible to write a
computer program that completes the solution after the problem is set up utilizing an
algorithmic approach as is used in MACSYMA.

This report is composed of three parts. Many persons are a0t interested in the details of the
derivations but are interested in obtaining an answer to a problem of interest. Part 1 is aimed at
that audience and, also, is a useful summary to others with a deeper interest in the theory. A
summary of the relevant formulas developed in parts 2 and 3 is given in tables. In addition, a
step by step method for solving each type of straightforward problem is provided. More
complicated problems are not covered in these flowcharts, since they require a deeper
understanding of the theory.

In part 2, a general method of performing integrations of the same form as those
encountered in solving turbulence problems is developed. This method is mathematically
intensive and uses the properties of Gamma functions, Mellin transfosms, pole-residue

integration in several complex planes, and asymptotic series. The method of doing integrations

ini several complex planes is not available i the literature.
In part 3, a general method is developed to allow one to quickly set up turbulence
problems. This method is a generalization of Tatarski's method of spectral expansions. Using

this method, one can represent the effect of anisoplanatism, defects in the adaptive-optics
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system, and the extraction or subtraction of Zernike modes as filter functions multiplying the
turbulence spectrum. These filter functions can usually be cascaded so that any number of
effects can be considered. Using general formulas. one obtains the expression for the phase or
log-amplitude variance, or power speciral density as a iwriple integration over the transverse
spatial spectrum and the axial coordinate.

These integrals can often be e¢valuated analytically. The integral over angle in spatial
transform space can usuallv be easily performed. The integral over th~ magnitude of the

transverse spectrum, which can contain many parameters due to the various effects being

considered, is evaluated by the method introduced in part 2. The last integral over the axial
coordinate can typically be evaluated analytically for most problems of interest using the

Hufnagel-Valley model of turbulence.

integration method of part 2.

The method of integration developed in part 2 has applications in any field in which this
type of integral is encountered.

This report evolved over severa! years and with the help of colleagues. I want to thank Lee
Bradley for sugsesting the usefulness of Mellin transforms and Gegenbauer polynomials,
Ronald Parenti for discussiuons on how to handle distributed sources, John Sheiton for help in
resolving the issue of integration in several complex planes, Robert Kramer for carefully
reading the report and making suggestions on how to modify it (v inake it more readable, and
te Charles Primmerman for offering suggestions on how te organize the material. Finally, a
special note of thanks to Carole Kelly for making numerous revisions and putting this report in

¢ The evaluation of the Strehl ratio and beam profile is performed by a modification of the
its final forn..
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. This report contains much new material with which the typical reader will not be

acquainted. i have tried to explain this material or indicate references to it. I would appreciate

any coniments the reader has on how to make this report easier to read. My hope is that an



expanded version of this report containing more tutorial material will be published in a form

that will have a broader audience.
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1. FLOWCHARTS AND SUMMARY TABLES
1.1 INTRODUCTION

Problems ccacerning the propagation of electromagnetic waves in turbulent media are
considered to be difficult for two ‘easons: cach problem is treated as a separate entity, and
there are several difficult steps in arriving at the final expression for the effect of interest. In
addition, this final expression is in the form of a complicated multiple integral. The evaluation
of this express:on poses problems both because of numerical difficulties and also because the
final answer is given in terms of tables or curves for a few parameter values — a form that is
often difficult to extend to new parameter values or zenith angles without repeating the
calculation and is often not very useful for systems-analysis calculations. For these reasons,
calculations in this area are avoided except by a cadre of specialists. It is shown in the three
parts of this report that turbulence problems in which the Rytov approximation (slowly varying
turbulence parameters and low scintillation) is valid can be approached in a systematic fashion,
and answers can be expressed in terms of rapidly converging series of the parameters of the
problem. The forms of the answer can be derived quickly, give physical insight, and may
casily be re-evaluated for new parameter values or zenith angles.

It is shown that many of the problems of interest can be expressed as a spatial filter
function operating on the turbulence spectrum. The rms value is often the quantity desired. To
find this quantity, the expression must be multiplied by its complex conjugate, and then the
expected value must be found. This expression contains at least a six-fold integral. The
reduction of the number of integrals, which consists of making substitutions and
approximations, follows the same procedure from problem to problen.. It is shown that the
problems are reducible to integrals over the transverse spatial spectrum and along the
propagation direction. This triple integration can serve as a starting point for most problems,
obviating the need to perform the previous integrals. The integration over the angular

coordinates in spatial-spectrum space is usually easy to perform, thus reducing the problem to
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evaluating a double integral — one ove: the magnitude of the transverse cpatial spectrum, the
other over the propagation direction.

The integral over the magnitude of the turbulence specirum can be evaluated by Mellin-
transform tcchniques and results in rapidly converging series. The problem has now been
reduced to finding various moments of the iurbulence strength profile and then summing the
series terms. Soruetimes the parameters that determine the path of integration contain the axial
coordinate. Because the parameter changes i1, magnitude along the propagation direction, it
may be necessary to change the path of integration at some point along the path. For this
reason, the final answer can contain partial moments of the turbulence that are integrals of the
turbulence strength times some function of the axial coordinate over part of the path. For the
Hufnagel-Valley model of turbulence, the full and partial turbulence moments of the turbulence
strength multiplied by a power of the propagation direction can be evaluated analytically. Two
other turbulence models that are often used called the SLCSAT day and night models can be
represented by an equivalent Hufnagel-Valley model with parameters chosen so that they have
the same values of coherence diameter and anisoplanatic angle. The net result is that the final
answer can often be expressed as the sum of a few terms that do not contain any integrals.

The evaluation of the structure function and power spectral density are performed in the
same manner. Finding the beam profile and Strehl ratio is more complicated but can be done
for uncorrected turbulence. For adaptive-optics problems in which the Strehl ratio is greater
than 0.3, the beam profile and Strehl ratio can also be found using the same techniques
augmented by the introduction of Gegenbauer polynomials. The evaluation of the Strehl ratio
using this technique is valid over a greater range than the extended Maréchal formula.

In this pan of the report, detailed flowcharts are given to allow one to calculate the phase
and log-amplitude variances, the power spectral density, and Strehl ratio. These flowcharts are
synopsis of the results in parts 2 and 3. More complicated problems are not treated in these

flowcharts; these require the use of techniques developed in parts 2 and 3.
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1.2 FLOWCHARTS

In this sect'on, flowcharts are presented that allow one to solve most of the simple
problems of interest in turbulence propagation. This section does not consider the case of
forming new filter functions by combining complex filter functions and thun taking the absolute
value squared. This technique is discussed in the problems of finding the Zernike minus the
Gradient tilt in Section 3.5.3, beam movement at a target in Section 5.5.5, tracked ti. in
Section 3.5.6, and scintillation or a corrected beam in Sectior. 3.5.7. Combiniug filter
functions for these problems is basically not difficuit, but, it requires an understanding of the
filter functions that is not easy to convey in flowcharts. The evaluation of the integrals
obtained in these problems is covered in the flowcharts.

There are two basic kinds of flowcharts in this section. There are the step by step
flowcharts that allow one to set up a problem. In these flowcharts, there are some boxes with
asterisks. The asterisk indicates that there is another flowchart that goes into detail on how to
accomplish the step in the box. Some of these additional flowcharts are of the second type that
are really not flowcharts but logical ordering of cases that allow one to select a formula to be
used in the solution of the problem. All the formulas that are necessary to set up problems and
evaluate integrals are contained in Tables A to J at the end of the flowcharts. These formulas
are derived in parts 2 and 3.

The first flowchart, in Figure 1-1, describes the general method that is applicable to the
solution of all problems. After the general formula applicable to finding the quantity of interest
is selected, one has to choose the filter functions to insert in the integral. If some Zemike
quantity is wanted, a filter function from Table B is selected. If the source is a point or a
distributed source rather than a collimated beam, a filter function is selected froin Table E. If
anisoplanatism effects are wanted, then the proper formulas for the effects under consideration
are selected from Table E. The formulas given do not allow one to combine the anisoplanatic

effects with the distributed sources, and that is why they are on separate paths in the




flowcharts. These effects can be combined by going back to the fundamental relations. That is
not done in this report. After the problems are set up in terms of integrals, they are evaluated.

In Figure 1-2, the first box of the previous flowchart is expanded. The procedure for
selecting the correct formulas to find phase or log-amplitude related quantities for the variance,
power spectral density or structure functicns for collimated and focused beams is described.

The steps to find the filter function with anisoplanatism with as many effects as desired
included are shown in Figure 1-3. The selection of the correct formulas for Zernike
components and distributed sources is shown in Figures 1-4 and 1-5, respectively. As pointed
out in the section where these relations are derived, subtracting Zemike modes like tilt from the
full structure function is not srictly correct because the Zernike modes are not statistically
independent. The error in subtracting the tilt is less than 10% in calculating the Strehl ratio.
The evaluation of gradient tilt components is considered in Figure 1-6.

At this point, the solution of the problem is written down in terms of a multiple integral.
The general evaluation of this integration is shown in Figure 1-7. For phase and log-amplitude
problems, there is a triple integration over kappa space and over the axial coordinate. For
power spectral density, there is a double integration over ¢ and over the axial coordinate. The
integration over the angle in kappa space can usually be easily done. The performance of the
other integrations is discussed in detail in other flowcharts.

The integration over kappa or ¢ where there are single or no parameters is easy to perform
as shown in Figure 1-8. By a change of variables, the integrand can be put in a form that can
be evaluated by looking up a Mellin transform in the table, and possibly using a transformation
formula, inserting a specific value for the variable, and evaluating the expression using the
Mellin Transform pairs in Table F. For two or more parameters, the Mellin convolution
integral is used to convert the integral into one in the complex plane as shown in Figure 1-9.
Specifically, the steps required to evaluate an integral in a single complex plane are illustrated in
Figure 1-10. The steps in evaluating the asymptotic series are shown in Figure 1-11.

Integration in two complex planes is considered in Figure 1-12. Integrations in more than two

14




complex planes are a generalization of the last technique and are discussed in Section 2.5 of
part 2.

The last integration over : is considered in Figure 1-13. When the results of the previous
integrations give a power series in z and the Hufnagel-Valley model is used, then the result of
this integration is an analytic expression. For that reason, it is desirable to always consider
turbulence profiles that can be expressed as a Hufnagel-Valley model. In Appendix C,
parameters for the Hufnagel-Valley model are given that result in the same value of coherence
diameter and isoplanatic angle as the SLCSAT day and night models. These pseudo SLCSAT
day and night models are used in this report rather than the original models.

In Figure 1-14 is a flowchart to obtain the Strehl ratio for anisoplanatic effects. Chromatic

anisoplanatism is not considered in these flowcharts, but is considered in the main text.
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GENERAL METHOD TO SOLVE
TURBULENCE PROBLEMS

CHOOSE PROPER GENERAL
EQUATIONS FROM TABLE A FOR
QUANTITY OF INTEREST

YES

SELECT ZERNIKE FORMULA FROM
TABLE B , -
NO

COLLIMATED NO
SOURCE?
e [ SELECT POINT OR DISTRIBUTED
SOURCE FROM TABLE E'
ANISOPLANATISM? YES FS(ERL:cUIAFHWTABLE"g'

"f’ EVALUATE
INTEGRALS*

Figure 1-1. Flowchart of the overall method of solving turbulence problems..
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CHOOSE PROPER GENERAL EQUATION FROM
TABLE A FOR QUANTITY OF INTEREST

VARIANCE — FORMULA A.1
TEMPORAL POWER SPECTRAL DENSITY -—- A3
STRUCTURE FUNCTION—A.2

PHASE RELATED QUANTITIES
COLLIMATED SOURCE —— UPPER PART OF A4
(IF WELL WITHIN FRESNEL DISTANCE SET TQ UNITY)
FOCUSED AT APERTURE — MIDDLE PART OF A.4
FOCUGED AT S — LOWER PART OF A4

LOG-AMPLITUDE RELATED QUANYITIES
COLLIMATED SOURCE FOR PROPAGATION FROM 0 TO L — UPPER PART OF A5
FOR PROPAGATION FROM L TO 0 — CHANGE L - 2 TO z IN ABOVE EQUATION
FOCUSED AT APERTURE — MIDDLE PART OF A5
FOCUSED ATS — LOWER PART OF A5

Figure 1-2. Choosing the filter function for variance, temporal power spectrum, and struciure functions for
collimated and focused beams.




ANISOPLANATISM

PARALLEL VES
OFFSET? |

FORMULA D2
YES

NO
ANGULAR
OFFSET?
NO
FORMULA D.3 l
YES
v
NO FORMULA D.4 I
OFFSET?
NO
|

INSERT TOTAL OFFSET
N FORMULA D.1

Figure 1-3. Filter functions for anisoplanatism.




ZERNIKE COMPONENTS

ANY ZERNIKE COMPONENT PHASE VARIANCE
B.1

PISTON PHASE VARIANCE B.2 PISTON VARIANCE B.3

TILT PHASE VARIANCE TILT VARIANCE
EACH AXIS B.4 EACH AXIS B.6
2-AXIS B.5 2-AX!S B.7

PISTON REMOVED PHASE VARIANCE B.8

PISTON AND TILT REMOVED PHASE
VARIANCE B.9

2-AXIS TILT VARIANCE ON AN ANNULAR
APERTURE B.10

Figure 1-4. Filter functions for Zernike components.

19




POINT OR DISTRIBUTED SOURCE

ON-AXIS UNIFORM SOURCE
E.1

ANISOPLANATIC EFFECT
COMPARISON WITH A COLLIMATED
BEAM

OFFSET POINT SOURCE
EVERYTHING SYMMETRIC
E3

[ OFFSET POINT SOURCE
E.2

CENTERED POINT SOURCE
EVERYTHING SYMMETRIC
E.4

v
OFFSET , DISTRIBUTED,
UNIFORM, CIRCULAR SOURCE
E.5

CENTERED, DISTRIBUTED,
UNIFORM, CIRCULAR SOURCE
E . s

Figure 1-5. Filter functions for point or distributed sources.
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' GRADIENT TILT '

TILT VARIANCE TILT VARIANCE
EACH AXIS C.1 EACH AXISC.3
2-AXIS C.2 2-AXISC.4

TILT VARIANCE ON AN ANNULAR APERTURE
CS5

Figure 1-6. Filter functions for gradient tilt.

l EVALUATE INTEGRALS '

PERFORM ANGLE INTEGRATION IN
KAPPA SPACE

EVALUATE KAPPA OR ¢ INTEGRATION"

' EVALUATE z INTEGRATION I

Figure 1-7. Overall method to evaluate integrals.
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EVALUATE KAPPA INTEGRATION
SINGLE OR ZERO PARAMETERS

CHANGE VARIABLE OF INTEGRATION TO GET
STANDARD FUNCTION

LOOK UP MELLIN TRANSFORM

| EVALUATE GAMMA FUNCTIONS I

Figure 1-8. Method of evaluating integrals with single or no parameters.
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EVALUATE KAPPA INTEGRATION
TWO OR MORE PARAMETERS

CHANGE VARIABLES OF INTEGRATION AND
REARRANGE TO GET STANDARD FUNCTIONS

LOOK UP MELLIN TRANSFORMS.
REMEMBER THAT THE MELLIN TRANSFORM OF THE INVERSE VARIABLE ONLY
REQUIRES A CHANGE IN SIGN OF s.
IF THE FIRST TERM OF THE POWER SERIES IS SUBTRACTED FROM THE
FUNCTION THEN THE PATH OF INTEGRATION IS MOVED OVER ONE POLE.

USE MELLIN CONVOLUTION INTEGRAL TO OBTAIN
AN INTEGRAL IN ONE OR MORE COMPLEX PLANES

NO
v

INTEGRATE IN SEVERAL COMPLEX
PLANES"*

Figure 1-9. Method of evaluating integrals with two or more parameters.
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EVALUATE INTEGRAL IN A
SINGLE COMPLEX PLANE

IF DELTA » 0 CLOSE LEFT
IF DELTA <0 CLOSE RIGHT

EVALUATE
RESIDUES

AN ASYMPTOTIC SERIES*

NO 1 IF PARAMETER IS LARGE GET

vés | IFPI<OCLOSERIGHT EVALUATE
IF Pt » 0 CLOSE LEFT RESIDUES

IF PARAMETER > 1 CLOSE RIGHT
F PARAMETER « 1 CLOSE LEFT

EVALUATE
-~ YES RESIDUES
PATH CANNOT BE
NO CLOSED AT INFINITY
YES
2

CLOSEPATHIN EVALUATE
EITHER DIRECTION RESIDUES

PARAMETER = 07 NO

Figure 1-10. Evaluation of the integral in a single complex plane.
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ASYMPTOTIC SERIES

IF DELTA < 0 CHANGE THE SIGN OF 8 IN THE
INTEGRAL

EVALUATE W(x) WHICH IS THE SUM OF THE
RESIDUES ON THE OTHER SIDE OF THE PATH OF
INTEGRATION

CONDITION 1 OF TABLE H
SATISFIED ? YES -.l H(x) = W(x) I

NO

i

H(x) = W(x) + E(x)
E(x) IS OBTAINED FROM THE
FORMULAS INTABLE H

Figure 1-11. Evaluation of the asymptotic series.
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EVALUATE # TEGRAL IN TWO COMPLEX PLANES

MAKE A LIST OF ALL 2-POLES

FOR EACH COMPLEX VARIABLE PERFORM THE
FOLLOWWNG STEPS

F DELTA > 0 CLOSE NIGHT
F DELTA < 0 CLOSE LEFT

YES

' l

YES

INSERT THE 2-POLES INTO THE EXPONENT EVALUATE
OF THE PARAMETERS. RESIDUES
DEFINE NEW PARAMETERS WHOSE

EXPONENT DEPENDS ON ONLY ONE INDEX

L4

y -
SELECT THE 2°OLES THAT CAUSE THE
PARAMETER TO DECAY FOR LARGE
VALUES OF THE INDEX

Figure 1-12. Evaluation of the integral in wo complex planes.
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HUPFNAGEL-VALLEY _J DO NUMERICAL
MODEL? NO INTEGRATION

YES

rowensemesm 1 N, 1 o

Figure 1-13. Evaiuating of the : integration.




STREHL RATIO FOR ANISOPLANATIEM
USE FORMULAS IN TABLE J

USE GENERAL FORMULA J.1 AND J.2

FOF DISPLACEMENT ANISOPLANATISM USE J4 AND JS
FOR ANGULAR ANISOPLANATISM USE J.6 AND 4.7
FOR TIME DELAY USE J.9 THROUGH J.11
FOR CHROMATIC ANISOPLANATISM SEE SECTION 3.9.3.4

Figure 1-14. Finding the Strehl ratio with anisoplanatism.
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TABLE A
Formulas for the Phase and Scintillation Variance, Structure Function, and PSD
Phase and Scintillation Variance
¢2 2 G
[ ] 0.2073 k jd- Chz)far f(x')[ ]I-IF (R 2) (A1)
z a
Phase and Log-AmpIitude Structure Function
D, (&)
[ v } 04146A2jd ¢l )jdic‘ f(x)[q’}[l—cos{i‘ aD}]]'IF (R, z)
D_ (&)
4 (A.2)
Power Spectral Density
L
2 C( )7 cde Uc ~1)
F(w)= 1303k w | dz-—— L (A.3)
° {) V() j Va-1 v
where
( ,[ Kz - L)J ] [collimated
cosc |\ ="
2k
K2S(S - =)
G = «( ) cos~[ T focused at 0 (A.4)
s-zV" 2 Kz S for a wave that is
( S ) cos [2 k(z - S)]‘ | focused at S|
[ 2[ K@ - L)] l collimated
sin
2k
Ca =3 ( ) sm [ Kzi(ks; z )] focused at 0 (A.s)
( S~ )5/3 ., 228 for a wave that is
\™S S Tk, - 9) | | focused at S,
-1/ 2, 2 ~11/3
and f( x)=[r? + xg] exp [ -K°IK; ]= K (A.6)
For finding the PSD let x = w¢/V2) in Equations (A.4) and (A.5)
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TABLEB
Filter Functions for Zernike Components of the Waveform

evenm, n

(") 2

. ] 2J,, (kD /2) 2J2°°S (me)
Foddm.n(x)>=("+l) D/ 2
F . n(K) 1 (m=0)

) 2.0 /2)) |
F@#¥,z)= D73 Piston Phase Variance

)2[2JI(KD /2)

2
D72 ] Piston Variance

2
Fx(l?, z [4-’2( Id)/Z)] cosz((p)
Fy®, )~ D72 sin2(p) Zernike-Tilt Phase Variance

4J.(xD /2) 2
FR, 2)= -2 .
’ xD /2 Two-axis Phase Variance of Zernike-Tilt

2
Fx(f, Z)} ( 16 )2[ "2( xD /2)] {COSZ(¢)
Fy(®, ) koD kD /2 sin%(9)  Zernike-Tilt Variance

2sin 2(m@)  Zernike Polynomials

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)
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TABLE B (Continued)
Filter Functions for Zemike Components of the Waveform

2
16 [ 0P /27
F(&, z)= ( > D) D72 Two-Axis Zernike-Tilt Variance (B.7)

2J(xD /2)

2
N i\t B.8
F(x,z)=1 [ xD /2 ] Piston Removed Phase Variance (8.8)

F(x, z

[2Jl(xD/2)]2 [412(10/2)]2
y=1- D /2 - KD /2 Piston and Tilt Removed (B.9)
Phase Variance

Two-Axis Zernike-Tilt Variance on an Annular Aperture

FRe )= __ 6 7 LD [2) o] (xBD /2) ? (8.10)
(K.z )= ‘P (- g o7 TP T 2

where = D ./ D and D;is the inner radius
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TABLEC
Filter Functions for Gradient Tilt Components of the Waveform

F. (%, 2) cos 2(
Fx(f’ ’)} =J'2(KD/2){ in 2 .
) 2 sin (@) Gradient Tilt Phase Variance

L2
F(K, 2)=J (D /2)  y4.Axis Phase Variance of Gradient Tilt

F. (¥, z) 4 2 2 cos2(@)
F(x’",z)}=(k D)Jn"‘D/z) in2(0) N
y sin “(@ Gradient Tilt Variance

o

2
- 4 2
F(x, z) =( T D) J, (D /2)  Two-Axis Gradient Tilt Variance

Two-Axis Gradient Tilt Variance for an Annular Aperture

..|2

4 2
F(R,z )=[kOD (1 J 132)_| [J(xD /2) = B J (D ] 2)]

where = D./ Dand D;is the inner radius

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)
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TABLED

Filter Functions for Anisoplanatic Effects in an Adaptive-Optics System

Anisoplanatism

F,z)=2[1-cos{R: d(2)}]

General Formula

d(z)=d  Parallel Displacement

d(z)= 6: Angular Offset

Delay

Chromatic Offset

(D.1)

(D.2)

(D.3)

(D.4)

(D.5)
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TABLEE
Filter Functions for Point and Distributed Sources

Point and Distributed Sources
2

()
I\ 2/

S On-Axis Uniform Circular Source of Diameter Dg

Anisoplanatic Effects (Reference Is Collimated Beam)
D/2

- fu st 5role- 5]
FR,5y=2% [rarf1= 7 (E)cos| #- Z .
(¥, 2) 0’ .(!)' ! 0( H )COS H Offset Point Source
ZJ(KD::)
F(F, 5)=2[1- —pi2 (22)
v 3 o\ H Offset Point Source with Symmetry
J _'&2_)
F(%,z)=21-2-22H
vl KD: Centered Point Source with Symmetry
2H

Distributed, Circular, Uniform, Otfset Source

2
4J(Dx)2J(D x) ~ J(D x)
- 1 I\ s L zb 1L ™s
F(x,z2)=1- Dx sz COS(K”——)'F 2——D‘s‘x—‘

-
where T 2H

Distributed, Circular, Uniform, Centered Source with Symmetry

2
4J(Dx)2J(D,x) [ J(D,x)
1 1 s 1 s
F(R, 2)=1- Dx ﬁsx +[ D x

(E1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)
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TABLEF
Mellin Transforms that Are Useful for Turbulence Problems

exp (= x)

sin (x)

cos(x)

sin 2( x2)

J(x)

Jvz( X)

Jv(-")Jv+ ](x) —)-m

-P

—-I[s] Re 5> 0
—)2“-'\/51“[:/“2:/;/2] IRe sl<1
—)2"“‘\/?1‘[://22_”2] O<Re s<1
__\%_f_r[ls/;isM] —4< Re 5s<0
—>2"'r[j//§:;’fzs/2] —Re V<Re s<3/2

1 s/2+v,1/]2-5/2
_)mr[v+l—s/2,l—s/2] —-2Re v<Re s<1

1 I.[s/2+ v+1/2,1-s/2
v+3/2-5/123/2-5/2

F[SQ P"'s]

O <Re s <Re
TL p) s P

(F.1)

(F.2)

(F.3)

(F.4)

(F.5)

(F.6)

] —1-2Re v<Re s<2

(F.7)

(F.8)
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TABLE F (Continued)
Mellin Transforms that are Useful for Turbuience Problems
(1- x)a—IU(l— x) —)I‘[a]l‘[:+ a] Rea>0 Re s>0
(F.9)
(x-0""'U(x-1) —)I"[a]l"[:: . s] Re a>0 Re(a+ s5)<]
(F.10)
, | )
1 - 1 - -g€ <Re s<e¢
ETO[H e vme) (F.11)
- AT s/2+l/2,—s/2]
cos l(x)U(l—x)—)--T s/2+1L1—s5/2 Re s>0 (F.12)
: F[s ] Re s>0
va=x =T (F.13)
-3
U —>r[l_ s] Re 5 <0 F14
VIS eko1 @mNn=k)7SR s/ 4 i
sin"(xz)—-);i;—;T kgo(-l) K2n=k)! r%—s/4 IRe sl< 5
(F.15)
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TABLE G
Hufnagel-Valley Moments of Turbulence

Hufnagel-Valley Full Moment

o 2
~20+3 ' W
Hy= [ d: Oy 2" = sec ™1 594 x 107033 ) T+ 1)
0

n+l

+4.05 % 10"31‘( n+ 1)(1500)"+ Ax 100" T(n+1) ]

(G.1)

Hufnagel-Valley Upper Moment
o 2
- W,
L) = [d:Co(z) 2" =sec "“(4)[5.94 x 1072 T (n+ 11785)
L

+4.05x 107°r (n + 17855 )1500)"+ Ax 100™'T (n+ L6 )]

Hufnagel-Valley Lower Moment

L 2
)= [ ds €22y = see ™) 5.94 x 107052 ) ¥ (n+ 10, 755)
0

+4.05x 1073y (n+ 1,.2-)1500)"+ Ax 1001y (n + L 165))

(G.3)
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TABLE H
Formulas to Find the Asymptotic Series

Integral to be Evaluated

A B
II;_[]F[ai +a 5] Er[bj - BJ s]

e . -
H(x)= 2m'jd“ s D (H.1)
]'[r[ck+ 1,51 IIT[d, - 6,5]
k=1 m=1
Definitions
$a+3o-3p-3
A= o + 0, - B.- Y,
i=1 ! m=lm J=1 I k=1k (H.Z)
MM=-nixl- A (H.3)
Z'=A+D-B-C (H.4)
E=A+B-C-D (H.5)
a4+ 363 -3
V= a + b. - c, - d
e e A T (H.6)
Q=v+C-A-E5"/2+1 (H.7)
A D B C
4= 3 oln(@)+ ¥ 5, @)~ X B,In(8)- X 1, In(r) (H8)
i=1 m=1 j=] k=1
B
B= 2 b (H9)
D
D= ) &, (H.10)
m=1
A=[D- B] (H.11)
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TABLE H (Continued)
Formulas to Find the Asymptotic Series
B
B'= 2 b (H.12)
j=1
D
D= Y d, (H.13)
m=|
p=lv+(1-E5)/2]/4 (H.14)
A B C D
A= Y, a; In o, + Y bj In ﬁj— p) ckln Y~ )y d,In 5, (H.15)
i =1 J =1 k=1 m=1
A B C D
A" = Y In a.+2]nﬁ.—21nyk—21n S, (H.16)
i=1 : j=1 / k=1 m=1
(E-1.2
L_20em
E(x)= -\/_A-
x xPexp (- pA'- Ax!/ dexp[-A'/ Alcos[nA | A]+ A"— 4™/ 2)
x cos{Ax!/ dexp[-A'/ Alsin[ TA/ A)+ n{- pA+ B"- D"— (B - D)/2]}
(H.17)
If A= A'=A'=0, B=B, D=D, (H.18)
then the above simplifies to
22m"= "V?
- ) P A llA4
E(x) Ja x" exp {—Ax cos[nA / A)}
x cos{Ax!/ Asin[wA/ A+ xn[(1/2 - p) A+ B"- D"]} (H.19)
Condition 1: For £ > 0, B'2 1, then H(x)= Wx) (H.20)
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TABLE|
Meliin Transforms, Convolution integrals, and Transformation Formulas

The Mellin Transform Pair is Given by

H(x)>H"(s)= M(H(x)) = [dv H(x)x *~! (1.1)
0
and H(x)= 5 [ds H"(s)x™5 (12)

Transformation Formulas

H(ax) a>0 —d *H"(s) (1.3)
XH(x) oS H'(s+ a (1.4)
H(xP) -SH s/ pllp  p=z0 (1.5)

The Mellin Convolution Integral is Given by

Hx)= [LH0OH [3] 5 H ()= Hy(9H(s) (16)
0

For More than One Parameter, the Convolution Theorem is

H( )J’de(t)HH( )-—)Ho(s+ )ﬁ[lH;(sl)

*
=H (sl - SN) (1.7)
The Inverse Transform is

S -3

. - | ™
H(xl---, )N)—mj...jdsl...dsh, H (Sl+ N)X ...XNN (I.B)




TABLEJ
Formulas to Find Strehl Ratio with Anisopianatism
SR = exp[-o-;l[l +0.9736 E + 0. S133E2 +0.2009 E* +0.0697 E* + 0. 02744 E°]
(J1.1)
2
E = _2._9:‘/;;‘12_ (J.2)
D
) 2T 2 513 2
a-¢=2.9l&oj(;d. Colz)d™ () =2.91kd g o (J.3)
Displacement Anisoplanatism
2
d,= pud (J.4)
5/3
2 d
0 =291k ud® = 6.88() (.5)
Angular Anisoplanatism
d(z)= 6: (J.6)
bl
d,= p,6 (J.7)
) 2,503 ¢ 2 5/3 (2] 513
a%=2.91k30° " [ a: € z) 25 =(§;) 4.8)
0
Time Delay
L
2
dy= { d: Co2) VA 2) 2= v, P J.9)
. I, 5/3
0%,=2.91k, [dz Co(z) v3 /3P 3= (1 / 1,) (J.10)
0
where the velocity moment is defined as
L
vo= [dz Ciz whz) (W.11)
0
The characteristic time is defined by
L
©5/3=2.912 [d: iz w3/3(2) a4.12)
0
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2. THE EVALUATION OF MULTIPARAMETER INTEGRALS
2.1 INTRODUCTION

In Mzrichev's book? a powerful method for evaluating integrals is developed. His method
applies to all integrals whose integrand is the product of two generalized hypergeometric
functions. For that case, he shows that the integral, which can be transformed into a Mellin-
Bames integral, can be expressed as a finite sum of generalized hypergeometric functions
which are equivalent to a Meijer's G-function. He briefly considers the case in which the
integrand is the product of more than two functions and states that this area has not been
developed. In this part of the report, his method is generalized to apply to the case in which the
integrand is the product of N functions, and the final answer is expressed in terms of rapidly
converging series — a form that is more useful for numerical evaluation on a personal
computer.

The evaluation of an integral with N parameters is shown to be equivalent to the integration
of a function composed of the ratio of Gamma functions in N — 1 complex planes. Methods of
evaluating integrals with general functions in N complex planes are not available, but, because
the complex variables appear only as sums, the integrals encountered using this method can be
evaluated.

Marichev puts i Ategrals into a standard form in which the complex variables have unity
coefficients, in which case, Slater's theorem applies, and the answer is a sum of generalized

hypergeometric functions. Using this technique, one can show that the Streh! ratio for

uncorrected turbulence can be written as the sum of six generalized hypergeometric functions, |
five of the form sF,o() and one ¢F,,(). This form is not convenient for either obtaining
physical insight or in evaluating the expressions on a personal computer. Here, the step of
putting the integrand into the standard form is short circuited, since the answer wiil be obtained
in the more convenient form of infinite series. For small values of the parameter, a power

series is obtained, and for large values an asymptotic series is sometimes applicable. Each of
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these series are obtained in a straightforward manner, and the method is amenable to
algorithmic solutions.

