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ABSTRACT

A tutorial is presented describing a general machine learning theory which spawns a
class of energy minimizing machines useful in model identification, optimization, and
associative memory. Special realizations of the theory include the Boltzmann machine and
the Hopfield nenral network. The theory is reinforced by appendices addicssing particular
facets of the machine, ranging from gradient descent to simulated annealing.

The treatment is systematic, beginning with the description of the energy function.
A defining relationship is established between the energy function and the optimal solution.
Following, both classical and new learning algorithms are presented (directing the adaption
of the free parameters) for numerically minimizing such function to yield the optimal
solution. Finally, both computational burden and performance are assessed for several
small-scale applications to date.
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2 THE BOLTZMANN MACHINE
e
y
a0 A Survey and Generalization
3.\
;.j.-: 1. INTRODUCTION
®)
.:g. Man is forever developing new approaches to solving the increasing problems
".‘: N which confront our modern society. Some of the simpler problems can be formulated in
) . . . . . .
1:‘: conventional mathematical constructs, with accompanying direct solutions. However, for
i‘" ' many of the problems of real practical interest, direct solutions are often time consuming
j;:. e - and suffer from ill-conditioning. The recent trend to solving problems of practical interest
X which often require computation efforts that increase exponentially with the size of the
e . . . .
’:‘, problem (NP-complete class problems) involves producing a timely estimate of the
" : solution. That is, a soluticn is sought which is the best, given finite resources. Such
T resources include computation time, complexity, and the amount of beforehand (a priori)
2 information.
)‘.
SN
e : . . :
" Specifically, the type of problems applicable to the solution techniques presented
‘.ﬁ e herein are those upon which an objective or cost function can be mathematically defined to
O\ . . . ..
0 represent the merit of an estimated solution. Hence, the cost of a particular solution is a
-js quantitative measure of how well the estimated solution conforms to the desired problem
!') goals, subject to finite resources. As will be demonstrated, this cost function approach is
5} . applicable to a broad class of problems.
‘ 1
o 1.1 ORIGINATION
2
®
;:' e The Boltzmann machine, originated by Hinton and Sejnowski [1], is a
$
o computational algorithm for solving problems having objectives represented by a cost
: function. The machine iteratively alters the free parameters according to a prescribed
’ .“J algorithm until the cost function is minimized, corresponding to finding the optimal
W solution (optimal in terms of the cost function.) The iterative manner in which the system
b : seeks the optimal solution is the distinguishing characteristic of the Boltzmann machine,
?} and most influential in the naming.
) -
I
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The machine is named after Ludwig Boltzmann who discovered the fundamental
law governing the equilibrium state of a gas. The general principal derived from
Boltzmann's work and exploited in the present context is simply that a network consisting
of a large number of units, with each unit intcracting with neighboring units in a restricted
region, will approach a canonical distribution at equilibrium (steady state) given by [2,3]

) o BE(57)
p(s) = - —
J" ‘BE(S)ds—

all states (1)
where E (57) is the energy of the system in the global state § .

The compatibility of Boltzmann's contributions to iterative problem solving
becomes clear once several analogies are made. First, the energy function is actually the
cost function of an estimated solution. Furthermore, any estimated solution is represented
in the machine by a particular global state 5, where § is a vector containing each of the
unit values. A second analogy concerns the interpretation of the Boltzmann distribution
(1). Clearly the distribution favors the lower energy states at equilibrium. That is, as the
process reaches equilibrium, the most probable global state configurations will be those of
low energy. By analogy, when the Boltzmann machine through a prescribed iteration
process reaches steady state (equilibrium), the most probable solutions (most probable
global states) are those of low cost (low energy) or equivalently those near optimal. This
overall analogy between numerous molecules approaching equilibrium and a machine
comprised of a large number of interacting processing units reaching steady state is

diagrammed in Figure 1.

A premier consequence of applying Boltzmann's result in thermodynamics to
iterative problem solving is the resulting algorithm relies only on information from
neighboring units for the determination of the free parameters. For example in Figure 1,
learning the connection strength Wi only requires knowing the outputs of processing units

s; and S - Hence the iteration process involves numerous /ocal adaptions which can be

performed in parallel to seek the optimal solution by minimizing the global cost function.
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;-..- Figure 1. Boltzmann analogy: (a) gas molecules reaching equilbrium: molecule i in state s, governed by neighboring
. ‘,.' potential and kinetic energy interactions. (b) processing units in machine reaching steady state. unit i in state s, governed
“:’ by neighboring correlated activity interactions.
Wy
[ v
' 1.2 ORGANIZATION
-
W Towards a clear presentation, the organization of the material is easily understood
:z with the diagram in Figure 2. The treatment begins with the description and role played by
77003 . . . . . . . .
9) the cost or energy function. This function is generic to all Boltzmann machine applications
N and hence provides a common foundation. The next section defines the general machine as
3 L4 . . . . . - .
0 being composed of processing units and interconnections as illustrated. Now depending
\ «:‘ upon the application, the connection strengths are specified either by an iterative learning
process or an assignment rule given a-priori. The iterative learning is described 1n the
:' Machine Learning section. Here a general learning framework is presented with special
2 . 1 - . . . .
) cases yielding the original Boltzmann machine and other versions employed in optimization
- . . . . Lo
;“ and associative memory. Following the learning algorithms, applications and
LY . . . . . . . . . .
® implementations are discussed in the Machine Operation section for model identification,
Ny optimization, and associative memory. Finally, the conclusion provides an overall
[ N X
4 o assessment of the machine.
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Figure 2. Learning machine organization.
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x‘ 2. MACHINE ENERGY FUNCTION

Wy

0

wr The ideal objective of the Boltzmann machine is to find the optimal solution to a

;:::' given problem. The purpose of this section is to relate the meaning of optimal to the cost or

{:':: energy function. Furthermore the energy function is examined for each of the mentioned

DL ) . . . . . . .

:',f.':' applications. Thus with both the energy function specification and the relationship to the

’ optimal solution, the true meaning of the optimal solution becomes apparent for each of the

' roblem solving applications addressed. Additional application information follows in
s p gapp P

4‘& Section 3.

o

(' Central to the problem solving applications of the Boltzmann machine is the energy
‘ { Ed - . . - . . . . g
{c function. This function E (s ) is simply a measure of how well a particular solution s

‘::‘. conforms to the objectives of the desired solution. Typically the function is chosen with

'.‘:'.s lowest energy designating best conformance. Moreover since any machine solution § can
e be expressed as a function of the machines free parameters, the energy function is clearly
NN dependent upon such parameters.

e

o Now the energy function is related to the optimal solution simply by definition. A

7'_ , solution is defined optimal if the solution satisfies the desired objectives (represented

o P P

“: . mathematically by the energy function) better than any other solution the machine can

generate. Therefore the objective of the Boltzmann machine can be viewed as minimizing

Y,

the energy function with respect to the variable machine parameters. Under suitable

L)'
] M I

conditions the minimization will generate a set of machine parameters which will yield a

'\
ant : solution with lowest energy, corresponding to best conformance.
. )
e
> X The machine seeks the optimal solution by searching the free parameter space in an
d iterative fashion, diagrammed in Figure 3. Unlike most other minimization techniques,
s g g q
.;,{ provisions are provided in the Boltzmann machine to avoid local minima in the operation
1

:‘, ~ phase (following learning). In effect these provisions allow for occasional uphill moves,
e where the energy actually increases to avoid local minima.
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I Certainly specifying an energy function which mathematically incorporates the
. desired objectives of the problem solution can be challenging. The selection is often
~ governed by intuition an” tractability. Fortunately for the applications addressed, tractable
:;-E energy expressions have been constructed with much intuitive appeal as demonstrated.
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Figure 3. Conceptual diagram of optimization search.

x

¢ Beginning with model identification, the goal is to build a model (by specifying the
free parameters of the model) to replicate the implicit behavior in an observed process.
Specifically in the Boltzmann machine context, the machine is configured to learn the
underlying constraints of an observed random process. That is, given training data
comprised of realizations and corresponding probabilities, the machine iteratively alters the
free parameters to ultimately form a model which generates similar realizations as those

P A AT

observed.

