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Determining Conductivity by Boundary Measurements:
Some Numerical Results

- ) IN-JA B. LEEf}

~

Abstract. We consider the problem of determining an unknown conductivity by boundary measure-
ments. First we briefly review various known results about uniqueness and continuous dependence. The
main emphasis of this paper is on the discussion of some numerical results for a variational algorithm to
recover the conductivity. s

1. Introduction. We study the following inverse problem: can one determine an

o
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RO LN

unknown conductivity ¥(z) inside a body 2 by means of measurements of potential and
flux on the boundary? This problem was first raised by Caldéron and has since been

studied by several people.

In the following 2 will be a bounded C*® domain in R™?, n > 2, with boundary I". The
unknown conductivity () is in L>°(Q) and satisfies 0 < vy < v(z) for all z € Q. Consider
the operator

Ly(u) = V - (1(z)Vu)

acting on H(Q).

n We define the Dirichlet to Neumann-data map

Ay: HYXT) - H™YXT) by

, 0
A‘Y(q)) = 7?5".5’

Y where u solves the following boundary value problem

Lou=0 in 9,

1.1
(1.1) u=4q on TI.

The inverse problem now is to determine v given knowledge of A,(¢). We say that
v is identifiable if the map v — A, is injective. In section 2 we briefly review known
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results concerning the identifiability of 4. Section 3 concerns the question of continuous
dependence. In the last three sections of this paper, we study a particular algorithm to
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determine +; the emphasis is on the presentation of various numerical experiments.
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2. Identifiability Results. For many purposes it is more convenient to work with
the energies

Q4(6) = /Q 2| Vuf? da,

instead of the operator A,. It is easy to see that knowing Q(¢), for any ¢ € H'/?(T), is
equivalent to knowing A,

Kohn and Vogelius [5] proved that v is uniquely determined by Q. (¢) if v is analytic.

THEOREM (KOHN-VOGELIUS). Let v, 1 = 1,2, be in L*°(Q) with a positive lower
bound. Let zo € T and let B be a neighborhood of z¢ relative to Q. Suppose

vi € C*(B), for 1=1,2
and
Q. () = Q+,(¢) whenever ¢ € HY/*(I') with suppé¢ C BNT.

Then
D*yi(zo) = D*n(zo),  forall k= (ky,- - kn) >0,

where D¥ denotes the derivative (8)0z,)** - - - (8)0zn)*".

The main trick in the proof of this theorem is to take boundary data ¢ that are highly
oscillatory, with vanishing moments and supported in a small neighborhood of x4 € T. For
such ¢, the solution of (1.1) will decay rapidly away from z4; these ¢ are therefore well
suited for studying v at zo. The following three lemmas are the main ingredients of the
proof of the theorem.

LEMMA 1. Let M be any positive integer, and let z be a point on I'. There exists a
sequence {¢n}%=; C C°(T') such that

lénllijz+er < CeNY, 2> -M

énllayer =1, NG

suppon | {z} as N — oo. e

i Accession For

- -
Fiv M, and let un denote the solution to the boundary value problem { 7' _ ‘c*‘“ =
| HUR RN i i
. & B e M
Laun=0 in 9, MR e R
T
uy = (bN on F,
F‘_ - —_ .-
, R ~ e me i ] e e e e ‘Y“A":‘ 4
where the sequence {¢n } oy is as iu lemmnaa 1 with 4 = . C R ,
¢ i - A 3 4
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LEMMA 2. Let Q' C Q with dist (z,9') > 0, and assume that v is in C™ in a
neighborhood of z. Then
lunllio < CN=HM

for all N > 1. The constant C depends on v,§Y, z,and My, but not on N.

Define
p(z) = dist (z,T) for any = € Q.

LEMMA 3. Assume that v is C™ in a neighborhood of z, and let U denote any neigh-
borhood of z. Given! > 0 and € > 0, there exists a constant Ci, > 0 such that

/ p(2)|Vun|® dz > Cp N-(n+ol
U

for sufficiently large N.

Sketch of the proof of Theorem: the proof proceeds by contradiction using the three
lemmas. If the theorem were not true, we may suppose that

n(z) = n(z) = Cp(z), =zeUl,

for sorae constant C > 0 and some neighborhood U of a point z € T, arbitrarily close to
zg9. Choose My > %nl. Let uly, i = 1,2, solve

L‘Yiuj\l = Oa u;VII‘ = ¢N'
Then, for sufficiently large IV,
Julvubitae > [ wivukldo+c [ pe)vukf do
Q U U

> [Vl o= [ lOubl d+ G Nl
Q Q\U

> / 1|Vl P dz — CN=2Mo 4 ¢ N=(m+O,
Q

Since 2M, > nl, we get

/971|Vu}\,|2da:>/n‘yg|Vu?V|2dz,

for all sufficiently large N, and this is a contradiction. [

. Kohn and Vogelius [7] have extended their study to piecewise analytic 4 showing that it
is possible to determine an unknown conductivity interior to a body 2 from measurements
of the potential and the flux on the boundary.

