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ABSTRACT

Waveform relaxation algorithms for the simulation of MOS circuits exhibit

natural parallelism, arising from the intrinsic partitioning of the circuit into subcircuits

which are solved separately during the iterative solution process. Investigated in this

thesis is the extent to which the overall run time of a simulation can be reduced by

utilizing the natural parallelism of waveform relaxation on parallel processors. Four

parallel waveform relaxation algorithms are considered. based on the Gauss-Seidel and

Gauss-Jacobi relaxation methods, in which parallelism is exploited at the individual

time point level or at the time window level. The algorithm with the fastest run time
Jepends on the characteristics of the circuit being simulated and on the number of pro-
cessors used. The Gauss-Jacobi method with time point pipelining is introduced as a
highly parallel algorithm which can outperform the other algorithms when the number

of processors is large.

A theorem is presented comparing the Gauss-Seidel and Gauss-Jacobi methods, as
- applied to the solution of a set of linear algebraic equations of the type which occur at
each time point in the simulation of MOS circuits. Gauss-Jacobi is shown to be asymp-

totically faster than Gauss-Seidel when the number of processors is sufficiently large.

Simplified speedup estimates are used in a presimulation selection procedure which

selects the fastest of the parallel waveform relaxation algorithms prior to performing

m
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tude are possible for 1000-transistor circuits on 32 processors, where the speedup is

measured with respect to Gauss-Seidel waveform relaxation on a single processor.

The parallel waveform relaxation algorithms have been implemented in programs

which run on an 8-processor Alliant FX/8 multiprocessor. Speedups within 11% to e

21% of the PARASITE estimates are achieved. S |
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INTRODUCTION v

Y

a Circuit simulation plays a key role in verifying that very large scale integrated &
o

(VLSI) circuit designs are correct and meet performance specifications prior to fabricat- -’

a ing the circuits [Nag75. Wee73). The amount of computer time required to simulate a s
significant portion of a large circuit can be prohibitive when detailed models of the cir- ::i
K ;'f‘.

‘!’ ®
E cuit elements are used, and the differential equations are integrated to produce accurate hets
! voltage waveforms as a function of time [Whi86). Simulators that use models based on

higher levels of abstraction. such as switch and logic level simulators [Bry84, Rao85.

Szy72, Haj83). can achieve run times which are orders of magnitude faster, but the

=

results are not as precise. As integrated circuit technology advances. the number of cir- Ve,

4

-
—
-

cuit elements increases at the same time that feature sizes are reduced and parasitic 08

S

effects become more important in determining circuit performance. Consequently, as
the neéd for faster simulation becomes more important, the ability to satisfy this need 20

through less precise simulation techniques diminishes [Kan85). )

The need for faster, precise circuit simulation that is motivated by advances in
integrated circuit technology can be addressed by employing the fruits of these techno- ) d
logical advances in the computers which are used to simulate circuits. Multiprocessor K NN
computers. comprised of several processors which can work together to solve a single =
problem, are able to provide a large amount of total computing power at a reasonable
cost (Kuc86]. To successfully use the parallelism in the computer hardware to reduce KX
the overall run time of the simulation program, the set of computations must be parti-

tioned into subsets which can be executed currently on different processors, while &
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preserving the integrity of the final solutior.

Early attempts to exploit parallelism to reduce the time required to perform cir-
cuit simulations utilized vector processors. which achieve performance gains from
parallelism when all the elements of a vector are processed identically. The vector ele-
ments are pipelined through the processor hardware such that different elements are
processed by different stages of the hardware simultaneously [Hwa84]. The hardware
parallelism is limited by the number of stages in the pipeline. The effective use of vec-
tor processing in standard direct method circuit simulation algorithms [Nag75, Wee73,
Yan80] is hampered by the sparse, irregular interconnection structures of circuits,
which result in highly sparse unstructured matrices that are not efficiently processed by
vector operations. When circuit elements are evaluated, elements described by identical
equations can be processed in the vector mode. But even circuit elements that use ident-
ical models operate in different regions at different points in time, and the different
regions are described by different sets of equations, thus hindering vectorization. As a
result of these problems, significant overhead penalties are incurred in gathering data
into vectors which can utilize the fast vector processing capabilities. and in scattering
the results of vector computations back to their ultimate destinations [Cal79. Cal80,

V1a82, Ham83, May83. Yam85).

