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THE CHORD DISTRIBUTION FOR A
RIGHT CIRCULAR CYLINDER

In the evaluation of the effects of an omnidirectional fluence on a sensitive volume the chord
distribution is an appropriate tool. It expresses the frequency of occurrence of chords of a given
length for a known convex volume (in the three dimensional case). In particular in single event upset
calculations one often calculates the upset rate of an omnidirectional fluence passing through the sen-
sitive volume of a memory cell by using the cosmic ray approximation, which makes use of the chord
distribution of the sensitive volume.

This report, after reducing the differential chord distribution for a right circular cylinder to
Carlson's elliptic integrals and standard integrals, exhibits the evaluation program and numerical and
graphical results. Various checks support the validity of the evaluation and precision is discussed.
The chord distribution is found to exhibit a cusp and a jump. A plausibility argument is offered for
the existence of these features and an analysis of consequences in signal event upset calculations is
made.

In Reference 1, Kellerer points out some basic distinctions in probability measure of uniform
distributions in two and three dimensions, establishes some background and derives: 1) the path
length distribution in a convex body for finite track lengths and 2) the chord distribution in general
cylinders given the chord distribution for the cross-section. The present interest is only in the circular
case of the latter and further in the density distribution, Kellerer's formula 56:

8 h~ jS X2 hzC(S) = L x 3fJ(sx)+2 F(sx) d + H(s h) F(x)dr (1)c -) r(d + 2h) ti. 1--X2  S 3

where

F(t) '/ - t/d 2 , f(t) = t/d-d - t-, a = H(s - h) I h- h2/_s2

and H is the step function (H(x) = 1 for x > 0, H(x) = 0 for x < 0). Here d is the diameter of
the base, h is the height, and s is the chord length, Also this expression is normalized. Kellerer has
given here the expression for a general convex base which has a known chord distribution F (or
known I , the latter being the density distribution and f = --F'). Note F, f = 0 for t > d. (In
the theory of generalized functions one regularizes these conditions at t = d by writing F - HF so
f - Hf + 6F, 6 being the delta function so one has H'(x) = 6(x).) Writing one expression and
separating into terms indexed by the power of h, one has

s 8 I hsx 4  +2d 2X2  3s X4

7rd(d + 2h) "(1 - x 2)(d 2 - s 2x 2) "Id2- s2 r
2 Jr

h2  d ..
*h d2.~+ ~- H(s-h)j d-x 2dI (2) -- "-"
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The last two terms are standard integrals but the first should be recognized as an elliptic integral.
One notes the maximum chord exceeds d and that at s = d at the upper limit the two square root
poles coalesce to form what would appear to be a non-integrable singularity. That this is only appear-
ance may be seen by applying the delta function substitution in the above parenthetical note. Even if
one were inclined to try direct numerical evaluation, he would not be surprised when numerical prob-
lems arose while trying to evaluate near this pole. The fact that this feature is a standard one for an
elliptic integral should be sufficient incentive to pay the penalty of the algebra necessary to reduce this
integral to standard elliptic integrals. After this penalty is paid the pole causes no further problem.

Still this algebra is sufficiently onerous that it provides the main incentive for this report. Hav-
ing once been forced to do this work, one has good reason not to lose the technique. In addition we
were forced by the circumstance of having only a single software source [21 to use the modern listing
of standard elliptic integrals advanced by Carlson (31 rather than the Legendre standard forms. This
was fortunate as Carlson's method takes full advantage of the considerable symmetries in elliptic
integrals, resulting in certain evaluation advantages.

