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Determining Conductivity by Boundary Measurements:

Some Numerical Results

IN-JA B. LEEt

Abstract. We consider the problem of determining an unknown conductivity by boundary measure-
ments. First we briefly review various known results about uniqueness and continuous dependence. The
main emphasis of this paper is on the discussion of some numerical results for a variational algorithm to
recover the conductivity. - •

1. Introduction. We study the following inverse problem: can one determine an

P unknown conductivity -I(x) inside a body Q2 by means of measurements of potential and
flux on the boundary? '.hi problem was first raised by Caldron and has since been

studied by several people.

In the following £2 will be a bounded C' domain in R', n > 2, with boundary r. The

unknown conductivity y(x) is in L () and satisfies 0 < o -y(x) for all x E Q2. Consider

the operator

LY(u) V (-Y(x)Vu)

acting on H'(A).

We define the Dirichlet to Neumann-data map

-' A- : H1/ 2 () -* H-1/ 2 (F) by
Ou

= a)

where u solves the following boundary value problem

Lfu -0 in £2,".-. (1.1)

"- u on F.

The inverse problem now is to determine -y given knowledge of A.(O). Ve say that
-y is identifiable if the map -t .- * A-, is injective. In section 2 we briefly review known

results concerning the identifiability of -y. Section 3 concerns the question of continuous

dependence. In the last three sections of this paper, we study a particular algorithm to
determine 7; the emphasis is on the presentation of various numerical experiments.

tDepartment of Mathernatics, University of Maryland, College Park, Maryland 20742. Supported by
NSF grant DNIS-8601490 and ONR contract N00014-85-K-0169.
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2. Identiflability Results. For many purposes it is more convenient to work with
the energies

Q (O) = j IVu12 dx,

instead of the operator A-. It is easy to see that knowing Q(o), for any 0 E H 1/ 2(F), is

equivalent to knowing A. .

Kohn and Vogelius [5] proved that ' is uniquely determined by Qj() if y is analytic.

THEOREM(KoHN-VOGELIUS). Let -i, i = 1,2, be in L'(f2) with a positive lower
bound. Let x0 E r and let B be a neighborhood of x0 relative to Q. Suppose

-ti E C"(B), for i = 1, 2

and

Q-(¢) = Q'1(0) whenever 0 E Hi/ 2 (r) with supp C B n IF.

Then

Dk -u (xo) = Dk_2 (xo), for all k = (k,. .. ,k) > O,

where Dk denotes the derivative (0/Oxj )ki ... (D/Ox,)k_.

The main trick in the proof of this theorem is to take boundary data € that are highly
oscillatory, with vanishing moments and supported in a small neighborhood of x0 E r. For
such 0, the solution of (1.1) will decay rapidly away from x0; these € are therefore well
suited for studying -y at x 0 . The following three lemmas are the main ingredients of the

proof of the theorem.

LEMMA 1. Let M be any positive integer, and let z be a point on r. There exists a

sequence {'N}'=1 C C0 (F) such that

1kONJll/1+t,r <_ Ce N, t > -M

JJON1'112,rICN(I1/2,F = 1, '.i

sUPPON J {Z} as N --+ oo.
Ancesslon For

FiY AI0 and let UN denote the solution to the boundary value problem AI - A&I

L.IUN = 0 in Q,

UN = ON on F,

'here the sequence {pN = is as iii lemna i vi;1 ,,.Io.-
N9
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LEMMA 2. Let Q' C Q with dist (z, Q') > 0, and assume that -Y is in C' in a
neighborhood of z. Then

IIUNI1,W < CN - M

for allN > 1. The constant C depends on y, Q', z, and 10, but not on N.

Define
p(x) = dist (x, r) for any x E

LEMMA 3. Assume that -y is C' in a neighborhood of z, and let U denote any neigh-
borhood of z. Given I > 0 and e > 0, there exists a constant CL,, > 0 such that

JP(x)lVUNI2 dx > Ct, Nn

for sufficiently large N.

Sketch of the proof of Theorem: the proof proceeds by contradiction using the three
lemmas. If the theorem were not true, we may suppose that

7 1 (x) - -t2(x) > C p(x), x E U,

for sorme constant C > 0 and some neighborhood U of a point z E F, arbitrarily close to

x0 . Choose M0 > inl. Let u' , i = 1,2, solve

L-UN = 0, Ar = ON.