Parallel processors of the MIMD (multiple instruction, multiple data) type consist
of separate processors which can perform independent operations on independent sets of
operands [Fly72]. The processors can share data either through some type of data com-
munication mechanism or through shared memory. Compared to a vector processor,
this type of architecture offers a more flexible environment for exploiting parallelism,

because the concurrent operations need not be identical and they need not be performed

on operands which are organized as elements of a vector. The use of parallel processors
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for direct method circuit siviulation remains an active area of research. Good perfor-
mance is easy to obtain in evaluating the models of circuit elements, but effective paral-
lelization ot: the solution of the sparse unstructured matrix equations is more difficult,
due to the large number of fine-grained data dependencies which occur in Gaussian

elimination and LU factorization [Win80, Bis86, Cox87. Jac87. Nak87, Sad87. Sma87a).

Relaxation methods for circuit simulation [New84] involve partitioning the circuit
into subcircuits which are solved independently, while treating the voltages external to
each subcircuit as if they were independent voltage sources. The values of these voltage
sources are updated with the solutions of neighboring subcircuits on each iteration of
the iterative solution process. These algorithms have natural parallel implementations
because of the inherent partitioning of the circuit. Relaxation methods. when carried to
convergence, produce precise voltage waveforms of the same quality as standard direct
method-algorithms. Different forms of relaxation algorithms have been implemented on
parallel processors [Gal88), including nonlinear algebraic equation relaxation techniques
[Deu84, Web87], waveform relaxation [Whi8Sb, Uno85, Ma186, Dum87, Sma87b,

Y Sma88b]), and waveform-Newton [Sal87b).

Addressed in this thesis is the question of how much of a speed improvement in
circuit simulation run time can be obtained by exploiting the natural parallelism of
- waveform relaxation [Lel82, Whi86, Rue87, Hsi85] on parallel processors. Sever;l ;i‘;};
different parallel waveform relaxation algorithms are described in Chapter 2, based on
the Gauss-Seidel and Gauss-Jacobi (or Jacobi) relaxation methods [Ort70], using win-
dow level parallelism and time point pipelining [Whi85b). The Gauss-Jacobi method in
combination with time point pipelining is shown to produce an algorithm with a com-

paratively high degree of parallelism. which is effective when the number of processors

is large compared to the size of the circuit [Sma88b).
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The parallel performances of the Gauss-Seidel and Gauss-Jacobi methods are - -
addressed in Chapter 3 from a theoretical viewpoint. A theorem is preéemed which “ t
shows that parallel Gauss-Jacobi is asymptotically faster than parallel Gauss-Seidel ¥ ‘
when the number of processors is sufficiently large. under certain conditions which -~ ‘3
apply to the solution of linear equations arising in the simulation of MOS circuits. A u |
formula is also derived for the average ratio of parallelism of the two methods. based
on the nonzero structure of the matrix. N b |
In Chapter 4. speedup estimates are computed for a set of 5 benchmark circuits, a 4
for the competing parallel waveform relaxation algorithms. The speedups indicate how % ‘
much faster the algorithms run on multiple processors compared to a single processor. : )

Two categories of speedup estimates are considered. Presimulation estimates are based

on simplifying assumptions that allow the estimates to be computed prior to perform-

B &

ing a simulation of the circuit. These estimates provide first-order insights into the

sources of parallelism, and the factors which inhibit parallelism in real circuit exam-

ples. The presimulation estimates also provide a basis for selecting one of the algo-
rithms prior to simulating a particular circuit on a given number of processors. Post-
simulation estimates are more accurate than presimulation estimates because they util-
ize detailed information obtained in the simulation of the circuit on a uniprocessor.
Post-simulation estimates are used to generate accurate projections of the potential per-
formance of the algorithms when the number of processors is increased beyond that
which is currently available. Post-simulation speedup estimates excluding multipro-
cessing overhead are compared in subsequent chapters with actual multiprocessor per-
formance results, to determine the extent to which the overhead factors impact the per-

formance. Speedup estimates excluding overhead have been used previously in the

12 R IR KX 222 &)

study of parallel iterated timing analysis [Deu84).
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The parallel waveform relaxation algorithms have been implemented in two pro-
grams which run on an Alliant FX/8 multiprocessor, using up to 8 processors. These
programs are described in Chapters 5 and 6. Measured performance results are given
for the parallel implementations, and these results are compared with the speedup esti-

mates of Chapter 4.

Latency in the computations of waveform relaxation can be exploited to reduce
the number of computations that must be performed. Reducing the number of compu-
tations reduces the run time on a uniprocessor. and may or may not reduce the run time
on a multiprocessor, depending on the data dependencies between the nonlatent compur
tations and on the overhead involved in detecting latency. The impact of latency
exploitation on parallel waveform relaxation is addressed in Chapter 7. The primary

form of latency that is considered is iteration latency, which has also been called partial

waveform convergence in previous work [Whi86). The impacts of latency on the paral-

lel implementations and on parallel performance are discussed. and performance results

are presented. Finally, conclusions are presented in Chapter 8.