»y H
>

L]
x

If the stochastic data is represented by a probability distribution p(*) over the
quantities observed, and the machine is represented by a probability distribution g(*) over

X 8 A

the corresponding units, then an information theoretic measure of discrepancy between the
data and model is [4]

a
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Rt L Aoy

o)
G(p. q)=- Jp(\ )og oG )dﬁ
v : (2)
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s%‘ . Clearly this distance measure is zero if the model generates realizations with the exact
;’i‘t distribution found in the observed data. Consequently, for model identification, G is to
e be minimized with respect to the free parameters available in the model. And the optimal
gt . T .
::;::: solution corresponds to the set of parameters which yield a model distribution closest in
o . ST
Y measure (2) to the stochastic data distribution.
ot
.?:':l
l ) . . . 3 . . 13 . .
Q,;u? In optimization, the goal is to solve a given problem by minimizing or maximizing
& a cost function of several variables which incorporates the objectives of the desired
Mgy . . . . .
S solution. Typically the cost function, serving as the energy function for the Boltzmann
: machine, is comprised of optimization terms and limiting terms. The limiting terms serve
R to penalize solutions outside the boundary conditions. For example from a computer
p ,\_-“f design context, where numerous circuits must be partitioned on several chips, the
tﬁ optimization term may be the number of signals crossing the chip boundaries. The limiting
e
3 term may represent the imbalance from the partitioning, for it is desirable to divide the
@ . . . . C
4 circuits about equally amongst the chips. Thus the optimal solution minimizes the number
J . ) . . Ce . .
. f:c of signals crossing chip boundaries (and hence minimizes propagation delay) while
; f(“ simultaneously avoiding imbalance. Such a cost function for the optimal partitioning of
! N circuits between two chips is given by Kirkpatrick, Gelatt and Vecchi [5)
X
"wh _ a,
s £ = X (A-7)ss,
n > (3)
;) where
, a; = number of signals passing between circuits i and J
\ N .
e ( 1 circuit ; is placed on chip 1
o, s -
*!1 I

? -1 circuit j is placed on chip 2

"y x
>
I

imbalance coefficient selected by user.

Another example of optimization is the traveling salesman problem where a route is

...1..'-1.& "
- o o4 -

planned such that every city is reached at least once. Here the cost function is simply the
&_(.: total distance traveled, and the optimal solution corresponds to the shortest route.
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The final application is associative memory, where the goal is to retrieve memory
b vectors given an input vector representing a partial or incomplete que. The cost function is

-_M
5 fabricated such that the memories {~;} | are local minima, as diagrammed in Figure 4. A
i =

‘o) specific cost function utilized in the Hopfield associative memory is [6)

- -
-

o™

E(5)= —%ZZTU. $;S;
" 4)

where p

1= 3 (2 -1) (2 1)

and the optimal solution corresponds to the memory closest to the key pattern s,

P e
-

(5) )

..

e

‘.
&

e
v

E(s)

- -
g N

& | I 1 |

— -_— - ——

Zj Zj $0 2K s

94420-4

.

Fi Figure 4. Energy function shown with minima (memories) at system states { } The process is initiated with que
s and then follows the energy landscape in the direction of decreasing energy unnl a local minima is found.
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These are just a few examples of the cost functions employed in optimal problem .

-

solving. Reiterating the key concept, the optimal solution is defined as the solution
minimizing the cost (energy) function. The following section describes the machine
architecture which serves as a vehicle for minimizing such function.
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3. MACHINE DEFINITION

—

In general, parallel computation machines such as the Boltzmann machine consist of
processing units and interconnections (see Figure 2). A general architecture is presented

TNl

which reduces to the Boltzmann machine with appropriate restrictions. This section
describes the processing units, then follows with the interconnections. The general system
is referred to as simply the machine, while the specific realization by Hinton and Sejnowski
[1] is appropriately termed the Boltzmann machine.

The processing units are grouped into visible and hidden units. The visible units
serve as the interface between the machine and the environment and are typically divided
into input and output units. The hidden units are additional units necessary in learning

R R R L X R R e o S N

more complex relationships found in the training data, which can not be modeled by simple

- I

pairwise correlations amongst visible units. In effect, the hidden units form a representation
internal to the machine, thought to capture significant underlying features in the data.

The units can be represented in many ways. An input/output format is shown below
with the visible units represented by a vector comprised of both input and output vectors.

The second representation shown in Figure 6, simply collects all units into a single
vector which represents the global state S of the machine. The values of the units are
typically binary although analog values can be utilized.

R R N TR A

-

The interconnections with designated strengths serve as the communication links

i between the processing units. Now depending on the complexity of the machine, the

) interconnections may range from simple pairwise connections (per Figures 5 and 6) to
M-ultple connections, where each combination of M processing units are coupled together
with an associated connection strength. The connection geometries together with the
notation are displayed in Figure 7. Specifically for the original Boltzmann machine[1], the
connections are pairwise, symmetric ( Wi = Wi ), and real valued.
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Figure 5. Inputioutput representation.
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Figure 6. Global state represeniation.

. Wi ~
@ @i 3
(@) (b) 3

Figure 7. Interconnection geometries: (a) pairwise, (b) 3-tuple.
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On a more subliminal level, the interconnections of variable strength actually
represent implicit knowledge acquired during the learning phase. The following section
explains how the training is conducted, or equivalently, how knowledge is acquired from
the data giving rise to values for the connection strengths. Consequently, the machine is
specified by the processing units and the interconnection geometry and strengths.
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j:;:,'» 4. MACHINE LEARNING
g
Ry The process of specifying the inte;connection strengths (weights) is referred to as
)
',:' learning. The learning procedure depends upon the application. For some applications
i: . such as optimization and associative memory the learning is immediate, whereby weights
)
et are fixed a priori along with the energy function. However, for model identification the
,';? learning is slow, wherein the weights are iteratively adapted until the machine reaches
;.::' equilibrium (steady-state.) This section treats slow leaming, in which a leaming law !
:: oY governing the adaption of the connection weights is derived from minimizing the learning
r’:":’ cost function. Subsequently, the learning law is implemented numerically by simulated
7. annealing.
3, o
f 4.1 THEORETICAL LEARNING FORMULA
uk oy
,,. The objective of the machine in the model identification context is to adjust the free
:jz:' parameters ( weights) such that the machine models the observed realizations (data) in the
:'.‘,: best possible manner. The best or optimal model is defined as the model that minimizes the
)
1}!' Y discrepancy measure between the model and data. Thus the discrepancy measure serves as
",_,. the cost function. Consequently the objective of learning can be stated as adjusting the
’
gﬁi weights to minimize the cost function, thereby yielding a model which replicates the
,:it'. behavior implicit in the observed realizations of a stochastic process.
"! a
’;\% Assume the observed data has a distribution p("') over some accessible (visible)
"‘: units v . Now p(") may be known explicitly, but most often sample realizations of
£ % y y
r"i: p(7) are given in the input/output form with an associated weighting p(\T ) as shown
O (R
" ) V= )7] = P(vl)
:
v _ (5 _
v,=| S | p(v
" 2 Y, ( 2)
\
N 2
::' W - _[ "L =
:n v, = )71_ @p(\l_)
o
:.'.‘
‘::ﬂ 13
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ii:'is Theset V = {‘ } is the training data. Likewise the machine is represented by a
:7‘~‘ probability dlsmbutnon q(\' ), also over the visible units. Now with the data and model
;:;:; characterized by p(") and g(7) respectively, an information theoretic measure of
E:i;l distribution similarity is given by
s )
:‘—'\ F(aq, p)=_[p(f’)log >0 dv
-
?.:} Y ©)
:é:' and can be viewed as a measure of relative entropy, measuring the average uncertainty
by associated with p(") relative to ¢(7). Therefore maximizing (6) corresponds to
:"" maximum entropy learning. Alternatively, if the cost function is defined as the negative of
the relative entropy, then the earlier expression (2) measuring the discrepancy between the
3 model and data results. Consequently, the optimal model solution is defined as the model
maximizing the relative entropy or equivalently, minimizing the cost function.