In c 1, s = d is a branch point requiring a change in form. This is done by the change of
integration variable, y = sx/d. The resulting integral has the same form provided one changes the
parameter's definition at the branch point: m = s2/d 2 for s < d, m = d 2/s 2 for s > d. Then for
s > d one obtains

c1(s) 8h m 2 y4dy (3)
-rd(d + 2h) m sad -/(1 - my2)(l - y2 )

Thus both branches of this elliptic integral can be reduced using the same integral form. To aid the
1 I a

reduction, use of a zero limit may be achieved by .= - 0 In the following the integration
variable is transformed by y = -x, a 0

) _4 _ = 1 (-y)312dy (4)
0 (1 - x2 )(1 _ -rx 2) 2 -u2 i(1 +y)(1 +my)

Then using SFAM formula 8.1-1 with the substitutions a = 1, a' = 5/2, y 0, x = -u 2 , zi = 1.
i =1,2,3, w = 1 W 2 = M, W 3 = 0, b 1,2  1/2, b 3 = 5/2, one has

S1 5. 2, 1 5  1 U2,1_

Ry(um) B 1 usR 5 2  -2, =-U5 R 5 (5) ..S

2 2 2 2' 2 5 '-

since the beta function B, evaluates to 2/5. The R function is related to the hypergeometric series "
and is used by Carlson to present a unified treatment of many special functions. This function is
homogeneous: simultaneous permutation of the first three and last three arguments leaves it
unchanged. The local software library [2] includes the following standard elliptic integrals

0.R2
R(z) = -odt (t + z)(t + z-')(t + z3)J 2 - R LY±,2,21 (6) ,"

3 0 1 
RD(z) = J dt[(t + Z1)(t + z2)(t + z3) 2= R 3  2 -2-2z (7)
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where z is understood as a vector, z = (zI, z2 , z3) and the integral representations are from SFAM
formula 8.3-1. The intention then is to reduce Ry to RF, RD and polynomials following SFAM para- %
graph 9.3. Applying the formula of SFAM exercise 5.9-8 with the substitutions

t -3/2, c = 5/2, w1 = 3/5, one has S

1511 1 3 1 1 1
(Z I Z2)(zI -z 3) R_5 2 z Z2Z3R_5 z

5 2 2 212 2 2w235,

2 3 1 1 2 [3 1 1
(Z2 + Z3) R 3 1 1 1,z - R , z (8)-Z 3 2 2 2 3 2- 2 2 2 ,..

../

The second term is an RD but the other terms need further reduction. For the first term one notes
c = a so a' =0 and applies SFAM formula 6.6-5 to obtain 03, 1 , Z

31-2 1 -- -'

R_ 5  z = (z 3 ) 2 (9) ,-
2 L.1, .

For the third term apply SFAM formula 5.9-7 with t -1/2, b1 = 1/2. c = 3/2 and solve for the

R term to obtain
2

31 1 | 3 ( 1 "I"
R 2 ' - RF(Z) - - Ro(z) (10)

Then substituting these results into (8) with 71 1, z2 = 1 - u,, z3 = 1 - mu2, and then into (5),

one has S2 2 (7)°
R(u,m) = U -u -- + (m + l)u2 R( - R(11)

3m3

When substituting from (6) and (7) the homogeneity property has been used to permute arguments.uN

In case u = I here the elliptic integrals are complete. Defining RX by u Rx = Rj. one has for .
3m

s < d

8h I
C1(s) Rx (u, m) (12)

r(d + 2h)s 3 R "-,-)(2

and for s > d

(1(s) = nd it Rx (u. 7) i (13) % k.

r(d + 2h)s 2 3 U ,/,I

One notes that if s < h. a = 0 and the lower limit term vanishes in both. This condition is a
second branch point in the range of s.
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The last term is integrable by standard methods

C2 (S) 4h2d H (s - h) x'/l - X2 + sin-Ix .5a/d (14)
r(d + 2h)s 3

and the remaining term with a little more work yields

c(s) = r(d + 2h)s - X (6X 2 + 1)- sin-I sa/d (15)

where b = s/d for s < d and b = I for s > d, so the upper limit has a branch point at s = d

and the lower has one at s = h. It is useful to define the auxiliary function

RA(f,x) = xVI - x 2 f(x) - sin-'(x) (16)

Then combining (14) and (15), one has

d d2RA(6X2 + 1,x) / - 4h 2 H(s - h)R (-1,x)
7r(d + 2h)s3 " I I I

The branch structure is the same as for c I: the lower limit contributes nothing when s < h. Furth-
ermore the s < h term, the upper limit, is part of the total for s > h. Both branches, s < d and
s > d, have this same structure. This structure is utilized in the evaluation, program K3CRDN,
listed in the appendix. The programming is straight forward except that this form of the statement
function RX assumes SQRT(O.) returns zero. Also use of double precision has been made to avoid
round-off error near s = 0.