CHAPTER 2

PARALLEL WAVEFORM RELAXATION ALGORITHMS

Waveform relaxation is a class of iterative algorithms for solving ordinary
differential equations. When applied to the differential equations that describe the vol-
tages of a circuit as a function of time, waveform relaxation is guaranteed to converge,
provided that the circuit equations satisfy certain conditions. These conditions are
readily satisfied by MOS integrated circuits which are represenied by node equations,
provided that the inevitable capacitance from each node to ground is included in the
equations [New84). As in other relaxation based algorithms, the equations are parti-
tioned into subsystems which are solved independently during the iterative process.
Due to the inherent partitioning of the equations. waveform relaxation exhibits natural
parallelism which can be utilized on parallel processors to reduce the overall computa-

tion time.

In this chapter, the basic waveform relaxation algorithm is summarized. The form
of waveform relaxation implemented in the RELAX2.3 program (Whi85a. Whi86] is
used as a model of the basic algorithm on a uniprocessor. Different approaches for
exploiting parallelism are then identified. Both the Gauss-Jacobi and Gauss-Seidel
relaxation methods are considered, and the techniques of exploiting parallelism at the
window level or at the time point level are compared. Task graphs representing the
computations and their interdependencies are introduced. A first-order analysis of the
parallel algorithms is presented based on the task graphs and some simplifying assump-
tions. The combination of the Gauss-Jacobi relaxation method and time point pipelining

is identified as the algorithm with the greatest potential paralielism of the algorithms
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considered. The performance of the parallel algorithms is investigated in greater detail

in subsequent chapters.

2.1 Waveform Relaxation
Consider a circuit with N nodes. which satisfies a system of differential node
equations of the form

gv@)u@)=fG(k)u). te0.¢,] (2.1)

with initial conditions

v(iO)=V, (2.2)
where ¢ €R is time. v:R=R" is the vector of node voltages, V €R” is the vector of
initial node voltages, u :R—R’ is the vector of known source values, f :R" xR" =R"
is the vector of currents flowing into charge storage elements at each node,
q RY xR ~R" is the vector of charges stored at the nodes. and ¢ is the time deriva-
tive of ¢. Prior to solving the equations by waveform relaxation, the system of equa-
tions must be partitioned into subsystems. Since (2.1) is written in terms of node equa-
tions, the equation partitioning problem is equivalent to partitioning the set of circuit
nodes into subsets that are mutually exclusive and exhaustive. Each subset of nodes,
together with the circuit elements connected to the nodes, represents a subcircuit. To
achieve fast convergence speed during the relaxation iterations, it is important to keep

nodes that are tightly coupled to each other in the same subcircuit.

For the Gauss-Seidel relaxation method, an ordering of the subcircuits must be
defined. For fast convergence, this ordering should reflect the predominant direction of
signal flow in the circuit. If the circuit contains n subcircuits. then the subcircuits are
assigned numbers from 1 to n such that, in as many cases as possible, strong signals

flow from lower numbered subcircuits to higher numbered subcircuits. When feedback

paths are present. some signals will flow from higher numbered subcircuits to lower
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numbered subcircuits. and these signal paths can lead to slow convergence. = 3
To counteract the negative impact of global and local feedback on convergence
speed. the time interval (0. ¢ 1 ] is partitioned into subintervals called windows. Conver- B
gence occurs more rapidly at the beginning than at the end of a window. Consequently, g "3

if the size of a window is reduced, in order to include only the first part of the original
window, then fewer iterations are required for convergence. However, if the window
sizes are made too small, then excessive time points will be introduced at the window
boundaries for those subcircuits that have constant or slowly changing signals. The
window boundaries are modified dynamically during the solution process based on the

observed convergence speed and signal activity.

During the actual equation solution phase of a waveform relaxation program, the

windows are processed sequentially, with the final solution point of one window serv-

ing as the initial condition of the next window. Within each window. the subcircuits

are solved independently on each iteration. using previously computed or guéssed

&3

values for the voltages which are external to the subcircuit being solved. The

differential equation of subcircuit i in window [t,.¢,] on iteration k is given by .
. alt) S @) AW) A
GO0y Vit Vi L Viaie s Ve W) = I
. i :
~ (k) a (k) k) &) ~ (k) '
fl'(vl.l' e Viagio Y )v Vielir " v Va,iv u) t Glta.tb]. (2.3)

where v, is the vector of node voltages for those nodes that are in subcircuit i. and g,
and f, are vector functions containing the components of ¢ and f that correspond to
the nodes of subcircuit i. The vector Gj(_';). for any j#i, is a vector of voltage

waveforms for the nodes belonging to subcircuit j, which are treated as known source

waveforms in the solution of subcircuit i . The iteration from which these waveforms

(55 E 52 =
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are obtained depends on which relaxation method is used. When Gauss-Seidel relaxa-

tion is used, o
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v; . if j<i
s &2 -1 (2.4)
S ), if j>i
and when Gauss-Jacobi relaxation is used.

