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1. OVERVIEW

INTRODUCTION

As the title suggests, the work described in this report is motivated by the problem
of geolocating the transmitter or receiver of a satellite-relayed signal. The situation is
that pictured in Figure 1.1; the doppler shift between a transmitter and receiver is meas-
ured over a veriod of time and utilized to determine the receiver or transmitter location.
A number of other parameters, in addition to the unknown location of the transmitter,
are intimately involved in the computation. Among these are the transmitter frequency,
the satellite’s orbital parameters, course and speed of moving stations, etc. Such param-
eters are not fundamentally different from position variables, and, in fact, any of the
entire set of parameters may be considered part of the unknown state to be estimated.!
The remaining parameters must be known a priori, and their accuracy will affect that of
the state estimate.

Although many of the details of the present study are specific to the above prob-
lem, our methodology and results are quite general. Consequently, we begin with a brief
description of the abstract estimation problem, illustrating it by specializing to geoloca-
tion. Let x be a vector whose components x,, s = 1,..., N represent a set of parameters
to be estimated. We suppose the existence of additional parameters q which together
with the state vector x determine (in the absence of noise) the measurements. This rela-
tionship is described by a set of functions, my(x, q), i = 1, ..., M, where M is the number
of measurements. The actual measurements m; will be noisy, resulting in errors
am; == my(x, q) - M;. We choose as an estimate a state x, which minimizes these errors.
More precisely, x, is the nonlinear least squares -estimate determined by minimizing the
cost function

Cr) =% Ak L (1.1)

C(x.) = mxinC(x\ . (1.2)

The weights ;% are the variances of the measurement noise.? In the above geolocation
problem, the state x would be the transmitter latitude and longitude, and m; would be
the doppler-shifted frequency at the receiver at time t;, which we write as {(x, q, t;). The
weights o;® correspond to the variances of the measured receiver frequencies [;. It is
sometimes also desirable to include other measurement types, such as satellite azimuth
and elevation, which may be used to simultaneously determine the orbit and geolocate.

Let us consider measures of the quality of the estimate obtained by (1.2). The com-
ponents of x, are random variables since they are functions of the random variables ;.
Thus, an appropriate error measure for a component (x,) of x, is its mean squared error,

! The measurements may not always support a solution, however.

This particular formulation is appropriate for measurements which are stochastically independent,
a restriction which is relaxed in Section 2. If the noise is also Gaussian, then (1.1)-(1.2) is a max-
imum likelihood estimator.
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Figure 1.1, Diagram of the geolocation problem.
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i.e, E (%(x.)s )°, where E denotes expectation and % is the true state. More generally,
we may utilize the covariance matrix

X £ E((%-x,) (% -x)) (1.3)

as a measure of error. (The dagger } denotes the transpose of the column vector x.)

While (1.3) reflects the errors due to measurement noise, it is also important to
determine the sensitivity of x, to errors in the parameters q. This relationship will gen-
erally be deterministic (but, see (2.28) - (2.36)). A given error 8qy in the k' parameter
will produce an error 6x in the state estimate. To the first order, this dependence is
linear so that the total error may be expressed in the form

b =G éq , (1.4)

where G is a matrix determined by the true values, i.e., G = G(%, q). Typical com-
ponents of q for the geolocation problem might include satellite orbit inclination,
transmitter-frequency, etc.

The parallel between the probiem statement and the sensitivity/error analysis is
illustrated in Figure 1.2. A given problem is realized by specifying which variables are to
be estimated, and which are inputs. For the sensitivity we also need estimates of the
accuracies of the inputs. Note the parenthetical quantities in the figure. For the estima-
tion problem, the measurement variances may be used to weight the influence of the
inputs on the estimate (cf. equation (1.1)). For the sensitivity, the values of the parame-
ters and measurcments are used to determine the relationship of the estimate to inputs
and, thereby, the transfer function between the input accuracies and the estimate accu-
racies.

In the remainder of the report, a weak attempt has been made to place the sections
in order of increasing mathematical detail. The current section, although specific to the
geolocation problem, contains a minimum of mathematical analysis. The subsection fol-
lowing this introduction specifies the measurement functions, i.e., the dependency of the
doppler on the various parameters x and q. The third subsection contains a qualitative
discussion of sensitivity in the same context.

Section- 2 is a self-contained development of the sensitivity and error analysis for
the general estimation problem. Part of that section also describes an effective numerical
technique for the minimization (1.2). Solving these problems requires the computation of
the measurement functions and their derivatives. Such computations are detailed in
Section 3 for a stationary transmitter and receiver on an oblate earth. This model is
extended in Section 4 to include ground station motion. Section 4 (accompanied by
Appendix A) may be read independently of the rest of this report. Computations

3 The values are needed (as well as their accuracies) because the sensitivity is generally a nonlinear
function of the state and/or the parameters If the true state is known, as in a simulation, then-the
measurement values are not needed.
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Figure 1.2. Generic diagram of a state estimator and sensitivity analysis. Note that the
sensitivity for an unknown state is approximated by using the state estimate obtained

from the measurements.

t A nonlinear least squares estimator in the current context.




requiring a specific satellite orbit model are relegated to Appendix B, where they are
detailed for Keplerian motion. The actual software can accept an arbitrary orbit model,
in which case it computes the derivatives numerically.

DOPPLER MEASUREMENTS

Let us return to Figure 1.1. The arrows marked ”doppler up” and "doppler down”
. are intended to indicate the doppler shift in signal frequency due to the relative motion
of the satellite and the transmitter or receiver, respectively. For example, if we denote
the transmitter frequency by fy and the relative doppler shift on the uplink by by, the
frequency of the signal received by the satellite will be (ignoring relativistic effects)

f=1fy(1+by) . (1.5)

The relevant variables for the caiculation of b are found in Figure 1.3. The vector
R represents the position of the ground station relative to the center of the earth, r is
that of the satellite, and

p2r-R (1.6)

is the vector between them. The relative doppler between a source and a receiver is pro-
portional to the time derivative of the distance between them. More precisely, we have

1 d
-— 1.7
b=-2 L lpll, (1.7

where ¢ is the speed of light. Denoting the time derivative and scalar product by dots,
we have, from (1.7),

1 d 1/2 1 _p .
b=-=—(pp)/*=-= P (1.8)
e PP TS e
- Note that equation (1.8) is coordinate-system-independent.! From (1.6)
- p=r-R . (1.9)

Equations (1.8) and (1.9) give b as a function of station motion (R, R) and satellite

* In contrast, the following equation, (1.9), depends or the coordinate system in the sense that R
and T do (i.e., a moving coordinate system will affect the velocities). Of course their difference, p,
does not.

T
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Figure 1.3. Diagram of positional vectors relating a satellite to a ground station.




motion (r, ¥). Typical computations take place in the geocentric coordinate system (so-
called IJK inertial coordinates [1]). Consequently, even if a station is stationary with
respect to the earth, R is not zero because of the earth’s rotation. Then, given the
station’s latitude, longitude, and altitude at some fixed point in time, as well as addi-
tional parameters such as course and speed if there is ground motion, we can compute
R(t) and R(t) at an arbitrary time t. As mentioned in the previous subsection, any of
these parameters may be considered either as part of the unknown state x or as given
values q in the measurement functions m;(x, q) of (1.1).

As with R, the satellite position and velocity, r(t) and #(t), may be computed util-
izing a finite set of parameters modeling the satellite’s motion. For example, the Kepler
model, detailed in Appendix B, contains six parameters: the orbit semimajor axis, its
eccentricity, the mean anomaly, inclination, longitude of the ascending node, and the
argument of perigee. The epoch (i.e., point in time) at which these hold must also be
known. For example, in the geolocation problem, one might take the unknown state x
to be the 2-dimensional vector whose components are transmitter latitude and longitude,
and q to comprise 12 parameters, the transmitter altitude, receiver latitude, longitude,
and altitude, the transmitter frequency fy, the 6 Kepler elements, and a satellite relay
(offset) frequency which we denote fsq (in all 12 dimensions).

The above discussion has outlined the functional dependencies by,(x, q) and
bpewn(X, q) for the uplink and downlink relative doppler shifts. It is now a short step to
connect these to fg, the frequency determined at the receiver. The signal leaves the
transmitter with a frequency fy and arrives at the satellite with a frequency f, (1 + by).
This signal is then relayed by the satellite with a possible offset of fso, resulting in an
emitted signal of frequency fo (1 + by) + fso. This propagates and, due to the downlink
doppler, arrives at the receiver with a frequency [fo (1 + by) + fso](1 + bp). Finally, the
receiver introduces another offset, which we write —fro (usually set close in value to
- (fo + fso), in order that the receiver output frequency be as close as possible to the
total doppler shift). In summary, the output frequency of the receiver is

fr = [fo(1 + by) + fs0] [1 + bp) - fro - (1.10)

We have thus arrived at a point at which we can construct the measurement function(s)
fr(x, q, t;) by substituting the dependencies by(x, q, t;) and bp(x, q, t;) into (1.10). The
residuals m;(x, q) - f; of (1.1) are given by fg(x, q, ;) - I;, where the [; are the frequen-
cies measured at the receiver output during an experiment.

There is substantial value in writing (1.10) in a slightly different form. First, we
rearrange the terms

fr = byfe(1 + bp) + bp(fo + fs0) + (fso + fo - fro) - (1.11)

As mentioned above, fgg is chosen to make the last term close to zero. Regardless, all
the information lies in the size of the doppler shift, which is of the order of b f;. An
error in fy causes a substantial percentage error in this quantity. In fact, since b-(by and
bp are of the same order) is much less than 1, the percentage error is approximately




a,
o1, /bly = —11)——&)3 We may remedy this by estimating most of the uncertainty in the

base frequency fy (as well as that of fgg and fgo) through an additional state variable,

fp = fs0 + fo - fRro - (1.12)
Equation (1.11) becomes
fr = by fo(1 + bp) + bp (fo + fs0) + 5 - (1.13)

Since fg is now a state variable, the percentage error in fg of equation (1.13) is approxi-
201- b 4} ag
mately —— =~ —>, which is much less than 10 of course, the price we pay is the
bf, fo b f,
estimation of the additional state variable fp.

Finally, we may write (1.13) more conveniently by dividing by f, to get

a AR

0

f
= by (1+bp) +bp (1+ =) +8p , (1.14)
0
where the (possibly) unknown parameter gg is

gpd B 50RO, (1.15)

aGy=-—. (1.16)

Even if f is unknown, but a rough value is available, equations (1.14) and (1.16) will
often be a very ac.urate approximation, with f, as the rough a priori value and gg
estimating the true value of f; via equation (1.15).

The cost function corresponding to the above measurements is

Cx) =Y Ll A (1.17)




where, froin (1.16), the variance of d; is of = o¢/f¢. The minimum of the cost function

(1.17) satisfies the set of N nonlinear equations ¢,C(x,) = 0 and may be solved by any
number of steepest descent procedures. We recommend the technique described at the
end of section 2 (equations (2.37) to (2.40)), which has proved highly effective for the
present problem.

SENSITIVITY / ERRORS

In the geolocation problem, as in almost all estimation problems, it is critical to
have an an idea of the accuracy of the solution obtained. An unusually poor geometry
may produce an ill-conditioned set of equations whose solution is of essentially no practi-
cal value (e.g., the transmitter is in Detroit with an average error of 430° latitude and
+80° longitude). Even in less serious cases, extremely erroneous conclusions may be
drawn from using a location estimate without taking into account its accuracy. Further-
more, the geolocation accuracy is not a single fixed value, but varies with the satellite’s
orbit, transmitter and receiver locations, measurement errors, accuracy of the orbit
model, etc. These explicit dependencies are almost always relevant.

Extensive software was developed to determine the sensitivity to input parameters
and provide estimates of the geolocation accuracy. The methodology, which is fully
described in Section 2, estimates the solution errors analytically without a need for
extensive Monte Carlo runs. In fact, if the geolocation estimates are derived by a
steepest descent solution of the nonlinear least squares problem, the sensitivities may be
provided at negligible additional computation. Regardless, independent of the minimiza-
tion technique, the sensitivity computation is relatively fast and suitable for operation in
real time.