T
i The minimization of the leaming cost function (2) with respect to the connection
2 weights is conducted by a gradient descent algorithm. The general method of gradient
> h descent is described in Appendix 9.1. Essentially the algorithm yields a weight update rule
553: given by

¢
§§: wl(n+ )= Wl(")+ Awl(n) N
ol
D
& o __ 9
::..:': Aw, (n) = WT T (n) ®
i3
‘ which converges to local minima, given an appropriately slow learning rate 7 .
;:,:': Consequently for minimization via gradient descent, the gradient of the cost function with
E;:: respect to the connection weights must be obtained. A general derivation applicable to the
:::'e Boltzmann machine as well as other energy minimizing machines is contained in
' Appendix 9.2. The generalization follows from employing the Gibbs distribution
K [(Boltzmann distribution (1) being special case)] for the machine's visible and hidden
> units, given by

. :ltgl’iala(qlpa'{
X : i, b IWOLUSDIOCAN N
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=_l1 -U(i)
o g(s) =—e $ ©)
e here
oy w
g U(§)= 2w, U, ()

X { (10)

. z = J.e“ USgs
'y S .
.“: (11)

Now U (5) is the global potential function of the system, being a weighted superposition
of the local potentials U ;(§). Each U, (5") represents tl. - local potentia! of the M-tuple
units coupled together with a common interconnection strength w, . Hence the local

potentials are dependent only upon a small region of units. (For example for pairwise

connections U, (5 )eew 5.5 . , and for third order connections U, (¥ )ow', .. s.5.5, .)
/ JiTiTg { ki itk

o Also notice the global potential function is often named the energy function. However in

,;r',. the treatment presented, the energy function is maintained synonymous with the cost

i.:\f function. Thus for optimization and associative memory applications, the energy, cost and

- global potential potential functions are one and the same. Yet for model identification, the
energy function (2) is the learning cost function and differs from the global potential

0y function (10) as will be demonstrated.

Z',\!' The Gibbs distribution is both intuitively pleasing and tractable. Intuitive since the
D distribution only requires the units be governed by activity within a surrounding

K neighborhood, or precisely, the units comprise a Markov random field {7]. In neural

*E'é::', modeling, this requirement simply states that the activity of a neuron is determined by a
B0 restricted neuronal region about such nearon. While in image processing, a given pixel is
L assumed correlated with other pixels confined within a neighborhood about the given

Y k;‘! - location. The tractability follows from the global potential function being linear in the

Eir generalized connection weights w, , resulting in a local learning algorithm, That is, the

I b
){ A L) . 3 3 3 I3 -
Xii quantities necessary to adapt a connection strength to achieve global minimization are

within proximity of the specific weight itself.

o, 15
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With the Gibbs distribution employed over the machine units, the resulting partial

derivative of the cost function with respect to the generalized connection weight w, is

i (12)

where

E=E  n{Ue )} = ” U,(F, R)q (7, R)didh
HV

(13)
is the expected value of the local potential U, (¥, k') with respect to the full Gibbs
machine distribution and where

+ - - —_ - _— - - - -
E'=E e UG )} _J'U U7, K)q(F | ¥)dk )p(\ )di
v\H (14)

is the expected value of the local potential U . (v, k) with respect to the conditional Gibbs
distribution ¢(A / v) and the true data distribution pG™) . Consequently a gradient descent
learning algorithm (7) for adapting the generalized connection weight w | is obtained upon
substituting (12), (13), (14) into (8) yielding

Aw, (n) =~ "(El+_ FI—), (15)

Substituting the specifics of the Boltzmann machine including symmetric pairwise
connections with analog values, binary units (s, € {0, 1}) , and a global potential function

U(§)=—-TLZZ WSS
i

with local potential,

Ty —_ Ll
Ul(s)—-— T s'.sj an

the gradient (12) reduces to
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L1 -
e v, =TT (g {55} B {55 ))

o _____] + _ -
) (P~ P; (18)

oy where

L
Pi=E e %)= kE_]@s,. s;ja(h ! ‘_'k))”(rk)

(19)

$ ‘ p'_—,EE s o dsis =Zs.s.q(s")
L 4 j 4(~h){ j} S L) (20)

W Moreover, pl*.} represents the average probability over L training patterns that the ith : i
Ay and jth units are on when running the machine with the visible units fixed to the training
@ patterns (termed clamped learning mode). While P;; is the average probability that the ith
and jth units are on when running the machine without any units fixed (termed free-
running learning mode.) Hence the minimization of the Boltzmann machine learning cost
ar function requires matching the average probabilities that the coupled units are firing

together under clamped and free learning modes.

K And in general, the theoretical learning formula involves calculating the differences
P of expected values of local potentials with respect to full and conditional Gibbs
- distributions.

& 4.2 NUMERICAL LEARNING ALGORITHM

::; To compute the adaptive weights according to the learning algorithm derived (15),
expected values of functions dependent upon the unit values § must be calculated under
the Gibbs distribution. Tractable closed form expressions seldom exist. As a
consequence, numerical approaches are sought to compute these expected values and hence
LY the weight updates Aw, -
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Bes A Monte Carlo algorithm developed by Metropolis et.al. [9] for calculating these
}'-Of‘, quantities is described in Appendix 9.3. Basically, the expected values are approximated by

R
a - = -
;1&' Eq(y){U1(s )} =R 2 U/ (sm)

\

) where the global states 57 ~are selected with a probability proportional to the Gibbs
:, 5 distribution ¢(5). The Metropolis algorithm was later extended by Kirkpatrick, Gelatt,
::a:' and Vecchi [5] and renamed simulated annealing (see Appendix 9.4). The contribution
:E:h' consisted of varying the parameter which controls the selection of the states in the
{ algorithm, namely the temperature T (63) according to a prescribed schedule analogous to
-..._« chemical annealing. The variation in temperature offers a good compromise between the
"ZE: state selection behavior at the extremes. For at high temperatures, the global states selected
?. '.:;5 for the expected value calculations (56) are randomly chosen with uni{orm distnibution,
y which presents a problem since the Gibbs distribution places most of the mass over few
;i‘ : states with low energy. On the other hand at very low temperatures, the global states

e selected are within a local minima region, and hence the region of low energy states may
"ﬁl never be sampled. This sampling behavior is demonstrated in Figure 8.
:‘ A further contribution of Kirkpatrick was the realization that the Metropolis
:§ algorithm equipped with the varying temperatures (annealing schedule) actually yields a
::‘. process which tends to converge to states which are deep minima of the global potential
)' function used in the Gibbs distribution. Thus from an optimization context, a global

b’j minimum or maximum can be found by merely substituting the function to be optimized
s ..:‘ (termed the energy function) for the global potential function in the Gibbs distribution.
; 2“ Furthermore Geman and Geman [11] proved that under sufficiently slow annealing

schedules (64), the process converges in probability to the global minimum.