\7](_’: )=vj“ D, for all j #i. (2.5)

© ;s a vector of initial guess waveforms.

In all cases v

The basic waveform relaxation algorithm with windowing. using either Gauss-

Seidel or Gauss-Jacobi relaxation can be summarized as follows:

Algorithm 2.1. Windowed Waveform Relaxation

partition into subcircuits
order subcircuits

t, =0
while (¢, <t, ) { /* window loop */
choose ¢,
k~1 :
repeat | /* relaxation iteration loop */
if (any subcircuit used 100 many time points) decrease ¢,
if (kex){
decrease ¢,
decrease integration error tolerance
}
for(i=1,2,...n){ /* subcircuit loop */
solve (2.3) for v,;*  /* subcircuit evaluation task */
}
k—k +1
} until (convergence obtained)
t,-t,
reinitialize integration error tolerance
}

The endpoint of the current window, {,. is initially determined based on the
number of points and the number of iterations of the previous window. Target values
of approximately 60 time points and 5 iterations are used in RELAX2.3 1o control the
window sizes. If these targets are exceeded, the window size is decreased. If the

number of time points and iterations in a window are significantly below the target

values, then the size of the following window is increased. Most windows converge




without triggering the window reduction mechanism.

The set K contains the iteration numbers on which the window size is to be
reduced to encourage faster convergence. RELAX2.3 uses X ={6,12,18, ---}. The
reduction of the integration error tolerance which accompanies a window reduction
causes smaller time steps to be used in the numerical integration, since the waveform
relaxation convergence theorem assures convergence only when the step size is

k)

sufficiently small [Whi86]. Convergence is detected on iteration k if v#®) matches

v~V within a specified convergence tolerance, at each point in the window [e,.2,]).

Algorithm 2.1 does not include the partial waveform convergence feature in which
subcircuit evaluations are bypassed if the input waveforms of the subcircuit match the
previous iteration. The use of partial waveform convergence in parallel waveform

relaxation is addressed in Chapter 7.

Nearly all of the computational effort is concentrated in solving (2.3) in the inner-
most loop of the algorithm. This is a problem of exactly the same form as the original
problem represented by (2.1); however, the size of the problem is smaller both in terms
of the number of unknowns and the length of the time interval. Conventional circuit
simulation techniques [Chu75, Nag75] are used to solve the subcircuit equations: the
time scale is discretized by an implicit, stifly stable. variable step size numerical
integration algorithm [Gea71]; the nonlinear algebraic equations which result at each
time point are solved iteratively using Newton's method: and the linear equations aris-

ing on each Newton iteration are solved using Gaussian elimination.

2.2 Parallel Algorithms

The objective of this section is to identify the parallelism in Algorithm 2.1, which

can be exploited on parallel processors. Attention is restricted to the portion of the

algorithm that actually solves the differential equations, excluding the partitioning and
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ordering steps. Although parallelism can also be exploited in partitioning and ordering,
these tasks account for a small fraction of the overall computation time, and therefore,
the parallelization of these tasks offers only limited opportunity for speeding up the

overall run time.

At the highest level of Algorithm 2.1 is the window loop. In each window, the
initial conditions are obtained from the final voltage values of the previous window.
These values are known only when the previous window converges. Consequently, the
windows must be processed serially. Within a window, the main computational tasks
are subcircuit evaluation tasks. Each of these tasks consists of the computations
required to solve a subcircuit over an entire time window on one relaxation iteration.
Some of the subcircuit evaluation tasks can be performed concurrently, but restrictions
are imposed on the sequence of task executions due to the propagation of waveforms

from one task to another.

A conservative method of managing the restrictions on parallel task executions is
the full window technigque. In this scheme, a subcircuit evaluation task is allowed to
begin executing only after all of its input waveforms from other tasks are available
over the entire current window. For example, if subcircuit 7 on iteration 3 requires
input waveforms from subcircuit 1 on iteration 3 and subcircuit 8 on iteration 2, then
the evaluation of subcircuit 7 would not begin on iteration 3 until after the solutions of
subcircuits 1 and 8 were completed over the entire window for iterations 3 and 2,
respectively. Scheduling of subcircuit evaluation tasks in the full window technique is
relatively inexpensive. When a task finishes, it can check to see if any of the tasks to

which it supplies waveforms are ready to start executing. These checks need only be

performed after a task computes the last time point of a window.
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The full window technique utilizes a course grain of parallelism in that it treats a
subcircuit evaluation task as an indivisible schedulable entity. and subcircuit evalua-
tion tasks normally involve a large number of computations. The advantage of this
approach is that the scheduling overhead is small compared to the amount of computa-
tions performed in the subcircuit evaluations. The disadvantage is that the full degree
of available parallelism is not exploited. The time point pipelining parallelization stra-
legy exposes greater parallelism. at the expense of increased overhead, by using a finer

granularity.