The properties of Mellin transforms and Gamma functions that are useful in this analysis
are given here. A short table of Mellin transforms used in the examples given from turbulence
theory is included. Examples of evaluating integrals with one, two, and three parameters to
obtain power and asymptotic series are given. Examples of the multiple pole case are also
treated.

This technique is particularly well suited to evaluating the integrals obtained in considering
wave propagation in turbulence since the kernel of the Mellin transform matches the
Kolmogorov spectrum. The method is also applicable to any field in which this type of integral

is encountered.

2.2 GAMMA FUNCTIONS
The integrals will be shown to be expressible as the ratio of Gamma functions; in order to
perform the integration, several properties of Gamma functions are necessary. The relevant
properties are reviewed in this section.
The definition of the Gamma function is
[ -3 n oo
I(s)= Idx exp(—x)x’~ 1= ZOL_% F},—,, + Idx exp(=x)x’~
0 n= 1

The argument s can be complex. The last integral on the right is an entire function and it is

L @an

casy to see that the only singularities of the Gamma function are simple poles at the negative
integers, —n, with residue (-1)"/n!. The reciprocal of the Gamma function can be shown to
be an entire function; therefore, the only singularities of the ratio of Gamma functions come
from the numerator. Plots of the Gamma function and its reciprocal are shown in Figure 2-1.

For convenience the following notation introduced by Marichev is used
@ s O, l‘(al)I‘(az) ..Nea,,)
By s Bn| T(BII(B) ...T(B, (2.2.2)




GAMMA (x)

FUNCTION VALUE

1/GAMMA(x)
2F
Y 2
| Al
Y VY | SR NN M DU T T P SN
-5 -4 -3 -2 -1 0 1 2 3 4

ARGUMENT

Figure 2-1. Plot of the Gamma function and its reciprocal.

Frorm the duplication formula for Gamma functions, one finds

i sin (7s)
T(s) x  Td=s). (2.2.3)

Using integration by parts on the definition, one can show that
I'(s+ 1)=sI(s). (2.2.4)
For integer arguments, one finds I'(N +1)= N!. Some calculators can evaluate the

factorial function at noninteger values. The above relation can be used on those calculators to

evaluate the Garnma function.
Gamma functions with integer multipliers of s can be converted into Gamma functions

with unity coefficients of s by the Gauss-Legendre multiplication formula

- m-1
"2 TIr(s+ k/ m). (2.2.5)

k=0

1
T(ms)=mms - 1/2(2 n')(

For large values of the argument, Stirling's formula gives the asymptotic series as

I'(s)=‘\"?7_t_s"”zexp(—s)[l-i- s/124 52/288 + ... larg sl< . (2.2.6)

There is a branch cut along the negative real axis.
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2.3 MELLIN TRANSFORMS AND SIMPLE INVERSE TRANSFORMS

Mellin transforms are particularly useful in problems dealing with wave propagation in
turbulence. For simple problems in which the Kolmogorov spectrum is used, the kernel of the
Mellin transform matches the turbulence spectrum, and the integrals can be evaluated by table
lookup. For more complex problems, a convolution theorem is used to transform the integral
into one in the complex plane. Because the Mellin transform of a function is the ratio of
Gamma functions, this integration can be performed using the method of pole residue
integration. If the path can be changed into a closed curve, the value of the integral as given by
Cauchy's formula is just 27i times the sum of the residues at the enclosed poles.

2.3.1 Mellin Transforms

The Mellin transform pair is given by

H(x)>H*s)= M(H(x)) = [dx H(x)x*7, 2.3.1)
0
1 * -
o H(x)= 5= [ds H (s) x5, (2.3.2)

The path of integration in the inverse transform is determined by the convergence p..operties of
the function being transformed. The Mellin transform of any function that can be expressed as
a generalized hypergeometric function, a category that includes most of the common functions
(algebraic, exponential, trigonometric, inverse trigonometric, hyperbolic, logarithmic, complete
elliptic and sine and cosine integrals, error functions, Gegenbauer polynomials, Bessel and
other orthogonal functions), is given as the ratio of Gamma functions. Marichev lists 1200
Mellin transforms. Oberhettinger> has an extensive list of Mellin transforms, but, they are not
all expressed in the form of the ratio of Gamma functions as those in Marichev are. In Table F
of part 1 are Mellin transforms of functions that are useful for problems dealing with wave
propagation in turbulence. The values of s on the real axis for which the integral converges

are also given in the table. The specification of the region of convergence is used when




choosing the path of integration in doing the inverse Mellin transform. The two-unit step
functions in Equation (F.9) and (F.10) can be used to convert integrals with finite limits into
ones with infinite limits that can be evaluated using the theory to be presented. The asterisk
after one term in the Mellin transform of the sine squared is a notation that is adopted in this
report to signify that the path of integration passes between the first and second poles of that
Gamma function. In most cases, this notation is all that is necessary to define the path of
integration in complicated problems in which there are an infinite number of poles on both
sides of the path of integration. For simpler Mellin transforms, such as that of the Bessel
function, the conditions for convergence must be stated explicitly. Table F can be augmented

by using the following properties of Mellin transforms:

H(ax) a>0 —a *H*(s), (2.3.3)
x9H (x) - H"(s+ a), (2.3.4)
H(xP) —H*(s/ pyilpl  p=O0. (2.3.5)

From these relations, one can easily extend the Mellin transforms in the tables to new
functions. For instance, the Mellin transform of a Gaussian function can be found from that of

the exponential given in Equation (F.1) by using Equations (2.3.5) and (2.3.3) as
2
exp(— x)—>I(s) ...exp (— [x / dl )—)O.Sa‘ I's /2. (2.3.6)
There is a paraliel to the Fourier convolution integral, that is the Mellin convolution integral
given by
Hn= [T HoH [T H ()= H)(DH) (. @37
0
Notice the difference between this integral and the Fourier convolution integral. There is the

term 1/t , and the argument of the second function is the reciprocal of the variable. Obtaining

the Mellin transform of a function in which the variable is the reciprocal of the usual variable as

required above is trivially obtained by replacing s by —s in the function's Mellin transform by
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the use of Equation (2.3.5). The parameter in the problem is x. Notice that there are two
functions and only one parameter. Each of the two functions could have had a separate
parameter; however, a change of variables is used to eliminate one parameter from the integral.
The second parameter only appears as a multiplication constant of the integral.

This relation can be generalized to obtain the Mellin transform of the product of N + 1

functions as

i « Id,H HH(_,_) . N
(.\] o ) (n 7 —-)Ho(sl+...sN)j1-=IlHj(sj)

=H *(s) - SN) .
(2.3.8)

In this form, the complex variables either appear alone or all summed together. The inverse

transform is

* - =S
H(x ... xy)= amiy) J.. jd‘ dsy HY(s+spyx Tooxy Mo 239)

where the path of integration is determined by the conditions placed on the complex variables
and the N parameters to obtain convergence of the Mellin transforms of the original functions.

In the single parameter case, to evaiuate the integral in the complex plane, it will be shown
that the path of integration can be closed at infinity in a clockwise or counterclockwise direction
depending on the integrand. The value of the integral is the sum of the residues at the enclosed
poles.

For many problems, one has to obtain the Mellin transform of a function minus the first
term of its power series. It is easy to show that the Mellin transform is that of the original
function, except the path of integration has moved over one pole. To illustrate this, consider

the transform given in Equations (F.5) and (F.11) as

s~1.s8/2 1 1
M("(“")‘l)"e_)o[2 r[]_s/z]"s+£+s-e

] O<Re s< &

(2.3.10)
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The path of integration and pole location are shown in Figure 2-2. The poles go to infinity in
the left-half plane. The pole locations are slightly displaced from their true positions on the real

axis for clarity.

im s A
PATH OF
INTEGRATION
POLES AT s=-2N
-8 -6 -4 -2 0
X X X X X X b ¢ Re s
-€ €

Figure 2-2. Pole location and path of integration for integral.

In the limit, the two poles at s = 0 and s = —€ cancel. The result is that the path of integration
can now cross the real axis anywhere between the pole at s = 0 and at s = -2 without

changing the value of the integral. Therefore, the Mellin transform is equal to

s/2*

-1
M{J(x)-1)=2" r[l_s/z

] -2<Re 5 <0. (2.3.11)

where the notation of using an asterisk to signify that the path of integration passes between the
first and second poles was used again. In this case, the conditions on Re s are redundant The
movement of the path of integration past a pole is what is meant by the analytic continuation of
the integral. It is obvious how to extend this result to that in which the first m terms of the
power series are subtracted from the function. In that case, the path of integration moves past
m poles of the original function.

2.3.2 Evaluation of the Integral with a Single Or One Parameter

If there is only a single parameter in the integral, a change of variables can be made to bring
the parameter outside the integral. The integrand then does not contain any parameters and it

can be evaluated by table lookup.
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Many interesting turbulence problems fall into this category. After the angular integration,
the integral in X-space is evaluated by putting the integrand into a form that is evaluated by table
lookup of the appropriate Mellin transform. This technique is used on all the single parameter
problems of Section 3.5.

To illustrate this technique, consider the integral of a power of the radial coordinate times
the modulation transfer function for a circular aperture. This integral is needed in the
evaluation of many turbulence problems. This integral is given by

1 i 172
I1(s)=[da o *'K (o) = [ada a‘%[cos-'(a)—a(l—az) ] (2.3.12)
0 0

By using the unit step function, this can be put in the form of a Mellin transform

00 1/2
1(s) =jda%[a‘”2)_ eosTla)Ua-a)- o7 - ) wa- a)].
0

(2.3.13)
The Mellin transforms for the first function is given in Equation (F.12) with s replaced by
s + 2. This changes the condition for convergence to Re s > -2. The Mellin transform of the
second integral is in Equation (F.9) with s replaced by s + 3 and the use of Equation (2.3.5).
The condition for convergence of that expression becomes Re s > 3. For convergence of the

entire integral, the more restrictive condition on the first function must be used. Since
I'(1/ 2) =4/ 7 the integral is equal to

4 s/2+-3-,-s/2—l s/2+éD
] =——IT 2 -T 2 Re 5 >-2. (2.3.149)
() V”[ [s/2+2,—s /2 :I I:s/2+3 €3

Using the property of the Gamma function given in Equation (2.2.4), this reduces to

__8 1 s/2+%
l(s)'ﬁ2+sr[s/2+3]

The single pole due to the denominator term can be expressed as the ratio of two Gamma

Re s> -2. (2.3.15)

functions; this will be done in the section on Strehl ratios.
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2.4 INTEGRAL EVALUATION WITH TWO PARAMETERS

A power series is defined to be the Taylor series expansion of the function. Later, series
solutions that are not Taylor series but asymptotic series will be considered. Methods of
determining the value of the integral in terms of tﬁe series that converges most rapidly are
developed in this section when the integrand contains two parameters. This generalization
from the one parameter case allows one to evaluate more complicated problems. These
problems can not be evaluated simply by table lookup. The integral is transformed into one in
the complex plane and the methods of integrating in the complex plane are employed to evaluate
it. The methods of doing this are developed in this section. A change of variables is made to
factor out one parameter so that the remaining integral has only one parameter, x.

24.1 Power Series Solutions

To convert the integral into one in the complex plane, the Mellin convolution theorem is
used. The resultant integral to be evaluated has an integrand that is the ratio of Gamma
functions. The general form of the integral in the complex plane is a Mellin-Barnes integral
given by

A B
]i[]r[a,. +a s]jl__lll"[bj ~ B; ]

=

(2.4.1)

H(x)=2;m.jdsx“ D

l-ll"[ck+ Y, s] 11T dy~ 8ps]
k=1 1

m=)
The pole location and path of integration for a typical integral are shown in Figure 2-3. The
path of integration can have all the poles of the Gamma function on one side of the path of
integration or can split the poles of a Gamma function. In all the turbulence problemis
considered so far, the path of integration had all the poles or all the poles but the first on one
side of the path of integration. The methods developed here are not sensitive to the pole

locations.
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PATH OF / §
INTEGRATION s-PLANE
X X X X X X X
TYPICAL POLES OF A TERMS X x x x x x
x X x x X x X TYPICAL POLES OF B TERMS
X X X X X X X

Figure 2-3. Txpical path of integration and pole location for integral being considered.

The general solution to this integral can be expressed in terms of Fox's H function. If the
coefficients of s are rational, then the solution can be expressed in terms of Meijur's G
function. These facts are mentioned to allow the reader to look up properties of these functions
if desired. We will develop all the properties of the solutior. that are necessary to evaluate the
integral in terms of rapidly converging series, and knowledge of the properties of these
functions is not necessary.

In this section, it is assumed that the poles are simple. No problems encountered so far in
analyzing propagation in turbulent media have had multiple poles. Multiple poles can be treated
as the limit of poles coalescing, and the results for the regular and asymptotic series are valid in
this limit. The details of doing this are carried out in Appendix A.

Marichev considered the conditions on closing the path along the infinite semicircle for the
case in which the coefficients of s were unity. He put them in that form in order to arrive at
answers that could be expressed as the sum of generalized hypergeometric functions. One can
obtain unity coefficients for the case in which all the coefficients of s are rational by making
the substitution s = ay, where a is the least common denominator of the coefficients. This
substitution makes all the coefficients of y integers, and, by using the Gauss-Legendre

multiplication formula given in Equation (2.2.5), unity coefficient of y are obtained. The
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number of Gamma functions is equal to the sum of the coefficients of y. Using that
procedure, one arrives at final answers that are the sum of high order generalized
hypergeometric functions. This form is not only lengthy to write down, but also, it provides
little physical insight. Here, a different procedure will be used. The coefficients of s will be
left as they are, and the final answer will be obtained as a rapidly converging series of the
parameters. This method works even if the coefficients are irrational. Separate power series
are obtained for large and small parameter values, while under certain conditions for large
parameter values, an asymptotic series will be ootained.

Pole-residue integration is the method that is used to evaluate the integral. To apply this
method, the path of integration must be closed in the complex plane and the value of the
integral is the sum of the residues at the enclosed poles. The form of the answer that results is

a series in terms of powers of the parameter. The answer can be expressed as

H(x)=Yx '"G(s,), 2.4.2)
n

where G(s,) is the value of the residue at the pole occurring at s,,. The summation is over
all the poles enclosed in the path of integration.

In order to close the path on the infinite semicircle without affecting the value of the
integral, the integrand must decrease faster than 1/s for large values of s. The conditions for

convergence along the semicircle in the left-half plane will now be obtained. Make the

following definitions
E'=A+ D-B-C. (2.4.3)
E=A+B-C-D. (2.4.4)
A D B C
A= Y o+ X 86,- X B,- X v,. (2.4.5)
i=1 m=1 j=1 k=1

B C
2 B;in(B)- k{,l L) . (2.4.6)

A D
A= Y eh@)+ X §,In(5,)-
m=1 Jj=1

i=1
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A B C

2 7 iand D'= o,
i=1 " j=1 i T2 ,E,

(24.8)-(2.4.11)
To determine whether the path of integration can be closed in the left-half plane, the

asymptotic behavior of the integrand must be examined in that region. Stirling's formula is not
valid when the argument of the Gamma function goes to negative infinity on the real axis. To
obtain a valid expression, the duplication formula given in Equation (2.2.3) can be used to
eliminate the Gamma functions with positive coefficients for s and put the integrand into the
following form

B
]'[r[bj -B. s]nl‘[l . = 7k]s sm[(c + 'yks)ir]
= "5 ﬂ.’A =< !

J -
= :
Iirid,, - 5ms]I'[lr[1- a - as]sin[(q + & )7)

m=1
(2.4.12)
The parameter x is real; however, in the development that follows, this will be generalized to
allow complex values, and x is replaced by z. All the other constants are assumed to be real
and non-negative. Only the behavior with respect to s is of interest in determining
convergence. The symbol O will be used to denote the order of magnitude of the quantity. To

examine the behavior at negative infinity, the following two relations are necessary

slii‘.‘.oSi“ [(@ + as) 7] = Olexp{axIim(s)}1, (2.4.13)
and lim T(s)=Olexp{(s~1/2)In(s) - s}]. (2.4.14)
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Using these relations in the integrand and using the previous definitions after the terms are

rearranged, the integrand can be shown to be of the order of

I = Olexp{~Re(s)Inl z1 + Im( s)arg(z )
+ [Im(s )arg(—s ) + Re(s)] Alnl sl +Re(s )[ A- A')
+Inl sifv=5"/2+ C = Al + 1 Im(s5)I[Z arg(-s )+ n(C'- A)]}]. (2.4.15)
There is a hierarchy of terms that determine the convergence properties at infinity. The terms in
decreasing order of importance are Re(s) Inlsl, Re{s), and Inlsl.

The dominant term in determining convergence on the real axis is the one with
ARe(s)Inisl. If A > O, the integral can be closed in the left-half plane. A similar analysis can
be performed to see when the integral can be closed in the right-half plane. Doing that analysis
results in the requirement that A < 0. For both these cases, a single power series is obtained,
and it converges quickly for small values of the parameter. For large values, the series
converges slowly, and there can be numerical difficulties in calculating the sum that contains
terms with large values that alternate in sign. In this parameter regime, an asymptotic series is
appropriate, and the method to derive this series is discussed in the next subsection.

If A = 0, the term with Re(s)[-Inl - | -A'] is the most important. Let

M=-Ini:zl- A (2.4.16)
For Il < 0, the path can be closed in the right-half plane. For Il > 0, the path can be closed in
the left-half plane. Typically, if A =0 then also A' = 0, and in that case, for Izl > 1, the path
can be closed in the right-half plane, while for Izl < 1, the path can be closed in the left-half
plane. Here, separate power series for large and small values of z are obtained and both
converge rapidly.

If A=0and z = 1, the integrand behaves as
C-A-2'/2
1=o0fs"* 2} 2.4.17)

For convergence on the infinite semicircle, the integrand has to decrease faster than s"! and
this gives the condition
Q=v+ C-A-E5"/2+1<0. (2.4.18)
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If this condition is satisfied, the path of integration can be closed in either direction. If this
condition is not satisfied then the path cannot be closed at infinity and pole-residue integration
cannot k. used.
2.4.2 Asymptotic Series
For large values of the parameter, when A # 0, an asymptotic series is appropriate.
Asymptotic series can be found for complex values of z; however, these are more complicated
than those for real values of = that are represented by x. Since real values only occur in all the
problems that have been encountered in turbulence, that is the only case that is considered here.
The asymptotic series is found by moving the path of integration into the right-half plane. By
Cauchy's residue theorem, the value of the original integral is equal to the integration along the
new path plus the residue at any poles that were crossed in moving the path of integration into
the right-half plane. The integral along the new path of integration is found by the method of
steepest descent. In this method, the path is deformed from the original path to a path through
a saddle point and in the direction that decreases most rapidly away from the saddle point.
Along this new path, the value of the integrand is a maximum at the saddle point and decreases
very rapidly away from it. Therefore, the value of the integrand is just due to a small section
“about the saddle point that can be evaluated with a power series approximation for the integrand

about that point. To review this method, which is described in detail in many places® consider

the following integral
[ oo
I= [ds g(s)exp[f(9)]. (2.4.19)
-] oo
Express
' "( so) 2
F(=f(s )+ f(s)(s= s5)+ 5 (S= So) *t.e- (2.4.20)

It is assumed that there is a parameter that is very large so that only these terms are necessary to

express the value of the integral with sufficient accuracy. In the problem discussed here it will
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be seen that the parameter that causes the power series to converge slowly serves the function
of the large parameter. At a saddle point, the value of the first derivative is zero. This gives
equations to determine the real and imaginary parts of s, at the saddle point. The integral
along this path is that of a Gaussian function with infinite limits that is easily evaluated to give

iOO - "
f'Cs,)
I = jds g(s ,exp Lf( 5, + ——2;(s - s0)2]= /f—z(”;—) g(s Jexp [ f(s,)]-
(Y

- | oo

(2.4.21)

This is the first term of the asymptotic expansion. Additional terms can be found if desired.
For typical problems, the first term of the asymptotic series is sufficient, since it is generally
found that contributions due to the poles that are crossed in moving the path of integration to
the saddle po’nt have a much larger contribution.

The asymptotic value of the integral has contributions due to poles to the right of the path of
integraticn plus the steepest descent contribution. Under certain conditions, one of these two
terms dominates the result and the other can be neglected. If there are no poles to the right of
the path of integration, the steepest descent contribution must always be included. The
contribution at poles decays algebraically (power of x). We will find that the »chavior of the
steepest descent contribution can vary sinusoidally, can have exponential decay or exponential
increase with x. For the sinusoidal variation, both the pole contributions and the steepest
descen¢ contribution are important, and both must be retained. When the steepest descent

contribution decays exponentially, it can be neglected if there are any pole contributions. If the

steepest descent contribution increases exponentially, the pole contributions are negligible.
Conditions on the coefficients that result in these various cases will be considered.

To find the asymptotic value of the integral that is being considered, make the following

additional definitions
A=[D - B), (2.4.22)
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B"= -znb’" (2.4.23)
j=
D
D'= Y d,, (2.4.24)
ms=
p=Ilv+ (- 5)/2)/ 4, (2.4.25)

B C D
a Ina + 'Z b.in B, ~ Y c,Iny - 2 d,Iné§,,
1 Jj=1 k=1 m=1

(2.4.26)

A B C D
A= Yhna + Y pj—kZm 7, - 2 In 6, (2.4.27)
| =1 j=] =]

m=]

The case A > 0 is considered in this section. In that case, the path cf integration can be
closed in the left-haif plane. If A <0, the substitution s— —s can be made in the integrand
which changes signs so that now A >0, and the results that are derived below will apply.

For the asymptotic series, the behavior of the integrand in the right-half plane must be
examined. As a simple case, the asymptotic series for B = D = 0 in Equation (2.4.1) with
simple poles will be derived first. For this case, there is no branch cut in the right-half plane
and the evaluation of the asymptotic series is straightforward. 7he behavior of the integrand
for large s must be found. Unlike the order of magnitude calculation previously made to
determine whether the integral converges on an infinite circle, a more exact value of the
functions is required. The asymptotic expansion of a Gamma function is

I‘[a,. + a,.s]=\/_2__n' exp[(a‘. + a'.s—lIZ)ln(a'.+ a'.s)—a‘. - a,.s].

(2.4.28)

The following expansion is used
ln(a‘. + @ s) =|n(a,. s[1+ a, /| @ J) ln(a‘.) +In(s)+ q, / Qs (2.4.29)

58




1 -

If this is inserted into the Equation (2.4.12) and a similar expansion is performed for the other
Gamma functions in the integrand, one obtains

=/2
(2n)
= T Ids

xexp[A'- 4"'/2+ s[A-A-In(x)l+In(s)v-Z/2)+ AsIn(s)]. (2.4.30)

If the exponent is designated by fis), the requirement of having the derivative of the exponent

equal to O to find the saddle point yields

dfd(:) =0=[4-A4~In(x)]+ —"’—f—Q + All +In(s)]. (2.4.31)

Since s is large, the solution can be approximated by

ln(so)———[A In( x)], (2.4.32)

and sp=x1/4exp[-4/ A. (2.4.33)
The value of s, is large since x is large which agrees with the assumption that the path of
integration was moved far into the right-half plane.

The second derivative is

dfG) __v-E2/2, A_
ds? & $

Each higher order derivative has an increasingly higher value of power of s in the

4
T

(2.4.34)

denominator. Therefore, the higher order derivatives are small compared to the second, and
the assumption that the function can be expressed as & constant term plus a quadratic term is
valid. If these values are substituted into Equation (2.4.21), one obtains for the asymptotic

series
= =-1)/2

xPexp[- A/ dexp(- A1 A+ &' - 4" [2- pA) (2.4.35)

For most problems encountered A'= A"= A™= 0, then the expression used by Marichev is

obtained which is

E-1)/2
(2”)( )

I(x)= -\/_A

xP expl- axt’4]. (2.4.36)
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This solution has an exponential decay.

The more general case with B and D not equal to zero in Equation (2.4.1) will now be
considered. Since the arguments of the Gamma function are negative for the Gamma functions
with B and D there is a branch cut along the positive real axis for these functions. The path
of integration is now split into 2 parts, one along the upper half plane and one along the lower
half plane. Since x is real, because of the symmetry of the integrand, the value of the integral
is twice the real part of the upper integration. In the upper half plane, the negative of the
function is obtained by rotating 180 degrees in the positive angular direction, so that

-s = | slexp (inm). (2.4.37)

For large s, the Gamma function with negative argument can be written as

T(bh-Pfs)=V2nexplb- Bs-1/2)in+(b-PFs-1/2)In(p)

+ﬁS+lﬂ|S|(b—ﬁY“l/2)]. (2.4.38)

Insert this expression and similar ones for the other Gamma functions with negative arguments

and the expressions in Equations (2.4.28) and (2.4.29) for those with positive arguments into

the integrand. Combine terms using the definitions given above, one finds that the value of the
integral is

2 n')s

2

f2ic0
l=2Re-(—;r—J'dsexp{s[—A+ A-In(x)]+ AsIn(s) +In(s)[v - Z /2]
0

+ A'- A"/2+ ir[B"- D"+ (D - B)/2+ s(D- B")]}.
(2.4.39)

To find the saddle point, again set the derivative of the exponent equal to 0. Neglecting terms

that are small because s is large, one obtains for the position of the saddle point the value

In(s,) =[In(x)— A-imA]/ 4, (2.4.40)

and s,=x'/dexp[- A/ Aexpl-inA/ A. (2.4.41)
The value of the second derivative is the same as that given in Equation (2.4.34). If these

expressions are inserted into the expression for the value of the steepest descent integral given




in Equation (2.4.21), there are terms that cancel and others that can be combined using the
above definitions. If the steepest descent contribution is designated by E(x) for this more

general case to conform to Marichev's notation, one obtains

22 1) E-1)/2
E(x)= 7 A Re exp{ plIn(x) - A~ inA]
- Ax!/ dexp[-A' | Alexp[-inA/ Al+ A" - A" [ 2+ in[B"- D"+(B - D) /2}.
2.4.42)
Using the fact that for real a and b one has
Re exp [a@ + ib] =exp (a)cos(db), (2.4.43)
one obtains
=-1)/2
E(x) 2(2 JT)( &
X)=
Vv A

x xPexp (- pA'~ A1/ Aexp [-A'/ Alcos[nA [ A+ A"~ A" 2)
x cos{Ax!/ dexp[-A'/ Alsin[ ®A/ A+ al- pA+ B"— D"—(B - D) /2]}. (2.4.44)

For the case
Av= A" = Am = 0’ B — Bl’ D = Dl’ (2.4.45)
one obtains a result that can be shown to be equal to that obtained by Marichev
22 1) E-1)/2
E(x)= 73 xP exp{-Ax1/4 cos[nA | 4]}

x cos{Ax!/ Asin [mA | A1+ n[(1/2 - p) A+ B"= D'1}. (2.4.46)

For the asymptotic series, the residues of all the poles on the right side of the path of
integration that will be called W(x) are needed. The general solution is

H(x)= W(x)+ E(x). (2.4.47)

The above equation is all that is needed in general to get the solution. In some cases, one of the

terms is insignificant compared to the other and that will be obvious once the terms are

evaluated. Marichev shows that conditions can be written down so that one term or the other is
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the only significant one. Care must be exercised in using his conditions since he does not
allow the path of integration to separate poles of a Gamma function. If the conditions in
Equation (2.4.45) hold, then one of Marichev's conditions does hold and that is
Condition 1: For = >0, B’ 21, then H(x)= W(x) . (2.4.48)
The E(x) term has exponential decay, as one can easily determine from Equation (2.4.46),
and can be neglected.
Asymptotic series have certain properties that are useful. The asymptotic series that have
been derived are all of the Poincairé type? which implies the following properties:
(1) the error in truncation is le§s than the first term neglected,
(2) the asymptotic series of the sum or difference of two functions is equal to the
sum or difference of the asymptotic series of the individual functions,
(3) the asymptotic series of the integral or derivative of a functinn is equal to the
integral or derivative of the asymptotic series of that function, and
(4) the asymptotic series is unique for a given function.
In the above derivations, it was assumed that A > 0. If A < 0, change s to ~s in the
integral and then the sign changes so that A > 0, and the above results apply.
I(x) and E(x) are the first terms of the series representation of the asymptotic series.

Generally, for most problems this answer is accurate enough. If more terms of the series are

required they can be obtained by using the approach in Luke8. This approach is very

complicated and different expressions apply for different conditions on the parameters. The

details of this approach will not be given here; however, the results of using it to calculate

additional terms of the asymptotic series will be discussed in the next section. {

Asymptotic series and steepest descent contributions can be found in the case where the
integration is in several complex planes. For two complex planes, formulas in Born and Wolfe
in the section on asymptotic series are useful as a starting point. There are two conditions to
look at for the two complex plane case. In the first, one parameter is large while the other is

small; in the second both parameters are large. Extending the analysis given above to these two
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cases does not pose any conceptual problems. The answers obtained have the correct behavior
if one parameter is negligible. Since none of the problems considered in this report needs this

type of analysis, it is not given here.

2.4.3 Example and Accuracy of the Asymptotic Series
Consider the Mellin transform of the Bessel function minus unity that was found in

Equation (2.3.11) as

s /2*

-1
M(J(x)-1)=2° 1‘[1_ .12

] -2 <Re 5§ <0. (2.4.49)

The inverse transform is given in general in Equation (2.3.1). If the above relation is

substituted into that relation, and s is changed to 2s, the function becomes

1 25 TLsM_

%)= 1= Jas(x 12) s - (2.4.50)

The value of A = 2, which requires the path of integration to be closed in the left-half plane.

There are poles at s =—n,forn=1,2,... . Remember, the reason that n = 0 is not

included is because of the * symbol, which means that the path of integration passes between
ihe first and second poles of the function. Evaluating the function at these poles, one obtains

J(x)-1= > —(—ﬂ;[—;‘-]zn

n=1[nl (2.4.51)

This is just the power series of the Bessel function with the first term removed. This is what is
expected, since the first term is unity and it is subtracted away by the second term on the left.

The asymptotic series has the contribution of the one pole to the right of the path of

integration and the steepest descent path, which is given by the term E(x). This is equal to

J(x)-1= '/_Iz_x coslx - m/4] -1 (2.4.52)
An asymptotic series with more terms can be found using Equations (4.11.4-4), (7.4.6-3),

and (7.4.2-8) of Luke to give

J(x)-1= |2 exp[—ml ]cos[x -2 u/4]- L (24.53)

o™
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The two asymptotic series are compared to the actual value of the function in Figure 24
and the difference between the,e approximations and the exact value is plotted in Figure 2-5.
The exact value of the function is covered up by the power and asymptotic series because there
is a region of overlap in which either series is a good approximation. As one can see, the
simple asymptotic series in combination with five terms of the power series gives the value of
the Bessel function with an accuracy of better than 1%. This is adequate for most problems. If
ten terms of the power series are used in conjunction with the more accurate asymptotic series,

the maximum error in representing the Bessel function is 0.01%.

2.4.4 Obtaining Asymptotic Series from Power Series

Sometimes the power series solution is known, but the parameter in the summation may be
large. In that case, the power series converges slowly, and there can be numerical problems in
summing large terms that alternate in sign In that case, the asymptotic series representation of

the power series is wanted. The techniques that have been developed can be used to find the
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Figure 2-4. Comparison of the values of J ,(x) obtained from various approximations.
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Figure 2-5. Comparison of the errors in the values of J ,(x) obtained from various approximations.

asymptotic series. When the summation has coefficients that can be represented by Gamma
functions in the numerator and denominator, then it can easily be represented by a Mellin-
Barnes integral in the complex plane. Once this integral is obtained, an asymptotic series can
be easily found using the techniques developed above.

To illustrate this technique, the double integral of an incomplete Gamma function will be

considered. The power series of the incomplete Gamma function is

-1)" xa+n

- (
Y, x) = ZO R rarn (2.4.54)
n=

Suppose the following integral is wanted |

X w o0 n
_ ’ _ e (1) x"
P(a,x)-{dugdyy(a,y)—x‘”ngo n (a+n)a@a+n+hHa@a+n+2)

(2.4.55)
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The power series was integrated term by term, a method that is allowed as long as the resulting
series converges, which it does.