Sylvester and Uhlmann [10] have subsequently shown the uniqueness result in the more
difticult case v € C™(Q2).
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THEOREM(SYLVESTER-UHLMANN). Let @ C R” (n > 3) be a domain with smooth
boundary. Suppose vy and v, are in C*®(Q), 7,7 > 0 in Q and

Q(®) = Qv (8) Voe HVYD)

then
Yo=" in Q.

This theorem has been established only for space dimension greater than or equal to
three. It is not known whether the same result holds for space dimension two. But in that
case Sylvester and Uhlmann [9] have obtained a local uniqueness result for coefficients that
are nearly constant in C*°(Q).

So far, we only have considered scalar coefficients 4 corresponding to isotropic conduc-
tors. It is also of practical importance to study symmetric matrix valued coefficients

Yij = i € L¥(8Y)
M < (3(2)6,6) < TP forall c € Q and £ €R™.

In this case we can not expect to recover the full matrix {+;;}. If two matrix conductivities
v and § are related by change of variables

0%, 09,

Sci(®(x)) = |det DR > v(z) i— e
i J

1,]

(® is a diffcomorphism of ), then u solves (1.1) with coefficient + if and only if u® = uod 1
solves the similar problem with coefficient é. If, in addition,

®(r)=12 for z €T,

L

then u® = uw on I, and

AWVu-v=6Vu®-v on T.

It therefore follows that v and é have identical boundary measurements. Concerning
uniqueness Kohn and Vogelius [6] have proved that if (n — 1) eigenvalues and eigenvectors
of 4 are known then the last eigenvalue can be distinguished by boundary measurements.

3. Continuous Dependence Results. It is very important to study the continuity
properties of the mapping Ay — 7. We define the operator norm

A (DN -2y
11l 121y

HA i|1 2,—1/2 = sSup
v/ / 540

Sylvester and TThlmann [11] have recently shown

-----
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THEOREM(SYLVESTER-UHLMANN). Suppose that v, and v, are measurable and
satisfy, for some A,

<Hvi<A for 1=1,2
then
1Ay, = Aylli/z,—172 £ Cillm = 12l (a)-

If, in addition, 41 and 42 are continuous, then

Il — %llze@ < CollAy, — Ay ll1/2,-1/2-
Let B; = A,, — viA,. If, 71 and v, are Lipschitz continuous, and for some 3,
Vvl <8  for 1=1,2,
then

|B1 = Bz|l1/2,-1/2 < Csilm — vallwr=(a)
and
I = vellwree(ry < Ca(llBr = Balliyz, =172 + 1Ay = Asalliye,—1/2)
The constants C; depend only on §, A and 3.
This result also can be proven by a simple modification of the method of Kohn and Vo-

gelius. See for instance Alessandrini [1]. Alessandrini, furthermore, obtained the following
result under the assumption that «;,7 = 1,2, satisfies a-priori inequalities

1 < 5i(z), for all z €

>~

7ill Ho+2(a) < A, 1=1,2
for some s and A, s > n/2.

THEOREM(ALESSANDRINI). With conditions as stated above,
I = 72lleee@) < WAy = Avalliy2,-172),
and the function w is such that
w(t) < Cllogt|™®, Wt, 0<t<1/e,

for some C, é§, 0 < § < 1, depending only on A, n and s.

This result is somewhat disappointing since it predicts such a weak fcrm of continuous
dependence. In its generality the result may, however, very well be the best possible.
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.::: It becomes quite natural to analyze continuous dependence for classes of conductivities
) with more restricted spatial dependence. For practical reasons, it is important to seek

( : continuous dependence estimates in terms of finitely many sets of boundary measurements.
N Friedman and Vogelius [4] studied conductivities that correspond to a finite number
__:: of small inhomogeneities, of extreme conductivity, imbeded in an n—dimensional reference
\f- medium. The reference conductivity + is assumed to be C?*#. Each inhomogeneity has
<, the form = + € px B, where B is some bounded domain in R®, n > 2, with 0 € B and 9B
) of type C**#. The points {z1,- -, zx} belong to Q and satisfy
4
.,': .
:", Izk—-Zledo > 0, Vj #k and
o dist (2x,T) > do, Vk.
{
N Here € is assumed to be small enough that the sets {zx + epx B} are disjoint and that their
:: distance to R®\Q is larger than %9-. ) is assumed to be bounded with boundary I' € C?*%.
o Let p
'Y
[ we = U(3k+€PkB)
> k=1
t::f denote the total collection of inhomogeneities. If they all have infinite conductivity, then
::: the voltage potential u., given the boundary current v, solves
g 1
e min {—/ v |Vul? dx—/zbu ds}.
- w€HY(2),Vu=0in w, 2 Jo r
. For this problem to have a unique solution we require that
%
2 /zbds:O and /u( ds = 0.
- r r
o
. Consider two arbitrary collections of inhomogeneities
e
.-.':" K K'
_: we = LJ(z,C +eprB) and Wl = U(z'k + ep}.B),
-~ k=i k=i
L and denote by u, and u! the corresponding voltage potentials with fixed boundary current
N . Let U denote the solution to
P
- 1
- min  {= VUzdx—/ Uds}.
- Uth(Q){Q/Q’H | FIZ) }
L4
‘o : . .
o It 1s important that U satisfy the non-degeneracy condition of VU # 0.
A
2 6
{4
2
-
2.
&

Sy
",P")'\\'\ «

\‘\‘

R R SN PR T
o . , ',- -‘»‘J"J ).\- .'\.\ \

3
4
x L)
l&‘l
\' n
20
.
l"l\
oy
., -

ol - LGy < " o
-"'i" -\.) \.‘,\...\ I‘f‘-\.*f ~ "\',."‘h. x,.

