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ABSTRACT

\\

We consider a heteroscedastic linear regression model with normally

distributed errors in which the variances depend on an exogenous variable
IR 5
Suppose that the variance function can be parameterlzed as \p(z\3 ) with 9
'\. . * [

unknown. If 9 is any root—N consistent estimate of 6 based on squared re51duals,
it is well known that the resulting generalized (weighted) least squares estimate
with estimated weights has the same limit distribution as if 6 were known. The

1/‘{
covariance of this estimate can be expanded to terms of order N_z. If the

variance function is unknown but smooth, the problem is adaptable, i.e., one can

estimate the variance function nonparametrically in such a way that the resulting ‘k}
generalized least squares estimate has the same first order normal limit 'dé
distribution as if the variance function were completely specified. Iﬁ:a special 3&
case wé compute;a;'expansion for the‘:?xgrjéﬂzzhin this semiparametric context, S:\
and £4ﬂd—£ha§ the rate of convergence is,slower for this estimate than for its :g&
parametric counterpart. More importantly, ua—#ind—%hafzthere is an effect due to aﬁﬁ
[
how well one estimat?s Athe ﬁariance functio?v‘ We-use a kernel regression jg%
estimaton,,and—f&ad—%hej the optimal bandwidth in our problem is of the usual :ﬁt
. order, but that the constant depends on the variance function as well as the ; T{
| 0 :

particular linear combination being estimated.
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SECTION 1 : Introduction
We consider a heteroscedastic linear regression model with normally
distributed errors and replication :
=xitB+a (1=1, ... .N;:j=12);

yij inij .

(1.1) 012 = ¥(z;.6) ;

E(nij) =0 ; Variance(nij) = 2.

In this model, the regression parameter is B, and the variance function is .
The (zi} are scalars, possibly a component of the p-dimensional vectors {xi}.
Throughout, we will assume that the (xi.zi} are independent and identically
distributed random variables mutually independent of the {nij). The errors (nij}
are assumed to be independent normally distributed random variables. The reason
that the variance of nij equals 2 will become clear later.

Let 8 be the mle of 6. The mle Bw of B is a generalized least squares

estimate, i.e., weighted least squares with the estimated weights 1/¢(zi.6). Let
-1 N t
(1.2) SN =N~ 2 X X, / ¥(z..,8) — S (positive definite),
i=1 i i

then it is well known that Bw is asymptotically normally distributed with mean J
and covariance S_I/N. i.e., with "2" denoting convergence in distribution,

(1.3) N/2(B, - B) > Normal(0.57").

The limit distribution (1.3) is the same as if 0 were known, so that (1.3)
expresses a parametric adaptation result.

A simplification of an argument of Rothenberg (1984) shows that Bw is
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symmetrically distributed about B with a covariance expansion

(1.4) Covariance [ Nllz(ﬁw - R) ] =s14 N.1 Aw + o(N-l).

where Aw is a positive definite matrix. Such second order covariance expansions
vhen the variances depend on the mean and/or the errors are not normally
distributed have been investigated by Carroll, Wu & Ruppert (1987).

Suppose that instead of a parametric model, the form of the variance

function is not known a priori, so that we can write

(1.5) 012 = w(zi) =1/ g(zi). ¥ unknown.

Now the unknown parameters are (B.,y), so we are in a semiparametric context, see
Bickel (1982) and Begun, et al. (1983). It is easy to show that the
semiparametric information bound here is the same as if Y were known. Carroll
(1982), Robinson (1986) and Carroll, Ruppert & Stefanski (1987) have constructed
adaptive estimates as follows. By smoothing techniques such as kernel or nearest
neighbor regression, they form an estimate $ of Yy, and then construct the

generalized least squares estimate Bg of B with the estimated weights 1/¢(zi).