Then, for sufficiently large N,

j UN[12 dx > Ju 2  I12 dx + C uP(X)'1VUi1[2 dx
> 72Vu12 dx t 2]VUjN12d- C" (+O

Y~21VUlNI dx - f\N dx + Ci,,eN~f+

it 'y2 IVU~vI dx - CN 2 ° + CN

Since 2MI0 > n1, we get

71 IVU} 12 dx > tj 2  1~.2 dx,

for all sufficiently large N, and this is a contradiction. U

Kohn and Vogelius [7] have extended their study to piecewise analytic -Y showing that it
is possible to determine an unknown conductivity interior to a body Q from measurements

of the potential and the flux on thc boundary.

Sylvester and Uhlmann [10] have subsequently shown the uniqueness result in tho mor,
clilticult case -j C C' ).

3
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THEOREM(SYLVESTER-UHLMANN). Let Q C R" (n > 3) be a domain with smooth
boundary. Suppose -yo and -y are in C'(), o, -1 > 0 in Q and

* Q.o(o) = Q.,,(0) VO E H'/ 2(r)

. then

7 'oYi in Q.

This theorem has been established only for space dimension greater than or equal to
three. It is not known whether the same result holds for space dimension two. But in that

case Sylvester and Uhlmann [9] have obtained a local uniqueness result for coefficients that

are nearly constant in C"O(Q).

So far, we only have considered scalar coefficients -y corresponding to isotropic conduc-
tors. It is also of practical importance to study symmetric matrix valued coefficients

7 m = hie E Loc(Q)

AljI2 < (-y(x) , ) _< 1 l1 for all x E Q and E R'.

In this case we can not expect to recover the full matrix {'i}. If two matrix conductivities
.- and 6 are related by change of variables

4.10)((x)) = Idet D-fl' Z (x) ± &P1

Oxi a9xj

(P is a diffeomorphism of £), then u solves (1.1) with coefficient -Y if and only ifu = uoIb-

solves the similar problem with coefficient 6. If, in addition,

.D(x)=x for xEr,

then u ' = u on F, and

YVu.V=6Vu .v on r.

v.- It therefore follows that -t and 6 have identical boundary measurements. Concerning
uniqueness Kohn and Vogelius [6] have proved that if (n - 1) eigenvalues and eigenvectors
of -t are known then the last eigenvalue can be distinguished by boundary measurements.

* 3. Continuous Dependence Results. It is very important to study the continuity

properties of the mapping A- -+ -y. We define the operator norm

A )), (€)I H-'/2(F)
IIA-l,/,-,/ -- sup1/2,-1/2

,760 10 1 [l¢ [H, (r)
S

Sylvester and FbImann [11] have recently shown

*5~,,4



THEOREM (SYLVESTER-UHLMANN). Suppose that -ti and 7Y2 are measurable and

satisfy, for some A,

0 < 1 < A for i =1, 2

then

'S.JJA~t - A~r2 11 1/2,-1/2 <5 C1 11-YI - 72 11 L- (Ql)

If, in addition, 71 and 7Y2 are continuous, then

-:Let B, ~ - 71iAl. If, 71i and 7y2 are Lipschitz continuous, and for some /3,

V-yJ ,3 for i =1, 2,

then

JIB, - B2111/2,..1/2 <C 3jj1h - 7211W1,oo(Q)

and 1171 -72JJIWo(I) 5 C4(JJB1 - B2 1I11/2,...1/2 + IIA'n - 1I1/2,...1/2)

The constants Ci depend only on Q2, A and 03.

This result also can be proven by a simple modification of the method of Kohn and Vo-
* gelius. See for instance Alessandrini [1]. Alessandrini, furthermore, obtained the following
*result under the assumption that -7 ,,i = 1, 2, satisfies a-priori inequalities

< -i (), for all xE Q

lI~lli+(n A, i = 1,2

for some s and A, s > n/2.

* THEOREM (ALESSANDINI). With conditions as stated above,

11-YI - 72llLoc(0) w(IjA-y1 - AY112-/)

and the function w is such that

S.w(t) ! C Ilog t I -, Vt, 0 < t < 1/e,

-for some C, 6, 0 < 6 < 1, depending only on A, n and s.

* This result is somewhat disappointing since it predicts such a weak fc.-i of continuous
dependence. In its generality the result may, however, very well be the best possible.

-5. 5



It becomes quite natural to analyze continuous dependence for classes of conductivities
with more restricted spatial dependence. For practical reasons, it is important to seek

continuous dependence estimates in terms of finitely many sets of boundary measurements.

Friedman and Vogelius [4] studied conductivities that correspond to a finite number
of small inhomogeneities, of extreme conductivity, imbeded in an n-dimensional reference
medium. The reference conductivity y is assumed to be C 2' + . Each inhomogeneity has
the form Zk + Epk B, where B is some bounded domain in R', n > 2, with 0 E B and OB
of type C 2' + . The points {zi,..., zk} belong to Q and satisfy

. k -Zjl do > O, Vj # k and

dist (zk, r) > do, Vk.