In time point pipelining, the subcircuit evaluation tasks are broken down into sub-
tasks, each consisting of the evaluation of a subcircuit on a single iteration at a single
time point. Each of these subtasks is allowed to begin executing as soon as all of its
input data are available. In the example cited above, subcircuit 7 may compute a time
point at time ¢ after the evaluations of subcircuits 1 and 8 have progressed through
time ¢ on iterations 2 and 3, respectively. Since computations can begin sooner in time

point pipelining than in the full window technique, the overall completion time should

be smaller for time point pipelining, and the degree of parallelism should be larger.

The scheduling of computations in time point pipelining is more expensive than in
the full window technique, because checks must be performed after the computation of
each time point to determine if any other subtask is eligible to execute as a result of the
availability of the newly computed time point data. Consequently, the full window
technique and time point pipelining offer a tradeoff between lower overhead and greater
parallelism.

Further parallelism can be exploited within each individual time point subtask,

with an accompanying increase in overhead. Since standard direct method circuit simu-

lation techniques are used at the subcircuit level, the problem of parallelizing computa-
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tions within a single subcircuit evaluation task is equivalent to the problem of parallel- 9
SO
izing the standard direct methods. The evaluation of the model equations for each cir- e
¢ A\,{ ¢ e
cuit element can be performed in parallel on each Newton iteration, and the loading of “,i

the Jacobian matrix is readily parallelized. The parallelization of the solution of the e
linear équations is hampered by the high degree of sparsity in the matrix, the irregular
pattern of nonzero matrix entries, and the large number of data dependencies in Gaus- v |
sian elimination. In the context of waveform relaxation. the amount of parallelism
available within a single subcircuit evaluation task will be small compared to the paral-

lelism of direct methods applied to the entire circuit. because the subcircuit sizes are

typically small. For those circuits which cannot be successfully partitioned into subcir-

cuits of uniformly small size, the use of parallelism within the subcircuit evaluation

tasks offers a potential for accelerating the solution of the larger subcircuits, which tend
to create bottlenecks in the full window technique and time point pipelining. The use

of parallelism within individual subcircuit evaluation tasks is not considered further

here. Instead, attention is focused on the natural parallelism between different subcir- ,,

cuits that arises directly from the use of waveform relaxation. ’ ' -
FR

The full window technique and time point pipelining are two different methods of '.e::“
orchestrating the parailel execution of a fixed set of computations. Contrastingly, the :i::f::,‘ K
Gauss-Seidel and Gauss-Jacobi relaxation methods result in different computations ;i?z‘,;“:t:
being performed to reach approximate solutions that match the exact solution within E;{::ti
ISR

some acceptable tolerance. The Gauss-Seidel method generates a set of computations s:!};:f?;f
which generally converges to the solution in fewer iterations than Gauss-Jacobi. How- ;::;;i.
ever, the Gauss-Jacobi method generates a set of computations which has a higher degree EE':::“&’"
of parallelism, because all subcircuit evaluatim.\ tasks of any given iteration can be exe- E:Eoﬂ%‘:'f
cuted concurrently without any waveform communications between the tasks. This ',‘.:}:.:'
raises the question of whether the extra parallelism of Gauss-Jacobi is sufficient to :'::::“::',
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overcome the penalty of requiring a larger number of iterations.

By combining either the full window technique or time point pipelining with
either the Gauss-Seidel or Gauss-Jacobi relaxation method. one of four different parallel
waveform relaxation algorithms is obtained. The four algorithms and their principal

tradeoffs are summarized in Fig. 2.1.

2.3 Task Graphs

Task graphs are useful tools in studying and implementing parallel algorithms. A
task graph is a directed graph in which the vertices represent tasks and the arcs
represent precedence constraints [Hwa84]. An arc from vertex i to vertex j indicates
that task i must finish before task j is allowed to begin executing; i is said to be a
predecessor of j and j is a successor of i.

Waveform relaxation task graphs are closely related 1o the subcircuit interconnec-

tion structure, which is conveniently represented by a subcircuit graph. For a given cir-

cuit partitioned into n subcircuits, in which the subcircuits are numbered from 1 to n

Gauss- Gauss-
Seidel Jacobi
Full Window more
Technique FWT-GS FWT-GJ parallelism
&
T-xme. P.oint TPP-GS TPP-GJ more
Pipelining overhead

more parallelism
more iterations

ot

Figure 2.1. Paralle]l waveform relaxation algorithms.
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reflecting a given ordering of the subcircuits, the subcircuit graph is defined as follows:

Definition 2.1. The subcircuit graph G contains one vertex for each subcircuit, labeled
with the subcircuit number. An arc exists from vertex i to vertex j if and only if a node

equation in subcircuit j depends on a node voltage which belongs to subcircuit i.