The inputs and outputs of the sensitivity are diagramed in Figures 1.4 through 1.6.
The desired output is the expected error (actually the RMS error) in the transmitter
position estimate. In Figure 1.4 this is depicted as a function of the orbit errors, the
errors in frequency parameters, the transmitter location error, and the receiver measure-
ment errors. In many cases it is also necessary to determine or redetermine the satellite
orbit elements. Such a determination represents an inversion of the original problem:
the satellite elements (parameters) become the unknown state, and the transmitter loca-
tion is included as a known input parameter q. In that context (Figure 1.5), the sensi-
tivity software outputs the accuracies of the estimates of the orbit elements which, in
turn, may be used as inputs to the sensitivity analysis of the geolocation problem (Figure
1.4). Of course, this procedure presupposes the existence of a second transmitter whose
location is known and may thus be used in the determination of the orbit elements. It is
also theoretically possible to simultaneously determine the transmitter and orbit parame-
ters, thereby avoiding the need for a second transmitter (Figure 1.6); however, this
requires a relatively amicable geometry and/or good azimuth and elevation data.

We now describe in somewhat more detail the operation of the sensitivity software.
Table 1.1 contains a listing of the relevant variables. As briefly indicated in the intro-
duction, we distinguish between what we term a parameter q, which has a fixed error for

5 Satellite azimuth and elevation relative to a given ground station represent additional measure-
ments (mj = m(x, q, tj)) which are useful when the orbit-is part of the state X.
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Table 1.1. Sensitivity Parameters

Variable Type
transmitter
latitude, longitude parameters
- altitude parameter
course, speed paramaeters
. frequency parameter
receiver
latitude, longitude, altitude parameters
course, speed parameters
frequency (t;)! measurements
satellite
elementsT parameters
offset frequency parameter
azimuth(t;), elevation(tf)fﬁ_ measurements

position(t;), velocity(t;) (stochastic) parameters

1 Here, t; is the time of the i*® frequency measurement f,. Actually, t; is also a measured
quantity, so that there are two measurements, f; and t;, for each i.

tt mean motion, eccentricity, mean anomaly, inclination, ascending node, perigee, etc.

71t Observe that these represent six numbers at each time t; since position and velocity
are vectors.

; 13




any one geolocation problem, and a measurement variable, which is a random variable
representing a set of noisy measurements m; whose errors share a common probability
distribution. An example of the former is the inclination of the satellite orbit, while the
set of receiver frequency measurements falls in the latter category. More precisely, meas-
urcments are those variables whose residuals are minimized in a cost function in order te
estimate the state (cf., equation (1.1)). Sometimes the errors of a set of parameters will
also have a common distribution; we term these ”stochastic parameters.”6 The useful-
ness of this concept is discussed below.

Now that we have identified the variables and their roles, let us be a little more
specific about what we mean by their ”accuracies.” The error in a parameter is con-
sidered to be fixed throughout an experiment. Thus, if the transmitter frequency is
recorded as 10 Mhz when it is actually 9.999 Mhz, then the parameter error is 0.001
Mhz. Corresponding to such an error, the sensitivity analysis will supply an error for
the output estimate; for example, a latitude error of 0.02°. If there are no measurement
errors (i.e., just parameter errors), then the output error is deterministic and a linear
function (to the first order) of the input error. In the present example, an error of -0.002
Mhz in transmitter frequency would produce a latitude error of -0.04°.

On the other hand, the measurement errors are stochastic. Thus, we might say
that the set of received frequencies has a root mean square (RMS) error of o = 3Hz,
meaning that if we average the squares of the errors of the measurements and take the
square root of that average, we get 3 Hz. Correspondingly, the output estimate will
have a random component, and its error will be expressed in terms of an expected value;
for example, the RMS error in latitude. Note that if there are no parameter errors, the
average error of the latitude estimate over many repetitions of the experiment is zero
since it will randomly fluctuate in the positive and negative direction. Of course, the
mean square error, which is the expectation of a positive quantity, is still nonzero. Also,
just as in estimating a noisy variable by averaging over a set of samples, for a single
measurement type the standard deviation of the state estimate will vary inversely with
the square root of the number of measurements. When the state estimate contains more
than one variable, the sensitivity outputs a covariance matrix, ie., E(ax,ax,), where ax,
is the error in the estimate to the s'® variable. For example, if x, and x, represent the
latitude and longitude, respectively, then we obtain E(alat along) as well as E(alat)? and
E(along)®. When both deterministic and stochastic errors are present, the total expected
(RMS) error of a state variable is computed by summing the deterministic errors and
then combining that result with the other errors by taking the square root of the sum of
their squares.

Figure 1.7 contains an example of the output of the software package SENS for a
fixed transmitter and a moving receiver. For completeness, we have also included a list-
ing of the SENS input requests in Figure 1.8. In the case illustrated, the unknown state
is the transmitter latitude and longitude, indicated by the state ty; STATEISLOC.
The orbit model is the NORAD deep space model; a Kepler model has also been

% Stochastic parameters differ from measurements only -in-their functional role in the cost function.
They enter implicitly, as parameters, and thus, conceptually, are not as central to the estimation
criterion.
" This is ngorously true only to the first order since our nonlinear estimates are ~nly asymptotically
unbiased.
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doppler type is: RELDOPPLER
angle type is: NONE

element estimates type is: NONE
State type is: STATEISLOC
Orbit model is: NORAD

Here 1s the covariance matrix:
component 1 is lat, component?2 is long
7.420718742300576E+00 6.942098880222244E+0L
6.942098880222244E+01 7.753117053419069E+02

RMS 1t error=  2,724099620480238E+00
RMS long error=  2.784441964455188E+01

Here are the orbit parameter sensitivities:
Units are degrees, km, and seconds of time
LATITUDE (deg) LONGITUDE (deg)

semi-maj axis: error lat/long = 2.653789595519299E-02 2.871645812066904E-01
eccentricity: error lat/long ~2.061625284638502E+04 -1.092716754410192E+05
epoch(2-body rslt):

error lat/long
mean anomaly: error lat/long

5.423958191187525E-04  4,273828602526120E-03
=-1.298190677558637E~01 ~1.022914309755793E+00

inclination: error lat/long = 5.973604795742479E-01 -8.025665754087354E+00
ascending node:error lat/long = ~2,559585668129556E-01 =-1,563732042288754E+00
arg perigee: error lat/long = 6.899827141345592E-02 1.692882756185627E+00
Sensitivity to freq params per Hz:

LATITUDE (deg) LONGITUDE (deg)
sat offset: error lat/long = ~5,720171350036819E+00 =-6.170486123683860E+01

receiv offset: error lat/long = 5.720171702619600E+00 6.170486225655878E+01
transmit freq: error lat/long = -5.720171587202191E+00 -6.170486150408782E+01

Sensitivity to receiver location:
gives error for an error of 1 degree in indicated parameter
rcv latitude (1 deg):
tr lat (deg)= 6.819453815607811E-02
tr long (deg)= -3.260144317799733E-01
rcv longitude (1 deg):
tr lat (deg)=  2.402443807119458E-01
tr long (deg)=  2.420232834061336E+00

Sensitivity to receiver motion:
gives state error for an error of 1 km/hr in spd or of 1 degree in course
great circle speed (1 km/hr):
tr lat (deg) = 1.199627807273553E+00
tr long (deg)= 1.285460873073998E+01
course (1 deg) :
tr lat (deg) = 2.334775376994807E-01
tr lony (deg)= 2.556731597113552E+00

Figure 1.7a.Example of the output of the sensitivity software (SENS) where the
estimated state is the transmitter position.
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Sensitivity to
(coords are

xcoord:
ycooxd:
zcoord:

Sensitivity to
(coords are

xcoord:
ycoord:
zcoord:

satelite position per RMS meter
in geocentric inertial system)

LATITUDE (degq)
error lat/long = 1.809036298711036E-04
error lat/long = 3.182725136278286E-04
error lat/long = 1.611327330902054E-05

satelite velocity per RMS meter/sec
in geocentric INERTIAL system)

LATITUDE (deg)
error lat/long = 4,350484472181783E+00
error lat/long = 2.490454480418472E+00
error lat/long = 3.487122438460089E-01

Figure 1.7 continued.
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LONGITUDE (deg)
1,344364853049826E-03
3.493877932361680E-03
1,124117784462831E-04

LONGITUDE (deg)
4,775662164106116E+01
1.850237658893264E+01
3.858319826910118E+00



SENSITIVITY INPUT : datafile

give element epoch (yr,day, fractday)

give major axis (km}, eccentricity, meananom (deg)

give inclination, ascend node, argum of perigee (deg)
give 8n20 and sn60 (revs/powerofday)

give bstar (drag term)

give iexp, ibexp, exponents base 10 for sné0 and bstar
give offset fregency (MHz) and mixing sign (+- 1)

give station epoch (yr,day, fractday)
give station base freq (MHz)
(this is transm freq or receiver offset)
give geodetic latitude and longitude(deg}
give altitude above sea (km)
give motion type: 0 = fixed; 1 = greatcircle motion
give course (deg) and speed (km/hr)
give minimum and max elevation (deq)

for the receiver input:
give station epoch (yr,day, fractday)
give station base freq (MHz)
(this is transm freq or receiver offset)
give geodetic latitude and longitude(deg}
give altitude above sea (km)
give motion type: 0 = fixed; 1 = greatcircle motion
give course (deg) and speed (km/hr)
give minimum and max elevation (deg)
give standard dev of receiver output (Hz: note unit)

for doppler measurements give (yr day fractday):
start time
upper bound (eg stop) time for meas
give interval in hrs between mesurements and max no of pts
for azel measurements give (yr day fractday):
start time
upper bound (eg stop) time for meas
give interval in hrs between mesurements and max no of pts

Figure 1.8, Input requests for the sensitivity software (SENS).
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implemented, and other models may be interfaced with a minimum of programming.
The type RELDOPPLER indicates that the received frequency is included among the
input measurements in the form of equation (1.16), and it is seen that its standard devi-
ation is set to 1.0 Hz. Angle type NONE implies that there are no satellite azimuth or
elevation measurements. The satellite orbit information may be in the form of parame-
ters (an element set) or "stochastic parameters” (position and velocity at each time). In
other words, the estimation problem corresponds to Figure 1.4.

Each of the entries indicates the sensitivity for a single error.? To evaluate perfor-
mance when there is more than one, these errors must be combined in the appropriate
manner as described at the end of the previous subsection. Note that when only a single
type of input error is present, multiplying that error by a factor will multiply the state
estimate error by the same factor; however, in summing different types of errors, the sto-
chastic errors must be combined in an RMS sense.

The first group of results shows the covariance of the iatitude, longitude for a 1.0-
Hz standard deviation in the measured receiver frequencies. We see, for example, that
the standard deviation of the estimate of the latitude is 2.7°. Note that the RMS errors
of the state are simply the square roots of the diagonal elements of the covariance
matrix. The next group gives the parameter sensitivities. It shows the errors of the lati-
tude and longitude estimates for a given error in the orbit elements or in the frequency
parameters. The input errors are considered to be a single unit of the indicated type.
Thus, we see displayed respectively the lat/long error (not RMS!) for a 1.0-km error in
the semimajor axis; for a 1.0 error in eccentricity (this quantity is dimensionless); for a
1.0-second error in the epoch at which the elements are supplied; for a 1.0° error in the
mean anomaly, inclination, ascending node, or argument of perigee; and for a 1.0-Hz
error in each of the frequency parameters. The next two groups give the sensitivities of
the state to errors in receiver location and receiver motion respectively. For example, an
error in receiver latitude of 1.0° results in an error in the estimated transmitter longitude
of -0.3°.