Here f is assumed to be small enough that the sets {zk + 'pkB} are disjoint and that their
distance to R"\Q is larger than I- Q is assumed to be bounded with boundary F E C2' + 3.2 "

Let
K

WE= U(zk +EPkB)

k= 1

denote the total collection of inhomogeneities. If they all have infinite conductivity, then
the voltage potential u,, given the boundary current 4', solves

,H-- min { I IVu12 dx - jOu ds}.
"'.uEHI (Q),Vu=o in w, - i

For this problem to have a unique solution we require that

4 'ds = 0 and u, ds =O.
.5°

.5. Consider two arbitrary collections of inhomogeneities

K K'

WC = U(zk +PkB) and w, = U(z' + ep'B),
k=i k=i

and denote by u, and u' the corresponding voltage potentials with fixed boundary current
S. ,,. Let U denote the solution to

min {- 'yI dx-  Uds
*UEH'(Q) 2

It is important that U satisfy the non-degeneracy condition of VU -0.

It

€'.

S " - ,,S .- . ",," -" .% "" , ,' " , ,2,.","." . ." ',."." ," ',," ,' ',,,



THEOREM(FRIEDMAN-VOGELIUS). Let 1 be nonempty open subset of IF. There
exist constants 0 < eo0 , 60 and C and a function 77(c), lim 7(c) = 0, such that ife < E0 and

C0o
-nlU, - UeIILO(r,) < 6o, then

(1) K = K', and, a.ter appropriate reordering,

(2) IZk - z41 + IPk - Pol < C 6-11, - uIlo(r1 ) + 7(c) (1 < k < K).

The constants co, bo and C and the function 77 are independent of the two sets of inhorno-

geneities.

.,' A similar result can be obtained for non-conducting inhomogeneities as well as for the
case where the voltage potential 0 is fixed and the current flux 0 is measured.

4. Numerical Algorithm. To build an algorithm to reconstruct the conductivity
we consider the functional

(4.1) F(y, u, o,) -Y 2 Vu - -K/2012 dx.

It is clear that F(-y, u, a) is non-negative and that F(y, u,a) = 0 if and only if -y/ 2Vu
Y -112a", i.e., if and only if "yVu = a.

Let S be the set of (u, a) characterized by

S={(u,a)I u=b on, V.o,=0 inQ oa.v=o onr}.

Then F = 0 on S if and only if 7, u, and a satisfy

V• (yVu) = 0 in Ql

u=O on F

(4.2) fu:: v 7=¢on r
Ov

a = 7-Vu.

0i ! In that case, - is a conductivity consistent with the measurements € and 4,.

For V a = 0 in Q, u = € and a v = 7P on 1P, a simple computation gives

(:,F( u, a) = V U u 2 d _(- -1o,12 dx- 2 J 'ds.

If more than one set of boundary measurements {i, ,'K }-I are given, then the corre-

sponding functional would be

"43 J I-Y1 2VU, t . cx.

7
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The set S would be defined by

S= ui); =11 ui=0i onr, V.ai=O inQ, a.v=i onF}.

The reconstruction algorithm we consider seeks to minimize the functional F over S.

Since
K K KF(-y, {ui i__ I c. }I, f -YlVul2 dx+ -10,,12 dx -2 f i vds,

"= i~li=l

the minimization of F(y, {ui}IC1 , {ai}' ), for fixed y, is equivalent to

min ]YIVui 2 dx subject to uir = i

and

min j7 oi,2dx subject to V.ai =0, Oi v=- b ,

for all 1 < i < K.

The above minimization is equivalent to finding the solutions of

4 V.(Yvui)=0 in Q
S. (4.4)(44 ui = i on IF

"' and

V.(tVvi)=0 in Q

19v

with ai = yVvi,

for all 1 < i < K.

For fixed { uiJ} and {ai}_l, the minimization over E L'(f2) can be done pointwise
on the integrand

K
,...E" Y I@ VU,I2 + 7-110,,12).

0
The result is

.
% K1 2 ) 112

= ( )  , provided of course this is in L'(1).

Alternating Direction Algorithm: [8], [12], [13].

1. Pick an initial guess y-

2. For fixed y,

* 2.a Solve: V-(yVui)=OinfQ, u,=¢ onI, 1 <i<K.

2.b Solve: V-(yVvi) = 0 in Q, Ov3 = V'i on r and set ai = Tt'_ 1 < i < K.

.. Z
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3. Update -y by minimizing F(y,f{u};K{,o =}I1 ) for fixed {u,}IN and {ai}/ 1 .