For the Gauss-Seidel method. waveforms are propagated differently depending on
whether the waveform is computed in a subcircuit that has a higher or lower number
than the destination subcircuit, as indicated in (2.4). This distinction motivates the

next definition.

Definition 2.2, Anarc in G from i to jis called a feedforward arc if i < j, and is called

a feedback arcifi > j.

This terminology agrees with the standard circuit concept of feedback provided the ord-

ering of subcircuits conforms to the predominant direction of signal flow in the circuit.

2.3.1 Full window technique

A waveform relaxation task graph for the full window technique depends on
which relaxation method is employed and on the number of iterations to be performed.

as reflected in the notation introduced in the next definition.

Definition 2.3. For a given G, the task graphs for m iterations of the Gauss-Jacobi and
Gauss-Seidel methods using the full window technigue are denoted as T, ,, and T ..
respectively. Each vertex represents a subcircuit evaluation task and is labeled with an
ordered pair (k.i), where k is the iteration number and i is the subcircuit number. An

arc exists from (k.i,) to (k,.i,) if and only if (k ,,i,) requires an input waveform from

(k,.é)).
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The task graphs can be constructed from G, based on the waveform communica-
tion rules for the applicable relaxation method. Each vertex i of G maps to m vertices
in the task graph, labeled (k.i), for k €{1.2, ---.m]}. Each of these task graph ver-
tices is said 10 be an instance of vertex i in G. For the Gauss-Jacobi task graph. each

arc in G from a vertex i to a vertex j maps to m—1 arcs in Tg; .. from (k.i) to

R 2 & A3

(k+1,j), for k €{1.2, ---.m—1}. These arcs are said to be instances of the arc in G

from i to j. For the Gauss-Seidel task graph, each feedback arc in G from i to j maps

-
B
s

to m —1 instances in Ty, . from (k.i) to (k+1, j), for k €{1,2. -- - .m—1}: and each
feedforward arc from i to j maps to m instances in T ,, . from (k.i) to (k. j). for
k€{1.2, ---,m}. Figure 2.2 shows a sample subcircuit graph and corresponding

Gauss-Seidel and Gauss-Jacobi task graphs for the case m =2.

The instance relationships introduced in the construction of the task graphs define

LR &% B3

mappings between elements of the subcircuit graph and the task graphs. These relation-

-

e ships are useful in proving theorems which relate properties of parallel relaxation

PN
e

3 methods to properties of G. If T is one of the task graphs, then observe that any
directed path in 7 maps to a directed walk in G, such that the j"' vertex (or arc) of

the path in T is an instance of the j"' vertex (or arc) of the walk inG. AnarcinT is

8 @)

referred to as a feedback or feedforward arc. based on whether it is an instance of a

‘ feedback or feedforward arc, respectively. To simplify subsequent discussions of the

vy

subcircuit and task graphs, the terms path, walk, and cycle will be used to refer to

directed paths, walks, and cycles.

o 2.3.2 Time point pipelining

Task graphs for the time point pipelining method can be constructed in which each

(23

vertex represents the computation of a single time point in a single subcircuit on a single

iteration.
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Iteration 1 Iteration 2

(1,1) (1.2) (1.3) (1.4 1.5 (1.6)
Iteration 1

Iteration 2
2.1) 22) (23) (2.4) (25) (2.6)

(c)

Figure 2.2. Subcircuit graph and related task graphs: (a) G ; (b) T 5: (c) Tg; 5.
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Definition 2.4. For a given circuit with a given G, the unaugmerted task graphs for m
iterations of the Gauss-Jacobi and Gauss-Seidel methods using time point pipelining are
denoted as Trppg; m and Trppgs o+ Tespectively. Each vertex represents a time point
subtask which consists of the evaluation of a time point in a subcircuit on a relaxation
iteration, and is labeled (k.i.t), where k is the iteration number, i is the subcircuit

number, and t is the value of the time variable.

A time point pipelining task graph T,,p can be constructed from the corresponding
full window technique task graph I’ and from knowledge of the number and locations
of the time points. When a time point at some time ¢t is computed in subcircuit evalua-
tion task (k. i), its time value is initially determined based on the previous time step
and the estimated local truncation error at that step. Let ¢, (k.i.t) be this initial
choice of the time value. If the number of Newton iterations is excessi\'/e or if the local
truncation error is excessive for the new time point at time ¢;,, (k.i.z ), then the time
step is reduced répeatedly until the Newton iteration count and the truncation error are
acceptable. The final value of the time variable ¢ for the time point is less than or
equal to ¢,,, (k,i.z). Consequently. when computing the time point at time . it is

necessary for the input waveforms to be available through time ¢, (k.i.¢).

