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CHAYER I

I INTRODUCTION

3 Circuit simulation plays a key role in verifying that very large scale integrated

(VLSI) circuit designs are correct and meet performance specifications prior to fabricat-

3 ing the circuits [Nag75 . Wee73]. The amount of computer time required to simulate a

significant portion of a large circuit can be prohibitive when detailed models of the cir-

cuit elements are used. and the differential equations are integrated to produce accurate

voltage waveforms as a function of time [Whi86]. Simulators that use models based on

higher levels of abstraction. such as switch and logic level simulators [Bry84. Rao85.

Szy72. Haj83]. can achieve run times which are orders of magnitude faster, but the

results are not as precise. As integrated circuit technology advances, the number of cir-

cuit elements increases at the same time that feature sizes are reduced and parasitic

effects become more important in determining circuit performance. Consequently. as

the need for faster simulation becomes more important, the ability to satisfy this need

through less precise simulation techniques diminishes [Kan85].

The need for faster, precise circuit simulation that is motivated by advances in

Iintegrated circuit technology can be addressed by employing the fruits of these techno-

logical advances in the computers which are used to simulate circuits. Multiprocessor

computers. comprised of several processors which can work together to solve a single -

3 problem. are able to provide a large amount of total computing power at a reasonable

cost (Kuc&6]. To successfully use the parallelism in the computer hardware to reduce

the overall run time of the simulation program. the set of computations must be parti-

tioned into subsets which can be executed currently on different processors. while
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preserving the integrity of the final solution. m

Early attempts to exploit parallelism to reduce the time required to perform cir-

cuit simulations utilized vector processors. which achieve performance gains from

parallelism when all the elements of a vector are processed identically. The vector ele-

ments are pipelined through the processor hardware such that different elements are

processed by different stages of the hardware simultaneously [Hwa84]. The hardware

parallelism is limited by the number of stages in the pipeline. The effective use of vec-

tor processing in standard direct method circuit simulation algorithms [Nag75. Wee73.

YanSO] is hampered by the sparse, irregular interconnection structures of circuits.

which result in highly sparse unstructured matrices that are not efficiently processed by

vetor operations. When circuit elements are evaluated, elements described by identical

equations can be processed in the vector mode. But even circuit elements that use ident-

ical models operate in different regions at different points in time, and the different

regions are described by different sets of equations, thus hindering vectorization. As a

result of these problems, significant overhead penalties are incurred in gathering data

into vectors which can utilize the fast vector processing capabilities, and in scattering

the results of vector computations back to their ultimate destinations [Ca179. Cal&O.

Vla82. Ham83. May83. Yam85].

Parallel processors of the MIMD (multiple instruction, multiple data) type consist

of separate processors which can perform independent operations on independent sets of

operands [Fly72J. The processors can share data either through some type of data com-

munication mechanism or through shared memory. Compared to a vector processor.

this type of architecture offers a more flexible environment for exploiting parallelism.

because the concurrent operations need not be identical and they need not be performed

on operands which are organized as elements of a vector. The use of parallel processors
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for direct method circuit si'aulation remains an active area of research. Good perfor-

mance is easy to obtain in evaluating the models of circuit elements, but effective paral-

lelization of the solution of the sparse unstructured matrix equations is more difficult.

due to the large number of fine-grained data dependencies which occur in Gaussian

elimination and LU factorization [Win8O. Bis86. Cox87. Jac87. Nak87. Sad87. Sma87a].

Relaxation methods for circuit simulation [New84] involve partitioning the circuit

into subcircuits which are solved independently, while treating the voltages external to

each subcircuit as if they were independent voltage sources. The values of these voltage

sources are updated with the solutions of neighboring subcircuits on each iteration of

the iterative solution process. These algorithms have natural parallel implementations

because of the inherent partitioning of the circuit. Relaxation methods, when carried to

convergence, produce precise voltage waveforms of the same quality as standard direct

method algorithms. Different forms of relaxation algorithms have been implemented on

parallel processors [Ga188], including nonlinear algebraic equation relaxation techniques

[Deu84. Web87]. waveform relaxation [Whi85b. Uno85. Mat86. Dum87. Sma87b.

Sma8b], and waveform-Newton [Sal87b].

Addressed in this thesis is the question of how much of a speed improvement in

circuit simulation run time can be obtained by exploiting the natural parallelism of

waveform relaxation [Le182, Whi86, Rue87, Hsi85] on parallel processors. Several

different parallel waveform relaxation algorithms are described in Chapter 2. based on

the Gauss-Seidel and Gauss-Jacobi (or Jacobi) relaxation methods [Ort70]. using win-

dow level parallelism and time point pipelining [Whi85b]. The Gauss-Jacobi method in

combination with time point pipelining is shown to produce an algorithm with a com-

paratively high degree of parallelism, which is effective when the number of processors

is large compared to the size of the circuit [Sma88b].
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The parallel performances of the Gauss-Seidel and Gauss-Jacobi methods are

addressed in Chapter 3 from a theoretical viewpoint. A theorem is presented which

shows that parallel Gauss-Jacobi is asymptotically faster than parallel Gauss-Seidel

when the number of processors is sufficiently large, under certain conditions which

apply to the solution of linear equations arising in the simulation of MOS circuits. A

formula is also derived for the average ratio of parallelism of the two methods. based

on the nonzero structure of the matrix.

In Chapter 4. speedup estimates are computed for a set of 5 benchmark circuits. I
for the competing parallel waveform relaxation algorithms. The speedups indicate how

much faster the algorithms run on multiple processors compared to a single processor.

Two categories of speedup estimates are considered. Presimulation estimates are based

on simplifying assumptions that allow the estimates to be computed prior to perform-

ing a simulation of the circuit. These estimates provide first-order insights into the

sources of parallelism, and the factors which inhibit parallelism in real circuit exam-

ples. The presimulation estimates also provide a basis for selecting one of the algo-

rithms prior to simulating a particular circuit on a given number of processors. Post-

simulation estimates are more accurate than presimulation estimates because they util-

ize detailed information obtained in the simulation of the circuit on a uniprocessor.

Post-simulation estimates are used to generate accurate projections of the potential per-

formance of the algorithms when the number of processors is increased beyond that

which is currently available. Post-simulation speedup estimates excluding multipro-

cessing overhead are compared in subsequent chapters with actual multiprocessor per-

formance results, to determine the extent to which the overhead factors impact the per-

formance. Speedup estimates excluding overhead have been used previously in the

study of parallel iterated timing analysis [Deu84].
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The parallel waveform relaxation algorithms have been implemented in two pro-

grams which run on an Alliant FX/8 multiprocessor. using up to 8 processors. These

programs are described in Chapters 5 and 6. Measured performance results are given

for the parallel implementations, and these results are compared with the speedup esti-

mates of Chapter 4.

Latency in the computations of waveform relaxation can be exploited to reduce

the number of computations that must be performed. Reducing the number of compu-

tations reduces the run time on a uniprocessor. and may or may not reduce the run time

on a multiprocessor, depending on the data dependencies between the nonlatent compur

tations and on the overhead involved in detecting latency. The impact of latency

exploitation on parallel waveform relaxation is addressed in Chapter 7. The primary

form of latency that is considered is iteration latency, which has also been called partial

waveform convergence in previous work [Whi86]. The impacts of latency on the paral-

lel implementations and on parallel performance are discussed, and performance results

are presented. Finally, conclusions are presented in Chapter 8.

-M IN a N I I.... ......
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CHAPTER 2

PARALLEL WAVEFORM RELAXATION ALGORITHMS 3

Waveform relaxation is a class of iterative algorithms for solving ordinary

differential equations. When applied to the differential equations that describe the vol- I
tages of a circuit as a function of time. waveform relaxation is guaranteed to converge.

provided that the circuit equations satisfy certain conditions. These conditions are

readily satisfied by MOS integrated circuits which are represented by node equations.

provided that the inevitable capacitance from each node to ground is included in the

equations [New84]. As in other relaxation based algorithms, the equations are parti- I
tioned into subsystems which are solved independently during the iterative process.

Due to the inherent partitioning of the equations. waveform relaxation exhibits natural

parallelism which can be utilized on parallel processors to reduce the overall computa-

tion time.

In this chapter, the basic waveform relaxation algorithm is summarized. The form

of waveform relaxation implemented in the RELAX2.3 program (Whi85a. Whi6] is

used as a model of the basic algorithm on a uniprocessor. Different approaches for

exploiting parallelism are then identified. Both the Gauss-Jacobi and Gauss-Seidel

relaxation methods are considered, and the techniques of exploiting parallelism at the

window level or at the time point level are compared. Task graphs representing the

computations and their interdependencies are introduced. A first-order analysis of the

parallel algorithms is presented based on the task graphs and some simplifying assump-

tions. The combination of the Gauss-Jacobi relaxation method and time point pipelining

is identified as the algorithm with the greatest potential parallelism of the algorithms

.... . : . I I 'PI " ' r, ,, € ,e , L - , ii
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3 considered. The performance of the parallel algorithms is investigated in greater detail

in subsequent chapters.

2.1 Waveform Relaxation

I Consider a circuit with N nodes. which satisfies a system of differential node

equations of the form

q(v(t ).u(t ))f (v(t).u( )), t E[o.tt ] (2.1)

3 with initial conditions

v (0) = V. (2.2)

where t ElI is time. v :R-lR is the vector of node voltages. V ElRi' is the vector of

initial node voltages, u :R-,R is the vector of known source values. f I N XIR" -R'

is the vector of currents flowing into charge storage elements at each node.

3 q :lRN XR' -IRv is the vector of charges stored at the nodes. and q is the time deriva-

tive of q. Prior to solving the equations by waveform relaxation, the system of equa-

I tions must be partitioned into subsystems. Since (2. 1) is written in terms of node equa-

3 tions, the equation partitioning problem is equivalent to partitioning the set of circuit

nodes into subsets that are mutually exclusive and exhaustive. Each subset of nodes,

3 together with the circuit elements connected to the nodes, represents a subcircuit. To

achieve fast convergence speed during the relaxation iterations, it is important to keep

Inodes that are tightly coupled to each other in the same subcircuit.

3 For the Gauss-Seidel relaxation method, an ordering of the subcircuits must be

defined. For fast convergence, this ordering should reflect the predominant direction of

3 signal flow in the circuit. If the circuit contains n subcircuits. then the subcircuits are

assigned numbers from I to n such that, in as many cases as possible, strong signals

flow from lower numbered subcircuits to higher numbered subcircuits. When feedback

i paths are present. some signals will flow from higher numbered subcircuits to lower
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numbered subcircuits. and these signal paths can lead to slow convergence.

To counteract the negative impact of global and local feedback on convergence

speed. the time interval [0. t1 I is partitioned into subintervals called windows. Conver- I
gence occurs more rapidly at the beginning than at the end of a window. Consequently.

if the size of a window is reduced, in order to include only the first part of the original

window, then fewer iterations are required for convergence. However, if the window

sizes are made too small, then excessive time points will be introduced at the window

boundaries for those subcircuits that have constant or slowly changing signals. The I
window boundaries are modified dynamically during the solution process based on the

observed convergence speed and signal activity.

During the actual equation solution phase of a waveform relaxation program, the 3
windows are processed sequentially. with the final solution point of one window serv-

ing as the initial condition of the next window. Within each window, the subcircuits:

are solved independently on each iteration. using previously computed or guessed

values for the voltages which are external to the subcircuit being solved. The

differential equation of subcircuit i in window t.. tb] on iteration k is given by u
, ('t ) . (k) v (k). (k) . v (k) _

S V"" i-i " vii"." , .i u ). t E[t. t]. (2.3)

where vi is the vector of node voltages for those nodes that are in subcircuit i. and q,

and f are vector functions containing the components of q and f that correspond to

the nodes of subcircuit i. The vector .for any j Oi is a vector of voltage

waveforms for the nodes belonging to subcircuit j. which are treated as known source

waveforms in the solution of subcircuit i. The iteration from which these waveforms

are obtained depends on which relaxation method is used. When Gauss-Seidel relaxa-

tion is used,
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k , f) (2.4)
js' -'v/*1 if j > i

and when Gauss-Jacobi relaxation is used.

,(k) (k -)
;. i =V .for all j Ai. (2.5)

In all cases v (0) is a vector of initial guess waveforms.

The basic waveform relaxation algorithm with windowing, using either Gauss-

Seidel or Gauss-Jacobi relaxation can be summarized as follows:

Algorithm 2.1. Windowed Waveform Relaxation

partition into subcircuits
order subcircuits

while (to <t ) 1 /* window loop S/
choose tb
k--I
repeat ( /* relaxation iteration loop S/

if (any subcircuit used too many time points) decrease t b

if (k E){
decrease tb
decrease integration error tolerance

for (i -1. 2 .... n) ( /* subcircuit loop 2/

solve (2.3) for v, /* subcircuit evaluation task /Im
k --k +1

}until (convergence obtained)
to "'tb
reinitialize integration error tolerance

The endpoint of the current window. tb. is initially determined based on the

number of points and the number of iterations of the previous window. Target values

of approximately 60 time points and 5 iterations are used in RELAX2.3 to control the

window sizes. If these targets are exceeded, the window size is decreased. If the

number of time points and iterations in a window are significantly below the target

values, then the size of the following window is increased. Most windows converge
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without triggering the window reduction mechanism. ,

The set K contains the iteration numbers on which the window size is to be

reduced to encourage faster convergence. RELAX2.3 uses K =16. 12. 18. -.. . The

reduction of the integration error tolerance which accompanies a window reduction

causes smaller time steps to be used in the numerical integration, since the waveform

relaxation convergence theorem assures convergence only when the step size is U
sufficiently small [Whi86]. Convergence is detected on iteration k if v (

k
) matches g

v '. within a specified convergence tolerance, at each point in the window [ta. tb ].

Algorithm 2.1 does not include the partial waveform convergence feature in which 3
subcircuit evaluations are bypassed if the input waveforms of the subcircuit match the

previous iteration. The use of partial waveform convergence in parallel waveform

relaxation is addressed in Chapter 7.

Nearly all of the computational effort is concentrated in solving (2.3) in the inner-

most loop of the algorithm. This is a problem of exactly the same form as the original 3
problem represented by (2.1): however, the size of the problem is smaller both in terms

of the number of unknowns and the length of the time interval. Conventional circuit

simulation techniques [Chu75. Nag75] are used to solve the subcircuit equations: the

time scale is discretized by an implicit, stiffly stable. variable step size numerical

integration algorithm (Gea7l]: the nonlinear algebraic equations which result at each

time point are solved iteratively using Newton's method: and the linear equations aris-

ing on each Newton iteration are solved using Gaussian elimination.

2.2 Parallel Algorithm

The objective of this section is to identify the parallelism in Algorithm 2.1. which

can be exploited on parallel processors. Attention is restricted to the portion of the

algorithm that actually solves the differential equations, excluding the partitioning and



ordering steps. Although parallelism can also be exploited in partitioning and ordering,

these tasks account for a small fraction of the overall computation time. and therefore.

the parallelization of these tasks offers only limited opportunity for speeding up the

overall run time.

At the highest level of Algorithm 2.1 is the window loop. In each window, the

initial conditions are obtained from the final voltage values of the previous window.

These values are known only when the previous window converges. Consequently. the

windows must be processed serially. Within a window, the main computational tasks

are subcircuit evaluation tasks. Each of these tasks consists of the computations

required to solve a subcircuit over an entire time window on one relaxation iteration.

Some of the subcircuit evaluation tasks can be performed concurrently. but restrictions

are imposed on the sequence of task executions due to the propagation of waveforms

from one task to another.

A conservative method of managing the restrictions on parallel task executions is

the full window technique. In this scheme. a subcircuit evaluation task is allowed to

begin executing only after all of its input waveforms from other tasks are available

over the entire current window. For example, if subcircuit 7 on iteration 3 requires

input waveforms from subcircuit 1 on iteration 3 and subcircuit 8 on iteration 2. then

the evaluation of subcircuit 7 would not begin on iteration 3 until after the solutions of

subcircuits 1 and 8 were completed over the entire window for iterations 3 and 2.

respectively. Scheduling of subcircuit evaluation tasks in the full window technique is

relatively inexpensive. When a task finishes, it can check to see if any of the tasks to

which it supplies waveforms are ready to start executing. These checks need only be

performed after a task computes the last time point of a window.
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The full window technique utilizes a course grain of parallelism in that it treats a

subcircuit evaluation task as an indivisible schedulable entity. and subcircuit evalua-

tion tasks normally involve a large number of computations. The advantage of this 3
approach is that the scheduling overhead is small compared to the amount of computa-

tions performed in the subcircuit evaluations. The disadvantage is that the full degree

of available parallelism is not exploited. The time point pipelining parallelization stra- 3
tegy exposes greater parallelism, at the expense of increased overhead, by using a finer

granularity. I
In time point pipelining, the subcircuit evaluation tasks are broken down into sub-

tasks, each consisting of the evaluation of a subcircuit on a single iteration at a single

time point. Each of these subtasks is allowed to begin executing as soon as all of its

input data are available. In the example cited above, subcircuit 7 may compute a time U
point at time t after the evaluations of subcircuits I and 8 have progressed through

time t on iterations 2 and 3. respectively. Since computations can begin sooner in time

point pipelining than in the full window technique. the overall completion time should

be smaller for time point pipelining. and the degree of parallelism should be larger.

The scheduling of computations in time point pipelining is more expensive than in

the full window technique, because checks must be performed after the computation of

each time point to determine if any other subtask is eligible to execute as a result of the

availability of the newly computed time point data. Consequently. the full window

technique and time point pipelining offer a tradeoff between lower overhead and greater

parallelism.

Further parallelism can be exploited within each individual time point subtask,

with an accompanying increase in overhead. Since standard direct method circuit simu-

lation techniques are used at the subcircuit level, the problem of parallelizing computa-

. . . . i r " I*" q ... "1' I



I

13

tions within a single subcircuit evaluation task is equivalent to the problem of parallel-

izing the standard direct methods. The evaluation of the model equations for each cir-

cuit element can be performed in parallel on each Newton iteration, and the loading of

the Jacobian matrix is readily parallelized. The parallelization of the solution of the

linear equations is hampered by the high degree of sparsity in the matrix, the irregular

pattern of nonzero matrix entries, and the large number of data dependencies in Gaus-

sian elimination. In the context of waveform relaxation, the amount of parallelism

available within a single subcircuit evaluation task will be small compared to the paral-

lelism of direct methods applied to the entire circuit, because the subcircuit sizes are

typically small. For those circuits which cannot be successfully partitioned into subcir-

cuits of uniformly small size. the use of parallelism within the subcircuit evaluation

tasks offers a potential for accelerating the solution of the larger subcircuits. which tend

to create bottlenecks in the full window technique and time point pipelining. The use

of parallelism within individual subcircuit evaluation tasks is not considered further

here. Instead, attention is focused on the natural parallelism between different subcir-

cuits that arises directly from the use of waveform relaxation.

The full window technique and time point pipelining are two different methods of

orchestrating the parallel execution of a fixed set of computations. Contiastingly. the

Gauss-Seidel and Gauss-Jacobi relaxation methods result in different computations

being performed to reach approximate solutions that match the exact solution within

some acceptable tolerance. The Gauss-Seidel method generates a set of computations

which generally converges to the solution in fewer iterations than Gauss-Jacobi. How-

ever, the Gauss-Jacobi method generates a set of computations which has a higher degree

of parallelism, because all subcircuit evaluation tasks of any given iteration can be exe-

cuted concurrently without any waveform communications between the tasks. This

raises the question of whether the extra parallelism of Gauss-Jacobi is sufficient to

queston te exra pralllismisat
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overcome the penalty of requiring a larger number of iterations.

By combining either the full window technique or time point pipelining with

either the Gauss-Seidel or Gauss-Jacobi relaxation method. one of four different parallel

waveform relaxation algorithms is obtained. The four algorithms and their principal

tradeoffs are summarized in Fig. 2.1.

2.3 Task Graphs

Task graphs are useful tools in studying and implementing parallel algorithms. A

task graph is a directed graph in which the vertices represent tasks and the arcs

represent precedence constraints [Hwa84]. An arc from vertex i to vertex j indicates I
that task i must finish before task j is allowed to begin executing; i is said to be a

predecessor of j and j is a successor of i.

Waveform relaxation task graphs are closely related to the subcircuit interconnec-

tion structure, which is conveniently represented by a subcircuit graph. For a given cir-

cuit partitioned into n subcircuits. in which the subcircuits are numbered from I to n

Gauss- Gauss-

Seidel Jacoti

Full Window I more

Technique FWT-GS FWT-GJ parallelism

Time Point TPP-GS TPP-GJ more
Pipelining I overhead

more parallelism
more iterations

Figure 2.1. Parallel waveform relaxation algorithms.
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reflecting a given ordering of the subcircuits. the subcircuit graph is defined as follows:

Definition 2.1. The subcircuit graph G contains one vertex for each subcircuit, labeled

with the subcrcuit number. An arc exists from vertex i to vertex j if and only if a node

equation in subcircuit j depends on a node voltage which belongs to subcircuit i.

For the Gauss-Seidel method, waveforms are propagated differently depending on

whether the waveform is computed in a subcircuit that has a higher or lower number

than the destination subcircuit. as indicated in (2.4). This distinction motivates the

next definition.

Definition 2.2. An arc in G from i to j is called a feedforward arc if i < j, and is called

a feedback arc if i > j.

This terminology agrees with the standard circuit concept of feedback provided the ord-

ering of subcircuits conforms to the predominant direction of signal flow in the circuit.

2.3.1 Full window technique

A waveform relaxation task graph for the full window technique depends on

which relaxation method is employed and on the number of iterations to be performed.

as reflected in the notation introduced in the next definition.

Definition 2.3. For a given G, the task graphs for m iterations of the Gauss-Jacobi and

Gauss-Seidel methods using the full window technique are denoted as T, ,n and TGS ' ,.

respectively. Each vertex represents a subcircuit evaluation task and is labeled with an

ordered pair (k, i ), where k is the iteration number and i is the subcircuit number. An

arc exists from (k 1. i 1) to (k 2, i 2) if and only if (k 2, i 2) requires an input waveform from

(k1 .i1 ).



161

The task graphs can be constructed from G. based on the waveform communica- i

tion rules for the applicable relaxation method. Each vertex i of G maps to m vertices

in the task graph. labeled (k, i ). for k E I. 2. • . m ). Each of these task graph ver-

tices is said to be an instance of vertex i in G. For the Gauss-Jacobi task graph. each

arc in G from a vertex i to a vertex j maps to m-i arcs in TG., . from (k.i) to

(k +1. j ). for k Ell, 2. - • • .m -I). These arcs are said to be instances of the arc in G

from i to j. For the Gauss-Seidel task graph. each feedback arc in G from i to j maps

to m-i instances in T,m., from (k.i) to (k+1, j). for k E{1,2. ,m--l : and each

feedforward arc from i to j maps to m instances in Tsm. from (k. i ) to (k. j ). for

k Eli. 2. - ,m). Figure 2.2 shows a sample subcircuit graph and corresponding

Gauss-Seidel and Gauss-Jacobi task graphs for the case m =2. 1
The instance relationships introduced in the construction of the task graphs define

mappings between elements of the subcircuit graph and the task graphs. These relation-

ships are useful in proving theorems which relate properties of parallel relaxation

methods to properties of G. If T is one of the task graphs, then observe that any

directed path in T maps to a directed walk in G, such that the jth vertex (or arc) of

the path in T is an instance of the j'h vertex (or arc) of the walk in G. An arc in T is

referred to as a feedback or feedforward arc. based on whether it is an instance of a

feedback or feedforward arc, respectively. To simplify subsequent discussions of the

subcircuit and task graphs. the terms path. walk, and cycle will be used to refer to

directed paths, walks, and cycles.