4. If the reconstruction is satisfactory, exit' ; else go to step 2.

,, This algorithm concerns scalar -f only. To build a similar algorithm to recover a matrix
conductivity, the only change we have to make concerns the update of Y. We still minimize

F(-y, 1, fa,} l = Z[[ (yU)VU, + (-t_ )aI dx - j i~i ds]
,='

for fixed (ui}1l? and {ai 14', but the formulas are slightly more complicated:

3.a Compute L = i=,(Vu,)(Vui)T.

3.b Compute M = i=1(a,)(a,)T.

3.c Compute eigenvalues of ML, s, and s 2 and corresponding eigenvectors e,, and e2 ,

V" and set Ai = v\/s7, for i = 1, 2.

0 3.d Set E = [ei, e2] and let A be the diagonal matrix with entries A1 and A2.

3.e Compute X = EAE - .

3.f Set -t = XL - '

This describes the alogrithm to recover a scalar as well as a matrix conductivity.

We have tested this algorithm on several test problems and obtained somewhat promis-
ing results. In subsequent sections, we present the numerical results obtained from this
algorithm.

1 A. Wexler et al. [12], [13] originally proposed an algorithm, which is similar to the
algorithm presented here. They seek the unknown coefficient through minimization of the
corresponding "residual fluxes", {ai yVui};K1 . They consider m:nimizing E, where

IAK

" =E la, - 7Vuj 2 dx.

The idea again is that E is non-negative, and that if E = 0, then the conductivity is
consistent with the given boundary measurements.

* For the numerical implementation of this algorithm we use finite element approxima-
tions to solve the boundary value problems in steps (2.a) and (2.b). We take piecewise

- linear test and trial functions on a uniform triangulation of the domain Q. -Y is taken to be

constant on each element T,, j = 1,... N. In approximating step 3 we simply minimize
the functional F with fixed I {u3 l and a, = <Vvi, 1 < K, coming from the finite

We use the least squares error in our stopping criterion.

9
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element solutions of (2.a) and (2.b). On each triangle the new value of Y (in the scalar
case) is simply given by

E K 1 fT, IVvI' dx)/ 2

(4.6) -/new=Y ^old (Z Ij - 12

,= .= IVU, 2 dx "

<. Since ui and vi are piecewise linear, the integrals are not necessary and we get

S 1/2< : ¢~ 21-_ Iv12  /

(4.7) Ynew = 7old IVV,) on each triangle.
JVuj 2-,1' *

'p.

As a measure of how good an approximation Ynew is we compute the LSE(least squares

error).

LSE = _ Z j lW,12 + _,-IIaI 2 } dx - Oi~ i ds]

(4.8) KK

l7U1= + Ef wIVU;Ij + Ye.'odVVij} dx - jr Ojii ds

(remember that ai= Yold Vvi).

For the anisotropic error computation, we similarly get

(4.9) LSE = j(YeVi)r. + newNdVVi) T GYodVVi)} dx - J Oik 2 ds].

5. Two-Dimensional Computation. As a test problem we consider the layered
conductivity

"2, if y > 1/2
(5.1) yf(x,y)= i

',0.5, ify < 1/2

• on the d, nain Q = [0, 1] x [0, 11. We seek to reconstruct this -t from three sets of boundary

measurements. First we concoct three test functions ui, i = 1,2 , 3 which satisfy

V. (-tVui) =0 in Q

* (across y 1/2, this requires that ui as well as its conormal derivative 0yo. be continuous):

- y+1.5, if y> 1/2,-:. u (X'y) =
' 4y, if y < 1/2

(5.2) u 2(x, y) = x
0 f xy, if y 1/2<": ~u3(x, Y)=-

u3x... 4xy - 1.5x, if y < 1/2.

10
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We have run the alternating direction algorithm to reconstruct the conductivity in both
the isotropic and the anisotropic cases using the same three sets of boundary measurements

In the actual computations to solve the boundary value problems, we use the finite
element package Modulef. The regular finite element mesh is shown in figure 1. Dirichlet
and Neumann boundary data are computed from the exact solutions ui and prescribed
pointwise on the boundary nodes (for Dirichlet conditions) and as an average value on the
boundary edges (for Neumann conditions). The linear systems of equations are solved by

Crout decomposition.

In the case of anisotropic conductors we face a problem of nonuniqueness. One way
to avoid the nonuniqueness issue is to convert the matrix conductivity to an appropriate
scalar. In the graphic display shown here we have simply taken \/Te-t7 as an isotropic
approximation at the final stage, but we recognize that this is an ad hoc approach which
is not necessarily best possible. For the graphics display, we use a grid point in each
triangle, not the nodes of the original triangulation. (Figure 2 shows the grid points for
the graphics.)