The last group, shown in Figure 1.7b, gives the RMS errors in latitude and longi-
tude as a function of errors in the satellite position or velocity. In other words, if
instead of computing the satellite’s-orbit via an orbit model driven by six predetermined
parameters(elements),g we supply a set of satellite location and velocity ” measurements”
(assumed to be corrupted by zero-mean identically distributed noise), then the
transmitter location will have the indicated RMS errors. This is particularly useful in
determining how accurate an orbit model one must have to obtain a given state estimate
accuracy. (In contrast, the element sensitivities cannot take into account any errors or
approximations which may reside in the model itself.) The output is arranged analo-
gously to that above. Thus, for example, an RMS error of 1.0 meter/sec in the velocity
of the satellite’s y-coordinate (i.e., the values supplied for v, are noisy and that noise is
zero-mean with a standard deviation of 1.0 meter/sec) will result in an RMS error in
latitude of 2.5° and longitude of 18.5°. Actually, the entire covariance matrix is

8 An exception in the current implementation is the case in which both doppler and
azimuth/elevation information are present. In that situation, the covariance matrix combines both
sactually three) types of errors.

In the NORAD model there are several parameters in addition to the six-elements, but we do not
currently compute their sensitivities,
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computed but not displayed.

SUMMARY OF EQUATIONS
We make the following definitions:

h

x = N-dimensional vector whose st component is the " state variable.
A

X = true state vector.

LY

x, = estimated state vector.

ax & x, — X the error in the state estimate.

q A an arbitrary parameter. (That is, any component of q. The remaining components
are suppressed lor notational convenience.)
Aq 4 errorin q.

h

m(x, q) A M-dimensional vector function whose i*" component is the i measurement

when there is no noise.

M 2 vector whose components are the actual measured values.

We note that the cost function for M measurements takes the form

M (m. - m:)?
Clx)= 3, (i, Q)2 il (1.18)
=1 O'i
and the estimate x, is determined by
C(x,) = min C(x). (1.19)
We define the N by N information matrix A by
M . .
A= .?l_n_' 1 _aﬂl.’ (1.20)

the parameter vector b by

be == = 3 b (1.21)

(1.22)
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A numerical procedure for the solution of (1.18) consists of the iterations (over an
index k)

xkH = ¥k -\ A9, O(xY), (1.22b)

where, when feasible, A = 1 (cf., Section 2).

The covariance of the estimate error due to measurement errors (alone) of standard
deviation o; is computed by

X~~Al . (1.23)

Also, for a single parameter error of Aq, we have the corresponding state estimate error
ax ~ A™b aq, (1.24)

and for errors in satellite position or velocity (stochastic parameters) with standard devi-
ation o, we have

X~ A'BAs? . (1.25)

Observe that the matrix A is a sum of M similar terms (equation (1.20)). Thus, as
the number of measurements increases, holding the geometry approximately constant,
the entries of X in equation (1.23) will vary inversely as M. We may interpret this as a
rule of thumb: excluding parameter errors, for a single measurement type, the standard
deviations of the errors in the state estimate will vary inversely as the square root of the
number of measurements (1/VM). Note, also, that the matrix in equation (1.25) reduces
to products of the components of (1.24) if we substitute aq for o, The approximation
signs "~=" are used rather than equalities because these equations are only correct to the
first order. They are derived in Seci.on 2 by linearization; hence, the use of the term
sensitivity.
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2. SENSITIVITY AND ERROR ANALYSIS

DEFINITIONS

In the previous section, we discussed a nonlinear least squares estimator with a cost
function of the following form:

M (mx) - m;)*
Clx) = Y, ———5——, (2.1)
where x is the state vector, m;(x) is the i*" measurement function, fii; is the i*" measure-
ment, and o; is its variance. The state estimate x, was determined by

C(x,) = mxin O(x) . (2.2)

Expression (2.1) is appropriate for uncorrelated measurements; if the noise also happens
to be Gaussian, then x, is the maximuin likelihood estimate (MLE). However, since gen-
eralizing to correlated measurements does not complicate our derivations, we consider
the cost function

C(x) = (am)! R (am) , (2.3)
where
t = matrix transpose.
x = N-dimensional vector of state variables.
m = (m,(x), myx), * - -, my(x))! column vector of measurements
m = vector of noisy measurements

=: m(X) + noise where X is-the true state
Am = m(x)~-m
R = correlation matrix of am.

Note that in the uncorrelated case, the components of m are the m; of equation (2.1),
the correlation matrix R is diagonal with entries o;, and (2.3) reduces to (2.1).

The above definitions carry the implicit restriction on the cost function that R be
the correlation matrix of am. This insures two properties: (i) that the cost function be
positive semidefinite and (i) that the expected value E(am! am) = R. The second con-
dition will be used in our derivation of an expression for the sensitivity. It implies, for
example, that the a priori variances o;® in expression (2.1) be chosen with reasonabie
accuracy. The resulting simplification is well worth this restriction. For most applica-
tions, this requirement is not a serious problem. The fundamental formula (2.16), which
we shall derive, may be modified by scaling to correct approximately for a least squares
weighting which is not exactly the inverse of the covariance. Note that if o is a
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constant (i.e., if the measurement noise is independent and stationary), then the weight-
ing is irrelevant to the solution of (2.2).

A necessary condition for (2.2) to be satisfied is that the gradient of (2.3) be zero,
i.e., that x, be a solution of the set of N nonlinear equations VC(x,)=0,

am! R1 M _ 0 r=1,.,N (24)
ox,

JdAm om

(We have used the symmetry of R and in deriving (2.4) from (2.3).)
r

ox, o0x

ERROR SENSITIVITY

We wish to determine the accuracy of the solution x, to (2.4) in terms of the accu-
racy of the measurements fi; (the i*® component of fii) and the parameters which enter

into the function m(-). Let us first consider just the effect of measurement errors. To
do so we write

I’?li == l'fli + n;
= mi(fc) + n; , (25)

where n; is the the noise of the i measurement, and riy; is the value of the measurement
when there is no noise. We also assume that the measurements are unbiased; i.e.,
E(n;) = 0. Define a vector F whose components F, are the left-hand side of (2.4),

F.(x,, @) 2 am(x, &) R M) r=1,.,N. 26)

~ . . NOF, . . .
F(x,, M) ~ F(%, m)+ 3] 3 (%, ) (x, - &),
s=1 9Xs
M 9F,
+ Tt ) 1)
Also, since am(%, rh) = 0,
F(%, m)=0, (2.8a)
1
Gl (&, )= 2om g-1 Om : (2.8b)
0% 0% % | g
BF, 1 amj
—_—— D m— 2.8
o 2 By, (28¢)
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Thus, to the first order, (2.4) becomes

N
om! oy dm gt dm N 2.9
§1 a axr (xe x)S R axr r 1) sy ! ) ( * )

where the partial derivatives are understood to be evaluated at %.
For convenience, define the nxn symmetric matrix A by

Om! dm
A A MM g1 om 2.10
st dxg %, (210)

Letting r assume two values, r and ', and multiplying equation (2.9) by itself, we obtain

(A= ) (A (xe- ) = D5 R moy R ol

iji'j'

2.11
(211

We then take the expectation of (2.11), noting that E(n;ny) = Ry . The right-hand side
of (2.11) becomes

om; om;
E(RHS) = * Rt—L
( ) ? ax, ij Ox,
—=Ay (2.12)

where E denotes expectation.

The expression (x, - %), is simply the i*" component of the error in the estimate x,.
Thus, X, the covariance matrix of the error is

Xis = E (xe - %)i(x. - ﬁ)s ) (213)

and substituting (2.12) into the-expectation of (2.11), we have

YAisApy Xog = Apr (2.14)
ss!

or
AXA =A (2:15)

since A is symmetric. Solving for X, we find
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X=A1l. (2.16)

Equation (2.16) along with definition (2.10) gives a simple formula for the covari-
ance of the estimate x,. (Actualiy, since it was derived for the expected squared errors it
is a covariance only to the extent that the estimate is unbiased. It is easy to see, by tak-
ing the expectation of (2. 9) that x, is unbiased up to the first order.) If the noise is
Gaussian, then the expression (2.16) represents the Cramer-Rao bound [3]. We also note
that the diagonal components of A™! are the variances of the components of the state
estimates. In practical cases, where we may not have exact knowledge of the noise
covariance, it is often a reasonable approximation to assume that we know it up to some
unknown positive factor a”%, i.e., E(njn;) = R';;/a?, so that R = R'/a®. Such a factor
does not affect the solution x,, and (2.16) becomes

X =o0oAl . (2.17)

The expected cost is then E( C(%) ) = trace(R’ R!) = Mo? thus, we may approximate
o® by examining the average of the residuals. More preclsely, the sample expectation for
C is given by

M

G =t (m(xo)-)! R (m(x)-%) | (2.182)

where M - N is the number of degrees of freedom in the Gaussian case. (For Gaussian
noise, (%) is a x? distribution.) We then estimate o by

of =~ C/M. (2.18b)

Finally, we note that if the measurements are independent (i.e., Rj; = §; / o),
then (2.10) becomes

M 8mi 8mi 1

A=Y — — — (2.19)
® i=1 Ix, 9%, 0"
or
M . .
A:E.v_ml@y_'ﬁ , (2.20)
, i=1 i 4

where @ stands for the matrix tensor product.

Next we compute the sensitivity to deterministic parameter errors. The procedure
is almost identical to that which led to equation (2.16). Let g stand for some parameter,
so that the measurement functions mi(x, q) are dependent on the state x and a parame-
ter . Previously the dependence on q was left implicit. Similarly, we now consider only
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one nurameter q at a time and set all other errors equal to zero. (Since the sensitivity is
4 linearization, the first-order error in x due to all the errors will be the sum of the indi-
vidual contributions.) In the absence of measurement noise we write (cf., equation (2.5))

ﬁ!li = mi(i) Q) ) (221)

where § is the true value of q. As in (2.6) we define

a0
F,(x., q) = am(x,, q)' R Z2(x,, ). (2.22)
T

Then, linearizing about (%, §), we have

s o SOF .
Fr(xe; q) = Fr(x) q) + E a_(x, q) (xe - x)s
s=1 9X;
oF,
— (%, § -4) . 2.23
* 54 (%, §) (q- 4) (2.23)
Also, since am(x, §) = 0,
F.(%,§=0 (2:24a;
aF\r 3Amt 1 om
—_— (g )= =" R —— . 2.24b
Bxs( , 4) A%, R ox, |9=3 ( )
aFr aAm' -1 om
—_—(%. §) = R — . . 2.24c¢
6q( ! dq 0x, [3=4 ( )

Thus, to the first order, (2.4) becomes

1 {
yom!padm o Omlpadm o o r—y N (225)

o1 9% %, ? dq ox,
or
) A(x,-x)=Dbaq, (2.262)
. where
4 _oml gy dm 2.26b
be = dq R %, ( )
AqEq-§ . (2.26¢)
5
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Note that if R is diagonal, then (2.26b) reduces to (cf., equation (2.19))

M dm; Om; }
b=- L2 2.26d
' =1 09 0% Ui2 ( )

Solving (2.26a) for ax £ x, - x, the error in x, we get
ax =A"b aq . (2.27)

Equation (2.27) is an expression for the error (to the first order) in the estimate x,
caused by a single parameter error aq, whereas (2.16) gives the mean squared error
E(ax;)? = Aj! due to an entire set of noisy measurements. The derivation of (2.27)
does not require that the least square weights R™ be the actual covariance of the meas-
urements M;. In contrast, expression (2.16) was derived under the assumption that
E(n-,nj) == Rij'

Finally, let us consider the case in which some of the parameters are themselves
random variables, i.e., where the measurement function is of the form m;(x, q,), where

4o =tn,;  Eln)=0; a=12 .- (2.28)

are a seb of noisy parameter estimates. The prototype for this in the current study is a
set of satellite positions and velocities. Noie that i* these are supplied for each measure-
ment time m;, then the index a will run from 1 to 6M, and ms(x, q,) will only be a func-
tion of q, for the six parameters relevant to that time, e.g., a=16(i~ 1) + 1 to a = 6i.
This property implies

ami 8m‘i;
dq, 0q,

=0 ifizi. (2.29)

Observe that the only difference between the ”stochastic parameters” of equation (2.28)
and the noisy measurements of equation (2.5) is the functional manner in which they
enter the cost function.