Now with the Metropolis algorithm as the foundation, the simulated annealing

.
P EP LD

procedure for calculating the expected values under the Gibbs distribution can be described
with the following definitions.
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Probe: — A probe consists of first perturbing a single unit chosen at random by a small
e amount, and then accepting or rejecting the new system state depending upon the change in
energy. Essentially this entails the first portion of the Metropolis algorithm (step 14 in

'§ Appendix 9.3). The distinction from the Metropolis algorithm is now :he temperature T is
% actually a function of the iteration number. Also the new state acceptance rule utilized by

§ Hinton [1] for binary units is slightly different from step 4 of the Metropolis algorithm. In
. fact because of the binary state restriction, the perturbation always entails setting the
R randomly chosen unit to unity with a corresponding acceptance probability
oy 1

U —_ _
i P(si=1)= 1+ e~ AF /KT

(22)

e
ST LLEL

- o -

For both methods, the acceptance rules (63) and (22) are easily implemented with a
uniform random number generator operating in the range [0, 1]. Defining x as the random

d

number, the general acceptance rule (63) reduces to:
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AE £0 = accept perturbation s +As‘i

AE >0 = accept perturbation § +A5 X < em AE /KT

while the binary acceptance rule (22) reduces to

1
1+ e~ AE /KT °

accept perturbation s, = le x <€ 24)

Iteration: — An iteration consists of enough probes such that each unit is probed once on
the average. Typically for N processing units, an iteration consists of N probes at a
fixed temperature.

Run: — A run consists of several iterations with the temperature of each iteration
specified according to the annealing schedule.

Annealing Schedule: — The annealing schedule is a list of temperatures as a function
of the iteration number. The temperatures typically begin high and gradually decrease to a
minimum value, per Figure 9.

The process begins with the system in a random state position. With the first
temperature of the annealing schedule the units are probed enough to complete an iteration.
The temperature is then adjusted according to the annealing schedule and the process is
repeated until the lowest temperature is reached. At the lowest temperature, several
iterations are conducted to gather the desired low energy states S-I for the expected value
calculations (21). Consequently, simulated annealing is a nested iteration process, guided
by the selection of the annealing schedule.
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Figure 9. Annealing schedule with several iterations (R} at lowest temperature to allow statistics to be collected at
equilibrium.

4.3 LEARNING PROCEDURE

The machine learning procedure based on simulated annealing is now presented.
The learning procedure is shown to consist of two modes, free running and clamped.
These modes are defined and the net computational burden of learning is examined.

Recall the learning formula governing the adaption of the generalized connection

weight w, (15). .
aw, (my=-n(E "~ E")

The quantity EI‘ (13) is calculated directly by the simulated annealing procedure described
previously. This mode of learning is termed free-running, since given an initial global state
5, » the system wanders through a variety of states allowing all units to be perturbed.
Specifically for the Boltzmann machine

{ Ji (25)

21

30 0 Mo edat d sy
o ‘q o n'. i 0"."‘0 ':‘4"‘1':‘:‘.'0.'0‘ ‘a"l'u"’t "’a a’! hhy ,p" "' "n':'." 'o' 0". ":‘! DA “ﬂf oy

l,‘

.\

lu|.“.

l.. [}




G E-=-!p
:."%.i 1 T pu (26)

L
Aot R i 27

X where NI.; = number of occurrences in which s. = s, = 1 inthe last R iterations of the
R annealing schedule (free running mode). Hence P; is simply the average probability that
A the ith and jth units are on at equilibrium, where the temperature remains low and fixed.

The second quantity E[+ is calculated also by the simulated annealing procedure, but

in two stages. These stages represent the clamped mode of learning. The dual stage
process arises because only the inner integral in (14), with the conditional Gibbs
distribution g(/ / ¥) , can be evaluated by simulated annealing. The outer integral

-

o

involves a possibly non-Gibbsian distribution p () over the data, and hence is not suitable

e
; sl

for simulated annealing.

i
B\
T The first stage in the clamped mode of learning involves applying simulated
'»{’" annealing to the system with the input and output units clamped (held fixed). Thus L
’g-:’_:, simulated annealings are required, one for each training pattern, where only the hidden
A . Y " . . .
25 units are perturbed. Upon calculating the inner integral for each of the L training patterns
Hag applied, the second stage performs a weighted average using p(v) as the weighting
o function to yield the resultant E ;- Specifically for the Boltzmann machine
L
P
ot Ef=-L,+
@ { - T p l:]' (28)
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) L | R ) )
g )y [; 2 smsm ]p(ﬂ)
) k=1 m=1

;'
' L
n = Lt -
p = 2 (R NU(k))p(\k)
" k=1 (29)
b
.;‘ +° . . .
:‘: where N . i ( k )= number of occurrences in which 5, = J = 1 in the last R iterations of
0 the annealing schedule with the system clamped to v1sxble pattern \ . Hence, p
b
;‘: simply the average probability over all L training patterns that the lth and jth umts are
\ on at equilibrium.
3
: Consequently, the learning procedure consists of alternating between the clamped
" and free running learning modes, each mode utilizing simulated annealing. Depending upon
‘ ¢ how the averages for E 1+ and E I_ are calculated, various gradient descent algorithms
: result. The true gradient descent algorithm (7), (8) results
A

~-

L
r . —_nl-1 Lyt Ty — N
. Aw, (n) = "{ T{ ) (R sz(k))P(‘k) RNin
k=1 (30)
requiring L + 1 simulated annealings, while the averaging proposed by Hinton results in a

variation of gradient descent given by

S ) e

-,

L L
: =—nl-1 Iyt Ty -1 L
¥ Aw (n) = "{ T{ 2 (R Nij(k))p(‘k) L Z ® N (k)H
| k=i k = (31)
requiring 2 L simulated annealings (since the free running statistics are also calculated over
a L simulated annealings indexed by k ). Another variation is achieved by updating the

; weights following the presentation of a single training pattern v, , according to

4 k’

¢ [ l{N(k) N(k)}]
b Aw (n)|_=-n|-= P(7) -
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::::0 Finally, a compromise algorithm can be utilized

a::::'

. L(n) : L(n)

- 1 + - ] ) -

t: Aw, (n)=-n|-F Z (TNl‘j(k))p(vk)-T 2 -ITNij(k)

Wy k =1 k=1 (33)
{ ".‘l

90 |

‘—‘3 where L(n) is varied in an exponential manner (shown in Figure 10) to achieve a

vg:l; compromise between true gradient descent (30), requiring weight updates after all L

::. patterns, and (32) requiring adaptions following each pattern presentation [12].

P

( Towards examining the computational burden, the weight update rule (31) is

i . implemented and diagrammed in Figure 11.

S

'E: With the following symbol definitions, the computational burden can be assessed

o !

3

. 3 N, = No. visible units

p 5% N, = No. hidden units

N = No.units (M. +N)

::’::: N+ = No. distinct connection weights [Boltzmann N, = %(N -1]

::E::: L = No. training data patterns

E:::S Ny, = No. learning sweeps (No. adaptions/connection weight)

33. N, = No. iterations/annealing schedule

3.‘- R = No. iterations used for collecting stanstncs

:2 N, = No. probesfiteration (Boltzmann NT i =N, N"=N)

n.. N, = No. averages computed by (15) for leammg process.

N The total number of probes for the general two mode leamning procedure is

-~

I Np=NsLNa(Nh+N). (4)

o

- In addition, the total number of averages computed by (21) for the expected value

E‘- calculations in (18) are

X N, =2N; N, (35)
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H Figure 10. Pattern presentation method for compromise algorithm.