Figures 3 and 4 show the results of our computation. As seen both the isotropic and the
anisotropic reconstructions detect some jump near the line y = , though the isotropic re-
construction detects a sharper jump than the anisotropic one. Most noticably the isotropic

%-'"reconstruction appears to become oscillatory after a certain number of iterations, whereas
the anisotropic reconstruction displays no such oscillations and seems to improve with
increasing number of iterations. This is not totally unexpected, since the reconstruction
algorithm using anisotropic - was derived from the isotropic algorithm through the elimi-
nation of highly oscillatory -y by relaxation (or G-convergence). See Kohn and Vogelius (8].

In both the isotropic and the anisotropic cases, the least squares error decreases rapidly.
As seen the anisotropic reconstruction brings about smaller least squares error than the
isotropic one when we compare the results at the same iterate. (See table 1.)

To examine how close the reconstruced conductivity, -yc, is to the exact conductivity,
-.., we have computed I1I-, - -y'll using both the L, and L 2 norms. (See figure 5 and table
2.) In this particular example, we see that the anisotropic L1 error decreases and stays
almost unchanged after about 200 iterations, while the isotropic L1 error rapidly decreases
at the very early sage of computation but starts increasing when ' becomes oscillatory
(at about the 5 0 'h iterate) and remains almost unchanged after about 200 iterations. The

* two error curves intersect at about the 12 0th iterate, after which the isotropic L1 error

curve lies significantly above the anisotropic one. We also have computed the L 2 error
and the results are qualitatively similar to those obtained using the L, norm, although the
crossing happens at a later stage and is less dramatic.

* 6. One-Dimensional Computation. We now incorporate into the algorithm the
fact that is a function of x2 only. We take periodic boundary conditions in the x,

11
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direction and for simplicity we change the domain Q to be [0, 27r] x [-1, 1]. Assume the

solution u is represented by a sine Fourier series

00

J(XI, X 2 ) - ak(X2) sin kxl
k=1

(no cosine terms). To minimize fn -yVu[2 dx is equivalent to find the solutions of

-(7c.)' + k2 -Y-ak = 0, k = 1,2,.-.

with appropriate boundary data and to minimize fn -'- a12 dx subject to V. a = 0 is
equivalent to find the solutions of

-(-t- 1  ky + 7_1 a'k = 0, k 2,

with appropriate boundary data. The latter follows since a is represented as,i: -(7-1k-2a'a' ()2 "cos-l k =0 k= ,2,'

kkx 1
a(XI, X2) M -a(x)o* ( - Ok(X2) sin kx 1

9%9k=1

We seek to minimize the truncated funtional

KI
(6. 1) F(-y, { k}k=1, {ak}k1) = 1 ] ('y(k 2 k]2 + [" 2) k + -l(k 2 [a 2 + [Ok]2)) dx

over all a, and ak with given boundary data ak(±1) and ak(±i).

The Alternating Direction Algorithm for the one-dimensional computation becomes:
1. Pick an initial guess for ',.

2. For k=,.. ,K

2.a Solve
'., - (-yk)' + k2-Yak = 0 in (-1, 1)

ak(-l) and cak(1) given.

2.b Solve
--(, 1 k 2 a ), + 7_10k = 0 in (-1, 1)

rk(-_) and ak(l) given.

- 3. Update -y by minimizing F(-,{Qk1, f akIk=1 ) for fixed f{o,}.".l and {ak} h

4. If the reconstruction is satisfactory, exit; else go to step 2.

For the numerical implementation of this one-dimensional algorithm we use piecewise
linear finite elements on a uniform mesh to solve the boundary value problems (2.a) and

* (2.b). We implement the method as described above for two component materials. We
also implement the anisotropic analogue of this algorithm based on volume fractions.

12'S2



6.1 Material composed of two components. For the minimization of F we con-
sider conductivities -y that correspond to a two component material, i.e., -y takes one of
two values +y1) or -,(2) on each element Ii, i = 1,... , N. We seek to minimize

V h K K K

ZLY k 2Ck k Io12 + E[C4]2 ) dx + -2([4]2 + k=1k 2
i=1 ik.=1 k=l k=1 k=--1

which amounts to minimizing

K K

(6.2) , Zi (k[I + [k]2)dX + 7 ' Zj (k -2[,]2 + [uk ])dz! " /=1i k=1 4

on each element i.

We compute (6.2) with -yi replaced by -y(') and y(2) respectively, compare the resulting
values and select as the new conductivity the one which gives rise to the smaller energy.