These estimates have the same limit distribution as if ¥ were known, i.e.,

04

Nl’z(fsg - B) > Normal(0.S™1) .

o

"

If ¥y is chosen appropriately, Bg is symmetrically distributed about B. In this
paper, we pick a particular estimate y based on kernel regression techniques and
compute an analogue to the covariance expansion (1.4), namely

Covariance [ Nl’z(ﬁg - B) ] =s1+ N’4/5Ag + o(N' Y.
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There are two major conclusions. The first is that the second order covariance '%
expansion converges at a slower rate for the semiparametric model (1.L) than it i
(N
S
does for the parametric model (1.1). Of more general interest is that the :3‘
!
W
optimal bandwidth for estimating any linear combination of the regression W
.
parameter B is still of the usual order, but it depends not only on the variance S$
.}
. iy,
function but also on the particular linear combination being estimated. g&
ot
A
In a sense the context we are working in is narrow, but there are some Dl
general implications to our results. In the semiparametric context, there is ﬁ}
AN
- )
(XIS
some concern that much larger sample sizes than usual will be needed to achieve ﬁ:
ik
R
",
approximate normality than is true in a parametric model. Hsieh & Manski (1987) o
state "It is sometimes asserted that satisfactory nonparametric estimation of G
‘..c
score functions requires very large samples; hence, adaptive estimates should &$
perform poorly in moderate size samples™. N
0y
Our results indicate that semiparametric adaptive estimates should indeed *a
&
converge more slowly than do parametric estimates, which is not too surprising a ﬂa
W,!
result but is at least worth nailing down. With considerable fine tuning of o
o
their estimate of the nonparametric part of their model, Hsieh & Manski are able V)
~
to do fairly well in their two-sample problem. It is clear from their hy
%
simulations that how well one estimates the nonparametric part of their s
semiparametric model can affect the small sample properties of the parametric :w
estimator. Our results are a theoretical complement to their simulations. How i
Y
oG
well one estimates the semiparametric nuisance function Yy can affect the small b
"]
sample performance of the parametric estimates. o
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» SECTION 2 : A Second Order Covariance Expansion
K K
' !
The key to our consctruction is that replication in a normally distributed s
N o
K context allows us to do weighted least squares with estimated weights which are i
! 4
¢ distributed independently of the "data”. Let M
= . - 172 . 3
; € = (nil + niz)/2 P b =g ¥ (zi) : ':
“ 4
| .z
; _ _ _ 172 _ By
' €im = (Y1 = ¥49)/2 =97 (zy) (g - myp)/2 . j
. A
J
- (
f Note that the sequence {ei*} is observable. Because the (nij} are normally t
'y distributed, the sequences {61} and {ei*} are mutually independent and ?f
; identically distributed standard normal random variables. Also, the {ei} are h
W rN
distributed independently of the (ei*}. Since Y,
3 W
2 J\
* E{ 61* } = \p(zi) ’ L
s it 1is plausible to base estimates of the weights on the {61*2}. Of course, this 3
§¥ (
E will not be the most efficient way to estimate the variance function y, but will .é
' still allow us to estimate P efficiently to first order. We first write the f'
; results in terms of g(z) = 1/Y(z), see (1.5). Let gy be an estimate of g which 'g
\
] is based solely on the (eii}. Make the following definitions : »
e ':
& )
! vy(2) = gy(2) - g(z) : N
) N N o
¢ -1 t . o _ w1 t :
SN =N~ 2 X X, g(zi) : SN =N"3 X X, gN(zi) : i
i=1 i=1 M
[} L%t
91 WY
k N
‘ N N A
N -1/2 S V4§ ~
p RN =N ileiéig(zi) H RN =N 3 x.6 gN(Zi) ; P
= i=1 .
d
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ILEMMA 1 : For any N,

oo W, 1 | - o

g
+
|32

PROOF OF 1EMMA 1 : Note that

1724 o

Ty=N/%B, - B,) s E(Ty =0,

N
the latter following easily since gy is independent of the {61}. Since the
distribution of TN does not depend on  and Bw is a complete sufficient statistic

for B, by Basu’s Lemma T,, is independent of Bw. This means that

N

COV[ N”z(fag - B) ] = Cov[ N"z(i%w - B) ] + Cov[ Ty ]