2.3.2 Time point pipelining

Task graphs for the time point pipelining method can be constructed in which each

vertex represents the computation of a single time point in a single subcircuit on a single

iteration.

_4 -
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3

4

5

6

(a)

(1.3)

2(2.2

(2.4)

Iteration 1 Iteration 2

(b)

(1.1) (1.2) (1.3) (1.4) (1.5) (1.6)
Iteration 1

Iteration 2 >

(2.1) (2,2) (2.3) (2.4) (2.5) (2.6)

(C)

Figure 2.2. Subcircuit graph and related task graphs: (a) G ; (b) TGS 2*- (C) TG,. 2-
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Definition 24. For a given circuit with a given G, the unaugmented task graphs for m

iterations of the Gauss-Jacobi and Gauss-Seidel methods using time point pipelining are

denoted as TTpp7.m and Trppjj.m, respectively. Each vertex represents a time point

subtask which consists of the evaluation of a time point in a subcircuit on a relaxation

iteration, and is labeled (k.it), where k is the iteration number, i is the subcircuit

number, and t is the value of the time variable.

A time point pipelining task graph Trpp can be constructed from the corresponding

full window technique task graph T and from knowledge of the number and locations I
of the time points. When a time point at some time t is computed in subcircuit evalua-

tion task (k. i ). its time value is initially determined based on the previous time step

and the estimated local truncation error at that step. Let tm (k. i. t) be this initial

choice of the time value. If the number of Newton iterations is excessive or if the local

truncation error is excessive for the new time point at time t , (k. i. t ). then the time L"

step is reduced repeatedly until the Newton iteration count and the truncation error are

acceptable. The final value of the time variable t for the time point is less than or

equal to tmu (k. i. t ). Consequently. when computing the time point at time t. it is

necessary for the input waveforms to be available through time t,, (k. i. t).

The construction of Trpp begins by defining vertices for all the time point subtasks

and labeling them as specified in Definition 2.4. Consider any arc in T from a task

(k 1. i 1) to (k 2. i 2)" For each time point t 2 in (k 2. i 2). let t I be the smallest time point

in (k 1 .i 1) such that t 1V>,t (k 2 .i,2 . t 2 ). Then there is an arc in TTPp from (k 1, i 1. t 1) to

(k 2 .72 t2 )

Unlike the task graphs for the full window technique, the time point pipelining

task graphs cannot be constructed solely on the basis of G and m. The number of time

points to be computed and their locations on the time axis depend on the signal activity

I,
116 1
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in the subcircuits. and this information is not known prior to simulating the circuit. W

The time point pipelining task graphs may be constructed after the simulation is com-

pleted, or they can be constructed dynamically during the simulation. For this reason,

the time point pipelining task graphs play a less important role than the full window

technique task graphs in presimulation studies of parallelism. Due to the relationship

between the time point pipelining and full window technique task graphs. the simpler

full window technique task graphs can be used in the study and implementation of

time point pipelining by recognizing implicitly that each task consists of a sequence of

time point subtasks with suitable precedence constraints.

2.4 First Order Analysis of Parallel Algorithms

Based on the task graphs and some simplifying assumptions. first-order measures

of the parallelism of different relaxation methods and different parallelization strategies

can be derived. The first-order estimates are not accurate measures of the parallel pro-

cessing speedups that can be obtained in practice. Nonetheless. these estimates provide

basic insights into the different parallel algorithms and the fundamental tradeoffs

involved. More accurate models of parallelism are developed in Chapter 4.

2A.1 Full window technique

The following simplifying assumptions apply to the first-order analysis of the full

window technique:

(a) Each subcircuit evaluation task requires exactly one unit of computation time.

(b) There is a sufficient number of processors such that each task can begin executing

immediately after all of its predecessors in the task graph have finished executing.

(c) There is no parallel processing overhead due to task scheduling, data communica-

tions, or contention for shared resources.

L ANMM VIUMMLAUXMA S IL
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Since each task is assumed to require one unit of time. and since each task is mi

assumed to begin immediately after its predecessors terminate, the task graph can be

partitioned into levels such that the tasks in level I are those which are active during 3
processor time interval (1-1. 1]. Figure 2.3 shows the levelizations of the task graphs

of Fig 2.2.

I
1.1 1.2) oLevel 1 3

(1.3)Level 2

........ ' '' " °* ... o. ....... .o....~.....o,,....o....... . . . . . . . . ... . .. . .

(1.411 (.1)Level 3

.. .. . . . . . ............. .. ......o..o.......ooo....... .. ... .

2.3) Level5

(2.5) (2.6) Level 7

Iteration 1 Iteration 2

(a)

(1.1) (1.2) (1.3) (1,4) (1.5) (1.6)
Iteration 1 Level 1

Iteration 2 >Level 2

(2.1) (2.2) (2.3) (2.4) (2.5) (2.6)

(b)

Figure 2.3. Levelized task graphs: (a) TGs : (b) TGo 2.
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For a task graph T. the time required to execute all the tasks on a multiprocessor

with a sufficient number of processors is equal to the depth of the graph. D (T). which

is defined as the number of vertices in a longest directed path. or equivalently the

number of levels in the levelized graph. The average number of tasks executed at each

step is the average width of the graph. W (T )-IV (T )/D (T). where IV (T ) is the total

number of vertices in the graph. For the example in Fig. 2.3. D(TMs 2)-7. D(To.0 2)-2.

W (Tas, 2)ft 1.7. and W (T0.2)-6.

The superior parallelism of Gauss-Jacobi over Gauss-Seidel is apparent from the

task graphs. In general. m iterations of Gauss-Jacobi require only m steps. since within

each iteration all the tasks can be executed concurrently. Except for some degenerate

cases mentioned in Chapter 3. D(T 0 ,.)-m and W(TGJ..)-n. In contrast. the tasks

of any single iteration of Gauss-Seidel generally have data interdependencies such that

they cannot all be executed concurrently. Normally. D(.s, m)>>D( (T.0 . ) and

W (TO .) << w (" 1 ,.

The superior parallelism of Gauss-Jacobi is achieved at the expense of an increase

in the number of iterations required to converge. In the Gauss-Seidel case a signal can

propagate through an entire forward signal path in a single iteration. In the Gauss-

Jacobi case, however, signals propagate at a rate of one subcircuit per iteration. This

suggests that circuits with long signal paths will require a large, perhaps prohibitive.

number of Gauss-Jacobi iterations. However, in a given time window, long signal paths

are frequently broken into smaller subpaths by logic gates. pass transistors, or clocked

devices which block the signal flow. The number of Gauss-Jacobi iterations is then

determined by the number of subcircuits in each subpath and by feedback between sub-

circuits. Even if a long path is present. the Gauss-Jacobi iterations may not be excessive

if the subpaths are short.
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Consider the subcircuit graph and related task graphs in Fig. 2.4. The circuit con-

siuts of a single long path with no feedback. The Gauss-Seidel method produces the

exact solution in I iteration, and the Gauss-Jacobi method requires exactly n iterations. I
However. both methods require exactly n units of computation time. The Gauss-Jacobi

1 2 3 4 5 6 n-i n
__ __ _ __ _ __ _ 

I

(1.1) (1.1) (1.2) (1.3) (1.4) (1.) (1.6) (n-)1n

(1.2) (2.1)

(1.3) (3.1)

(4.1)
(1.4) (

(1.5) (5.1)3

(1.6) (6.1)
(6.n)i

(n.1) (n.2) (n.3) (n.4) (n.5) (n.6) (nn-Xn.i)

(b) (c)

Figure 2.4. Long signal path example. (a)G (b) TesG 1; (c) T67'..

a
ti..

7'
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I method requires more processors, but it produces the same result in the same amount of

time in this example.

Suppose that a logic gate or pass transistor in subcircuit n /2 is in a state

I throughout some particular time window such that signal flow from subcircuit n /2 to

n /2+1 is blocked. Since the subcircuit graph is unchanged. the Gauss-Seidel method

will still require I iteration and a units of time. The Gauss-Jacobi method will obtain

3 the exact solution in n /2 iterations, requiring only n /2 units of time, because the long-

est effective signal path has length n /2. Gauss-Jacobi effectively solves the two isolated

3 portions of the circuit concurrently.

In digital circuits, signal paths are frequently blocked by clocked devices during

certain intervals of time. The automatic windowing algorithm of RELAX2.3 typically

3 chooses windows which are smaller than one clock period. Therefore. in a typical win-

dow, the effective signal path lengths are much shorter than the paths in the subcircuit

3 graph. The Gauss-Jacobi method automatically exploits the parallelism between the

essentially disconnected portions of the circuit: the Gauss-Seidel method does not.

In the segmented waveform relaxation method [DumS7]. the time axis is parti-

tioned into time segments. whose boundaries are explicitly synchronized with clck

transitions. Portions of the circuit which are disconnected by clocked logic elements

3 during a time segment are recognized. and the Gauss-Seidel method is applied separately

and concurrently to the disconnected portions for the first iteration of the relaxation.

This approach exploits the parallelism between different parts of the circuit while

3 retaining the Gauss-Seidel ordering within the isolated circuit portions. However, the

program is required to recognize the clocked elements and derive the resulting effective

circuit partitioning. Thus, the method is less general and more complicated than

Gauss-Jacobi. In those cams where it is applicable, it may be more effective than

Cm
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Gauss-Jacobi when the number of processors is limited, because it avoids some of the

redundant computations which tend to occur in Gaus-Jacobi on the iterations before a

signal reaches a particular subcircuit. 3
The preceding discussion gives reasons why the Gauss-Jacobi method may be

preferable to Gauss-Seidel on parallel processors. Further theoretical and experimental

evidence will be presented in subsequent chapters to show that when a sufficient 3
number of processors is available, parallel Gauss-Jacobi is faster than parallel Gauss-

Seidel. U
In preparation for comparing the full window technique with time point pipelin-

ing. the following assumption is added to those previously introduced for the irst-

order analysis of the full window technique:

(d) The number of tasks in each level of the task graph is constant.

The number of active tasks can then be plotted as a function of time. as in Fig. 2.5(a).

Since a different number of iterations is generally required for the Gauss-Jacobi and 5
Gauss-Seidel methods, the symbols aG7 and Nas are used to represent the number of

iterations required for each method to converge, where typically N, >mas. The

curves emphasize the fact that even though Gauss-Jacobi requires more computations as 3
represented by the area under the curve, its greater parallelism can lead to a smaller

overall computation time. The number of processors required to achieve the fastest

possible computation time for Gauss-Jacobi is greater than that needed for Gauss-Seidel,

as indicated by the heights of the curves.

2.4.2 Time point pipelining

The irt-order analysis of time point pipelining is based on the full window task

graphs. The tasks are implicitly divided into subtasks, each consisting of the evaluation i

. ... .. | 1-- P'* I" " ''' r'" ' q t~t * P' ' '' 14 u" I
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Activ*
Tasks
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DGS
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(a)

minimma,. np) ......... i
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Figure 2.5. Active tasks vs. time for (a) full window technique and (b) time point
pipelining. based on simplified parallelism model. DGSOD(TGSm. s) and

W 6SMW(TS.,a,).

Ostk



26U

of a subcircuit on an iteration at a time point. Subtasks are represented by ordered tri- -

pies of the form (k. i. t ). such that (k. i ) is the subcircuit evaluation task which con-

tains the subtask. and t is the value of the time variable at the time point. The follow- 3
ing simplifying assumptions apply to the Arm-order analysis of time point pipelining. in

addition to the assumptions used in the full window case:

(e) Each subcircuit evaluation task contains p time point subtasks. 3
(f) Each subtask requires the same amount of computation time. 1/p time units.

(g) The time point locations on the time axis are identical in each task.

(h) No time step reductions occur due to excessive integration truncation error or 3
excessive Newton iterations.

(i) There is a sufficient number of processors such that each subtask (k. i. t ) can begin

execution immediately after all predecessors of (k. i ) have finished computing thei

time point at time t . and (k. i ) has computed the time point preceding t.

These assumptions are generally not accurate. but are useful to demonstrate the basic _

properties of the algorithms. Assumptions (e) and (g) do not hold exactly in practice

because the time points are chosen independently in each subcircuit based on the signal

activity within the subcircuit. Assumption (f) does not hold exactly because subcir- 3
cuits of different sizes have subtasks requiring diffw-nt computation times. Generally

the assumptions tend to result in overestimates of parallelism.

When time point pipelining was originally introduced it was used in conjunction

with the Gauss-Seidel method as a way to increase the parallelism without giving up

the fast convergence properties of Gauss-Seidel. However, the technique is equally

applicable to any relaxation method that can be represented by a full window technique

task graph. including Gauss-Jacobi.

F,~
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I Let T be any full window technique task graph. and consider the operation of the

time point pipelining algorithm applied to T as the parallel computation time I

progresses. using the stated simplifying assumptions. Let c (I) be the number of active

3 tasks in processor time interval (-1)/p. Ip ]. Initially. each task in level I of T can

compute its first time point. and therefore c(1)"W(T). assuming the task graph has

I constant width. Once these time point computations are completed. the second time

points of the level I tasks can be computed concurrently with the first time points of

the level 2 tasks. resulting in c (2)=2W(T). The parallelism continues to increase at a

3 rate of W(T ) until either all tasks in the task graph are active simultaneously. or until

the last time point is computed in the level I tasks. Consequently. the peak parallelism

is

maxlc (0) - mininm. W(T)p1. (2.6)
After the last time point is computed in the level 1 tasks and after the first time point

3 is computed in the tasks of the final level, the parallelism decays at a rate of W (T).

because at each step another level completes its last time point and no new levels are

started. The final completion time is given by (D (T )+p -1]/p. because after D (T)

3 steps the bottom level tasks complete their irst time points, and after p -1 more steps

they complete their last time points, where each step requires I/p time units. Combin-

3 ing these results. a formula for c () is obtained for all integers I:

3 .O<1 4minD. p}

c() minfnm.pW) .minD, p)<i4maxjD. p (2.7)(+p -. )W ,max{D, p)}<14(D+p-1)

0 . otherwise

Iwhere D and W are the depth and width of the full window technique task graph.I
I
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Generic plots of the number of active tasks as a function of parallel processor

time. based on (2.7). are shown in Fig. 2.5(b) (p. 25) for Gauss-Jacobi and Gauss-Seidel.

The substitution W (TGJ.,.)-n has been used in the figure to emphasize the fact that

typically W (T,, )=n >>W (TGS.,AO). Note that the parallelism at each point using

time point pipelining is at least as large as the full window parallelism using the same

relaxation method. Also note that both the peak parallelism and the rate of growth of 3
parallelism are greater for Gauss-Jacobi time point pipelining than for Gauss-Seidel

time point pipelining. Finally, the number of processors required to use all the avail-

able parallelism of Gauss-Jacobi time point pipelining can be quite large for a large cir-

cuit if large windows are used. I
2.5 Augmented Task Graphs

The task graphs T GJ.D and Tq$.m account for the evaluation of subcircuits and the

data communications between subcircuit evaluation tasks. Although these are the most

important tasks and data dependencies. they are not the only ones. Computations must

3e performed to determine when the iterations converge. The convergence checking

operations can either be packaged inside the subcircuit evaluation tasks. or they can be

treated as separate tasks. In either case, the task graph must be augmented by adding

arcs or both vertices and arcs, to account for the additional data dependencies and. in

the latter case. the additional tasks.

2J.1 Separate convergence checking tasks

For each subcircuit evaluation task (k, i ) in window [t.. ti, 1, a convergence check-

ing task (k, i ). can be defined, which executes the following algorithm:

Algorithm 2.2. Convergence Checking Task: (k. i ),

if (v1i (t ) matches v ( -
1
)(t ). for all t E [taI tb 1. within tolerance)

uflcoftv -uflcoflvi
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I if (unconvk =0) signal global convergence
I

I The counter unconvk represents the number of unconverged subcircuits in iteration k,

and is initialized to n. The decrementing and testing of the counter must be performed

in a critical section to insure the integrity of the count values since different conver-

gence checking tasks may execute concurrently. When global convergence is signaled,

then any remaining incomplete tasks in the task graph are superfluous since they are for

5 iterations greater than the iteration in which convergence was obtained.

3 The addition of the convergence checking tasks and the accompanying data depen-

dencies are reflected in the augmented task graphs which are defined as follows:

I Definition 2.5. For any task graph TGo.n , or TGS.,., the corresponding augmented task

graph T.,m or T 3,o. is constructed by a4dding a task (k. i ). for each task (k. i), and

adding arcs from (k.i ) to (k.i ). for aLL k EI .....mi ... , and adding arcs from
I(k -1. i)to (kt, )cc fo,-r aUk 2,....^ ), i{ F .... ,I.

An important feature of these augmented task graphs is that there are no new arcs

terminating at subcircuit evaluation tasks. Consequently. the parallel completion time

Sof the subcircuit evaluation tasks is not affected by the additions to the task graph.

Convergence checking tasks can be executed concurrently with subcircuit evaluation

tasks. except for the convergence checking task corresponding to the last subcircuit

evaluated in the converging iteration. Therefore, the parallel completion time for the

augmented graph is greater than the original graph by the time of one convergence

checking task, which is much smaller than a subcircuit evaluation task. For this reason.

the use of the unaugmented task graphs is justified in the study of parallel waveform

relaxation. even though these graphs do not explicitly account for convergence checking.I
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2.5.2 Convergence checking in subcircuit evaluation tasks

An alternative approach to handling convergence checking is to treat the conver- -
gence checking task (k, i ). as part of the subcircuit evaluation task (k. i). This results

in a simpler implementation with lower overhead for task scheduling. However, extra

arcs must be added to the task graph to assure that the waveforms are available from

(k -I. i ) as needed by the convergence checker inside (k. i ). A different type of aug-

mented task graph results from this treatment of convergence checking, as given in the

following definition.

Definition 2.6. For any task graph TGj.,n or TGSm , the corresponding augmented task

graph TGj, M or TGS.m is constructed by adding arcs from (k.i ) to (k 41.i ) for all

kEI ..... m-1), i E{1,....n ).

The added constraints produce an additional simplification in the implementation

of the parallel algorithm, because the constraints prevent any subcircuit from being

active in more than one iteration at any moment of time. For example. tasks (1. 1) and

(2, 1) are not allowed to execute concurrently. because these are two instances of the

same subcircuit in different iterations. However. different subcircuits are allowed to be

active in different iterations concurrently, to the extent permitted by the original task

graph. For example, in the task graph of Fig. 2.2(a). tasks (1. 4) and (2. 1) may be exe-

cuted concurrently, because there is no path connecting them. The fact that only one

instance of each subcircuit can be active at a time means that some data structures can

be allocated once for each subcircuit and used by all instances without conflict.

Adding arcs to the task graph can reduce the degree of parallelism by requiring

some tasks to be executed serially, which previously could have been executed in paral-

lel. The degree by which the parallelism is reduced by the additional arcs is investi-

gated in the following theorems.
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I Denition 2.7. For a given G, let Gj,(s ) and 0 .S(s) be the maximum number of

instances of subeircuit s that can be active concurrently using the full window technique

based on the unaugmented task graphs To,.X, and , respectively, where the task exe-

cution times and number of processors are arbitrary.

3 Definition 2.8. For any directed graph H in which each arc is designated as a feedback

or feedforward arc, let f (H ) be the number of feedforward arcs in H and let b (H ) be

5 the number of feedback arcs in H.

3 Theorem 2.1. If s is a vertex of G then

P I(S)= f (C )+b (C 1) ,if s sin a cycle (2.8)
otherwise

and

~GS( b = b(C 2) .if s is in a cycle (2.9)
PC's (s) cc otherwise

where C 1 is a cycle of G which minimizes f (C )+b(C 1 ) and C 2 is a cycle of G which

minimizes b (C 2).

To prove the theorem. first consider the Gauss-Jacobi case and suppose s is in a

cycle. For each k >0 there is a path from (k.s) to (k+f (C )+b(C 1).s) in TGI.J C

3 corresponding to one traversal of C 1. Therefore. (k. s ) and (k +i [f (C )+b (C 1)]. s )

cannot be active simultaneously, for any i E { 1. 2. 1. If (k 1. s ) .... (k Y. s ) are active

I simultaneously. then k , mod (f (C )+b (C 1)) ..... k ,mod (f (C 1)+b (C 1)) must be dis-

tinct. Hence ,f (C )+b (C ) which implies

BoG (S ) f (C 1)+b (C d). (2.10)

Note that the first f (C 1)+b (C 1) instances of s are mutually independent, since any

directed path connecting two of them would violate the fact that CI minimizes

f (C 1)+b (C 1). If these independent tasks have arbitrarily large computation times
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compared to all other tasks, they will be active concurrently. given enough processors.

Therefore.

al (s) f X )+b (C 1). (2.11)

Combining (2.10) and (2.11) verifies the first part of (2.8). If s is not in a cycle, all

instances of s are independent, and an arbitrary number of them can be active con-

currently. thus completing the proof of (2.8). The Gauss-Seidel result is obtained by 3
noting that for each k >0 there is a path from (Ck. s) to (k +b (C 2). s) in TGs. .-

corresponding to one traversal of C 2 . and then following the same argument as for the I
Gauss-Jacobi case to complete the proof.

In circuit simulations where a high degree of accuracy is required. accurate models

are used which invariably have bidirectional coupling between each pair of nodes that

are connected through a circuit element. Even MOS transistor gate terminals, which are

nearly unidirectional, are subject to capacitive feedback from the source and drain ter-

minals. In terms of the subcircuit graph, a circuit which has only bidirectional coupling

will have an arc from vertex j to vertex i for each arc from i to j. The number of

possible concurrent instances of subcircuits is severely restricted for circuits with

bidirectional coupling, as evidenced by the next theorem.

Theorem 2.2. If all coupling in G is bidirectional, and if G contains no isolated vertices,

then A., (s )=2 and PGS 5 s) = 1.-

If s is a vertex of G. then there exists a vertex j such that there are arcs from s to j

and from j to s. These two arcs constitute a cycle C containing vertex s. such that

f (C )=b (C )=1. Since any cycle must contain at least one feedforward arc and one

feedback arc. C minimizes the expressions f (C )+b (C) and b (C). The proof is com-

pleted by applying Theorem 2. 1.

75_

1111M R 1 110 1
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The preceding theorem indicates that the extra arcs of the augmented graph have

absolutely no effect on the parallelism of the Gauss-Seidel method for bidirectionally

coupled circuits. But in the Gauss-Jacobi case. a factor of up to 2 may be sacrificed in

parallelism. In the definition of AGI- the computation times of the tasks are unspecified.

and consequently. o,7 represents the worst possible combination of task times. It is

readily apparent that no concurrently active instances of the same subcircuit are possi-

ble in parallel Gauss-Jacobi if all the tasks in the task graph require the same amount of

computation time and if the number of processors is greater than or equal to the

number of subcircuits. In this case all tasks in iteration k are active in time interval k.

and no overlapping of iterations occurs. In this case the extra arcs of the augmented

5graph have no practical effect on the parallelism. This observation motivates the fol-

lowing theorem which relates the loss of Gauss-Jacobi parallelism in the T augmented

graph to the degree of mismatch in the task sizes. First the concepts of task graph depth

and width are generalized for graphs in which the vertices have weights representing

the computation times of the tasks.

Definition 2.9. Let D. (T ) and W. (T ) represent the weighted depth and weighted

3 average width of directed graph T with weighted vertices, where D. (T) is the sum of

the vertex weights in a path which has a maximum vertex weight sum, and W, (T) is

I equal to the sum of all vertex weights divided by D, (T).

Then D. is the parallel completion time and W, is the average parallelism, or the aver-

age number of active processors. assuming an unlimited supply of processors.