4: Step 3 may now be written:
S3. Fori = 1,.. , N

K K
</,) 2j'22[<k1f+k12)dX+) 2 ]2 + 2

Sk=l k=1 ,/i

K K
(6.3) d2= .(2) ZI (k2[ak 2 + [a'12 )dx + (-2)' Yj(-2[Or2 + [] )dx

" k=1 fi k=1 'i

NIf d, < d2, then -yi =f();

else -yi -f

The least squares error is computed by summing all d, or d2 , whichever is smaller on each
element, and finally subtracting the boundary integral.

For
T = 2, for-1<x<0

0.5, for 0<x < 1,

ak(x) and 0k(X), 1 < k < K, can be computed analytically

e kz + e-kx

k(x) = k(ek + e-k)
kx -kx

9 (ek+e k)' - -

* Vk X ) = 0 . e k x - e k x f o 0 < x <

0.5 (ek + e-k) ,

13



We feed the algorithm with the exact boundary data ak(±l) and Uk(±l), I < k < K,

cok(-1) = ak(l) = Ilk

O'.. k(-1) =2 _, aek Ok(1) = 0.5 k_ -

e + e-k ' + ekek

In the actual computation we take K = 10 and N = 200. We have run the alternating

direction algorithm on this problem to reconstruct -y for various initial choices. In each

case a new conductivity was obtained after one iteration and then it remained the same

in all subsequent iterations. The least squares error changed from the first to the second

iterate, since the computation of the least squares error involves od as well as yew.

Here are some results with different initial guess.

1. Initial -y = 2.0 everywhere: the algorithm picks up a jump at x = 0.29 with least

squares error 0.01638. Computed conductivity -c is: -y = 2 for x < 0.29, yC 0.5
for x > 0.29.

2. Initial -y = 0.5 everywhere: the algorithm picks up a jump at x = 0.29 with least
-*-" squares error 0.01638. 2 = " for x < 0.29, , = 0.5 for x > 0.29.

3. Initl 0.5' for-1 <x <0
3. 2a x) f x < the algorithm picks up a jump at x = 0.58

with least squares error 0.08429. -y ' 2 for x < 0.58, -yC = 0.5 for x > 0.58.

4. Initial -y = exact y: the algorithm preserves the initial guess (jump exactly at
x = 0) with least squares error 0.00144, the descretization error in the numerical

solutions of the boundary value problems.

6.2 Volume fraction method. The method discussed in the previous section itself
failed to detect the exact location of the jump discontinuity. The method would be equally

unsuited to identify any oscillations in -. We now consider a method for a two component
material based on the concept of volume fractions (the anisotropic analogue of the previous

.- ' method).

A With a possibly highly oscillatory layered coefficient, it is well known from the theory of

homogenization that the conductivity across the layers approaches the harmonic average

c = (0Y(i)' + (1 - 0)t(2) - ')1 , whereas the conductivity along the layers approaches

the algebraic average m = 0-y(l) + (1 - 0)q(2), here 0 is the so called volume fraction of

A material -,(1), i.e., the infinitesimal proportion of material -y(). See Bensoussan, Lions,

and Papanicolaou [2]. Clearly, 0 < O(x) < 1 and we note that if either 0 = 0 or 1, then

.- c = m = -Y(2) or -(l), respectively.

We seek to minimize the truncated functional

11) K f,~a 1
"- 2  2  + [0,.]2 + C- ]2

(6.4) F(O, {ak} K, {ak = E-mrk -[a1 +mnk 2[ c-[k] dx.
1P,. k=1
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We take c and m to be constant in each element Ii.

Alternating Direction Algorithm based on volume fraction 0:

1. Pick an initial guess for 0.

2. Fork=l,...,K

2.a Solve
- (ca')' + k2 rnak = 0 in (-1, 1)

ak(-l) and ak(1) given.

2.b Solve --(k2m 'k) +c-ak = 0 in (-1,1)

0k(-1) and 0k(1) given.

3. Update 0 by minimizing F(O, {akI 1 , {ak}K ) for fixed {akK 1 and kK{Ok k=, {a k=) orfxd{ k=l nd '}k=l"

4. If the reconstruction is satisfactory, exit; else go to step .9

'(, In updating 9 in step (3), we minimize the nonlinear functional

K

(6.5) Fj (c) E Z(c f[a' 2 dx + nk 2 /[ak 12 dx + m'1k-2 j[, 12 dx + c-1  [0] 2 dx),
k=1 Iii k 

k

with respect to c on each element I, and we compute 9 from the formula

0 = (C- 
) - - 7 2

Note that Fi is a functional of c only, since m can be expressed in terms of c

m = 7 ( 1 + f(2) _ 7()^1(2)

C

In our computation to minimize Fi, we use Newton's method together with the Golden

search rule. We take two Newton iterates. If the second iterate c2 falls between -(Y) and
1 (2), then we compare Fi(c2 ), Fi(7'1), and F (-y(2 )) and choose the argument corresponding

to the smallest value as the updated value for c. If the second iterate c2 falls outside the

range, then we use the Golden search algorithm (ten steps) to compute an updated value

for c.