Because TN 'I‘Nt is positive (semi) definite, Lemma 1 implies that estimating

weights by our method results in an inflation in variance. Define

t

Cy =Ty Ty - (@ - MRy (Q ~ MRY"

We show in the appendix that under reasonable regularity conditions, ll‘.N=op(N—l). P
.:_'\":s
Thus, it is not too implausible to assume that '_-’::"_-’.'
PRt
f.i.f‘r ‘
bR

o
(2.1) NE[CN]-—»O as N — o, :-f':}i
r\:
AN
THEOREM 1 : Assume (2.1). Then ‘.;
MM
4

172 %
(2.2) cov [ N2, - B |

.
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= sN'1 + sN‘l[ E{ Qu Q" } - E{ My s,  m.% ) ]sN‘1 + o' 1.
The proof is in the appendix. D
The translation from ;N(z) - g(z) in the definition of QN and MN is to note that
(2.3) ex(2) - 8(2) = -[ (@) - v | 7 P

We will ignore the error in (2.3) by subsuming it wunder "additional regularity

conditions”. Define

t
vy =X % ¥l(zy)

N . 2
A=V 2 vy [ - v [ e
a1 N t [~ 2
BN=N 121 X, Xy [‘PN(Z)-‘#(Z)]/\P(Z) .

The direct translation from (2.2) is
172,

(2.4) Cov [N (Bg - B) ]

=5, sN‘l[ E{ Ay } - E{ By 8, ' B," ) ]sN‘1 + o 1.

In the next section we compute (2.4) in a special case.
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SECTION 3 : An Example 2
.
The purpose of this section 1is to get an explicit expression for the ’:f
covariance expansion (2.4) in a special case. The major question is whether the 4
- o
second term on the right hand side is of order O(N 1) as it would be in the ]
parametric case. We use a kernel regression estimator. Let K(*) be a symmetric :2;
",
P
density with bounded support and let f(+) be the marginal density of the {zi). ﬁ}
\
A
Let b = bN — 0 be the bandwidth and define 709
.
-1 ~
K (u) = b K(wh) : 174
[K] = qu K(u) du . 5
i;
2.
The estimator we will use is a leave-one-out type estimator, which Robinson s
Ca
.
(1986) has also found to be convenient analytically: o
»D
o
~ N 2 N :*
wN(zi) = 3 6jx Kb(zj - zi) / E.Kb(zj - zi). ::
J#i J#i b
I:‘i
We will also need the following : L 4
23
6
(3.1) N bN — 0 .
(3.2) Iv K2(v) av = 0 .

(3.3) 1If wj is the jth derivative of ¥ and fl is the first derivative of f, then

I

cl(v) = (1/2) d(v) [K]. where

.

Ol TN

d(v) = ¥y(v) + 26 (VI (V)/E(v).

LA g
s’&"%"-

Define the following terms :

>

- 0l

cK(l) = sz(v) dv ; u4(v) = E[ {eji - \#(v)}z | zZ=v ]
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eo = ¢ wy(v) 7 £(v)

d, = SN_I E [xxtcz(z)‘l'—a(z)]SN—1 idy = SN-1 F‘[m(tcl2(z)“'-3(z)]SN_l

T=8 E[m<‘<:1(z)~1f2(z)]SN'1 : §S= E[xxt/\p(z)] (see (1.2))

d3 = d2 -rat 2 0 (by Cauchy Schwarz).

THEOREM 2 : Assume (2.4). Then, for estimating any linear combination atﬁ.