This routine checks normalization and average chord length also. The probability (or integral)
distribution is defined

C(s) = c(x)dx (18

and the normalization condition is C(0) = 1. Furthermore there is a theorem, sometimes known as
the Cauchy theorem [51, that three dimensional chord distributions of convex bodies have an average
chord length, S- = 4V/S, where V is the volume and S, the surface area. For a right circular
cylinder this is

s = 2hd/(d + 2h) (19)

Five runs of K3CRDN are also exhibited in the appendix for different values of the aspect ratio, h Id,
giving the sum over the density to check normalization, the average chord length calculated by

00'

s = 1o sc (s)ds (20)

and that obtained from (19) for comparison. These runs were all for 2000 bins (MS) but comparing
series of runs for fixed d and h with number of bins increasing exhibited convergence. The accuracy
obtained of 3 to 4 figures is acceptable for a 32 bit machine except in the case for h Id = 10, where
the norm error is 0.2 percent. This is possibly improvable by resort to double precision should the
need arise. However neither limit d - 0 or h - 0 exists for the final form so one might expect
problems with either very high or very low aspect ratio.

4
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A slightly modified version of K3CRDN has been run to produce the graphs in Fig. 1, showing
results for the three most moderate aspect ratios: 0.5, 1.0, and 2.0. Note that the jump, in both
cases where it is isolated (the case h = d = I may be considered degenerate in that the cusp absorbs
the jump), is associated with the chord s h, while the cusp is associated with s = d. The values
of h and d were set at 2/45 and 4 /'f5 for the high and low aspect ratios and V12 in the other case.
All three cases have Max(s) = 2.

The jump and cusp re interesting features from several standpoints. The differential chord dis-
tribution for a rectangular parallelopiped (RPP) also exhibits jumps, three if all three dimensions are
different 141. Having observed these features one can propound reasons for their occurrence, care-
fully couching them in the language of geometric probability 161 to mask any suggestion of hand way-
ing. The basic uniform measure for chord distributions in three dimensions is four dimensional. P%
These four dimensions correspond to points on any plane plus the element of solid angle at each such .0

point. In this qualitative argument, one need only point out that when a particular chord length has
an extra dimension available to it, that length must occur with higher probability in the distribution. A-

In the case of the RPP one sees that the occurrence of opposite parallel faces provides this extra
dimension for that length equal to the distance between the two faces. Moreover one sees that this
length may be approached continuously from above by variation of solid angle but not from below.
That is, a chord produced by displacing a perpendicular chord by a small angle always makes a
longer chord. In other words this feature indeed has the characteristic necessary to provide an "'up"
jump in the chord distribution. In the case of the circular cylinder one sees that "opposing parallel S
faces" must be expanded to the more inclusive term, "opposing parallel elements," remembering the
elements of a cylinder are the straight lines constituting the cylindrical surface. Furthermore one sees
that there is a continuous approach from below as well as from above. The length of a diameter is
approached from below by angular displacements perpendicular to the elements and from above by
displacements parallel to the elements. Hence opposing parallel elements have a cusp signature in the
chord distribution.

The cusp and jump are also of interest for, shall we say, their mildly singular character. The
cusp is really singular but "'mildly" so, as it is integrable. Having seen above that the cause of these
features is opposing parallel elements, one also sees that such features are pervasive among typical
sensitive volumes in memory cells. While a depletion region (that is, a sensitive volume) is defined
in nart electrostatically and thus must have rounded corners, such rounding is likely to be mainly
local, leaving still significant areas of opposing parallel elements. Indeed while this electrostatic
effect tends to ameliorate parallel faces, it may enhance cylindrical parallelism. It seems there is rea-
son to expect physical consequences from these features. In the evaluation of the upset rate in space
the coincidence of one of these mildly singular features with a sudden jump in cosmic ray fluence at a
particular LET should provide an especially dramatic onset. Of itself this feature is not qualitatively
distinguishable because already jumps in the LET spectrum occur. However one prominent evalua-
tion method, Monte Carlo, would miss enhanced onset from this source because it is incapable of
evaluating mildly singular features.