Continuing with our development, we note that equation (2.26) remains valid
except that q is replaced with a sum over q, .

om: om:
(Ax,~x)), = - E—-ﬂ Ri}l _6%— Aq,; r=1,.,N (2.30)
i r

As in the derivation of (2.14), we take two values of r, multiply (2.30) by itself, and take
expectations. If we assume that the noisy parameters are independent and identically
distributed,
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E(aquaqy ) = aq2 bagt (2.31)
we get
om; Om; Omy Omy
ArAry Xog = 0 - R — Ry} —2 2.32
§ rséhpls! g qg i%’ aqa ij ax, aqa i'j axr, ( )
This may be written as
AXA'=Bos?, (2.33)
with B defined by (2.32). If R is diagonal, B simplifies to
) om; 1 Om; Omy 1 dmy
B, — 11— 1 ! d 2.34
r 233 %; 6x, a'i2 aqa 8qa o’i? 6x,, ( )
Furthermore, if equation (2.29) holds, then
2
1 Om; ( Om; Om;
B, = —_— . 2.35
i ? Zi)lfi4 0%, [ 94, ] Oy ( )
In any case, the solution to (2.33) is given by
X = ABAlo} (2.36)

since all the matrices involved are symmetric.

Inasmuch as the above computations are first-order approximations
(and E(n;) = 0), it is easy to see that if we assume the various stochastic types of errors
are independent, then

(1) Parameter errors add when more than one is present.
(2) The total stochastic error is the RMS error of the individual-errors.
(3) The total error is the RMS sum of the errors in (1) and (2).

SOLVING FOR THE STATE: COMPUTATIONAL CONSIDERATIONS

The major computational steps in the above sensitivity analysis involve finding (a)
the gradients of the measurement function, dm;/dx, and dm;/3q, (b) the matrix A which
equals their outer product, and (c) the inverse of A. Typically, (b) and (c) are inexpen-
sive in comparison with (a). In light of this, and noting that the most common methods
for solving ﬁ2.2) are steepest descent methods utilizing the gradient of the cost function
(VC = am/ R! Vm), we see that the same computations are involved in determining
the estimate x, and the sensitivity. In other words, the sensitivity can be computed at
essentially no additional cost.
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Finally, we note that a particularly effective steepest descent algorithm is the
modified Newton-Raphson algorithm

x(i+1) = x(i) - A™(i) v (i) (2.37)
or the more general
x(i+1) = x(i) - Mi) A7I(3) vc(i) . (2.38)

Since A is positive definite unless the state x is unobservable (i.e., unless the system of
equations (2.4) is singular), the direction A™! VC is one of decreasing cost, and (2.38)
will converge for suitable choices of the step size \(i). Recursion (2.37) is simply an N-
dimensional Newton-Raphson iteration for solving the nonlinear system of equations
(2.4) but with the Jacobian of that system,

dam' o _1 dam 1 0°m
Iy = L) : UL .
re 0x, R 9xq +am R %, 0%, ' (2:39)
replaced by
t
dam R-1 dam . (2.40)

0%, 0x,

That is, we use the matrix A in place of the Jacobian. Such an approximation is intui-
tively reasonable since for x == X with zero noise, am = 0 and the Jacobian actually
equals A. Furthermore, even if it happens that the cost does not decrease during an
iteration of the form (2.37), it is still guaranteed to do so (unless one has arrived at the
minimum x.) for some A < 1 in (2.38).

COMPOSITION OF EXPERIMENTS

Suppose that two experiments are performed in succession. The first is used to
de*ermine a set of satellite orbit elements y,, where s =1, ..., N; (e.g., N, =6 ). Let its
covariance matrix be represented by Y. The second experiment employs these elements
as parameters in performing a localization, that is, to determine a position x, where r =
1, ..., Ny (e.g., Ng=12). We wish to determine the covariance of x due to the orbit
errors of the first experiment. From (2.27), the errors in x are (deterministically) related
to each of those in y by

ax(due to yg) = A™'b® ay, , (2.41)

where b® is defined to be b-of equation (2.26b) with q replaced by y,. If we let
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D, = (A71b%), (2.42)

be the matrix whose columns are the sensitivity of x to y,, then the sensitivity to all the

errors is given by the their sum, i.e., by the sum over s of the right-hand side of (2.41).
This yields

ax = Day . (2.43)
Finally, we have for the covariance of x due only to the errors iny

E(axax!) = E(Day(ay)'D!)

=DYD! . (2.44)
It should be emphasized that if the two experiments are not exactly the same, the meas-
urement functions used in determining Y and those in D may not be the same.

Let us examine (2.44) a little more closely. Suppose that the measurement spaces of
the two experiments coincide. Define a set of N; vectors x° and a set of Ny vectors x' in
Euclidian M-dimensional space by

x°=37m s=1,.., N ;¢'=ZTm r=1,,..., Ny . (2.45)
s T

Thus, for example, the i** component of &° is equal to dm;/dy,. We define an inner pro-
duct on that space by ~

mm' & g)lmiRij'lm'j . (2.46)
Li=
Then we have
Aw =X X" (2:472)
(b%)y =-x" - £° (2:47b)
Yo =t k¥ (2.47¢)

The matrix D becomes
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s ZAthl ("xk"cs)! (2‘48)
k
and
(DYDt)rr’ = EAril(xk"cm)Ymn('cn'xi)Ai;'l' (2'49)

kmni

Let F be the operator defined on an arbitrary vector a by
Pa & T k™Y (k" a). (2.50)
mn

Then P is linear and 1. jrojects vectors onto the space spanned by the k%, s =1, ..., N..
To see this we note that Pxl = Eanmn(n Kl) = EanmnY,G = K’ and if ark™ =10

for all m, then Pa = 0 To t',aLl-o advantage of the operator P in equation (2.49), w
decompose the vectors x' into

X'=xi+x!, (2.51)

where x.[ is contained in the space spanned by the x' s, and x  is orthogonal to it.
Note that the orthogonality produces.a corresponding decomposition in A:

Aw =xIx! +x"xr
é3""(7A-f-)rr’ +(A—)rr’ . (2;52)

Equation (2.49) becomes

(DYD’)rr’ = %;Ar,l-(l(xk'PXi)Ai-r’l
ki

= ZArk (x4 xDAF (2.53)

or
DYD! = A1 (A-A) A

=A"1 - ATA AL (2.54)

w
(=]




Since A and A_ are positive semidefinite!® and since A™! = (A™)!, we conclude that
DYD! < A™? (2.55)

as quadratic forms. In other words, if the measurement functions are the same in the

two experiments, then the influence of the errors in the first experiment on the covari-

ance of the output of the second is at most as great as the influence of the measurement
. errors in the second experiment on its output:

- E(axax!) < A7, (2.56)
The total error, if both experiments are noisy, satisfies

Ea(axaxt) < 2471, (2.57)

10 To see this, note that they are sums of outer products of vectors. For example,
SizAp oy = Ez,x'—x" zy = | w|? where w = Y,2,x" for an arbitrary Ny-dimensional ve.‘or z.
n w r

Hence, A is a nonnegative quadratic form.
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3. COMPUTATIONS IN GEOCENTRIC COORDINATES

In order to implement the sensitivity equations of Section 2, as well as to solve the
estimation problem via (2.38), we require the gradients of the measurement functions
fr(x, q, t) or d(x, q, t) (cf. equations (1.13) and (1.14)) with respect to the variables x
and q. Since distinguishing a variable as being part of the state variable x or-one of the
a priori parameters q is irrelevant to such a computation, we simply employ the notation
q for the independent variable in the derivative. On the other hand, the difference
between a ground station parameter and a satellite parameter will prove useful, and for
these we shall write qg and qg, respectively.

We begin Section 3 with a computation of the derivatives of the relative doppler
function b (cf., equation (1.8)) with respect to qg and qg. This brief derivation is at an
intermediate level of detail, almost independent of the coordinate system. In the next
subsection we introduce standard geophysical coordinates and describe the computations
leading from latitude, longitude, and velocity on an oblate earth to the vectors R, r, R,
and r of Figure 1.3. We also provide equations for satellite azimuth and elevation meas-
urements. The extension to ground station motion (i.e., great circle motion parameter-
ized by initial course and speed) is given in Section 4.

DOPPLER DERIVATIVES

We proceed to compute the derivatives of the relative doppler function b of equa-
tion (1.8). Noting that

we have

) P . p . _p 9p P (ep) o)
—_—— ' p| =" —_— . -_ Pl. (3.2
aq[ el ] o el 8 | lell  lipll® )

Thus, if we define the normal vector n by

=P (3.3)
n , .
el
then
?ﬁ:—l@_-n_ 1 .a_p- .P__._(B._p)—n
dq ¢ 8q lpll 80 e cllipll
1 9p 1 Op ) .
—.10P . P . |P ipn]. (3.4
c3q " Teloq |¢ ] )

e 2 —r S




As a consequence of (1.6) and (1.9), equation (3.4) is a function of r, # R, and R.
We can remove the dependency on R by taking into account the earth’s motion. Let us
denote by  the vector

Q= Wo K ’ (3.5)

where K is a unit vector pointing north along the earth’s axis, and wy is the rate of the
earth’s rotation (e.g., radians/sec). Then, if a ground station is motionless relative to
the earth with position vector R (cf. Figure 1.3), its velocity with respect to any geocen-
tric inertial coordinate system (cf. next subsection) is R = Q x R, where x indicates the
vector product. Finally, if the station is moving relative to the earth with a ”ground”
velocity of v, we have

R=0OxR+v. (3.6)

That is, v denotes the velocity the station would have if we instantaneously stopped the
earth’s rotation. Equation (1.9) becomes

p=r-0xR-v. (3.7)

The derivatives of b-simplify if we consider satellite parameters and ground station

parameters separately. For the satellite — = R _ 050 that
9qs as
ob 1 dF 1 ar [
L e on-———— | =+bn}|. (3.8)
9qs ¢ dqs el das ( c ]
. or dr . .
For the ground station -=— = —— = 0 and using (3.6) with (3.7),
dqg  9qg
b 1 R Ov 1 OR p
O lox & X lond ————-|=+bn
dag ¢ [ dq9e  dqg ] lpll dac | ¢ ]
JR n x ) p b n 1 dv
= . -4 — - —_ ‘n
dqg [ c clipll el ] ¢ 9qg
__1 R [px® b .| 1 .y, (3.9)
fpll dqq c c ¢ qg
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(We have used the vector indentity (A x B)- C = B - (C x A).

For completeness, we compute the derivatives of the measurement function
d(x, q, t;) with respect to the various parameters. If q is not a frequency parameter then
we have

dd  dby dbp fso
— = —=0D) _—_ —_ . .
39 3q 0P + 34 (by +1+ A ) for q % freq param (3.10)
Also, .
ad
— =1, 3.11
Ogg (811)
od _ 1
3fso - fO (bD + 6) ) (3‘12)
and
od _ _¢
g I (3.13)
where

{0 for gg a state variable
e &

1 otherwise

The partial derivative with respect to f, which is suitable for use in the sensitivity is
somewhat more complex, since the modified measurement d; of (1.16) is a function of f,.
One can either work entirely in terms of the measurement functions fg(x, q, t;) of (1.13)
or utilize the derivative of the entire residual (which appears in (1.17)),

1 -~
I (bpfso + €(fso = fro) - f3) - (3.14)
0

GEOCENTRIC COORDINATES

Equations (1.6), (1.8), and (3.7)-(3.14) determine the measurements at an arbitrary
time t as a function of the vectors R(t), r(t), F(t), and v(t) at that time. However, the
parameters q are fixed numbers associated, at least conceptually, with some fixed time to.
Even for a stationary ground station, it is natural to equate the latitude and longitude
at some time ty with a fixed vector Ry and then to compute R(t) as a function of Rq and
t - to by taking into account the earth’s rotation.