The construction of Trpp begins by defining vertices for all the time point subtasks
and labeling them as specified in Definition 2.4. Consider any arc in T from a task
(k,.i,) to (k,.i,). For each time point ¢, in (k,.i,). let ¢, be the smallest time point
in (k,.i,) such that¢,2¢,,, (k,.i,. t;). Then there is an arc in Tppp from (k,.i,.7,) 0
(kyizty).

Unlike the task graphs for the full window technique, the time point pipelining
task graphs cannot be constructed solely on the basis of G and m . The number of time

points to be computed and their locations on the time axis depend on the signal activity
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in the subcircuits, and this information is not known prior to simulating the circuit.
The time point pipelining task graphs may be constructed after the simulation is com-
pleted, or they can be constructed dynamically during the simulation. For this reason,
the time point pipelining task graphs play a less important role than the full window
technique task graphs in presimulation studies of parallelism. Due to the relationship
between the time point pipelining and full window technique task graphs, the simpler
full window technique task graphs can be used in the study and implementation of
time point pipelining by recognizing implicitly that each task consists of a sequence of

time point subtasks with suitable precedence constraints.

2.4 First Order Analysis of Paralle] Algorithms

Based on the task graphs and some simplifying assumptions, first-order measures

of the parallelism of diﬂ'ere;mt relaxation methods and different parallelization strategies

" can be derived. The first-order estimates are not accurate measures of the parallel pro-
. cessing speedups that can be obtained in practice. Nonetheless, these estimates provide
basic insights into the different parallel algorithms and the fundamental tradeoffs

involved. More accurate models of parallelism are developed in Chapter 4.

24.1 Full window technique

The following simplifying assumptions apply to the first-order analysis of the full

window technique:
(a) Each subcircuit evaluation task requires exactly one unit of computation time.

(b) There is a sufficient number of processors such that each task can begin executing

immediately after all of its predecessors in the task graph have finished executing.

(c) There is no parallel processing overhead due to task scheduling, data communica-

tions, or contention for shared resources.
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Since each task is assumed to require one unit of time, and since each task is
assumed to begin immediately after its predecessors terminate. the task graph can be
partitioned into levels such that the tasks in level { are those which are active during
processor time interval ({—1,1]). Figure 2.3 shows the levelizations of the task graphs

of Fig2.2.

Level 1
Level 2
Level 3
Level 4
Level 5

Level 6

2.5) (2.6) Level 7

Iteration 1 Iteration 2

()

(1.1) (1.2) (1.3) (1.4) (1.5) (1.6)

Iteration 1 Level 1

Iteration 2 Level 2

2.1) 22) 23) Q4 25 Q)

(b)

Figure 2.3. Levelized task graphs: (a) Tg; ,: (b) Tg; ».
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For a task graph 7, the time required to execute all the tasks on a multiprocessor
with & sufficient number of processors is equal to the depth of the graph. D (T ). which
is defined as the number of vertices in a longest directed path, or equivalently the
number of levels in the levelized graph. The average number of tasks executed st each
step is the average width of the graph, W (T )=|V (T )}/D (T ). where |V (T )| is the total
number of vertices in the graph. For the example in Fig. 2.3, D (T;5 )=7, D(T;; ,)=2.

w (TGS. 2)§l.7. and W (TGI. 2).6.

The superior parallelism of Gauss-Jacobi over Gauss-Seidel is apparent from the
task graphs. In general, m iterations of Gauss-Jacobi require only m steps. since within
each iteration all the tasks can be executed concurrently. Except for some degenerate
cases mentioned in Chapter 3, D(T;; . )*m and W (T, . )=n. In contrast, the tasks
of any single iteration of Gauss-Seidel generally have data interdependencies such that
they cannot all be executed concurrently. Normally. D(T4s ,.)>>D(Tg, ) and

W(TGS.M )<<W(T61.m )’

The superior parallelism of Gauss-Jacobi is achieved at the expense of an increase
in the number of iterations required to converge. In the Gauss-Seidel case a signal can
propagate through an entire forward signal path in & single iteration. In the Gauss-
Jacobi case, however. signals propagate at a rate of one subcircuit per iteration. This
suggests that circuits with long signal paths will require a large, perhaps prohibitive.
number of Gauss-Jacobi iterations. However, in a given time window. long signal paths
are frequently broken into smaller subpaths by logic gates. pass transistors, or clocked
devices which block the signal flow. The number of Gauss-Jacobi iterations is then
determined by the number of subcircuits in each subpath and by feedback between sub-

circuits. Even if a long path is present. the Gauss-Jacobi iterations may not be excessive

if the subpaths are short.
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Consider the subcircuit graph and related task graphs in Fig. 2.4. The circuit con-
sists of a single long path with no feedback. The Gauss-Seidel method produces the
exact solution in 1 iteration. and the Gauss-Jacobi method requires exactly n iterations.