Theorem 2.3. If all of the following conditions hold,

(a) G has only bidirectional coupling and no isolated vertices;

I4S
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U

(b) each instance of subcircuit i requires comutation tinwwa . for each i EI1.2.....n }:

(c) j is the subcircuwt with the maximum computation time w.,w =; and

(d) k is the subeircuit adjacent to j such that no other subcirO t adjacent to j has a

larger computation time;

then

Dw(To.m) 2w..( (2.12)
D. (T 0 .) w a+w, I

Each longest path in TG1 , and each path of maximum weight in foT.. has exactly m

vertices, one in each iteration. Clearly the path with the largest weight in the aug-

mented graph contains all the instances of the subcircuit with the largest weight. Hence I

D. (to;..) = mw.. (2.13)

In the unaugmented graph. there exists a path starting at (0. j) which alternates

between instances of subcircuits j and k. Consequently.

U

Since w Mx W . it follows that

D. (T, - (Wr+nk). (2.15)
2

Combining (2.13) and (2.15) produces the inequality in (2.12). completing the proof.

Theorem 2.3 implies that if the largest subcircuit is adjacent to a subcircuit of

nearly the same size, then the parallel completion time will not be significantly affected

by the augmented arcs of the task graph. However, if the largest subcircuit is adjacent

only to subcircuits which are much smaller, then the loss of parallelism will approach

the worst case factor of 2.

If
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2.6 Conlin

Four parallel algorithms for waveform relaxation have been presented and

analyzed using a simplifed computation model. The paraliel algorithms are derived by

using Gauss-Seidel and Gauss-Jacobi relaxation in combination with the full window

technique or the time point pipelining technique for exploiting parallelism. The choice

between Gauss-Jacobi and Gauss-Seidel represents a tradeoff between greater parallel-

ism and faster convergence. and the choice between time point pipelining and the full

window technique represents a tradeoff between greater parallelism and lower over-

head. Task graph models for the algorithms have been de ned which serve as the basis

for analysis and implementation of the algorithms in subsequent chapters.

IiIl

IF

U1
I. . . . . . : ' r r r , o., - .
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CHAPTER 3 41

GAUSS-JACOE/GAUSS-SIDEL COMPARISON THEORY

U
The properties of the muese-Jacobi and Gauue-Seidel methods for waveform relax-

ation are closely related to the more basic Geuss-Jacobi and Gauss-Seidel algorithms for

the solution of systems of linear algebraic equations. which are examined in this 3
chapter. The algorithms are compared in teams of convergence speed and parallelism.

For the systems of equations which arise at each time point in the solution of node 3
equations of MOS circuits, when the time stop is suiciently small, it will be shown

that parallel Gauss-Jacobi is asymptotically faster than parallel Gaus-Seidel. when a I
suMciently large number of processors is used. The theorem which establishes this

result relates the spectral radii of the iteration matrices to the available parallelism of

the methoda A formula is also derived which compares the parallelism of the two n

methods Ai terms of the structural properties of the equations being solved.

U
3.1 Gass-JacoMbi d GausSedel Relaxatibm

Consider the problem of solving Ax mb by relaxation, where x. b ERTM . A E Ir

is nonsingular. and the diaonal elements of A are noneo. The i th equation is solved

independently for x, while using previously computed or guessed values for the other

variables The update equation for the ita vector element on the kr& iteration for

Gauss-Jacobi is given by

S I. a- i ' ' 1 .)
( E- - ,-a.J . a, '- (3.1)

aii l j + 1jt 1

and for Gauss-Seidel by

I-

La



37

xi(*) = l ,- ,.a z e)- j -i. (3.2)
li j of Y j I..t

Let D. L. and U be diagonal. strictly lower triangular. and strictly upper triangular

matrices. respectively, such that A =L +D +U. Then the Gaunss-Jacobi and Gauss-Seidel

iteration matrices are given by Mg, =-D-(L 4,1) and M05 =-(L +D )'U. respec-

tively. The asymptotic convergence rates are related to p(M 0, ) and p(Maj ). where p

denotes spectral radius, since these are the factors by which the errors are reduced on

each iteration for general initial guesses. as the iteration count approaches inlinity.

The Stein-Rosenberg theorem [Var621 relates p(Mo!) and p(Mos). and conse-

quently the convergence speeds of Gauss-Jacobi and Gauss-Seidel. for a clam of

matrices.

Theorem 31. ein-Roswiberg: If No, is nonngativ* ad p(M 0 )<l, then

P(MOS )(P(M,).

The condition that M, is nonnegative is equivalent to requiring that aej lae, (0 for all

i 0j. The condition p(Mcj ) <I is necessary and suscient to assure convergence of

Gauss-Jacobi. Matrices arising in the transient analysis of MOS circuits satisfy both

these conditions when the time step is suisciently small, provided that a capacitor is

present from each node to ground. and the gate-drain and gate-source capacitances are

included in each MOS transistor [Whi86J. For these matrices, the Stein-Rosenberg

theorem implies that for a suiciently small error tolerance. Gauss-Seidel will generally

converge in fewer iterations than Gauss-Jacobi. However. on parallel processors, it is

possible to perform m iterations of Gauss-Jacobi in less time than m iterations of

Gauss-Seidel. Therefore, Theorem 3.1 does not indicate which method will be faster on

parallel processors.



3.2 Parallel GaumJecoM and Gaus-S6iel U

The unknown update equations for Gauss-Jacobi and Gaun-Seidel. (3.1) and (3.2).

involve the sume computation; in each case the i'h unknown is updated by summing

n -1 products and a constant. Parallelism can be exploited in computing the products

and performing the summation. but the parallelism of these computations will be the

same for both Gauss-Jacobi and Gauss-Seidel. The difference between Gauss-Jacobi and 3
Gauss-Seidel that affects bow much total parallelism can be exploited is that in the case

of Gauss-Jacobi all the unknowns can be updated simultaneously on each iteration. 3
whereas in the case of Gauss-Seidel the number of unknowns which can be updated

simultaneously is limited by data dependencies between different unknowns of the i
same iteration. 3

In order to examine the difference between the two methods. let (3.1) and (3.2) be

treated as atomic operations which can be computed in one processor step. Using this -

convention, and assuming that at least n processors are available, one iteration of U
Gauss-Jacobi takes one processor step. as all the unknown updates can be performed

simultaneously. and one iteration of Gauss-Seidel takes n processor steps if A is full.

as the i unknown must be updated before the i +1 update equation can be completed.

When A is sparse. it is possible to exploit additional parallelism in Gauss-Seidel to U
reduce the number of steps required for one iteration to well below n . The sparsity of

A allows some updates of a given iteration to be done simultaneously. For example. if

di +,i "0. then x, can be updated simultaneously with x, 1 . It is also possible to

begin iteration k + I before completing iteration k. For example. if a 1. j through a 1. ,

are all zero. then one can compute x ( +) without waiting for x/ () through x (k) to be

computed first.

------ ------
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The number of steps required to compute m Gauss-Seidel or Gauss-Jacobi itera-

tios on a sperse matrix can be determined from an in -iteration task graph. Tr.,, or

TO,.,. respectively. Each verta represents the task of performing an update as

speciled by (3.1) or (3.2). and each arc reprents a data depndency. The graph can be

constructed band on the nonzero structure of A. First the nonzero structure of A is

represented by a directed graph G which is analogous to the uubcircuit graph defined

previously. The vertices of G are numbered I to n. corresponding to the vector ele-

ment numbers. and each off-diagonal element a, is represented by an arc from i to j.

For example. Fig. 3.1 shows the nonzero structure of a matrix and its corresponding

graph G. The task graphs 0 y. . and Tos. . can be construc based on G in the same

OxOxO0O
xOxxxO _

OxxxOx _
OOxxxO -
OO0xOx

(a)

2
3

4

6

(b)

Figure 3.1. (a) Nonzero structure of A; (b) the corresponding graph G.
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manner as described in Chapter 2.

3.3 The Paralleim Ratio 3
A comparison of the times required for the parallel Gauss-Jacobi and parallel

Osuss-Seidel methods must address their relative degrees of parallelism. The parallel- 3
ism ratio specified in the following definition will be used in comparing the asymptotic

convergence behavior of the methods as the number of iterations goes to infinity.

Delaitieo 3.1. Let the parallelism ratio r be deiAned by the equation

r - lim. (3.3)u--oCT01,)

The existence of the limit and the relationship of r to the structure of A will be treated 3
in a subsequent section of this chapter. Equation (3.3) implies that m iterations of

Gauss-Seidel require r times as many processor steps as m iterations of Gauss-Jacobi. in

the limit as the iteration count goes to infinity. The ratio r is directly related to the 3
number of Gauss-Seidel and Gauss-Jacobi iterations that can be performed in a given

number of processor steps. and this relationship is given in Lemma 3.4 following a

definition and several other lemmas which estat ish some basic properties of the task

graph depths. First, functions are defined which represent the maximum number of

iterations that can be performed in a given number of processor step

Dela tiom 3,2. Deine the junctions m s. mrn :Z-Z such that ms (1) is the largest

integer satisfying D(Ts,os(j))l, and m0 T(1) is the largest integer satisfying

D (T°;. Gj ()) " 1

In the degenerate case in which G contains no cycles, the exact solution is obtained

in a finite number of iterations. as reflected in the following lemma.
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Lmm 3.1. If G doss no contain a cyle, and M ;W is the length of a logest path in

G,Mhm

D (To,. m )-D (Tos. m )-M +1. for all m PM +1. (3.4)

If M =0. G contains no arcs. and the task graphs contain no arcs. Therefore. the task

graph depths are 1. If G contains a longest path F of length M >0. then there exist

corresponding paths Prj in Tj. . and PGS in Ts, .* both of length M. If either To. . or

;Ts ... contains a longer path. then there is a corresponding path in G which contradicts

the fact that P is a longest path. Therefore. D (T 1 ,,m)i-D (To s..)-M +1. Since adja-

cent vertices 9f a task graph are always in the same or consecutive iterations, any task

graph for at least M +1 iterations will contain the longest path of length M . and have

depth M +1.

In the more interesting case in which G contains a cycle, the Gauss-Jacobi itera-

tions proceed at a rate of exactly one iteration per processor step.

Leamm 3.2 If G cnains a cye. then D (T,.. )-m , and , (1)-I , for am, I eZ.

Due to the construction of T 1 . the vertices in any path must have consecutive itera-

tion numbers. Therefore. D (T7,,. )(m. Since G contains a cycle, it contains a walk

of length m -I. and such a walk corresponds to a path of length m-1 in TGo.m. There-

fore. D (T oj, ) ' m. Hence. D (Tor ,, )-m. The relationship intr1 (1 )l follows

immediately, using the definition of N.,..

The Gauss-Seidel task graph depth is more difficult to characterize. In fact the

expression D(Ts, , j)-D(Tcs. .) is not necessarily constant as a function of m . Some

useful, but relatively weak. properties of the Gauss-Seidel task graph depths are given

in the following lemma.
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Lemma 3.3 If 6 contains a cyle, then the sequences D (Ts.,) and ;'sn ) are

unbounded and mootone nondecreasing in m and 1, respectively.

Since G contains a cycle, it contains a walk of infinite length which maps to a path of U
infinite length in 7os Consequently. the task graph depth goes to infinity. The addi- 3
tion of one more iteration to any task graph of finite iterations does not remove any arcs

or vertices from the original graph and therefore does not reduce the depth. Hence, the 3
depth is monotone nondecreasing. As a result. ms () must also be unbounded and

monotone nondecreasing.

The ratio r can now be related to the number of iterations which can be per-

formed in a given number of processor steps. The following lemma indicates that the

Gauss-Jacobi method can perform r times as many iterations as Gauss-Seidel. in a given I
number of processor steps, in the limit as the number of processor steps goes to infinity.

for the nondegenerate case where G contains a cycle. t

Lemma 3 If G conains a cycle, then

M10]j(1)
lim - a r. (3.5)
I-CO Ms Q)

Due to Lemma 3.2 and Def. 3.1. for any E>O there exists M E Z such that

D r( < e, for allm >M. (3.6)

which implies

D(TGs.. ) - [8(m )+r]m. for all m >M, (3.7)

where (m )< a. Since mrs (1) is unbounded and nondecreasing, there exists L E Z such

that ms()>M. for all I >L. The definition of mos and (3.7) imply that for 1 >L,

mos (I) is giveii by the largest integer m satisfying

jjjj !
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3 (m )+r ]m 1 1. (3.8) .

Consequently. for any e>O there exists L such that* IL
m0$(L) - 1 8(ni0 ())+r ". for all I >L. (3.9)

where (mcs ( ))I < G. Dividing the equality ino1 ()1 by (3.9) yields

M (1) 1
_____ ( = . for all I > L.I mGS(s (3.10)

Since 8(ms ()) can be made arbitrarily small by making L large. (3.5) must hold. and

the proof of the lemm is complete.

3 3.4 Parallel Convergence Speed

If m iterations of Gauss-Seidel can be completed in 1 processor steps. then rm

iterations of Gauss-Jacobi can be completed in the same number of processor steps. in

3 the limit as I goes to infinity. In the limit, the error is multiplied by a factor of

p(MGs )" in m iterations of Gauss-Seidel. and it is multiplied by a factor of p(MGJ )r

3 by Gauss-Jacobi in an equal number of processor steps. Therefore. Gauss-Jacobi will be

asymptotically faster than Gauss-Seidel if p(MoJ)r Cp(Mos). In the following

theorem. which is the main result of this chapter, it will be shown that this relationship

3between the spectral radii holds for the class of matrices to which the Stein-Rosenberg

theorem applies. Therefore, parallel Gauss-Jacobi is asymptotically faster than parallel

i Gauss-Seidel for these matrices (Sma88a].

3 Theorem 3.2. If MG, is nonnegative and p(M , )< 1, then p(MG ) 4<p(MGs).

If p(MG! )-0 then p(MGs )-0. and the theorem is trivially satisfied [Var62]. For the

case where p(M 0 , )>0. G must contain a cycle because the iterations do not converge in

3 a finite number of iterations. For this case. the proof of Theorem 3.2 utilizes the

C
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following lemma [Gan59] and definition: U

Lemma 3.5. Perron-Frobenius: If matrix M E IR xn is nonnegative, then it has a nonne-

gatse real eigenvalue equal to its spectral radius and a nonnegative eigenvector associ-

ated with that eigenvalu.e.

Deftnition 3.3. Let y . z E R n contain the most recently computed iterate values for 3
each vector element after I processor steps of the parallel Gauss-Jacobi and Gauss-Seidel

algorithms respectively. 3
ince a Gauss-Jacobi iteration finishes in one processor step. y is equal to the I

Gauss-Jacobi iterate, and therefore

Y,(1) bib, =j +-I) (3.11) 1
aij j Pi. j 1 a,

In general, z() never corresponds to any iterate of Gauss-Seidel. because overlapping of

the iterations implies that the most recently computed element values can correspond to

different iterations. And because of data dependencies inherent in the Gauss-Seidel I
algorithm, many of the elements of z are the same as those of z (1 - 1) . Therefore, each

Gauss-Seidel update will be given by either

z( ) = Q.- 1)  (3.12a)

or

zi= . (M (. . )j (3.12b)ai,i i. j ai,i I

where m (l. i. j )E 0. .- 1). Note that m (l. i. j) is used to indicate that in order to

follow the Gauss-Seidel update formula, it may be necessary to pick out elements from

several different, but earlier, z vectors.

To complete the proof, consider the problem of solving Ax =0 by relaxation.

where A is such that MG) exists and is nonnegative and 0<p(Mo, )< 1. Let the initial

U
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guess x (0)_My (o)_z(o) be a nonnegative eigenvector associated with a nonnegative eigen-

value of Mr, equal to p(MG, ). Since MG; is nonnegative, aij / a1 ,j 40 for all i j.

Consequently. since x(0) is nonnegative and b =0. each term in (3.11) and (3.12b) is

nonnegative for all i. I. Also. since y (0) is an eigenvector associated with an eigenvalue

equal to p(Ml ) < 1. y (t)fip(Mo)Yy (0), and therefore yi(t) decays monotonically with I

for all i.

It will be shown by induction that

y,(*)z,.( - ) for all i. for all m E{O, .1). (3.13)

holds for all I. Clearly (3.13) holds for I =0, forming the basis of the induction.

Assume that (3.13) holds for a given 1. and consider processor step I +1. In those cases

where (3.12a) applies. y z() fiz (1 +1), and yi( +'),<zi(1+1) because yi(1) is monotone

decreasing in 1. In those cases where (3.12b) applies, each term of the summation in

(3.11) is less than or equal to the corresponding term in (3.12b) and all the terms are

nonnegative. Hence y( +1) (Z(1 +1). Since y, (1) decreases monotonically.

y1(l 4' yi(m),z (m ) for all m~l. Consequently. y.(*l*)<z (" ) for all i and all

m E{O. -. 3+1). thus completing the induction.

In I processor steps, mGs ( ) iterations of Gauss-Seidel are completed. Let x (mGS ())

be the Gauss-Seidel iterate on iteration mos (). Then for any i, I, there exists m 41
(Mas (t ))_ ,)"s( )

such that xi -Zz • . Applying (3.13) for each i, it follows that y ,S

where y(1) is equal to the I Gauss-Jacobi iterate. As 1 -oo, Lemma 3.4 indicates that

r times as many Gauss-Jacobi iterations are completed as Gauss-Seidel iterations. In
('ms (L))

order for x to remain larger than y (1). MGs must have an eigenvalue with mag-

nitude larger than p(Mo! ), the factor by which the Gauss-Jacobi error is reduced in r

processor steps. Therefore. P(MGJ )' 4p(Mos ), and the proof is complete.
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3.5 Parallelism Ratio Bounds

It is interesting to note that the proof of Theorem 3.2 does not require explicit

knowledge of the value of r. but rather only assumes that r exists. The value of r is 3
of interest because it represents the degree of parallelism of Gauss-Jacobi compared to

Gauss-Seidel. On the average, parallel Gauss-Jacobi requires r times as many proces-

sors as parallel Gauss-Seidel if the full parallelism of the methods is employed. In this

section. several bounds on r will be presented, assuming that r exists. In the next sec-

tion. the existence of r will be established, and an exact formula for r will be given in

terms of properties of G.

In the usual case where G contains a cycle, and m Gauss-Jacobi iterations require

exactly m processor steps, r is equivalent to the average number of steps between the

completion of successive Gauss-Seidel iterations. If no parallelism is employed in

Gauss-Seidel. n extra steps are required for each extra iteration. If parallelism is util-

ized. the number of steps per iteration will be no greater than n , and therefore

r 4<n. (3.14)

This bound will be reached if A is full. or if G contains a cycle from vertex I to 2 to ... 0%

to n to 1.

If concurrent updates are allowed within a Gauss-Seidel iteration, then D (TGs ' i)

steps will be required for the first iteration. And if parallelism is not exploited between

different iterations, each additional iteration will require an additional D (TGS" 1) steps.

Since some. but not all, of the potential parallelism is utilized, it follows that

r 4 D (TGs" 1 ) 4 n. (3.15)

This tighter bound on r will be approached when nearly all of the Gauss-Seidel paral-

lelism is due to intra-iteration parallelism. OB

Wt
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In some cases, most or all of the available Gauss-Seidel parallelism arises from the

overlapping of iterations. For example. if A is tridiagonal then D (TGS ' 1) is equal to n,

since each update requires the result of the previous update of the same iteration. How-

ever. iteration k'+1 can begin after only 2 steps of iteration k. Because of the inter-

iteration parallelism. r -2 for a tridiagonal matrix, regardless of the value of n. In

cases like this, the bounds in (3.15) do not give an accurate indication of the high degree

of Gauss-Seidel parallelism. An exact determination of the value of r requires that

both inter-iteration and intra-iteration parallelism be taken into account.

3.6 Parallelism Ratio Formula

In this section. the limit in (3.3) which defines r will be shown to exist, and a for-

mula will be derived for r in terms of properties of G. In the following development.

L (P) will denote the length of path P. and D (v) will denote the depth of vertex v.

defined as the number of vertices in a longest path terminating at v. The notation

D (T). where T is a directed graph, will denote the depth of the graph as defined in

Chapter 2. The main result of this section is given in Theorem 3.3.

Theorem 3.3. The imit in (33) exists, and

r.11+f (C)/b(C) (3.f6
1 . otherwise

where C is a cycle of G which maximizes f (C )/b (C ).

Note that any cycle of G must contain a feedback arc, so b (C) will be nonzero in

(3.16) when G contains a cycle.

If G contains no cycles, then D (Tr.. 1W)=D (TGSm) for m sufficiently large, due to

Lemma 3. 1. Therefore. r =1 in this case.
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If G contains a cycle, then both the Gauss-Suidel and Gauss-Jacobi task graph

depths go to infnity, and D (TO0 . . )m. To complete the proof. it must be shown that

lim[D (Tos.)/m 1]1+f (C)/b (C). when G contains a cycle. This will be done in the 3
next two lemmas by establishing upper and lower bounds on the limit.

Lemma 3.6 If G contains a eyde, then for any e>0 there exists M EZ depending an 1

such that

D(TGs.. f (C )>, I + fCC) is. for all nm >M (3.17)

In b(C)
where C is a cycle of G which maximizes f (C )b (C).

Let v be a vertex of C. For any j 0 1. let m =jb (C)+1. Let v I and v. be the instances

of v in iterations I and m of Ts . , respectively. There is a path P from v , to v.

corresponding to j traversals of C. because the iteration number increases by one every

time a feedback arc is traversed. Combining the relations D(r 5s.m)OD(vi,).

D(v.)OD(v,)+L(P). D(vl))1. L(P)mj[f (C)+b(C)]. and j=(rn-l)/b(C) pro- 3
duces

rn-1
D(TGs5 ,) ) I+;(-I [f (C)+b(C)]. for m Eli.b(C)+I. 2b(C)+I. 1(3.19)

b (C)

Bounds on the task graph depth for intermediate values of m can be obtained using the

fact that D (Tcs..) is monotone nondecreasing in m. The following lower bound on

D (TGSm) applies for all m:

D (Ts.,) 1+mb(C) U (C)+b(C)]. (3.19)
b (C) L

Dividing by m gives

' -- If (C)+b(C)J. (3.20)
m m b(C) )mj

Discarding the 1/M term and distributing yields
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3 D (T* 5.. ) f (C) f (C)+b(C)
m b (C) M(

3 Note that / (C )+b (C )n . as C contains at most n-1 arcs. Therefore.

M O S .> I + f -- .a(3 .2 2 )

Ms b(C) m

By stting M ant . (3.17) is obtained, thus completing the proof of Iemma 3.6.

Lemma 3.7. If G conains a cycle. then for .ay a>0 thv exists M EZ depending an a

3 rsch tht

S<( 1+ f( + . for all m >M. (3.23)M b(C)
where C is a eyde of G which axindss f (C )/b (C).

Let u be any vertex of G and let u. be the instance of u in iteration m of rus,,. Let

UP be any longest path, consisting of one or more vertices, terminating at &,. In order

to establish a bound on the length of P. partition P into subpaths P0. Q1 P2 , 0 2.

SP.- 1 . Q, . Ps . such that the following conditions are satisfied:

3 (a) The concatenation of the arcs of P0 . Q 1 . P, is equal to the sequence of arcs

in P.

3 (b) P, contains no two instances of a common vertex of G. for each j.

(c) The endpoints of Q) are instances of a common vertex of G. for eachj.

(d) The origins of Q, and Q., are instances of distinct vertices of G. for each i 0j.

I The possibilities that s might be 0 and that Po or P, might be null are not ruled out.