In order to be more precise, let us introduce some specific coordinate systems. Fig-
ure 3.1 illustrates the geocentric, or what we shall call the IJK coordinate system. The
K-axis is the axis of the earth’s rotation; the other two axes are chosen so that IJK
forms a right-handed system of mutually perpendicular axes with I pointing in the
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Greenwich
meridian

Figure 3.1. Illustration of IJK and SEZ coordinate systems. Note that

the longitude \ and 6 are measured-towards the east.
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direction of the vernal equinox!! (1, 2]. The vernal equinox and the earth’s axis both
move with respect to the celestial sphere. Thus, to specify an IJK coordinated system
we must also supply an epoch (point in time) 7. (Note that t is yet a third time, that of
the measurement. It usually is, but need not be, the same as 7.) A typical computation
involves the determination of the satellite position r(t) in IJK coordinates relative to one
epoch, 75 and the location of a ground station R(t) in a coordinate system of another
epoch 7g. Since vector computations such as p = r(t) - R(t) must be done in the same
coordinate system, we must either transform R from IJKg to IJKg, or r from [JKg to
IJKg, or both vectors to some other, common coordinate system before subtracting.
Such a transformation, between orthogonal coordinate systems, will be a rotation, which
may be identified with a matrix T. We use the notation

al®) = T(r5, 16)a'%

2 Tyeal® (3.15)

for the mapping of the representation of an arbitrary vector a in IJKg coordinates to
IJKs coordinates. One should be careful not to confuse vectors as abstract entities with
their representations; thus, a is a single object, al®) is its representation as a column of
three numbers in the IJKg coordinate system, while a® is a representation of the same
object in the IJKq coordinate system. The matrix T is a function only of the two epochs
75 and 7g; the details may be found in [2]. Finally, we have

p) — 8 _ R
— ) - T RO (3.16)

p® = 18 - Tyg (O x RO - y(C)) = ) . TsqRE . (3.17)

The computation of R is detailed below; that of r® and # are described in Appen-
dix B.

From Figure 3.2, we see that the IJK coordinates of a station are determined by 6,
the angle of its meridian with respect to the I-axis, and by its rectangular coordinates
(x, z) in the plane of that meridian. That is,

R(®) = (x cos, x sind, z) (3.18)

" The vernal equinox is the intersection of the equatorial plane (the 1J plane through the geo-
center) with the ecliptic.
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Figure 3.2, A meridial slice through a ground station at R. For an
oblate earth this-slice is an ellipse. See Figures 3.3 and 3.4.
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According to Figure 3.1, 6 is simply
B(t) = 0,(t) + X , (3.19)

where X is the longitude of the ground station, 6,(t) is the angle of the Greenwich meri-
dian with respect to I at time ¢ (i.e., the greenwich sidereal time), and coordinate system
IJKg is that of the epoch 7 = t.

The earth is more accurately represented by an ellipsoid than the sphere drawn in
Figure 3.1. In that case the meridial slice is an ellipse, as pictured in Figure 3.3. The
geodetic latitude ¢ shown there is determined by the angle subtended by a line perpen-
dicular to the earth’s surface. Some straightforward algebra yiclds the rectangular coor-
dinates of the ground station [1],

( a, N HW ¢
X = b cOS
| \/ 1 - e%sin?g )
(3.20)
[ a1 -e? )
z= —e.._(._=_)— +H Sin¢
V1 - e%in%p )

where the ellipsoid is taken to lie at mean sea level, H is the altitude (i.e., height of the
ground station above sea level), a, is the equatorial radius of the earth, and e is the
earth’s eccentricity. Equations (3.18) to (3.20) determine R(G)(t), given the latitude and
longitude ¢ and X\ for a motionless ground station (i.e., v = 0). .

The computation of v(G)(t), the instantaneous ground station velocity relative to
the earth in IJK coordinates, is not quite so straightforward. If we are given a course
1(t) and speed s(t) for each time t, then the procedure is a simple one, which we describe
below. However, if we wish to model the motion parametrically, for example, in terms of
a constant speed and an initial course at some time ty, then we must specify a curve.
We cannot simply use a rectilinear motion of the form a = agy + vq (t — tg) if we wish
the station to remain on the surface of the earth. A natural choice for a spherical earth
is great circle motion, i.e., motion along a great circle with constant speed and an initial
course . Note, that in that case, 1(t) % 1. Motion on an oblate earth is even less
obvious. These are treated in Section 4.

AZIMUTH AND ELEVATION

In addition to the IJK coordinates, Figure 3.1 illustrates the so-called SEZ coordi-
nate system. The letters S and E stand for south and east. The Z-axis is a perpendicu-
lar to the earth’s surface at the ground station; S and E are placed in the plare tangent
to the earth. (Note that these definitions are valid for an oblate earth even though Fig-
ure 3.1 is misleading.) SEZ coordinates are fairly natural for describing local motion.
For example, an object moving at a speed s and course v (clockwise from north) has a
velocity with SEZ coordinates
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North Pole

equator

Figure 3.3, Illustration of the definition of geodetic latitude.
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- cosV
vOED) = | ssinw | . (3.21)
0

This SEZ coordinate system, of course, moves with time as the earth rotates. It also
depends on the ground station location, i.e., on ¢ and X\. The transformation from SEZ
coordinates at time t to IJK coordinates at the same epoch (i.e., 7= t) is given by [1]

al’K) — p-1 5(582) (3.22a)
where
sing cosf sing sinf  —cos¢d
D= -sind  cosf 0 . (3.22b)

cos¢p cosf cos¢ sinf  sind

(The fact that this transformation holds even though it does not reflect the oblateness of
the earth is clarified in Figure 3.4. If the origin of the IJK system is translated from A
to B, then the transformation is the same as would be obtained in Figure 3.1. Since we
are describing only detached vectors, i.e., a length and a direction, in this transformation
the translation from A to B has no effect.)

The relationship of the so-called topocentric coordinate system (i.e., azimuth and
elevation) to SEZ coordinates is described by Figure 3.5. From that figure,

Al = - tan'IE

Ps
EL = sin"'— % (3.23)
Ip |l
with the sign of AZ determined by
sin AZ = Pe (3.24)

V' PE + Ps .

Next we compute the derivatives. Using (tan™!x)' == 1/(1 4+ x%), we have

OAZ _ ¢ 9 PE
dq pg + ps 94 ps
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ground
station

equator

Figure 3.4. Translation of origin of 1JK coordinate system.

- -

Figure 3:5. Diagram of the relation of the SEZ
coordinate system to azimuth and elevation.

42




1 (ep
= e—— -xp| . (3.2%
P + ps’ [ dq Z

An alternative form obtained by using n = p/ || p|| (definition (3.3)) and pé + pg =
lel %1 -ng) is

(2]
9q I'p [l (1-nz)
Also, since
sin EL =g, (3.27)
JEL cos EL = ff_z_ (3.28)
o T 2
Then, cos EL = /1 - nzE implies
anz
OEL _ _ 5q (3.29)
dq V1-n7
Then, since
9pz
6nz= dq ____Pg ﬂ’-'p
dq el JIpfl®| 2
1 9pz dp
= — -ng|=—-n{], (3.30)
el | 8a % o ]]
we have
EI I
9BL _ ™ d . (3.31)

% Ipll v1-n7
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TIME AS A PARAMETER

It is readily apparent from the current discussion that timing represents a potential
physical source of error in the geolocation computations. Table 3.1 below summarizes

the relevant variables,

Table 3.1. Summary of time variables.

initial state signal time pos/vel coordinate sys
receiver tro b Rg(t), Ry(t) TR
transm tro t RT(t), RT(t) TP
satellite tso t r(t), #(t) TS

The parameters tgg and tp represent the times at which the ground station states are
specified. Similarly, tgy stands for the epoch for the satellite elements. t is time of the
receiver measurement; hence, effectively, it also equals the time of the signal transmission
and of its relay at the satellite. 7g and 7g are intermediate variables, not parameters;
that is, they are either functions of parameters or errorless constants. In the present
case, T == rp == t, while 75 is the epoch which the satellite -model uses for its coordinate
system. Usually 75 = tgq, the epoch of the element set (Kepler) or some fixed astronomi-
cal date as in 75 = Besselian year 1950 (NORAD).

The parameters tgg and tpq only have significance when a ground station is moving.
Even in that case, an error in t3 may be equated to an appropriate error in the initial
latitude, longitude, course, and speed parameters. Similarly, tgy-is-equivalent to a set of
errors in the satellite parameters. For a IKepler model, it is-equivalent to an error in the
mean anomaly. Of greater interest, perhaps, are errors in t, the measurement times.
These may usually be modeled as a bias in the setting of the receiver’s clock. More
specifically, we write '

t=t" +cg, (3.32)

where cg is the clock offset. Then an error in cg corresponds to a bias in the clock. The
sensitivity to this bias is a function of the partial derivatives with respect to cg. From
(3.16), (3.17), and (3.22), we have

apt) _ ars _ 0Tsq @ _ 9R(®) 3.33
7o T TR S T (3.83)
op® _ 88 _ 9Tss 10(6), g _ (@
77l Tl el L v
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G G
~Tsg {Q(G)x RO _ vl

ot at (3.33b)

The terms S are generally negligible compared with the other derivatives. We also

3
at
have

dR©  R(C) db,
deg 80, dt

9R(G)

99,

w . (3.34)

av(G)
BcR
ground station motion model. Note that although cg is a receiver parameter, it appears

in both satellite and ground stations computations so that equation (3.4) must be used
rather than (3.8) or (3.9).

If the station is not moving, then

=0; otherwise, this derivative depends on the

SUMMARY

We summarize the parameters and the stages which lead from them to the doppler
residuals d(t) - d of (1.17):

Satellite Parameters:
time, semimajor axis, eccentricity, inclination, mean anomzly, ascending node,
argument of perigee, offset freq.

: 12
ds =’(tSO: ag, €q, 1, Yo, o w0 fSO)
Ground Station Parameters:
time, latitude, longitude, course, speed, frequency

receiver
qg = (tro, $ro» *ro» YRo» SR0» {RO)

transmitter
a¢ = (t1o, $10, Mos Y10s S0, {0)

12 Note that 1 and w as elements should not be confused with ground station course or the earth’s
angular velocity.
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adltar) S qo) (061806 ployy, oYy G Ry, RO

—

asltsy) _APPeRdixB - s)e), #5))

RS) ) RS) O {1l.

xS A UOL IR

RS) ’ RS) . O (1.

,:58 f-(ér)((:)) _(l_s)fﬂl, by(t)

bU! bD’ fO: l‘RO’ fSO (1.14) to (1'16_)¢ d(t) - &t

—

Derivatives are computed by the chain rule. The relevant equations are (3.10) to (3.14)
for d, (3.6) to (3.9) for by and bp, Section 4 for R(®) and R(® (note that Tgq is only a
linear factor in derivations with respect to the above parameters), and Appendix B for

) 56)
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4. MOTION ON AN OBLATE EARTH

In this section we develop a four-parameter model (i.e., initial latitude, longitude,
course, and speed) for ground station motion. The obvious choice of great circle motion
is somewhat complicated by the consideration of a nonspherical earth. Some of the rela-
tions reduce considerably with the appropriate algebraic manipulation (e.g., (4.18) and
(4.19)), but the total number of equations remains large. The less interesting equations
are computed in Appendix A and summarized at the end of this section. We remark
that, for those only interested in motion on an oblate earth, Section 4 and Appendix A
may 'be read independently of the rest of the report.

STATION COORDINATES TO GEOCENTRIC COORDINATES

The term station coordinates refers to geodetic latitude, designated by ¢, longitude
east, )\, and altitude above mean sea level, H (cf., [1] or Section 3). Of course, since the
earth is moving, these must also be accompanied by a time. The other system, geocen-
tric coordinates, will be denoted by IJK ( K = axis of rotation, I = direction of vernal
equinox, J = K x I ) These, of course, also depend on a specified epoch. If we let 6, be
the angle between the Greenwich meridian and the axis I, i.e., greenwich sidereal time,
then the local sidereal time 6 is given by

6= 6+ ). (4.1)

Let us designate the equatorial radius of the earth by a, and its eccentricity by e, and let

A a,
V1- e’sin%¢

and

2 »
A _dq _ a.e’sing 4.9h
%= d(sing) (1 - e%sin’¢)®/* (4:2b)

Then, assuming an oblate earth, the position vector in IJK coordinates is given by [1] (or
by equations (3.18) - (3.20))

RMK) — (x cosd, x sind, z)! (4:3a)

where
x £ (q+H) cosé (4.3Db)
2 2 (q (1-¢2) + H) sing (4.3¢)

47




and 1 indicates the transpose. Equations (4.1) to (4.3) describe the transformation from
station coordinates to geocentric coordinates.