.;'v‘ Specifically for the Boltzmann machine with symmetric weightsand N, = N 2 (from

ry published examples) the complete learning process requires approximately N 4 averages and

. 3 .. .
e a number of probes exceeding N~ . And realizing that each probe consists of four steps of
:,: the Metropolis algorithm, the computational burden is extensive.

In summary, the machine learning procedure for model identification requires
nh adjusting the connection strengths to minimize the discrepancy measure between the data
W and model. The particular learning algorithm to achieve this minimization is given by (15),
e where the expected values of local potential functions (13) and (14) must be calculated.
:) The average local potentials are alternately numerically computed by simulated annealing.
W In the free running mode, E is calculated by simulated annealing with all units being
perturbed. While in the clamped leamning mode, E is also calculated by simulated
J;:.u annealing, but with the visible units clamped, and hence only the hidden units being
® perturbed. Together 2 L simulated annealings are performed to provide the gradient with
- ' respect to the connection weights. Consequently this process requiring 2 L annealings
" (actually a modified gradient descent algorithm) must be conducted each time the
connection weights are adapted; certainly an extraordinary computational effort.
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's“:: 5. MACHINE OPERATION

B

‘,_.,. Once the machine is trained, either by slow iterative learning (Section 4) or fast

:i::: a priori assignment, the connection weights are fixed and the machine is ready for

U
::'.,l: operation. The mode of machine operation depends upon the application. Again as in slow
U

:,'.:!9, learning, two modes of operation are discussed, free-running and clamped. The machine
L':?, operation applications are presented below in the context of these defined modes. Finally,
i“:u both digital computer and optical implementations of the machine are reviewed.

§

.
7 95 The free-running mode of operation simply performs simulated annealing according
i‘i" to a prescribed annealing schedule allowing all units to be perturbed. In the process, the
::" cost (energy) function expressed in terms of the now fixed connection weights is

kol

:E', minimized. Hence when the machine reaches equilibrium at the lowest temperature, the

:::! final global state of the machine is of low energy.

®

o

:'.. ) Now recall from the machine formulation, the lowest energy state corresponds to

2. the optimal solution. Therefore if the annealing schedule decreases the temperature

:::' sufficiently slow according to Geman's result [11], the optimal solution (global minimum)
.'ii‘ 1 is found. However good solutions (local minima) are often found with much faster

: annealing schedules. Therefore, the quality of the solution obtained at equilibrium as well
"z : as the computational load of the free-running mode is dependent upon the annealing

K schedule. The operation is diagrammed in Figure 12.

D)

s . . :

s:|": The clamped mode of application also performs simulated annealing, but here the

L] .

::‘:E: inputs are clamped, thus only the hidden and output units are perturbed by the annealing.
o This process can be viewed as a conditional minimization, in which the energy function

e minimization is conditioned upon the input. Again the annealing schedule is chosen

{:,’ according to the desired quality of the solution. The clamped operation along with the }
~., computational load is shown in Figure 13.
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;.‘!‘9 s Figure 12. Free-running operation mode.
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o Figure 13. Clamped operation mode.
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5.1 APPLICATIONS

Model Identification: — A simple application demonstrating the learning capability and
free-running operation of the Boltzmann machine is the encoder problem. The application
originates from communication theory where a reduced representation is sought for the
information transmitted. The training consists of placing identical patterns across the input
and output. Through training, the hidden units are to discover a representation (code) for
the presented data.

Specifically for the 4-2-4 encoder [13], the input and output of the machine consists
of four units each. As the 4 patterns are presented across the visible units, the two hidden
units must develop a binary code to represent the data. With a few modifications to the
algorithm, the Boltzmann machine leamns a proper coding after an average of 110 learning
sweeps. The annealing schedule consisted of 20 iterations ( N, = 20), from a maximum
temperature of 20 to a minimum 10. The machine can also be operated in the clamped
mode, such that when excited by an input pattern, a code is generated by the hidden units
and verified by observing the output units.

Another model identification application entails the processing of SAR images. The
intent being to generate and classify SAR pattern textures from training patterns. Luttrell
[8] proposed a hybrid Gibbs machine allowing the incorporation of a priori information.
Essentially, a portion of the weights are specified a priori, while the remaining are
noncommittal. Thus the learning process only adapts the noncommittal weights, thereby
reducing the extensive learning computations. Unfortunately only simple two dimensional
random telegraph signal patterns were used to demonstrate the machine. Consequent]y the
approach is difficult to carefully assess.

Optimization: — Most of the optimization applications simply view thc machine as a
vehicle for implementing simulated annealing. Recall from Section 2, the optimization
problem involves finding the extremum of a cost function of several independent variables.
Here the machine is operated in the free-running mode with the connection weights and
energy function determined with the problem formulation. The result is a machine which
converges to the optimal solution (global extremum) of the cost function given an adequate
annealing schedule.
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_': The first application presented is image restoration. Geman and Geman [11]

;}., rigorously formulated an image restoration algorithm based upon simulated annealing, and
ey hence implementable by the machine. The optimal solution is defined as the maximum
1.0% . . . N .

:{:: a posteriori estimate (MAP) of the original image given the degraded image. The

iz:: degradation examined included blurring, nonlinear deformations, and multiplicative

{!::} additive noise.

')

!:::‘

::::: The energy function used is the posterior distribution of the image, generated from
::::: the known prior distribution and degradation model. In theory, the annealing process

?
!?:!:' generates a sequence of images that converge in probability to the global maximum of the
" . a posteriori distribution (MAP estimate.) In practice, the theoretical annealing schedule is
; ﬁ too slow. However good image restoration results are reported for various degradations
. ;Q. with moderate annealing schedules.
._‘ The next optimization application involves the partitioning problem in computer
: design, studied by Kirkpatrick et. al. [5] when originating simulating annealing. Recall
,,.;:: from the example in Section 2, the problem involves partitioning M circuits amongst two
B chips such that the number of signals crossing the chips is minimized, while also avoiding
> any significant imbalance. The solution best satisfying the constraints is defined optimal,
K resulting in fewer pins and higher speed.
)
s
?};{ The specific problem involves partitioning the IBM 370 microprocessor onto two
”1 chips. The energy function which captures these optimization constraints is given by (3).
\)
s The annealing schedule begins with T, = 10 and cools slowly with exponential deca
¥«; o po y
0
0'|'. t
r T(t)—(L)T

o VRS (38)
a 1]
3

j\ As expected, the solution improves as the temperature is decreased. For example at

Jal

v T = 100 (random search) the partitioning required 6000 pins. On the other extreme,