Note that conditions (a). (b), and (c) are easily satisfied by putting subpaths with more

than one instance of the same vertex into Q subpaths. If a partitioning does not satisfy

condition (d). it can be modified by combining Q, , Pi .... Q (, into a single Q, subpath.3!
0
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Since P is a longis path terminating at u.. D (u. )-L (P)+ 1. Condition (a) then m

implies

D(i 1+ TL (Pj)+ 1L( ). (3.24)
j =0 ji

Bsed on this equation, an upper bound on D (um) will be derived which will led to

the result in (3.23). Condition (b) implies that L (P )An -1. and condition (d) implies I
s 4n. Applying then relations to (3.24). plus the fact that L (Q )in (Q? )+b (Q ).

yields 3

D (u.) 4 l+(n +lXn-1)+ [ (fj()+b (0). (3.25)

Recall that the firm and last vertices of 0 are instances of a single vertex x, of

G. To obtain a bound on f (Qj). Qj is further partitioned into one or more iubpaths. I
Q . .such that each subpath starts and ends on an instance of x,. and no inter- g

nal vert is an instance ofxy. EAb j., corresponds to a cycle C,. of G. Because of

the mn in which cycle C is chosen. f (C., )1b (C., 1) f (C )/b(C ). Using this 3
relationship and summing over all subpaths of Qy. the bound

f (Qj ) b (Qj )f (C)b (C ) is obtained. Substituting this bound into (3.25) produces U

D(u,) • n2+fI+l 
¢(c) I jb(QJ)" (3.26).1

Since (3.26) applies for any choice of vertex um in iteration m. D (um ) may be replaced

by D (T6 5$.). Applying the relationship Lb (Qj,) b (P)<m and dividing by m yields

D(Tos.) n2  + f (C)- +1+ . (3.27)

rmt M b(C)
Choosing Man2/A confirms the validity of (3.23) and completes the proof of Lemma

3.7. Lemmas 3.6 and 3.7 lead directly to the result stated in Theorem 3.3 for the caw

where G contains a cycle, thus completing the proof of the theorem.
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SPEEDUP EflMATES

The objective of parallel procmie is to reduce the overall run time of a program

by executing diferent pats of it on different procemsors concurrently. A convenient

nsure of the succms of parallel procesing in a given situation is the spdup. which

indicates how much faster the program runs on a specified number of processors com-

pared to the run time on a single processor. In this chapter. several techniques are

investigated for estimating the speedup of parallel waveform relaxation algorithms for

a set of benchmark circuits. The simplifying assumptions introduced in Chapter 2 are

used a a starting point for computing simple estimates. The assumptions are then

replaced by more realistic assumptions producing more accurate estimates. In the pro-

cm of reining the assumptions. insights are gained into the extent to which different

factors affect the speedup. In sutmequmnt chapters. the speedup estimates are used for

two purposes. Fast estimates are used to select the fastest parallel waveform relaxation

algorithm prior to performing a circuit simulation. Accurate estimates excluding mul-

tiproceusing overhead factors are compared with measured speedups to determine the

extent to which overhead affects the performance of the algorithms. Finally. in this

chapter. accurate estimates neglecting overhead are used to predict the potential perfor-

mance of the algorithms when the number of processors is large.

4.1 Speedp

The parallel processing speedup achieved by an algorithm X. applied to a given

problem. running on k procesors. is defined as
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saw=-. (4.1)

S,

where f. is the run time of algorithm X on k I aors and r, is a reference time

which in some own rosects the time required to solve the same problem using only I

r . The speedup is a masure of how much faster the program runs on k proce.-

sors compared to the time required to obtain the same solution an I processr.

One obvious choice for the reference time r, is the time required to run the same U
algorithm. X. on I processor. Speedups computed in this manner will be referred to as

unnormalized speedups. denoted as S.. Unnormalized speedups satisfy the property

S4., 4 k. and S4.4 will be close to k if the computations are nearly evenly distributed i
between all the processors throughout the execution of the program and if the parallel

rc n overhead is small. The ratio S .,t/k is a measure of the processor utilization. i
or the fraction of time. on the average. that the processors are busy. not counting the

time spent doing extra work which is performed in the k -processor case but not in the

uniprocesor case. 3
When using speedups to compare the overall performance of different algorithms;

for solving the same problem. a common reference time must be used for all the algo-

rithms so that a greater speedup indicatas an algorithm with a shorter run time. The 3
normalized speedup of algorithm X on k processors with respect to algorithm Y is

dined as

51'r, fr'I. 1

S~v.t _ - Su . • (4.2)
rX., vX. I

whererz, m is the run time of algorithm Z on m procors, for any Z and m. A good

choice for the common reference is the time required by the fastest available uniproces- I
sor algorithm. Then S k S. 4k. Note that S ., Ik is not a measure of the utiliza-

tion of the prcessors as is S./k. I
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0( the aveform xtio algorithms under consid ion. the GausSeidel

method consistently rum faster than Gaus-Jacoi an a untprocem r. And a uniproce.-

sor waveform relaxation program which does not have the extra overhead of the full

window technque or time point ppelining will run faster than a program with the

extra parallel proceing code. Therefore. a uniproceuor program using Gauus-Seidel is

a useful reference for computing normalized speedups.

4.2 Denchmark Circuits

The performance of the parallel algorithms is a strong function of the circuit being

simulated and the subcircuit partitioning. since the subcircuit interconnection structure

determines the structure of the task graph. Five benchmark circuits, including CMOS

and NMOS designs. are used to compare the performance of the parallel algorithms.

The circuit characteristics are summarized in Table 4.1. All coupling is bidirectional, so

the results from Chapter 2 concerning such circuits are applicable.

Circuits dvs and bwn2A are portions of industrial designs which were extracted

from chip layouts. The inclusion of nonzero interconnect resistance on the power and

ground busses is responsible for the highly nonuniform subcircuit sies in dvs,. since

there are a large number of tightly coupled bus nodes which are placed in a single

I Table 4.1. Circuit Characteristics
u NNodes per Subcircuit

Circuit mETs Nodes Subcircuits an max mean T

dvs 54 189 27 1 30 7.0 6.5
dpla 116 56 30 1 9 1.9 1.6
scdac 416 150 90 1 7 1.7 1.5
ben2k 805 388 119 1 54 3.3 6.2
dig 696 378 222 1 10 1.7 1.2IJ

!
II



subcilrcuit. The bem2k circuit is a portion of a static RAM. and the transistor connec- M6

tions rather than parasitic resistors account for the Wr subcircuits in this case. The

d*e circuit contains only a few interconnect resistors. and the scdac and digf circuits

contain none. Thee latter circuits have a comparatively high degree of uniformity of

subcircuit Sias. demontratd by the low maximum numbers of nodes per subcircuit

and by the small standard deviations. 3
4.3 Preimulatiom Estimatm

Two categories of speedup estimates will be addressed: presimulation and post-

simulation estimates. The presimulation estimates can be computed without perform- 3
ing a simulation of the circuit. They provide insights into the nature of parallelism in

waveform relaxation, and they can serve as the basis for selecting the algorithm to be

used for a given circuit on a given number of procesors prior to performing the circuit

simulation.

43.1 Type I eastimatest unifora task times i
Simplifying assumptions were introduced in Chapter 2. and these assumptions are

applied to the benchmark circuits to produce the Type I speedup estimates for the full

window technique. The assumptions are that each task requires the same amount of

time, and an unlimited supply of processors is available. Under these conditions.

Su W(Tx.) (4.3)

where X is either GS or GJ. depending on the algorithm used. The Type I estimates for

the benchmark circuits are given in Table 4.2 for different numbers of iterations, since

the number of iterations required for convergence is not known prior to simulation.

The number of iterations is typically around 4. The speedups are unnormalized, a
because the number of iterations and the window boundaries chosen by the automatic

MU
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3 Table 4.2. Type I Speedup Estimates

cirui IGaume-Suidel iterations Gauss-Jacobi Iterationircui 1 2 4 a 1. 2.4. or 8

dvs 2.3 2.3 2.4 2.4 27
dpla 2.3 2.9 3.2 3.5 30
scdac 10.0 10.0 12.0 13.0 90
ben2k 3.8 4.7 5.2 5.6 119
digh 6.3 7.2 7.7 7.9 222

windowing algorithm will differ by unknown amounts for the two relaxation methods,

and these factors determine the ratio of uniprocmsor run times.

The results show that the Gauss-Seidel speedups are severely limited by the struc-

ture of the task graphs. Since the Gauss-Jacobi speedups are 10 to 20 times greater than

the Gauss-Seidel speedups. one would expect Gauss-Jacobi to outperform Gauss-Seidel

when the number of processors is large. even if Gauss-Jacobi requires considerably more

3 iterations. It is also interesting to note that the Gaus-Seidel speedups are only weakly

dependent on the number of iterations, suggesting that most of the parallelism occurs

between tasks of an iteration rather than between tasks of different iterations. The

SGauss-Jacobi speedups are equal to the number of subcircuits. and are independent of

the number of iterations. Since all the task times are assumed to be uniform and all the

3 circuits are bidirectionally coupled. Theorems 2.2 and 2.3 imply that the Type 1

speedup estimates of the benchmark circuits are independent of whether the unaug-

i mented or the augmented. T, task graphs are used.

" 4.3.2 Type 2 est imate. nosua rm task tinm

The uniform task time assumption automatically causes the tasks to be executed

one level at a time in the levelized task graph. E-ven if the task times are not uniform.

3 it is possible to enforce a rule which requires all tasks in one level to inish before any

I ... iC * "elT ""'''~ , "''!' ?
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tasks in the next level begin executing. This is a relatively simple way to enforce the

precedence constraints but does not take advantage of all the available parallelism.

because some tasks in level 1 +1 may have all their precedence constraints satisfied 3
before all tasks in level I finish.

In the Type 2 speedup estimates, the tasks are forced to be executed one level at a

time. but the task times are allowed to be nonuniform. In this scenario, the time 3
required by level I is determined by the largest task in the level. The speedup is

estimated as 3
£ W.

Su. D(T) (4.4)

maxa (w,
1l0 x f Itau In WII I

where T is the task graph and w. is an estimate of the computation time for task x.

Note that nonuniform task times within a level will invariably have a detrimental

effect on the speedup in this model. However. differences in task sizes between different

levels may result in larger or smaller speedups. If one level contains many tasks and

another contains few tasks, then the overall speedup will benefit if the tasks in the level

with many tasks all have long computation times compared to the tasks in the level

with few tasks. On the other hand, if the computation time of levels with few tasks

dominate, then the speedup will suffer.

An estimate is needed of the computation times of the tasks. Since a task consists

of the evaluation of a subcircuit over a time window, and since subcircuits are typically

small, the task computation time is dominated by the evaluation of model equations.

The time to evaluate the model equations depends on the number of models to be

evaluated, their complexity, the number of time points at which the models need to be

evaluated, and the operating regions of the circuit elements. The number of time points I



and the operating regions are difficult to estimate without running a circuit simulation.

and therefore these factors are ignored in the Type 2 estimates. However, the number

and types of models are known from the subcircuit partitioning. Since the number of

circuit elements in a subcircuit is typically proportional to the number of nodes, the

number of nodes in a subcircuit is used as a measure of the computation time for each

task which is an instance of the subcircuit. Therefore. w, is set equal to the number of

nodes in the subcircuit corresponding to task x. The estimate could be further refined

by directly considering the number and types of circuit elements in each subcircuit.

The Type 2 estimates are presented for the benchmark circuits in Table 4.3. The

nonuniformity of task sizes has a significant effect compared to the results of the Type

I estimates. The impact is especially severe in the Gauss-Jacobi case, where the speedup

is determined by the fraction of circuit nodes which appear in the largest subcircuit.

For example. in the ben2k circuit. 1/7.2 of the total circuit nodes are contkined in the

largest subcircuit. even though there are over 100 subcircuits. and this limits the

speedup to 7.2. Type 2 estimates are also insensitive to whether or not the T aug-

mented task graphs are used in the case of bidirectionally coupled circuits.

Table 4.3. Type 2 Speedup Estimates
Circuit Gauss-Seidel Iterations Gauss-Jacobi Iterations
Circui 1 2 4 8 1.2, 4. or 8
dvs 1.5 1.5 1.5 1.5 6.3
dpla 1.6 1.9 2.1 2.1 6.2
scdac 3.4 3.9 4.1 4.3 21.4
ben2k 1.6 1.8 1.8 1.9 7.2
digfi 3.5 3.8 3.9 4.0 37.8
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4-3.3 Type 3 estimatem unsynchronized levels w

The enforcement of a synchronization between each level, as assumed in the Type

2 estimate. has a negative impact on the speedup. To determine the extent of this

impact. the Type 3 speedup estimates retain the nonuniform task time estimates of

Type 2. while removing the synchronization of levels. In the Type 3 model, each task is

assumed to begin executing immediately after all its predecessors in the task graph are

finished. If P is a path in the task graph such that no other path has a larger sum of

estimated task times. then the parallel execution time is determined by P. and the Type

3 estimate is given by 3
ZWXz EiU tasksi

su. x6flltis (4.5)

xE Itasks in P I

Table 4.4 shows the results of this estimation procedure. assuming the unaug-

mented task graphs are used. As expected. the speedups are greater than those predicted 3
by the Type 2 estimates. For these examples. the penalty for synchronizing the levels is

up to a factor of 2. and in most cases is considerably less than 2. In the Gauss-Jacobi

case, the speedup for an even number of iterations is determined by the two adjacent

subcircuits whose node sum is largest, because there is a path in the task graph which

Table 4.4. Type 3 Speedup Estimates: Unaugmented Task Graph

Circuit Gauss-Seidel Iterations Gauss-Jacobi Iterations

Crut 1 2 4 8 1 2. 4.or8
dvs 1.5 1.5 1.5 1.5 6.3 7.7
dpla 1.8 2.0 2.2 2.3 6.2 10.2
scdac 5.4 7.0 8.1 8.8 21.4 25.0
ben2k 1.9 2.3 2.5 2.6 7.2 9.0
dighi 4.5 5.0 5.3 5.4 37.8 54.0

,I
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I alternates between these 2 subcircuits on alternate iterations. For example. in the ben2k

circuit, there are two adjacent subcircuits whose node sum is 2/9 of the total circuit

nodes, resulting in a speedup of 9.

3 Type I and Type 2 estimates are independent of whether the unaugmented task

graphs T or the augmented task graphs f are used, because the levels are synchronized.

I In the Type 3 estimate, the impact of the extra constraints of the augmented graph T

3 can be obseryed in the Gauss-Jacobi results of Table 4.5. In this case the Gauss-Jacobi

completion time is determined entirely by the largest subcircuit. since the task graph

3 contains a path including each instance of the largest subcircuit. Since all the circuits

are bidirectionally coupled, the extra constraints of TG, have no effect compared to the

unaugmented task graph, as proved in Chapter 2.

3 4.3.4 Normalization to Gauss-Seidel

The unnormalized speedup estimates considered above fail to demonstrate whether

Gauss-Seidel or Gauss-Jacobi will be faster, because the ratio rGs, IrG. I is unknown.

The benchmark circuits were simulated using both the Gauss-Seidel and Gauss-Jacobi

methods on a uniprocessor, to obtain measurements of rGs.I and rTG, 1. The ratios are

presented in Table 4.6. For all the benchmark circuits, the ratios are very close to 0.7.

Table 4.5. Type 3 Speedup Estimates: Augmented Task Graph TGJ

Gauss-Jacobi IterationsCircuit 1. 2. 4. or 8

dvs 6.3
dpla 6.2
scdac 21.4
ben2k 7.2
digfi 37.8

I
C
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Table 4.6. Ratios of Gauss-Seidel to Gauss-Jacobi Uniprocessor Run Times

Circuit Ratio i
dvs 0.7
dpla 0.81
scdac 0.7
ben2k 0.65

dii 0.7

This suggests that it may be appropriate to use the constant 0.7 as an estimate of

76s, 11 GJ. I in presimulation normalized speedup estimates. Multiplying the Gauss-

Jacobi speedu r estimates by 0.7 results in normalized speedups which are still consider- 3
ably larger than the Gauss-Seidel speedups. In Chapter 5. the normalized speedup esti-

mates are applied to the problem of selecting between the Gauss-Seidel and Gauss-Jacobi

methods prior to performing a circuit simulation. 3

4.3.5 Time point pipelining estimate. 3
The parallel performance of time point pipelining is a strong function of the

number of time points in each window and the positions of the time points on the time

axis. This information is not available prior to performing the circuit simulation.

However, for the purpose of predicting which of the 4 parallel waveform relaxation

methods is fastest for a given circuit and a given number of processors, it is not neces-

sary to actually predict the time point pipelining speedup. A technique for selecting the

fastest of the 4 methods prior to simulation, based on the speedup estimates for the full

window technique, is presented in Chapter 6.

4A Post-simulation Estimates

Even the most sophisticated of the presimulation estimates suffers from the fol-

lowing limitations:
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(1) Differences in the amount of signal activity in different subcircuits affect the

task execution times, but are not considered in the estimates.

(2) The Gauss-Seidel/Gauss-Jacobi normalization factor can only be guessed based

on previous experience.

(3) Details on the number and locations of time points, which affect time point

pipelining performance. are unknown prior to simulation.

(4) Multiprocessing overhead factors such as task scheduling, data communications.

and time spent waiting for access to shared resources are neglected.

All of these limitations except the last can be overcome by performing a simulation of

the circuit on a uniprocessor prior to computing the estimate, and using detailed infor-

mation on which tasks are executed and their individual computation times.

Accurate post-simulation estimates neglecting overhead have two applications.

The speedup on k processors can be estimated even if a multiprocessor with k proces-

sors is not available. This allows projections to be made of the potential performance of

the algorithms on machines which will become available in the future. The other appli-

cation is that of determining the degree to which multiprocessing overhead is responsi-

ble for the performance of the algorithms as measured in actual multiprocessor runs.

For example. if an algorithm has a speedup of only 2 on 8 processors, then either the

processors are idle most of the time due to a lack of work which can be done con-

currently, or the multiprocessing overhead is excessive. If the post-simulation estimate

of speedup neglecting overhead is 7. then one would conclude that the problem is one of

overhead rather than a lack of available parallelism.

Unlike the presimulation estimation techniques, post-simulation estimates are not

suitable to serve as a guide in selecting the fastest algorithm for a given circuit and a

given number of processors prior to simulating the circuit on a multiprocessor. Since a
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simulation of the circuit is required prior to computing the post-simulation estimate. U

the need for running the simulation on a multiprocessor after computing the estimate is

obviated. 9
4.1 PARAST decription

The PARASITE program was developed to compute accurate post-simulation esti-

mates of the parallel execution time of any of the four parallel waveform relaxation I
algorithms, for a given circuit on a given number of processors. neglecting multiprocess-

ing overhead. The organization of the PARASITE system is depicted in Fig. 4.1. First a

circuit simulation is performed on the circuit of interest using a uniprocesor waveform 3
relaxation program which has been modified to produce two special output files for the

PARASITE program. The first file contains the subcircuit graph, which PARASITE uses i
to construct task graphs. The second file contains information on each task that was

executed. For the full window technique, this file contains for each subcircuit evalua-

tion task (k. i ) the measured computation time of the task. v(k. i ). For time point 3
U

relaxation number of
ciruit meltho processors

Uniproceortask CPU timesUniprocessor PAAST

WR Program subcircuit graph PARASITE

waveforms parallel run time
neglecting overhead

Figure 4.1. PARASITE: Parallel simulation time estimator.
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pipelining. the file contains a record of each time point subtas W i. t ). its measured

computation time r(k. i.t ). and the' orrespondig initial location of the time point

t,j, (k. C. t ).

3 After the circuit simulation is complete. the PARASIT program is run. also on a

uniprocemr. The PARASITE program mimics the operation of the specified parallel

3waveform relaxation algorithm, but instead of performing computations to solve the

circuit equations. it just keeps track of the time that would be required to execute theI
tasks on a specified number of processors. The windows are processed sequentially.

Within each window a weighted task graph T is constructed for either the full window

technique or for time point pipelining. as specified. The number of iterations in the task

3~graph is known from the record of tasks which were executed in the circuit simulation.

All the other information needed to construct the task graph is contained in the subcir-

cuit graph in the case of the full window technique. and in the subcircuit graph and

3 time point information in the case of time point pipelining. The weights are obtained

directly from the measured CPU times of the individual tasks or subtasks.

PARASITE then simulates the parallel execution of the tasks in the graph on

No,., processors, using the algorithm given below. In the PARASITE algorithm, t is

the estimated elapsed time. t, is the time at which processor i will finish its current

3 task, x, is the task assigned to processor i. w (x) is the weight of task x, P is the set of

active processors. and P is the set of idle processors. A queue is used to hold tasks that

3 are ready to execute but that have not yet been assigned to processors for execution.

The function qpuw (sk) puts task tsk on the queue. and qempty ) returns TRUE if the

I queue is empty. The function qget 0 returns a task from the queue and deletes it from

the queue. The task obtained by qget ) is the task of the lowest available iteration

number which has been on the queue for the longest time. The initial tasks are those

I|
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which have an in-degre of 0 in the task graph.

Algerith 41. PARASMT Simulate Parallel Exectios GN... T)

P.- ~~ I

for each (initial task x ) qpm (z)

repeat* Asi task to processors*

for e-h(i E) I
if (qempty OiFAISE) II

xe -qgw 0
t -t +W (x8 )
add i to set PW
remove i from set I

/I Advance time /U

find i EP with smallest t,
t '-ti

for each (successor y of x, in T with no other predecessor) qpd (y)

remove xi from graph T
remove i from set P

addi to set P

} until (qempty 0-TRUE and P -0)

Algorithm 4.1 is used within each window, and the total estimated parallel execution

time is the sum of the times in all the windows.

44.2 Limitation.

The estimates produced by PARASITE are considerably more accurate than the

presimulation estimates. but certain limitations should be noted. The fact that

PARASITE does not account for parallel processing overhead has been previously dis-

cussed. and this feature can be viewed as either an advantage or disadvantage, depend-

ing on the intended application. A speedup computed from a PARASITE time estimate

40
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is approximate upper bound on speedup. subject to cerain conditios. It is an upper

bound because multiprocesing overhead is neglected. thereby resulting in an overesti-

mate of speedup. It is approximate because PARASITE does not compute the optimum

schedule of the tasks on the parallel procesors. The estimate as subject to certain con-

ditions arising from the assumption that the multiproceming run executes exactly the

same tasks as the uniprocessor case.

PARASITE queues asks as soon as their precedence constraints are satisfied, and

obtains a task from the queue as soon as a processor becomes available to execute a new

task. This results in ain optimum scheduling of tasks for those cases where the number

of processors is either I or infinite. For intermediate numbers of processors. the task

scheduling may be nonoptimal. When more than one task is on the queue. then the

choice of which task to execute next can affect the overall parallel execution time. Even

if a multiprocessor waveform relaxation program uses the same policy of obtaining

work from the queue on a first-in-first-out basis, small delays introduced by overhead

in the multiprocessor run can result in a different order of execution and a different

assignment of tasks to processors. Normally the overhead-induced delays will result in

a longer run time than the PARASITE estimate, but it is possible for the delays to cause

a reduction in the run time, if by chance a more elficient scheduling of tasks on proces-

sors results. PARASITE could be modified to determine the optimum schedule of tasks.

but this optimization problem is NP-complete and would be too time consuming

[Gar79]. In practice. the disruption in execution order caused by overhead delays is

unlikely to result in a significantly different schedule, provided the overhead is small

compared to the task execution times.