Computation of the doppler shift, of the sensitivity, or an analytic steepest descent
to estimate the state, requires the derivatives of these transformations with respect to
various parameters involved in the station location and/or its motion. Since these
parameters are more conveniently expressed in terms of functions of the station coordi-
nates (e.g., in terms of sing and cosg rather than ¢ itself), we retain that dependence in
computing the derivatives. Let w be an arbitrary parameter, then

9 Ry Jd X 0 cosd 0 x dsind 8z
= si 44
aw (awcos()-}-x ow ' ow inf + < ow ' Bw) (44)
where
dx i
_6\: = (|, COSP a;‘\:llﬁb +(q + H) a_;(‘lvsi (4.5a)
and
92 _ o (1- e sing 2.5ind 2 3 sing
w = G (1-¢%) sing === + (q1 - ¢®) + H) ==

— [__qil_-ﬁi +H } 9 as:“" (4.5b)

1 - e%in%$ '

These, of course, do not include the case where w is a function of H.

STATION MOTION

We model our motion as "great circle” motion on a nearly spherical earth. By this
we mean that the geodetic latitude and longitude trace out a great circle on the unit
sphere. Thus, for example, in Figure 4.1, Py is the initial position, and P is the position
after traveling the distance ¢ (radians) along a great circle specified by the initial course
vg. This motion composed with equations {4.1) - (4.3) is the assumed motion of the sta-
tion. In this sense, the local position R(t) is a function of the initial position ¢g, Mg, of
the initial course vy, and of the distance traveled ((t). Of course, ¢(t) is related to the
initial speed sy and the time elapsed t — t; as diagramed below.

to, G0, Mo, Yo, So _@_22) $0, Mo» Vo, t) (4'40)-(4:4_23) $(t), (t) (4.1)-(4.3) R(t)

— —_—

For lack of a better term, we call this ”pseudo great circle motion.”
P )

The velocity R is then, of course, the time derivative of this motion. It will sim-
plify our results to separate the part of the motion due to the earth’s rotation from that
of the station relative to the earth. Let © be a vector along the earth’s axis with magni-
tude equal to the earth’s rate of rotation (cf., (3.5)) and v the velocity the station would
have if we instantaneously stopped the-earth’s rotation. Then
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"north pole”

Figure 4.1.Great circle motion.
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R(t) = Q(t) x R(t) + v(t) . (4.6)
P dR df 13 . . .
The vector Q(t) x R(t) is simply FTRTS Hence, v is computed by taking the time

derivative of R but setting d6/dt = 0.

One must, however, resist the temptation to further simplify by trying to directly
convert the course v and speed s to rectangular coordinates (e.g., north and east) and
rotating that to IJK coordinates, thus, apparently obtaining v without the need to
differentiate (4.2) to (4.3). More precisely, let the transformation from SEZ (topocentric:
south, east, up ) coordinates to IJK be given by the rotation ([1] or equation (3.22))

V(IJK) — D-lv(SEZ) (47)
where

sing cosd -sinf cos¢é cosf
D' = |sing sind cos@ cos¢ sind (4.8)
-cos¢ 0 sing

and is valid for an ellipsoidal earth. One might expect the velocity vector to lie in the
SE plane at an angle of 7 — v to the south, i.e.,

~cosv
vIEZ) 2 ¢ ap [si(r)w ] (4.9)
and
~cosv
viK) x~ ¢ ap D! [sinv J, (4.10)
0

where ¢ indicates the time derivative of ¢, and ag is the radius of the earth at R.

However, this is only approximately correct. Due to the earth’s oblateness, the
actual curve traced on the earth’s surface is not the great circle of a sphere, and the SEZ
velocity vector is only approximately given by (4.9). The exact equations are computed
below. We also note that we must specify whether ¢ is a constant or whether the speed,
|| v || is a constant. Although these are approximately equivalent, once again, because
of the oblateness of the earth, they are not exactly the same. The final result is

. -cosv cos¢ cosv
vilK) = ¢ D1 | o | sinv |+b 0 (4.11)
0 0

B0 depends on ¢ since the earth’s axis precesses. Q, which is negligible, is effectively set to zero if
wae ﬁxsa oequation (4.6); however, if one is fussy, one may replace the first term in (4.6) with

90 dt
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where

afq+H, (4.12a)
and
b& ¢’ o° cosp = q cos (4.12b)
a,> * sing

We proceed to derive (4.11). Using definitions (4.12), equations (4.3) and (4.5) may

be rewritten

X = a cos¢ (4.13a)
7= asing - e° q sing (4.13b)
ox _ 3 9-cosd 0 sm¢>
Froiad R wa + b sing ——— B (4.13¢)
9z _ _ Jsing _ d sing
il L b cos¢ e (4.13d)

In order to determine the velocity, we wish to set w = ¢ and use v = (8R/3s) ¢

Equations (A.15a) and (A.15b) give

9 sin¢g

a¢

a- cos¢
o

while from (A.38a) and (A.38b)

d sinf _

B¢

and

O-cosl _

= cos¢ cosv (4.14a)
— sing cosv, (4.14b)
siny (4.152)
cos¢
siny (4.15b)
cosé
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Combining (4.13¢) and (4.13d) with (4.14a) and (4.14b) yields

%Tx = -a sing cosv + b sing cos¢ cosv (4.16a)

%?z = a cos¢ cosv - b cos®P cosv (4.16b)

Substituting (4.15) - (4.16) into (4.4), we obtain

b sing cos¢ cosv cost
+ |b sing cos¢ cosv sind | (4.17)
-b cos®p cosv

9 RWK) ~a sing cosv cosf ~ a sind sinv
—3 = |-a sin¢ cosv sinf + . cosd sinv
§ a cos¢ cosv

Comparing this with (4.8), we find

(JK) —cosv cos¢ cosv
R _ D! [ a [sinu +b 0 ]J (4.18)
9 0 0
Since
v=¢ R (4.19)

this proves (4.11).

It remains to describe the relationship of ¢ to speed. Since speed is the magnitude
of the velocity, we have

: 9R
= specd/[| 5= 1 (4.20)

where

I % || 2 = a% 4 b® cos®$ cos® - 2 a b cos¢ cos®v (4.21)

from (4.18) and the orthogonality of the matrix D. Thus, we see that we may postulate
either motion with a constant speed, or with a constant rate along the great circle (i.e.,
constant ¢), but not both. Although speed is almost always the measured parameter,
constant-speed motion would require a complex integration of the function
|| (OR/9s)T || along the great circle path in order to determine ¢ as a function of time
(the integral-of (4.20) ). Consequently, it seems advisable to model the motion by

¢ == so:(t ~ to) (4.22)
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where s is a constant set equal to the true ¢ at time t;. In general, this is an excellent
approximation (it would be exact for a spherical earth), and the error involved is less
than that involved in the assumption of pseudo great circle motion. (In most cases, the
actual motion is only approximated by a set of constant-course segments. Even for great
circle motion on a spherical earth, the course is always changing.) Furthermore, for
computation of the doppler, we may still use the exact value of ¢. More precisely, at a
constant speed spd, (4.20) at time t; yields

. d
S0 = ¢ (to) = —5%)_ ) (4.23)
I —(%'(to) Il
and at time t, we have
AR
' spd Il 8—5.(%) I
)= —Pd g0 (4.24)
2240 [EE0N
o¢ 3

In summary, we propose two possible models, both of which avoid the integration
of (4.20) with respect to time. In the first model, we assume that ¢ = sy, a constant.

¢ (t) = so(t - to) (4.252)

$(t) = so. (4.25b)

This model is physically consistent, i.e., ¢ is the time derivative-of ¢. However, it is clear
from (4.20) that in this case the speed will not be a constant. For the second model, we
define ¢ and ¢ by

§ () = so(t - to) (4.26a)
(ii):
3R
ZE
$(6) & So-”—-g%(—f)-l—l— . (4.26b)
i a—g(t) |

In this case ¢ is not the time derivative of ¢, and v of (4.19) will not be the'v’elocity
corresponding to the motion (4.26a). However, v will be the velocity at the position (t)

given that the speed is sq || aa—R(to) ||. Thus, if the true motion is constant speed,

model (i) will give a (slightly) incorrect position but a correct velocity v for that posi-
tion.
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DERIVATIVES OF STATION MOTION
From (4.19) we have, for an arbitrary parameter w,

dv _. 3 OR 9 IR
. 27
w S w o T ow o (4.27)
If w = s, then in both models (i) and (ii) equation (4.27) becomes
ov _. 0 OR ¢ OR
650 350 85‘ Sp Bg
. PR , ¢ OR
=g (t' tO) 6§ So ag ' (4'28)
For model-(i) these simplify to
5. o _ 9 OR
(i): T = 5 B % for w 5% 59 (4.29a)
: v R |, 9R
- : — T t—- — .
(i) 55, so(t = tg) —=— rr + 2 (4.29b)
On the other hand, model (ii) requires considerably more computation. Since, from
(4.24),
X _ i o 0
% S, (4.30)
ll ||
we have for model (ii)
) ov _. |9 R 4R 4 a 9R
i): = — - 4.31
@ =t e T A N E I 5 ]( 2
" o _ .| a2R 1 OR
, — 1R 4.31b
(i) =i e-wiEeyg (431)

To a very high approximation, we could drop the second term in (4.31a); however, if we
use the partials in a steepest descent, then convergence to the true minimum of a cost

function can only be guaranteed if the second term is retained.
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Let us derive a slightly more explicit form for g_w (6R/8¢). From (4.18),
o OJR il -1
g 9o __ 0 Ip
ow ¢ ow [

Definitions (4.12) and (4.2) give us

a sinv (4.32)

0

(-a + b cosg) cosv “

2
-a.+bcos¢=—q—H+%q3cos2¢

Ay

2

2
cos
1 - e?sin? ¢)

=-H+4+q(-1+

2
—-H- (= ;2"—1 & (4.33)
(]

Then, indicating 3 /dw by subscripting w, we have

5 aR _ (D..l)w

a sinv
bgadd ow ag

0

(-a + b cosg) cosu]

::c:" (-a + b cosé),, cosv +(-a + b cos¢) (cosv)y,

:")’“ + D! a,, sinv + a (sinv)y, , (4.342)
0

o where, from (4.12a) and (4.33),

: = g, Osind 4.34b
‘:"F.; aw qS aw ( )

(4.34¢)

3(1-¢€) o Osing
' -— — .
*f:;; . (~a + b cosg),, = y Qo

¥

|

: SUITABLE STATE VARIABLES FOR STEEPEST DESCENT
"

,t

In many cases, the gradients computed in the previous section will. be used in a
steepest descent or sensitivity calculation for which the state vana,ble.s include course
® and speed. It can be be seer from (4.19), (4.22) and the fact that sing appears as a
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factor in dR/dy, (substitute successively (4.57), (4.50), (4.46), and (4.5) into (4.4)), that
at so =0, the partials of R and v with respect to vy are zero, and the resulting "A”
matrix (cf., (2.10)) will be singular. This is essentially an artifact of the ”"polar” (i..,
course, speed) coordinaté system and may be alleviated by changing state variables.