The least squares error is computed by summing the F's for all i and finally subtracting

* the boundary integral. Here we use both 0old and O,, in the sense that 9 ne is used to

compute F and Oold is used to solve the boundary value problems. For our test problem

we take the same exact solutions as in the previous section, i.e., -i) - 0.5 and y(2 ) = 2,

ft. and in terms of volume fraction

O(. O, for-1<x<0
X. 1, for0< < 1.

15
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We have run the algorithm on this problem to reconstruct 9 (again with , = 10,
N = 200 and exact boundary data) with various choices of initial guess; the results however
are almost independent of initial guess. This method reconstructs 0 fairly well succeeding
to detect the jump discontinuity. Figure 6 shows the results obtained from this method
with initial guess 9 = 0.5. The least squares error decreases very rapidly at the very

early stages of the computation. We have also computed 110C - OllL' , where 0' is the
reconstructed volume fraction and 0' is the exact volume fraction. (See table 3.) As seen
the L' error decreases as the number of iterations increases.

We have tested the same problem on meshes of various dimensions. Figure 7 shows the
reconstruction results when N = 25. We see that the least squares error is much smaller
when N is larger. For example, the least squares error when N = 25 is 0.07249 at the

5 0 th iterate while it is 0.00122 when N = 200 at the same iterate. Surprisingly enough,
the L1 error is smaller when N is smaller. For example, the L1 error when N = 25 is
0.05641 at the 5 0th iterate while it is 0.0.08921 when N = 200 at the same iterate. This
is a phenomenon which we have come across in several of the computations - basically it

asserts that there is nothing to be gained (occasionally something to be lost) by using a
* too fine mesh to identify a simple discontinuous coefficient. See figure 8 and table 3 for
".* the comparison of the least aquares errors and the L1 errors.

6.3 Perturbed data. Let us consider a problem to reconstruct 9, slightly perturbed
from the one in the previous section, i.e., a problem which corresponds to the exact 0

-Y - -1, for -0 .< x < -0.5

O )a 0, for -0.5 < x < 0

1, for 0< x < 0.5
-! , for 0.5 < X <_ 1.

4. We do not compute the boundary data analytically for this problem. Instead we set

4 ,a &k(±1) = 1/k for k 1,..., K and solve the boundary value problems

(- (cCa)' + ink2 ak =0 in (-1, 1)
(6.6) ak(-l) = ak(l) = 1/k

numerically, using piecewise linear finite elements on a mesh with N 800. As data for

Ork, we use
ak(-) = c(-1)ca,h(-1)

where O'k(l) = C(1) a,h(1),

.where O'kh(X) is the finite element approximation of a'(x).

* We have run the Alternating Direction Algorithm based on volume fractions on this
problem. The reconstruction results are shown in figure 9 and table 4 with initial guess

16
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0 0.5. Almost the same conclusions can be drawn from this computation as in the case

of the previous problem except that the L' error is larger for smaller N in this case.

Here are some observations:

1. The algorithm reconstructs 9 fairly well with reasonably small least squares error.

2. The results are almost independent of initial guess for 9.

3. The least squares error decreases rapidly as N gets larger when compared at the
same iterate.

4. The L1 error in the computed volume fraction decreases as the number of iterations

increases.

For comparison, we tried the algorithm in section 6.1 on this problem to see whether

it would detect any oscillations. It picked up a single jump after one iteration and the
solution remained the same in all subsequent iterations. The location of the computed jump

depends on the initial choice of y, however the method failed to pick up any oscillations.
The location of jump is slightly different from the one in section 6.1 with the same initial
guess; the least squares error is naturally much bigger. For example, with the initial guess

* - = 0.5 cvcrywhere, the algorithm picked up a jump at x = 0.25, i.e., 7C = 2 for x < 0.25,
,c = 0.5 for x > 0.25 with least squares error 0.43973.