For large values of x, this infinite series converges slowly and there are numerical
problems in evaluating the sum of large terms that alternate in sign. It is desirable to write the
asymptotic series for this function. It is not difficult to see that by using the recursion relation

for Gamma functions given in Equation (2.2.4) this can be represented as

oo n n
_a+2 (-1)" T'la + n}x _ xa+2 —s [s,a—s]
P@a,x)=x 'E‘,o M Tla+t3+n- 21 fdsx r a+3— sl (2.4.56) 1
The path of integration passes between the poles of the first Gamma function and the three 1

poles of the second Gamma function that are not canceled out by the Gamma function in the
denominator. Since A = 1, the path of integration should be closed in the left-half plane and
one obtains the summation given in Equation (2.4.55). To obtain the asymptotic series, since
Condition 1 given in Equation (2.4.48) applies, one has only to sum the contribution of the

three poles to the right of the path of integration to give

_T(@x?[ 24  (a+Da
- DO 20, @2 Da]

(2.4.57)

2.5 INTEGRAL EVALUATION WITH THREE OR MORE PARAMETERS

In this section, the method of evaluating integrals with three or more parameters will be
illustrated by working through several examples. The method presented here is based on
heuristic extensions of known techniques of integrating in several complex planes. The cases
considered here in which the pole locations are functions of the sum of the complex variables
have not been investigated to my knowledge. The case in which the pole locations are §
separable into the product of terms that only depend on one complex variable has been studied
and is available in standard texts in the field.9 For that simple case, each complex integration
can be considered separately in the standard manner. The case encountered in this report is not
nearly so straightforward. An example of the technique of evaluating an integral in two

complex planes is discussed using the analysis in the literature. Then it is looked at a second
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time in a slightly different way, and shown to give the same answer. This second approach is
generalizable to our problem.
2.5.1 Method Of Integration

Consider the integral

F@, 0
st(s —a)(t+b)

1= —1— [[ds ar

(2m')

(2.5.1)

where s and r are complex variables, and a and b are positive.

The function F(s, t) is assumed to have no singularities in the two complex planes s and
t. Both integrations go from -iec to +ico, and the real parts along the path are negative.
Notice that the poles are only functions of a single complex variable. It has been shown in the

literature that the integrals can be treated separately so that this integral can be written as

1 ds F(S, t)
T n)? j(s - a)s Ja e +b) @32

1

Suppose the integrand is such that the path can be closed in the right half ¢t-plane without
changing the value of the integration, then the residue at the pole at ¢ = 0 is the only

contribution. The remaining integral is

F(s,0)

1
1= G jds 3G —a)b (2.5.3)

If the path of integration can be closed in the right-half plane in doing the s integration, one

obtains the contributions at the two poles at s = 0 and a to obtain for the value of the integral

F(aq0) F(0,0)
-3 2= (2.5.4)

1

Looked at a little more abstractly in the 4-space of the two complex variables, each of the
poles occurs at a value for one of the complex variables. The value of the other complex
variable can be anything; therefore, the locus of a single pole in 4-space is a two-dimensional
sheet of points. If there were only a single pole in the integrand and it was in the first complex
variable, then the second integration would be zero. There must be at least two poles in the

integrand to get a contribution. Since each of these poles corresponds to a sheet of poles in
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4-space, what one is finding is the intersection of the two sheets of points in 4-space which
gives a single point if the two sheets intersect at an angle. It is easy to convince yourself that
the intersection is a point since there are four parameters to describe a point in 4-space and the
condition to have a single pole gives two equations. Therefore, the simultaneous occurrence of
two poles gives four equations to find the four quantities that describe a point in 4-space.

With this insight, the problem can be tackled in a second way that can be generalized by
finding all the singular points in 4-space that are described by the simultaneous occurrence of
two poles. The properties of the integrand are used to decide which way the path can be closed
to determine which of these singufar 4-space points contribute to the integrand. The three

possible double poles of the integral in Equation (2.5.1) are

(1) s=0,r=0,
(2) s=0,1=-b, (2.5.5)
3)t=0s=a

The three points above will be called 4-space singular points or 2-poles for short.

From the conditions of closure that were stated above, the values of s and ¢ must be
greater than or equal to zero; therefore, only the 2-poles 1 and 3 contribute to the integral. If
the double integral is evaluated at these poles, the previous answer is obtained. This same
procedure can be used when the poles are linear combinations of the two complex variables.

Consider the integral

1 F(s, )
I= . Jlas at 7o TR (2.5.6)

The pole that contains the sum of the two complex variables has poles in a sheet in 4-space

also and will intersect the other planes. The sets of 2-poles for this integral are

() s=0,s =0,
(2) s=0,r=-b,
Q3) s=0,s+t-a=0-5s5s=0,1=gq 2.5.7)

4 t=0,s+t-a=0-1t=0,s=a
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The conditions on s and ¢ that require both of their real parts to be equal to or greater than
zero give valid contributions from the 2-poles 1, 3, and 4, so that the integral is equal to

F(aq 0) F(0,0) F(0 -b) (2.5.8)
ab ~ ab T ab

l=

The generalization of this technique to a higher number of complex planes is obvious. For
instance. for three complex planes. one would have to find all combinations of three
simultaneous poles to find the 3-poles in 6-space. The path of integration was closed based on
the integrand. As we saw before, sometimes the integrand must be closed in the opposite
manner in order to get a rapidly converging asymptotic series. In finding asymptotic series,
sometimes there is an extra term E(x). How to find that term in this problem is discussed at
the end of Section 2.4.2. Typically, for problems of interest when the path of integration is
closed in the wrong direction. one encloses poles whose contribution overwhelm the E(x)
term that is then neglected.

2.5.2 Two Complex Plane Example

Severai examples are now worked out to illustrate the method on known problems. The
first example considered is the integral of a product of exponentials that is easily evaluated by
normal methods. This example is used to illustrate how to evaluate integrals in two and three
complex planes. A more complicated known integral containing the product of two Bessel
functions and a sinusoid is also evaluated after this. Consider

o N —-a.u
1= I e “i* du, (2.5.9)
0 i=1

For the sum of the a's greater than zero, this is easily integrated to give
N -1
I= _Z] a.| . (2.5.10)
!

This integral can be converted into the form in which the generalized Mellin convolution

theorem can be applied by making the following changes of variables

a==% (2.5.11)
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ayu= x/y—->y= al/ a, (2.5.12)

aju= X/ z>o:c= al/ a, (2.5.13)

Then

1

a

x e NN Y a2 A (2.5.14)
]

/=

(=R ¥

Using the Mellin convolution theorem given in Equations (1.7) to (1.8), one obtains
-5 -t

a a
I = ——1—7-3“'(1.9 d I'[s+t+1,-35,- t(a—lz) (al;) . (2.5.15)
al(2m)

This example is more complicated than the last because of the presence of Gamma
functions. Each Gamma function has poles at all negative integers, and each pole is a sheet in
4-space. One has to determine the intersection of all these sheets with those of the other poles,
however; aside from the proliferation of poles, the problem is analyzed in exactly the same

manner as the previous ones. The combination of all double poles is
-S§=E~N,—t=—m=>s=nt=m
s+t+l=—m-s=—-n—>D>s=nt=-n-m-1
s+t+l=—-n~t=—-m-o>s=-n-m-1t=m (2.5.16)

The indices n and m are positive integers.

Here A = 0O for both complex variables. The way the path of integration can be closed
depends on the relative sizes of the parameters. Let a; > a, and a; > a3, then the path of
integration should be closed so that the real parts of the parameters are greater than or equal to
zerc for large values of m and n. Since these indices are summed for some of the 2-poles,
new parameters must be found in which they appear independently. This is easily done by
substituting the above relaticns in the exponent of the parameters. The constant terms are

neglected since they do not affect the direction of path closure. These relations are:
-n -m

a a
o (2 (@)
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y
:ﬂ

n+m -m

> (@)= - @)@

a] n+m al -m az -m al n
3 (z) Gﬂ *(E)(E)- 2.5.17)

The first set of poles is the only one that converges for both indices, and the integral is equal to
-m
a

=% 2 2 0" "Il+n+m](a—12) (7;) . (2.5.18)

T m

To show the cquivalence of the direct result with this double infinite series, note that for

a; > a>ant' a; > a; one obtains
»

! '] " (2.5.19)

1
a

1 2 3 2 3

o1+ g

LR
4 s

Jsing the binomial theorem when a; > a, one obtains
m

=ai j:: Z= ( )—"(-2-3.) . (2.5.20)

) (n=—m)! m!

If one changes the variables to

m-»m and n—o>n-m with m<n, (2.5.21)
then the summaticn reduces te the result that we obtained using Mellin transfonn techniques in
Equation (2.5.18).

Therefore, the Mzllin transform method produces the correct result although it was in terms
of infinite serics rather than a simple function as in the Girect integration. In general, one
would not recognize the double series that was obtained as the simple function that was
obtained by a direct integration. The conditions on the parameters are more restrictive than the
one that the sum of the parameters must be greater than zero obtained by the direct integration.
The order of the inequalities of the parameters can be changed, which causes other pole pairs to

be the ones enclosed in the path of integration. These other solutions can be shown to be all

equal.

7
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The more restrictive conditions on the parameters are necessary to express the answer as a
double sum. From this example, one learns that in solving problems of this type, the
conditions obtained to get an answer. even though they are correct, may be too restrictive. The
fact that an answer is not in the most compact form and expressible in terms of simple
functions is not a major deficiency because more complicated problems cannot in general be
expressed simply in terms of elementary functions.

2.5.3 Example with Four Parameters

The method will now be extended to the case of four parameters where an integration over
threc complex planes is required. If a fourth exponential with parameter a4 is added to the

integral and a4 = w', then the convolution theorem gives

i aNSraN'ra ¥

= ——— Mds dt duTl[s + 1+ u+l, —s,—t,-u](-a—l) (-a—l) (7'-) .
a (2m) 2 3 4
(2.5.22)
where s, 1, and u are separate complex variables.

The sets of 3-poles in 6-space are at
() =s ==n,~t =—=m~u=-p-—3s=nt=mu=p,
2)s+t1+u+l==p-=s=-n~t=-m >s=nt=mu=-1-n-m-p,
3)-s=-n-u=-ps +t+u+l=—m-I3s=nu=pt =-1-n-m-p,

(4)~t =~-m~-u==-ps +t+u+l=-m-oa3t=mu=p,s=-~1-nrn-m-p,

(2.5.23)
where n, m and p are positive integers.

As in the last section, these relations are substituted back into the exponents of the variables

to give:
-, -m, _ P
o (2) () (&) -
AN EAN AN CANTANTAY
@) (“2) ("3 |, - ("2/ (“3) ("4) '
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o @R @R

n+nm+ - -
9
(4) (7,:)

.\Flu‘
n|um

o |~°

Pa]—mall’ malnazl’
) @) &) -G E)E) - e
If the conditions on the parameters are such that all the fractions that are in the integral in
Equation (2.5.22) are less than unity, the value of the real part of all three complex variables

must be equal to or greater than zero. The only pole set that satisfies this requirement is the

first one; therefore, the value of the integral is

-n -m -p
) l & w w n+m+p (n + m+ p) (9 a, a
I=22 X XD e \%) %) (9, (2.5.25)
ln=0m=0p=0 n.m.p. 2 3 4
If the fraction in Equation (2.5.10) is expanded into a triple power series, one obtains
w i J caNsaNra N o
_ 1 W2V (3 2e i! !
feaz X 2 (=D ("n) (“2) ("3) G =W = kY (2.5.26)

I evaluated the series numerically for a few examples and showed that the results of the
series and the simple fraction were the same.

2.5.4 Example from the Integral Tables

The method will now be applied to an example that is a little more difficult. Consider the

following integral from Gradshteyn and Ryzhik,!0 Equation (6.711.3)

oo v-p -l 4.
T oveu-2 ) , 2 d'b~ e Tv)
I = {u Ju(dl )JV (bu)sin (cu Ydu = Tg +1] 2 (2.5.27)
witha>0,b>0,b-a>c>0andRev <Rep + 3.
This integral will be put into standard form by the following transformations
au= x,bu=x/|yv9y=al/bcu=x/z->z=alc (2.5.28)
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Then
PRA I AT W, (37 )sin(£) . (2.5.29)
0

This can be converted into an integral in two complex planes using the Mellin transforms in
Equations (F.5) and (F.2). After the substitutions s —2s and + — 2t one obtains

- -2+v-yu _
'__lta v+ u+1 a 2s a
I= » — Ids dt(F) (—(‘)
(2m)
S+t+v/2-1/2,-s+v/21]2-1
e s—t=v/2+u+3/2s+1+v/2, 1 +1|

-2t

(2.5.30)

The locations of the 2-poles are at
M1/2-t=—-m-s+v/2==n-a>3s=n+v/2t=m+1/2,
(2Q)=s +Vv/2==ns5+1t+ V/2==-m os=n+ V/2t=-m - v,
3Hl/2-t=-m,s+t+v/[2==-n->s=-1/2-n-mt=m+1/2.(2.5.31)

Since A = 0 for both complex variables, the size of the parameters determines the direction

of path closure. Substituting the above relations back into the exponents in the integrand gives:

=2n -2m

m (%) (") ,
(2) (—") (—‘1)

2n+ 2m -2m 2n 2m
_ a £
®  (3) ~(3) (%) - (2.5.32)
If the two fractions in the integral are less than unity, both exponents must be less than zero.

The first set of double poles is the only one that satisfies the criteria, and the integral is equal to

n+m -2n
-7 gVt -2+v-y (=1 v
I'= 2 2’ 2‘ n' m! (b)
n=0m=0
ax"1"2Mm [v+m+n
x () [u+l+n,l—m—n,3/2+m]' (2.5.33)
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The term I'[1 ~ m - n] in the denominator is infinite at all n and m exceptm=n =0.
This cancels out all the poles except those at m = n = 0. The one remaining term gives the
same result as that in Equation (2.5.27). Therefore, one obtains the same compact form for the
answer as that in the tables. The particul>r condition on the parameters produces the simple
form for the result, and the expression is more complicated for other conditions on the
parameters. The method above can be used to get a series solution for these other cases by

closing the path of integration in the appropriate direction.
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3. AUNIFIED APPROACH TO WAVE PROPAGATION
IN TURBULENT MEDIA
3.1 INTRODUCTION
In this part of the report, the derivations of the expressions for variance of phase and
scintillation quantities, structure function, power spectral density, Strehl ratio and beam profile
are given. The derivation and tabular listing of various filter functions that are of most interest
is presented. The procedure for setting up problems is illustrated by a variety of examples
some of which have not been published before. The evaluation of the integrals using Mellin
transform techniques was developed in the second part of this report, and these results are used
to evaluate inte'g'ra.\.l-s in this part.
~ The filter functions that are derived here allow one to find the piston, tilt, or any Zernike
component of the phase; to evaluate the effect of anisoplanatism (displacement, angular, time
delay, and chromatic), finite frequency response, and fitting error on focused or collimated
beams. ( Anisoplanatism is the effect on the correction caused by propagating along a different
path than that taken by the reference beacon.) Filter functions are also given to allow one to
calculate the effect of point and incoherent distributed beacons on an adaptive-optics system.
The filter functions can be cascaded to allow one to set up complicated problems quickly. This
procedure allows one to calculate the interaction of various effects in a straightforward manner.
In the next section, the general formulas for the beam profile and the Strehl ratio are
derived. In order to evaluate these expressions, the structure function must be found. This can
be found from general expressions for the phase and log-amplitude variance that are derived in
Section 3.3. Approximations are made to arrive at this gene:ral expression. In Appendix B, an
example is worked out without the approximation and shown to add an insignificant correction.
The expressions for the variances, structure functions, and power spectral density are

generalized to focused beams.
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In Section 3.4, filter functions that are useful for turbulence problems are derived. The
final answer to turbulence problems is expressed in terms of moments of the turbulence
distribution. The definition of these moments is given, and analytic expressions for the
moments are derived in Appendix C.

Single parameter problems to illustrate the method of evaluating integrals using Mellin
transforms is given in Section 3.5. The third example shows how to combine filter functions
to arrive at new ones. In Section 3.6 examples of multiparameter problems are given. The
evaluation of the integrals relies heavily on the results in part 2. The evaluation of the phase
variance for a distributed source is complicated and uses all the previous methods. This
example is discussed in detail in Section 3.7.

Next, in Section 3.8 the power spectral density is calculated for several problems. The
Strehl ratio and coherence diameter for various problems is discussed in Section 3.9. The
calculation of the Strehl ratio for uncorrected turbulence is given. When the structure function
is more complicated, Gegenbauer polynomials are introduced to evaluate the Strehl ratio. This
technique is illustrated using defects in an adaptive-optics system. These techniques are then
extended to derive the beam profile for uncorrected turbulence and for an adaptive-optics

system in Section 3.10.

3.2 GENERAL EXPRESSION FOR THE BEAM SHAPE
AND STREHL RATIO
In this section, expressions for the beam shape and Strehl ratio are found in terms of the
phase and amplitude structure functions. The relation between these structure functions and the
phase and amplitude statistics is given.
The extended Huygens-Fresnel approximation to beam propagation that applies to
collimated beams results in the following formula for a component of the electric field at a

distance z from the source

E(F, 2)= = B E(3,00ew[-E(7 - 5)’+ 17, B) + it 7. §)] G2
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where X and ¢ are the turbulence induced log-amplitude and phase fluctuations that are
produced in propagating from the p-plane to the r-plane as shown in Figure 3-1. The

integration is over the source distribution.

MEASUREMENT PLANE

SOURCE PLANE

Figure 3-1. Geometry of the propagation problem.

The intensity can be found by multiplying the field by its complex conjugate. In the
paraxial approximation that applies to waves that are confined to a small distance about the
propagation direction, a condition that holds for laser beam propagation, second order terms in

p and P’ are negligible. With this approximation, and a source distribution W( 7" ) in the

aperture, the intensity is equal to

E(F, 2)E*(F, 2) = —"= [dF dp' W(FW ()
(A)

X exp [—'—%:_—-{F (P =)+ 27, PY- x(F. PY+i[e(F. P)— o(F, f’")]]'
{3.2.2)

The average intensity can be found by taking the ensemble average of the above equation. The

turbulence fluctuations are Gaussian in character and for this distribution one can show that

(exp (aA)) = exp[—%2—<A2 - (A)2>:| : (3.2.3)
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The angle brackets indicate that the ensemble average of the enclosed quantity is to be found.

Therefore, the average intensity is equal to

(EC(R. ) EX(P, )= 15 [dB 4B W (D)W ()

xexp [L42{ 7 (P~ F)} =D P~ F1/D F)/2-Dy(F-51ID. r‘)zlz].
(3.2.4)

The struc. re functions of phase and log-amplitude are defined to be

= - — — 212
|:D¢(a,r )]_ <[ @7 + aD)~ ()] >

= - - 2 .
Dz(a,’ ) ([ x( o+ (_ﬂ)) - x( ’:’)] >

To simplify this expression, change the variables of integration to normalized sum and

(3.2.5)

difference coordinates as
a=(p+p)/2D, (3.2.6)
a=(p-p)/D, (327
where D is the diameter of the circular aperture, and o is thevnormalized radial coordinate that
goes fromOto 1.
For cases in which the variance is independent of position, the structure function can be
represented by a relation that only depends on the difference in position of the two points, and

can be written as

(3.2.8)

[DM >}_ [ 20) - (p(@D) () ]
z{( 2(0) - 2(@D) 2(0)]

D, (@)|
The assumption of writing the structure function as a function only of the difference of
positions is not true for many cases of interest. If tilt is subtracted from the phase over the
aperture, then the phase variance is higher in the center of the aperture than at the edges. For
the anisoplanatic effect of a point source over the aperture center being used as a beacon in an
adaptive-optics system that is sending a collimated beam, the phase variance is again no longer

stationary. In this case, the variance is higher at the aperture edge than at the certer. Inthe
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discussion of tilt removal, it will be pointed out that the error made in using the above
expression is about 10% and may often be neglected. The error in assuming stationarity for the
focal anisoplanatism case has not been calculated.

For a uniform field distribution over a circular aperture, the integral over the sum
coordinate can be performed analytically in the following manner. Expressing the original
coordinates in terms of the new onesas p=a@' D+ aD /2 and p'=a' D - ¢D /2.

then the integral of the intensity can be expressed as
1= [dpdp'W (PW (FYLB.P)

=jdada-wm*'o + @b /2W (@D - &D/2)L(&).

The integral in the sum coordinate is the overlap area of two circles and is evaluated in
Figure 3-2. If the expression for the intensity in Equation (3.2.4) is divided by the
intensity with no turbulence present, one obtains the normalized average intensity as

—. L - . kOD - P D((Y)]
1,(7)= T IdaK(a)exp[z 7= a-—5—|, (3.2.9)
where the integral is over the unit circle, and the modulation transfer function for a circular

aperture is given by

1/
K(a)= %[cos'l(a)— ol1- z]U(l— a), (3.2.10)

where U(x) is the unit step function. The structure function is given by

D(d@) = D,(d) + D,(d). (3.2.11)

If the structure function is isotropic, the angle integration in the aperture can be performed
using Equation (3.4.5) to give

1
1,(r)= jadaK(a)Jo( ko;Da)exp [- 2(;—)]. (3.2.12)
0

The Strehl ratio, which is the value of the normalized intensity at the origin, is the most

common description of the performance of an adaptive-optics system and is given by

SR = ﬁjd&K(a) exp [— D(2a):|.

(3.2.13)
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Figure 3-2. Geometry to determine overlap area of the two apertures. The

. -

integral over a' is equal to the area of overlap of the iwo circles. The area of
overlap is equal 10 Area(FBCD)=2 Area(DEBC)=2[Area(ABCD) - Area(ABED)],
where Area (ABCD)= 2(D%0/8) = (D?/4) cos' a and Area (ABED)=2 Area (AEB)=
2 [(@D}|2] sin 8 =(aD?/4) \/1~ a’. Therefore, Overlap Area= (D’/2) (cos!
a-a i -a’). Normalizing 1o give unity for the intensity on axis with no
turbulence, one obtains the desired result K(a)=(16/m) (cos’ a-a \/1- a’).
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When the structure function is isotropic, the integration over the angle in the aperture can be

performed to get

]
D(a
SR = Ja dakK(o)exp [— —(2—)] (3.2.14)
0 )

The beam profile and Strehl ratio given in Equations (3.2.9), (3.2.12), (3.2.13), and
(3.2.14) will be evaluated in Sections 3.9 and 3.10 after methods are developed in the
intervening sections to determine the structure function for particular problems.

3.3 GENERAL EXPRESSION FOR THE PHASE AND LOG-AMPLIT'JDE

VARIANCE, STRUCTURE FUNCTION, AND POWER SPECTRAL
DENSITY

In the first part of this section, the relations for the phase and log-amplitude variance are
derived using results tfrom Tatarski for a locally stationary media. His derivation is sketched in
this section, and the reader is referred to his book for a more detailed derivation of the results
that arc used here. The difference between Tatarski's results and those used here is that a filter
function is allowed to operate on the transverse components of the spatial spectrum. This
generalization allows one to tackle a great variety of problems of interest. From these
expressions, the structure function and power spectral density are found. The equations
developed in this section are summarized in tables in part 1, and serve as the starting point for
all the turbulence problems considered later.

3.3.1 Phase and Log-Amplitnde Using the Rytov Approximation

The Rytov approximation is a better approximation than the geometric-optics one. The
equations of geometric-optics do not take diffraction into account and can only be used to
distances that are small compared to the Fresnel distance. The Rytov approximation does
account for diffraction and can be used past the Fresnel distance. The approximation breaks
down for the log-amplitude when that variance is greater than about 0.3. The phase results are

still valid even when the amplitude fluctuations are large. The net result is that this
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approximation gives accurate results for the phase for all problems of interest. The results for
log-amplitude are accurate as long as this variance is small. That assumption is violated for the
propagation of uncorrected beams over large horizontal distances or in propagation from the
ground to space: however, it is valid for a beam corrected by an adaptive-optics system. In
high-scintillation cases, a multiple scattering theory is necessary to describe the log-amplitude.
That will not be done in this report.

The derivation of the equations for phase and log-amplitude using the Rytov approximation
are sketched below. A more detailed derivation is in Tatarski. The wave equation describing
the electric field for propagation in a region with inhomogeneous refractive index, n( ) is

2 = 2 -\ = -
VOE + konX(7)E +2VIE - vin 7)) =0, (3.3.1)

where the free space wavenumber k, = 2%/A, and Vz, is the transverse Laplacian. If the
propagation wavelength, A, is much less than the inner scale size, the last term can be
neglected. One then obtains a scalar equation for each of the electric field components. The
equation for one of those components is

2 202 o
V'u + ki n“(iu =0. (3.3.2)

It will be assumed that the effect of the inhomogeneity is simall, then the field and refractive

index can be written in two parts as
n(r)y=1+ ny( ),

(3.3.3)
Uu=u,+ u], (3.3.4)
where n(F)<<l, (3.3.5)
and luld<<lu,l (3.3.6)
The unperturbed field satisfies
2 2
Viu,+ kg ,=0. (3.3.7)
The field affected by turbulence satisfies
2 2 2 -
Viu + kg ==2kon(Fu, (3.3.8)
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The central part of the Rytov method is to represent the field in the form

u = Aexp[iS]. (3.3.9)

where A= A,+ A, (3.3.10)
“

and S-—SO=S]=Imu—o . (3.3.11)

Let In <= y=Re L (3.3.12)
0 0

Also define Y=In u=In A+ i¢. (3.3.13)
Express this quantity in the form of a small and large art as

Y=Y¥,+ ¥, (3.3.14)

where ‘l/]= X+ i¢l. (3.3.15)

The following assumption gives this method the alternate name of the method of smooth

variations. Assume

IV'}’ll< <l V‘}’ol. (3.3.16)
Then the following equation can be derived
vig 12k alp]+2k2n(r*)—0
11 o onprt AT (3.3.17)

Write the refractive index in the form of a random function with stationary increments as

n(r, z)=n(0, )+ Id"('?v ) [1-exp (iR - )], (3.3.18)

wi.2re T, is the transverse coordinate. The integral is over kappa space and the fact that the
transverse Fourier transform is used to solve the problem gives the solution method the name
“the method of spectral expansions". This is a stochastic Fourier-Stiltjes integral, and the true
complexity of this relation is buried in the differential quantity in the integral. Also, write the

field in the same form as

W (7, 2) = ¥(0, 2) + [do( R, z) [1 - exp (iR - 7] (3.3.19)
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If these last two relations are substituted into Equation (3.3.17), it is found that the differential

quantities must satisfy the following relation

ay. ..,z . .
0——(%:——2 - x‘zd(p( K, Z) +2kf,dv( K, -)=0. (3.3.20)

This equation holds when the propagation distance, L, satisfies

2ik

4 3
L<D | A, (3.3.21)

where D is the aperture diameter, and A is the propagation wavelength. For diameters of
interest, the range over which the assumption is valid is very large and the condition is satisfied
for most problems. The solution of this equation for a wave propagating from O to = is

p —iKk(z- 2
do(K, =) = ik, [dv( R, ') exp [——'-—;-T—-z—)]d:'. (3.3.22)
0 o |

This equation is the starting point to find the variances of the phase and the log-amplitude. If
there is spatial filtering of the transverse coordinate of the refractive index spectrum, then the
above derivation holds excent that the refractive index spectrum is replaced by the filtered
spectrum using the substitution

dv( R, z) > dv(K, z)G(K, 2), (3.3.23)

where G( &, L) is a composite filter function that modifies the turbulence spectrum. The
justification for being able to write a filtered refractive index in this form is contained in the
discussion of filter functions for Zernike polynomials in Subsection 4.1.

3.3.2 Variances, Structure Functions, and Power Spectral Densities

In spatial transform space when the Rytov approximation applies, the two-dimensional
transverse spatial Fourier transform of the phase can be obtained from the imaginary part of

Equation (3.3.22), which is.

L EL -] .
F'[d¢I(L)]= k, gdv( K, z')cos [T]ﬁ (K, z') d:z'. (3.3.24)

The origin of the wave is at z = 0. The filter function for phase related quantities operates on

the phase disturbance.
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The Fourier transform of the log-amplitude scintillation can be obtained f-om the real part
of Equation (3.3.72) which is
L
ALY . RREEED N e
F,[d;((L )] = ln[—A—:I = Lo{)dv( K, z')sin |:__21\———]G (&, =) d:'. (3.3.25)

0 0

The last formula breaks down when the log-amplitude variance exceeds 0.3. For more severe
scintillations, a multiple scattering theory approach is necessary. That will not be discussed in
this report. Even for large scintillations, the formula for the phase is still valid. The restriction
on the scintillation is important for uncorrected propagation from the ground to space and for
horizontal propagation over long turbulent paths. The restriction is not important for most
problems considered with adaptive-optic systems since it will be seen that the scintillation is
low.

Typically, the rms values of the quantities are wanted. These are obtained by integrating
the expressions over kappa-space, multiplying the resultant expressions by their complex
conjugate, and taking the ensemble average. The resulting expressions for the phase, ¢2, and

log-amplitude variances, 2. are

¢2 L L
{ 2j|= K2[] [ d [a= (ave R, =aave( R, 2)
4 0 0

’ - '(2(1‘_:.')— rx-z(L_ :,)'\
COS 2ko cos 2k0 B
1 r 5 - PG, 2GR ,z').  (3.3.26)
an | KL= K(L- z')
n
T 2k, T 2k, )

The first two integrals are over kappa and kappa-prime space. This equation can be simplified.
The ensemble average of the absolute value squared of the refractive index is given in Tatarski
Equation (6.36) by

(av(R,z)av*(R'z ") = E(R)z'= zNC 2+ %) 12]8(R - R)R dR",
(3.3.27)
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where the delta function occurs because the turbulence fluctuations at different wavenumbers
are completely uncorrelated — a fact that follows from the assumption that the turbulence can
be represented as a random process with stationary increments. C'z'(z ) is a normalizing
function that is proportional to the strength of turbulence. E,( &, z' = 2") is the correlation
function of turbulence versus axial separation as a function of the transverse wavenumber. It is
equal to the inverse Fourier transform in the axial direction of the turbulence spectrum. The
inverse Fourier transform relation is given in Tatarski Equation (1.53) as

0.033 x f(k, K.) = [dz- E (R, z_)cos( X, z.). (3.3.28)
0

This gives the special case

0.0337 f(x,0) = [d=- E (R, z.), (3.3.29)
0

where the turbulence spectrum is often represented by the following von Kérmén spectrum

(normalized to unity coefficient)
-11/6

fo=[+Z] exp[ -¥?], (3.3.30)
where X, = 2n/L_ and X; = 2rt/L,. L is called the outer scale of turbulence, and L, is called
the inner scale. The shape of the spectrum in the region where the inner or outer scale are
important is not known in practice, and these forms are used because they are physically
reasonable and mathematically convenient. Other models have been suggested and the
techniques developed in this report can be used for those. Only the von Kérman spectrum is
used in this report. Typically, inner and outer scale do not affect the final answer. Care should
be exercised in comparing the results with outer and inner-scale effects included obtained here
with those of other authors. Some define these quantities without the factor of 2n. If inner

and outer scale are negligible, one obtains the commonly used result

f(o=x13 (3.3.31)
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After inserting Equation (3.3.27) into Equation (3.3.26), the integration of the delta

function in X' can be immediately performed, and the expression has now been reduced to

[ 71, 2 jd. jd-" (235 far E(R01 2~ z"l)l:gp]G(i’, )G (R, 2",
] |

e -1 [ Ber- L)
cOS ’_———2 ko CcOS -"—'———‘2 ko

. xz(:'- Ly| . [ xz(::"— L) ’
lsm 5 k. sin _~2 K J

with the region of integration in =' and =" space shown in Figure 3-3.

(3.3.32)

C
4
where [ C :I

?

. z!.
L

rigure 3-3. Original region of integration.

One of the axial integrations will now be eliminated. Change the variables of integration
into sum and difference coordinates by the transformations
z2-=2"'-2", (3.3.34)
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___l -t -
a-nd -_2('-+‘)9

(3.3.35)

where the new region of integration has been transformed from the rectangular region into the

diamond shaped region of Figure 3-4.

4:
L
-
-L L
Figure 3-4. Region of integration in transformed space.
The transformed equation is
2 C
¢ 2 A2
[ 2]= k, [fdz-d: Cy(2) [dR E (R, z-l)[cp]
X Diamond a
X G(R, z+ 2./ 2G (R, z - 2_/2).

(3.3.36)

In order to eliminate the integration over z_, Equation (3.3.29) can be used except that the

integration goes out to infinity, while the integration above has finite limits. In addition, there

are other functions in the integrand that depend on that coordinate. However, the correlation

function of the turbulence only has significant values over a range of tens of meters, a distance

that is generally very small compared to the entire integration path; therefore, the difference

coordinate can be set to zero when it is added to the sum coordinate. For the example of

tracked tilt that is considered in Section 3.5.6, the results of performing this calculation without

this approximation are derived in Appendix B. The magnitude of the error using the above




assumption was about |1 part in 100.000,000. Therefore, this approximation has a negligible
effect on the final answer. This assumption makes the correlation function the only one that
depends on -_.