The fact that PARASITE assumes that the same tasks are executed in the unipro-

cessor and multiprocessor cases has several implications. The study of asynchronous
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rela ti.n method [Ca69. Dau7S. in which the task graph evolves during the execu-

b
tie. of the relaation p'nm. is not possible with PARASITE. because the computations

performed can depend on the number of procemors. The parallel versions of the strict 3
Gamu-Seidel and G(aum-Jacobi relaxation methods do not present a problem for

PARASITE becaus the precedence constraints between tasks are designed to assure that

the computations in the parallel case operate on exactly the saue data as in the unipro- 3
cemr can.

The PARASITE results apply only to the particular circuit. subcircuit partitioning. i
subcircuit ordering, window boundaries, and relaxation method used in the reference

uniprocesor simulation. Each of these factors can affect the uniprocemor run time and

the degree of parallelism. 3
4A43 Results

PARASITE was applied to the benchmark circuits. producing the unnormalized

speedup estimates in Table 4.7. The PARASITE results for the full window, unlimited

processor case agree closely with some of the Type 3 estimates for the 4-iteration case.

and are as much as 2 times smaller in some of the other cases. The discrepancies are

greatest for the scdac and digfj circuits whicb are comparatively large. evenly parti- 3
tioned circuits. These are the circuits that are most likely to have a large number of

subcircuits with comparatively slowly changing signals in any given window. The

variable time step integration algorithm will choose very long time steps and will con-

sequently compute very few time points in these subcircuits. whereas the subcircuits

w'ith rapidly Obe.giwg signals will require many time points. Consequently. the subcir-

cuits with low signal activity cause a reduction in the available parallelism as compared

with the Type 3 estimates. It should be noted that even though subcircuits with low

gW
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Table 4.7. PARASITE Speedup Estimates

Task tProcersGr Algoriphm CCUI 1 2 4 8 16 32 e

dvs 1.0 1.4 1.5 15 1.5 1.5 1.5
dpla 1.0 1.7 2.1 2.1 2.1 2.1 2.1

FWT-GS sedac 1.0 2.0 3.7 5.3 5.6 5.6 5.6
TOS  ben2k 1.0 1.7 2.1 2.3 2.4 2.4 2.4

o dig 1.0 2.0 3.3 3.8 3.9 3.9 3.9
dvs 1.0 1.8 2.3 2.4 2.4 2.4 2.4
dpla 1,0 1.9 2.8 3.0 3.0 3.0 3.0

TPP-GS scdac 1.0 2.0 3.9 7.0 9.4 9.1 9.8
ben2k 1.0 1.9 2.8 3.1 3.2 3.2 3.2
diA 1.0 2.0 3.9 5.8 6.1 6.2 6.2
dvs 1.0 2.0 3.5 5.3 6.2 6.3 6.3
dpla 1.0 2.0 3.8 6.6 8.1 8.2 8.2

FWT-GJ scdac 1.0 2.0 3.9 7.2 11.0 12.6 12.9
bemn2k 1.0 2.0 3.8 7.2 9.9 10.8 11.4
disf 1.0 2.0 3.9 7.6 13.7 19.5 22.2
dvs 1.0 2.0 3.8 6.8 9.1 9.3 9.3
dpla 1.0 2.0 3.9 7.1 10.6 12.1 12.1

TPP-GJ wdac 1.0 2.0 3.9 7.5 13.0 17.7 19.3
ben2k 1.0 2.0 3.9 7.4 11.7 13.5 14.1
diz__ _ 1.0 2.0 4.0 7.8 14.5 24.2 33.2
dvs 1.0 1.9 3.1 4.3 5.0 5.2 5.2
dpla 1.0 2.0 3.7 5.7 6.3 6.3 6.3

FWT-GJ ucdac 1.0 2.0 3.8 6.4 .8.0 8.4 8.5
ben2k 1.0 2.0 3.9 7.0 9.2 10.0 10.4

_____ ditfi 1.0 2.0 3.9 7.4 12.0 14.8 15.9
dvs 1.0 2.0 3.8 6.7 8.6 8.8 8.8
dpla 1.0 2.0 3.9 6.7 9.2 9.9 9.9

TPP-GJ scdac 1.0 2.0 3.9 7.4 11.1 13.2 13.8
ben2k 1.0 2.0 3.9 7.4 11.5 13.1 13.6
digfi 1.0 2.0 4.0 7.7 14.2 21.2 25.6

signal activity reduce parallelism. they do so only because the uniprocessor waveform

relaxation algorithm already takes advantage of this situation by not computing

unnecessary time points in these subcircuits.

The PARASITE results are tabulated as a function of the number of processors.
0

For the Gauss-Seidel method with the full window technique. the speedups reach their

--- MML,-,,,,,! , ¥ ~ -, r! r,, , #,Np e,¥q
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Unum values very quickly as the number of proceors are incread due to the

Usvly limited parallelism. The Gauss-Jacobi method with the full window technique

exhibits speedups close to the number of processors until about 8 processors. depending I
on the circuit.

The time point pipelining speedup estimates are necessarily greater than the

corresponding full window speedups. since time point pipelining exposes greater paal-

lelism, and overhead is neglected. The degree by which the time point pipelining speed-

ups are greater than the full window technique speedups depends directly on the the I
window sizes. The windows are chosen by the automatic windowing algorithm of

RELAX2.3. which tends to favor small windows in order to keep the number of itera-

tions small. Larger windows would result in greater time point pipelining speedups 3
compared to the full window technique using the same enlarged windows; but very

large windows would cause the 1-processor reference time to be increased due to an w

increase in the number of iterations.

Since the uniprocussor run times are known in computing post-simulation esti-

mates, it is possible to normalize Gauss-Jacobi speedups to Gauss-Seidel. as shown in 5
Table 4.8. The speedups less than 1 for the single processor case reflect the normaliza-

tion factor. Even though Gauss-Jacobi starts out with this speed disadvantage on 1 pro-

cessor. the normalized Gauss-Jacobi estimates surpass the corresponding Gauss-Seidel

estimates when the number of processors is sufficiently large, for both the full window

technique and time point pipelining. Consequently. the Gauss-Jacobi method with time

point pipelining offers the greatest potential speed of the four algorithms when the

number of processors is large.

The break-even point between the Gauss-Seidel and Gauss-Jacobi methods is a

function of the circuit being simulated. Table 4.9 shows which of the relaxation
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Table 4.8. PARASITE Speedup Estimates Normalized to Gaun-Seidel

Task A .C Procemrs
Graph Algorithm Circuit 1 2 4 a 16 32 a.

dvs 0.7 1.4 2.5 3.8 4.5 4.5 4.5
dpla 0.8 1.6 3.0 5.2 6.4 6.5 6.5

FWT-GJ scdac 0.7 1.6 3.1 5.7 8.7 10.0 10.2
ben2k 0.6 1.3 2.4 4.6 6.3 6.6 7.2

_____ diz i 0.7 1.4 2.7 5.3 9.6 13.6 15.5
T0 , dvs 0.7 1.4 2.7 4.9 6.5 6.7 6.7

dpla 0.8 1.6 3.1 5.6 8.4 9.6 9.6
TPP-GJ AUc 0.7 1.4 2.8 5.3 9.2 12.5 13.6

ben2k 0.6 1.3 2.5 4.7 7.4 8.5 8.9
dig% 0.7 1.4 2.8 5.4 10.1 16.9 23.2
dvs 0.7 1.4 2.2 3.1 3.6 3.7 3.7
dpla 0.8 1.6 2.9 4.5 5.0 5.0 5.0

FWT-GJ sedac 0.7 1.4 2.7 4.5 5.7 5.9 6.0
ben2k 0.6 1.3 2.5 4.4 5.8 6.3 6.6
dig 0.7 1.4 2.7 5.2 8.4 10.3 11.1
dvs 0.7 1.4 2.7 4.8 6.2 6.3 6.3
dpla 0.8 1.6 3.1 5.3 7.3 7.8 7.8

TPP-CJ scdac 0.7 1.4 2.8 5.2 7.8 9.3 9.8
ben2k 0.6 1.3 2.5 4.7 7.3 8.3 8.6
digfi 0.7 1.4 2.8 5.4 9.9 14.8 17.9

Table 4.9. Fastest Method Based on PARASITE Using
Unaugmented Task Graphs and Time Point Pipelining

Circuit Processors
1 2 4 8 16 32 co

dvs S S i I 1 J 3
dpla S S 1 . I 1 I
scdac S S S S S J J
ben2k S S S J J J J
digfi S S S S 3 J i

Key: S-Gauss-Seidel. J-Gauss-Jacobi

methods is faster for each circuit, using time point pipelining. as a function of the

number of processors. bised on the PARASITE estimates. Typically, larger circuits

have a higher break-even point because these circuits have more subcircuits and greater

Gauss-Seidel parallelism. But as demonstrated by the scdac circuit, circuit size alone is
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not a suicient indicator of the break-even point. The Gauss-Jacobi method becomes

preferable only when the Gauss-Seidel method does not produce enough concurrent

work for the available supply of processors. I
Table 4.10 summarizes the impact of the extra constraints of the augmented task

graph on the Gauss-Jacobi speedups predicted by PARASITE. Since all the benchmark

circuits are bidirectionally coupled, the loss in speedup resulting from the use of the

augmented constraints in the full window case on unlimited processors is at most 50%.

as proved in Chapter 2. The results in the table are in agreement with this theoretical I
result. If only a limited number of processors are available, then the effect of the aug- 3
merited graph may be greatly diminished, depending on the size and structure of the cir-

cuit. In the full window case, the larger circuits ben2k and digi show less than a 5% 3
degradation in speedup on 8 processors. because there is sufficient work to keep the pro- U
cessors fairly busy even when the extra constraints are added. The smallest circuit dvs

has very little parallelism, and the full impact of the extra constraints is evident on S

processors in the full window case. The time point pipelining speedups are affected to a

Table 4.10. PARASITE Estimated Speedup Loss: T,,, vs. TG;

Method Circuit Processors

dvs 18% 18%
dpla 13% 23%

FWT-GJ scdac 21% 41%
ben2k 4% 8%
digfi 2% 28%
dvs 2% 6%
dpla 5% 19%

TPP-GJ scdac 2% 28%
ben2k 0% 3%
digfi 0% 23%

I
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lessr degree by the extra constraints. This is not surprising, due to the parallelism

which the pipelining affords between adjacent tasks in the task graph. On 8 procemors

the decrease in speedup is no greater than 5% for even the small circuits. due to the

availability of many concurrently executable tasks. even with the added constraints.
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CHAPTER 5 U

FULL WINDOW TECHNIQUE IMPLEMENTATION

I
The choice of Gauss-Jacobi or Gauss-Seidel relaxation and the choice of the full

window technique or time point pipelining both represent tradeoffs involving parallel- I
ism and parallel processing overhead. Parallel processing overhead is intimately related

to the multiprocessor architecture. the parallel algorithm, and the details of the imple-

mentation of the algorithm on the multiprocessor. To study the performance of the 3
different algorithms in an actual parallel processing environment, the algorithms were

implemented in programs which run on an Alliant FX/8 multiprocessor. The FWT pro-

gram. which is described in this chapter. is an implementation of the full window tech-

nique. The TPP program embodies the time point pipelining algorithm and is described

in Chapter 7. Since TPP was derived from FWT. much of the discussion in this chapter

applies also to TPP.

The Alliant FX/8 hardware and software environment is briefly described in the

following section. Next, the locking mechanism for protecting the integrity of shared 5
data, and the task system which controls the parallel execution of tasks are described.

these features are common to both FWT and TPP. The implementation of parallel pro-

cessing in FWT is then described. Finally, performance measurements are given and

compared with the estimates produced by PARASITE.

5.1 The Multiprocesor

The Alliant FX/8 is an 8-processor mini-supercomputer [AllS6al. Each processor

is capable of executing scalar and vector instructions, with a perk rate of 5.9 Mflops -

IV



41

73

when operating on 64-bit floatirg point operands. Each processor contains vector anc!

scalar registers and an instruction cache. All the processors share a common main

memory system which is accessed through a shared cache. as shown in Fig. 5.1.

Although the Alliant machine is limited to 8 processors, the Cedar multiprocessor

supercomputer. currently under development at the Center for Supercomputing

Research and Development at the University of Illinois. will consist of multiple Alli-

ants interconnected through a global shared memory [Kuc86]. Consequently. the

results presented in this chapter for actual multiprocessor runs are for 8 or fewer pro-

I cessors. and the speedup estimates of previous chapters will be used for predicting the

performance on future machines with more processors.

The Alliant computer runs a UNIX operating system and has a FORTRAN com-

piler [A1185] which automatically vectorizes and parallelizes DO loops, based on its

Memory

U Bus

Cache

Crossbar Switch

t[ t1' E 't

Processors

Figure 5.1. Alliant FX/8 architecture.
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analysis of data dependencies. A compiler for the C language [AlI86b] is also available. S

but it does not perform automatic vectorization and parallelization. The FWT and TPP

programs are derivatives of RELAX2.3. and all 3 of the programs are written in C. As

a result, these programs are not automatically vectorized and parallelized by the cor-

piler. However, even if the automatic parallelizing features of the FORTRAN compiler

were available in the C compiler, the natural parallelism of waveform relaxation would

not be recognized by the compiler.

Suppose that the C compiler included the automatic parallelization features, and

that the main program of the uniprocessor waveform relaxation program is a realization

of Algorithm 2.1. in which the subcircuit evaluation task is realized with a subroutine

call, When the subroutine is called it is passed a pointer to the data structure for the

subcircuit, and this structure contains pointers to other subcircuits which supply its

input waveforms. When the main program is compiled. the compiler is not aware of

how all these pointers will be used when the subroutine is executed. and the pointers

are not even known at compile time because they are circuit dependent. Therefore, the

compiler would decide to execute the subcircuit evaluation tasks serially, because the

potential exists for arbitrary data interdependencies between the tasks. The interdepen-

dencies could result in improper operation if the tasks are allowed to execute con-

currently.

A FORTRAN compiler directive is provided which allows the different iterations

of a loop to be performed concurrently even if the loop contains a subroutine call. This

could be used directly for the subcircuit loop in Algorithm 2.1 when Gauss-Jacobi is

used. However, for Gauss-Seidel. the partial ordering of subcircuits within an iteration.

as dictated by the task graph. must be enforced. These constraints are not readily

recognized by the compiler because they arise from the interactions of executable state-
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ments and data structures which are built dynamically during program execution.

Consequently. the programmer must assume responsibility for setting up a mechanism

to control the parallel execution of waveform relaxation tasks.

The concurrent use of multiple processors is implemented in the C environment

with the concurrent call feature. In a concurrent call, a C function is called a specified

number of times. M. Each of the M invocations is assigned a unique index number and

runs on a separate processor. provided M 48. Since the function can test its index

number and perform different actions based on its value, the processors may execute

any independent instruction streams. When all of the concurrent function invocations

terminate, control returns to the calling program which then continues running on a

single processor.

Vector instructions are accessible from C programs through calls to library func-

tions. However. vector instructions are not used in FWT and TPP. because most subcir-

cuit are small in size and yield small vector lengths. In previous work, vector process-

ing techniques have been used with the standard direct method algorithms applied to

the entire circuit. in which case the potential for longer vector lengths exists. Even in

this more favorable situation. the vector parallelism is limited due to the high degree of

sparsity in circuit matrices, the irregular structure of the matrix, and the different

equations which must be evaluated in different operating regions of the transistors.

The main memory of the Alliant FX/8 is shared by all the processors. One proces-

sor may communicate with another simply by writing to a memory location which is

later read by the other processor. It is the programmer's responsibility to assure that

one processor does not corrupt the data needed by another processor. and that one pro-

cessor does not try to read data before the data are written by another processor. Data

accesses by different processors to common memory locations can be synchronized using

4l
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either global or local synchronization techniques.

The global synchronization technique is easiest to implement. A set of indepen-

dent tasks are allowed to execute concurrently. Tasks which require input data from

other tasks in the set are excluded from the set. When all the tasks are finished, a new

set of independent tasks are started. Each set can consist of the tasks in one level of a

task graph. However. performing global synchronizations between each level of the

task graph does not exploit the full parallelism of the graph, as observed in the results

of the Type I and Type 2 estimates of Chapter 4.

The local synchronization approach allows data to be exchanged between two pro-

cessors without waiting for the other processors to reach a global synchronization point.

Local synchronizations allow for the globally unsynchronized execution of a task graph

as assumed in the Type 3 and PARASITE estimates of Chapter 4. Local synchroniza-

tions are accomplished on the Alliant using locks, which are based on the atomic test-

and-set instruction.

5.2 Locks

Locks are typically used to protect shared data during critical portions of time

during which the data may only be accessed by one processor. For example. in Algo-

rithm 2.2 the global variable unconvk is accessed 3 times. Its value is read from

memory. and after the value is decremented it is written back to memory. Then it is

read again to test if its value is 0. In order to guarantee the proper operation of this t

algorithm, no other processor executing the algorithm concurrently may access unconv

during the time interval spanned by these 3 accesses. This rule can be enforced by asso-

ciating a lock with the variable unconv, . and by locking the lock before the first access

and unlocking the lock after the last of the 3 accesses. If a processor tries to lock a lock

which is already locked, it will be forced to wait until the lock is released by the other

I I: I '
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processor before it is allowed to acquire the lock and continue.

Locks are implemented with the atomic test-and-set machine instruction. This

instruction is not directly accessible in a C language statement. but may be accessed

through a function call or through embedded assembly language instructions. The FWT

and TPP programs set locks using a LOCK macro, which is translated into either a func-

tion call or assembly language instructions prior to compilation. In either case. the

LOCK macro causes the execution of the following algorithm, in which x is a lock vari-

able.

Algorithm 5.1. LOCK(x)

repeat i
test-and-set(x)
delay

until (the test-and-set operation is successful)

The test-and-set operation is successful only if x =0. in which case it sets x -1. The

testing of the value of x and the setting of its value to I are performed as an atomic

operation to prevent two different processors from successfully setting the same lock

simultaneously. The delay is added for performance reasons to be discussed below.

Locks are unlocked in FWT and TPP by an UNLOCK macro. By convention, only the

processor which locked a lock is allowed to unlock it. The following rather brief algo-

rithm accomplishes the unlocking chore and is trivially implemented directly in C code.

Algorithm 5.2. UNLOCK(x)

X

When one processor tries to lock a lock which is already locked, it enters a tight

loop in which it repeatedly tests the value of the lock until tne lock is released by the

other processor. This has two effects on performance. The most obvious and important

effect is that the waiting processor does not do any useful work while it is waiting for
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the lock. A second effect is that the waiting processor generates cache traffic while Li

repeatedly testing the lock. and thereby slows down the gainfully employed processors.

The cache competition caused by processors waiting on locks can be reduced by

adding null operations in the loop to effect a delay between successive accesses of the

lock. The null operations are presumably executed out of the local processor instruc-

tion cache without competing for access to the shared cache. As the delay in the loop is

increased, the cache traffic is further reduced. However. increasing the delay also

increases the average time that a waiting task will be delayed after a lock is released by

another processor before realizing that the lock is available.

A locking operation which uses a function call is referred to as a normal lock, and

the case of embedded assembly language is referred to as a fast lock. A fast lock which

is successful on its first attempt executes only two machine instructions, the test-and-

set and a conditional branch. A normal lock includes the overhead of the function call

mechanism, which is significant compared to the time required for only two machine

instructions. If the lock is not acquired successfully on the first attempt. the perfor-

mance difference between fast and normal locks becomes less significant.

Normal locks are portable and robust with respect to revisions in the compiler.

Fast locks do not share these advantages because Lhe interface between the C code and

assembly code is through a register which is assigned automatically by the compiler.

When using many locking operations to control fine-grained accesses, the function call

overhead can be significant. especially if the lock is acquired on the first try in most

cases. since then only two machine instructions are executed. But. if the number of

locking operations is a small percentage of the total number of operations. then the per-

formance advantage of fast locks is insignificant. Due to the relatively large task

granularity employed in FWT and TPP. the use of fast locks does not result in a
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significant performance improvement. Experiments with finer-grained tasks have

demonstrated that fast locks can make a noticeable impact on performance in such

cases.

A more fundamental observation concerning locks on the Alliant compared to

some other machines is that even normal locks are quite fast. Therefore, when the level

of concurrency can be increased by using more locks, each controlling a smaller group

of shared variables, the resulting increase in the time spent performing locking opera-

tions will normally not be severe. Therefore, the general guideline applied to the use of

locks in the FWT and TPP programs has been to keep the amount of code in locked sec-

tions small, even if this requires extra locking operations and extra lock variables.

5.3 Task System

A central fixture of the FWT and TPP programs is the task system which queues

tasks. assigns queued tasks to processors. and terminates the parallel processing mode

when all tasks are done. A central queue is used to hold tasks which are ready to exe-

cute. In some parallel processing architectures, some memory locations can be accessed

more quickly from a particular processor or group of processors. In such systems, the

assignment of tasks to processors may take the proximity of the required data into

account. However, on the Alliant. all data in the cache and memory are equally accessi-

ble from any processor. Therefore, data proximity considerations are not appropriate in

the task scheduler for the FWT and TPP programs on the Alliant. When a processor

becomes available to begin working on a new task, the next appropriate task is taken

from the queue and assigned to the processor.

Two complications are introduced by allowing one waveform relaxation iteration

to begin before the preceding iteration is completed. One problem is that a task in a

later iteration may become eligible for execution before it is determined that
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convergence occurs on a preceding iteration. Consequently. unnecessary tasks may be B

executed. and these tasks will use resources which would be better used for required

tasks associated with earlier iterations. This problem is addressed by assigning each I
task a priority based on its iteration number. Tasks associated with lower iteration

numbers are assigned higher priorities. Separate subqueues are maintained for each

priority level. When the task system obtains a task from the queue to be executed, it 3
selects a task from the nonempty subqueue with the highest priority.

The other problem arising from overlapping iterations is that convergence might I
be obtained while some tasks are in the middle of execution. For this reason, and also

to accommodate some recoverable error conditions that can arise during the simulation

such as waveform buffer overflow, a facility is provided to gracefully kill all tasks

which are executing or queued and to prevent new tasks from being queued. Executing

tasks periodically check a flag. and if it is set they terminate with their associated data

structures in a state which is acceptable for continuing the simulation after the global

synchronization.

The operation of the task system is summarized in the following algorithm out-

lines. The global variable tq count is the number of tasks which are queued or are exe-

cuting. The lock queue-lock protects the queue and tq_count. A task tsk of priority p

is queued by the following algorithm:

Algorithm 5.3. Queue._Task (tsk, p)

if(ki tag-FASE)
LOCK(queue_/ock)

append tsk to subqueue p
tq count -tqcount +1

UNLOCK(queuejock)

The execution of tasks on all parallel processors is under the control of the parallel task



controller, which is executed on each processor using the concurrent call mechanism.

Algorithm 5.4. ParllelTaskController-runs on each processor

tsk -NULL
while (tq_count >0) 1

LOCK(queuajlock)
if (there is a task on the queue) {

tsk - (task from lowest numbered subqtueue)
remove tsk from subqueue

UNLOCK(que/ock)
if tsk vNULL ) I

execute tsk
tsk -NULL
LOCK(queuejock)
tq-cant --tqcoun -1

UNLOCK(queuelock)I}
else delay

Note that if the queue is empty. then the if clauses are bypassed and the operations in

the loop consist of repeated accesses to a few global variables: queue-lock , tpcount . and

the location in the queue data structure which indicates that the queue is empty. If

several processors are without work and the queue is empty. this results in excessive

cache traffic for these variables, which interferes with the operation of the working pro-

cessors. The delay in the else clause is introduced to relieve the cache congestion in this

case. in the same manner in which the delay was introduced in the LOCK routine. The

value of the delay is optimized empirically.

The task killer is invoked by any task which determines that all other currently

3 queued and executing tasks are unnecessary.