A natural choice for new state variables is the rectangular velocity coordinates
defined by

Bro A Sp cosVy

(4.35)

Beo 2 59 sinvg

where the subscripts n and e are intended to indicate velocity north and east respec-
tively. We can transform to this system using the Jacobian

9Buo 0Beo . cosly siny, 36
8sp vy |~ Sosinyy spcosyg | (4.36)

or, more practically, its inverse

sinyg
cosyy -
G5 O _ o (4.37)
B0 0P |y, O
0 %
For example, from the chain rule, (4.29) and (4.37) yield
siny, 2
ov cosvy - g so(t - to).‘l_R_' + SR
() 3ﬂno 50 8§ 3§
i): =
0
B a Y Silll/o COSVO S, i—. _6.5
Beo So 0 vy B¢
R , OR
cosyy - siny soft - t°)7§' + _65'_
= Sinllo COSVy F) 3R
By B¢
2
[ oR oR
cosyy — Siny d¢ d¢ g
= Isinyy  cosy, 5 &R (4.38)

vy B¢
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The same coordinate changes circumvent the vanishing of dR/dy, at sy =0. To
see this, we first note that the partials of R with respect to §,, and f,, take the form of
(4.38) with the vector on the right-hand side having components OR/9sy =
(t — to) dR/d¢ and (1/s9)8R /3y , i.e.,

R _ R
38 cosyy - siny (6 - t) d¢
(i): 0ol= (4.39)
oR siny,  cosy, 1 8R
- 3ﬂeo ;; v,

From (4.4) and (4.5), we observe that every term of dR/dv, contains one of the four
expressions Osing/dy,, dcos/dv,, Osind/dvy, or Acosd/dv,. From (4.46), (4.50), and
(4.57), we also see that each of these contains a factor of sin¢. Thus, (1/sy) IR /3y, con-
tains a factor of sing¢/sy which has the finite (and generally nonzero) limit of (t — to) as sy
goes to zero.

Another aspect which should be mentioned is the potential for negative ¢ It is
entirely possible, during a steepest descent procedure, to drive the state variable sy nega-
tive. This poses no problems provided we interpret it as motion in the opposite direc-
tion to the indicated course. More precisely, suppose we are faced with a negative ¢,
and, hence, negative ¢ We may define primed variables by ¢'= -¢; ¢=-¢
Vp=vp+ m and V= v + x. Equations (4.40) to (4.43) of the next subsection remain
invariant under this change of variables. Since ¢ is positive, we may interpret the nega-
tive ¢ to be the same motion as —¢ with the course reversed, i.e., with the course replaced
by (course + 7). More simply stated, we may work with equations (4.40) to (4.58) with
impunity even if ¢ is negative. Also, if a particular set of computations results in nega-
tive ¢, then the course v should be interpreted as the direction opposite to the physical
course.

SUMMARY OF SPHERICAL TRIANGLE EQUATIONS

For convenience, we assemble here the equations from Appendix A, which are
needed to compute sing, cosd, siny, cosv, sind, cosd, and their derivatives. Note that
when unsubscripted variables appear on the right-hand side, they must be computed via
previous equations.

sing-== singy cos¢ + cosdq sing cosvy (4.40a)
. cosp = V1 -sin2 e (-n/2, 7/2) (4.40D)
cos¢ — singy sing
= 4.41a
. cosa cos@y cos¢ ( )
ing siny,
sina = s S0 (4.41b)
cos¢d
oSV == COSV, cOSA — siny sina singdg (4.42a)
siny,
iny = 4.42b
siny = ¢osdy p— ( )
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sind = cos(Mg + ;) sina + sin(q -+ 6,) cosa (4.43a)

cosf == cos(Xg + 0,) cosa - sin(\g + 6;) sina (4.43b)
—(?;—glﬁ == cos¢ cosdg — sin¢ cosyy sindy (4.44a)
0
Jcosp __ sing Osing 4.44b
8¢y cosp 94 (4.440)
Osing Jdcosd
- = 4.45
g O 0 (4.45)
Osing _ ~cosg@y sing siny, (4.462)
81/0
dcos¢d — sing dJsing 46
dv, cosd Ay, (4.46b)
_B_Sai%é_ == cos¢ cosv (4.47a)
Ocosé _ -sing cosv (4.47b)
%
dsina sina Jdcos¢é
= 48
580 coss 9% (4.480)
Ocosa __ _sing COSA . . singg Osin¢g
9¢g cos¢  cosgg 0 cosgg cosd 0y
cosa Ocos¢d
_ L0054 JLosg .48b
cos¢ Oy (4.48b)
Osina dcosa
= =0 4.49
O ONg (4.49)
dsina sing cosvy  sina dcosd
- - 4.50
dy, cos¢ cosp Iy, (4.502)
dcosa — singy Osing  cosa Jcosé (4.50b)
v, cosdg cos¢ Oyy  cos¢ A '
Osinv __ _Sin¢0’SiDVo _ sinv Jcosd (4.51a)
ddo cos¢ cos$ Oy '
dcosv dcosa . Osina . . .
——— = cosYy ———— - sinyy ——— singy — siny; sina cos (4.51b)
3%, 03 %o 073 % 0 0 $o
Osinv __ Ocosv
= =0 4.52
I g (452)
Osinv cosYy  sinv Ocosd
= - — - 4.53a
Oy, cos%o cos¢  cos¢ Oy ( )
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a;:u = —siny, cosa + cosvy a;‘:A - cosv sina singy

- siny, sing, a;i;oA (4.53b)
g%i?-li = siny cosv -Sg-;% (4.54a)
Geosy __ _ 2, Sing (4.54b)

d¢ cos¢
a;:;o — cos(h + 0,) a;i;oA + sin(ho + 0) 3_;%5 (4.55a)
o = cosldo + ) Z5 —sin(ng + ) ot (4.55b)
%S;Loe = -sin(g + ) sina + cos(hg + ;) cosa (4.56a)
%% == -sin(Ag + 0g) cosa ~ cos(Mg + G;) sina (4.56b)
-Q;—Z:;g = cos(\g + b;) a;i;f + sin(Mo + 6,) a:;c:A (4.572)
_%c% = cos(\g + 6;) agc;zA = sin(xo + 0g) BZTOA (4.57b)
azix;o — cosf ::;: (4.58a)
Ocosh __ _ sinf siny (4.58b)

d¢ cos¢d
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Appendix A: GREAT CIRCLE MOTION AND ITS DERIVATIVES

A standard spherical triangle is pictured in Figure A.1. We are considering motion
along the great circle arc ¢ from P, to P, where the latitude ¢, and course v, of the ini-
tial point as well as the distance ¢ (in radians) ar: known. (The longitude X, is also
known, but not relevant at the moment.) We wish to determine the new latitude ¢,, the
change in longitude A, the new course vy, and their partial derivatives. Figure A.l, as
well as standard spherical trigonometric formulae, assumes that all angles and sides of
the triangle in question lie in the interval [0, #]. This is true of the colatitudes 7/2 - ¢,
and 7/2 — ¢o; however, vy, ¢, A, and v, will generally be in the interval 0 to 2r. To han-
dle this problem, we transform to variables which satisfy the desired conditions and dis-
tinguish them by the addition of a prime. Four cases occur, as illustrated in Figure A.2
and summarized in Table A.1.

Table A.1. Transformations to standard spherical triangle.

case transf of initial values transf of new values
0: v<m ¢<m Vy=1T— V),
I v>m¢<rm Vi=2r-y vo=m+ 1,
A= -4
2 v<m > Vi=rm-1»
d=2r-¢ = -4/
Fv>me>T =y -7 vy =21 - Vly
d=2mr-¢

For those transformations omitted, the primed value equals the unprimed
value.

We could perform all our derivations assuming case (0) and then justify the results for
all cases by an appeal to analyticity of the individual variables (which implies a unique
extension). However, with a bit more labor, we achieve the same end directly, using the
following sign relationships (easily verified from Table A.1):

cosa = cosa’ (A1)
cos¢ = cos¢’ (A.2)
sing __ Cosv __Cosky A3
sing  cos/ costy (A3)




"north pole"

Figure A.1 Spherical triangle cn unit sphere.
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Figure A.2.The various cases for great circle motion from P, to P, and their relation to

standard spherical triangle parameters.
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siny; sinvy

. = — Ad
sin/;  sin, (A4)
sina sin¢ siny,

= A5
sina’  sin¢ sint/} (A.5)
Equations (A.3) and (A.3) imply
cosVy siny; sina
= A6
costy sin//; sina’ (A.8)

Table A.2 contains a summary of the locations of the various equations.

Table A.2. Equation numbers for various computations .

indep sin/cos derivatives of sin/cos
variable /3¢y | 8/ON | 8/ov, | B/d¢
$o AT A0 | A1l | A13 | AI5
A A8 A.20 A.21 A.22
Vo A9 A.25 A.26 A.27 A.30
0, A32 A33 | A34 | A35 | A.38

FUNCTIONS OF P,

In the equations which follow, we shall assume that no point of the arc PP, passes
through one of the poles. To solve for ¢,, we use the law of cosines' applied to the sides
of the spherical triangles in Figure A.2. Thus,

sing, == sing, cos¢ + cos¢, sin¢ cost/y

= sing; cos¢ + cos@; sin¢ cosyy, (A.7a)
and

——

t Our choice of equations in what follows is dictated by a desire to avoid indeterminate forms and
simplify sign determination. Thus, only cosines of the latitude appear in denominators.




cospy = /1 -sin’dy ¢ € (-7/2, 7/2). (A.7b)

Note that we have used (A.2) and (A.3) in the derivation of (A.7a).
Similarly for &/,

cos¢' - sing, singy

cosa! =
cos@; cosd,

which, by (A.1) and (A.2), implies

cos¢ — sing; sing,
A = . .
oo cos@y cosd, (A8a)

From the law of sines,

sinal — sin¢’ sint/
cosdy
so that (c.f., (A.5))
) sing siny,
A= — .
sin oy (A.8b)
The law of cosines for angles yields
cosvly = ~cost/; cosa’ + sint/, sina’ sing;
that is, by (A.1), (A.3), and (A.6),
COSVgy = oSV COSA — siny; sinA sing,. (A.9a)
Again, from the law of sines,
Sinljl
. M —_ -
sinvy = cos¢é, <05y’
or, using (A.4),
sinv
sini, = cOS¢hy—— (A.9b)

cosdy’

Note that in this section, as in those which follow, some expressions may contain quanti-
ties which must be computed from previous equations. For example, (A.9b) depends on
cosdy, which may be-computed using (A.7).
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DERIVATIVES OF sing, and cosg,
From equations (A.7a),

Jsing, . .
5% == cos¢ cos@ — sing cosv; sing,. (A.10a)
1
Also,
Jcosgo . sing, OJsing, (A.10b)
94, cospp 9y .
Jsing, Jcosdy
Ny, N % (A11)
where we have used
dcosgy  singy Jsing, A12
dw cos¢y ow ' (A12)
which follows from (A.7b) for arbitrary w.
The partials with respect to v, are, from (A.7a) and (A.12),
Bsi
sings = ~cos¢; sing¢ siny; (A.13a)
31/1
Ocospy  singy Osing, (A.13b)

v,  cospy Oy

Before computing the derivatives with respect to ¢, we note, from Figure A.1, that
taking the derivative with respect to ¢ at P, is the same as taking the derivative at
P, = P, by setting ¢ equal to zero, and then replacing the subscript 2 with the subscript
1. That is, the rate of change of sing or cos¢ with respect to ¢ at an arbitrary point
depends only on that point. As we shall see, this provides us with a quick method for

simplifying the resulting expressions. Following the indicated procedure, we have from
(A.72)

Osing, . .
5 | (-sing, sing + cosé, cos¢ cosvy) —0




L o I A

= cosg, cosv;. (A.14)

Then, since (A.14) is only a function of P, and since Py in this context is arbitrary, we
may replace it by P, to get

Bi
sind, == cOSPy COSVs. (A.15a)
o
Using (A.12), we find
0
c;?ﬁg = -singd, cosv, . (A.15b)

For completeness, let us show that this is equivalent to just taking the derivative of
(A.7) with respect to ¢. We have from (A.8a)

cos¢ — sing; singy

cosgy = A.16
& cOSA COS¢y ( )
so that
cos¢ — sing, sing,
COSV) COSA COS@y == COSV; .
cosd,
cosv ) , )
= ! (cosg — sin®@, cos¢ - sing, cos¢, sing cosv)
cos¢;
cosv; cos ) X
S0t 0% cos?d, — cos’v sing, sing , (A.17)
cosé,

where the second last line follows from substitution of (A.7a). Also, from the law of
sines for Figure A.1 (equation (A.8b)),

cosd, sina siny, sing; = sing sin’v, sing,. (A.18)

Multiplying (A.9a) by cos@, and substituting (A.17) and (A.18) in the resulting expres-
sion, we get

COSPy COSYy == cOSV; €OSP; COS¢ ~ sing; sing (A.19)




Then (A.15a) equals the left-hand side of (A.19) while the right-hand side is, indeed, the
derivative of (A.7a) with respect to ¢.