AIOVI.l




B Y XY
«
t'v‘-"l‘
ER A

v
W

- e
R A N
Al .N ..’-\:'L. v

A

s
A

THEOREM/(FRIEDMAN-VOGELIUS). Let I'y be nonempty open subset of I'. There
exist constants 0 < €g, 69 and C and a function n(e), lin(l) n(e) = 0, such that if € < € and
€ —

e'"||ue — u'EHLoo(pl) < ég, then
(1) K = K', and, after appropriate reordering,
(2) lzk — zi| + Ik — Pkl S Ce7MJue — ucllLo(r,) +1(e) (1 <k < K).

The constants €y, 6y and C and the function n are independent of the two sets of inhormno-
geneities.

A similar result can be obtained for non-conducting inhomogeneities as well as for the
case where the voltage potential ¢ is fixed and the current flux 1 is measured.

4. Numerical Algorithm. To build an algorithm to reconstruct the conductivity
we consider the functional

(4.1) F(*y,u,a)=/ [y1/2Vu — v~V 26|? dx.
Q

It is clear that F(v,u,o) is non-negative and that F(v,u,o) = 0 if and only if 4!/2Vu =
v~1/2g, i.e., if and only if yVu = 0.

Let S be the set of (u,0) characterized by
S={(u,0)| u=¢ onl, V.o=0 in) o-v=9% onT}

Then F = 0 on S if and only if v, u, and o satisfy

V- -(yVu)=0 in Q

u=¢ on [
(4.2) Ou

70—V=¢ on I

c=7Vu.

In that case, 4 is a conductivity consistent with the measurements ¢ and .

ForV.e=0inQ,u=¢ and o-v =1 on T, a simple computation gives
Firuo)= [ oIValtde+ [ 470l da =2 [ 6vas
Q Q r

If more than one set of boundary measurements {¢;,%;}/{, are given, then the corre-
sponding functional would be

K
N K 1/2 —-1/2 2
(4.3) F('Yv{ut ,'\=1){'7i ;‘=1) = E / |'7 / Vu, - / Uil dr.
i=1 Y9
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The set S would be defined by
S = {(u,-,ag)f‘;ll ui=¢; onl', V.-0,=0 inQ, o,-v=1v¢; onl}.

The reconstruction algorithm we consider seeks to minimize the functional F' over S.
Since

Fly (u} S, (o)) = Z/ YVul?dr + Z/ o, do —22/4». bids,

the minimization of F(v, {u;}f,, {0:}K), for fixed v, is equivalent to
min/ v|Vu;|?dr subject to u;lr = ¢;
Q

and
min/ 7" Yeoi|?dz subject to V-.-0;,=0, o;-v=1,
Q
foralll <: < K.
The above minimization is equivalent to finding the solutions of

V-(7#Vui)=0 in

4.4
(+.4) ui=¢; on I
and
V- -(4Vvi)=0 in Q
(4.5) 7%—_—¢i on I
ov

with o; = vVu;,
foralll1 <: < K.

For fixed {4;}X , and {¢,} X, the minimization over ¥ € L>(Q) can be done pointwise

on the mtegrand
K

S (Vul? + 7 ol?).

1=1

The result is

_( Zzlil los]? )1/2
- K

iz [Vuil?
Alternating Direction Algorithm: [8], [12], [13].

, provided of course this is in L*(§2).

1. Pick an initial guess 7.
2. For fixed ~,
2.a Solve: V- (4Vu;)=0inQ, u;=¢ionl', 1< <K
2.b Solve: V-(yVv;) =0inQ, vdv;/0v =¢;on[ andseto; = yVv,, 1<i < K.

....................................
........

: e.\.r~ o

-

LT S S
Y
..\'fv" "'g




1 Y ‘.
oy Yl
PN TS

3. ';..l

v
AP
“ s

)

A\l .'
" ‘I ‘l A
L )

R

PR

5% %S

Rl

|
g

1O

.

s
P

» 1
R
L
L % N

%
v
=

e

T EES
g arera]

SR AL A

Ty
@Sy

o

<30 YRR
® e
NN

.‘ —
3 o 5 @ oY TR
't'h‘,-'.-," B, 2,

2.7

.....

BCPe Ta . -
, .( ~~.- o -f'_' \ ,_.r, vr.\-( r,_-.-' - N .{,5_}

3. Update v by minimizing F(v, {u;}K,,{0;}K,) for fixed {u;}X, and {0} &

=1

4. 1If the reconstruction is satisfactory, exit! ; else go to step 2.