The difficulty with the finite limits of integraticn will now be resolved. Since the
correlation function is even in -_, the integral is twice the answer obtained using only the
right-hand side of the diamond. The only part of the diamond shaped area that contributes to
the integral is a thin strip close to the vertical axis since the correlation function falls off very
rapidly with distance. Therefore, the diamond shaped area can be extended horizontally to

. infinity without significantly affecting the value of the integral. Doing this, the limit of the z_

integration goes to infinity, and the use of Equation (3.3.29) allows this integral to be

evaluatecd. With these approximations, the integral reduces to

200 _ 1]
cosz[————r(' L)J

2 r 2k
® |=0.2073k2[a= cX(z)[ar £ (x0) ° MIF.®R.:). (333D
22 0 LK -Ly |5
sin —_—a
2%,

The filter function can be a cascade of individual filters in which
G(R )G (8, »)=[IF, (%, 2. (3.3.38)
i

For problems of laser beam propagation in the near field, an important simplifying
approximation can be made. Since the argument of the trigonometric function is small, the

cosine term can be replaced by unity, as

v <2 i(f_—._l‘l]gl
cos 2k, -1 (3.3.39)

Simiiar expressions can be denved for a wave focused at the target and at the observation
point. For the case of a wave focused at S, Tatarski shows that the phase and log-amplitude

are ~iven by
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[:i:l;_;]”vgdv(ig—i." :‘)lsin[ s ]
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25,8 - 7

lc( R, =) d:'. (3.3.40)

Using the following property of the refractive index average for focused beams from Tatarski

<dv( RL )dv ( ?1-‘”:' )>= E(RIz2- :"I)Ci[(: '+ ') 12

S —
W(322) o e 2SI 0 Ve gp, a3

and repeating the same steps as above, one obtains for a wave propagating to the focus

[ ot E518 =20
2 L | cost 5
¢ 2 2 [S] 2k S ]
,|=0.2073k ) [a= oo [aR £ () 5 Tascs o o] I1F,R.2).
* ° [5] sin [ 2k, S |
o -
(3.3.42)

To obtain the same quantities when propagating from the focus to a point §, the general form

can be found from the above result by meking the substitution 2 = § - 2 to get

5/3
S§—-: 2 )
LT (o B - o) | A
,|= 02073 &k, [d= €z [dR f( ) 53 I1F, %, 2).
0

X S—2=2 c2 S i
l( 75) sn [2/:0(: —S)]
(3.3.43)

Similar formulas for the structure function will now be found. When the structure function

depends only on the difference between the two coordinates, the displacement in real space is
equivalent to a phase shift in transform space, as is seen from the following property of Fourier

transforms. The transverse Fourier transform of a function is

F(f(@)=]di f(ayxplik. al, (3.3.44)
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then

Flf@ + aD)) = jd&‘f(&' + @Djexp[iR - @] =exp[-iR -&"D] F [ f(a)). (3.245)

Using this relation and Equation (3.3.37), the structure function is
L o
- 2 2 (z-L) -
D¢(a )= 0. 2073 ko {)d: C"( 2) Idi’ f(x) COSz[——Zk—o—]nF‘.(K, 2)
i

x|t -exp ik am|2

L "
x(-L
=0.4146 ki £d: Cﬁ( ) Idi’ f(x) cos{—-—%—#] I;IF,.( ) 1-cos{R: a@}].

(3.3.46)
Therefore, the structure function for a collimated beam is given by
cosz[ xz(z - L)
D (&) L 2k
¢ 2 2 0
.. {=0.4146 k', ld- C,(z) |dK f(x
[D (a)] o Jdz Ch(2) [dR f(x) 2 - D)
Z 0 sin 2 Y
[/}
x[1-cos{®. @D}] nF,-('?, 2). (3.3.47)
; 3.

The structure function for a beam focused at S is given by

23\33 [ @s(s-2)
Po@_ aras 2 j:d Ci2) [dR fx) L
o =0 - K -
Dx(a)J °0 n FISLR 2r S (S -2)
(5) T 2k,

x[1-cos{ % - b‘D}]nF,.(f". z).
i

(3.3.48)
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The structure function for a beam focused at = = 0 is given by

S - = 513 9 x2s

D (&) Wb (555) e [TT;("TF)‘]
= 0.4146 k, [d= Cp(=) [dR f(x)

Dx(d) 0

L "
(552) snd ]

x [1-cos{ R . aD}]rlF,.('?'. ).
i

(3.3.49)

The cause of any time changes in the turbulence are due to either wind moving the
turbulence past the viewing volume or due to the slewing of the beam. Taylcr's frozen
turbulence assumption is used heic and it assumes that the turbulence itself does not change in
the typical time scales of interest. With this assumption, the pcwer spectral density can be
found by a change of variables. The transverse spatial coordinates will be changed to one over
temporal frequency and another convenient coordinate. It will be recognized that everything
multiplying the differential of omega ( the temporal frequency variable) is the power spectral
density. Assume that the wind velocity, v(z), is in the x direction. Then, one can write a

relation between the wavenumber in the x direction and the temporal radian frequency as

Ky =@/ v(z). (3.3.50)
Make the additional change of variables
= ‘Kjﬁl +1 (3.3.51)
o 3.
from which follows
dx. = —2 cdce

¥ ov(2) ﬁ (3.3.52)

The last change of variables was selected since it produces an integrand for which a Mellin
transform exists and is given in Equation (F.9). Express the relation for the variance given in
Equation (3.3.37) in terms of these two new variables. Interchange the order of integration so
that the omega integration is performed last, and express the integral from —o 10 +00 as double
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the value of an integrai from 0 to +eo, After these steps, the general formula for variance can

be expressed as an integral over omega. The power spectral density is related to the variance as
r.a

l¢2]= L fdoFw). (3.3.53)
b4 0

Using this relation. the temporal power spectral density can be identified in the equation that

was just derived. The one-sided power spectral density for a collimated beam is given by

L
F@)= 1303470 [ SR A UUZ ) 7o)

0 2( ) o 1<
' [ w2e(: - L) ‘
COS' —':)‘_
L =%o ax
x4 SHIF| =52 1.
i szcz(: - L) l,-l '[‘ () ] 3.3.54)
sin “| ——=———
L 2“ (z )kl) 4 )
Similarly, the power spectral density for a beam focused at S is given by
L
C() TedeUQ-¢) .1 o
F (@)= 1303k, w{d. o )I = f[;T')‘]
'[;-_]5/3%52 ol (S - 1))
S 2%z )k, S

< - i § F #.X‘_:_‘ = 1.
x [i-]5/3sin [ 0?25 (S - =) I (% : ) (3.3.55)
S | 22 k,S

The power spectral density for a beam focused at = = 0 is given by

2 L 2 Tede U1 - ¢)
F(w)=1.303kow£d- o )I = %]

()

S 313 2 ’c<:S 1
(--S ) cos 2‘.2(-)k (., -S)J wc
- o -
X S - 5/3 , w2c2zS fl:lpi[\' (z)" ] (3.3.56)
(" S ) L P
‘ 2%z )ky(z = S)]
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This technique can be used to find the error spectrum caused by a servo system :hat tries to

correct an adaptive-optics system for turbulence. If there is a servo system with filter function
givenby F i[\‘?f“ 3= ] the residual spectrum of the system is easy to find. Cases for simple

servo system filter functions are derived in Scction 3.5.8.
The important equations developed in this section that are repeatedly used to solwv.

turbulence problems are summarized in Table A in part i.

3.4 FILTER FUNCTIONS

In the last section, general expressions for the phase and log-amplitude variance, structure
functions, and power spectral density were derived. To solve a specific problem, it is still
necessary to insert the filter functions that modify the transverse spatial spectrum to determine
the structure function. In this section, the filter funrtions for various operations on the phase
and scintillation are derived. There is not a standard nomenclature for these filter functions. In
this report, the complex filter function that operates on the field quantities will be called "the
complex filter function." The absolute value squared of the complex filter function that is used
to multiply the spectrum of turbulence will simply be called "the filter function.”

Circular apertures are the primary focus of this report, and filter functions applicable to
them are derived. Filter functions for other aperture shapes such as rectangular can be derived,
but not here. Mks units are generally used throughout this report and the filter functions that
are derived here will yield phase variance as radians squared and angles as radians squared. If
the units are not Mks, they are stated explicitly. First, filter functions will be derived to extract
any Zemike polynomial from the phase. For adaptive-optics systems, anisoplanatism is
important, and filter functions for the various kinds of anisoplanatism will be derived. Finally,
the filter function:. for distributed and point sources will be found.

For circular apertures, the following relations for Bessel functions are repeatedly used.




The recurrence relations for Bessel functions are
P .
d[ rt'J ,,(al )]

7 = aa”.lp_ @, 3.4.1)
J (ar)
da{r " "|_._a : (3.4.2)
and dr[ PP ] P 'lp+ i ar.
From this, two special cases are found as
d[ rl(ar))
T = e, (34.3)
d .
and ar[Jatar)] =-al iar). (3.4.9)

The following integral is also used

r 2r
J( r)=-§%- Idcpexp[i( r €oS ¢)]=2—l’-t— fd(pcos(r cos @)
0 0

2x

= 'iln— £d¢cos(r sin ). (34.5)

3.4.1 Zernike Components of the Spectrum

Often one wants to extract or subtract a Zemnike mode from the phase. The filter functions
to do this are easily obtained from the spectral representaiion of the Zemike polynomials over a
circular aperture of diameter D given in Noll.!2 The expressions in Noll are for an apertu.c of

unit diameter and they are modified to apply to an aperture of diameter D. The definition of

the Zernike polynomials are
m
Z(mn), =V n+tiR,(rD/ 2)v/2 cos mé, (3.4.6)
m .
and Z(m, n)w-'\/n*-lR,,(rD/Z)‘\/Esm mé. (4.7

For the above two relations, m # 0. The odd and even subscripts give the x and y
components of the distortion. In addition,

z©,n =vVn+1R%D/2). (3.4.8)
The radial function is given by
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n-my?, .4 n-2q
m _ (-1 (n-q)(D |2)
Ry 12)= Eo a n+mi2=-qlln —m/2-q7° (349
There are requirements that ms n, (3.4.10)
and nl-m is even. (3.4.11)

The reason these polynomials are of interest is that they correspond to the common optical
aberrations one encounters. Z(0, 0) is the piston, Z(1, 1) is the tilt, Z(0, 2) is focus,
Z(2,2) is astigmatism, Z(1, 3) is coma, and Z(0, 4) is third-order spherical distortion.

The Zernike polynomials defined above are orthogonal over the aperture. The following

relation exprestes that fact

.[dF' Z(m mZ(m, mHW(i)=¢6 .65 . . (3.4.12)

where the aperture function has a finite value over the aperture. Expressed in terms of the unit

step, it is

w (o D217
7 - (3.4.13)

The coefficients of the expansion of a phase function are given by

a(m, n) = Idf-‘ W(F)(P(F)Z (m, n). (3.4.19)

For turbuience, the expansion coefficients can be considered to be Gaussian random variables,
and the variance of the coefficients is given by

(a( m, n)a'(m, n)):”df‘ dit' W (FW (FC (7, F)Z '(m mZ°(m, n). (3.4.15)

where C(F, F'') is the covariance of the phase function. The prime on the Zernike term
indicates that it is a function of the primed coordinate system. In Fourier transform space this

can be written as
(a(m, mya*(m, m) = [[dR dK G,, (F)f(K, R)S(R=- K)G ) (R). (3.4.16)

The delta function is the result of the fact that there is no correlation of different wavenumbers
in the turbulence spectrum -— a fact that follows from the assumption that the turbulence can be

represented as a random process with stationary increments, thereby, allowing the covariance
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function to be written as a function solely of the difference of the coordinates. G, ,(K) is
the Fourier transform of the Zernike polynomial, Z ( m, n). Performing the integration over
kappa prime, one obtains

(& m. n) a*(m, n)) = Id'ﬁ G ,,(*)G:,,‘ AR (R, (3.4.17)
where f'( k) is the spectral density of the turbulence. This expression shows that the Zernike
components of the phase can be extracted by multiplying the turbulence spectrum by a filter

function. Noll shows that the Fourier transforms of the Zernike polynomials are
o) [(_l)(n-m)/2.n

evenm, n

i 2 cos(me),
2J . (xD/2)
- l -
Goddm. WK b=+l "+ID 72 l(—l)(n M)/zi "2 sin(mo),

Gm. n('?) (_l)n/Z

(m=0). (3.4.18)
These are the complex filter functions to extract the Zernike polynomials components.
Therefore, in order to extract a given rms Zernike component from the phase, the Fourier
spectrum of the phase must be multiplied by the absolute value squared of these complex filter
functions. The absolute value squared of each Zemike component is

- .
(x)
evenm, n

27 (w /2) 2[2c0s2(m¢),
Foddm n(f) =("+1)[ el ]<2sin2(m )
. xD/2 ?),
F . n(K) 1 (m=0). (3.419)

Of particular interest in many problems are the piston and tilt filter functions. Two
representations of these filter functions will te given. For the piston, the first representation
gives the filter function that extracts the phase variance due to piston. In the second
representation, the filter function extracts the physical distance due to this piston. For the tilt,
the first filter function extracts the phase variance due to tilt, and the second extracts the angle
in real space of this tilt. For different problems, one or the other representation is appropriate.
Al the filter functions will be represented by the same symbol, F(X', z) The piston phase

variance filter function is given by the condition » = m = 0 and is equal to

2J,(xD /z)]2

F(f, Z) = [Tiz—- (3.4.20)
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This filter function extracts the phase variance due to piston. To obtain the second
representation that extracts the piston itself, the filter function would have to be divided by the
wavenumber squared to give

2
| )2[21104) /2)]
) | —o7 |-

F (X, 2)=(k_ XD /2 (3.4.21)

The piston is also the average value of the quantity over the aperture; therefore, this filter
function can be used to calculate effects such as aperture averaging of scintillation or the
twinkling of stars and planets.
The filter function to determine the phase variance from tilt is given by the termn=m =1

and is equal to

F (R, : } [412( KD /2)]2{cos2((p),

Fy®, ) "L D72 {sin2(g). (3.4.22)
The two—axis tilt phase variance filter function is given by the sum of the two components and
is

400D | 2)T
] (3.4.23)

Very often, one wants the second representation that extracts the tilt variance (angle in real
space). In that case, the phase variance from the tilt must be averaged over the aperture. One
finds that the filter fun<tion to calculate the tilt is a factor of (4/kaD)2 times the phase variance

filter function and is given by

2
" 16
F("")=(k D)L D2 ] (3.4.24)
The x and y components in this case are

- 2

F (%, 2)[ ~\ k,D kD /2 1 |sin%gp). (3.4.25)
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In some problems, the total phase variance is calculated, and one would like the variance
with some Zernike modes removed. This is easily done by subtracting the phase variance due
to these components from the tota! variance. For instance the filter function to remove piston

and tilt is

] [ulud)/z)]z [412(:@/2)]2
FE.D=1-—p77 ] "7 o7

Implicit in the expression above is the requirement that the cross product terms of the piston

(3.4.26)

and the tilt average i some way to zero. In calculating the phase variance over an aperture,
this is true because the Zemike polynomials are orthogonal over the aperture. The situation is
not so simple if this is applied t the structure function. In the expression in Equation (3.2.4),
the aperture average is of the exponential of the structure function. For this case one cannot
use the orthogonality condition to eliminate the cross product terms. Another way of
eliminating these terms is to assume that the ensemble average of these terms is zero. This
assumption is true only if the Zernike polynomials are also the Karhunen-Loéve polynomials of
the problem. Unfortunately they are not, but for the low order Zernike modes they are very
close to those polynomials. Therefore, the assumption that these terms are zero produces a
small error that is less than 10% in calculating the Strehl ratio. This problem is discussed again
in Section 3.4.5.

The filter functions to extract the tilt over an annular aperture with inner diameter D; has

been found by Shelton!3 to be
T L ﬂ3.12(x[i>/2)]2’ >
AR A e
where B= D, ! D. (3.4.28)
3.4.2 Gradient Tilt

The Zernike component of tilt is also referred to as the Z-tilt. Some tilt sensors respond to

this tilt while others respond to a quantity that is closer to the Gradient tilt. For instance, if the
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individual tilts measured in each subaperture by a wavefront sensor are averaged together, then

a quantity that is close to the average transverse gradient of the wavefront across the aperture,
which is called the gradient or G-tilt, is the result of the measurement. The definition of this

quantity is

G-Tit = > [a v o), (3.4.29)
MaD

where the integration is over the circular aperture. The calculation of the G-tilt is equivalent to
calculating the average piston of the phase gradient. This can be calculated in transform space
by multiplying the piston component of the phase by ix/k, and taking the absolute value

squared of the quantity to give
4 32
F&®. 0 =(rp) 4 D/ 2. (3.430)

The x and y components of this tilt are

Fo (K, 2)) 2 { cos2(p),
) 72D 12)]
Fy(x, )I ( ) sin 2(tp). (3.4.31)

The filter function to calculate the phase variance due to G-tilt is obtained using the same

arguments as above, to give

F(&, 2)= 12D /2). (3.4.32)

The x and y components of this tilt variance are

F (X, 2) os2(@),
oy )}=1,2<w/2){°. .y
y(K, 2 sin “(@). (3.4.33)

The G-tilt filter function for an annular aperture has also been found by Shelton to be

2
o 4 2
F(k,z2)=|——5|[J(xD /2)- BI.(xfD | 2)] . (3.4.34)
(koD[l-Bz])[’ 1 ]

If the derivations are repeated for spherical waves, then one finds that XD has to be

replaced by xD(z) in all the filter functions.
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3.4.3 Anisoplanatic Effects

Anisoplanatism is an effect encountered in an adaptive-optics system in which the beacon
return propagates down a different path than the outgoing laser beam. Therefore, to derive the
filter function, the difference between the Fourier transforms of the quantity of interest at each
point on the path must be found. Since a displacement in real space is equivalent to a phase
shift in spatial transform space as shown in Equations (3.3.45), the only difference between
the quantities along the two paths is a phase shift that can vary in the propagation direction if
the displacement changes. Therefcre, the filter function to be applied to the phase for each
realization is unity minus this phase shifted term. The filter function due to this difference in

paths through the turbulence is the absolute magnitude squared of that quantity and is given by
F(X, )= |1 —exp[iR- d( 2)]| 2=2[1-cos{ #- d(z)}]. (3.4.35)
There are several reasons why the paths can be different as shown in Figure 3.5, and this leads
to different functional dependencies for d.
If the two paths are displaced a constant amount, d is a constant, and the path displacement
is given by
diz)=4d (3.4.36)
If the two paths coincide at the origin but differ by a constant angle, ©, the path

displacement is given by
d(2)= 6:. (3.4.37)
If there is a time delay, T, that is short compared to the turbulence mixing time and the
Taylor frozen turbulence assumption is valid, the displacement in this case is given by
d(z)=¥()r. (3.4.38)
If the beacon beam that senses the turbulence has a different wavelength than the laser beam
that is sent out, the two-beam will take different paths through the atmosphere because of its

dispersive properties. The analysis given here parallels that given by Belsher and Fried.!4

Geometric optics is used to obtain the path displacement for chromatic anisoplanatism. To
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Figure 3-5. Various rypes of anisoplanatism.

reach an exoatmospheric target, it will be assumed that the rays at different colors are
propagating at the same angle at the target. Even for near-earth targets, this is a good
approximation as is shown in detail in Section 3.9.3.4. If n(h) is the refractive index seen by
the first wave, and n(h) + An(h) is that seen by the second, and &(h) is the zenith angle of
the first, and §(h) + A§(h) is that of the second, Snell's law which states that » sin(§) is a

constant gives
A&(h)=-An (h)tan[§ (A)). (3.4.39)
This can be integrated along the path to yield

- : Esin(€)an, ;
2)= - d .
d(z) ‘j)dz A€ (h) T oos2E) (j)x a(x).  (3.4.40)

where 47, is the difference in refractive index between the two colors at wavelengths A, and

A2 when the wavelengths are given in micrometers, and a(x) is the normalized air density
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versus altitude. These functions have been approximated by Belsher as

h (2 2\ 29498.1 255. 4 ~6
an,= (% A?){(146,12-1)(146}.?-1)+(41).§—1)(41)%—1)}10 044D

al h) = exp[—l. 11 x 10'411] h< 10 km,

-4
ol h)=1.6exp[-1.57x 1074} k>10km. (3.4.42)

A plot of the absolute value of the difference of refractive index between a wave at 0.5

micrometers and other wavelengths is shown in Figure 3-6.

-
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Figure 3-6. Difference in refractive index between 0.5um and anotner wavelength.
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The normalized air density versus heighi is plotted in Figure 3-7.
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Figure 3-7. Normalized air density versus altitude.

3.4.4 Distributed Sources

Distributed sources are of interest for many problems. The light from a planet is from a
source of finite size, and this has to be taken into account if one wants to calculate the phase or
scintillation from that source. For many adaptive-optics systems, the beacon source or
reflector is a point source or a distributed source and the corrected signal is a collimated beam.
The question that arises in this case is how much does the difference in the paths of the beacon
signal and the corrected beam affect the phase variance on the corrected beam. The variances
due to this effect vary over the diameter of the aperture and are not spatially stationary. For that
reason a structure function that depends solely on the difference in aperture positions cannot be
written down for this problem. However, one can still calculate the average variances over the
aperture. In adaptive-optics systems, the phase variance ‘s small, and Maréchal's formula can

be used to determine how much the Strehl ratio is degraded by this effect.
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Consider a point source beacon at a height H displaced from the center of the aperture by a

distance & as shown in Figure 3-8,

BEACON

-y D/2 4 D2 -

Figure 3-8. Geometry of a point source beacon.

If 7 is the position of a ray coming from the aperture, the anisoplanatic distance fiom the
collimated ray coming from that point is

- b4 -
d=p(r=25). (3.4.43)

The above relation can be used to find the phase variance at any point in the aperture. This
phase variance must be averaged over the aperture to obtain the filter function for the average
variance due to a displaced point source compared to a collimated beam. The filter function is

equal to ‘
F(R,z) =.8_2 .f []—cos( . 72-,-[?‘ 5] )] (3.4.44)

This filter function jroduces the phase variance with all the Zemike components included. If
one wanted tc obtain the phase variance with some of these modes removed, this expression
would be multiplied by another filter function that removed these components in the manner

described earlier.
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The integral over angle in the aperture can be performed using Equation (3.4.5) since

b3
1= j dpcosla cos (@) + c]= Re jdcpexp[:lacos(cp)-r c}l=2xcos(c)J,(a).
0

(3.445)

-.

D/2
Equation (3.4.44) becomes F(K.=)=—65I [ ( )cos(i’ H)] (3.4.46)
0

If there are no other filter functions in the problem that depend on the angle in x-space, the

integral over angle can be performed using Equation (3.4.5) to give for the normalized filter

function the expression
D/2
» oz -
Y AT SRS R
0
The integral over radius can be performed to give
wﬁ
2J, .
F(g, z)=21- (,4)2-” )Jo( 7;) (3.4.48)
2H

For a point source over the center of the aperture with everything symmetric, the filter function
is
J ( xD:

— 1
F(&, 2=2[1-2-22H | (3.4.49)

2H
The effect caused by the difference in the paths between a focused and collimated beam is
referred to as focal anisoplanatism. A distributed source as shown in Figure 3-9 is now
considered in which the source points are incoherent with respect to each other. This case
would correspond to the physically interesting cases of a reflection from a corner-cube array or

a diffuse plate, or the return from a planet.
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Figure 3-$. Geametry of the distributed beacon soi'~ce.

To determine the filter function, consider the effect of cach point in the source on a
Hartmann sensor that measures the phase gradient or intensity. Each point gives a tilt or
intensity, and these are added together incoherently, weighed by the source intensity.
Integrating over the source intensity, normalizing, and taking the absolute value squared gives
the variance at a point in the aperture. If the normalized result is subtracted from unity before
taking the absolute value squared, then one obtains the variance due to the difference between a
distributed source and a collimated beam. If tliese expressions are then avera jed over the
aperture, one obtains the average phase variance filter function of a circular source offset from

boresight by 5°. For the distributed source S ( ) the filter function is

2
l . m{:"' S(F)exp[[ iR+ (7 = 7 - 5’)]|
I . (3.4.50)

f& s(F)

source
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For a uniform circular source distribution of diameter D, that is on boresight, the integrations

can be carried out to give

2
J( D, 2 /2H
F(:?'.:)-[2 o )]

For the isoplanatic case, the filter function for the difference between a collimated beam and

(3.4.51)

a distributed source is

. 2
di" S()exp| iR 5p(F -~ F = b)
F@®. 5y =—2 [ari- 2 ”‘{'“ L ]l 3.4.52
D> D’ Id"" S(7) I (3.4.52)
source

If a uniform circular source distribution is assumed, the integrations can be carried out to give

2
4J(Dx) 2J,( D x - J (D, x
v ( ) ( ,b)+[2 (D5 %)
x:<

F(8, 2)=1- —p= g D ] (3.4.53)

where X = (3.4.54)

2H°
If there are no other filter functions in the problem that depend on the angle in x-space, the
integral over angle can be performed using Equation (3.4.5) to give the normalized filter

function
4J (Dx) 2J,(D; x) . (D,
o ) I\ xb: s
F(k,2)=1-—p- D, x .Io( H )+[2————sz ] . (3.4.55)
If the offset is zero, the filter function is

) 4JDx)20(Dyx) [ J(Dn)T
F(x.z2)=1-—p¢ D, x T Dyx

(3.4.56)

3.4.5 Cascading Filter Functions
In the last section, the filrer functions for Zernike components, anisoplanatism, and

distributed sources have been calculated. In some problems, several effects are present at

110




once, and one would like ‘o determine the quantities of interest for that case. Certainly it would
be convenient if the filter functions can be multiplied together. Unfortunately, this is not
always the case. The way to build up complicated filter functions is to use the approach in
calculating the spectrum of the Zernike components in Equations (3.4.15) to (3.4.16). In
deriving the spectrum of the turbulence with a Zernike mode extracted as simply the product of
the turbulence spectrum and the Zemike spectrum, one had to assume that the correlation
function of the turbulence had stationary increments. In a similar way, one can derive the
spectrum with anisoplanatic effects as the product of the turbulence spectrum and the
anisoplanatic filter function. The spectrum of isoplanatism for the effects considered also has
stationary increments. This new spectrum can be used as the basis to have the Zerike modes
extracted by simply multiplying by the Zernike spectrum. For this type of problem, the filter
functions can be simply cascaded.

After the Zernike mode is extracted. the spectrum may no longer have stationary
increments. Tilt removal does not affect the phase at the center of the aperture at all but it
greatly reduces the variance at the aperture edges. For this component, the residual spectrum is
no longer stationary. The problem arises if one wants to multiply this spectrum by another that
is also not stationary. Then the assumption that the Fourier transform of the covariance
function can be written as a delta function is no longer valid. A case of practical interest is to
find the phase variance for focal anisoplanatism and this is considered in Section 3.5.9.

To summarize, anisoplanatic effects, turbulence, distributed sources and piston related
effects can be calculated by cascading their filter functions. Also, anisoplanatic effects,
turbulence, and any Zernike effect can be calculated by cascading their filter functions. The
effects of distributed sources and Zernike modes cannot be calculated exactly simply by
cascading their filter functions.

The main filter functions that are used repeatedly in solving turbulence problems are listed
in Tables B, C, D, and E in part 1.
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3.4.6 Fitting Error

In an adaptive-optics system. the mirror has a finite number of actuators that results in an
inability to correct for the high spatial frequency turbulence. This effect is referred to as fitting
error. It is not stationary, since a perfect correction can be made at the mirror piston positions
but an error is made in the intermediate mirror locations. Nevertheless, the effect of fitting
error can be calculated by using an appropriate filter function. The parameters of the filter
function can be chosen to give the fitting error variance obtained for various types of
deformable mirrors by Belsher.!5 This filter function can be combined with other filter
functions describing other defects in the adaptive-optics system to get an overall phase
variance.

3.5 SINGLE PARAMETER PROBLEMS

In this section, turbulence problems that can be represented in terms of one parameter are
treated. The calculation is very simple, beir.g comprised of an integration over angle, a change
of variables, and a table lookup. Some of the problems presented in these sections are much
more difficult to solve by conventional techniques.

Turbulence moments are used in the calculations. Analytic expressions for the turbulence
moments for the Hufnagel-Valley model are calculated in Appendix C. The definition of the
complete moment is

u,=[CA) 2" d: = secn* 1(E) [Chhy k" dh, (3.5.1)
0 0
where £ is the zenith angle. Define the upper and lower partial moments in the following way

for a distance L which is at a height H where

L=sec(§)H as (3.5.2)
WLY= [CX2) 2" dz=sec* &) [CX(m A" d; (3.5.3)
L H
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and

L H
L) = [Che )z " =sec "+ UE) [ CAmyn" dn. (3.5.4)

0 0
The zenith dependence for all problems only appears in the moments, and is incorporated in
them rather than being expressed explicitlv. The coherence diameter and anisoplanatic angle

written in terms of moments are equal to

~5/3_ 2
ro / =0. 423 AO“(); (3.5.5)

_5/3 2
and 8, "=0.91k, u5 5 (3.5.6)

The values of the coherence diameter and isoplanatic angle for a wavelength of 0.5

micrometers are plotted versus the W parameter in Figure 3-10.
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Figure 3-10. Coherence diameter and isoplanatic angle versus the Hufnagel-Valley wind parameter with
A=17x1014
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Useful turbulence moments at zenith for various turbulence models are given in Table 3-1.
The values of the coherence diameter and anisoplanatic angle apply to a wavelength of 0.5 um.
The moment at any zenith angle can be found by multiplying by the appropriate zenith

dependence given in Equation (3.5.1).

TABLE 3-1
Turbulence Moments for Various Models
SLCDAY | SLCNIGHT|  Hv-21 HV-54

r, (om) 4.98 10.1 4.96 4.18

: 6, (urad) 11.8 12.9 6.9 2.40

; ™ 222 x10'2| e84x107"3| 223x10" | 297 x 102
Ms/3 3s6x107 | 307x107 | 87x107 | 5.06x10°®
M, 720x10°° | 6.13x10° | 191x10% | 1.16x10™
My 1.02x10° | 832x10° | 3.48x10° | 2.08x 10
Miaa 6.06x10° | 491x10° | 191x10° | 1.25x10
Mg 34x10"° | 255x107° | 545x10"° | 2.24x10°

3.5.1 Zernike-Tilt For Collimated And Focused Beams

First, consider the calculetion of the Zernike tilt. In all the calculations of phase quantities,
it will be assumed unless stated otherwise that diffraction effects are not important, and the
approximation given in Equation (3.3.39) is valid. Using the filter function that is given in

Equation (B.7) in Table B and the general formula for variance given in Equation (A.1) of

Table A, one gets

2
6 )2( LD [ 2))

L
T2=0.2013 & fdz C¥(z) [aR f(x)( 0.0) (ST - G5
0
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Inner and outer scale effects are neglected in this section, and the turbulence spectrum is given
by the approximation in Equation (A.6). The integrand in the second integral does not depend
on the angle in kappa space nor on the axial coordinate. Integrating over this angle and over z
using the relation for turbulence moments given in Equation (3.5.1), and making the

substitution x = xD/2 yields
T2 105. l”‘)jd =11/3- IJZ(A)— 105.1 Ho rI:s/2+ 2,l— 8/2]

z p'f3 DR [3-s/21-5/2
s=—-i
3
1 7
105.1u, |63
Ve X
(3.5.8)

The integral is equal to the Mellin transform of the function given in Equation (F.6) evaluated at
s = ~11/3. The unusuai notation for the Gamma function is defined in Equation (2.2.2) of
part 2 and is equal to the ratio of the four individual Gamma functions. The evaluation of the
Gamma function at noninteger values can be done on some hand calculators such as the
Hewlett-Packard-15 by calculating the factorial of one less thar “he argument. The composite
Gamma function above is equal to 0.2052. Evaluating this expression, one obtains the

standard result

2
T2= Eﬁ% =0.3641 (-f.lo)s / 3(—3) . (3.5.9)

Notice that the tilt goes to infinity as the diameter goes to zero. This singularity is removed by
considering inner scale which is done in Section 3.6.5.
For a 0.6 meter diameter aperture and HV-21 turbulence, the rms tilt is 4 microradians. If

the turbulence is constant along the path of length L, then the tilt variance is
2 6.08C2L

T,=——7— (3.5.10)
z- i3
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If the beam were focused at L, then the formula for focused waves in the bottom part of
Equation (A.4) has to be used. Close to the focus, the argument of the cosine term is
significant; however, the term multiplying it goes to zero at focus. Therefore, it is a good

approximation to neglect the cosine term in calculating the tilt. Doing that the tilt variance is

2. 5:08 J' (L-2)°"?
=573 dz Chz )*———L - (3.5.11)

If the turbulence is constant along the path, one obtains

6.08C >
A

z Dl/3

(3.5.12)
Therefore, the tilt variance is 37.5% of the collimated value and the rms tilt is 61% of the
collimated value. The above results were derived by Tatarski and expressed in a different
form.