DERIVATIVES OF sina AND cosa
Differentiating (A.8b), we have

, .
e = (r20
From (A.8a)
deosa _ _sings  cosa . . Singy  Osindy
9¢, cosgy ~ cosg, ' cosg; cosgy Oy
- c"::q’; 2%%. (A.20b)
Finally,
3;;'1:\ = 3;;51‘* =0 (A21)

The partials with respect to v, are also found by differentiating equations (A.8).
From (A.8b)

dsina __ singcosv;  sina  9cosgy

= A22
vy cosPs cosgy Oy ( 2)
Similarly, from (A.8a),
deosa _ __ singy  Osindy  cosa 3005452; (A.22b)
dny cos$y cosgy  Ovy cosgy  Ovy

For ¢ we find that we shall only need the derivatives at ¢ =0, so we proceed as in
the derivation of {A.14). Equations (A.8a) and (A.15) imply

deosa | __ sin¢ _ _cosA dcosdy _ sing, dsing,
¥ | cosgy cospy  cosgy O cosdy cospy  O¢ 0
. sing,
=0 - -sing; cosyy) - cos¢y cosv
cosds (-sing; cosvy) Ty (cosg, cosuy)
A~8



= 0.
From (A.8b)
Osina | _  C€OS¢ sinyy _ sina 3C°S¢2\
o |y cosgy cosps I |,
__ siny
" cos¢y

DERIVATIVES OF sinvy, AND cosv,

From (A.9b)
Osinvy  sing siny;  sinvy dcosdy
3¢y cospy  cospy Of; '
and from (A.9a)
dcosvy deosA . Jsina . . .
——= = cosV - — siny sing; - siny; sina cos¢; .
39, 1 54, L 54, 1 1 1

Of course,

Osinvy  Ocosvy
E V)Y

Next, taking derivatives of (A.9) with respect to v, we get

Jsinvy cosy;  sinv, 0cosd,
——— = oS -
oy 1 cosg, cosgy Ay,
and
Ocosv. dcosA .
——2 = -siny; cosa + cosvy ——— — cosVy sina singy
ov; oy,
siny, sing Jsina
1 1 aV]

(A.23)

(A.24)

(A.25a)

(A.25b)

(A.26)

(A.27a)

(A.27b)




. —

A L o L,

We employ the usual trick to obtain the partials with respect to ¢. From (A.9b)
and (A.15b):

Jsinv, sinvg Jcosds

¢ o cosgs  O¢ lo

siny,
cosd,

sing, cosv,. (A.28)

Similarly, from (A.92) and (A.24),

8c;§u2 . = [cosul 6C§:A - siny; sing; 85;1;A ] .
= ~siny, sing, :2;:;1 (A.29)
Thus,
6si611§u2 = sinv, cosv, ::;f;z (A.30a)
3c;ju2 = - sin’vy ::;ZZ (A.30b)

DERIVATIVES OF sinf, AND cos0,

Instead of functions of the longitude, we are generally concerned with those of 6,
the sidereal time,

02 = 082 + )\1 + A, (A.31)

where \; + 4 is the longitude at Py, and 6, is the Greenwich sidereal time at point Ps,
i.e., when the station is at P,. Equation (A.31) implies

sinfy = cos(X; + 6g,) sina - sin(M; + f,,) cosa (A.32a)
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Thus,

aSin92

¢,

. dcosly
9¢,

dsind,
W

Ocosfy
o\

asin02

31/1

dcosby

31/1

0Osindy

= cos(\; + 0g,)

= cos(\; + 6,

cosflp = cos(); + ) cosa —sin(A; + 6;,) sina

— cos(\, + 0, a;‘;‘f +sin(h + 6;) -—ag‘f‘lA
= cos(M; + 0,,) 6;(;SIA ~sin(X; + 6,) a;lT?xA

= -sin(\; + 6;,) sina + cos(\; + 6;,) cosa

= -sin(\; + 0;,) cosa — cos(; + 6g) sina

dsina
81/1

+ sin(h; + ) a;“"

Jdsina

) dcosa
2 3 31/1

- Sin(>\1 + 032)

From (A.32), (A.23), and (A.24), we have

dsina

= cos(f; — &) —— +0
5 Jamo~ Y 7o |
. siny,
) = 00501 COS¢1 )
. and similarly
Ocosfy —  sinf sinyy
0¢ ! cosgy
A-11

(A.32b)

(A.33a)

(A.33b)

(A.34a)

(A.34b)

(A.35a)

(A.35b)

(A.36)

(A.37)



PR Y o

Again, since this must hold for all P, along the pathT, we have

Osinb, sinvy
= cOos
o¢ 2 cOSPs
dcosl, . . sinyvy
= — sin .
o¢ 2 cosgy

t Note that the definition of 8 as a {unction of P is independent of the point P,, which permits re-

(A.38a)

(A.38b)

placing the subscript 1 with 2 in (A.36) and (A.37). This was not possible in (A.23) or (A.24) since
A is defined in terms of P;. Of course ¢ in (A.36) also depends on P;, but if we define ¢, as the arc
length relative to another point Py, then we have ¢, == ¢ — arclength P,P, = ¢ - constant, so that

8/8¢ = 8/8¢,, which is independent of the choice of the point Py,

A-12
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Appendix B: KEPLER MODEL AND DERIVATIVES

The Kepler model is specified by six elements and an epoch:

a = orbit semimajor axis

e == orbit eccentricity

M, = mean anomaly at epoch

i = inclination

1 = longitude of ascending node
w == argument of perigee

to = epoch of elements.

The first three quantities determine the position rW) and velocity #PQY) for all time
with respect to the orbital plane and relative to perigee, i.e., in the so-called perifocal
coordinate system (P is the semimajor axis to the periapsis, Q rotated 90° in the direc-
tion of motion, and W determined by the right-hand rule {1]). The remaining three ele-
ments detern-ine the orientation of the orbital plane. We then have, with IJI represent-
ing geocentiic coordinates at epoch tg,

IIK) _ 7 p(PQW)

(B.1)
K = U §PQW)

where

cos {1 cos w — sin {2 sin w cos i —cos §) sin w-sin  cosw cosi sin O sin i
sin  cosw + cos 2 sin w cos i -sin £ sinw + cos 2 cos w cosi —~cos N sini | (B.2)
sin w sin i cos w sin i cos i

For notational convenience in the following, vectors with no superscript will be assumed
to be in the PQW coordinate system. Those vectors which are written with only two
components have their W-component equal to zero; that is, they lie in the orbital plane.

of

Two derived quantities, used in computing the orbit, are the mean anomaly at-time

M A My + Viu/a® (b - tg)+27k , (B:3)

{ From a developmental viewpoint, the basic quantity is v, the angle subtended at the focus of the

ellipse. The mean anomaly M, as well as the eccentric anomaly E, are derived from v.



where 0 < M < 27, and the eccentric anomaly E is determined implicitly by the equa-
tion

E-esihnE=M. (B.4)

The constant p is the gravitational parameter (gravitational constant times the mass of

the earth, (1]), and the quantity \/u/a.3 is termed the mean motion since it is the rate of
change of the mean anomaly M.

The position of the satellite at time ¢ is given by
r={(rcos v, rsin v) , (B.5)
where r, the magnitude of r, is determined from ([1}, equation (4-2-14))
r2 ||r|] =a(1-ecosE), (B.6a)

and v, the angle subtended by r with the P-axis at the focus of the ellipse, satisfies ([1],
equations (4-2-12) and (4-2-13))

cos v = % (cos E —¢) (B.6b)
sin v = —i’- Vi-esinE. (B.6c)

Thus,
r=a(cosE -e, V1 -e?sin E) (B.7)

Then,
i =(-EasinE, Ea\/l—GQCOSE). (B:8)

But, differentiating (B.4) with respect to t, using M = \/;L/ab3 from (B.3), and relation-
ship (B.6a), we have

E=1,/L, (B.9)

so that

B-2




Via

r

. 4| _-sinE —_2_cosE
T \/_a._[l—ecosE’ Vi-e l—ecosE]' (B.11)

Next we compute the partial derivatives of r and ¢ with respect to the elements.
Equation (B.4) implies

r =

(-sin E, V1 - e? cos E) (B.10)

or

dE (1 -ecos E) ~sin E de =dM, (B.12)

i.e.,

For convenience, let

m & \/13' (t - t) (B.14)

be the elapsed mean motion. Considering M a function of a and t, we have

oM
— B.15
oM 31 3m
—— DT e e—— — — IS —— — B.lﬁ
a 2 a a8 (6~ to) 2 a2’ (B-16)
and
oM
oV £ B.17
At \/.:"‘- (B.17)
From (B.13a)
6 _OEOM __al 3m)| 3m (B.18)
Jda oM Oa r] 2 a 2r

We may now compute the partials of r with respect to the elements a, e, M.

B-3
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%=(cosE—e, \/l—egsin E)+a("5inE; \/1‘62COSE)%—1';3'

— (cosE-¢, VI-esinE)- 3 -sin B 2 CosBE
(cosE-e, V1-e?sin E) lel_ecosE Vi-e l-ecosE

cosE+3m SmE \/1 esmE——m\/l—o—Q-s—E—— . (B.19)
l-ec l-ecosE

ar . [..1, '_efl[‘_E_;] +a(-sinE, V1-e? cosE)éE

de \/l—e"' Oe
— -1-sinE sin B esin E _ cos B _ (B.
a[ M T s B’ V1 = e +V1 esmE1—ecosE (B.20)
or _ a (-sin E, V1 - e cosE)
aMo 0
-sin E 2 cosE
=a | — = V1-e? 22 B.
a'[l—ecosE’ Vi-e l-ecosE]’ (B.21)

since IM/OM, = 1.
Next, we compute the derivatives of the velocity . First, from (B.10),

or l‘ 61‘ Vi B
— - - E .
" -+ . ( -COS E \/1 e sin ) ( 22)

or, by (B.6a),
ﬁ_=_. __sinE cosE —2__sinE
OoE T T ecosE \/_[l-ecosE Vi-e l1-ecosE |’ (B.23)

Note that equations (B.22) and (B.23) were computed by considering © as a function of
a, e and E. That shall be taken to be the meaning of 9% /3E, i.e., that quantity is given
by (B.22) or (B.23). However, we wish to consider a, e, My as the independent variables.
Thus, below, considering E as a function of a and Mg, we make use of 9E/da as given by
(B.18). We must be careful to be consistent, however, since ¥ is not expressed uniquely
in terms of a, e, E, and M. The route used for the chain rule will be equation (B.10)
with r from equation (B.6a) followed ' - substitution of E as determined from (B.4) and




(B.3).
From (B.10), (B.6a), and (B.18)

OF or JE
e = 22 (1 e cos E) + E a
—.F __3mok
2a, 2 r 0B
1fr 3 m ar
= —_ & 24
a[2+"1—ecosE 6E] (B.24)
Also,
o __ B Vi, ~cos B 3t OE
5 — l_(acosE)+ . 0, \/1_e2e]+%—£
_ _csE cos E sinE  or o
l-ecosE \/_—l \/1 o2 l—ecosE],+ l-ecosE 9E° (B-25)
Lastly,

oF _ OF OE _ 1 oF
oM, OEAM, 1l-ecosE OE ' (B.26)

To compute the derivatives of r and r in IJK coordinates with respect to an arbi-
trary element q, we use (B.1):

or or
aq(l.ﬂ() =U aq(PQ\V) for q=aoreor Mo (B27)
Or___ 9U oW forq=1iorQ (B.28)

aq(IJK) Bq

The same equations hold for r. it remains to compute i[]_ We have

dq
U sin §2 sm wsini sin Q cos w sm i sin Qcosi
—— = |-cosQsinwsini -cosQcoswsini -cosw cosi (B.29)
di sin w cos i COS W €OS i -sin j
., =Ugy -Ug -Ug
%% = |U; Uy Us (B.30)
0 0 0

B=-5




(B.31)