(3.4) Cov [111/2(21t Bg - a'p) ]

t |1 -1 4 4 -1
=a [s +(NbN) d1+bN dB]a+o(bN+(NbN) ).

1/5

From (3.4), the optimal bandwidth is cN ~“°, where

1/5
]

1/5
(3.5) c=[qatd1a] /[4atd a

Note how the optimal bandwidth depends on the design and which linear combination

you are interested in estimating.

Remark : Assume the result of Lemma 1, we could generalize (3.4) and (3.5)

somewhat by allowing the zg to be g-vectors. The changes needed are these:

K (u) = b K(wb): [K] = qutK(u)du ;
cl(v) = (1/2) trace(d(v) [K]). where
d(v) = vp(v) + (¥, (V)" + £ (V¥ (V) ) /£ (v).
~1/(4+q)

The optimal bandwidth is cN and (3.4) and (3.5) become

(3.4)* Cov [ Nl/2(at§g - a%) ]
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i
-,

&
¢ (4
¢ ¢
k) ;
2 _ .t |1 q,\-1 4 4 q\—-1 Iy
& =a [S +(NbN) d1+bN d3]a+o(bN+(NbN) ). !
4 }
) . 1/(4+q) 1/(4+q) ’
A t t )
0 (3.5) c=[qad1a] /[4a d3a] . d
: ;
) 4
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¥ Without loss of generality, we may set SN = I.

:; LEMMA A.1 : Assume that 4
3 -

; (A.1) My 0= o, (N . v
l

R)

R (A.2) oy it B0, y
] -1 .
:;' (A.3) My My Q=0 (N) .

‘n‘ .
f Then, ]
A T T = (g - BR) (@ - MR )E + o (VD) o :
z N Iy N T MaRy) (Q - MyRy b :

& \)
Wy

:; PROOF OF IEMMA A.1 : We have that

." t
o '

" §N—1-SN_1=—MN+MNMN+OP(IIMNII3). 3

L -
; Thus, i
3 1 1 1 1 ;
0 A 1 A - -~ -1 ~ -1 .2 \
¢ Tn=Sy Ry-Sy Ry=(Sy - Sy IRy+Sy (Ry-Ry .
A
N 2 -1 -1 2 -1 -1 -1 2
" =y oSy Ry (S-S It sy d
:,: '
T _ -1 -1 ;

= [ mon ] mee [ o Jog sy g o0 :
;
\ P | _ R -1 R
4 =Sy Oy - My Ryt My MyRy - Mg Qu+to (N7, |
4 \
" )
? the last following from (A.1) - (A.3). From (A.1) - (A.3), we have !
Y :
) t -1 t o -1 t o -1

\ ™nTn =Sy QuQ Sy - MyRyQy Sy :
|
! t g
) ‘[MNRNQtS-1]+M Ry Ry® My + o (N'1). ’
) N °N N N p

.‘0

! Since SN = I, the proof is complete. a

]
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3
LEMMA A.2 : Define il

= t = t »
vy =X Xy / g(zi) = X5 Xy w(zi). ]
Then, e
N

E[ 9 o ] = N—lizl E[ \£ {gN(zi) - g(zi))2 ] . o

M )
PROOF OF LEMMA A.2 : Since O

N N O

W' =N E T 80 xx lay(z) - s} Gz - alzp) 2

and since gy and the {5 } are independent, we find that e

'
t ~ _1 N ~ 2 '.'.
E[ Q 9 | gy (%524} ] =N ixlvi {ey(z;) - &(z))" .