3.5.2 Gradient-Tilt

In an exactly analogous fashion, the G-tilt integral can be found by putting the filter

function given in Equation (C.4) into the general formula given in Equation (A.1) to obtain

L 2
2 2 2 4 2
T =0.2073 K’ {d: cXz) far f(x)(k—oD-) D 2).  (3.5.13)
Afier the same integrations, substitutions, and Mellin transforms as above, one obtains

14 2
2 6564, |e3 | 56154, _,,_)5/3(,1). 3.5.14

i =0.339(2) (%

¢ pym |L 8] D3 0 b

This gives a tilt that is 3.5% lower than the Z-tilt. This is the same result obtained by
Ellerbroek. 16

3.5.3 Difference Between Gradient-Tilt and Zernike-Tilt

Sometimes the position of a target is measured with a sensor that responds essentially to the
G-tilt. The pointing sysicm uses the tilt from this sensor to direct a beam at a target. The
pointing of the telescope is the Zernike or Z-tilt. It is of interest to know what is the tilt jitter

116




expected at the target even if this process is performed perfectly. This problem has been
analyzed by Yura and Travis!7 and they call it centroid anisoplanatism. The variance of the
difference between G-tilt and Z-tilt can be found by taking the difference of their filter functions

for each realization, squaring the result, and then putting this into the standard formula to give

2
. 2[(412(:@/2)) o 2]
OD) 7z )P 12)].

(3.5.15)

If the bracket is expanded, one obtains three terms, two are the sum of the Zernike and

2

L
T2 ,=0.2073 k. [d: Co() [dR f( r)( T
0

Gradient tilts. The third can be evaluated using the Mellin transforms in Equation (F.7) to
obtain
1

»
69

7

1
6’3

L[~ 8T 2 |} 3516)
6

6 76

7
2 6.564 u 63
T = {16 5

G-~-2 Dl/32‘\/_7?

_w|e

-l_a
o [*n
6 6’
If the Gamma functions are evaluated directly, since the terms in brackets almost cancel out,
one requires five-place accuracy to achieve three-place accuracy in the final answer. Rather
than doinz that, the recurrence relation of Gamma functions given in Equation (2.2.4) of part 2

can be used to show that

6.564 u, |+, 3
2 . 6’3
T =2 [1. 07138 + 1— 2.05348 ]. (3.5.17)
G -2 D|/32ﬁ 167’161
This is equal to
0.102 u 5/3, 42
2 _ P D __1_)
Te 2= =0.006 (%) (5) - (3.5.18)

The jitter will be one-third of a beamwidth when the aperture diameter is 6 times the
coherence diameter. A more capable proposed adaptive-optics system with a 0.6-m aperture
will be able to correct turbulence very we!' even if the diameter is 17 times the coherence
length. If the turbulence were that severe, the Zernike minus Gradient tilt jitter would be equal

to 0.66 microradians; therefore, care must be taken to assure that the tracker responds to Z-tilt.
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This can be done for the wavefront sensor tracker by using the appropriate matrix to determine
the tilt from the individual gradients measured in each subaperture.

3.5.4 Scintillations for Collimated and Focused Beams

To calculate the scintillation of a wave that propagates from O to L, use the filter function

given in Equation (A.5) in the general formula in Equation (A.1) to obtain

27, 2 1173 o K = L)
x2=0.2073 k7, £ dz Cp(z) fd® x11/3sin | @519
Integrating over ¢ and making the substitution
G - L)
M2 s T
Xe= 2 ko ’ (3.5.20)
one obtains
L o
x’= 0.73lkzl6fd: C,f(:: WL -z )SIGIdx x7B15in 2(x 2y, (3.5.21)
0 0
Using the Mellin transform in Equation (F.4) evaluated at s = -5/3, one obtains
L
7 2
2£=0.5631k."% [dz €2z )(L-2)°'C, (3.5.22)
0

If the propagation were from L to 0 then L - z should be replaced by 2z, the standard result

is then obtained which is

7/6
2=0.5631k,"  pg (3.5.23)

This is the scintillation that one would get from a star. It is equal to 0.059 for the HV-21
model at 0.5 micrometer wavelength. Even though this number is small, there can be
significant scintillation on the beam. The variance of the log intensity is four times that of the
log amplitude and is equal to 0.236 Therefore, it is not too unusual to have the intensity drop
by a factor of 2.

A similar calculation can be performed for a focused source. The standard Equation (A.1)

is used with the filter function of a focused source given in Equation (A.S), to obtain
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L 5/3
- 2 - ~11/3(S~¢ : )
r=90.2013 k, {)d. Cya) JdR kM3(22L)  sin [m] (3.5.24)

Integrate over the angle and let a=x | 31?0(%%_2)- ' (3.5.25)

then using the Mellin transform in (F.4) evaluated at s = -5/3 one obtains

\)
5/6
22=0.5631 k)% [d: €2 )z 3%01= 2/ 8) 0 (3.5.26)
0

The above results were obtained by Tatarski in a slightly different form. If the target is much
higher than the turbulence, the last term in parenthesis goes to unity and the scintillation then is
equal to that of a beam propagating from space to the ground. This is much less than the
scintillation of a collimated beam propagating from the earth's surface to space.

3.5.5 Beam Movement at a Target for a Collimated and Focused Beam

The next problem is another in which the complex filter function acting on the phase is
calculated. This complex filter function must be squared before substituting it into the general
expression. The movement of the beam due to turbulence at a target will be found. The tilt

causes a beam to change position on a target as shown in Figure 3-11.

TARGET BOARD

BEAM PATH _)Z‘

SOURCE

Figure 3-11. Movement jitter at a target board.
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It is assumed that the scintillations are small so that the beam does not braak uv. If there are
significant scintillations then that will add to the movement calculated here. With that
assumption, the amount of jitter is equal to the tilt times the distance over which it acts.
Therefore, the tilt filter function for this problem is

F(R L-)3(18 2( Jz(xD/Z))z 3.5.27
(X, o) =( ~(1.‘:5)—,—5/—2—-. (3.5.27)
and the variance of the beam movement for the collimated case is
2
L 27 J (xD /2))
2 270, 2 _\2(_16 2
=0.2073 k, £d. C,(2) Idi’ fx)(L - 2) (7‘:5) (————0/2 . (3.5.28)

This expression can be evaluated as in the example for Z-tilt to give
' 2_6.08[,2
X"= _‘|Dn AL o= 2L+ i) (3.5.29)

For distances at which the target is well above the turbulence, the first term in brackets is
dominant, and the result is the physically reasonable one that the rms movement is the rms tilt
times the distance. If the turbulence is constant along the path then
» 2.03L°c?

= T‘ (3.5.30)
This functional dependence with constant turbulence along the path is the same as that reported
in Fante!® where the fourth moment of the field was used to calculate the beam displacement.
The coefficient was 1.92 in that case. A Gaussian beam calculated by Prokhorov!? gives the
same dependence with the coefficient equal to 1.6. The advantage of the approach here is
that the answer is arrived at in a straightforward manner and the expression given in
Equation (3.5.29) applies for turbulence that can vary in space. For the focused case, the
phase expression at the bottom of Equation (A.4) must be used. For the same reasons given in

Section 3.5.1, the cosine term is neglected to give for the movement variance the expression
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L 1173
2_6.08 a  (L-2)
X" = ——3 |d: C,(z:)———¢—. (3.5.31)
Dl /3 { h L5/3
For constant turbulence along the path this can be integrated to give
» 2.03L%c? g
= "_173_'(T4') (3.5.32)

D
The movement variance is 64% that of a collimated beam, and the rms movement is 80% that
of a collimated beam.
3.5.6 Tracked Tilt
Suppose a tracking system is doing a perfect job of keeping a laser beam centered on a
target. There will stiil be an angle-of-arrival jitter of the laser beam at the target because the
beam had to traverse the atmosphere differently as the turbulence changed. This is illustrated in
Figure 3-12. The fact that the target is being perfectly tracked means that, at each turbulence
realization, the distance the beam moves due to the tilted tracking mirror is exactly canceled out
by the tilt caused by travérsing the atmospheric turbulence. The 'angle of arrival tilt will be
calculated due to the turbulence at z. In the final expression, all these differential tilts are
summed by integrating through the atmosphere. Therefore, if T, is the mirror tilt and T is the
filter function of tilt, one gets
LdT - (L - z)dT =0, (3.5.33)
therefore, dT,=(1-=z/ L)dT . ‘(3.5.34)‘
The residual tilt at the target is the mirror tilt minus the tilt through the turbulence. This results

in the following tilt at the target

dT,= dT - dT,= =dT | L. (3.5.35)

The filter function for this problem is the square of the above complex filter fur: ction which is

3
2 J.(xD / 2)]-
z 16 2
F(R.z )-_-[-_L] (__k,,D ) ‘____/_T_ . (3.5.36)
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Figure 3-12. Path of rays for a perfectly tracked target.

Substituting this filter function into the general formula gives

L 2 2 2
3 2f . 2 sz V(16N A /D)
T} =02073 k,[d=Cp( ) [ dR "Hﬁkf)(kob) <7 6s
0

Evaluating this in exactly the same way as the variince: of Z-tilt gives
6.08 u,

T!= —i (3.5.38)

This problem was also analyzed by Tyler.20 His results are in the form of curves that are the
result of a numerical integration of the final form of his resulit.

For a 0.6-m system with the target at 300 km and HV-21 turbulence, the rms tilt is
39 nanoradians. |

3.5.7 Scintillation on a Corrected Beam

A perfect adaptive-optics system applies the phase shift caused by the entire atmosphere 10
a deformable mirror. A beam bounced off this mirror is severely distorted at first and as it
propagates, the phase distortion decreases to zero at the top of the turbulence. The distorted
beamn will produce scintillations. The turbulence at a given altitude will cause scintillations as
analyzed above; however, in this case, there is a corresponding phase shift at the mirror that

tends to cancel out this scintillation. The two turbulent contributions do not act over the same
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distance, and there will be a net scintillation for each turbulence realization. This must be

squared to obtain the filter function which is

2
Te] [ -2 (3.5.39)
F(:?._)=(sm[§-k—0 - sin ——z-k—;-——- .
The scintillation is therefore equal to
2
o L
2 2 I 7Y I le] .[KJ(L—:)D
= | dx0.207 d= C (2 -
b4 {d 2 3(2z)kl,£ CHx (sm[ﬂ: sm-——iT(-,——-
=J.dx‘¢(K‘). 4 (3.5‘40)
0

In the above expression, the order of integration was interchanged. Everything multiplying the
differential of kappa must be the transverse spatial spectral density. For Raman scattering, this
quantity is of interest since the interaction strongly depends on the spatial wavelengths of the
turbulence. This expression can be integrated numerically to get the spatial spectrum at any
altitude of interest. This has been done, and an example of the transverse spatial spectnil
density plotted versus the spatial wavelength is illustrated in Figure 3-13.

The tilt variance can be found by integrating the spectrum. Using the trigonometric identity

b 2 b e |
Ll | e(L-2) _ 1] X: K(2L-:)
sin [ 2/:0]8"1[ X, ]— 2(cos[ ZkO]— Ccos [—-—————2 I v (3.5.4D)

one can evaluate the integral using the Mellin transforms in Equations (F.4) and (F.3) to give

L
22=0.563k ) fd:C - ){L5/6+(L I LA TRV L T ‘
0

(3.5.42)
which for altitudes well above the highest turbulence is equal to
716
0.0195 & u
12=O.563kz,/62”6p5/6— a2 . (3.5.43)
L .
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Fig 3-13. Spatial spectral density at 15 km.

The first term is a factor of |. lé higher than the variance of the beam propagating downward
through the atmosphere. The second term is small compared to the first, and it decreases with
distance. As a partial verification of the accuracy of the above resuits, note that if the
turbulence is entirely at the mirror so that the turbulence profile can be represented by a delta
function, then the scintillation is zero — a result that is required.

3.5.8 Phase Variance with Finite Servo Bandwidth

Greenwood has derived the phase variance of an adaptive-optics system having finite
temporal servo bandwidth with a one-pole filter and an infinitely sharp filter. The residual rms
phase error due to the finite frequency rsponse will be calculated. In this section, the same
servo filter function as treated by Greenwood2! will also be treated here. Consider the
following filter function

‘]
F(k)=}1- |- (3.5.44)

f @
1+ c( )
8

124




Lo__ .

Greenwood's case of a single-pole filter corresponds to n =1, and n = e is the sharp cutoff

case. [f this is inserted into the Equation (A.3) for the power spectral density one obtains

3 w51 M-33F Ue = e=¥3
o = 0.8272 k2[dz CFia jd\ S e (3.5.45)
5!’3 |+ f-“ 2
0 g 0 0 c“=1
¢ = o
where ¥ . (3.5.46)

Using the Mellin transtorms in Equations (F.8) and (F.9), one obtains for the phase variance

the relation
wz:(%)ﬂ:&:f;:):]::(\ gl’:) . (3.5.47)
3aB 6n
The velocity moment is defined by
v,= fd: C‘i(: w(2). (3.5.48)
0

For a single pole filter n = |, and using Equation (3.5.47) the characteristic frequency is equal

to

/3 2
f=0.10245 v 513 (3.5.49)

While for a sharp cutoff filter, the limit of the phase variance as n gets very large is found
using L'Hospital's rule to be

o7 =0.019 K v /3 (3.5.50)

These are the same results obtained by Greenwood.

3.5.9 Focal Anisoplanatic Tilt
Itis pointed out in Section 3.4.5 that the method of cascading filter functions works as long
as not more than one of the filter functions stems from an effect that depends on the radial

coordinate. For the problem of finding the focal anisoplanatic tilt, this assumption is not valid.
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The phase variance that is subtracted due to tilt is zero in the aperture center and a maximum at
the aperture edge. In addition, the phase variance due to the difference between a collimated
and focused beam is zero in the center and a maximum at the edge. Because there are two
functions that vary radially, the problem must be solved by going back to the basic equations
and rederiving the expression for the phase variance. The expression that is derived is a two-
parameter integral; however, the high altitude beacon assumption reduces it to a single
parameter problem which is why it is included in this section.

From Equation (3.1.22) the differential disturbance to the wave is

-iKk¥(z~: )]dz'.

de(%, :) = ik, jdv( K, " exp[ T (3.5.51)
0 o

The phase for a collimated beam in real space can be written as the inverse Fourier transform in
kappa space using the above relation as
d@(F,z)=[dR do (R, )exp iR F]

-i K
2

= ik, jdi‘ fdv( R, z')yexpli®- F’]exp[ — : )]dz'. (3.5.52)
2]

o

The focused beam phase is

2N
L R, d:'.
2k,

ap( Foz)= ikOIdR‘ Idv( £ zYexpliR - F(1-2'/ L)]exp{
[

(3.5.53)
Use was made of the fact that the separation of the rays at a radial position r in the aperture is
equal to 1(1- =/ L) at a given distance from the source. This displacement can be represented
as a phase shift in transverse spatial transtorm space. The tilt of the wave at the origin
measured in an aperture of diameter D can be written as an operation on the phase that is the

imaginary part of the above turbulence induced disturbance as

T = [—2—W([7/ D()] Fdr [dRexpliR - #lim do(R. D).  (3.5.54)
k,D"" aD™(z)
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This form allows the diameter to vary with propagation distance. If the change of variables

F'| D(z) = ¥ / D is made, the above equation is transformed into a relation for the

focused beam
T, = fW(v/D) DG ) dvjdi‘exp[:i‘ r(l—z/L)]Imd(p(i‘,-)
f ka

(3.5.55)
The vector character of each of the expressions for tilt of the collimated and focused beams can

be incorporated into a gradient operation in kappa space, and this will allow the integrations to
be performed. Diffraction effects will be neglected, which is equivalent to setting the last

exponential in Equation (3.5.53) equal to unity. Doing that, the difference of the tilts can be

written as
» L
T, = "jk {dz'jdi‘[hn dg(®, OV W (71 D) a7
o
(cos[ R - y']—cos[ & - y'(1--z'/ )]). ' (3.5.56)
The angular integration in the aperture can be performed by using Equation (3.4.5) with the
result
128 o
T, =-i —;)—Jdrjdw R 2=V J:dr[J ()= I ol - 2/LD].  (3.5.57)

The radial integration can be performed using the Bessel function relation in Equation (3.4.3)
to give
128

T,y =-i —-jdk‘jdv( R, zdz 'V [

J (D /2D JI[ kD(l-z'/ L)/ 2]D]
2K - 2x{l = ="/ D)

0

(3.5.58)
Performing the gradient operation using the recursion relation for Bessel functions expressed in

Equation (3.4.2) gives
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2 2
J(D 1 2D%  L[xD( -z L)/ 2)D?
T =-,‘—28-jdi*jdwk* ')d:lz — 2

cf 4 2 B 4x(1-:710L
(3.5.59)

To find the tilt variance, this expression must be multiplied by its complex conjugate and the
ensemble average taken. Follow exactly the same steps as in Equations (3.3.26) to (3.3.37) to
eliminate one integral over kappa prime and the axial coordinate. The result can be written in

the standard form of the variance given by
L
2 2 2 .
T, _;=0.2073 k, fdz Ch) [dR FOOF(R ). (3.5.60)
0

The filter function for focal anisoplanatic tilt in the above expression can be found using the

results in Equation (3.4.2) to be

T LD rd)(l-z/l.)/z]]2

16
F( l_(’..'.-’) =( koD) I: D2~ D1 -z/0)/2 (3.5.61)

If this filter function is expanded and the resulting expression evaluated by Mellin transform
techniques, one finds that the resulting expression is not convenient to evaluate when the
altitude is well above the turbulence. Of greater use in this situation is an approximation of the
filter function by a form that is appropriate for a high-altitude point source. Using the
recursion relation for Bessel functions given in Equation (3.4.2) one finds for small

arguments, z / L <<I, that

J,(x+ Ax) J(x + Ax)
m =[x+ AX]-[—,:-—;]—Z
lxe Ax]{ Jo(x) ' A JHx) e d l’lz(.\’)]} i J( %) . A Jy( ) . J(x) |
x2 2 de X .1'2 X
(3.5.62)

which allows the filter function to be approximated by
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2.2 2
FR.5 = =22 0/ - 23], 5563

"L'( KD/ 2)

If the above filter function is inserted into Equation (3.5.60), for the case when inner and outer
scale effects are not important, one can immediately perform the angular and axial integrations

to give
R 105 Hy T

Tey=72713

Idt 13- l[.I'( x)+ 2 (t) Jz(x).l3(x)],
L D

(3.5.64)

where x = KD /2. The tilt variance can be found using the Mellin transforms in Equations

(F.6) and (F.7) and is equal to
' 5 5.68 u,

T _ =
c=f L Dl/3

(3.5.65)

For an HV-21 turbulence model with the source at 300 km and a diameter of 0.6 m, the rms
jitter is 37.8 nrad.

The same method, as applied above, can be used to find the filter function that removes any
Zemike component of the wavefront. The filter function is the magnitude squared of the
difference between the compiex filter function for a collimated wave and a wave focused at the
observation point. These complex filter functions are given in FEquation (3.4.19). For
instance, for piston removal the filter function is

| 2[211(»0/2) 24 (1 - z/l.)/z]]2
F(R,z)=|—0 -
* ( k()) D12 DA~ D)2

(3.5.66)

Relations for any other Zernike component can be found in a similar manner.
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3.6 MULTIPARAMETER PROBLEMS

In this section, turbulence problems that can be represented in terms of two or more
parameters are treated. These problems are all treated in the same fashion. Once again as in
the single parameter case, one starts with integrals over kappa space and over the axial
coordinate. The angle integral in kappa space is performed. A change of variables is made to
a’low one parameter to be factored out of the integral. The integral over the magnitude of
kappa now contains one or more parameters. The terms may have to be rearranged so that the
integral can be written as the product of functions for which the Mellin transform is known.
This procedure has been successfully applied to all problems encountered to date. Then, the
Mellin convolution theorem can be used to convert this into an integral in one or more complex
planes. Depending on the number of Gamma functions in the numerator and denominator and
the size of the parameter, a power series or an asymptotic solution is found. After the
integrations in the complex planes are pe-formed, the integration over the axial coordinates is
evaluated. This last integration can typically be expressed in terms of moments of the
turbulence distri_bhtion. Analytic expressions for these moments are available if the Hufnagel-
Valley model of turbulence is used.

Several problems of interest are evaluated in this section to showcase this method. First the
:dilt with outer scale of turbulence is considered. It is found that the outer scale size can have a
significant effect on the tilt. Next, tilt anisoplanatism is considered. This is the difference in
tilts of two sources that are displaced from each other. For instance, this analysis can be used
to determine the differential tilt jitter of two stars. Since outer scale significantly affected the
tilt, it is natural to ask if it also affects the tilt anisoplanatism. The general problem is set up in
Section 3.6.2, and the integral has three parameters. First, the simpler problem with the outer
scale set to infinity is solved. In addition to differential tilt due to two coincident apertures
pointing in different directions, the solution also applies to sources that are displaced in a
parallel direction with respeét to each other. This error would apply if there were a

misregistration error between the wavefront sensor and the deformable mirror in an adaptive-
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optics system. It is shown that if this mispointing error is kept below a tenth of the
subaperture size, the tilt difference will be small.

Next, the tilt anisoplanatism problem with outer scale included is solved. [t is found that
the outer scale is not nearly as important in affecting the tilt anisoplanatism as it was the tilt.

Then it will be shown that the inner scale limits the maximum tilt that can be measured by
- an aperture. Next, the effect of the central obscuration and then diffraction on the Zemike tilt is
considered. Finally, several scintillation problems are considered.

For all problems the sign of the residue depends on which direction the path is closed. I[n
calculating the residue at a pole, sometimes the pﬁth of.integration must be closed to the right
and sometimes to the left. One can easily show that the combination of path direction and sign
of s in the Gamma function always results in a positive sign on the residue for the bulk of the
poles. The single pole that may be separated by the path of integration has a negative sign
when calculating the residue.

3.6.1 Tilt with Finite Outer Scale

The significant effect of the outer scale on the tilt was first pointed out by D. Murphy.22
To set up this problem, the general expression given in Equation (A.1) is used with the filter
function for Zernike tilt given in Equation (B.7). The turbulence spectrum that is given in
Equation (A.6) with the inner scale term neglected is used to give for the tilt variance with outer

scale present the expression

L ~11/6 YD IDT
T, =02073 & fdz o) [aR] 2+ ] (Tl%) szz__] + (6D
0

0

The integrations over angle and - can be performed. Making the substitution x = kD/2 gives
-11/6

2 13344, ooodx 2 X -
T, = —————D4 T.Iz (x (m) + 1 . (3.6.2)

0
This can be converted into an integral in the complex plane by using the Mellin convolution

integral in Equation (1.6). Define
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o}
H (x)= J(x), (3.6.3)

. ~11/6
Hz(a/x)=[(a/x) +l:] . (3.6.4)

Use the Mellin transform in Equation (F.6) for the first function. For the second, start with the

and

relation in Equation (F.8) with p = 11/6 and then use Equation (I.5) with p = -2 to obtain the

first part of the following equation. After the substitution s ~ 25, one obtains the second

part of the equation.
5 1334pox;,“/3 x‘D)
T, = 3 Ids(
D
v 1 l_.s/2+2.——s/2.--s/2, Ly s/2
4\/——r[ll _
% Ts‘] ~s /2+3, =5 /2+1
~11/3 =25 '
_ a0 p, fd ("oD) S+2 -5+ o8 s +g
= 4 i ) 2 < ,(3.6.5)
D -5 +3, =5 +1

where the path of integration does not split any of the poles of an individual Gamma function.
The substitution s — 2s is often made to get most or all of the coefficients of s equal to
unity. The method used to evaluate this integral is discussed in Section 2.4. Since A = 2, the

path of integration can be closed in the left-half piane, and there are contributions at the poles at

s==11/6-n, and-2-nforn=0,1,2... . The resulting solution is
~11/3 [ o 3+n [_ 1 7 1
r2_ 400 p, 'Y 2(-1)”(( KOD) - n+ont g+

= !
0 D? & L 2 n+ 269’” +|g
2420
x D 3 —_p—L
+( (é ) rI:n-f- Sn +2-n 6] }
n+5,n+3 / (3.6.6)

Using the definition of outer scale given in Equation (3.3.30), the most significant terms of

these summations are .
6.08 u 2 1/ 2
2= —1—,3—0{1 +3.7(—f—) +...—(-[‘7’—) 142 *4'0'(‘1,2) .
D o 0 0 (3117)
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The tilt is affected by the outer scale and the fractional decrease from the value with infinite
outer scale is shown in Figure 3-14. If the outer scale size is 100 times the aperture diameter,
the tilt is still decreased by 15%. This occurs because the tilt is determined mainly by the high
wavelength turbulence. A finite outer scale decreases the turbulence at the long wavelengths

and, thereby, decreases the tilt.
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Figure 3-14 Effect of outer scale o, the normalized tlt variance.

3.6.2 Setup of the General Problem for Tilt Anisoplanatism
To find the value of tilt anisoplanatism with finite outer scale, the integrand in the general

formula given in Equation (A.1) is composed of three factors: the Kolmogorov spectrum with

outer scalz 'r...uded, the Zernike or Gradient tilt in the .x and v direction, and the anisoplanatic
term. The effect of both displacement and angular anisoplanatism will be evaluated. The
angular anisoplanatism is important in adaptive-optics systems because the beacon may not be
in the correct position. The calculation also allows one to calculate the relative jitter of stars.

The displacement anisoplanatism calculation allows one to determine the effect of wavefront
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sensor and deformable mirror misalignment, and the jitter on a laser beam produced by the
tracking system and the laser beam using different parts of the aperture.

The sensor for the tilt may be sensitive to either the G or Z tilt. Here the Z-tilt is caiculated
for the general case and the G-tilt is calculated for an angular offset with infinite outer scale.
Assume that the displacement is in the x direction. It will be found that the tilt depends on
whether the displacement is parallel to the displacement direction or perpendicular to it. For
that reason, both the x and ¥ components and the total Z-tilt in physical space are found using
the filter functions in Equations (B.6) to (B.7). Substituting the filter functions for Z-tilt and
anisoplanatism given in Equation (D.1) into Equation (A. 1) and using the Kolmogorov

spectrum with the inner scale neglected, one obtains for the tilt-anisoplanatism variance the

expression
> 2
O [cos%(¢) J(_EQ.)
o -04146( )jd‘ c2(z )jdtism-(m (2+ B)7e La)z__
& D’ : ! 7

x [1 —cos{mi cos(9)}] . R (3.6.8)
The angular integration can be performed using Equation (3.892) from Gradshteyn and

Ryzhik which is
b 4 2 v
Iexp [ iBsin (x)]sin Y(x) dx =/ n‘(—p-) v + Lz) J A B Re v> -12 . (3.6.9)
0
Using the trigonometric identity

cos(@) = 1-sin (@) ' (3.6.10)

to express the first integral in the form of Equation (3.6.9). and using the integral given in

Equation (3.4.5), one can perform the phi integration to obtain

, J () \
[02‘ PR O ke
667 - 11/6 J"(—i_) 2" xrl ’
=—-?jo(z)jx'dx'(x+x2) T 11 J('d) (-
lon o T,
(1=~ J,(md) j
(3.6.11)
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For small values of d, the Bessel functions can be replaced by the first two terms of their

power series which are

2
m -
J()( m)= l—( 4) +--.,
and
3
() |
J‘(m)- 2 - 16 + ‘e . (3.6-‘2)

If these expansions are substituted into the expressions for the tilt, one finds the tilt variance
parallel to the direction of the displacement is three times that of the perpendicular component
for small separations. Expanding the functions and integrating term by term cannot be done in
general. The expansion above can be performed. If additional terms are used, the integrals
often do not converge.

There are two integrals that, when evaluated, allow one to evaluate all three integrals in

kappa-space. These are

xD
- BN 14D
_ 2 2.=-11/6 2 1 1
Il-—j'xdx(r-o- K;) — [ - —2], (3.6.13)
0 2
xD
t o] 2. ~-11/76 JZ(T)
and [T=_J'x-dx(;(+ ) 5 [J(xd) = 1]. (3.6.14)
0 2
The previous integrals expressed in terms of these two are equal to
2
[ "] 667 L - (lT - I‘
o) -
tovt =" J d: Cn(i)i’l I (3.6.15)
IR
o-J T

These general expressions will be evaluated in Section 3.6.4. In the next section, the

éxpression will be evaluated with outer scale neglected.
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3.6.3 Tilt Anisoplanatism with Infinite Outer Scale

If the outer scale is allowed to go to infinity, the integrals contain only two parameters, and
the standard Mellin convolution integral can be used to convert the integral into one in a single
complex plane.

Let t= i and x=3,‘;—. o (3.6.16)

The integrals are then equal to

l _agly3e 14830, @) - L
{,‘}=-——-—4“2 T{ [10-3 I

T D B -1 (3.6.17)

Using the Mellin transforms in Equations (F.5) and (F.6) and the relation in Equation (1.6) of
part 2 and the substitution s — 2s, the integrals can be transformed into

1

h]_ o.0889d" 3 ¢ (a\™ [s-n 542, s+§J2r[‘”2-2]1

JRECTILWRLR I !
D™ 2xi s+3, s+1 —_—_—

Gersl

T
(3.6.18)

where the asterisk means that the first pole of that term is on the other side of the path of
integration. The path of integration passes between the first and second poles because of the
presence of the term subtracted from the Bessel functions that cancels out the first term of the
power series expansion as explained in Equations (2.3.10) and (2.3.11). The path of

integration and pole location are the same for both integrals, and are shown in Figure 3-15.

$2118-n -8 -v% a# 16

ss-12-n X x
2 12

Figure 3-15. Pole location and path of integration for tilt anisoplanatism.
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Since A = A' = 0, the direction of path closure is determined by the parameter in the
integral. The point in the atmosphere at which the character of the solution changes is when the
two beams do not overlap at all. For d/D < 1. the path of integration is closed to the left, and
one obtains the residues of the poles at s=~1/2-nforn=0,1,2,...,and s=11/6 - n,
for n=1,2,3.... . Ford/D > 1, the path is closed to the right, and one obtains the
residues of the polesat s=2+nforn=0, |, 2,.. . and the single pole at s = llj6. The

resultant value of the integral for small displacements, d/D < 1, is

o -11/3+2 1 _,+1
{ll} -0.0889 -n" (_d_) 13+ nr n+ e =+ nO;Sl}
= n
] pMRl D nel-n+ 2 s 2L
7 s 0.5
I EIPAC b A S et
n=0 m A D n+l—;)-.—n+%,—n+% l3j
(3.6:19)
For large displacement, /D > 1, the integrals are equal to
] 11/3 -11/3 _l.
1 _ 0.0889d (_d_) rl¢ 3 [fo.s
Ll ST D XA
s RNt ""'Lo' n+—.5,- [ 0'55]
2 (7)‘) s gl (3.6.20)
n=0 —n+3.n+5.n+3 1

Substituting these results into Equation (3.6.15) and realizing that the displacement can vary

with the propagation distance, one finds that the tilt variances for small displacements when
diD < | are
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For large displacements, d/D > |, the tilt variances are

2
d: CLG)

n+

—n+s

6.08{‘
!

|
6

6!

}

h]

= n+3

n+

5. n+3 1

~v~

(3.6.21)

(3.6.22)

There is a sign difference between the two terms because the residue at the isolated pole has a

negative sign associated with it as explained before. From the form of the solution, one can

immediately see that for very large displacements the first term in the last equation is the only

significant one. The tilt variance for each component is equal to the total tilt variance given in

Equation (3.5.9).