6.4 Piecewise quadratic finite elements. As seen we have obtained quite satis-
factory reconstructions of 0 in the previous two sections. To analyze the effect of higher

accuracy we also tried to use piecewise quadratic finite elements in solving the boundary
value problems (2.a) and (2.b). The coefficients c and m are treated as piecewise linear (not
necessarily continuous). In the step to update 0 it might seem natural to minimize over
all piecewise linear 0. This however produces a very complicated updating step. Instead
we have decided to use one of the following two options : (1) keep 0 piecewise constant

as before, or (2) minimize the functional with respect to 9 pointwise at the nodes of each
element and let 0 elementwise be the linear interpolation (not necessarily continuous).

We have run the Alternating Direction Algorithm based on the volume fractions on
the problems of section 6.2. Figure 10 and table 5 show the results of this computation. In

O _ our first computations we reconstructed the volume fractions using option (1). The results

are almost the same as with piecewise linear elements in the sense of L1 error, of course

v the least squares error is significantly reduced. In the actual computation of the problem,
we got a negative least squares error in the computation with N = 200; this is due to

* ."' round-off error. We computed the same problem in double precision, which brought about

a very small, but positive least squares error.

We have also used option (2) on the same problem. The results look reasonable ex-
cept near the jump discontinuity. This is not unexpected since the minimization of the

functional requires pointwise approximations to the derivatives of the solutions to the

0 boundary value problems. These approximations are clearly not very good near the jump

discontinuity.
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Finally we computed with the perturbed data from section 6.3. We used option (1) -

the results are shown in figure 10 and table 6.

In summary it seems that the increased accuracy in the finite element solutions has
very little effect on the L, error of the computed solutions. Based on this observation and

". considerations regarding simplicity, it seems entirely reasonable to solve the finite element

problems using only piecewise linears. We do not know whether this conclusion is also
-- valid for more smoothly varying 0. In that case one might suspect that higher accuracy

could improve the L1 error.
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Table 2

number of iterations LI error LI error L2 error L2 error
(isotropic) (anisotropic) (isotropic) (anisotropic)

5 0.230062 0.247373 0.3588591 0.366115
20 0,178497 0.233846 0.295077 0.364288
50 0.166697 0.215210 0.283006 0.360893
100 0.185301 0.197864 0.307787 0.352130

*150 0.200615 0.186805 0.326579 0.346145
200 0.208475 0.182351 0.336369 0.343204
250 0.212179 0.180737 0.34120~1 0.342213

.e 300 0.213886 0.181449 0.343713 0.342388
.0 350 0.214690 0.183172 0.345156 0.34012
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Table 3

* number of iterations least squares error least squares error Llerror Llerror

(N=25) (N=200) (N=25) (N=200)

* 10 0.07325 0.00199 0.09785 0.13418

20 0.07271 0.00144 0.07809 0.11360

30 0.07257 0.00131 0.06726 0.10274

40 0.07252 0.00125 0.06086 0.09508

50 0.07249 0.00122 0.05641 0.08921
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Table 4

number of iterations least squares error least squares error Llerror Llerror

(N=25) (N=200) (N=25) (N=200)

10 0.08502 0.00246 0.25482 0.217CO

* 20 0.08439 0.0016V 0.22025 0.19148

30 0.08,117 0.00158 0.19988 0.17979
40 0.08403 0.00148 0.18331 0.17110

o50 0.08392 0.001.i4 0.16895 0.16120
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Table 5: Piecewise quadratic finite element results on problem in sec,:~ 6.2

When option (1) is used:

number of iterations least squares error least squares error Llerror Llerror

(T4=25) (N=200) (N=25) (N=200)
(single precision) (double precision) (single precision) (double precision)

10 0.00116 0.00091 0.11987 0.13418

20 0.00067 0.00031 0.10005 0.11362
30 0.00055 0.00017 0.08851 0.10275

40 0.00050 0.00011 0.07993 0.09509

50 0.00047 0.00008 0.07331 0.08921

When option (2) is used

number of iterations least squares error least squares error Llerror Llerror

(N=25) (N=200) (N=25) (N=200)
(single precision) (double precision) (siTrle precision) (double precision)

10 0.00344 0.00105 0.11689 0.13454

20 0.00276 0.00043 0.09963 0.11525
30 0.00213 0.00027 0.09254 0.10544

40 0.00167 0.00020 0.08457 0.09858

50 0.00155 0.00015 0.07799 0.09327

Table 6: Piecewise quadratic finite element result., on problem in section 6.3

number of iterations least squares; error least squares error Llerror Llerror
(N=25) (N=200) (N=25) (N=200)

(single precision) (double precision) (single precision) (double precision)

10 0.00326 0.00129 ).20264 0.21753
a.20 0.00174 0.00039 0.17177 0.19132

30 0.00162 0.00025 0.15869 0.17944
40 0.00144 0.00019 0.14894 0.17061

* ~50 0.00140 0.00012 0.14094 0.16356
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