\ T =0 (gradient descent) the partitioning required 700 pins. Finally for the exponential
5y greq p po
¢ : cooling (38), the process reached equilibrium at a partitioning with 500 pins. Alsoin a
o computer design context, both placement and wiring optimization problems were conducted
e p g op p
T', and good results reported.
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::::: ‘ Again using the machine as a vehicle for implementing simulated annealing,
et . -
LR ‘Ticknor and Barrett [14) formulated and implemented a Boltzmann machine for the general
! p g
.:"r problem of estimating a quantity given noisy measurements. Specifically, the generator
:'{‘A’ model is
o §=H (39)
ﬁ’:‘.
nlVa¥
') where g(M x 1) represents the measurements, H (M x N ) is a system transition
Wil P y
1% iy .. . r —_ - . .
”::E:' operator describing how variations in f affect g, f (N x 1) is the quantity to be
:E’:::. estimated, and 7 (M x 1) represents the noise composed of unpredictable discrepancies in
:g.:f_ » the measurements and system errors. Classically, solutions exist requiring the calculation
"2‘ ‘ of pseudoinverses. These approaches are often time consuming and suffer from ill-
) ' - - . . 3 A
2? conditioning. The approach taken in [14] is to find an estimate of the solution, f , defined
2 e N :
3{ 2 optimal if / minimizes the distance measure
rAig
A.l n'l
Vi E(F "FIA‘ I
I $)=Hf )-8l (40)
-'::
K “i‘.‘* Thus the machine is built with (40) as the energy function. A simple example
Wt . . . . .
¢ demonstrating the approach involved reconstructing rectangular functions which have been
g PP g g
" blurred, causing oscillatory behavior in the images. Using a priori knowledge to suppress
)
;: : the oscillations, good results were reported. However the major contribution is perhaps the
() .
N optical implementation of the machine.
RO Associative Memory: — The final application utilizes the machine in an associative
g memory capacity. The objective is to perform memory recall given incoraplete or partial
' " . . . . . . s_. . . .
":: information (key). The machine operates in the free running mode upon initialization with
' the input key pattern. At equilibrium an output pattern is generated. If the generated output
§ . . . . » .
: "“3 is the closest memory to the initial key pattern, the solution is termed optimal.
'H
::'o
sr_;} ' One method of performing assocnatlve memorv with the machine involves creating
Ko
® an energy function such that the memories to be retrieved { 1} = 1 are the local minima.
Wy
8

Since the machine is desired to reach equilibrium at the closest local minima (memory), the

1. (R UM .l G
e L} l. DA \) ) \ 9‘-"' ”i‘,n l" ‘."' ‘.?"“‘ ‘ Q' '.\‘i \ t‘i
(N ’l‘g \'r It.”.“ QA“.Qinlul". ‘|‘.‘bl'f '.\ i l'i l 0 I ’qt ﬂ . ‘ * ' "C AKX t 0 [ t W
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provisions of the machine that enable escaping from local minima are not needed. Rather,
the machine is operated at temperature 7 = 0, thereby reducing the machine to a gradient
descent algorithm converging to local minima (see Appendix 9.1). Although the machine
with T = 0 converges to local minima, the optimal solution is not guaranteed, since the

search is always in the direction of non increasing energy (see Figure 14).

Additional consequences of this method for machine based associative memory
become apparent once the energy function is specified. In short, formulating an energy
function with local minima corresponding to given arbitrary memories is difficult. As an
example, consider the Hopfield model [6] with the energy function reformulated in a linear

algebra framework

E(s')=—”ﬁs‘”2 41)

where

i 1

—_— M —_—
H=Y 7 - Mi
i=1 (42)

Now McEliece, Posner, Rodemich and Venkatesh [15] have shown that if tie number of
memory vectors to be stored is significantly less than the dimension of the memory vector
(M < N /4log N) then all memories can be recalled and are eigenvectors of the
connection matrix H. Therefore the memories actually produce local minima in the energy
function as desired. However other local minima may be introduced resulting in spurious

memories, even if the memories are kept within capacity (see Appendix 9.5).

E(s)

] 1 I

7 S0 23 s

94420.14

Figure 14. Search diagrammed beginning at s, (key) and proceeding in the direction of decreasing E, and consequently
not converging to the closest local memory Z,.
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,',':':: Consequently associative memory in the sense of Hopfield can certainly be
,':'::: implemented by the Boltzmann machine. In fact, the Boltzmann machine operating in the
‘ free-running mode at temperature I = 0 and initialized with the key pattern reduces to the
f{é Hopfield associative memory. Even though the optimal solution is unlikely to be
i:; generated, due to the nonincreasing directional search and possible spurious memories, the
5.\ method often provides fair solutions in acceptable times. And utilizing the full capacity of
:.;c;). the machine, other approaches may be developed to counter these limitations.
o
0 5.2 IMPLEMENTATIONS
;!.20*
“ﬁ. ) Since the kernel of the machine algorithm is the Metropolis probing, whereby the

units are sequentially perturbed, digital computer implementation is quite natural. In fact
the theory supporting the machine entails probing the units sequentially at random

e oD
% 5

according to an annealing schedule. Unfortunately the computational burden is extensive.

—’i o

The net computational burden can be appreciated trom viewing Table 1, along with

-
el s

,::‘o ' the figures provided for the amount of computation required for machine learning (34),

%‘i, (35) and operation (36), (37). The slow learning requires approximately ¥ 3 probes and

0 N* averages, while the operation mode entails N probes. Moreover, realizing that each

é:‘::‘: probe demands at most 3 random number generations, matrix operations, comparison and

:E;E: storage, the current digital computer implementations by simulation are feasible only for

r‘?‘: small scale problems requiring tens of processing units. Due to this large computational
~ burden, especially during leaming, algorithm modifications and alternative implementations

QY are being pursued.

‘A%

c "‘: The computational burden is significantly reduced by using a modified algorithm

o allowing parallel probing. That is, all N units are probed simultaneously, rather than

g sequential as the theory suggests. Here the energy gap calculation (step 3) for each unit

ignores the current state of the other units and relies instead on the most recent global state.
Although the original theor does not support this parallel extension, often in practice the

-.'Qﬁ

o
A

empirical results do pro» e justification.
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o TABLE 1.
b Probe Computations
:,:E.:,'. (1) s — Random Unit Selection
i *RNG
..q':‘.
',\.‘:L .
) (@) s, +As — Random Perturbation
;:'.W *RNG
ed:::' e Addition
::t:v'
4 W
;:::_' (3) AE — Energy Gap Calculation
: (sl.—)si+As=>E—-)E+AE)
L)
‘,\.‘ eMatrix Multiplication
I, eMatrix Addition
Lol
i (4)  Perturbation Acceptance Decision (23) or (24)
® *RNG

s e*Exponentiation

" eComparison

% .

Qe
Xemetel
AN

An optical implementation utilizing the parallel machine modification has been

X

introduced by Tichnor and Barrett [14]. The matrix operations are conducted by incoherent
optical techniques. Also, the random numbers required are generated optically by detecting
the light intensity from a moving speckle pattern. Compared to the digital computer, a
significant gain in speed is achieved at the expense of lower dynamic range in the optical
calculation of AE .
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5 6. CONCLUSION
e

) In principle. the Boltzmann machine operating with an appropriate (yet perhaps
? 'Ej infeasible) annealing schedule will provide the optimal solution (global extrenium) to a
t f problem expressed mathematically in terms of a cost function. Although the theory
:, 5:: supports the achievement of the optimal solution, rarely are the assumptions supporting the
‘j' theory maintained. From applications, the machine with much faster annealing schedules
j " often produces solutions which are not optimal, yet satisfactory. Therefore the machine is
:‘ X perhaps best assessed empirically in the context of the particular applications. A summary
8 of such assessment is displayed in Table 2.
:":_3 ‘ With regards to model identification, the machine learns the underlying constraints
.:'.': of the data from training examples. Thus no a priori knowledge or modeling assumptions
: :'.'. are necessary. In addition the distributed representation of the knowledge over the machine
| ): interconnections offers resistance to minor damage. However with no a priori information,
~'\:§ everything must be learned, resulting in extremely slow learning. In fact the minimization
:j't" of the objective function for leaming requires numerous simulated annealings for a single
f:"j adaption of the connection weights. Furthermore the complete learning procedure is
d - actually a gradient descent algorithm, requiring the numerous simulated annealings just to
“C:j compute the gradient. Hence he entire extensive learning process is a local minimization,
"‘-:: and thus unlikely to reach the optimal solution for model identification. ]
o
_, Utilizing the machine for optimization applications requires very slow annealing
! _,.Ej schedules to reach the optimal solution. And certainly mapping the optimization problem
’:" onto the machine by specifying both the cost function and connection weights can be
:A challenging. However if the mapping can be accomplished, the Boltzmann machine
2.: provides a solution which on the average increases in quality as the system is cooled
::; according to the annealing schedule.
&
s E Finally, the associative memory application of the Boltzmann machine suffers from
?,, spurious memories. This together with the process always searching in the direction of
'::‘::f decreasing cost (at temperature 7 = 0) prevents the machine from always converging to
:j'-:' the closest memory. However alternative associative memories can be constructed and
_*-; implemented using the full capabilities of the Boltzmann machine to avoid some of these
,'.. issues.
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,:: Consequently given current computer technology and the assessment derived from
_f!- preliminary examples, the optimization category of application is perhaps most promising
X for the Boltzmann machine. The idea of iteratively generating a solution which converges
h ¥, . . . . . ’ . .