This is what one would expect since two uncorrelated tilts are being

subtracted. For small displacements, the first term in the first sum in Equation (3.6.21) is the

only significant term, and one can readily see that the .. compnnent is three times the v

component of tilt variance as was found earlier.
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Consider the case where the two apertures are pointing in the same direction but one is
displaced from the other by a distance d. If the aperture displacement is small compared to the
aperture diameter, then Equation (3.6.21) applies. The = integration can be performed and

wiih the use of the recursion relation for Gamma functions the tiit can be written as

2 - " 2 .
Tl 26 2‘_‘2_(«1)",- ntgmary 2n+l}
o, p? " & (mt LD n+2, —n+: n+l7 !
7 b)
Z _l) d )-Il+l4/3r -n- —3-’ n+ - 2n+ -!37.}
n=0 n+l—33-.-n+.s,. n+-;- 1 (3.6.23)

The only significant term for small displacements is the first of the first summation. Using

only that term. the tilt variance can be written as

2 2
Oy 2‘67. “o( d .{3 }
{0’;} N o' D) o (3.6.24)
The value of total mms tilt is
5/6
A(D d ‘
r=085{%) () (3.6.25)
The tilt in waves is given by
S/6,
D d
T(waves)=0.8(—,:) (—D-) (3.6.26)

The tilt noise in a subaperture of side s will now be found. In a typical adaptive-optics system
the subaperture size is equal to the expected coherence diameter. For this case, the tilt noise in
a subaperture is

_ d
T(waves) .. =0 566 ( s ) ' (3.6.27)

This tilt is due to the low spatial wavelengths of turbulence and is essentially uncorrelated
between apertures. When the phase is reconstructed from the gradient measurements, the

factor that relates the tilt noise to the phase variance on the full aperture is called the error

139




propagator. For typical reconstructors this factor is about unity. Therefore, to keep the phase
noise below 1120 of a wave requires the registration error between the wavefront sensor and
the deformable mirrbr to be kept below 1/10 of the subaperture size.

In systems that propagate laser beams, the tracking system looks out of a certain part of the
main aperture, and the laser beam is propagated out of a different part of the aperture. The full
aperture is not used for each because of vignettiné problems as the beam is tilted by fast
steering mirrors. This misregistration can cause a relative jitter on the laser beam if the tracked

signal is used to direct it. To get an idea of how large this effect is, consider the simplified

problem of two beams of the same diameter that are displaced with respect to each other. For
that case, Equation (3.6.25) applies. For a 0.6-m system D/r” can be as large as 17, and for a
3.5-m system D/r” can be as large as 100. For these cases, in order to keep the jitter unde:
1/20 wave, the registration of the laser and tracking systems on the 0.6-m system has to be
better than 5 mm, and that on a 3.5-m system has to be better than 6.7 mm.

To find the anisoplanatism due to the two beams pointing in different directions, one must
replace dby the angular separation times tﬁe axial distance. The upper limit in the integrations
become

h= HC= = cos(§) = Dcos(§)! © . (3.6.28)
The integral must now be broken into a lower term and an upper term. The total variance is the
sum of these two contributioi. . The altitude at which the solution changes character is at the
transition between having the two beams partially overlapped to that where there is no overlap.
Using the definitions of the partial moments given in Equations (3.5.3) and (3.5.4), one

obtains for the lower integration

9 o {— n__ 2 1 - l
O _____29.6[2( 1) ”2n(Hc)(Q) "r "t Tty 2n+ 1
o D'/3ln=l (n+D! \D nt - 2 on +
, 6
w (=" u- H 14420 [p-1 o4 3 17
+ z Fiapanl o) f_Q_) r 3 2 2n+'—3-}
n=0 & v D R e
(3.6.29)
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The upper contribution i3

,
5 S W Py PN
o - Dl/3 ) #0( ¢) 1
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H
T e ] .5
o OV Hinai ) o [argned T2,
=29.6 n! \3) 1l )
n=0 -n+ =, n+5, n+3((1
(3.6.30)
The total phase variance is
o)
o _fox| ]
27 2 ‘ 3.6.31
af 1o o 63D
L H

The most significant terms for small angular displacements are

(3 ofam o @) -9

!
_ O\ia3) 1.7
775 1, H( B) {0,3} * ] (3.6.32)

y
Notice that the most significant term for small angles varies as the cube of the secant of the

zenith angle from the relation in Equation (3.5.4), and the x-tilt variance is three times the y-tilt

variance as was found previously. The leading term gives a tilt that varies as the -7/6 power

of diameter. If a system operates at one-half the wavelength of another while keeping the
same diffraction-limited beam size, then the tilt jitter due to this effect will be 2.25 times worse

for small separation angles. The most significant terms for large angular displacements are

&) \ pI3
{ 2 } =D ”][6.08 Kol H(.){: } 404 (H)S) {?23 }+ ]

y

(3.6.33)
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The first term is twice the tilt variance for one beam. This is the expected behavior for large
angles. Notice that the second term has the displacement angle to the 1/3 power causing it to
decrease very slowly as the separation angle gets larger. Therefore, the asymptotic limit given
in the first term is not approached until the separation angle is very large.

The only difference in the calculation for G-tilt is that the tilt-filter function is different. For

that case, Equation (3.6.17) becomes

A I-TE - Pt FACE |
{lu}= f: {,%{ [ ]]} (). e

T 5300 (0 -1

This can be transformed to give the equivalent of Equation (3.6.18) as

I -3 5/3 =25 5 3» s+ s+ ||
-5.55 x10 °d e: * 2
{II}= zm _[s( D) r ¢ 1] 2[_s+ﬂ]

T s+2, s+1, s+-6— 1

(3.6.35)
This can be integrated in the same manner as the previous case to give for the lower atmosphere

contribution to the tilt anisoplanatism the value

2 L _ 4
o _ 185 2(')“7,.(”)( ) M te Tt 2n+l}
Sho= -
o oAl (n+it D n+2 —n+ %‘*l_g 1
(-1)" H 8/3¢42n [_p-d p43 i
“5/3...7,,( ) =3 2 2n + =
+ Z '"*'“"'“"'"‘““"(D r 10 3 1 il
n+ 3.=n+ 3 -n+5 1
(3.6.36)
The upper atmosphere contribution is
A |
20 = D l5.68 M H,) :
y
H
n 1 3
L85 i (D" K 5y Hc),g)“”"" n+g n+3 %—Zn}
' n=0 n! \D —n+l—61-,n+3,n+2 1
(3.6.37)
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Plots for the G-tilt of the longitudinal, lateral, and total tilts for a 0.6-meter system for the
HV-21 turbulence model are given in Figure 3-16. The ratio of the lateral to longitudinal tilt is

given in Figure 3-17 for the same conditions.
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Figure 3-16. G-tilt anisoplanatism for 50-urad separation with HV-21 turbulence.
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A plot of the ratio of the longitudinal to lateral tilt is given in Figure 3-17.
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Figure 3-17. G-tilt ratiosfor 50-prad separation with HV-21 turbulence versus zenith angle.

A comparison of the G and Z-tilts for a 1.2-m system are given in Figure 3-18.

500¢
APERTURE DIAMETER 1.2 m
400
N Z-TILT
b= ]
§ 0
g G-TLT
£ !
- |
A H
= 20 i
100

ot‘ll.l‘_‘_‘lLlllll*AllLlLll O N EPU AU BTN U W B U U BN WY

0 10 20 30 40 50 60 70 80 90 100

OFFSET (urad)

Figufe 3-18. Comparison of the G- and Z-tilt anisoplanatism for a 1.2-m system with SLCSAT day
turbulence.
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These results agree with those calculated by Ellerbroek and Roberts.23
3.6.4 Outer Scale Effects on the Tilt Anisoplanatism

In this section, the outer scale will be included. Start from Equation (3.6.11).

2nd 24
7 and y = D (3.6.38)

0

Let =1t x=

then Equations (3.6.13) and (3.6.14) are transformed into
11/6

e ¥C) (R e

3L ) =1

Using the generalized Mellin transform relation given in Equation (1.7) with the Mellin

transforms used in the last section, plus that given in Equation (F.8), this can be converted into
an integral in 2 complex planes that is

I 11/3 -2 -2t
| —0.0945d o d
)= o () (4)

1

22

xr[” t-—él’_t +2,'12‘+t,s,%—S]J2r{_s_ t+% l
3+ 41+t !

6
The two complex variables are s and r. Since A = A' = O for the ¢ integration, the direction
of closure depends on the size of the parameter. Since A = 2 for the s integration, the path
should be closed in the left-half plane. As explained in part 2, the only contributions are those

at the simultaneous occurrence of poles in the s and ¢ plane. The list of 2-poles are

1 = b, __,_1
(1)6—9——m tit=-—n— s=m+ -t =—n-
(2)—l—s--m -t +2==-n—> s=m +—lél-.t=2+n.
(3)——s=—m s+t l—6l-=—n*-—> s=m+l—6'-,t=—n*—m,

(4) s=—m,%+ t==n = s=-m, t=--n'-l2,
(5) s=—m, -t +2=-n — s=-m, t=2+n,
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(6) s==-m, s+ t—-l6—l=-n*—) sS==m, t=~-n*+ m+l—6l,

1 I 7 1
(N 3+t==n s+t-Fp=-m*>s=-m*+ n+3, t=-n-3,

4

(8) ~t+2=-n, s+t-=—mros=—mr-n-L =240 641

The values of m and n are integers that vary between O and . The asterisk after a term
means that the variable varies between | and == on one side of the path of integration, and is
equa! to O on the other.

To determine the direction of path closure, the above relations are used to find the power
law dependence of the variables for large values of m and n. The constant terms in the
exponent do not affect the direction of path closure, and are not displayed explicitly. If the
exponents have m and n terms in the same exponent, the terms must be separated by defining
new variables. This statement is made clearer by performing this process for the eight sets of

two-poles to give
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This process produces the parameters that are relevant to the problem. The new parameter
introduced above is the ratio of the diameter to the outer scale size. In this analysis, that ratio
and the ratio of the displacement to the outer scale size will be considered to be less than 1.
One could also solve the problem for these quantities greater than 1, and a different power
series would be obtained. |

To determine wﬁich pole residues must be included, conditions on each of the two
parameters for each of the eight potential terms must be examined. Only those poles that
satisfy both sets of conditions are to be included. Since the first parameter, 7d/L,, is less than
1, the exponent for large values of m must be greater than 0. In the first three sets of 2-poles
above, this is not true and the path of integration is closed in the direction that does not include
those poles. thereby, these terms do not contribute to the value of the integral. The last five
terms have the proper sign of the exponent and contribute. In the last two terms, because of
the presence of the asterisk, the value of m goes from 1 to o rather than from O to ee.

Examine the effect of the second parameter. For d/D < 1, the exponent has to be positive
for large values of n. Pole sets 4 and 6 satisfy this criteria. In pole set 6, the value of n goes
from | to eo. For d/D > 1, one requires that the exponent is negative for large values of n.
The correct pole sets for this case are 5 for all n, and also 6 for n = 0. The last term comes
about because the path of integration split the poles so that one was on this side of path closure.
The third parameter, &D/L ), is less than 1, which requires positive values of the exponent for
large values of n. Pole set 8 satisfies this criteria for all .

To recapitulate these arguments, the conditions are:

(1) Pole sets 1, 2, 3, and 7 do not contribute.

(2) For d/D < 1, pole set 4 contributes for all » and m, and pole set 6
contributes for n > 0 and all m.

(3) For d/D > 1, pole set 5 contributes for all n and m, and pole set 6
contributes for n =0, and all m.

(4) Pole set 8 contributes for all n, and for m > 0.
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The value of the integral for small displacements, d/D < 1, can then be expressed as
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For large displacements, d/D > 1, the integral is equal to
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If the outer scale goes to infinity, only the terms with m-= O contribute, and these

(3.6.44)

expressions reduce to the ones in the last section in which the outer scale was neglected.
For no angular difference between the two beams and small displacements of the aperture,

dID < 1, the tilt variance can be written as
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(3.6.45)
The most significant terms for small displacements are the n=1,m=0,and the n = 1,

m = | terms of the second summation, which give

{:;:}-2:‘:0(‘ { }["206( ) } (3.6.46)
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The first term is the same as that in Equation (3.6.24) in which outer scale was neglected. In
Section 3.6.1 when tilt with outer scale was considered, the outer scale had a significant effect
on the tilt because the leading term with the outer scale was to the inverse one-third power.
Here the effect is small if the outer scale size is significantly greater than the diameter because
the leading term is the inverse second power of the ratio. The physical reason this occurs is
that for small relative aperture displacements, the two beams see the same tilt from long
wavelength turbulence \yhich cancels when the tilts are subtracted from each other.
Mathematically, this subtraction had the result of having the third summation start at m = |
rather than 0. The term that was eliminated has the one-third power law dependence on outer
scale.

For an angular displacement of the beam, the tilt anisoplanatism can be written for small

angles and low aititudes, ©z/D > 1, as
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A (3.6.47)
At larger angles and higher altitudes, ©z/D > 1, the tilt variance is equal to
.
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For small angular displacements, the most significant terms with outer scale included are
the m =0.n = | term and the m = |, n = | term of the second summation of Equation
(3.6.47) which give

02
{;}_2675,(3”)(3 {}[ 206( ) } (3.6.49)

y

Here the outer scale has the same relative effect as that due to displacement anisoplanatism

in Equation (3.6.46).
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3.6.5 Tilt with Inner Scale

The expression for tilt given in Equation (3.5.9) goes to infinity when the diameter goes to
zero. This obviously is an incorrect physical limit, and to determine the tilt for very small
apertures the inner scale must be included. To find the tilt with inner scale, the turbulence

spectrum with inner scale must be used in Equation (3.5.7) to obtain

105. 1y, *
2o Ko g o 1173- 12 oexp[~(x 1 7, (3.6.50)
i 1/73 2
D 0
where a=x;D/2. (3.6.51)

The Mellin transforms in Equations (F.6) and (F.1) can be used in the convolution integral.

After the substitution s — 25 to get unity coefficients in the Gamma functions, one obtains

1 7
" 29.64” l S+E'—s+3'_s
T = ¢ —— [ds a?s.  (3.6.52)
T T s

Since A = 1, the path of integration can be closed in the left-half plahe. If the inner scale is

larger than the diameter, then the leading term is

2 6. 67[10
= L 1/3 *oe (3.6.53)

!

i

The tilt calculated with inner scale neglected equals that above when the diameter is twice
the inner scale size. If the inner scale size is | millimeter, the maximum tilt one could ineasure
would be 12 microradians with the HV-21 turbulence distribution.

3.6.6 Zernike Tilt on an Annular Aperture

Most telescopes have a central obscuration so that a detailed calculation should take into
account this annular geometry. Mostly the effect of the central obscuration is ignored because
it does not produce a significant difference from the results over the full aperture. In this
section, the effect of the central obscuration on the Zernike tilt will be calculated and shown to

produce a small change in the tilt from the unobscured aperturc.
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The approach taken is the same that has been used. The expression for the phase variance
given in Equation (A.1) is used in conjunction with the filter function for Zernike tilt on an
annular aperture given in Equation (B.10). The tilt variance in this case is

2
L D / 2) J(xfD [ 2)]
2 ) 2 2( 39
Ty= 02073k, |d: Cy(=)]dR ~p—==.
a . - -
: ",{, ] L(,DII 5] D12 ]
- (3.6.54)

The obscuration ratio, B, is equal to the ratio of the diameter of the central obscuration to the

full diameter. The angular and axial integrations can be performed, and if the term in brackets
is squared. the first term is just the Zemike tilt of a full aperture and the second term squared is
the same multiplied by a constant. Making the substitution x = xD/2, the tilt can then be

written as
T2 6‘08“0 [

o"li- 4L

Using the Mellin convolution theorem and the Mellin transform in Equation (F.5), and making

. p23/3_ 2108 Iit' 1113y 5 W5(Bx )] (3.6.55)
0

the substitution s — 2s, one obtains for the last integral

5
-14/3 =2 w1 ]
2 s 6’
l=<.— |ds ﬂ . .6.56
2m J- - + }62’ s +2J (3 )

Since A = A’ = 0, and the obscuration ratio is always less than 1. the path of integration is
closed in the right-half plane and the integral is equal to the residues ats=1+n,n=0, 1, 2,

. The tilt variance is equal to

' A
6.08 23/3 = (=1 n 2 n+ -
ri= o ,{I+B P ey gt . 1 . (3.657)
4 - = ) - ru 3J
D”{l—ﬂ] n=0 n+on+

The first few terms of the solution which give an answer accurate to better than 1% for all
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obscuraticn ratios are

2 [1+ B - 2196 8*+ 0.2236 F - 0.02117 § - 0.0004808 B'"]
T2 =6.08 = — .
D”s[l _ 54]

The-curve of this function is shown in Figure 3-19.

(3.6.58)
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Figure 3-19. Normaliz2d Zernike tilt for an annular aperture.

Notice that there is very little change in the measured tilt even for sizable central
obscurations. Tl is agrees with the conclusions of Greenwood.24

3.6.7 Diffraction with Zernike Tilt

As the beam propagates, it eventually spreads due to diffraction and the tilt can be affected.
In this section, the effect of diffraction on the Zernike tilt is considered by using the standard
formula for phase variance given in Equation (A.1) with the tilt term given in Equation (B.7)
and the collimated term given in Equation (A.4). By not setting the cosine term equal to 1 as

was done in the past, diffraction effects can be calculated. The formula for the tilt is
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T = 0.2073 &2 jd. clz) [ar « et kl6D) [-—z—m—]cos _"'ZL___’]
0

2k,
(3.6.59)
~ Integrate over angle and let
x=xD/2 (3.6.60)
k
t=D e— |

and 2(L- 1) (3.6.61)

The integral becomes

Tt 18 [d. c: )jd" 37 201 -sinXx 1 n*] 3.6.62)
D

The first term is the Zernike tilt that was found previously. Using the Mellin convolution
theorem with the Meilin transforms given in Equations (F.6) and (F.4), and the usu .

substituticn s — 2s, one obtains

L | 7
6.08 S+ <=5 +3,=5 /2%
dz= 1/?0(“.2':459 jdz Ci(z )J'ds =28 629 3 o
D L 2 9 ~s +7g5=S + 62+s/2

(3.6.63)
Since A = |, the path of integration should be closed in the left-half plane. Because ¢ is large,
an asymptotic series is appropriate, and the simple poles in the right-half planr, that are located
ats==73+n n=0,1,2,..., andats=2n, n=1,2,3,... glves an asymptotic
series that is the sum of these terms plus the E(x) term. The case of tilt measured
exoatmospherically at ranges that are about the Fresnel distance is considered here. In that
case, the most significant term of the solution is retained. For the case where L >> - for

values of z for which the turbulence is significant, the tilt is

2_ 6.08 u, AL .
T ———-11 0.49(-AL )]
d D]/3 L D (3.6.64)
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The variance has been reduced by 50% at the Fresnel range, and the tilt is reduced by about
25%. This tilt reduction will more significantly affect the high temporal frequencies which are
typically caused by shorter spatial wavelengths.

3.6.8 Scintillation with Inner Scale

Scintillation of a space object as seen from the ground is mainly due to high altitude
turbulence that results in a corrugation of the wavefront which causes rays to converge at some
places on the ground and to move away from other regions. Since the higher spatial frequency

turbulence components have a smaller distance to move before they affect the turbulence at that

wavelength, one suspects that the scintillation is largely due to turbulence at short wavelengths.

If this is so, then viscosity which limits the highest spatial frequencies may significantly affect
the scintillation. This cutoff in the turbulence spectrum is represented by the inner scale. In
this section, the inner scale will be 'considered to be constant with altitude in order to see if the
effect might be significant for reasonable values of the inner scale size. It is found that if the
inner scale size is less than a millimeter, inner scale effects do not affect the scintillation;
however, if the inner scale is a centimeter or greater the scintillation is greatly reduced.

Using the standard formula for scintillations given in Equation (A.1) with the turbulence

spectrum given in Equation (A.6) with inner scale retained, one obtains
2 2 L 2 K‘z ' Kz oy
=0.2073 k,, [dz Cy(z) [dR &'/ exp |+ &5 |isin ’(-27-) (3.6.65)
0 K‘l- 0
The wave is propagated from - equal to 0 to - equal to L. For a wave propagated from
the ground to space - is replaced with L — z=. Integrating this over the angle in kappa-space

and making the substitutions

t= K(Zk ) : (3.6.66)

and x=x(35) (3.6.67)
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one obtains

2 25 2 : /0
2=1.303k; [dz c,,(z)(-z--r) far
0 0

tst/ 3 sin2( ) exp[_(%) 2] (3.6.68)

The Mellin convolution integral is used to evaluate the last integral using the transforms in
Equations (F.4) and (F.5). If s is replaced by 2s in the integral, it is equal to
N s/2-3%=s

8(2m ) fds 25T U_y/2 ' (3.6.69)

I =

Since A = 0, the direction of path closure is determined by the size of the parameter: Except at
very low altitudes (= < 4 m), the parameter is greater than unity. The contribution below this
low altitude will be neglected since it is insignificant in determining scintillation. There are

polesat s =5/6,and s=nforn=0,1,2... . Evaluating the residues at these poles gives
' -n
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_ (3.6.70)
The first few terms of this solution are
5/6

5
/l' 2.-
7/6 7/6 7/6
=0.563 k,, 2,175 u k [ J +l75—k +....
l “5/6 ] A‘() 2. .u 1/6 (36_‘71)

The first term is the formula for scintillation without outer scale effects that was obtained in

Section 3.5.4. The ratio of the second term to the first term is
5/6

2

M, '1,']

Ratio = 3.86——— [——
Hs 6\ A

For a wavelength of 0.5 micrometers and the HV-21 turbulence model, this ratio is 0.028 for

(3.6.72)

an inner scale size of | mm and 1.31 for inner scale size of | cm. Since the inner scale size is

~ typically in this size regime, it may affect the observed scintillation.
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3.6.9 Scintillation Anisoplanatism for Corrected Beams

The corrected beam in an adaptive-optics system can have scintillation due to several
causes. In Section 3.5.7 the scintillation on a perfectly corrected beam was considered. Here
the scintillation produced on a system that has an anisoplanatic error is considered.

For each realization, scintillation is produced by the effects of the distorted wavefront that
originates at the mirror. The phase disturbance at the mirror produced by a section of
turbulence at an altitude - propagates up to the turbulence section before the phase disturbance
is canceled. While it propagates over this distance, amplitude scintillations build up. In the
present analysis, the propagating beam has an additional phase offset due to the different paths
of the collimated beam and the focused beam through the turbulence. In transform space, this
offset produces a phase offset of one beam with respect to the other. It does not matter which
beam this offset is applied to since the filter function is the absolute value squared of the
complex filter function. The filter function for this effect is obtained by modifying the filter

function in Equation (3.5.39) by including the phase term to give
) 2 2
sin [77(—0] —exp [ ik d Isin [_—Z—Eo_jl

5 9 - 2
K(L-: - KL -z
=sin2l:-2—'g/z%]+sin 2[—(,_,—k—)]—2005( K. d)sin [ﬁ[(‘)}m[ (2ko )].

o
(3.6.73)
Use the standard expression in Equation (A.1) for the amplitude variance with outer and inner

F(K.z2)=

scale effects neglected which is
L
2 o
1=0.2073 &, [dz Cyz) [dR F(R, 2) &' /3, (3.6.74)
0

Use the same analysis as in Section 3.5.7 to evaluate the integral of the first two terms of the

filter function to obtain

L
2 e[, 2,506 5/6
x°=0.563k, J.dzCn(z )[L +(L-1z) ]‘*‘ l. (3.6.75)
0
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The last expression is due to the last term of the filter function which can be integrated over

angle and modified using the trigonometric identity for the product of sinusoids to obtain
L
2f 2 -8/3 KL QL - 2)
I =-1303 koJ. dz C ( Z)J dxx J M)(COS[TE;] - cos[—-i-,-‘-:-— . (3.6.76)
0

Change variables so that

2 K
FE2k, (3.6.77)
in the first term, and
»_ KL -2)
== 2k, (3.6.78)
in the second. Also let
2 z .
x5 = y
L, ko,ﬁ (3.6.79)
and
2= 2L—- 2 .
2 2k,d? - (3.6.80)

The expression then becomes .

L
1=-0.731k,/% [dz Cos)
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Y -2

(3.6.81)

Each of the last two integrals can be treated in the same manner using Equations (F.5) and

(F.3) in the Mellin convolution integral to give

| 4\/ - S/2
| = =—— ds(2x2) r
I 2m217/6j :; s/2 1+s (3.6.82)
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The only difference between the two original integrals is that the parameter is different in the
above integral. Since A = -1, the path of integration is closed in the right-half plane and there

are poles locatedat s=n, n=0,1,2,... . The value of the integral is

L
1=-0.1818k°[dzCl(z)
0

n
5 2
© " | n12- {k(dz) k d
L F D E =) -@L-\727) | (3.683)

|
n=0 " :—;—nlz,l+n

If just the first term of the series is retained, the scintillation is the same as the one with no
anisoplanatism given in Equation (3.5.42).

If the beacon is a point source located at H, and one wants the scintillation at a distance r

off the axis, then the displacerent between the collimated and focused ray is d = —15- For

beacon heights outside the atmosphere, the parameters in the solution are large and one has to

retain only the first two terms of the infinite series to get accurate results. The scintillation in -

this case is

2 7/6L 2 5/6 5/6 1/6‘ 5/6
£=0.563k"6 [az A {3+ (- %02 2L’ /°- 56}
0

(/]

13/6 2 L
k r< .2
+0.492—9—-,——sz C::',(: )[:“/6-——-—"——-1-/—6].
H ¢ (2L - 2)

(3.6.84)

For long ranges, the second term in brackets in the second integral is smaller than the first term

and the expression reduces to

13/6 >

7/6.1/6 o " Hyye
o %2 Cug +0.492 16 (3.6.85)

H

2> =0.563k

For the HV-21 model, if the beacon is a point source, the scoring beam is collimated, and the
target is at 300 km, then the last term is equal to 0.0008 at the outer radius of the beam located

at 0.3 m. This is insignificant compared to the first term which has a value of about 0.05.
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Therefore, the use of a point beacon does not increase the scintillation. The expression does
depend on the inverse square of the beacon height,-and if the beacon were very low, one would
observe a significant increase in the scintillation.

3.6.10 Scintillation Anisoplanatism

Here, the differential scintillation between two uncorrected beams that originate
exoatmospherically and are displaced from each other is calculated. This analysis is applicable
to the measured scintillation difference between the two components of a double star system.
To solve this problem, the filter function is formed from that for anisoplanatism multiplied by

the term that gives one the scintillation of a down-propagating wave which is
F(R, z)=2sin2[7-"2kz—][l-cos( R d). . (3.6.86)
0
Inserting this into the standard formula and performing the angular integration gives

=~ 2.606 jdz Chz) [dx k313 J(xd) - 1]sin ["2] (3.6.87)

2k, d°

Let ¢t = xd, and 2= > then

< 2
P=-2.606 K, j d: Chzyd® P [ =513y ) - 1]sin 2[(—_@-) ] (3.6.88)
0 0

The last integral can be converted into one in the complex plane using the Mellin transforms in
Equations (F.4) and (F.5) to give

s—i* —s | 2%

gs
2 -[ds (5) Cnlesiaf (3.6.89)

1-_-

Since A = 1, close the path of integration in the left-half plane and pick up the pole
contributions at s =0, and 5/6 ~nforn=1,2,3,... . Therefore, the scintillation can be
written as

2=1.455 K5 [dz CX(2)a>"’
0
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(3.6.90)
For very large separations, the first pole on the other side of the path of integration that occurs
at s = 5/6 is the main contributor. Evaluating the residue at this pole, one obtains for large

path separations

716
x"’a 2 x0.563 kO/ Hs 6 (3.6.91)

This is twice the scintillation for a point source, and it is what is expected since the
scintillations from the two sources are uncorrelated for large path separations. For two paths
that are separated by a small angle, the first two terms of the general solution are retained to

give
5/3
2 (5] 13/6
r=050(g) +216.7°6 (3.6.92)

The above expression, which only includes two terms of the series solution. is only valid
for angles considerably smaller than the isoplanatic angle. The scintillation increases rapidly
with angle and is substantial when the separation is equal to the isoplanatic angle. This is to be
contrasted with tilt anisoplanatism in which the tilt difference is very small compared to the tilt
from a single object even for angles many times the isoplanatic angle. The reason for this
difference in scale factors is that the tilt is caused by turbulence with long wavelengths and
there has to be a substantial difference in path separations to get a different effect from these
long wavelength disturbances. In contrast, the small wavelength disturbances contribute most
strongly to scintillation effects and a smaller separation between paths produces significant
effects. One cannot use the relative scintillation difference between stars to get a direct
measurement of the turbulence distributions since, for reasonable star separations, several
terms of the series solution are needed to get the correct value of scintillation and each term

contains a different turbulence moment.
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3.7 PHASE VARIANCE FOR A POINT AND DISTRIBUTED SOURCE

In this section, the phase variance for point and distributed sources will be found. The
technique to find the variance is the same one that has been used on previous problems. The
filter function for a distributed, circular, uniform source on axis given in Equation (E.6) is
inserted in the formula for phase variance given in Equation (A.l). It is assumed that one is
opératiﬁg in the near field so that the cosine term can be replacéd by 1. Doing the angle

integration one obtains

e
- xzD D \T
H = a4( "D‘)zj(——‘) 21( S)
3 2¢ A2, -8/3 N2H I\ 2H N 2H
o2 =0.4146 1k, [dzCr( =) [ dic k851 - =5 w5 *|—%D. _
° ° H 2H 3H

3.7.1)

The subscript on the variance means that it refers to a distributed source . If the D subscript is
" missing, it means that a point source is being considered. Piston is present in the expression.
If one wants the phase variance with piston and/or tilt removed, then one has to subtract the
contribution to the phase variance due to these terms. The appropriate filter functions to do this
are discussed in Section 3.5.9. That calculation will not be given in this report

This equation is the starting point for the evaluation of the phase variance for all the cases
considered in this section. The problem will be solved in steps since the results of both a point
source and a distributed source are of interest for different situations.

3.7.1 Phase Variance for a Point-Source Beacon

The expression for the phase variance for a point source with piston and tilt present can be

found from Equation (3.7.1) by setting the source diameter equal to zero to obtain

o2 f | ¥(5)
o? =0.8292 2k, [dz C(z ) [die k=31 - —=2 21 (3.7.2)
0 e 2H
= KDz
Let =Sy then
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——521k2jdzC(.)( )j'du‘s” [5@)-%]. (3.7.3)

The last integral converges as discussed in the section around Equations (2.3.10) and (2.3.11),
and its value is just the Mellin transform of the Bessel function given in Equation (F.5)

evaluated at s = -8/3 which is equal to 0.305. The phase variance is equal to
5/3 5/3
2 2 D 0.348D
7=o0skus {5) =) (374

The value of the isoplanatic angle given in Equation (3.5.6) was inserted in the last expression.
The phase variance is due to the angular offset of the collimated and focused rays. The phase
variance varies; however, one can consider the average phase variance to be due to an angular
offset equal to that of the ray that emanates from the point that is about 0.7 of the radius from

the center. This angle is 0.348/H.
The above value of the phase variance with piston included is finite unlike the result for

unfiltered turbulence, which is infinite. The infinite result comes from the zero spatial

wavelength term. This infinity cancels out in the subtraction of the phase of the collimated

beam from that of a focused beam. Even though the above result is finite, it might be possibie
that the major component of this variance is due to the piston, which is no practical interest. It
can be shown for satellite altitudes that the piston contribution is only 25% of the above
expression. Therefore, the above simple expression is a reasonable zero order approximation
to the phase variance. A 60-cm aperture looking at a point source at 300 km would have a
phase variance due to an angular offset of 0.7 microradians. For typical isoplanatic angles, this

will produce a very small variance.