Algorithm 5.5. Kill-Tasks

3 LOCK(quuejock)
ktf lag -tRUE
remove all tasks from all subqueues



82

decrement tqcos by the number of tasks removed
UNLOCK(quaej-ock )
wait until tq.cownt -1. (i.e.. until all other tasks terminate)

SA RELmod

The starting point for the development of the FWT program was the RELAX2.3 U
program developed by Jacob White (Whi86]. RELAX2.3 is a uniprocessor waveform.

relaxation program. It was modified to produce another uniprocessor program known

as RELmod. which contains additional research-oriented features. RELmod served as 3
the basis for the FWT multiprocessor waveform relaxation program which uses the full

window approach to parallelism. Finally. the FWT program was modified to create the I
TPP program which uses time point pipelining.

RELmod uses the partitioning. ordering. windowing, and numerical integration

algorithms of RELAX2.3 without any substantive changes. The modifications incor-

porated into RELmod include corrections of bugs and features intended primarily for

research use. Specifically, RELmod contains these features:

(a) The Gauss-Jacobi method, and hybrid Gauss-Jacobi/Gauss-Seidel methods are

implemented.

(b) Several bugs are fixed, the most notable being a bug in the resetting of the error

tolerances when starting a new window. This bug had a significant negative

impact on the Gauss-Jacobi run times in some cases. where slow convergence led to

repeated reductions in window size and repeated reductions in error tolerance

which were never retracted.

(c) Overlapped partitioning of subcircuits is permitted as an option1 [Mok85].

(d) The subcircuit partitioning and ordering may optionally be specified manually.

rather than being generated automatically.
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(e) Window boundaries may optionally be specified manually, rather than being

determined automatically.

(f) Optional output files may be requested containing the subcircuit partitioning and

ordering, and the initial conditions used. These files are in a format acceptable for

input to the program on a later run. This allows many transient analysis runs to

be made without repeating the partitioning. ordering, and initial dc solution com-

putations. Also, it facilitates experiments in which minor changes are made in the

automatically generated partitioning.

(g) The rules for specifying periodic piecewise linear voltage sources are more user

friendly.

Since RELmod uses the same numerical algorithms as FWT without any of the extra

partliel processing code. it serves as an ideal reference to which the performance of

FWT can be compared. Comparisons of the run times of RELmod and FWT indicate

that the extra overhead of FWT on I processor increases the run time by less than 2%.

5.5 FWT

The FWT program uses RELmod as a base. and implements the full window tech-

nique for parallel waveform relaxation. It can be run on I to 8 processors of an Alliant

FX/S. Parallelism is exploited only in the transient analysis phase of the program, since

this is the most time consuming and the area of greatest potential payoff.

The basic idea behind the FWT program implementation is quite simple. A tem-

plate of the augmented task graph f is constructed for the specified relaxation method.

In each window, the initial tasks are placed on the task system queue. The task system

assigns tasks from the queue to available processors. As each task finishes execution, it

checks its successor tasks and queues those for which all the input waveforms have
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been computed. Also. just before terminating, a task performs a convergence check on

its own waveforms, and checks the accumulated convergence status of all other tasks in

the iteration to see if convergence was obtained on that iteration. When convergence is 3
detected. all executing and queued tasks are killed and a new window is started.

Within each window, the iterations are partitioned into iteration groups. such that

each group contains K consecutive iterations. A global synchronization is performed

between each iteration group. The default value of K is 6. There are several reasons for

adding these global synchronization points. The primary reason is that it simplifes the 3
implementation of the periodic reductions of the window size and error tolerance which

occur when too many iterations are used. The second reason is that it allows for fixed

limits to be placed on certain arrays which require a separate array element for each

iteration of the group. Finally, it limits the number of unnecessary tasks, with itera-

tion numbers greater than the converging iteration number, which may be executed

before convergence is detected.

The added synchronization points between iteration groups can result in reduced

parallelism. However, in most windows convergence is obtained in the first iteration

group. and the extra synchronizations do not occur. Furthermore, the Type 3 speedup

estimates in Tables 4.5 and 4.6 indicate that the parallelism is only a weak function of

the number of iterations. especially when the number of iterations is greater than 4.

Therefore. even if several groups of 6 iterations are required in a window, the speedup

in each group will be about the same as could be obtained without the synchronizations

between groups.

The algorithm for the transient analysis phase of FWT, using iteration groups, is

outlined below. The currert window boundaries are represented by t. and tb. kva,,

and k,,,, are the first and last iterations of the current iteration group. The

vL.
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globalconvwrged flag becomes TRUE when convergence is detected in all subcircuits on

some iteration. For each subcircuit there are K counters, one associated with each itera-

tion of the group. Counter unsatk represents the number of unsatisfied precedence

constraints for subcircuit evaluation task (k. i ). is., the number of predecessors in the

task graph which have not finished execution.

Algorithm 5A. FWT Transient Analysis

ta 4-0
while (t. <t1 ) I /*window loop */

choose tb

globaLconverged =FALSE
repeat { /* iteration group loop /

initialize unsatt .. for k., 4k Ost., 14i 4<n

queue initial tasks for iteration group
Parallel TaskControiler 0
if (globaL.convrged =FALSE) I

knw , -k., +1
k..P -"kno +#C

reduce integration error tolerance
reduce tb

until (globaL converged =TRUE)
ta *"tb

reinitialize integration error tolerance

The program runs on a single processor except when the parallel task controller is run-

ning, in which case N.... processors are used. for a specified value of NP,, between 1

and 8.

The subcircuit evaluation tasks are executed under the control of the parallel task

controller. The initial tasks are queued prior to turning control over to the parallel task

controller. These are the tasks which have an in-degree of zero in the task graph. after

all tasks of previous iteration groups are removed. Before terminating, a task updates

RAMA
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the uniat counters of its successors and queues successor tasks which are ready to exe-

cute. as specified in the following algorithm.

Algorithm 5.7. Subcircuit Evaluation Task (k . i )

/* Solve subcircuit */

Solve subcircuit i on iteration k over time interval [t. t6 ]

/* Check successors */

for each (successor (k .i., ) of (k . i ) in T) {
LOCKunsat3jock)

Asagtk,. s.ag j. -1

if (Wtsatk. o -0) queueJask (kM .iI
UNLOCK(unst-lockt,

/* Check convergence'!

if (Vi(k) matches v,( -l) within tolerance, for t E[to . D {tALOCK(uncony-lock k ti

if (unconv k =0) cony ,-TRUE

else cony -FALSE
UNLOCK(wcon jockk)
if (cony =T& _7) I

globaLconverged '-TRUE

Ki&Tasks 0

5.6 Data Structures

The FWT program uses the augmented form of the task graph, T. which simplifies

the management of data structures and reduces the required memory space. Since only

one instance of any given subcircuit can be active at a time, most data structures associ-

ated with the subcircuit need only be allocated once, and may be reused by each task

which is an instance of the subcircuit. The most important data structures which fall

into this category include

I?

. . . .. . ...

MIM 2QM2&a
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(a) space for the matrix and vectors representing the linearized system of equations on

each Newton iteration;

(b) the list of devices contained in the subcircuit. along with parameter values and

pointers into the matrix which indicate where contributions from the model equa-

tions should be loaded into the matrix on each Newton iteration;

(c) relative pointers to successor tasks; and

(d) the time values and vectors of voltages. currents. and charges at the last few time

points as required by the integration algorithm.

Some data structures. however, require separate copies corresponding to different itera-

tions of a subcircuit. including

(a) the unsat counters. and

(b) waveform buffers which contain the time/voltage pairs for the time points com-

puted at each node in the current window.

The number of unsat counters is Kn. and these counters are simply allocated once and

initialized at the beginning of each iteration group. The waveform buffers represent a

larger investment in storage space.

Even though only one instance of each subcircuit will be active at any time, it is

possible in general that all K instances of the resulting waveforms of a given subcircuit

may be required simultaneously by other subcircuits. Consider the example in Fig. 5.2

of a circuit which is not bidirectionally coupled. If the instances of subcircuits 1 and 2

require a small computation time compared to the instances of subcircuit 3. it is possi-

ble that all K instances of subcircuits I and 2 will be finished before the first instance of

subcircuit 3 finishes. Thus, while task (1. 3) is executing. the results of (1. 1) and (I.

2) are needed as inputs to (1, 3). and the results of all other instances of subcircuits I I
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Figure 5.2. Waveform buffer example; (a) G. (b) TGs.- _

and 2 must be saved for future use. To accommodate this situation. a provision must IM

be made to have K waveform buffers existing simultaneously for the nodes of subcir-

cuits I and 2. W,

Sometimes. separate waveform buffers are not needed for each iteration. The next

theorem provides a limit on the number of simultaneously required waveform buffers

in the case of bidirectionally coupled circuits.

Theorem 5.1. If G is bidirectionally coupled, then no more than 2 waveform bufrers are

needed for each node at any one time in the FWT program based on either Toi.R or TGs. .

Let (k. i ) be any task in the task graph, and define a set IP of tasks which are instances

of subcircuit i such that

ir - 1(re, i): I 4m 4<k-2). (5.1)

When task (k . i ) begins execution, it requires waveform buffers to store the results for

its internal nodes. This is the first time that these waveform buffers are needed. If the

contents of a waveform buffer are computed by task x , then the waveform buffer is no .
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longer needed after all successors of x have terminated. Since (k . i ) begins executing

before any instance of i with a greater iteration number, it is sufficient to show that

when (k . i ) starts. all successors of tasks in r have already finished execution. If this

is true. then every time a new waveform buffer is needed for a node. only one other

waveform buffer for that node on a different iteration is required simultaneously-

namely. the waveform buffer of the previous iteration. Equivalently. it is sufficient to

show that there is a path to (k .z ) from each successor of each task in r. Let (k0 . io) be

any successor of any task in r. Note that k0 4 k -1. There is a path from (k 0 . i ) to

(k . i ) of the form

(koio).(ko.i ).(ko+l,i). .(k-li ).(k ,).

or

(ko.io).(ko+.i. i ) .(k-l,.),(kA.).

All arcs in the path except the first are arcs which are added when the augmented graph

graph is constructed from the unaugmented graph. The first arc must exist because

(k 0 . i o) is a successor of an instance of i and the circuit is bidirectionally coupled.

Hence. no more than 2 waveform buffers are needed for each node. Note that

waveform buffers for iterations k and k -1 are required simultaneously in order to

perform convergence checking.

To handle general circuits. the program must be able to provide separate

waveform buffers for each node on each iteration, all existing simultaneously. This

amounts to KN waveform buffers, where N is the total number of nodes in the circuit.

However, for bidirectionally coupled circuits, only 2N waveform buffers are needed at

any one time. In order to accommodate general circuits and not waste excessive

memory space for bidirectionally coupled circuits, the FWT program dynamically allo-

cates waveform buffers as needed. A pool of available waveform buffers is maintained 0

on each processor. When a processor runs out of waveform buffers, it obtains an
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additional set of buffers by executing the dynamic memory allocation program.

Although the dynamic memory allocator is executed in a critical section by at most one

processor at a time. contention between different processors is minimized because most 3
requests for waveform buffers are satisfied locally from the processor's own pool of

waveform buffers. A counter is associated with each waveform buffer, indicating how

many tasks, which have not yet terminated, require the use of the waveform buffer.

The program is designed such that when the count reaches 0. the waveform buffer is

freed by returning it to the pool of available buffers. This design has not been fully 3
implemented in the current version of FWT. Currently. waveform buffers are not

freed until the end of the iteration group. Due to the large virtual address space, this

has not presented a problem in the simulation of the benchmark circuits.

5.7 Results

The performance results for the FWT program are given in Tables 5.1 and 5.2.

The results are compared with the PARASITE results in Table 5.3. The FWT speedups

on 8 processors are within 11% of the PARASITE estimates. The differences between

the measured speedups and the estimates include the overhead factors and the estimate 3
errors noted in Chapter 4. The FWT program sometimes generates slightly different

window boundaries under multiprocessing conditions than in the uniprocessor reference

run, which introduces an additional small error in the comparison. As a point of refer-

ence. the scdac runs using Gauss-Seidel used exactly the same window boundaries in all

the multiprocessor and uniprocessor runs. The good agreement between the estimates

and the actual results indicate that overhead plays a minor role in determining the per-

formance of FWT on these benchmark circuits.

._0
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Table 5. 1. FWT Gauss-Seidel Speedups

Circuit Processors
1 2 4 8

dvs 1.0 1.4 1.4 1.4
dpla 1.0 1.6 2.0 2.0
scdac 1.0 2.0 3.6 4.9
ben2k 1.0 1.6 1.9 2.1
digfi 1.0 2.0 3.2 3.9

Table 5.2. FWT Gauss-Jacobi Speedups. Normalized to Gauss-Seidel

Processors
Circuit 1 2 4 8

dvs 0.7 1.3 2.2 3.1
dpla 0.8 1.6 2.9 4.0
scdac 0.7 1.4 2.6 4.5
ben2k 0.6 1.3 2.3 4.0
digfi 0.7 1.4 2.8 4.8

Table 5.3. Comparison of FWT and PARASITE on 8 Processors
Circuit Normalized Speedup Processor

Method FWT PARASITE Difference Utilization

dvs 1.4 1.5 7% 18%

Gauss- dpla 2.0 2.1 5% 25%
scdac 4.9 5.3 8% 61%
ben2k 2.1 2.3 9% 27%

digfi 3.9 3.8 -3% 48%
dvs 3.1 3.1 0% 55%

Gauss- dpla 4.0 4.5 11% 63%
Jacobi scdac 4.5 4.5 0% 80%

ben2k 4.0 4.4 990 79%

digfi 4.8 5.2 8% 86%

The processor utilizations shown in Table 5.3 are the unnormalized FWT speedups

divided by the number of processors. Consequently. these numbers do not include the

time during which processors are utilized to perform those overhead computations

which occur in the 8 processor case but not in the 1 processor case, and the time spent

by processors waiting for access to shared resources.
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5.8 Presimulation Selection of Gauss-Jacobi or Gauss-Seidel

When confronted with a circuit to simulate and a multiprocessor with a given

number of processors on which to perform the simulation. the choice between the

Gauss-Seidel and Gauss-Jacobi relaxation methods should take both the circuit struc-

ture and number of processors into account. For the benchmark circuits, the fastest of

the two methods is indicated in Table 5.4. as a function of the number of processors.

based on the performance results presented in Tables 5.1 and 5.2. In the typical situa-

tion for a given circuit. Gauss-Seidel is the faster method when the number of proces- U
sors is small. As the number of processors is increased, a break-even point Pb is reached

such that if more than Pb processors are used then the Gauss-Jacobi method is faster

than Gauss-Seidel. The presimulation estimates of Chapter 4. together with rules of

thumb obtained from performance data of other circuits. can be used to estimate Pb and

therefore serve as a guide in selecting the relaxation method prior to performing the

simulation.

At the break-even point, the Gauss-Seidel method typically has nearly reached its

maximum possible speedup. whereas the normalized Gauss-Jacobi speedup is still

increasing nearly linearly, with a slope close to the uniprocessor normalized speedup.

Table 5.4. Fastest Method vs. Number of Processors
Circuit Processors

1 2 4 8
dvs S S J i
dpla S - J J
scdac S S S S
ben2k S S J i
dighfi S S S i
Key: S-Gauss-Seidel. J-Gauss-Jacobi
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Despite the variety of types of circuits included in the set of benchmark circuits, the

Gauss-Jacobi single processor normalized speedup is consistently close to 0.7. There-

fore, at the break-even point, the normalized Gauss-Jacobi speedup is approximately

0.7Pb. Since the Gauss-Seidel and Gauss-Jacobi speedups are equal at the break-even

point, it follows that

SG.
Pb ft _ ' (5.2)

0.7
where Scs,,, is an estimate of the maximum Gauss-Seidel speedup on an unlimited

number of processors. The maximum Gauss-Seidel speedup can be estimated by one of

the presimulation estimation techniques of Chapter 4. If the Type 3 estimate is used.

based on the assumption that 2 iterations will be used. then the break-even estimates of

Table 5.5 result. These estimates agree quite well with the observed break-even points

in Table 5.4.

It should be noted that the constant 0.7 used in the break-even estimate may in*

general depend on the partitioning and windowing algorithms. Any alterations to these

algorithms would necessitate a reconsideration of the value of the constant. It is also

possible that certain types of circuits will not agree with this choice of the constant.

Experience with a larger number of circuits is required to determine if a single value for

Table 5.5. Presimulation Estimate of Break-even Point

Circuit Pb

dvs 2.1
dpla 2.91
scdac 10.0
ben2k 3.3
digfi 7.1
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the constant always produces a reasonable estimate. or if different classes of circuits U

each need a different value for the constant.

I
U

I

-I
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CHAPTER 6

TIME POINT PIPELINING IMPLEMENTATION

The implementation of time point pipelining in the TPP program is described in

this chapter. and performance results are presented. The TPP program is based on the

FWT program, with modifications to the procedures which determine when a task is eli-

gible to exec' and to the related data structures. The important implementation

issues of time point pipelining are exposed by describing how they were addressed in

the TPP program. The performance results show that TPP produces faster run times

than FWT when there are sufficiently many processors to make use of the extra paral-

lelism of time point pipelining. When too few processors are used. the extra overhead

of TPP results in slower run times than FWT.

6.1 Algorithms

The coordination of parallel computations is significantly more complex in TPP

than FWT. In FWT, each task consists of the evaluation of a subcircuit over an entire

window on a single iteration, and the task graph for an iteration group is known a

priori. The eligibility of each task for execution is monitored simply through its unsat

counter, which contains the number of incoming arcs in the task graph from tasks

which have not yet finished executing. In TPP. computations are coordinated at the

subtask level, where a subtask consists of the evaluation of a subcircuit at a single time

point on a single iteration. The subtasks cannot be identified prior to beginning the

iteration group. because the variable time steps used by the integration algorithm

depend on the waveforms which are computed during the iteration group. Conse-

quently. the subtask graph cannot be constructed a priori, and the use of unsat counters
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to monitor the eligibility of individual subtasks for execution is not feasible. Instead.

the subtasks to be executed and the precedence constraints between subtasks must be

determined dynamically during the solution process. based on the known full window r

task graph and based on the actual time point values selected by the integration algo-

rithm.

In addition to the time point subtasks. TPP defines an initialization subtask which

precedes the first time point computation in each subcircuit evaluation task, and a con-

vergence checking subtask which follows the last time point computation in each task.

The coordination of the execution of all the subtasks is facilitated by a set of control

variables. Each of the in subcircuit evaluation tasks of an iteration group is allocated a

set of control variables. (status. tdone. t.next, tready. waitingjfor, Lock). The con-

trol variables are initialized prior to starting each iteration group. The meanings of the

variables are summarized below.

status:

The status variable has the value UNINITIALIZED if the initialization subtask

has not been executed yet. Its value is INITIALIZED if the initialization is com-

pleted and the last time point of the window has not yet been computed. After

the last time point is computed its value is set to INTEGRDONE.

tdone :

The tLdone variable represents the time through which the subcircuit has been

solved in the iteration, and it is initialized to t, , the initial time in the window.

tnext•

In most cases, tnext represents the time of the next time point to be computed by

the task. that is tdone =tnext +h where h is the step size determined from the

local truncation error of the integration method. More generally. t_"xt is the
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time such that if all predecessor tasks have progressed at least to t.,next . then the

task is eligible to execute its next subtask. The initial value of Lnext is t. +8.

where 8 is smaller than a minimum time step. Consequently. as soon as all prede-

cessors of a task compute at least one time point, the task becomes eligible to exe-

cute its initialization subtask.

t .ready:

The value of t_ready is a time through which all input waveforms of the subcir-

cuit evaluation task are guaranteed to be valid. The tready variable is always

updated in synchronization with waitingj or.

waitingf or:

If a task is not queued or running, then waiing Jor points to one of its predeces-

sors which must advance before the task becomes eligible for execution. Other-

wise, if a task is queued or running. then waitingjor is NULL, indicating that it

is not waiting for data from another task. When a task is not queued or running,

the pr. .cessor indicated by waitingf or is responsible for updating the task's

t_ready and waiting..f or variables, and for queuing the task when it is ready to

execute. Note that the waitingfjor predecessor can transfer this responsibility to

another predecessor by modifying waiting f or.

lock :

This is a lock which is used to synchronize updates of the control variables, when

explicit synchronization is necessary.

Much of the infrastructure of FWT is used without change in TPP. including all

the task system algorithms presented in Chapter 5. The basic transient analysis algo-

rithm outlined in Algorithm 5.6 is also applicable to TPP, with the addition of the con-

trol variable initializations. The FWT subcircuit evaluation task of Algorithm 5.7.
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which embodies all the parallel computations. is modified for TPP. Although the L

numerical computations which it performs are essentially unchanged. the control of the

computations is different. The subcircuit evaluation task is partitioned into subtasks

which are performed sequentially. After each subtask is executed, its succesor tasks

are checked. Each successor which is ready to execute at least one subtask is queued. If

a task runs out of input data before all the subtasks are executed, then the task ter-

inates prematurely. It is requeued later by its waitingjf or predecessor when

sufficient input waveforms become available to allow the computation of the next sub-5

task. An outline of the subcircuit evaluation task in TPP is given below.

Algorithm 6.1. TPP Subciircuit Evaluation Task (k . 0)

/* initialization*/

terminate i-FALSE,; cant-integration i-FALSE
if (statusk, j=UNINITALIZED)

initialize data structures
pick next time value. t..nextk,
staw. , - INITIALIZED
LOCK(lockk,) I)
update t..readYk. and waitingjf orA.
if (waiting- fork. iNULL ) terminate -TRUE
UNLOCK(ock,

I* integration *

if ((status.. =INITIALIZED ) and (terminate =FALSE)) cont-.integration .- TRUE
while ( cant integration =TRUE) I

compute time point at time t E (t..donek. i.t-yexzt .]
t_ donek, , A
pick next time value. t-nextk,
Check_.Successors (W i)
if (tdonek. i 'tb ) (

St atusi. , .- INTEGR.JYJNE
cont-jntegratwon -FALSE

else if (t..neXtk. > t ready,)
LOCK(1OCk.)
limit It.. i~&

update t..readyk,, and waitingjf ork. 3
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if (waiking~jor i *NULL ) conjntegration -FALSE
UNLOCK(lockk i)

/* convergence checking /
if (statusk. i =INTEGRDONE ) check convergence

A successor check is performed after each time point is computed. In addition to the

fact that successor checks are performed many more times in TPP than in FWT. the

successor check algorithm is more complicated in TPP. because the subtask graph is not

known a priori. The successor checking algorithm is summarized as follows:

Algorithm 6.2. Check_.Successors (k. i )

if (less than 4 time points have been computed in (k, i )) tref s- -1
else tref 4- (the time of the third previous time point in (k, i))
for each (successor (k, i, ) of (k. i)) {

queue s-FALSE
LOCK(ockt,, j. )

/* 3-step check */

if ((waiingj ork.. , "NULL) and (t.ref > tdonek I) and

(t.JXtk,, i3 > tdonet, i))
t-next, s .is $ -t-d one, i

waiting-f ork" js -(k, i)

/* queuing check */
if ((waiting fort ,1 f(k. i )) and (t_nextk ' j, 4t-dne, i))

update treadyk , , and waiting. or .,

if (waiingj ork,. -NULL ) queueit s-TRUE

UNLOCK(/°Ckk.9
if (queueit TRUE) queue task (k, i,)

Both Algorithms 6.1 and 6.2 perform updates of the tready and waitingf or control

variables, using the following algorithm:
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Algorithm 6.3. Update waitingfort i and treadyk.i  L

(kP . ip )'- (a predecessor of (k. i ) with minimum t.donek)
t-readYk. i 4-t..donekp .i,

if (tCreadyt. i ?-tjnextt.1  ) waitingfork, ,-NULL
0le waitingj or

6.1.1 Determining and modifying Lnext

Except during initialization and convergence checking. tjnextrki is the tentative 3
time value of the next time point to be computed by task (k, i ). The actual time value

of the next time point may turn out to be less than tjextk, . if. after the initial attempt

to compute the time point, the step size is reduced due to excessive local truncation 3
error or excessive Newton iterations. The final value of tjnextq. just prior to the first

attempt to compute the time point is given by

rnexki = minitdone.,i +h., t ,} (6.1) a

In the first expression. h is the time step selected by the integration algorithm in its

attempt to produce a local truncation error which will be approximately equal to. but 3
not greater than. the specified error tolerance. The tb bound is simply the upper win-

dow boundary. The tti, bound has the effect of limiting the step size in (k. i ) to be no

greater than 3 steps of any of its predecessors. The reason for this limit is that the local

truncation error estimate is based on derivatives of the waveforms computed from

divided differences of previous time points. A sudden change in a circuit input

waveform, or a circuit nonlinearity. may cause a sudden change in a subcircuit input

waveform which cannot be anticipated by looking only at the past history of the

waveform. By forcing the subcircuit to be evaluated at least once for every 3 input

steps, these sudden unanticipated transitions will not be skipped over by inappropri-

ately long steps based only on estimated truncation errors.
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In uniprocessor waveform relaxation and in the FWT program. (6.1) can be

evaluated as soon as (k. i ) computes the time point at tdone.k, . because all predecessor

waveforms are guaranteed to be available for the entire window. However. in TPP, the

input waveforms may not be available beyond t_donek. Therefore, following the

computation of the time point at t...donek . an initial value is computed for t-fl8Xk;

based on the information available at that time. As more input waveform points

become available in the future, it is necessary to reduce the value of t.nextk, i if one of

the inputs takes 3 steps in the interval (tdonek, 1, tnext, .