This algorithm concerns scalar v only. To build a similar algorithm to recover a matrix
conductivity, the only change we have to make concerns the update of 4. We still minimize

K

F(v, {ui}iL 1,{0 1) Z[/{;{('yVU;)TVu,-+(‘/—105)Tai}dx—A¢iwids]

i=1

for fixed {u;}%, and {0} &

i+, but the formulas are slightly more complicated:

3.a Compute L = Zi___l(Vui) (Vu;)T.

3.b Compute M = Eﬁl(ai)(ai)T

3.c Compute eigenvalues of M L, s; and s; and corresponding eigenvectors e;, and es,
and set A\; = /55, fort =1,2.

3.d Set E = [e1, ;] and let A be tlLie diagonal matrix with entries A\; and A,.

3.e Compute X = EAE™!.

3.f Sety=XL"!

This describes the alogrithm to recover a scalar as well as 2 matrix conductivity.

We have tested this algorithm on several test problems and obtained somewhat promis-

ing results. In subsequent sections, we present the numerical results obtained from this
algorithm.

A. Wexler et al. [12], [13] originally proposed an algorithm, which is similar to the
algorithm presented here. They seek the unknown coefficient through minimization of the
corresponding “residual fluxes”, {o; — YVu;}K |. They consider minimizing £, where

K
£ = / Z lo; ~ vVu,|? dz.
Qs

The idea again is that £ is non-negative, and that if £ = 0, then the conductivity ~ is
consistent with the given boundary measurements.

For the numerical implementation of this algorithm we use finite element approxima-
tions to solve the boundary value problems in steps (2.a) and (2.b). We take piecewise
linear test and trial functions on a uniform triangulation of the domain . v is taken to be
constant on each element T, j = 1 -+, N. In approximating step 3 we simply minimize
the functional F' with fixed {u; ,—_1 and o; = YVr;, 1 <1 < K, coming from the finite

1We use the least squares error in our stopping criterion.
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v element solutions of (2.a) and (2.b). On each triangle the new value of v (in the scalar
e case) is simply given by
{ K
. 2
N9 i=1 fT,- |Voil*dz
s (46) Tnew = Yold ( 74 2
q."_: i=1 ij [Vu;|? dz
L, =
f‘ . . - N .
b o2 Since u; and v; are piecewise linear, the integrals are not necessary and we get
. (]
-\,;- K Yu; 2 1/2
oo (4.7) Ynew = Yold (;}‘51_|~1|_2) , on each triangle.
2% 2 iz Vil
=
K As a measure of how good an approximation ypew is we compute the LS E(least squares
\ error).
i .
A."
LSE =) [[ {7IVuil* + ¥y oil* Y dz = | ithi ds]
:. . Q 2 1 r 1 1
< (438) e
_0; M V|2 -1 Vou:l2Vdr — i d
=Y [ {tnew!Vuil® + 72001 701aVvil*} dz ¢ ds]
'-::' i=1 Q T
‘_:::t (remember that o; = Y14 Vv;).
oo

For the anisotropic error computation, we similarly get

i K

- (49) LSE = Z[/ {(Ynew V) TV + (Y780 Y01a Vi) T (Yo1a Vi) } dz — / bipi ds].
Q r

i=1

5. Two—Dimensional Computation. As a test problem we consider the layered

e conductivity

-f.’.'

(5.1) (2.9) { 2, ify>1/2

-"': : NL,Y) = .

e (0.5, ify<1/2

oo

- on the d. nain 2 = [0, 1] x [0,1]. We seek to reconstruct this v from three sets of boundary
" measurements. First we concoct three test functions u;,¢ = 1,2, 3 which satisfy
‘.:’

e V.-(yVu;) =0 inQ

”

,7

° (across y = 1/2, this requires that u; as well as its conormal derivative 7%%‘- be continuous):
= y+1.5, ify>1/2

:."- ul(zay = .
o 4y, ify<1/2

- (5.2) uz(z,y) =z
2. zy, if y >1/2
us(z,y) = .
- 4ry — 1.5z, ify < 1/2.
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[ We have run the alternating direction algorithm to reconstruct the conductivity in both
"': the isotropic and the anisotropic cases using the same three sets of boundary measurements
R 8 .