This completes the proof. o o

.‘l
LEMMA A.3 : We have that '\}

E[(QN-MNRN)(QN-MNRN)t]=E[QNQNt]-E[MNMNt]. e

A Fa 6%
PROOF OF LEMMA A.3 : Exploiting the independence of gy and the {Gi}. as well as .H;

remembering that SN = I, we see that

t t t .
E[MNRNRNMN]=E[MNMN]. )

It thus suffices to show that

E[ My Ry O | ey (xp.2) ] =y mE 5

by
- % 5V 3J & ¥ _Ta® ! o 1! RY T RV RV ! ‘\
R N O X O OO O D I O OO O X W MM N i i MO ,..a}...h,g.‘.o, AP MM !.u,..o._ L U W NAT m e A N 52 g U S N



o N ey xc ekt " i ab mal cav P ~Roatplia aVa B BT #Ts ¥, @0, 2%, Vi, (o & . BTa %
PRt Y U VR I IR AR FER TR TUR PRI N S U AW s M £ A PR KR RN KR TR VAT VR URNAAT +

0 - 12 -

% This is routine. .

" PROOF OF THEOREM 1 : The proof follows from the previous Lemmas. o

-
———

; APPENDIX B

X Our calculations rely on the following result due to Collomb (1977, 1981).

0 PROPOSITION B : Let K be a symmetric q-dimensional density. Let (X.,Y) € IRqH. |
X where X is a q-vector. Define m(x) = E[y | X=x ] and let f(x) be the marginal

N density of X. Assume that m(x) and f(x) are four times continuously

' differentiable. Define f

- N N
m, (u) = 1§1Y‘ K, (x-X,) / 121Kb(x_x‘)

v(x) = E[ {Y -~ m(x)}2 | X=x] )
R [X] = Iu ut K(u) du .

b(x) = (1/2)my(x) + (1/2)[m; (x)f, “(x) + £, (x)m, (x)1/£(x).

o8 Then, as b — 0,

";3; K, (u) = b %K(ub) :
by ’

Em, (x) - m(x) = b2 trace(b(x) [K]) + O(b%) :

3

LA ~ - — -
3 Var{m (x)} = (%97 v(x) sz(u) du / £(x) + O(N b 9%2) o
% ]
o g
' LEMMA B.1 : Under regularity conditions (Proposition B} on y and K, ;
23
1;: -~
:. (B.1) s(z;) = E| wy(zy) | z ] ‘_
B )
l’l
i 2 4

» = \p(zi) + bN cl(zi) + op(bN ) . '
i:’ \
::1 :
“ PROOF OF LEMMA B.1 : Immediate from Proposition B. o \

. ]
3
+
|

‘ oy, v ; AN RN AT ool
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LEMMA B.2 : If s(zi) is defined in (B.1), we have Eﬁ‘

- e,
B[ ey - sz 2| 2, | e

— q -1 2‘q ‘ 3

= cp(z)/{Mb %) + 0 (N By ™) . 4

2

PROOF OF IFMMA B.2 : From Proposition B with Yi = e?*. Xi =z m(x) = ¥(x). 0 g
) X

LEMMA B.3 : We have ﬁ,

Ty
| .

= o2}/ % + b e2(z,) + 0 (10 + N Ty (290,

E[ Ghy(z,) - wz)7?

)
PROOF OF 1FMMA B.3 : The expansion in question is '

E[ {‘}\’N(zi) - S(Zi)lz zi ] + [S(Zi) = w(zi)]2

= ep(z)/My} + 5.t ¢, %(z) + 0, 07182 4 0 (5,0 . : X

Now assume without loss that Sy = I. Define N

t 3
Wi = X5 X, /¥ (zi) : Di = ¢(zi) Wi .

Y
\]
LEMMA B.4 : As N — o, %

2

(B.2) E[ N"lizl LA [QN(zi) - Mzi)]2 ] »

- q 4
= d,/{Nb %} + b

6 ~1, (2-q)
N d2 + O(bN + N by ) .

. q AR v -
O A NG OB BUAIO0 S

Py s » LS R ] L YW ., -(\t ” g Ty W w7 LN
PN )n"!.“-ll" L) " DN Lo 28 AT \‘ ".'\'\.‘ -. -. .
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PROOF OF LEMMA B.4 : Apply Lemma B.3 after conditioning on (xi,zi).