One possible approach for handling this situation in TPP would be to leave

t_nextk£i unchanged until all the predecessor waveforms become available through

t nextk.j, at which time task (k.) would become eligible to compute its next time

point. Then all the information would be available to reduce tnextk i if necessary

before actually computing the time point. This approach is not used in TPP. because it

can have a significant negative impact on the time point pipelining parallelism as

demonstrated in the following example.

Suppose all the subcircuits start in a dc steady state at the beginning of a window.

The truncation error estimate will indicate that an arbitrarily long time step can be

taken, and the tmnxt values for the first time point of all tasks will be t b, based on the

available information at initialization time, except for those subcircuits connected to

external voltage sources which make transitions in the window. The subcircuits con-

nected to the voltage sources may compute many time points before reaching the end of

the window. However, if the tLnext values of their successors are not modified, the

successors will be prevented from computing concurrent time points during this inter-

val because they will be waiting for their predecessors to reach tnext.. =tj.
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This problem is avoided in TPP by checking the tnext values of all successors

after each time point is computed. The appropriate updating of successors is done in the

"3-step check" section of Algorithm 6.2. for those successors which are not running or U
queued at the time of the successor check. Tasks which are running or queued are

responsible for maintaining their own 9 next values.

6.1.2 Synchronization of control variables

Some of the control variables may be accessed and updated by different tasks, and

therefore special precautions are required to assure their integrity. Parallel accesses to

the control variables of a task are synchronized through the use of the lock and 3
waitingj or control variables. When waiting.for =NULL. the owner task is responsi-

I
ble for maintaining its own control variables, and no other task may modify them.

When waitingjfor *NULL. then only tasks other than the owner may modify the

control variables, but they must do so in a critical section protected by the lock control

variable.

When the owner task modifies its own control variables, it is normally not neces-

sary to acquire the lock first, because waitngj or =NULL and no other task is eligible

to modify the variables. However, when the owner task changes its waitingj or value

to non-NULL . the lock must be used. and all the status variables must be up to date at

the moment that the lock is released. When the lock is released, the responsibility for

updating the task's control variables is transferred to the task's predecessors. In partic-

ular. tready must be up to date in order for the waitingf or predecessor to be able to

properly queue the task when sufficient time points are available. And tnext must be

up to date based on all available input data points, because only those data points com-

puted by predecessors in the future will affect t-next through the successor check. The

use of lock and waitingf or to synchronize accesses to the control variables is shown in

lu
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Algorithms 6.1 and 6.2.

61.3 Convergence checking

Although not shown explicitly in Algorithm 6.1. complications arise in scheduling

the convergence checking subtask in TPP because TPP uses the unaugmented task

graphs. as opposed to the augmented task graphs used by FWT. The reason for using

the unaugmented task graphs is discussed in the next section on data structures. In this

section, the impact of the unaugmented task graph on the convergence checker is con-

sidered.

The convergence checking subtask referenced in Algorithm 6.1 is identical in con-

tent to the convergence checking portion of Algorithm 5.7. However, extra precedence

constraint checks must be performed in the TPP program. Recall that the unaugmented

task graph does not include the dependency of (k. i ) on (k + 1. i ). Therefore, it is possi-

ble that task (k + 1. i ) will finish computing its last time point before task (k. i ) com-

putes its last time point. This situation can arise in Gauss-Jacobi relaxation even for

bidirectionally coupled circuits. When this situation occurs. task (k +1. i ) may not

proceed immediately to perform a convergence check after computing its last time

point. Instead, it must suspend execution, to be requeued later by task (k. ._

6.2 Data Structures

In the FWT program. a subcircuit may be active in only one iteration at a time.

due to the use of the augmented task graph fT. In time point pipelining, a subcircuit

may be active in more than one iteration at a time even if the augmented task graph is

used. In fact. Gauss-Jacobi time point pipelining requires that a subcircuit be allowed

to be active in different iterations simultaneously, because this is the only source of

additional parallelism which is exposed by time point pipelining compared to the full
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window technique. Gauss-Seidel time point pipelining also benefits from allowing a

subcircuit to be active in different iterations simultaneously. even if the circuit is

bidirectionally coupled. 3
The reason for using the augmented task graph in FWT was to avoid the necessity

of duplicating data structures for different iterations of a subcircuit. In TPP. the data

structures must be duplicated regardless of which form of the task graph is used.

Therefore. TPP uses the unaugmented form of the task graph. which offers the potential

of greater parallelism than the augmented form. The PARASITE estimates of Table 4.8 3
indicate that the unaugmented graph will not result in significantly better performance

than the augmented graph when only 8 processors are used for the benchmark circuits.

If more processors are used, the benefits of the unaugmented graph are more significant.

In order to allow different iterations of a subcircuit to be active simultaneously.

the TPP program allocates separate copies of those data structures which are used and _

modified during the simulation of a subcircuit. This results in an increase in the

amount of required memory space by a factor of K for this class of data structures com-

pared to the FWT program. The contents of some data structures are not changed dur-

ing the simulation of subcircuits and these structures need not be duplicated. Conse-

quently, the overall increase in required memory space is less than a factor of K.

Those data structures for which each subcircuit evaluation task is allocated a

separate copy include

(a) space for the matrix and vectors representing the linearized system of equations on

each Newton iteration;

(b) pointers into the matrix which indicate where terms computed from the model

equations of each circuit element should be added to a matrix element;
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(c) pointers to successor and predecessor tasks:

(d) the time values and the node voltages. currents. and charges at the last few time

points as required by the integration algorithm:

(e) the TPP control variables: and

(f) pointers to the waveform buffers for all internal nodes and source waveforms

which affect the subcircuit on the specific iteration.

The subcircuit element values, model parameter values, and other invariant data

describing a subcircuit are maintained in a single copy for each subcircuit.

The approach of preallocating separate data structures for each task is memory

intensive and algorithmically simple compared to some other schemes which could be

used. Approaches Which are more conservative of memory may be preferable for cases

where the virtual address space is not large enough, or where the real memory size is

not large enough and the resulting page misses encountered by the virtual memory sys-

tem cause a degradation in performance. One of the more conservative approaches to

memory usage for the subcircuit matrices will be briefly outlined, although the

approach is not implemented in TPP.

If p processors are used. and if p <<Kn. then a significant reduction in memory

usage can be achieved by allocating space for only one matrix per processor. The space

for each matrix must be large enough to accommodate the largest matrix of any subcir-

cuit. When a subtask executes on a processor. it uses the matrix space associated with

that processor. This is feasible since no data stored in a matrix by a subtask are needed

by any other subtask: when a subtask finishes, the contents of its matrix may be dis-

carded. The problem with this approach concerns the handling of pointers to matrix

locations. When circuit elements are evaluated, their contributions are loaded into the

matrix through precomputed pointers. If the destination matrix is not known in
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advance for a given task, then either p sets of precomputed matrix pointers are needed,
Nd

one for each possible destination matrix, or the pointers can be computed dynamically

when the terms are added to the matrix. If p is large. then the use of p sets of matrix

pointers results is too great of an additional memory requirement compared to the

memory saved by eliminating the matrices. The dynamic computation of matrix

pointers can be accomplished by adding a precomputed offset to the address of the

matrix origin when each term is added to the matrix. In this case, each matrix load

operation requires one extra address addition. 3
Matrix pointers are also used to indicate the structure of matrices stored in sparse

form. In FWT and TPP. these pointers are computed once in the presimulation phase of

the program. The pointers are used repeatedly during the solutions of the sparse sys-

tems of equations. In the scheme where only one matrix is allocated per processor. the
U

pointers representing the matrix structure could be determined once and stored in a _

master copy of the matrix for each subcircuit. Then when a task needs to use a matrix.

I
it could copy its matrix structure pointers while adding an offset to account for the

location of the specific matrix space to be used in memory. This results in the added U
requirement of one copy of the matrix structure for each subcircuit, plus a computa-

tional cost in initializing the matrix each time it is assigned to a particular processor. In 3
the TPP program, these extra computations are avoided by using the more memory

intensive approach of preallocating one matrix for each subcircuit evaluation task. The

matrix pointers for each copy of the matrix are computed once in the presimulation

phase of the program. and they are used repeatedly in each iteration group.

6.3 Results

The performance of the TPP program was measured for the benchmark circuits.

and the results are presented in Table 6.1 for the Gauss-Seidel method and Table 6.2 for
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the Gauss-Jacobi method. The results on 8 processors are compared with the -

PARASITE estimates in Table 6.3. The TPP results are within 21% of the ideal

PARASITE estimates, reflecting the higher degree of overhead compared to the FWT

results which are within 11% of the ideal speedups. The comments in Chapter 5 con-

cerning the factors which influence the comparison with the PARASITE estimates are

Table 6.1. TPP Gauss-Seidel Speedups

Ct 1 Processors1 2 4 8

dvs 1.0 1.7 2.3 2.3
dpla 0.9 1.7 2.5 2.9
scdac 0.9 1.8 3.4 5.9
ben2k 0.9 1.7 2.3 2.7
digfi 0.9 1.7 3.4 4.6

Table 6.2. TPP Gauss-Jacobi Speedups. Normalized to Gauss-Seidel

Processors
Ckt 1 2 4 8

dvs 0.7 1.3 2.4 4.0
dpla 0.7 1.4 2.8 4.7
scdac 0.7 1.3 2.5 4.5
ben2k 0.6 1.1 2.1 3.7
digfi 0.6 1.3 2.5 4.5

Table 6.3. Comparison of TPP and PARASITE on 8 Processors

Method Circuit Normalized Speedup Processor
Method _iruit TPP PARASITE Difference Utilization

dvs 2.3 2.4 4% 30%

Gauss- dpla 2.9 3.0 3% 39%

Seidel scdac 5.9 7.0 16% 74%
ben2k 2.7 3.1 13% 37%
digfi 4.6 5.8 21% 62%
dvs 4.0 4.9 18% 71%

Gauss- dpla 4.7 5.6 16% 79%
Jacobi scdac 4.5 5.3 15% 87%

ben2k 3.7 4.7 21% 80%

digfl 4.5 5.4 17% 87%



applicable here as well. -

6.4 Presimulation Selection of TPP or FWT

The fastest method as a function of the number of processors is given in Table 6.4.

based on the results in Tables 5.1. 5.2.61. and 6.2. In Chapter 5 it was shown that the 3
presimulation speedup estimates can be used to select between the Gauss-Seidel and

Gauss-Jacobi methods when the full window technique is used. Time point pipelining

has at least as much available parallelism as the full window technique. and any

presimulation selection technique that does not take overhead factors into consideration

will always favor time point pipelining over the full window technique. However. it is

apparent from Table 6.4 that the full window technique is sometimes faster than time

point pipelining because of its lower overhead. For best performance. time point pipe- U
lining should only be used in those cases where the full window technique does not

have sufficient parallelism to keep the processors very busy. This suggests that esti-

mates of processor utilization for the full window technique may be useful in selecting

between the full window technique and time point pipelining.

Table 6.4. Fastest Method vs. Number of Processors

Circuit Processors
iru 1 2 4 8

dvs FS TS TJ TJ
dpla FS TS FJf-TJ TJ
scdac PS FS FS TS
ben2k FS IS TS-FJ FJ
digfi FS FS TS FJ
Key: S-Gauss-Seidel. J-Gauss-Jacobi.

F-FWT. T-TPP

--
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A procedure is now presented for selecting the best of the four methods prior to

the simulation of a given circuit on a given number of processors. First. the choice

between the Gauss-Seidel and Gauss-Jacobi relaxation methods is made based on the

estimate of Pb as described in Chapter 5. Next, the potential processor utilization for

the full window technique is computed by dividing the speedup estimate by the number

of processors. If the potential utilization is larger than some threshold ub. then the full

window technique is used; otherwise time point pipelining is used. The procedure is

specified in detail in the following algorithm. The circuit is assumed to be given. p is

the number of processors to be used, and ub is a predetermined constant.

Algorithm 6A. Presimulation Selection

if (p =1) I
rjmethod *-GS
p.mthod '-FWT

cef
Compute SG." the Type 3 speedup estimate for Gauss-Seidel using

the full window technique, assuming a 2-iteration augmented
task graph and unlimited processors.

pb.,, -SGS. /0.7
if (p < Pb,,, ) r-rmethod -GS
else r_method -GJ
Compute S,, the Type 3 speedup estimate for the full window

technique using the relaxation method specified by rmethod.
assuming a 2-iteration augmented task graph and unlimited

processors.
u "-S,n.hd . /P

if (u >ub ) p.method -FWT
elms pmethod *-TPP

At the conclusion of the algorithm, the relaxation method is given by rjethod. and the

choice between the full window technique and time point pipelining is given by

p. mhod.
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The potential utilization represented by u is the fraction of time that the proces-

sors would have to be busy to achieve speedup Sr_.hde,, on p processors. where

S,_..A, is the speedup of the full window technique assuming an unlimited supply

of processors. If u < 1. then the processors will only be active part of the time. In this

case, the use of time point pipelining is appropriate to increase the processor utilization

and the speedup. If u is slightly greater than 1. then the processors will be busy all the

time if the computational load is perfectly balanced between the different processors.

However, the nonuniformities in task sizes and precedence constraint patterns result in 3
imperfect load balancing. Consequently. there will still be certain times when the pro-

cessors run out of available tasks. Therefore. time point pipelining should be beneficial

in this case also. If u >> I then the full window technique generates much more con-

current work than the processors can handle. and consequently time point pipelining

should not be used because it will just add more overhead. The break-even value of u,

where the full window technique and time point pipelining have about the same perfor-

mance is given by Ub. The value of ub is expected to be greater than. but not much 3
greater than 1.

In order to determine if there exists a value of ub which would result in correct

selections of the fastest algorithms, the values of u have been tabulated in Table 6.5.

for the indicated relaxation methods. The value Ub=1.7 is found to produce good

results. With this choice of ub. the presimulation selection algorithm chooses the

methods shown in Table 6.6. In all cases except for one. the fastest method (or one

with nearly the same performance) is chosen. In the one exceptional case, the chosen

method is 8% slower than the fastest method.

These results demonstrate that a simple analysis of the task graphs can be used to

get some indication of the relative performance of different methods prior to
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Table 6.5. Presimulation FWT Potential Utilization Estimates

Circuit Processors
Circuit 1 2 4 8
dvs 1.5 (S) 0.8 (S) 1.6 (J) 0.8 (i)
dpla 2.0 (S) 1.0 (S) 1.6 () 0.8 (J)
scdac 7.0 (S) 3.5 (S) 1.8 (S) 0.9 (S)
ben2k 2.3 (S) 1.2 (S) 1.8 CJ) 0.9 (J)
digfi 5.0(S) 2.5(S) 1.3(S) 4.7 (J)

Key: S-Gauss-Seidel. J-Gauss-Jacobi .

Table 6.6. Presimulation Prediction of Fastest Method

Circuit Processors
Ci _i 1 2 4 8
dvs FS TS TJ TJ
dpla FS IS TJ TJ
scdac FS FS FS TS
ben2k FS TS FJ TJ*
digfi FS FS IS FJ
Key: S-Gauss-Seidel. J-Gauss-Jacobi.

*-Disagrees with Table 6.4

simulation. Details of the presimulation selection algorithm may have to be modified if

significant changes are made in the implementation details of the simulation algorithms

or in the types of circuits being simulated. In particular. the Gauss-Jacobi/Gauss-Seidel

ratio of 0.7 used in the pb estimate, and the Ub value of 1.7 are empirically determined

constants obtained based on the implementations in the FWT and TPP programs as

applied to the benchmark circuits. For the benchmark circuits, which represent a

variety of types of MOS digital circuits, the presimulation selection method produces

good results using the previously mentioned constants.

%M m MMMM
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CHAPTER 7

LATENCY

The number of computations required to solve a set of circuit equations over a

time interval can be reduced by exploiting latency. Latency exploitation has been used

in a variety of forms in several circuit simulators [Nag75. Yan8O. Whi86. Sa187a.

Sak8I. Cox87. Rab76]. Latency is exploited by recognizing situations in which a new

solution point will match some previous solution point. If this determination can be 3
done cheaply in advance of actually solving for the new solution point, then the com-

putations to solve for the new solution point can be avoided. Two types of latency are

addressed in RELAX2.3: time latency and iteration latency. This chapter considers the

use of these types of latency in the parallel waveform relaxation algorithms.

7.1 Time Latency

A subcircuit is said to be time latent in time interval It I. t 21 if the inputs to the

subcircuit are constant in the interval and the subcircuit is in a dc steady state at time

t 1- In this situation it is not necessary to compute the voltages for any time point in the

interval (t 1. t 2] since the values will be identical to those at t 1. The s,-bcircuit is deter-

mined to be in a dc steady state at t I by observing that the subcircuit's internal voltages

and charges are constant and the currents flowing into capacitors are zero, within some

tolerance. Once this determination is made, the end of the time latency interval can be

found by searching for the time at which the first change occurs in an input waveform

of the subcircuit.

.... ,
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Even without explicitly handling time latency. the basic waveform relaxation

algorithm automatically exploits time latency and slowly changing signals by choosing

the time steps independently for each subcircuit. Therefore. the advantage of explicitly

managing time latency is not as great for waveform relaxation compared to other solu-

tion techniques which do not use multirate integration. The time latency algorithm

may be more efficient in placing the next time point exactly at the point in time where

the first input change occurs, whereas the time step computed based on the truncation

error does not look ahead to future input changes. except indirectly through the 3-step

check (see Algorithm 6.2).

A danger of time latency exploitation is that false latency detection can occur if

the tolerances are too large. This is especially important in linear circuits, where decay-

ing exponential waveforms satisfy the latency criteria before actually reaching their

final values. In digital circuits, the likelihood of false latency detection is reduced

because of the sharp nonlinearities which clamp signals to steady state values relatively

quickly after transitions.

7.2 Iteration Latency

Subcircuit i is said to be iteration latent on iteration k if all the input waveforms

of subcircuit evaluation task (k, i ) are identical to the inputs of task (k -I. i ) within

some tolerance. In this situation it is not necessary to solve the subcircuit on iteration

k since the solution will be almost identical to the solution of iteration k -1. In previ-

ous work, iteration latency has been called partial waveform convergence. This is

because iteration latency most commonly occurs when some of the subcircuits converge

to the solution while the rest of the circuit requires additional iterations. After the first

subcircuits converge, they become iteration latent for the remaining iterations while the

other subcircuits continue to be evaluated.
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In the Gauss-Jacobi method, a signal change originating in one subcircuit may

require some number of iterations j to reach subcircuit i. because signals propagate

through the subcircuit graph at the rate of one subcircuit per iteration. If subcircuit i I
is in a dc steady state at the beginning of the window, it will be iteration latent for

iterations 1 through j-1. In this scenario, the terminology partial waveform conver-

gence is inappropriate, because the latency is not due to convergence. The terminology

iteration latency is more basic, and covers both of the situations described above.

Iteration latency can occur over an entire window, or over the first part of a win- N
dow. Let l, -1 and 1, be the sets of input waveforms to the subcircuit when the subcir- 3
cuit is solved on iterations k -1 and k. respectively. If the window is [t.. tb I. then the

subcircuit can be iteration latent in subinterval [t. t. ]. for some t. 4t b . If t, <t b . then 3
t is the last time point in the window for which the waveforms of I4 match those of U
11, -1 within the specified tolerance. The subcircuit solution of the previous iteration can

be used in the interval [ta. t,]. whereas solution points in the interval (tx, tb ] must be

recomputed on iteration k. The final waveforms for the window are equivalent to

those that would have been computed if the I, - input waveforms were applied to the

subcircuit through time t,, and the 4, input waveforms were applied after t.. The

discontinuity of the effective input waveforms at t. can cause problems if the tolerance

used to compare the input waveforms is too large. Artificial glitches may occur in the

output waveforms and excessive time points may be computed after the discontinuity

due to the glitches. In extreme cases, one of these discontinuities can lead to a failure of

the integration algorithm, as the step size control mechanism repeatedly reduces the step

size in a vain attempt to reach an acceptable truncation error computed from divided

difference estimates of derivatives of discontinuous functions.

I
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RELAX2.3 uses iteration latency when the subcircuit is latent over the entire win-

dow. but not when the subcircuit is latent over only the first part of the window. The

likelihood of anomalous behavior due to input waveform discontinuities is reduced in

this case, since the number of iteration latency boundaries is greatly reduced, and a sub-

circuit is more likely to be in a dc steady state at a window boundary. although many

window boundaries occur during signal transitions in some of the benchmark circuits.

Consequently. the policy of using iteration latency only when the subcircuit is latent

over the entire window reduces the likelihood of latency-induced errors. but does not

assure that such errors will not arise.

Latency-induced errors can be made as small as desired by decreasing the latency

tolerances. However. very small tolerances lead to very little latency exploitation. In

effect, the use of iteration latency and the setting of the tolerances present a tradeoff of

simulation speed versus reliability and accuracy. The latency algorithms of RELAX2.3

produce acceptably accurate waveforms for all the benchmark circuits. using iteration

latency tolerances which are identical to the waveform convergence tolerances.

7.3 Impact of Latency on Speedup

Latency exploitation reduces the number of computations which must be per-

formed, and therefore reduces the uniprocessor run time. r1. If some of the eliminated

computations are in the critical path of the task graph. then the parallel run time will

also be reduced. provided the overhead of latency management is not too large. The

parallel completion time of the program on an unlimited number of processors without

overhead is given by

JPCO WX.(7.1)
XE Ihaki in PI

where w, is the CPU time of task x . and P is a path in the task graph which maximizes
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the expression in (7.1). If the overhead for detecting latency is negligible, then wa for

each task x will be reduced or remain the same when latency is exploited. Conse-

quently, latency exploitation will reduce the overall parallel run time. or at worst leave i
it unchanged, neglecting the overhead required to manage the latency.