(s 738,
\1{:: In the actual computations to solve the boundary value problems, we use the finite

5

element package Modulef. The regular finite element mesh is shown in figure 1. Dirichlet

\ _'_::‘ and Neumann boundary data are computed from the exact solutions u; and prescribed
pointwise on the boundary nodes (for Dirichlet conditions) and as an average value on the
-_ by boundary edges (for Neumann conditions). The linear systems of equations are solved by
‘,,-'.:.:: Crout decomposition.
:’ In the case of anisotropic conductors we face a problem of nonuniqueness. One way
[, - to avoid the nonuniqueness issue is to convert the matrix conductivity to an appropriate
( scalar. In the graphic display shown here we have simply taken /det v as an isotropic
‘{'_:j':j approximation at the final stage, but we recognize that this is an ad hoc approach which
‘\-::‘_: is not necessarily best possible. For the graphics display, we use a grid point in each
S triangle, not the nodes of the original triangulation. (Figure 2 shows the grid points for
h. the graphics.)
- Figures 3 and 4 show the results of our computation. As seen both the isotropic and the
_ anisotropic reconstructions detect some jump near the line y = %, though the isotropic re-
e construction detects a sharper jump than the anisotropic one. Most noticably the isotropic
- reconstruction appears to become oscillatory after a certain number of iterations, whereas
\ ) the anisotropic reconstruction displays no such oscillations and seems to improve with
[~ increasing number of iterations. This is not totally unexpected, since the reconstruction
‘- algorithm using anisotropic v was derived from the isotropic algorithm through the elimi-
] .js',:j nation of highly oscillatory 4 by relaxation (or G-convergence). See Kohn and Vogelius [8].
7 )'- In both the isotropic and the anisotropic cases, the least squares error decreases rapidly.
o As seen the anisotropic reconstruction brings about smaller least squares error than the
s :::J isotropic one when we compare the results at the same iterate. (See table 1.)
o To examine how close the reconstruced conductivity, 74, is to the exact conductivity,
’;' v¢, we have computed ||v¢ — ¥¢|| using both the L; and L, norms. (See figure 5 and table

. 2.) In this particular example, we see that the anisotropic L, error decreases and stays
almost unchanged after about 200 iterations, while the isotropic L, error rapidly decreases

-

:;j ' at the very early s*tage of computation but starts increasing when ¥ becomes oscillatory
(:j (at about the 50" iterate) and remains almost unchanged after about 200 iterations. The
® two error curves intersect at about the 120'* iterate, after which the isotropic L, error
£ curve lies significantly above the anisotropic one. We also have computed the L, error
Vi - . . - . - 3

- and the results are qualitatively similar to those obtained using the L; norm, although the
»j:::' crossing happens at a later stage and is less dramatic.

N 6. One-Dimensional Computation. We now incorporate into the algorithm the
o~ fuct that 4 is a function of z, only. We take periodic boundary conditions in the r,
<
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N . . . .. .
; ’:j direction and for simplicity we change the domain §2 to be [0,27] x [—1,1]. Assume the
o solution u is represented by a sine Fourier series
l. &J oo
{ :
g u($1»12)=zak(1’2)51ﬂk11
s k=1
o (no cosine terms). To minimize fQ v|Vu[? dz is equivalent to find the solutions of
o
‘ . —(7a;c),+k27ak =0, k= 1729"'
.- J Ll
Wy with appropriate boundary data and to minimize fn v~ o} dr subject to V-0 = 0 is
o equivalent to find the solutions of
WA
A
%-o 3 —(y 'k %0) + 7ok =0, k=12,
P-n with appropriate boundary data. The latter follows since o is represented as
)" 00
; 1
-_:’ﬁ Z—EG;‘(“)COS kz,
a5 o'(l’l,-l'2) = kzlio:
® ox(z2)sinkz,
Se k=
:'.j,: We seek to minimize the truncated funtional
g

X

22
AP

by

e

K 1 ’
(6.1) F(v,{ow}icy, {on}is)) = Z/ (v(R?lak]? + [@k)?) + 71 (72 [0k + [o4)?)) da
k=17"1

S
YA
:ﬁ:{ over all @y and o4 with given boundary data ax(£1) and o (£1).
::::'_: The Alternating Direction Algorithm for the one-dimensional computation becomes:
e
= 1. Pick an initial guess for ~.
el 2. Fork=1,--- K
i
::: 2.a Solve , ) .
Lo —(yeq) + k*yak =0 in(-1,1)
W)
v ar(—=1) and oag(l iven.
° g
- 2.b Solve L2
i ~ (7% 2%0L) 497 ok =0 in (=1,1)
L
e or(—1) and o4(1) given.
l-’.<-
e
.._:,: 3. Update v by minimizing F(v, {as}}_,, {ok}f.,) for fixed {ar}., and {or}E .
N 4. If the reconstruction is satisfactory, exit; else go to step 2.
"_&ﬁ For the numerical implementation of this one-dimensional algorithm we use piecewise
fj-j.‘ linear finite elements on & uniform mesh to solve the boundary value problems (2.a) and
e (2.b). We implement the method as described above for two component materials. We
N also implement the anisotropic analogue of this algorithm based on volume fractions.
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6.1 Material composed of two components. For the minimization of F we con-
sider conductivities v that correspond to a two component matenal, i.e., v takes one of
two values 7(” or 7(2) on each element I;, 1 =1,--- | N. We seek to minimize

N K
Sl [ Zk?[aklw‘;[ak] iz +57" [ (3 Ko + S foul?) ],
i=1 k=1

| k=1 ' k=1
which amounts to minimizing
' K K
(6.2) ¥ Z/ (K [ax]? + [a}])*)dz + 7! Z / (k72 [o)? + [ok)?) dz
k=1 L k=1 L

on each element I[;.