X ' to the optimal upon following a prescribed annealing schedule is quite pleasing. In practice,
2‘\ moderate annealing schedules often lead to solutions which are near optimal in acceptaole
N time.

\

)

L) . T . .

W Further research on the machine is likely to be focused on reducing the excessive
::' y g

’n:.: processing time. Included would be algorithm modifications as well as new implementation
' . - . . . . 3 .

+ techniques. By increasing the complexity of the interconnection strengths within the general
H
. machine formalism presented, the learning times can be reduced at the expense of

N P g pe

A complexity. Also VLSI and optically based machine implementations together are likely to
R plexity P y P g y
s significantly reduce the excessive processing times experienced by current digital

" g y p g pe y g

’ simulation.

L

\'i "

o In all, the Boltzmann machine is a computational algorithm (motivated from both
o p g

[< classical statistical mechanics and information theory) for finding the optimal solution to a
- problem having objectives represented by a cost function. And it remains to be seen if the
;2 Boltzmann machine, or the generalized machine, can be scaled to solve useful problems in
;:, acceptable times.
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K3 9. APPENDICES
9.1 GRADIENT DESCENT

- The method of gradient descent can be intuitively formulated with the following

example. Considei he sing.c dimension case where & (') is to be minimized with respect

J P.,‘. .

to the independent variable w . The function G can be viewed as a landscape with hills

e

and valleys, as shown in Figure 15.

With such interpretation, the goal of the minimization process is to travel from an initial
position upon a hillside to the final destination in the valley below. From the diagram, the

2

N traveler should travel east (increasing w' ) when on the western hillside in order to reach the
Y valley. Notice the slope of the western hillside is negative while the eastern hillside is
. ' N
."' positive. Hence the traveler's plan can be stated mathematically as always moving in the
,_ direction opposite to the polarity of the derivative at the present location. Thus the
.fic.: N traveler's rule guiding the next step can be formulated in terms of the present step according
L/
huh to
BV ) - '
fudy wln +1) = w(n)+ Aw(n) (43)
RN
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where
G

Aw(n)=-n sign (&4' w(n)) (44)

and n represents the traveling rate (dependent upon the traveler's physical condition.)

A refinement can be made by realizing the traveler should take large steps when
high on the hillside far from the valley (large |3G / dw' |), and conversely take small
steps when nearing the valley (small |[0G / dw | .) Mathematically, this is equivalent to
making the step size proportional to the magnitude of the derivative. Consequently, the
refined rule is (43) with

&;
Aw = - n&
w(n) Uk () 5)

and this minimization process is diagrammed in Figure 15.

The final extension involves expanding the landscape in many directions. Here G
is now a function of several independent variables, denoted by the vector ' . And the
traveler simply moves in the direction of steepest descent yielding the following algorithm
applied to each component.

w, (n+1)= wl(n)+ Awl (n)

(46)
where
G (w)
Aw (n)=-1 T _ -
e : (47)
Disadvantages of the algorithm include the inability to escape from local minima as well as y

excessive computation times for large dimensions.
9.2 MACHINE LEARNING FORMULA DERIVATION

The machine learning formula derivation consists of minimizing the discrepancy
measure G (p, q) with respect to the connection strengths. To conduct the minimization,

A, u.sﬂ,‘ 5 At A 8B ey 1’9";'!\"'!“9“‘”':!Htv.ﬂ
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the partial derivatives with respect to the weights must be determined. As in the formulation
o by Luttrell [8], a most ¢ 1eral approach is taken. Thus the weight W, corresponds to the
" Ith M-tuple of units coupled together with common connection strength w |- (Fcr tvpical
'.:s' pairwise connections, w, represents the [th weight coupling two units as diagramed in

Y Figure 7.) Since only the machine is a function of the connection weights

R 5»1_ = J.p(\ )-9-"—— log q()dv
i" . 48)

With the addition of the hidden units, the machine is now fully characterized by the
probability distribution amongst all units, visible and hidden, given by q(¥, k). Thus
" » the machine distribution 40°) over the visible units, necessary for the minimization (48),
2 is related to the distribution over all units by

ey q(v) = J‘I(‘Tv F)d’;—
H

;‘.:"'. H = hidden units (49)
thus

Y Wa-— log ¢(7) = q—(:_—) J'a%q(ﬁ, h )di
1 ! H ! (50)
e To continue, assumptions must be made about the functional form of the machine
distribution ¢(", £ ) (such assumption gives rise to the naming of the machine i.e.

'Y Boltzmann machine, Gibbs machine, . . .). For reasons discussed in the Machine Learning
e section, the Gibbs distribution (generalization of Boltzmann) is an attractive choice given
" by

S _ D YA G

'l:' q(s) = q(v, h)=?€ ! (51)

and enables the calculation of (50)

l.l '.q L) 0‘
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- ""‘L'zq(r" i) = 4F. ;T)U;”[UI(F, R)a(, F)dvdh - U@, h‘)]

(52)
Thus upon substitution of (52), (50) into (48)
dG(p. q
Bpa)_ f Qr f{a“ 9, B)di }av
_ _9G k) e EyLEe
o S i LA UG} S L
=— Eq(_‘__’h_){Ul(\", h)} +E o7 175 {UI(T', ) -

where E p denotes expected value with respect to distribution f.

9.3 METROPOLIS ALGORITHM

Metropolis et al. [9] in a classical statistical mechanics setting devised a clever
algorithm for numerically calculating the properties of substances consisting of interacting
individual molecules. The algorithm for example can be used to calculate the average
pressure of a gas at equilibrium.

However, application of the algorithm is much more general. In fact the algorithm
can be viewed as a Monte Carlo integration method for calculating expected values of

£) l!iﬁ I} LRI OGN IO R
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\f\ functions with respect to the canonical Boltzmann distribution. Specifically the algorithm is
fho used to numerically evaluate the equation

! E{F ()} = [F()q (a5
. S (54)

Wiy where ¢(57) is the Boltzmann distribution in the form
MY q(S—) =€ (55)

7 and E (5) is the global potentia! (energy) of the system in state configuration 5. Since

S the units (whose values represent the global state) number in the hundreds, conventional
g numerical integration by approximating sums is not feasible. Standard Monte Carlo

M approaches entail approximating the integral by the sum

- E() /KT

Kk ELF (= 2F(5)a(5) =+ XF (5)e

(56)

where the global states 5; are chosen randomly with uniform probability. A particular

>

problem arises when implementing this approach with the Boltzmann distribution, and is
illustrated in Figure 16. Typically the global potential function E (s ) is dominated by high
energy states, yielding few of low energy. Consequently, the Boltzmann distribution
responsible for weighting the function F (5) (56) places most of the mass over a very
limited portion of the state space, therefore the random samples chosen occur with very low
probability.