Some limit considerations influenced the evaluation while others did not. It seems worthwhile to
mention them for their possible affect on modifications. The jump is finite and is no problem. No
provision was made for the case that a bin center point might fall on the cusp, which is a singularity.
This point is simply not evaluated in the direct coding. However in the evaluation of the two elliptic
integral library functions, a stop occurs if both the first two arguments are zero. This could only hap-
pen if a bin center fell on a cusp within computer precision. A weak attempt to avoid this was made
by dividing bins irrationally with respect to s d or h by using maximum chord length. Since this
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would have imposed unusual input restrictions, cases of rational ratios d or h to Max(s) have been
evaluated and no problem was encountered. The case where one formed bins by dividing d or h1
instead of Max(s) has not been investigated. In fact an investigation of the s - d limit when h = d
was made using known limit properties of the Legendre forms of elliptic integrals. As indicated ear-
lier this contributed little to the results except, perhaps, a familiarity with problems avoided. The dis- 0
tribution end points are easily evaluated. If s, = + h',

c(s M) 0 (21)

c(O) 16/(3ir(d + 2h)) (22)

the latter arising as a limit of the c o term. Thus evaluation near s 0 should be avoided without
making special provision. In Fig. 1, the three graphs, in order of increasing aspect ratio, begin at
0.474, 0.400, and 0.380, respectively, according to (22).

Perhaps it should be remarked that the rigorously proper mathematical milieu for some of the
manipulations above is non-standard analysis since for completeness delta functions are needed. That
it was nearly possible to carry through this analysis without reference to delta functions is interesting
in itself. The one reference, page 2 and 1, was only to point out that by using one, a difficulty can
be seen not to be a problem. Probably the reason this short cut was feasible is that the delta function

fortuitously integrates to zero. This is proven by the following exercise.

The same methods as above were applied to evaluate Kellerer's integral chord distribution for a
circular cylinder. An ambiguity arose as to the constant of integration applicable for the s < d
branch which is related to the choice of the use of arccosine or arcsine in the evaluation of one of the
standard integrals. This ambiguity was easily resolved by enforcing the normalization condition, fol-
lowing equation 18. At the same time this results in continuity at s = d. This proves the delta func-
tion makes no contribution because of contributing one would show as a jump at s = d. No ambi-
guity arises for the s > d branch because it approaches zero at maximum s due to the coalescence of
the limits of integration.

The integral distribution, evaluated directly, agreed entirely with the numerical integral of the
differential distribution thus providing an additional confirmation of these evaluations. The direct
integral is available but is not included here because integrating the differential is just as efficient
whenever the complete distribution is being evaluated. Furthermore the integral algorithm seems to
be slightly more sensitive to the need for higher precision at small s.

This same evaluation using Legendre elliptic integrals has been published by U. Maider 171 -

along with a number of related results. For example, the infinite limit of both d and h are obtained
and the latter gives our c1 term. Graphical results appear to be the same after renormalizing to
account for the use of different dimensions. The author wishes to thank A. M. Kellerer for this refer-
ence.
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$ R K3CRDN
ENTER D,H,MS,KS,FO:
2. ,2.,2000,0,0
NORM: 1009999 AVE: 0.333319 COMPARE: 1.333333
$ R K3CRDN
ENTER D,H,MS,KS,FO:
2.,21. ,2000,0 ,0
NORM: 1.0005059 AVE: 0.999779 COMPARE: 1.000000
$ R K3CRDN
ENTER D,H,MS,KS,FO:
1.,.2,2000,0,0

NORM: 1.0005429 AVE: 0.800043 COMPARE: 0.80000033
$ R K3CRDN N
ENTER D,H,MS,KS,FO: N

.2,2.,2000,0,0

NORM: 0.9978931 AVE: 0.190463 COMPARE: 0.190476
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