We compute (6.2) with 7; replaced by ¥(!) and 4(? respectively, compare the resulting
values and select as the new conductivity the one which gives rise to the smaller energy.
Step 3 may now be written:

3. Fori=1,--- ,N
K -1 K
d; = ’y(l) Z / (kz[ak]Z + [01“2)(1:c + 'Y(l) Z / (k-i’[a;c]? + [O’k]2)dl'
k=1 L k=1 L

K : K
63 d=y?3 [l 4P de + 107 [l + oa) o
k=11 k=11

If dy < dy, then; =~1);
else v; = (7.

The least squares error is computed by summing all d; or d2, whichever is smaller on each
element, and finally subtracting the boundary integral.

For
2, for -1 <z<0
vz) =

0.5, for0<z<1,

ax(z) and ox(z), 1 < k < K, can be computed analytically

ek: _+_ e—kt

k(e* + e—*)
ekr _ e—kr
T (eF 4 emk)’
a@ =4 L7
0.5 (—m, fOI‘O<$S1.

13

ar(z) =

for-1<z<0
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We feed the algorithm with the exact boundary data ax(1) and ox(%1), 1 <k < K,

ar(=1)=ax(1l) = 1/k

k -k k —k
—e~ + e et —e
—_— (1) =0.5 —m7.
ek 1 ek k(1) ek + e F

ag k(—l) = 2

In the actual computation we take A’ = 10 and N = 200. We have run the alternating

direction algorithm on this problem to reconstruct v for various initial choices. In each

case a new conductivity was obtained after one iteration and then it remained the same

in all subsequent iterations. The least squares error changed from the first to the second
iterate, since the computation of the least squares error involves v,y as well as ¥,,¢4,-

Here are some results with different initial guess.

1. Initial ¥ = 2.0 everywhere: the algorithm picks up a jump at z = 0.29 with least
squares error 0.01638. Computed conductivity ¥¢ is: v¢ = 2 for z < 0.29, v = 0.5
for z > 0.29.

Initial ¥ = 0.5 everywhere: the algorithm picks up a jump at z = 0.29 with least
squares error 0.01638. 4¢ = 2 for z < 0.29, 4 = 0.5 for z > 0.29.
0.5, for-1<z<0 ) .
3. Initial y(z) = : the algorithm picks up a jump at = = 0.58
2, for0<z <1
with least squares error 0.08429. v¢ =2 for £ < 0.58, v¢ = 0.5 for z > 0.58.

o

4. Initial ¥ = exact 4: the algorithm preserves the initial guess (jump exactly at
z = 0) with least squares error 0.00144, the descretization error in the numerical
solutions of the boundary value problems.

6.2 Volume fraction method. The method discussed in the previous section itself
failed to detect the exact location of the jump discontinuity. The method would be equally
unsuited to identify any oscillations in 4. We now consider a method for a two component
material based on the concept of volume fractions (the anisotropic analogue of the previous

method).

With a possibly highly oscillatory layered coefficient, it is well known from the theory of
homogenization that the conductivity across the layers approaches the harmonic average
c = (97(1)‘_l +(1- 9)7(2)—1)—1, whereas the conductivity along the layers approaches
the algebraic average m = (1) 4+ (1 — 6)4(?, here 6 is the so called volume fraction of
material vV, i.e., the infinitesimal proportion of material v(!). See Bensoussan, Lions,
and Papanicolaou [2]. Clearly, 0 < §(z) < 1 and we note that if either § = 0 or 1, then
c=m =~ or 4, respectively.

We seek to minimize the truncated functional

X
(6.4) F(8, {a ) {0 }C1) =D /1 {clak)? + mk?[ax]? + m™ k2 [o} ] + ¢ o] } d.
k=1
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X
®
"
,\{: We take c and m to be constant in each element I;.
e Alternating Direction Algorithm based on volume fraction 6:
1.9
{ ' 1. Pick an initial guess for 6.
(3 2. Fork=1,---K
g,
‘ 2.a Solve
N —(ca}) + k*mag =0 in (-1,1)
' ar(—1) and ai(l) given.
‘j{ 2.b Solve
< —(k72m o) +ctor =0 in (-1,1)
oy :
ol ok(~1) and ox(1l) given.

| : 3. Update 8 by minimizing F(8, {ax}f_ |, {os},) for fixed {ar}£_, and {0k} ;.
o 4. If the reconstruction is satisfactory, exit; else go to step 2.
K 'h: In updating 8 in step (3), we minimize the nonlinear functional
.‘ )
i: (6.5) Fi(c) = Z(c/ [a})* dz +mk2/ [ar)?dz +m™ k2 / [0})> dz +¢? / [ok]? dz),
15N k=1 Ii Ii L L;

"E with respect to c on each element I;, and we compute 8 from the formula

- -1 -1 -1
6= (ct =4 )/ (VT =47

Note that F; is a functional of ¢ only, since m can be expressed in terms of ¢

7(1)7(2)