S
*

e g

.&‘
3

@ 'x’%

To counter such a problem, Metropolis realized the same calculation could be

C
X
-

performed by selecting particular global states s i’ with probability

t.c\ ' —r\ _ —E(F:)/KT
A P(sl.) = e 7

Y and subsequently evenly weighting the function F ( 5 '.') yielding

K 47

Uy . S v .
it ABGA 0 IO BOA GGG AONOANCOCASIO NI OAURNON G IR ON LA LOOTN ORI
't‘t‘:’:"':’:’:‘:':’:‘:”’h’“"":\‘,':’(‘A"f‘e.";’-‘t‘m':?i*:',o"f' R N R W R TIN R e DS

B
‘.‘n‘.
N




Ll bt il bt allat At Dad ok il S ok A tb bl A B ko u e b8 s & T TR T T

E(s)

(a) 7 {b)

q(s)

Figure 16. (a) Uniform, and (b) exponential random sampling of global states.

R
E{F(}zx ;lf(s-ir) .

Thus instead of choosing at random global states with uniform probability and then

weighting the function F ( fl' ) by the Boltzmann distribution according to (56), the

. .. -E(5.) /KT
Metropolis algorithm chooses at random global states with probability € (%) and
weights the function F ( s_’) uniformly. The companion diagram for the Metropolis

algorithm is shown in Fig.16b.

The procedure for conducting this type of Monte Carlo integration is as follows.

(0) Choose an arbitrary global state § .

(1) Select a component (single unit) of the global state vector § at random,
denoted s, .

(2) Perturb the selected unit by a small amount As

sl. - s,. +As (59)

where As is a uniform random variable in the range ( - %, + *),
(3) Calculate the global energy change due to the perturbation
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s’.—>sl.+As=>E - FE + AE

(60)
where

AE=E(s +Asi)—E(s) 6D

0

0

As7 =1 ]As

0

0/ . (62)
(4) Decide to accept or reject new global state according to:
AE < 0 =>accept 5 +AS

AE > 0= accept § + AS with probability e~ AE /KT (63)

(5) Continue the process by cycling back to step 2, until equilibrium is reached.

(6) Finally calculate the expected value according to (58) where F (s",) is the

function calculated at the global state s'; , obtained at the ith iteration.

9.4 SIMULATED ANNEALING

Simulated annealing is an iterative procedure for determining the global minimum or
maximum of a function of several independent variables. The procedure is derived from
the Metropolis algorithm (Appendix 9.3).

By examining the steps of the Metropolis algorithm (steps 0-5) the decision rule is
seen to always accept state transitions resulting in lower energy, or equivalently, accepting
downhill moves along the energy landscape. However, the distinctive feature is the
occasional uphill moves allowed with a probability dependent upon the temperature T (see
(63). With high temperature, the uphill moves are readily accepted. In fact with T = oo the
states are chosen with uniform probability corresponding to a random walk in the state

49
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W, space. And at low temperature, uphill moves are rarely accepted, thereby allowing the
M process to reach steady state (equilibrium), yet possibly at a local minima. In the limiting
'] .. . . .
g‘ case I' = 0, the process is simply a gradient descent algorithm for finding a local
)
a ) minimum of the energy function. As a natural conseauence then, the Metropolis algorithm
: ;}g (steps 0-5) can be alternatively viewed as an algorithm which tends to converge to the
:,&. minimum of any function E (5) of several independent variables (see Figure 16b.)
Y
s',‘?’
:: " Now Kirkpatrick ez al. [5] and Cerny [10] realized heuristically that by carefully
f'.:. ‘ varying the temperature , beginning with large temperatures and gradually decreasing to
&" lower temperatures , many local minima :ould be avoided and hence the probability of
(_ converging to the global minimum greatly increased. Consequently, this temperature
.f"Ci variation (annealing) provides both local minima avoidance properties (characteristic of
¥ \ . . . . .
..;_'.* high temperaturcs), as well as favorable convergence properties (characteristic of low
s
":‘, temperatures). The insight into the temperature variation originated from chemical
o annealing, where the low energy state of a material is determined by first melting the
o . . . C .
" substance then gradually lowering the temperature, spending much time near the vicinity of
. ~’ the freezing point.
'| l"(‘!
D
’ Later Geman and Geman (11] rigorously proved that indeed this heuristic technique
P
LA . eqe .. . . .
N guarantees convergence in probability to the global minimum if the temperature variation
v,
::: (annealing schedule) is properly chosen. Specifically, the conditions for global minimum
. ) . . . . .
P = convergence require the state perturbations to be Gaussian , and the annealing as a function
3" of the iteration time must satisfy
i
%l
) T()2T./log(1+ ¢
-.*x' (1) 0/ g( ) (64)
b2
Ex (o)
i The simulated annealing process is conceptualized in Figure 17. Each figure represents a
4
z:h snapshot in the iteration process with a different temperature, showing how the
gt Y perturbation generating distribution pT( As) decreases in variance to promote convergence.
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9.5 SPURIOUS MEMORIES

o)

b

-
»

The following demonstrates that under certain conditions, the Hopfield asscciative

l'.’ o
s memory produces local minima of the energy function at the desired memories. However
0 . . . .
:' g other (spurious) memories are also created which often prevent convergence to the optimal
A .
2 solution as shown.

3

Given the Hopfield associative memory with M binary random memories

=%

J—

z 1M . . . . —
{Z i}i = 1 ¢ach of dimension N |, connection matrix H = 22,- z, - Ml ,and a

<

sufficient signal to noise ratio M < N / 4log N | then the memories are local minima of

2
B the energy function E(5) = - N H§ " . This is shown by first directly expressing the jth
output component of the connection matrix vector product with a memory input Z—,

i M N

N : — ; i
oAy y/ =(H:I) =(N —l)zlj + 2 2 zijz!‘zl"
o i#zlk#j
N = signal + noise . (65)
g:‘ 5 Invoking the central limit theorem for sufficiently large N , the noise term is Gaussian
with zero mean and variance (M — 1) (N — 1) . Thus the output becomes

H.:'1=(N—1):I+n (66)

with a signal to noise ratio ( SNR )

Var(N-D7) _ (N-D>  _N-1
Var () T(IN-DM -1 M-1, (67)

D)
J‘"v
E?C SNR =

Hence the memories are seen to be eigenvectors (with identical eigenvalues (N - 1) ) of
o~ the connection matrix for sufficiently large SNR (66). In fact in an elegant paper,
McEliece et al. [15] have shown that the SNR must satisfy
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N -1 =~ 54108 N

SNR=M—T1~M

(68)

to ensure both the integrity of the eigenvector interpretation and perfect recollection of the
stored memories. Now from linear algebra

Ias < |& s (69)
where
~ i _ max 1Z4l]
lal= =", Tl (70)

and for symmetric connection weights the matrix norm is simply the norm of the largest
eigenvalue, representing the largest amount by which any vector is amplified by the matrix- -
vector product [16]. Therefore since all eigenvalues corresponding to the M memories

are identical for the Hopfield model, each eigenvalue (memory) produces a maxima of

9
s | and hence a minima of — ||¥1§|| .

Notice arbitrary (spurious) memories will be created even if the SNR is large. In
addition to the M memories, there exist other eigenvectors which also produce minima in
the energy function (since M < N ). Therefore the price for accurate memory recall is low
storage capacity as well as induced spurious memories (S N - M),

As a final comment, the SNR constraint is crucial for correct memory recall. For
low SNR | the noise term dominates (66) and the memories are no longer eigenvectors and
hence no longer minima of the energy function. The result is a new energy function
placing minima at new eigenvectors, also giving rise to spurious memories.
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