3.7.2 Phase Variance for a Distributed Beacon
The expression for the phase variance for a distributed source with piston present can be
found from Equation (3.7.1). This integral has to be put in a form for which Mellin transforms

exist. To do this the integral is written as the sum of two integrals.
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= XD2 = st =L
Let t=33" Y =34 and X = D, then

D 5/3

o =1 1279( 5 H) -1 + 1), (3.7.5)
0

where the first integral is .
Tdt ~8/3(- t | t ¢ |
.fT e - 5 ) (3.7.5)

The J term is easily evaluated using Equation (F.6) to give

513

LYK
1( D y D,
J= 5(-—-—) jdv yIB- '[J(y) (3) 2] -01331( -

(3.7.7)

The value of / depends on x, which is not a function of z. J is also not a function of z.
Therefore, the final answer just has the 5/3 moments of turbulence, which has beeu expressed
as the isoplanatic angle in Equation (3.7.5). The form of the expression in the first integral is
not one we have encountered before. It is the product of two functions minus the product of
the first terms of their series expansion. If A and B are the two functions and a and b are
the first terms of the series expansions, then the following identity will express the integral in a
form that can be evaluated using the techniques that have been developed

AB —ab=(A-a)B ~-b)+a(B ~b)+ b(A-0a). (3.7.8)

The original integral, /, car. now be broken up into the sum of three separate integrals that

are equal to
1= r]:—“,l e - 3[40 - 35 (3.7.9)
0
'2=0'5x-5/3:{°dy y-8/3~l["l(y)—%-]’ (3.7.10)
and I,=0.5 :I;dy y"‘”"[il(y)—%]. (3.7.11)
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The integrands in the last two expressions are the same, and their value is equal to the

Mellin transform of the Bessel function evaluated at s = -8/3. The value of these integyals is
513

D
l,==0. 1525(3‘—) and  [,=-0.1525. (3.7.12)

Use the convolution theorem to evaluate the first integral. Using Equation (F.5) and letting

s — 25, the first integral can be transformed into the tollowing integral in the comblex plane

=473, i“(py)?‘s s—%"‘.-—s+-‘-*
r

l= 2 m ds D 10

- = + 3 H.;. ' ' (3.7.13)

where the asterisk indicates that the path of integration passes between the first and second
poles of the Gamma function. The subtraction of the first term of the series expansion of each
function has moved the path to the other side of the first pole for both Gamma functions in the
numerator.

Since A = A' = 0, the path of integration is closed to the right when the source diameter is
less than the aperture diameter, and it is closed to the left for the cpposite case. For D/D <1,
the contribution-at the polesat s=4/3ands=12+nforn=1,2,... and the contrjbution

of the other integrals gives

) _(0.3480)5’3

D e,H
2 5/3
(o, el
x| 1+0.258 — ) T -0.873{ = . (3.7.14)
,.z_l n! D —n+161.n+2 D !
The first few terms of this solution are
, (0348 DY
-8, )
2
[ -oam(2)” vorel %) -oom(2) -amonss(22]
x|l -0.872 D +0.763 D -0.0177 D - 0.000286 W, WAk

(3.7.15)
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When D /D > 1, the contribution at the poles at s = 1/2 and s = 4/3 - n for index

values n = |, 2, ... and the other integrals gives

i3 | 2 3
, (0348 DS) 20"/ Dy" [" %

o, -.-.(————- 0.128 +0.258 —-—( ) r - (3.7.16
v\~ O H ,.z_l A\ Dy -n + -'62-. n+2 ( )

The first few terms of this solution are

0 N

, o.3431>sf’3 . D 32 (DY D
%”(T—H_, 0.128 +0.763(—D—s-) -0.0177(-5;) - 0.000286 (7)—) .

. 3.7.17
The normalized variance is plotted in Figure 3-20. The phase variance actually decreases as

the source size increases initially and then it starts to increase.

1.05

1.00

0.9

NORMALIZED TILT VARIANCE

0.0 0.5 1.0 1.5 2.0
BEACON DIAMETER ;| APERTURE DIAMETER

Figure. 3-20. Effect of beacon diameter on the normalized phase varience with piston und tilt present.
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3.8 POWER SPECTRAL DENSITY

In this section, the power spectral densities for several problems of interest are derived.
Many problems can be treated in a similar manner. For instance, in the first problem the beam
movement at a target and the tiu spectra are derived from the same integration. Power and
asymptotic series are found and shown to give a good match at the stitching point of these two
solutions. Spectral analysis of turbulence induced tilt has been investigated for both plane and
spherical wave cases. This section, however, concentrates on plane wave resuits. Plane wave
results are discussed briefly in Tatarski25 and presented in more detail in Greenwood and
Fried.26 Greenwood and Fried made a simplifying assumption in order to obtain simple,
analytic results. Fielus>7 has coired the term "parallel approximation” for this simplificaiion.
One consequence of the parallel approximation is that the rate at which the spectra decay at high
frequencies is under_éstimated. Tyler28 subsequently analyzed plane wave tilt spectra without
making this approximation. However, his results remain in integral form, containing an
integral cver a dummy variable related to spatial frequency and an integral over altitude. In a
subsequent répor_t. Vaughn?9 provided numerical techniqueé to solve the integrals presented by
Tyier, but no solutions have been published which do not rely heavily on numerical
integration. A similar approach has been used in tilt spectra associated with a point source
(spherical wave analysis). These analysis lead to integral expressions which must also be
evaluated numerically (Hogqge and Butts?0 and Butts3!).

3.8.1 Power Spectrai Dersity of Bcam Movement and Tilt

The power spectral density of the beam movement at a target is found using the general
expression for the power spectral density for a collimated wave given in Equations (A.3) and
(A.4) with the filter function of beam movement given in Equation (3.5.26). It is assumed that
one is in the near field so that the cosine term can be replaced by unity. This assumption
breaks down at sufficiently high frequencies and the exact equation must be used. The effect

of including the cosine term is to lower the high-frequency spectrum. The spectral density is
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L C(‘ Tedc Uc -1) ; g V3
J (+65)

2
Fw)= 1303k w |dz
o .[ 2( z) 0 /‘2_1

2
J(ax D/2v(z))
_16 |22 2 _ar- 4 52
"(kou)[ oD 20 (2) ]“‘ 2Lz + 27 (3.8.1)
The expression for the spectra of tilt is just the expression above with the last bracketed term
- _ () 8.2
eliminated. Let X=—nh (3.8.2)

then
U -1)

,
=2 ()2
A -

L oo
l334 . 2 o ll/3 - 2_ . 22 dc
For= sl faz e L™~ 2L + .1£ c

(3.8.3)
The last integral is the same for the problem of calculating the spectra of the bearn movement or

tilt. To evaluate the integral over ¢, define the functions

H(F) = (%) (3.8.4)

U(c -1) - i
and H (c)= , /3 (3.8.5)
L -

then the last integral over ¢ can be expressed as a Me:hn convolution integral using the !
transforms in Equations (F.6) and (F.10). If s is changed to -2s, une cbtains

| 7
—s+ 5 S+2L5+3 [ ap\F

ds T - o . (3.3.6) |
J ['s+l"‘+3”+'|éz](2V)

_ 1
'=30m
Since A = 2, the path of integration is closed in the left-half plane and the contributions at the

twosetsof polesats=-2-nards=~7/3—-n forn=0.1.2,... give
(r o
i( l) »r n+.5, n+3 D 442 n
n i 3 (ZV( ))

n=0 n+3,n+5,-—n+-6
- 14
n+l—67,-n-l3 D 3+2"]_
13 ¥ A | (M,)) : (3.8.7)
nt-s K+ 3 n+-§ €
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To obtain the spectral density, the velocity profile must be inserted into the above series, and
the integrations along the path performed. The final result is a series solution for the power
spectral density.

For large frequencies, an asymptotic series can be found by closing the path of integration
in the right-half plane and getting the pole contributions at s = 12 +nforn =0, 1, 27 vee s

The E(x) term is significant in this case and the asymptotic series is
aD 5
2] = T( cos [ ) - '4—]
5 17 :
- (-l)" ntpnts 2v )“2"
+ "2;-0 ] 10 ! s NaD © (3.8.8)

n+3,-n + »ht+ 3
Notice, that in order to evaluate the coefficients of the series representation of the power
spectral density, various velocity moments have to be calculated in Equation (3.8.3). If the
total velocity and turbulence are constant along the path of integration, the power spectral

density for low frequencies is equal to

: 3593 . 23 2
Flo)= 2220 fiLD (&)”3{1—0.3398(%2) ~0.01042(42)

8/3 4 1473
+0.005077 (22) " + 1329 x 1074(22) —5.7x 1075(42)

20/3
~ L1157 x 10 “(—) +4.4x107(L2) /}

(3.8.9)
For high frequencies
18.08C 2L°p*"
Fla)= v ( D)
{l+6375( ) +29.61(-5 ) +2.218( 25 ) cos[( ]}
(3.8.10)
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The term [L? ~ 2 = - 2] contributes a factor of L3/3. To find the tilt spectra, the analysis
is the same except that this factor is not present. Therefore, the tilt spectra is the above spectra

multiplied by 3/L3. The spectrum for low frequencies is

2,23 2/3 2
F @)= 2200 ( avD)2/3[1 ~03398(2E)  -0.01042(-42)

4 v
8/3 4 14/3
+0.005077 (£2) "+ 1329 x 1074(22) -5.7x 1073(L2)

20/3
~ 1157 x 107542 ) +44x 107(4L2) ]

(3.8.11)
For high frequencies it is
2, 2/3
Py = 228 (1)
[{1+6375(—) +29.61(5 ) +2.218(%5 ) “cos [( ]}]
(3.8.12)

Notice that the first term of the expansion for low frequencies does not depend on diameter,
and the first term of the asymptotic series has the strong dependence to the inverse fifth power
of diameter. Therefore, as the diameter gets smaller, the high frequency components of beam
motion increase rapidly. For low frequencies, the spectrum decreases as the inverse 2/3 power
of frequency. For very high frequencies, the power decreases as the inverse 17/3 power of
frequency.

At high frequencies, there is a ripple in the spectrum due to the cosine term in the
asymptotic expansion. This ripple appears because of the assumption that the velocity was a
constant. [f the velocity varies with height, then at any frequency one obtains the sum of many
cosine terms with different arguments. These terms tend to cancel out, and in that case one can

neglect the cosine term.
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The spectral density is plotted on a linear and logarithmic frequency scale in Figures 3-21a
and 3-21b. Notice the ripple at higher frequencies due to the cosine term in the asymptotic
series. Each plot contains the series solution and the asymptotic solution. As the spectral
density gets smaller, in order to obtain valid answers with the series solution, one must be
concerned with the numerical accuracy of each of the terms of the series since it is the
cancellation of large terms that produces the resultant small spectral value. There is a good
match of the curves using the eight terms of the power series and four terms of the asymptotic

series.

LOW-FREQUENCY SERIES

POWER SPECTRAL DENSITY

HIGH-FREQUENCY ASYMPTOTIC SERIES

P N S U A ST

ad

16 " Y BPVO W U PO PV I PR Y
0 2 a4 & 8 10 12 14 16 18 20
OMEGA*DIAMETER / VELOCITY

Figure 3-21a. Log-linear plot of the power spectral density of tilt using power and asvmptotic series. The
velocity and turbulence are constant along the path.
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LOW-FREQUENCY SERIES
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POWER SPECTRAL DENSITY
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10

Figure 3-21b. Log-log plot of the power spectral density of tilt using power and asymptotic series. The
velocity and turbulence are constant along the path.

The two series are merging together in Figures 3-22a and 3-22b.

-
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Figure 3-22a. Log-linear plot of the power spectral density of tilt with merging of the power and asymptotic
series. The velocity and turbulence are constant along the path.
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Figure 3-22b. Log-log plot of the power spectral density of tilt with merging of the power and asymptotic
series. The velocity and turbulence are constant along the path.

If the velocity is allowed to vary along the path, then one must obtain the velocity moments

in order to determine the spectra. Define the velocity moments as

L H
v,=[d C’i(z Wz )= sec(&) [dh Ci( hyv™(h). (3.8.13)
0 0

The velocity in this expression is the magnitude of the velocity that is equal to the vector sum of l
the wind velocity and slew velocity at any altitude. The last relation assumes that both the j
turbulence and the wind velocity vary only with height. Using this relation, the tilt spectra can

be written as

0.2776 3 2
F )= ';,ﬁ'["-n ;5 ~03398(wD) " v_, - C01042(@D) v _, .

14/3

57x 107(wD) " v_g

8/3 4
+0.005077 (@D) " v_y + 1329 x 10~ (wD) *v_, -

-6 . )8 =7 o ry) 2013
- LIST x 107X @D) v_g . +4.4 x 107 (@D) 3y _1].

(3.8.14)
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For high frequencies with the cosine term neglected, one obtains
54.24

-4
(aD) |. (3.8.15)
0)2/3D5 ]

=2
(wD) + 29.6lv26/3

F @)= [vl appt 6375V

2073

The velocity moments that are needed in the above series have to be calculated using the
wind velocity and slew rates for the particular situation. For the slew dominated case, these
moments can be expressed in terms of the turbulence moments that were previously found in

an analytic form. The general case requires a numerical evaluation of these moments.

3.9 STREHL' RATIO AND COHERENCE DIAMETER

3.9.1 Strehl Ratio of Uncorrected Turbulence

The problem of finding the Strehl ratio with uncorrected turbulence was analyzed by
Fried.32 He solved the problem by performit;g a numerical integration. He also analyzed the
problem of tilt removed Strehl ratios. Because of the problem of the Zernike modes not being
statistically independent, he had to make certain approximations to get physically meaningful
results. This tilt removed problem has been looked at by Lutomirski, et al.,33 Travis and
Yura,3* Wang and Marky,35 and Wang,36: 37

One can obtain an exact series soluticn for the Strehl ratio when the turbulence is
uncorrected. This technique can be used to find an equivalent coherence diameter for more
complicated cases; however, a different method will be developed to find the Strehl ratio.

Since turbulence is isotropic, the Strehl ratio is given by Equation (3.2.14) as
I
3R = [ da K(a)exp[ - D(@x) /2], (3.9.1)
0

Since

D(c)= Dx(a)+ D (a),

¢ (3.9.2)
the total structure function is found from Equation (A.2) with unity filter function and inner and

outer scale neglected so that {x) = k'3 as

D(a)=0.4146k> [dz CX(z) JdR &'V /31— cos{R - @}).  (3.9.3)
B V]
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The angular and axial integrations can be performed to give

D(ax)=2.605 p, k> [dic &3/3= 1 = J ( xaD)]
0

=2.605 u ki@D)’' > M(1- J(0) (3.9.4)

s=-5/3

The Mellin transform of the term :m parenthesis is just the Mellin transform of the Bessel
function given in Equation (F.5) as explained in Equations (2.3.10) and (2.3.11). Using the
definition of the coherence diameter given in Equation (3.5.5), the structure function can be

written as

D(et)=6.88(aD / r,)° >, (3.9.5)

The integral for the Strehl ratio has been reduced to

1 5/3
SR=[a da K(a)exp[— 344 (-“;—’:-) ] (3.9.6)
0

To evaluate this integral, it is convenient to express the exponential as a Mellin-Barnes
integral. Marichev (Equation 5.31) expresses the exponential in terms of a confluent Gauss
hypergeometric function as

exp(z)= lim F(, w:l;z/ u).
U - oo (3.9.7

The hypergeometric function can be written as a Mellin-Barnes integral (Gradshteyn and

Ryzhik Equation (9.113)) in the following way

R O sHa + )0 + 90(=5)  (3.9.8)
Fla. b i 2) = Foyrey 7 48 -2 M +9) '

The path of integration has all the poles of a Gamma function on one side of the path of

integration. Therefore, the exponential can be written as

£y
exp(z) = lim mjds Mu + (=5 )(3Z) ", (3.9.9)

U —» oo
where the path of integration is just to the left of the imaginary axis. For this case A = A' =0,

and the parameter in the integral is very small. Therefore, the path of integration can be closed
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in the right-half plane with poles at s = n, and using the following limit

C(u+s)

“h_l?wm—— I, (3.9.10)

the normal power series for the exponential is the result

o0 ’n

= . 3.9.11
n=0 n! ( )

exp(2)=

Using the Mellin-Barnes expression for the exponential in the equation for the Strehl ratio

produces

da K(a)
SR = uh-Tanu) 2m

s/
[ds l"(u+s)l"(—s)(3‘“ (_f_lo) ) Ssi3+1 (39.12)

Interchanging the order of integrativi1 yields

N
l,
_ F(u+S) (344 D 5/3) +55/3
SR = lim 5 [ds =T 2942 (J;daal K (a)
- m = [d ‘I‘(u-f-'s)r(_ )(;_14; A)s’jsm /3) (3.9.13)
_u—)oo 2m S F(u) s u (ro 5 ' )

The definition in Equation (2.3.12) was used above. Take the limit, and use the value of the
integration of a power of the aperture times the MTF of a circular aperture given in Equation
(2.3.15). This expression for the integral is valid as long as Re s > ~9/5 which is satisfied for

the path of integration. Change s to —s to put it in the standard form, and obtain

53/6,—5-0-:[ D 5/3] :
SR = 24 _1_ 3.44 . 3.9.14
5‘\/ 273-[ 3— 58‘/6.S+l6l ( 0) ( )

For this case A = 1, and the integral can be closed in the right-plane. These poles are
located at s=n,n =0, 1,2,... . The power series for the Strehl ratio that is the sum of

the residues at the enclosed poles is equal to

3 6 537"
_ 24 QD z+5"/6~"+3[ D ]
SR = 5\/_’?,.23‘0 ) I () |- 3eas)

6
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The first few terms of this series are

SR =1~ 1 032(%’-)5 " 0. 1082 (-‘;’-)lo, "o, sms(%)5 ... (3.9.16)

0 [

For large values of the parameter, this series converges slowly and an asymptotic series is
needed to get a rapidly converging series. Since Condition 1 given as Equation (H.20) is true,
the asymptotic series is equal to the residue of the poles on the other side of the integration
path. The poles are at s = -5/6, and s = —6n/5-9/5 forn=0,1,2,... . (Remember to
multiply the second set of residues by 5/6 because the coefficient of s in the Gamma function
is not unity.) The Gamma function that produces the first pole only has a single pole because

the others are canceled out by the denominator. The asymptotic series is

2 o (- 6n/5+2 n+ + 3+2n
sk =(2) - =3l n2=,0-(-—;!)— 3, ni% 2 (3.44-)“""5(-%")
) 3.9.17)
The first few terms of this series are
ro2 s 3 , S T
s&=(3°) -0. 6.159(-3") +0.05 (—D-‘l) +0. 00661(3") + ... (3.9.18)

In Figure 3-23 is a plot of the Strehl ratio versus the ratio of the aperture diameter to the
coherence diameter. The regular series and the asymptotic series meet with a difference of 1%

by using ten terms of the power series and six terms of the asymptotic series.

In order to find the Strehl ratio with tilt removed, one would have to remove the tilt from
the structure function. As was pointed out in Section 3.2, since the Zernike modes are not
statistically independent, subtracting the tilt from the structure function results in an error.
Since this error is not very large one can still use it to get an approximate expression. If this is
done and a power series solution is obtained, one finds that the power and asymptotic series
converge poorly in the transition region when the diameter is about the coherence diameter.
Away from this region, the solution is close to that with the tilt present. For that reason the

solution using this method is not presented here.
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Figure 3-23. Strehl ratio for uncorrected turbulence.

3.9.2 Coherence Diameter with Inner Scale

8 7 8 9

10

There are several ways to define the coherence diameter. The deﬁnition that is dsed here is
a physically intuitive one and is that value of r which divided by the aperture diemeter and then
squared gives the normalized intensity in the far field. This definition is consistent with Fried's

definition of coherence diameter for zero inner-scale size. The coherence diameter will be

evaluated by first finding the structure function, inserting this into the expression for the Strehl

ratio, and then taking the limit as the aperture gets very large. The structure constant with

inner-scale size included is obtained by using Equations (A.2) and (A.6) to obtain after

integrating over angle

!

D(r)=2.606 k. [d= C3(=) fd & #1311 - J,,(n)]exp[_(-k'; i
0

0

The last integral in kappa space can be expressed as the following Mellin integral

5

/3 K. r §=F%—=s
1=‘s_'/j3—_jd*'(_é_) r 61; :
2 2n =S +'6-

179

(3.9.19)

(3.9.20)




Since A = |, the integral should be closed left; however, since the parameter in the integral is
large. the asymptotic series is desired. In this case, the asymptotic series is just the
contribution of the poles to the right of the path of integration. Retaining the contribution only
at the first two poles at s = 0 and 5/6, and using the definition of inner-scale size given after

Equation (3.3.30) one obtains for the structure function

FRIE
D(r) -2.91kf;p,,:5'3[1—o.o95 ) ] (3.9.21)

which can be written as » -
D(aD )= 6,53%[("0) -0.095 13"’] (3.9.22)

The Strehl ratio which is the normalized intensity on axis can be found by inserting this

structure function into Equation (3.2.14) and then using Equation (3.9.9) to obtain

[(aD) 00951.5’3]} ,

51
mry,

SR = lim jd Kla)

dm [ 4 ey fds T(m+ $)T(- s){

(3.9.23)
The second term in brackets is small compared to the first term except close to the origin which
is a region that contributes very little to the value of the integration. and that expression can be
approximated by the first two terms of the binomial expansion. After interchanging the order

of integration and evaluating the aperture integration using Equation (2.3.15), the expression

=)
o) ot gy

becomes

(3.9.24)
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The asymptotic value of this integral is found by evaluating the residue at the first pole to the

left of the path of integration that occurs at s = —1/5, to ohtain

> 5/3
ro N Li
SR = ('D‘) 1+0. 6(-;0- . (3.9.25)

Therefore, the coherence diameter with inner scale included is

L 13
riL )= r 1+0.6(—,j) . (3.9.26)

For the inner-scale size to increase the coherence diameter by less than | %, it must be less than

13% of the size of the coherence diameter.

3.9.3 Strehl Ratio with Anisoplanatism

As we saw in deriving the filter functions for anisoplanatism, the effect of displacement,
angular mispointing, time delay, and two beacon colors can be treated as an anisoplanatic
effect. In fact, if all the effects are present simultaneously, they can be added together to get a
total displacement. In this section, the effect of that dispiacement on the Strehl ratio will be
determined. To find the Strehl ratio, the structure function must first be determined. Use the
expression for the structure function in Equation (A.2) with the anisoplanatic filter function
given in Equation (D.1) to get

D(a) = 0.4146k’ fdz clz) JdR k1 131 = cosR - @D}12[1 -cos|R - d(2) ).
" (3.9.27)

The use of this formula assumes that the structure function can be written as a function solely
of the difference of the aperture coordinates. Therefore this formulation does not apply to focal
anisoplanatism whose phase variance was derived in Section 3.7. Since that effect is small, the
Maréchal formula can be used to find the Strehl ratio in that case. The expression in the last
integral is proportional to the spatial power spectral density. In Figure 3-24 is plotted this
density for pure turbulence and turbulence filtered by the aperture function. In these plots,

there is no isoplanatic offset. The aperture reduced the low spatial frequency components.
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Figure 3-24. Unfiltered and aperture filtered Kolmogorov turbulence spectrums.
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Figure 3-25. Spatial frequency spectrum for various levels of anisoplanatism.
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The effect of anisoplanatism on the spectrum is plotted in Figure 3-25. One sees that for
very little anisoplanatism there is very little power, and it is fairly independent -f spatial
frequency.

The expression in the last integral can be expanded and the trigonometric identity for the
product of cosines used to get

l= 2Idi\’ KB - cos{ R "D} ~cos{ R d(z))
+cos(R-[@D+d (]} /2+cos{R-[@D-d(D]}/2) (3.9.28)
This can be integrated over angle, and after rearranging terms, one gets
I=4n [de 331 J,(kaD)} + {1- J( k(2 )}
-{1-s(ap+d:m}r2-{1-J(x1@D-d(:}/2]1. (549,

Using Equation (2.3.11) for each of the four terms, one obtains for the structure function

od N o
D(a)=2(2.91)k;, fdz C3(z)
0

-3 - 5/3
x[(oo)sl +d® - Hap+ d(z)

Jap - d 5"3]
-sla-de)| ] (3930

The terms in the absolute value sign are equal to

5/3
= [(aD)z *2aDd(:) + dz(: )]5 '8 (3.9.31)

lé"D +d(: )|
This expression can be simplified and numerical difficulties eliminated with the use of
Gegenbauer polynomials. Their generating function is
—-A oo
A
(l - 2ar + a2) = Z Cn (r)a”. (3.9.32)

n=(

[t can be shown that the Gegenbauer polynomials can be represented as

O T(A+mT(A+n - m)xos[(n~-2m)p]
C:'(cos P)= X, '

3.9.33
m=0 m!(n-—m)![l'().)]2 ( )
A term that is useful is
-5/6 5 {
C2 (cos @)= ”6[" 3 cos? ¢]- (3.9.34)
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For aD > d(z), the terms in the structure function can be expanded in Gegenbauer

polynomials. The zeroth and all odd order terms cancel and if m — 2m the result is
Dia) = 2(2. 91>k'jd. [ Pizy—@)?*? T ;3 s o () ]
m= |

' (3.9.35)
[t is this canceling of the first two terms of the power series that causes numerical difficulties if
the integral is evaluated numerically without the above expansion. Define

5/3
(z)= 2.9lk0d5

27 2
ofp=2.9lk0£d. C(z)d /3 (3.9.36)

For adaptive-optic systems, the Streh! ratio is fairly high, which requires the structure function
to be small. This assumption allows one to retain only the first term of the Gegenbauer
expansion to give

D(a)=20‘,2p-2x,

(3.9.37)
_ _ 2 ! 15 '
where =291k d,l- gcos” ‘PJﬁ(aD ) (3.9.38)
| ' 2 2
and d,= jd: Co(2)d (). (3.9.39)

0

The assumption that aD > d(c) is not true in the center of the aperture, but, is typically true

over most of the aperture. There will be a small error made by integrating this approximate

expression over the entire aperture. In fact, if the exponential is expanded in a power series

only the integral of the first six terms converges because of this assumption. If only the first
six terms are retained, the Strehl ratio can be written as

eXP[—O" 23 r4 5
SR = -—2—-— IdaK(a)[H x + 7+ 6 +55+ 120] (3.9.40)
If just the first term in the last bracket is retained, the result is equivalent to the Maréchal

assumption. The assumption used here is valid to a lower Strehl ratio than that one. The

integrals over angle and the aperture coordinate can be perforined analytically. The angle
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integral, after use of the binomial theorem, is equal to
| 2n , n l n n 2n
- _ 1 2 -1 -m 2
D(n)= T3 Id(p [l 3 cos (p] =37 )y (n _ m) 3 jdtp cos<" ¢.(3.9.41)
0 m=0 0
Equation (3.641-4) in Gradshteyn and Ryzhik is
r/2

r(2m - !
'fdtp cos?" @ = 202m)i (3.9.42)
0 .
where 2m=-D=2m~1D(2m~3)...(3X)), (3.9.43)
and (2m!!=(2m)(2m=2) ...(4)X(2). (3.9.44)
With these relations, the angle integral is equal to
L n -m(2m-1"
=t X (, 0 )3" S 3945)

m= |
The values of interest are ®(0) = 1, (1) = 0.8333, ®(2) = 0.7083, (3) = 0.6134, ®(4) =
0.5404; and @(5) = 0.4836. The aperture integration is |
Y(n) = }da o ="K (). (3.9.46)
0
Using the results in Equation (2.3.15), the values of interest to us are Y(0) = 1, Y(1) = 1.402,
Y(2) = 2.087, Y(3) = 3.396,Y(4) = 6.419, Y(5) = 16.94. If these values are used, the

approximation to the Strehl ratio is

SR = exp[-a3][ +0.9736 E + 0.5133E7 +0.2009 £° + 00597 £* + 0. 02744 E°],

(3.9.47)
,
2.91kd,
where E=—"ms (3.9.48)

This result was compared to that obtained by numerical integratior; and shown to be in good
agreement as long as the Strehl ratio was above 0.3. This expression will now be applied to -

various types of anisoplanatism.
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3.9.3.1 Displacement Anisoplanatism

The terms to use to find the Strehl ratio are

.
d,=p,d, (3.9.49)

2 d
and =291 ud*’=6.88( &) . (3.9.50)

Use was made of the definition of the coherence diameter given in Equation (3.5.5). If these

expressions are inserted into Equation (3.9.40), ther one obtains the Strehl ratio versus

displacement plotted for two different scales in Figures 3-26 and 3-27. The Strehl ratio for the

HV-21 model is not plotted since its Strehl ratio is virtually identical to SLCSAT day values.
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Figure 3-26. Strehl ratio versus parallel displacement for a 0.6-m diameter svstem with various turbulence
models.
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Figure 3-27. Strehl ratio versus parallel displacement for a 0.6-m diameter svstem with various turbulence
models for small displacements.

3.9.3.2 Angular Anisoplanatism

If the beam is offset by a constant angle, then

dz)= 6z (3.9.51)
]
e a4 (3.9.52)
> > 53k PR
and 05,=2.91k,0°"" [d= Cy( ) :5/3=(‘g‘)
0 ¢ (3.9.53)

Use was made of the definition of the isoplanatic patch size given in Equation (3.5.6). The
Strehl ratio at zenith for various turbulence models is plotted in Figure 3-28 and at 30 degrees

from zenith in Figure 3-29.
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Figure 3-28. Strehl ratio for angular anisoplanatic error at enith for various turbulence models versus
separation anglé for a 0.6-m svstem.
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Figure 3-29. Strehl ratio for angular anisoplanatism at 30 degrees from zenith for a 0.6-m system.
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3.9.3.3 Time Delay

For this case
L
)
d2 = _[d: C,(2) vie= vy 2, (3.9.54)
0
; ) 2 ¢ 2 5/3
and 0p=2.91k, [d: Coz) 13 PP =(r/ 1) (3.9.55)
- 0
where the velocity moment is defined as
L
va= [ds Chz W As). (3.9.56)
0
The characteristic time is defined by
523 = 2,91k, (3.9.57)

The Strehl ratio is plotted for various turbulence models at zenith for a Bufton wind model with
a ground wind speed of 5 m/s in Figure 3-30 and at 30 degrees off zenith in Figure 3-31.
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Figure 3-30. Strehl ratio versus time delay at zenith for 0.6-m svstem.
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Figure 3-31. Strehl ratio versus time delay at zenith for 0.6-m svstem at 30 degrees zenith angle.

The Bufton wind model gives the wind versus altitude as

viR)=v, +30exp[—(5-{-3%‘.5°9-)1]. (3.9.58)

3.9.3.4 Chromatic Anisoplanatism

in Section 3.4.3, the basic formulas for chromatic anisoranatism were presented. The
formulas there assumed that the rays were parallel at the target. In actuality, they converge on
the target and it will be shown that the error in assuming parallel beams exoatmospherically
rather than beams that converge on the target is very small. The displacement as a function of
range is given in Equation (3.4.40). At the target at range R, the displacement is d(R), and
to hit the target squarely one must change the launching angle by d(R)/R. Therefore. the
accurate formula for the displacement of a beam that converges on the target is

. an [: LR
‘ E sin (62) ol-jd.t ax) - ﬁ jdx a(x)). (3.9-59)
& cos %(§) l_o 0

The difference in refractive index between the two wavelengths can be calculated trom

d(z)=
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Equation (3.4.41). The last equation can be written as

ESin (g)Mor
£cos 2(&) L

d(z)= 1(:)--%1(1?)]

The integral of the air density is easily evaluated to give
10)=9010{1 ~exp{-1. 1x 107%:]} < 10km

I(z)=8161-10190 exp[-1. 57 x 10™:] > 10km.

The moments of this displacement are found to be

n
sin(§) an,
d =|——————|T,,
" [cos3(§) ] "
where

t h sec(§)

Y
-

. n
Tp=2.91k; sec(§) [dh Cr( A 1Ch) - ——E—I(R)] :
0

(3.9.60)

(3.9.61)

(3.9.62)

(3.9.63)

L is the height of the target. The last term in brackets goes to zero as the range becomes
infinite. In Figure 3-32 is plotted a comparison of the Strehl ratio of & target at 300 km and one

at infinity.

1.0
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Figure 3-32. Comparison of the Strehl ratio at infinite and 300 km range.
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There is very little difference in the two results which justifies the assumption that the rays
can be considered parallel. For infinite range. the above equation reduces to

L
T,=2.91k; sec(§) [dh C3 m) 1" h). (3.9.64)
0

The results for the finite range case entails a numerical calculation for each range. The infinite
range results can be calculated once for each turbulence model and used for different zznith
angles. Table 3-2 contains the values of T> and Ts; for various turbulence models.

TABLE 3-2

Values ot T, and T, , ftor
Various Turbulence Models

MODEL T2 Ts/s
SLCDAY 2.706 x 10°® 2.00¢ x 107
SLCNIGHT 2.256 x 108 1.512x 107
HV-21 6.16 x10°® 3.596 x 107
HV-54 3.399 x 107" 1.867 x 10°
HV-72 5949 x 10°3 3.247 x 10

angles when one beam is at 0.5-micrometers wavelength.
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Figure 3-33. Strehl ratio for SLCSAT day turbulence with the scoring beam at 0.5 pm for a 0.6-m system.