C

m =W 4 4@ _

. In our computation to minimize F;, we use Newton’s method together with the Golden
":::: search rule. We take two Newton iterates. If the second iterate c; falls between 4(!) and
';“' +(2) | then we compare Fi(cz), Fi(7{1), and F;(¥(?) and choose the argument corresponding
- to the smallest value as the updated value for c. If the second iterate ¢, falls outside the
:_, range, then we use the Golden search algorithm (ten steps) to compute an updated value
p '.:: for c.
: :j The least squares error is computed by summing the F;’s for all 7 and finally subtracting
.' the boundary integral. Here we use both 6,4 and 8,.,, in the sense that 6,., is used to
g compute F; and 6,4 is used to solve the boundary value problems. For our test problem
'_':: we take the same exact solutions as in the previous section, i.e., ¥{!) = 0.5 and (? = 2,
\ :'_‘: and in terms of volume fraction

. 0, for—1<z<0

- 0(z) = {

IS 1, for0<z <1.

g
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We have run the algorithm on this problem to reconstruct 8 (again with X' = 10,
N = 200 and exact boundary data) with various choices of initial guess; the results however
are almost independent of initial guess. This method reconstructs 6 fairly well succeeding
to detect the jump discontinuity. Figure 6 shows the results obtained from this method
with initial guess # = 0.5. The least squares error decreases very rapidly at the very
early stages of the computation. We have also computed |6 — 6¢||1:, where 8° is the
reconstructed volume fraction and 6° is the exact volume fraction. (See table 3.) As seen
the L! error decreases as the number of iterations increases.

We have tested the same problem on meshes of various dimensions. Figure 7 shows the
reconstruction results when N = 25. We see that the least squares error is much smaller
when NV is larger. For example, the least squares error when N = 25 is 0.07249 at the
50%" iterate while it is 0.00122 when N = 200 at the same iterate. Surprisingly enough,
the L; error is smaller when N is smaller. For example, the L; error when N = 25 is
0.05641 at the 50" iterate while it is 0.0.08921 when N = 200 at the same iterate. This
is a phenomenon which we have come across in several of the computations — basically it
asserts that there is nothing to be gained (occasionally something to be lost) by using a
too fine mesh to identify a simple discontinuous coefficient. See figure 8 and table 3 for
the comparison of the least aquares errors and the L; errors.

6.3 Perturbed data. Let us consider a problem to reconstruct 8, slightly perturbed
from the one in the previous section, i.e., a problem which corresponds to the exact 6

%z — %, for -1 <z <-0.5
0, for 0.5 <z <0
1, for0 < <0.5
-3z +32, for05<z<1

0(z) =

We do not compute the boundary data analytically for this problem. Instead we set
ar(£l)=1/k for k=1, , K and solve the boundary value problems

— (cap) +mk?ar =0 in (-1,1)

(6.6)
Ozk(—l) = Otk(l) = l/k

numerically, using piecewise linear finite elements on a mesh with N = 800. As data for
Ok, wWe use

ok(=1) = c(=1) oy p(—1)
ok(1) = ¢(1) aj a(1),

where a} ;(z) is the finite element approximation of a}(z).

We have run the Alternating Direction Algorithm based on volume fractions on this
problem. The reconstruction results are shown in figure 9 and table 4 with initial guess
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6 = 0.5. Almost the same conclusions can be drawn from this computation as in the case
of the previous problem except that the L! error is larger for smaller N in this case.

Here are some observations:

1. The algorithm reconstructs 6 fairly well with reasonably small least squares error.
2. The results are almost independent of initial guess for 6.

3. The least squares error decreases rapidly as N gets larger when compared at the
same iterate.

4. The L, error in the computed volume fraction decreases as the number of iterations
increases.

For comparison, we tried the é,lgorithm in section 6.1 on this problem to see whether
it would detect any oscillations. It picked up a single jump after one iteration and the
solution remained the same in all subsequent iterations. The location of the computed jump
depends on the initial choice of 4, however the method failed to pick up any oscillations.
The location of jump is slightly different from the one in section 6.1 with the same initial
guess; the least squares error is naturally much bigger. For example, with the initial guess
~v = 0.5 everywhere, the algorithm picked up a jump at z = 0.23, i.e., v¢ = 2 for z < 0.25,
~4¢ = 0.5 for £ > 0.25 with least squares error 0.43973.

6.4 Piecewise quadratic finite elements. As seen we have obtained quite satis-
factory reconstructions of € in the previous two sections. To analyze the effect of higher
accuracy we also tried to use piecewise quadratic finite elements in solving the boundary
value problems (2.a) and (2.b). The coefficients ¢ and m are treated as piecewise linear (not
necessarily continuous). In the step to update § it might seem natural to minimize over
all piecewise linear . This however produces a very complicated updating step. Instead
we have decided to use one of the following two options : (1) keep 8 piecewise constant
as before, or (2) minimize the functional with respect to § pointwise at the nodes of each
element and let  elementwise be the linear interpolation (not necessarily continuous).