Lemma B.4 gives us the form of E{AN) in (2.4), and in order to complete the

calculation we note that BN = BNl + BN2' where

N ~
By =N 2 Dy [iy(z,) - s(z)

-1
i=1

By = N 3 Dy [¥(z) - s(z,)] .

It is easy to see by conditioning that
E{By; Byg} =0 -
LFMMA B.5 : As N — o,
E{BNzBNz}_b 7t + o(N” qu+b ) .
PROOF OF LFMMA B.5 : Let ¢ = E{ BN2 }. Now,
= by> 7+ O(b )

By (3.1) and (B.1).

E(BN2BN2)..E[ o = ¢,] [By, - *t]+c*c*t

t -1 4 t -1 4
=c,c, +o(N") = by T 7 + oN qu +b ).

-
>

~ e

'5‘\.".'*5'1 \'l \.’.l L] y’tl\'ko",\"n".ﬁ?’.G".".'.O!’-'”.|"J"n‘!’l'\ U
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It is the calculation of the second moment matrix for BNl that causes the most

difficulties. Write D(zi) Di’

LFMMA B.6 : As N — o,

E{ By, By, ')

- N1 E[ D(z) ¥(z) ] 1-:[ D(z) ¥(z) ]t + o(N_l) = O(N‘l) .

N1 E[ 1y(z) D(z) D(z)" ]

PROOF OF 1FMMA B.6 : BNl is the average of mean zero but not independent random

variables. By Lemma B.2, we have
N N

B By By} = N-zifl i E[ Dy Dy & & ] + o).
where Ei = 3N(zi) - s(zi) .

By a direct calculation,

(8.3) E( & &5 122, ) =
- 23 §E[[ (430 - 562,31 Digsom) - a2 | |
Kei mej Nt i/4 LeylJ. j i*%x]

where ky(1.k) = €2 K{(z72,)/by} 7 {by £,(z,)} :

s(zi) = E[ nN(i.k) l z, ] . ?
If (i.j.k.m) are all distinct, the expectation is zero. There is only one case -
: _ e
that (k=j) # (i=m). and its contribution is of order N 2. vhich is too small to 'jSQ
XN
matter. There are (N-2) terms in which k=m#i, k=m#j, i#j. Thus, (B.3) is 21
¥ord
[ ]
-1 /b.} K i
N [ g kierm2 0 K2 1500 ]
2 -1 -1 -1 i
x bN fZ(zi) fz(zj) dv - N ¢(zi)¢(zj) + op(N ) %&&:

o TN AR TN

UL BN H A AN " '. Y

? . 0 1% = 3 VAV N DAY -y - s s,
I N I I 0 L T AN N A S A T T T i R e
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=N [HN(Z z.) - ¥(z,)¥(z,) ] +o (N 1.
"7y i J P
We thus see that
B( By By} =N E[ D(z;) D(z;) { Hy(z.2,) - ¥(z;) ¥(z;) ] +o(N 1) .

To complete the proof we have to show that

W Pt

(B.4) E[ D(z;) D(z,) HN(zi'.zj) ] = 0(1) .

>
=2

Taking into account the form of HN. we find that (B.4) equals

e TN A,

J‘ I I bN-z D(z,) D(zj) ny(v) K{(v-z,)} K{(v-z j)}fz(v) dv dz, dz 3
= .[J,["&lhd K(w;) K(wy) D(v + byw,) D(v + byw.) f5(v) dw; dw, dv

- I"‘l(v) D(v) D(v) f,(v) dv + O(b2) .

LA
o
n
[}
o
—
b
=~
©
vt
r-t
L0
=
.
[
<
G
o]
@
>
(o
et
2
.
<

.
<
[#]
-
o
E
4
—
1]
.
&
<
o
P
-
2
&~
wt
-
«
2]
B
hel

completing the proof.
o g
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