3.9.4 Strehl Ratio in an Adaptive-Optics System

The filter function with all the defects included can be written down. The beam from the
adaptive-optics system has anisoplanatic errors, errors due to fitting error, and errors due the
finite system bandwidth. The composite filter function is the product of the filter function for
fitting error. F . times the filter function for finite servo response, F¢. and the phase shift

due to the anisoplanatic displacement minus unity. This filter function is

s
F FFE( K Fox, expl iR - de)l-1 . (3.9.65)

A0 =
3.10 BEAM PROFILE

In this section. the beam profile for uncorrected turbulence and for an adaptive-optics
system with anisoplanatism will be found. The method of solution uses the same tools that
were used before, but, because these problems are more difficult than the calculation of the
Strehi ratio. the expressions are longer. The solutions manipulate asymptotic series that have
been found. This manipulation is possible because of the properties of asymptotic series of the
Poincairé type that were stated at the end of Section 2.4.2.
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3.10.1 Beam Profile for Uncorrected Turbulence

A framework for finding the beam profile for any ratio of the coherence diameter to the
aperture diameter is developed. This approach expresses the beam profile as the sum of an
infinite series of radial functions. A different series of functions is obtained for large coherence
diameters and small coherence diameters. For weak turbulence, it is shown that the first term
of the series gives the Airy function profile. Typically, one is interested in the case in which
the coherence diameter is small compared to the aperture diameter. In that case, only the first

term of the asymptotic series proﬁleé is necessary to find the profile. The profile is expressed

as an integral and the "echniques that have been developed are used to find the profile for small

and large diameters. It is shown that these two series match well at intermediate diameters and
therefore give a profile that is valid for all diameters. It is interesting to note that the behavior at
large radii is obtained by taking an asymptotic series of an expression obtained from an
asymptotic series.

The starting point for obtaining the beam profile is the expression in Equation (3.2.12) with
the structure function for uncorrected turbulence given in Equation (3.9.15). This gives the

expression

1 .
I(n=|a dw(,( Z ':Da

5/3
)K(a)expl:—B.M(-g’—,[)l) ] (3.10.1)
0 . e

This integral will be evaluated by Mellin transform techniques. Let

-

=T (3.10.2)

0

Separate the integrand into the two functions

H(x/ a)=J (a/x), (3.10.3)

r 5/3
and Hy(x)= oK (c)exp [-3.44(%‘2) ]U(l - ). (3.10.4)
[

With these definitions the beam profile is

1in =[4L H(x ] @) Hy@) =50 [ds HIOH} 2. (3.10.5)
0
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The Mellin transform of the first term is found from Equation (F.5) as

* —s=lpf=5/2
Hl(s)—2 r[l+s/2]' (3.10.6)

The Mellin transform of the second function can be found from the expression for the Strehl
ratio that was previously found. Examining Equation (3.9.6), it is easy to see that the

equivalent of Equation (3.9.13) is

iy l‘(u+v 3.44/ D SR 1+5v /3+s
H. (s) - j'd I(-v) _’u—(T) J'daa Ka).

u—-)or& ]
— (o0 0

(3.10.7)
Following the same steps as the previous analysis, one finds

. ; 6
i [y, 34 5/2~5v/6-v+3s/5+% 33
Hyo) = sz |07, u (2

2 5 & 2m 3+5/2-5v/6,-v +3s5 /5 +

—lm

=

(3.10.8)
Since A = 5/6, the path of integration can be closed in the left-half plane and the integral is
equal to the residues at v=-nforn=0,1,2,... . Therefore, the Mellin transform of this
function is

n
W = 2'( h" [€/2+5n/6+3/2.s/2+5n/6+l][344(£5/3]
‘\/ n! s/2+5n/6+3,5s/2+5n/6+2 F )

(3.10.9)
The above series converges rapidly for large coherence diameters. If the turbulence is severe,
then an asymptotic series is wanted. It is easily shown that the steepest descent contribution
has exponential decay and is insignificant compared to the residue of the poles to the right of
the path of integration. There are poles at v =6n/S + 3s/5+9/5 forv=0,1,2,...,and a
single pole at v = 35/5 + 6/5. There is only a single pole because the singularities in the
denominator cancel the other terms. Evaluating the residues at these poles gives for the

asymptotic solution
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2+s
.24 vz =25/
Hz(s)— 5-\/_5{ 6/sl'(3s/3+6/5)(344) S( )
(- l) (3.44) 9/5—3s/5—6n/5( r, 3+s+2nr §+3s /5+6n/5
'Z n+1/2 \'D 3_,
2

(3.10.10)
There was an extra factor of 5/6 multiplying the last summation because the coefficient of v

was 5/6.

To obtain the beam profile for large and small values of coherence diameter, these
e‘xpressions must be inserted into Equation (3.10.5) and that integral evaluated by the
techniques we have been using. That will not be done here but rather the beam profile will be
examined in two limits. First, let us look at the profile when the turbulence is low. Only the
first term of the series will be examined. To find this, iﬁsert the first term of Equation (3.10.5)

and the expression in Equation (3.10.6) into Equation (3.10.5). The result is

L[y —2 [s/z 252 ] kDY
I (r)=5=])ds —F7—=T > 2 ( ~ ) . (3.10.11)
T TN |25 12,35 12]N
From Equations (F.6) and( 1.4), one recognizes this‘ integral as the Airy function given by
9
k, :D) i
jl( 2z

( k(,;D) . (3.10.12)
4z

[,(r)=

Higher order terms will modify this distribution by subtracting from it. The fact that this term
exists even as the turbulence gets stronger shows that the beamwidth does not increase
significantly as the turbulence gets worse as long as it is not so strong that the asymptotic series
is required. The characteristic of the solution is to have a strong central peak with a broader
tail. This distribution is referred tu as the fried-egg effect. For strong turbulence, the first term
of the asymptotic approximation in Equation (3.10.10) is a good approximation and if that is

inserted along with Equation (3.10.6) into Equation (3.10.5) one obtains
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2 6

12 oY 1 s/23-35/5

[ (r)=—dA2 (-2} L dsl'{: 5 }rs, (3.10.13)
" 5(3.44)"2(‘))2’zzI 1-s/2

k. rr
x=0.238 o] 2 - (3.10.14)

-
4

where

Since A = 2/5, the path of integration can be closed in the ieft-half plane with the result

2 » "
[,(r)= l.09(%) Zotl'))—zr[%”— + -g—]x?"'. (3.10.15)
n= .

For large distances from the origin, an asymptotic series is wanted. It can be shown that the

steepest descent contribution has exponential decay; therefore, the asymptotic series is the
residue at the poles to the right of the path of integration. These poles are at s = 51/3 + 2,
n=1,2,3,... . The n = 0 term cancels because of the pole in the denominator at that value

and the beam profile is ‘
Sn/3

2 = (1) z
(-1) Szr/6+1](4-197-') .(3.10.16)

I(r)=16 DI:r Z n! -5n/6 k. rr
0 n=1 o" "o

The beam shape is plotted in Figure 3-34. In the same figure is also plotted the beam shape
for a wave with no turbulence but which has an aperture diameter equal to the coherence
diameter. Notice that the shapes of the two profiles are close to ¢cach other when the intensity is

above 0.2 of the value on axis.
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Figure 3-34. Beam shape with and without turbulence.

3.10.2 Beam Shape with Anisoplanatism
Next, the more complicated problems of finding the beam shape with anisoplanatism will

be solved. The method of solution will use the method of expanding the exponential into a

series of Gegenbauer polynomials as was done in the calculation of the Sirehl ratio. For this
reason, the beam profile will only be valid when the Strebl ratio is greater than 0.3, which is
the region of most interest. The starting point will be the expression for the beam protile given

in Equation (3.2.9), which is repeated here

1) =5—[d@K(@)exp [ ik,DF - @/ - D@)/2).  (3.29)

The struciure function is the same as when the Strehl ratio was calculated. It is again expanded
into Gegenbauer polynomials and only the first term is retained. If the exponential is expanded
into a power series as was done before, the equivalent expression given in Equation (9.3.14) is

exp [-0%)]

®

2 3 4 5
- . - X X X X
Y Idaexp[zkaDr -a/z]K(a)[l+x+——+T+—-+—].

I,(r)= 3

(3.10.17)
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The integration over angle is not as straightforward as before since there is an additional term in
the exponential. At this point an approximatior is made. The angle dependence in the x term
is small and we will replace the angular expression in v by the values that were calculated for
the Strehl ratio. The angular integration can then be performed to get a Bessel function for the

exponential term. Define

8

e
o(v) = 7%ﬂm d K@) (aly)= I(‘V) 42 o * 2K @i aly),
0 0
(3.10.18)
where y= kD (3.10.19)

and /(v) is chosen to normalize the function on axis. It is easy to see that /(v) is the
function that we have evaluated in Equation (2.3.15). With these definitions, the beam profile

can be written as

1,(r) =exp [—Ao"fp][Q(O) +0.9736 0 (-3) +0.51338 20( -2

+0.2009 E°Q(-1) +0.0697 E°Q(~3) +0.02744 E SQ(‘%)] ' (3.10.20)

To complete the analysis, the function Q(v) must be evaluated. The same method as that used
in the last section will be used again. Define the first function the same as in Equation (3.10.3)

and the second function as

- ‘,+\'
Hya)=a """ K(a). (3.10.21)

It is easy to see that

H;(s)=l(s+v). (3.10.22)

The function we are seeking is then equal to

3+ v/ 2] 3 =25
: | S, S+v/2-51+v/2=5 1

Qv)=U+v /2)|3 = | ds” 2 (—-——) .
I [3*'"/242’"'[ [l=-s.3+v/2-s,2+v/2-s] 2y

(3.10.23)
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For v = 0, it can be shown that the integral is equal to an Airy function. For other values of
v, the solution cannot be expressed in terms of simple functions. Therefore, the integral will
be evaluated in terms of an infinite series. Since A = 2, the path of integration can be closed to

the left, and one obtains for the residues at s =-n,n= 1,2, 3, ... the value

. 2
3+V/2] - (—_l)" r[,,+3+v/2](k010)"

Q(v)=(l+\/2)l‘[ , 5 : -
TVl o(n) (net+ v 2) Lnt3+vi2 %

(3.10.24)
For large radii, an asymptotic series is wanted. This series has contributions due to both the
steepest descent coniribution and the poles to the right of the path of integration at s = 1 + v/2 H
andv/2+32+nforn=0,1,2,... . This asymptotic solution is equal to

3+v /2 & (- [n+ +v /2 5-
W= +% ~————T (o)
Qu \'[ /2}{2"'(""‘1/2) ——n—v/Z n+-:i koD

1/2
2+ 1y 2 \2+ 1 2z 32 ["ZkorD 37!']1
a5 () elEe) =) - F)
(3.10.25)

n+3+v

(] [

The beam pattern can be plotted for various types of anisoplanatism by putting in the
appropriate values of E and 0'7; in the above expressions. The beam pattern is plotted for
angular anisoplanatism in Figures 3-35 and 3-36 for various values of offset angles. Notice

how the dips in the Airy pattern fill in, and the power gets distributed at larger radial distances.
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Figure 3-35. Beam shape with anisoplanatism for a 0.6-m aperture at zenith for the SLCSAT day model.
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Figure 3-36. Beam shape close to the axis with anisoplanatism for a 0.6-m aperture at zenith for the SLCSAT

day model.
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APPENDIX A
VALUE OF THE INTEGRAL WITH MULTIPLE POLES

It will be shown in this section that the occurrence of multiple poles, while it requires
special treatment. does not pose any conceptual difficulties in calculating power or asymptotic
series. Multiple poles can be viewed as the limit as two or more poles coalesce. To evaluate
the integral in terms of a power series, the residue at the 1/s term must be determined. To find
the asymptotic series, the residues must be found and the steepest descent contribution must be
evaluated. The residues are-found by expanding all the tunctions in the integrand into a
Laurent series about the point of the multiple pole. multiplying all the series together, and
determining the coefficient of the 1/s term. This technique is illustrated with examples of
double and triple poles. and then with a physical example encountered in calculating the speckle
from a rotating diffuse plate. [ have not encountered any problems in turbulence wave
propagation that have mulitiple poles in the complex plane.

A.1 Expansion Of Integrand Functions
As a start in this process, the Taylor series expansion of == about the poinfs = k is easily

found to be equal to

ol = “2 ,,. [ln( "€, (A.LD)

s=k +¢

The Gamma function (s + N) has poles at s = =N - k , and the expansion of this close to
a pole can be shown to be equal to
(‘l)‘ - G”(N —‘)

s+ N) = =7
's=-N-k+€ k! ,,2___:(, €

e". (A.1.2)

The expansion of the Gamma function with —s as the argument about a pole is

k
-1 = a (=N + k)
O T @A

su=N +k+e Y oa=0
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The first few coefficients of these expansions can be found in Marichev as

a,s)=L (A.1.4)
a(s)= ¥(l - 5). (A.1.95)
ay(s)= ¥(H+ (1= )= U= ]/2 (A.1.6)
where the logarithmic derivative of the Gamma function is defined as
wizy= AN T, (ALT)
The value of this function is given in Jahnke and Emde.!! (page 18), as
rore S S e

n=|
where C is Euler's constant that is equal to 0.5772. The derivative of the last expression can
be taken to obtain

- vy 1
s "§|(:+n-|)2. (A-19)
This can be summed numerically to find the following values, which are all we will need to
2valuate the integrals encountered in this appendix: ‘¥(1) = -C = -0.5772; ¥(0.5) = -1.9635:
‘¥(0.5) = 0.7034; ¥ ‘(1) = 1.64S; and ¥ '(0.5) = 4,935.
In addition. one requires the expansion of the Gamma function at a point that is not close to

a pole. If s is positive in the argument, the expansion is

F(s+ M) =T(M-N=kl+€ePM -N - &)
s=-N ~k+¢

+ E[P(M=-N-k)+ ¥(M-N-K]/2+..]. (A.110)

If 5 is negative in the argument, the expansion is
F(-s - M) . =N-M + N +k)ll- e¥(~M + N + k)

s=m—-—p~-k+ &

+ &V (M + N +k)+ W(-M + N+ k)] /2+...}. (A.LID)
The above expansions will be used to evaluate integrals with multiple poles.




'wmmmmm

The integrals considered in the following examples are of the form
I = k= [F(s)ds. (A112)

where the path of integration goes from —iee to +ice, and the path crosses the real axis with a
very small negative real part.
A.2 Example No. 1

Consider the following integrand with a double pole

F 1 _Teres)
)= I*TG+DT G+ D" (A.2.1)

The path of integration and pole location are shown in Figure A-1. It is obvious that theie is no

term that varies as 1/s: therefore, the integral is zero. If the Gamma functions in the numerator

are expanded using Equation (A.1.2), the terms with 1/ cancel. The integral is again zero.

PATH OF
INTEGRATION s-PLANE
X
. X
o

Figure A-1. The path of integrution und pole location for Example No. 1.

A.3 Example No. 2

Consider the slightly more complicated integrand

Fls)e i o —TOI(s):™
(s)= 2 TG+DRGs+)° (A.3.1)

The path of integration and pole location are the same as in Figure A-1. The value of A = 0,
and the direction of path closure depends on the magnitude of =. For = < 0 the path of
integration can be closed in the left-half plane, and the value of the integral is zero. For
=> 1 the path of integration can be closed in the right-half plane. If the expansions in

Equations (A.1.1) and (A.1.2) are used, the 1/e term comes from the second term of the first
equation and the second terms of the second equation. One obtains for the value of the integral




I =In(z)U (-1 (A.3.2)
A.4 Example No. 3

Consider the integrand

[(s) ., TE)(s)z™
S T T(s+1D) (A4.])

F(s)=

The path of integration and pole location are shown in Figure A-2. The poles go off to the left
to infinity just as they do in the succeeding examples. For this example, A = 1, and the path of
integration can be closed to the left for all z. All the enclosed poles are simple since the only

double pole at - = 0 is on the right side of the path of integration. The integral is equal to -

o0 n
(-1 -n
[ = Z n! n:
n=1

(A.4.2)
PATH OF
INTEGRATION ﬁ s-PLANE
X
X X X X X X X

Figure A-2. The path of integration and pole location for Examb/e No. 3.

For large z, an asymptctic series can be found. Since B = 0 the steepest descent
contribution has exponential decay as given in Equation (2.4.36) and can be negle-ted. Using
Equations (A.1.1) and (A.1.2) for the numerator and Equation (A.1.10) for the denominator,
the asymptotic series wt ich only has 3 terms in this case is

I =exp(=z)+In(z)+0.5772. (A.4.3)

The first 20 terms of the power series and the asymptotic series are plotted in Figure A-3,

and the difference between the two values is plotted in Figure A-4 . Notice he agreement of

the two series over a large argument range. Both are accurate in this region of agreement.
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Figure A-3. Plot of the power and asymptotic series for Example No. 3.
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Figure A-4. Difference bhetween the asymptotic and power series for Example No. 3.
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A.S Example No. 4
Consider the integrand
F(s)=T(s,—s)z7%. (A.5.1)
The path of integration and pole location are shown in Figure A-5. Since A = A’ =0, the path
of integration can be closed in the left-half plane when z < 1, and in the right-half plane when
> 1. There is a double pole to the right at = = 0 that can be evaluated using Equations

(A.1.1), (A.1.2), and (A.1.3), and the solutions are

oo (—Z )n
=Y~ =<l (A.5.2)
=]
and
oo (_: )-Il
I=Z 7 —In(:) z>1 (A.5.3)
n=1
PATH OF ’
INTEGRATION ? *PLANE
x| x x X x x x

6 $ 4 3 2 4| 0 1 2 3 4 5 6

Figure A-5. The path of integration and pole location Jjor Example No. 4.

A.6 Exampie No. 5
Consider the integrand
F(s)=T(s,-s - N )75, (A.6.1)
The path of integration and pole location are shown in Figure A-6. The value of A=A'=0,
and the direction of path closure depends on the magnitude of z. There is one double pole to

the right of the path of integration, and N double poles to the left. The value of the integral is

212




N

N Inz)+ YA +N =n)- ¥ +n)
=0 .El AN+ n)!
S i nt(= % o (A.6.2)
+(=2) (N +n+1)! * »
n=0
and
WD = WAN) Iz N nl(=z)" .
[==D N1 2(N0~n+l)' 2>l
(A.6.3)
PATH OF ?
INTEGRATION s-PLANE
X x X x x x x
6 5 <4 3 2 -1 0 1 2 3 4 $ 6
x X x x x| x x x X X x
Figure A-6. The path of integration and pole location for Example No. 5 when N = 4,
A.7 Example No. 6
Consider the following integrand that has tripl pcles
F(s)=T(s, s,-N - s)z75. . (A.7.1)

The path of integration and pole location are shown in Figure A-7. For this case A= 1, and
there is one triple pole to the right of the path of integration, and N triple poles and an infinity
of double poles to the left. Three terms in the expansion of each of the functions must be
retained to get the complete residue at each of the triple poles.

Since A = I, the path of integration can be closed in the left-half plane. The residue at a

double pole is

-k
Residue = I'(k - N)[2¥(1 + k) - ¥(k - N) - In(2)] "' 5 (A1.2)
(k!)
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Fivure A-7. The path of integration and pole location for Example No. 6.

The residue at a triple pole is

. In2( ) .
Residue = 3 +InGE){PA+N=-k) =290+ b} +2¥ 1+ k)+3¥(D
Y1+ N - k)= ¥'(1+ N = k)
+ 2
-l(_l)N-k =l &
- Y1+ k)=-2¥(1 + N = k)¥(1+ k) > —
J(k!) (N = k)

(A.7.3)
The power series will not be written down explicitly since it is lengthy, and it can easily be
evaluated from the residues given above. For large values of z an asymptotic series is wanted.
Since condition | in Equation (2.4.48) applies, the asymptotic series is equal to the residue of
the poles to the right of the path of integration. This contains one triple pole and the single

poles. The asymptotic series is equal to

oo N +n+ 1.2 2
(=) (n _ N | Inz)
I= 2 Nl " '2IL 5— +In@) {¥(1) + ¥(N + D}
n=| (N!)
S¥(1 1
+2‘P2(1+ N)+ 2( )+ ‘P;)_ Y+ N)-2¥Y1)¥(1+ N) ]

(A.7.4)
A8 Speckle From: a Rotating Diffuse Plate

The variance in the intensity will be derived for a rotating square plate with side L that is a

diffuse reflector. A diffuse reflector has the property that the reflected field is completely
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uncorrelated from point to point. This property produces the phenomenum of speckle in which
there is a variation in intensity from point to point in the received energy from the plate. The
intensity variance can be reduced by averaging speckle patterns, and the type of averaging that
is considered is produced by a rotation of the diffuse plate. This causes different speckle
patterns to sweep across the receiver. If the receiver is incoherent, that is, it averages the
instantaneous intensity and not the field, there will be a reduct‘ioh in the speckle amplitude;
That will be calculated here. The reason for considering this problem is that the final result is
an integral that can be approximated using the Mellin transforms methods, and the resulting
integral in the complex plane has a double pole. The return from a uniformly illuminated
diffuse plate can be approximated using the paraxial assumption in Equation (2.2.1). Assume

that the plate is rotating about the y axis with rotation rate ® as is shown in Figure A-8.

ROTATION AXIS
y
L
X
v
< L >

Figure A-8. Geometry of the rotating diffuse plate.

Expressing the return in cartesian coordinates, one obtains for the field as a function of time

L/2 Lj2
E)= [dx [dy exp {i{k,(R+r¥(x, y)/2R+2x01) + ¢(x, ]}, (AB.1)
-L /2 -L/2

where r(x, y) is the transverse position of a point in the plate, and (¢, y)is the arbiti‘iry

phase produced in reflecting from the plate. The factor of 2 arises because the change in round
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trip distance is twice the distance moved by a point in the plate. The average normalized
intensity is found by multiplying this return by its complex conjugate, averaging over a time

T, and dividing by both the plate area and the averaging time, to give
T L/2 L/2 L/2 L/2

(l)=—l—2jdt I dx, I dy, I dx, I dyzexp{Ziko[xl—xz]wt}
TL™ o -L/2 -L/2 -L/2 ~-L/2

<exp { i[ko([;l( xp ¥ = Pxy yz)]/ 2R) + '¢(‘.ri. y) - $xy yz)]}) . (A82)
Because the phase is uncorrelated from point to point there will dnly be contributions whenever
X} =x5.and ¥ =y,  For that case, the argument of the exponent is zero, and the average

intensity is equal to 1. This produces the physically reasonable result that the average intensity |

is not affected by speckle. The variance of the intensity will be found from the relation
) 2 2 2
& ={r-p?)= (-1’ As)
Introduce the notation that b n is a point corresponding to X and y . The average of the
intensity squared is equal to A
5 ) T T
(1) = [ab, [ab, [ ab [ ab, [ar, [ a,
0 0
exp { iko[ Pk ) = Aby) - b+ ,2(174\]/ 2R}

| X | 2L
X exp { iko[( =) - (%3~ %) t2] + i[cp( bl) - ¢( bz) - ¢( b3) + ¢( b4)]}.
(A.8.4)

Once again, because the phase is uncorrelated the integrals over », and b N only contribute

when the phase terms vanish. This occurs for the two separate cases of

b =b,and by= b, (A.8.5)
or bl = b3 and b2= b4. (A.8.6)

The first condition produces unity for the value of the integral, and this cancels the seccnd term

of Equation (A.8.3). With the second set of conditions inserted, the integrations over the two
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y coordinates can be performed and the result is that the variance of the intensity is
T T

0? = —— — 2 [dx, [dx, jd: jd: exp { i20k [ x, = %] [, = 5]} (A8

Each of the integrations over time are the same, and can be performed to give
) )
sin (alco[ .- 2]T)

0y =33} dx)dy, (488
Tt (20K, x = ‘.]T)
Make the changes of variables
P = 0k TL(x, = %) = a5, = 5y, (A.8.9)
and o, = Ek—T—L—( X+ ) = '%("1 + 1)), (A.8.10)
where a= wk,TL. (A.8.11)

The area of integration has been transformed from the the same one as in Figure 3-3 to the one

in Figure 3-4. The resulting expression is

1 a .9 (- - a)/2
2 sin © =
o7 =5 [dz S [dz, . (A.8.12)
a - -z-a/2
The last integration can be performed to give
’)
ol = j dz sin 2 - (A.8.13)
This irt :3ral can be evaluated by considering the following integral
iy 2
I(r)= ji— U[l -(%) ]:"' sin 2(2 ). (A8.14)
0
The o. _:nal integral can be expressed in terms of this new integral as
(1) 1(0)
7 = z[—;— -2 ] (A.8.15)
Using .. - onvolution integral, Equation (A.8.14) can be written as
-5, s — —* 2
l(r)————2m j S +L ds. (A.8.16)
L 2
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Expressing the integral of interest in terms of this integral gives

1.

2 VE | =5 "”"‘z _3
0" = - — -~ |ds a=
! 4a’ imj | =s +-,—s+l,s+% (A.8.17)

The pole location and path of integration are-shown in Figure A-9. Notice the double pole at s
= 0. Since A = 2, the path of integration can be closed in the left-half plane to give for the
value of the integral

PATHOF f
"INTEGRATION . *-PLANE

X } 4 X X ) § X X

4 3 4 3 2 4 o

b 4

-2

Figure A-9. Path of integration and pole location for the integral in Example 7.

P=- 5 ;[-n—lz]_l:[wiz]' (A.8.18)

The leading terms of this series are

o-f =1~0.0556 a> +0. 00296 a* — 0.000113 &+ 0.00000314 B+ .... (A.8.19)

We are interested in the case in which there is great deal of speckle averaging, a condition that
requires large values of a. The asymptutic series is composed of the residue of the poles to the

right of the path of integration and the steepest descent contribution. The asymptotic series is

o,; ____;;__ In(a) 2.27 . c08(2a).

P
) 2 4d (A.8.20)

The first term comes from the residue at s = —1/2, the next 2 come from the residue at s = 0. |
This residue is

VT f

Residue (0) = —————=[-3¥(1) +2¥(0.5)- W(..5)]. (A.8.
esidue (0) 41‘(3/2)¢2[ 4D (0.5) (1.5)]. (A.8.21)
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The power series and the asymptotic series are both plotted in Figure A.10. The difference
between the series is plotted in Figure A.11. There is good agreement of the values of the two

series over a range of parameter.

== Saries
—  Agymptotic

) 0.6
0.5
0.4
0.3
0‘: Ak b A 'y A A A A P W Y
o 1 2 3 4 5 € 1 8 9 10
ARGUMENT

Figure A-10. Power and asvmptotic series for the speckle problem.

DIFFERENCE

ARGUMENT

Figure A-11. Difference between the power and asymprotic series for the speckle problem.
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As a concrete application of these results consider the speckle from a proposed target
satellite. This satellite has a retroreflector that is composed of an array of corner cubes that will
be approximated here as a square diffuse plate. The array is earth stabilized and the change of

the line of sight as the array moves in its circular orbit at SO0 km produces an apparent rotation

about the line of sight. The geometry of the satellite pass can be approximated by a flat earth

geometry as shown in Figure A-12.

J
REFLECTOR

GROUND SITE

Figure A-12. Geometry of a satellite pass with a diffuse reflector.

From this figure one obtains

tan(g)=d/ H. (A.8.22)

From this, one can obtain the apparent rotation rate as
_dd __d§_vcos’g) A8.23
=" =& H (A.8.23)

The reduction of the intensity variance versus normalized averaging time is plotted in
Figure A-13. For this satellite, there will be a reduction of the variance by a factor of 16 if the
averaging time is 0.4 ms. Remember that the standard deviation decreases as the square root of

the plotted decrease.




VARIANCE REDUCTION FACTOR

10!

10-2 PP ST WP ST PG DU UG T ST USSP TP -

0.00 0.23 0.30 0.78 1.00 1.28 1.50 1.78

T(ms) * {330/ ALT (km)] * VEL [kivs) / 7.5'cos%(2 ) / 0.5) * (0.5 / A (um)]}
Figure A-13. Speckle reduction for an earth stabilized satellite.
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APPENDIX B

ERROR PRODUCED BY
AXIAL APPROXIMATION ON TRACKED TILT

The approximation in which 2' 2" is replaced by 22 is examined for the case of tracked tilt
that is analyzed in Section 3.5.6. Similar arguments for other cases show that this is a very
good approximation. The exact relation that should be used after the change in variables given
in Equation (3.3.34) and (3.3.35) is

S N LT X (B.1.1)
The first term gives the result that is calculated with the approximation, and the second term
produces an error term. The same approximation previously made, that the integration over the
difference coordinate can be extended to infinity. is also made here. Performing the integration

over 2, the error term is equal to

J(&D [2)
E ‘T(lg) Fo [ar (‘le—) j'd._ 22E (K02 D, (B.1.2)

Equation (3.3.28) can be used to evaluate the integral over the difference coordinates as

= jd._ B (6 sy 2= =2 [ds B (.1 z_lheos K, 2-)
ax' 0

. (B.1.3)

x. =0

Assuming the turbulence is isotropic and inner and outer scale effects are negligible, then

2 -1y
1=—0.033n-a—a—3(n2+ ) 1 «0.3801c"7'3. (B.1.4)

x:=0

Using this result, the error term is

S5/3 573
UL L Idx x 13- ey = 0'239";0 (B.1.5)
L’ L
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bl o & W

The ratio ot this error term to the approximate answer is

0.0393 u,D°

Ratio = m

(B.1.6)

Since the second moment is over six orders of magnitude larger than the zeroth as seen in

Table 3-1, this ratio is very small, and the error made in neglecting the correction term is

insignificant.
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APPENDIX C

ANALYTIC EXPRESSION FOR THE
HUFNAGEL-VALLEY TURBULENCE MOMENTS

The turbulence strength versus height for the Hufnagel-Valley model is

C,Z,( h) = 0. 00594 (%—)2(19‘5 X h)l'oe"p('l%o%)

16

exp(l—g%-)+ A exp (—rbg) (C.1.D)

where W is the pseudo-wind and A is a parameter that is usually set equal to 1.7 x 10" The

+2.7x 10”

strength of the turbulence is usually changed by varying the W term. For instance, the HV-21
model has the above value for A, and W is equal to 21. This model is sometimes referred to
as the HVs, model since the coherence diameter is about 5Scm and the isoplanatic angle is

7 prad for a wavelength of 0.5 micrometers.

The full moments are equal to
#n=IC;(z)z" dz = sec"+ () IC;(h)h" dh, (C.1.2)
0 0 '

where & is the zenith angle. One finds that the full moments are equal to

T2 “2043 W\
un=JdzC,',(:):"=sec"""({)[5.94>< 10~ —27) T(n+11)
0
-13 n n+l
+4.05x10 "T(n+ 1DUS00) + AXx 100 T(n+) ] (C.1.3)

By choosing the proper values of the parameters the same values of the coherence diameter
and the isoplanatic angle can be obtaired as those from the SLCSAT models. In the Hufnagel-
Valley model, a value of A = 1.77E-14 (2.5E-15) and a pseudo wind speed of 11.7 (10.5)
gives a coherence diameter of 4.98 (10) cm and an anisoplanatic angle of 11.8 (12.9) urad,

which are the same as the SLCSAT-day (night) models. The Hufnagel-Valley models with
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these parameters are called the pseudo SLCSAT-day (night) models. Other definitions could
have been used to define the pseudo SLCSAT and night models. Because of the importance of
the zeroth, 5/3 and second moments, this definition was chosen because it will give answers
that are very close to those derived for the original models.

Define the partial moments in the following way for a distance L, which is at a height H

where
L=sec(§)H as (C.1.4)
WhL)= [CHz)zn dz = sec"+ \(&) [CHh) A" dn; (C.L.5)
L 'H
L Ho .
and 1LY = [ Co(z)z " dz =sec "+ (&) | Cj(h) h"ah. (C.1.6)
0 0
The definitions of the incomplete Gamma functions are
X
Yb + 1, x)= [ yPexp(- y)dy , (C.1.7)
0
and | Tb+ 1 x)=[y2exp(— y)dy . (C.1.8)
X

Using those definitions, one can find the partial moments of the turbulence to be equal to

Hlk )= j[dzci( 73 = sec "+l(§)[5.94 x 10720+ ,.(_2;4;,_)21_( n+ ILW’;QT)

+4.05x 107°r(n + l.-l-s%ﬁ-)(ISOO)"+ Ax 100" (n+ 1-1%)] (C.1.9)

and
L 2
IG(L)= {dzCi(:)z" =sec"*'(§)[5'94 x ‘0-20+3'(!2‘; ) Y("* 1L, 107)0)

+4.05x 107y (n + 1 ;15 )1500)" + Ax 100"y (n + 1, i), €L
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