We have run the Alternating Direction Algorithm based on the volume fractions on
the problems of section 6.2. Figure 10 and table 5 show the results of this computation. In
our first computations we reconstructed the volume fractions using option (1). The results
are almost the same as with piecewise linear elements in the sense of L, error, of course
the least squares error is significantly reduced. In the actual computation of the problem,
we got a negative least squares error in the computation with N = 200; this is due to
round-off error. We computed the same problem in double precision, which brought about
a very small, but positive least squares error.

We have also used option (2) on the same problem. The results look reasonable ex-
cept near the jump discontinuity. This is not unexpected since the minimization of the
functional requires pointwise approximations to the derivatives of the solutions to the

boundary value problems. These approximations are clearly not very good near the jump
discontinuity.
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A Finally we computed with the perturbed data from section 6.3. We used option (1) -
‘. v the results are shown in figure 10 and table 6.

In summary it seems that the increased accuracy in the finite element solutions has

:‘ very little effect on the L; error of the computed solutions. Based on this observation and
}}' considerations regarding simplicity, it seems entirely reasonable to solve the finite element
ey problems using only piecewise linears. We do not know whether this conclusion is also
K> valid for more smoothly varying 6. In that case one might suspect that higher accuracy

: could improve the L, error.
] ::
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Table 1

number of iterations least squares error least squares error

(isotropic) (anisotropic)

1 0.43236 0.26953

5 0.0781 0.00181
10 0.00496 0.00081
20 0.00274 0.00056
30 0.00161 0.00044
40 0.00109 0.00037
50 0.00081 0.00033
100 0.00033 0.00024
150 0.00023 0.00019
200 ~0.00022 0.00015
250 0.00019 0.00011
300 0.00019 0.00010
350 0.00019 0.00010
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Table 2
L1 error L1 error
(isotropic) (anisotropic)
0.230062 0.247373
0.178497 0.233846
0.166697 0.215210
0.185301 0.197864
0.200615 0.186805
0.208475 0.182351
0.212179 0.180737
0.213886 0.181449
0.214690 0.183172
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Figure 5-2

L2 error L2 error

(isotropic) (anisotropic)

0.3588591 0.366115

0.295077 0.364288

0.283006 0.360893
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Figure 8
Table 3
number of iterations least squares error least squares error Lyerror Lyerror
(N=25) (N=200) (N=25) (N=200)
10 0.07325 0.00199 0.09785 0.13418
20 0.07271 0.00144 0.07809 0.11360
30 0.07257 0.00131 0.06726 0.10274
40 0.07252 0.00125 0.06066 0.09508
50 0.07249 0.00122 0.05641 0.08921
Reconstructed volume fractlon Reconstructed volume fraction L1 error
S0-th iterate when N=25 50-th iterate when N=200
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Figure 9-3
Table 4
number of iterations least squares error least squares error Lyerror Ljyerror
(N=25) (N=200) (N=25) (N=200)
N 10 0.08502 0.00248 0.25482 0.21760
20 0.08439 0.0018y 0.22025 0.19148
30 0.08417 0.00156 0.19988 0.17979
40 0.08403 0.00148 0.18331 0.17110
50 0.08392 0.00144 0.16895 0.16120
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Reconstructed volume fraction: 50-th iterate
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Reconatructed voluse fraction: 50-th iterate
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Reconstructed volume fractioni50-th itarate
N=200, done in double precision
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Reconstructed volume fraction: 50-1h iterate
N=200, done in double precision
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:'_. Table 5: Piecewise quadratic finite element results on problem in secr: - 6.2

o,
*‘ . When option (1) is used:
-: number of iterations least squares error  least squares error Lierror Lerror
M (N=25) (N=200) (N=25) (N=200)

(single precision)  (double precision) (single precision) (double precision)

- 10 0.00116 0.00091 0.11987 0.13418
" ‘ 20 0.00067 0.00031 0.10005 0.11362
oy 30 0.00055 . 0.00017 0.08851 0.10275
3 :,, 40 0.00050 0.00011 0.07993 0.09509
!E 50 0.00047 0.00008 0.07331 0.08921
N

When option (2) is used

~,

o number of iterations least squares error least squares error Lyerror Lyerror
. (N=25) (N=200) (N=25) (N=200)
W (single precision)  (double precision) (sinrrle precision) (double precision)
o 10 0.00344 0.00105 0.11689 0.13454
N 20 0.00276 0.00043 0.09963 0.11525
e 30 0.00213 0.00027 0.09254 0.10544
i ;:' 40 0.00167 0.00020 0.08457 0.09858
- 50 0.00155 0.00015 0.07799 0.09327
-

"-

o

e ]

Table 6: Piecewise quadratic finite element result: on problem in section 6.3

XN

number of iterations least squares error least squares error Lyerror Lerror
(N=25) (N=200) (N=25) (N=200)
(single precision)  (double precision) (single precision) (double precision)

10 0.00326 0.00129 ).20264 0.21753

20 0.00174 0.0003% 0.17177 0.19132

30 0.00162 0.00025 0.15869 0.17944

40 0.00144 0.00019 0.14894 0.17061

50 0.00140 0.00012 0.14094 0.16356
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