The speedup on unlimited processors neglecting overhead is Su.,-,r1".. Since

both -r, and 7,, are reduced when latency is exploited, the speedup may increase or 3
decrease. If the tasks in P exhibit more latency than other tasks. then the speedup will

tend to increase when latency is exploited. Otherwise, the speedup will tend to be I
reduced. For circuits that partition into subcircuits of nonuniform size. there is a ten-

dency for P to consist of subcircuit evaluation tasks of the larger subcircuits. This is

especially true for Gauss-Jacobi. where P typically contains instances of I or 2 of the

largest subcircuits. Subcircuit evaluation tasks for large subcircuits typically have

many input waveforms from other subcircuits. The likelihood that all of the inputs

will match the previous iteration. or that all the inputs will be constant in some time g
interval is small by comparison with smaller subcircuits. This intuitive argument sug-

gests that latency exploitation will tend to reduce speedup. when the number of proces-

sors is large, and when the subcircuit partitioning is nonuniform.

As a counter-example. consider a circuit which during a given time window con-

sists of two essentially independent parts, one part consisting of a few small tightly

coupled subcircuits and the other consisting of large loosely coupled subcircuits. Since

the small subcircuits are tightly coupled, they will required more iterations than the

large subcircuits. and the large subcircuits will become iteration latent after a few

iterations. In this case, the large subcircuits in the critical path will exhibit greater

latency than the average subcircuit. and the speedup may be increased by latency

exploitation. Although this situation is less likely than the previous example. it demon- -

I
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strates that latency exploitation does not necessarily reduce the amount of available

parallelism.

The effectiveness of time point pipelining is also affected by latency exploitation.

Suppose P is a path in the full window task graph consisting of relatively large subcir-

cuit evaluation tasks x 1 ..... x 4 . and that time points occur at times t 1 ..... t 5 in each

task. The first task cannot be iteration latent. since there is no previous iteration. Sub-

sequent tasks in the path will tend to be iteration latent over increasing portions of the

first part of the window. For example, suppose x 2 is nonlatent. x 3 is iteration latent

through t 2. and x 4 is iteration latent through t ,. If the latency is not exploited, if 4

processors are available, and if only the tasks in path P are considered, then the parallel

execution of time points will proceed as shown in Table 7. 1. and will require 8 units of

processor time, compared to 20 units of time on a single processor. If partial-window

latency is exploited, the parallel execution will proceed as shown in Table 7.2. and will

require the same amount of processor time. 8 units. However. the uniprocessor time is

reduced to 14 by exploiting the latency. Consequently. in this example. iteration

latency exploitation reduces the uniprocessor run time but leaves the 4-processor run

Table 7.1. Parallel Schedule Example: No Latency

Time x, x I x, ;

1 t
2 I..L t

3 __ t t4 ta  t2 t 2  t'
5 CS t4 t - t 2  _--
6 t5  t' tj
7 t5 t, L---t

, "-rr T i~+ +FI IM " ' +' ' , I 8
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Table 7.2. Parallel Schedule Example: Latency

tBTime x I  X 2  X x 4

2 t,33 t, 2 t

4 t t 0

5 t .t t

6 t4 t'

7 e tj

time unchanged. I

The parallel execution time will be reduced by latency if one or more of the tasks

in P are iteration latent over the entire window. For example. if x 3 is iteration latent U
over the entire window, then x 4 may compute each nonlatent time point one step ear-

lier. As noted for the full window technique, the critical paths in the task graph tend g
to contain large tasks which are less likely to be latent over the entire window than

other tasks. Therefore. iteration latency exploitation typically reduces the amount of

parallelism in time point pipelining.

I
7.A FWT Latency Implemetation

The window-level exploitation of iteration latency in RELAX2.3 is readily imple-

mented in the FWT program, because the entire input waveforms are available when a

subcircuit evaluation task is started. Since FWT uses the augmented task graph f', the

entire input waveforms of task (k -1. i ) as well as the inputs of (. i ) are guaranteed

to be available when task (. i ) begins executing. Consequently. iteration latency can

be checked for the entire window before computing the first time point of the subcir-

cuit. and if latency is detected. no time points are computed. If the subcircuit is not

.I
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iteration latent, time latency is checked before computing each time point. When time

latency is detected. the input waveforms may be searched immediately for the next

change in value, which determines the next time point at which the subcircuit must be

evaluated.

The implementation of latency in FWT affects only the subcircuit evaluation task

algorithm, which is given below in Algorithm 7.1. The current window boundaries are

represented by t. and tb. the iteration number is k. and the subcircuit number is i.

The convergence and successor checks are the same as in Algorithm 5.7.

Algorithm 7.1. FWT Suber.Ult Evaluation Task with Latency (k, i)

determine time t 4ti, such that the inputs to (k.i) match the previous
iteration on [to. t I

if (t at$ ) vk )( t )-vi(k -(t ). for all t E(t..tb ]

elme I
t.done 4-tt
pick next time point t-nxt
while (tdone (t 1 ) I

if ((k. i ) is in dc steady state at time tdaon) 
determine time t 4ta such that the inputs to (k. i)

are constant on kdone. t IVi (k )(t )_-Vi (k )(;_done)

else solve subeircuit at time t E(t done. tcnext]
t done O-t

pick next time point tjwxt

check successors
check convergence

7-5 TPPL Latency Implementation

Time point pipelining presents unique problems for the exploitation of time

latency and iteration latency. Problems arise because only partial waveforms are gen-

erally available when time points are computed, and because long latent intervals can
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cause pipelining bottlenecks. 4

When time latency is detected at time t. it may not be possible to immediately

determine the next time for which the task should be evaluated, because the input I
waveforms may not be available through the time of the next input change. Conse- 3
quently. it may be necssary to mark the task as being time latent and suspend its exe-

cution. A mechanism must then be provided for the task to be restarted when one of 3
its inputs changes value. Note that this condition for restarting a time latent task is

different from the condition for restarting a nonlatent task. In a nonlatent task. the I
time of the next time point. tnaxt is determined before the task is suspended, and the

predecessors restart the task after they have all progressed through time tjnext . regard-

less of whether or not their waveforms change value. 5
Bottlenecks can occur if time advancements are not propagated through time

latent tasks. For example. consider a task x with a set of predecessors P and a set of ol

successors S. Suppose that x is time latent on the interval It .. t .J. and that the tasks in

P and S will all be evaluated at times t t2 . t. E(t*. t ). This is not an unreason-

able situation. because tasks in S may also be immediate successors of tasks in P. and

the waveforms fed from P to S may be active even though those waveforms fed from

P to x may be unchanging. Task x does not compute any time points in the interval

(t 0.t 4j because it is time latent. However. if the output waveforms of x are not

updated until the time point is reched at the end of the latent interval, at t,. then the

tasks in S will not be able to compute the time point at t , until after the tasks in P

have progressed all the way to time t,. This bottleneck can be avoided. If all tasks in

P have progressed to time t , and x is still time latent, then the waveforms of x can be

extended to time t I without computing a new solution point, and the successors of x

can then be allowed to compute new solutions at time t l. In terms of the TPP control
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variables, the bottleneck is avoided by having t.dome of the latent task track the value

of t'.redy, and by periodically updating _ready to track the progress made by the

predecessor tasks during the latent interval.

If time latency is not handled explicitly, and the time steps are determined

exclusively based on local truncation error, then time advancements cannot be pro-

pagated through latent tasks as described above. Therefore. the explicit detection of

time latency has a beneficial inluence on parallelism.

The use of iteration latency in time point pipelining presents a more fundamental

problem than time latency. The window-level approach to iteration latency used in

FWT is not particularly suitable for time point pipelining. Suppose that the window-

level latency approach were used for task x with predecessors P and successors S. The

determination that x is iteration latent cannot be made until all of x 's input

waveforms are available over the entire window. In this case the output waveforms of

x are not known until all the tasks in P reach the end of the window. which means

that all the tasks in S will be delayed until the tasks in P are finished. If latency were

not exploited, the time points would propagate through x one at a time. allowing tasks

in S to be executing concurrently with tasks in P. Thus. window-level latency exploi-

tation has a serious negative impact on the pipelining parallelism.

Similar bottlenecks appear in the window-level latency approach even when tasks

are not iteration latent over the entire window. If task x is iteration latent on [.,.t 1.

for some t <t,. then the determination that x is not latent on the window cannot be

made until all the tasks in P reach time t. Only then can x compute its first time

point. If t >>t,. the delay in starting to solve task x will result in a significant

decrease in parallelism. This parallelism reduction will be comparatively small in early

iterations since the iteration latency boundaries will be close to t,. but the parallelism
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reduction will be comparatively large in later iterations as the iteration latency boun-

daries approach t b.

By allowing iteration latency to be exploited on partial windows, the time point I
pipelining bottlenecks described above can be avoided. When partial window latency is

used. the latency status of a task can be determined time point by time point as the

input waveforms advance. For example. if the input waveforms to task x are available 3
through time t. and they match the previous iteration through time t. then the output

waveforms of task x for the current iteration can be copied from the previous iteration U
through time t and these waveforms can be made available to S. If at time t, >t one 3
of the inputs to x differs from the previous iteration, then x becomes nonlatent at time

t, and begins computing solution points. Just as in the time latency case. it is impor- 3
tant to propagate time advancements through iteration latent tasks to avoid bottlenecks IR
on long latent intervals.

The detection of iteration latency requires comparing the current input waveforms

with the input waveforms of the previous iteration. Therefore, when checking iteration

latency at time t, it is necessary that the input waveforms of the previous iteration be

available through time t. In order to guarantee that the previous iteration waveforms

will be available, the augmented task graph T must be used. rather than the unaug-

mented task graph used in the TPP program without latency. The PARASITE results of

Chapter 4 indicate that the penalty for using T is small except when the number of

processors is very large.

Time latency and iteration latency have been implemented in an experimental ver-

sion of the TPP program which bears the unimaginative but functional name TPPL.

The algorithm for the subcircuit evaluation task is outlined below in Algorithms 7.2 -

7.6. The TPP control variables retain their meanings as defined in Chapter 6. except the

LMS
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status variable can take on additional values to indicate when a task is iteration latent

or time latent. When the TPP control variables appear without subscripts, the sub-

scripts k. i are assumed. The value of 8 is smaller than the smallest possible time step.

Algoithm 7.2. TPPL Subclrcuit Evaluation Task (k. i)

more .- TRUE
while (more -TRUE)

if (status LJNINITIALIZED ) tpplinit (k. i )
elm If (status -EVALUATE) tpplevo (k. i )
elm if (status =JTERJATENT ) iterjat (kt. i )
els if (status =TIME.LATENT ) time lat (k. i)
elm V (status -ENDJTE.LA TENT) &adjter-lat (k. i)
elm if (status =ENDJYIMEJATENT ) endfimejWat (k. i)
elm if (status -CONVERGE..CHECK) I

If (global convergence achieved and tb <t1 )
start next window

more .- FALSE

if (more -TRUE) I
LOCK(lock)
if (status -ELVALUATE) limit tjnext
update _ready and waitingj or
if (waitingi or *iNULL )more '-FALSE
UNLOCK(lock)

Algorithm 7.&. TppL.eval (k. z)

while (status LEVAWVATE and tLready ; tjax)
if (Ldone )t b ) status -CONVERGECHECK
elm if ((kt. i ) is in dc steady state)

determine time t 4 _ready such that the inputs to (kt. i) are
constant on [t done. t]I

if (t > tnext)

t , '-t.done
t _one '-t

status '-TIMELATENT
check successors
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if (status =EVALUATE)
solve subcircuit at time t E (t._done. tjnext ]
tdone -t

pick next time point tnext 3
check successors

Algorithm 7.4. Itrjat (k. i)

determine time t 4tready such that the inputs to (k. i ) match the previous

iteration on [t.. t J
if (t > done ) I

tLdone -t
t-next .- minit +8. tb I
check successors

If (t done =t b or tdone <t ready ) status -ENDJITELATENT
else t next --min(t +8. tb i

Algorithm 7.5. Timejat (k. i)

determine time t t..ready such that the inputs to (k. i ) are constant

on [t-done. t]
if (9 > t.done ) I

tdone --t
tnext -min{t +8. tb I
check successors

}

if (t.done = tb or t.done <t ready ) status -ENDATIMELATENT

Algorithm 7.5. End.iterlat (k i )
Vi (k )(It)._V ik -(t). for all t Eft,. t _done I

pick next time point tjnext
status -EVAWJJATE

Algorithm 7.6. Endjime-lat (k. i)
v,(4.)(t_4one )-v, ( )(t I )

pick next time point t next
status 'EVALATE 01 1
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7.6 Results

The effect of iteration and time latency exploitation on a uniprocessor is demon-

strated in Table 7.3. The run times using Gauss-Seidel waveform relaxation with and

without latency are listed along with the run times of the standard direct method. The

latency results were obtained using time latency and window-level iteration latency.

Two observations are apparent: latency has a significant impact on the run time, and

waveform relaxation is not as fast as the direct method for most of the circuits in the

benchmark set. The exception is digfl. which is the largest and most uniformly parti-

tioned of the circuits. and has comparatively weak coupling between subcircuits. It

should be noted that the benchmark circuits were obtained primarily from real indus-

trial circuits. and they were not prescreened on the basis of suitability for waveform

relaxation, aside from the fact that only MOS circuits were considered. Also, the

automatic partitioning and windowing algorithms were used without manual optimiza-

tion. Results have been cited in the literature which demonstrate that waveform relax-

ation is capable of speeds greater than the direct method on a uniprocessor for a variety

of circuits (WhiS6]. In the context of this chapter. the important point demonstrated

by Table 7.3 is that the use of latency is important in making the uniprocessor perfor-

mance of waveform relaxation to be as competitive as possible with alternative

Table 7.3. Uniprocessor Run Times (in seconds)

Direct WR-GS WR-GS with
Circuit Method Latency

dvs 57 127 97
dpla 54 110 65
scdac 420 1029 568
ben2k 297 594 331
digfi 1342 1934 742
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algorithms.

As previously noted, the effect of time latency in waveform relaxation is small

because waveform relaxation is intrinsically a multirate integration algorithm. The

impacts of iteration and time latency are shown separately in Table 7.4. where it is seen

that the time latency effect is negligible for the benchmark circuits. By contrast, itera-

tion latency accounts for a speed improvement close to 2 on a uniprocessor.

The results of the FWT program with latency enabled are given in Tables 7.5 and

7.6. The reference times in computing the speedups are the Gauss-Seidel uniprocessor

run times with latency exploitation. As expected. the speedups are generally less than 3
those obtained without latency. This. of course, does not mean that the run times are

longer when latency is used. it only means that the contribution of parallel processing is

reduced somewhat.

The performance of the TPPL program is summarized in Tables 7.7 and 7.8. The

speedups are computed with respect to the FWT program with latency running on I

processor. Since TPPL exploits iteration latency over partial windows and FWT

exploits iteration latency only over entire windows. TPPL exhibits a speed improve-

ment over FWT even on 1 processor in some cases. In cases marked with asterisks, the

Table 7.4. Uniprocessor Speedups Due to Latency: Gauss-Seidel

Crut No Iteration Time BothCircuit Latency Latency Latency Latencies

dvs 1.0 1.39 1.00 1.37
dpla 1.0 1.74 1.02 1.81
scdac 1.0 1.84 0.99 1.82
ben2k 1.0 1.70 0.99 1.79
digfi 1.0 2.51 0.98 2.58 -

IF
U
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Table 7.5. FWT Gauss-Seidel Speedups with Latency

Processors
Circuit 1 2 4 8

dvs 1.0 1.4 1.3 1.3
dpla 1.0 1.7 2.1 1.9
scdac 1.0 1.9 3.3 4.0
ben2k 1.0 1.6 1.8 1.8
digfi 1.0 1.9 2.9 3.1

iV
Table 7.6. FWT Gauss-Jacobi Speedups with Latency. Normalized to Gauss-Seidel

Processors
Circuit 1 2 4 8

dvs 0.7 1.3 2.0 2.6
dpla 0.7 1.3 2.4 3.3
scdac 0.6 1.2 2.1 3.2
ben2k 0.5 1.0 1.9 2.7
digfi 0.6 1.2 2.1 3.4

Table 7.7. TPPL Gauss-Seidel Speedups

Circuit Processors

Cirui 8
dvs 1.1 2.4
dpla 1.1 3.5
scdac 1.2 7.8
ben2k 0.6* 1.6"
digfi 1.2 5.2

i Table 7.8. TPPL Gauss-Jacobi Speedups, Normalized to Gauss-Seidel

Circuit Processors
1 8

dvs 0.6 2.9
dpla 0.6 3.4
scdac 0.6 4.1
ben2k 0.2* 1.3"
digfi 0.6 3.3*

tolerances had to be reduced below the default values. For the ben2k circuit, the itera-

tion latency tolerance, local truncation error tolerance, and Newton convergence toler-
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ance were all reduced in order to obtain accurate waveforms, and this resulted in a

significant degradation in the run times. For the digfi run marked with an asterisk, the

iteration latency tolerance had to be reduced to avoid a failure of the integration algo- 3
rithm at an effective input waveform discontinuity. In the cases which did not experi-

ence such difficulties. the TPPL performance on 8 processors surpassed the FWT perfor-

mance on 8 processors.

The Gauss-Seidel TPPL speedups compare favorably with the results excluding

latency in Table 6.1. The superior speedups are due to the use of partial window itera- I
tion latency. rather than to an increase in parallelism. The Gauss-Jacobi speedups with

latency are significantly less than those obtained without latency. In the Gauss-Jacobi

case. the effect demonstrated in Table 7.2 is especially applicable, since a critical path in WN

an augmented Gauss-Jacobi task graph normally consists of instances of the largest sub-
U

circuit. which is unlikely to be latent over the entire window. A critical path in a

Gauss-Seidel task graph normally contains a mixture of different subcircuits. some of I
which may be latent and others which are not. Consequently. when Gauss-Jacobi time

point pipelining is used for a circuit which is dominated by a large subcircuit. latency

does not have a significant effect on the parallel execution time if the number of proces-

sors is large compared to the available parallelism. However. the parallel run time is

reduced in those cases where the number of processors is small compared to the avail-

able parallelism, due to the reduction in the number of computations. This can be

observed more clearly in Table 7.9 where the run times of Gauss-Jacobi time point pipe-

lining on 8 processors show little improvement due to latency for the small circuits dvs

and dpla. but show a significant improvement for digfi. where the subcircuit partition-

ing is more uniform and where the number of processors is small compared to the avail-

able parallelism.

I
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Table 7.9. Transient Analysis Run Times

Method Procs.Cictdvs dpla scdac ben2k digfi

Direct 1 57 54 420 297 1342
FWT-GS 8 91 55 209 278 501
FWT-GJ 8 40 27 218 150 403
TPP-GS 8 54 39 173 218 419
TPP-GJ 8 32 24 218 160 433
FWT-L-GS 8 70 33 121 168 216
FWT-L-GJ 8 34 25 162 105 201
TPP-L-GS 8 40 19 73 210" 140
TPP-L-GJ 8 31 19 138 257* 226*

Key: L-latency exploited: *-tighter tolerances used

Finally. Table 7.9 shows the run times of the different parallel waveform relam-1

tion methods on 8 processors. and the run times of the direct method on 1 processor.

Parallel waveform relaxation on 8 processors is faster than the direct method on I pro-

cessor, even if latency is not exploited and even though these circuits do not have good

waveform relaxation performance on 1 processor. Further performance improvements

are attainable with latency exploitation on 8 processors, but this performance advantage

comes at the expense of reduced reliability.

i--
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CHAP 8 m
U

CONCLUSIONS 3
I

Four different parallel forms of the basic waveform relaxation algorithm with

windowing have been studied. Then parallel algorithms use Gauss-Seidel or Gauss- I
Jacobi relaxation in combination with either the full window technique or the time 3
point pipelining technique for coordinating the parallel execution of computations. The

superiority of Gauss-Seidel over Gauss-Jacobi for the solution of MOS digital circuits 3
on a uniprocessor is well known. The use of Gauss-Jacobi relaxation for circuit simula-

tion has been largely avoided in previous work. because more iterations are required for

convergence. However, when sufficiently many processors are available, the overall run

time of Gauss-Jacobi is less than that of Gauss-Seidel. This relationship between

Gauss-Seidel and Gauss-Jacobi has been established formally for the linear algebraic 3
equation case in a theorem which relates the spectral radii of the Gauss-Seidel and

Gauss-Jacobi iteration matrices to the relative degrees of available parallelism. Results U
of the PARASITE parallel simulation time estimator, which produces accurate estimates

of the parallel run times neglecting overhead, shows that the extra parallelism of

Gauss-Jacobi waveform relaxation is more than sufficient to result in faster run times

than Gauss-Seidel, when the number of processors is sufficiently large. These results

are confirmed by actual multiprocessor circuit simulations. using the FWT and TPP

parallel waveform relaxation programs running on an Alliant FX/S. For 4 of the S

benchmark circuits, using the full window technique, the performance of the Gauss-

Jacobi method surpaes that of Gauss-Seidel on 8 procemors. For the other circuit,

PARASITE indicates that Gauss-Jacobi will be faster than Gauss-Seidel on 16 or more I
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Time point pipelining exposes more parallelism than the full window technique.

and it introduces additional overbed. The results of the FWT and TPP programs

confirm that time point pipeliniag produces faster run times than the full window tech-

nique in those cases where the full window technique does not expose enough parallel-

lam to keep the processors busy. The previously unexplored combination of time point

pipelining and the Gauss-Jacobi method has been shown to be the fastest of the four

basic parallel waveform relaxation algorithms when the number of processor is large

enough. PARASITE estimates indicate that speedups of about one order of magnitude

should be possible on about 32 processors for 10O0-transistor circuits, where the

speedup is computed with respect to the Gauss-Seidel method on a single processor.

The available parallelism of the Gauss-Seidel and Gauss-Jacobi methods can be

estimated prior to simulating a circuit, by performing a computationally inexpensive

analysis of the task graphs. A presimulation selection procedure has been presented

which uses these estimates to choose either the Gaums-Seidel or Gauss-Jacobi method for

simulating a given circuit on a given number of processor Furthermore. by using the

parallelism estimates to predict the potential processor utilization, the selection pro-

cedure chooses either the full window technique or time point pipelining.

The uniprocemor speed of the basic waveform relaxation algorithm is improved

significantly when iteration latency (or partial waveform convergence) is exploited. On

parallel processors. iteration latency exploitation reduces the amount of parallelism in

the benchmark circuit examples, but the overall performance is still better when

latency is exploited. Since latency exploitation reduces the parallelism to a greater

extent for the algorithms with greter parallelism, the differences in run times of the

different algorithms are reduced when latency is exploited. The choice of the latency
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tolerances involves a tradeoff betwem greater latency exploitation and reliability, since

loose tolerances can lead to inaccurate waveforms or failures of the integration algo-

rithm. The reliability problems are moat severe when time point level iteration latency 3
in used.

Waveform relaxation on a uniprocemor works best for circuits which can be parti-

tioned into a large number of weekly coupled subeircuits of nearly the same size. These

are the same circuit properties which lead to good speedups in parallel waveform relax-

ation. Even though some of the benchmark circuits used in obtaining the experimental U
results do not satisfy this criterion, the parallel waveform relaxation run times on 8

processors are signihcantly less than the uniproceror run times of both waveform,

relaxation and the standard direct methods. Further speed improvements are possible 3
from the natural parallelism of waveform relaxation if more processors are used.

When large subcircuits arise due to large subsets of tightly coupled nodes, the same

techniques used to parallelias the standard direct methods can be used within the large u
subeircuits to expose levels of parallelism which go beyond the natural relaxation

parallelism studied in this thesis.

I
|
I
I.
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