However, both methods require exactly n units of computation time. The Gauss-Jacobi

(a)

(1.1
1.2)
(1.3
(1.4)
.5)

(1.6)

n-1.1) \
\ \ (r-1.a)
o ...

(n.1) (n2) (n.3) (n.4) (n.S5) (n.6) (nn-1Xnn)

(
(1n)
(v) )

Figure 2.4. Long signal path example. (a)G:(b) Tgs s () Ty, .
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method requires more processors. but it produces the same result in the same amount of
iime in this example.

Suppose that a logic gate or pass transistor in subcircuit n/2 is in a state
throughout some particular time window such that signal fiow from subcircuit n /2 to
n/2+1 is blocked. Since the subcircuit graph is unchanged, the Gauss-Seidel method
will still require 1 iteration and n units of time. The Gauss-Jacobi method will obtain
the exact solution in n /2 iterations, requiring only n /2 units of time, because the long-
est effective signal path has length n /2. Gauss-Jacobi effectively solves the two isolated

portions of the circuit concurrently.

In digital circuits, signal paths are frequently blocked by clocked devices during
certain intervals of time. The automatic windowing algorithm of RELAX2.3 typically
chooses windows which are smaller than one clock period. Therefore. in a typical win-~
dow, the effective signal path lengths are much shorter than the paths in the subcircuit
graph. The Gauss-Jacobi method automatically exploits the parallelism between the

essentially disconnected portions of the circuit; the Gauss-Seidel method does not.

In the segmented waveform relaxation method [Dum87], the time axis is parti-
tioned into time segments, whose boundaries are explicitly synchronized with clock
transitions. Portions of the circuit which are disconnected by clocked logic elements
during a time segment are recognized, and the Gauss-Seidel method is applied separately
and concurrently to the disconnected portions for the first iteration of the relaxation.
This approach exploits the parallelism between different parts of the circuit while
retaining the Gauss-Seidel ordering within the isolated circuit portions. However, the
program is required to recognize the clocked elements and derive the resulting effective
circuit partitioning. Thus, the method is less general and more complicated than

Gauss-Jacobi. In those cases where it is applicable, it may be more effective than
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Gauss-Jacobi when the number of processors is limited. because it avoids some of the
redundant computations which tend to occur in Gauss-Jacobi on the iterations before a
signal reaches a particular subcircuit.

The preceding discussion gives reasons whby the Gauss-Jacobi method may be
preferable to Gauss-Seidel on parallel processors. Further theoretical and experimental
evidence will be presented in subsequent chapters to show that when a sufficient
number of processors is available. parallel Gauss-Jacobi is faster than parallel Gauss-
Seidel.

In preparation for comparing the full window technique with time point pipelin-
ing. the following assumption is added to those previously introduced for the first-

order analysis of the full window technique:
(d) The number of tasks in each level of the task graph is constant.

The number of active tasks can then be plotted as a function of time. as in Fig. 2.5(a).
Since a different number of iterations is generally required for the Gauss-Jacobi and
Gauss-Seidel methods. the symbols mg; and mge are used to represent the number of
iterations required for each method to converge. where typically m;; >mgs. The
curves emphasize the fact that even though Gauss-Jacobi requires more computations as
represented by the area under the curve, its greater parallelism can lead to a smaller
overall computation time. The number of processors required to achieve the fastest
possible computation time for Gauss-Jacobi is greater than that needed for Gauss-Seidel,

as indicated by the heights of the curves.

2.4.2 Time point pipelining
The first-order analysis of time point pipelining is based on the full window task

graphs. The tasks are implicitly divided into subtasks, each consisting of the evaluation
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Figure 2.5. Active tasks vs. time for (a) full window technique and (b) time point
pipelining. based on simplified parallelism model. D;; =D (Tas.mc,) and
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of a subcircuit on an iteration at a time point. Subtasks are represented by ordered tri-
ples of the form (k.i.t), such that (k.i) is the subcircuit evaluation task which con-
tains the subtask, and ¢ is the value of the time variable at the time point. The follow-
ing simplif ying assumptions apply to the first-order analysis of time point pipelining, in
addition to the assumptions used in the full window case:

(e) Each subcircuit evaluation task contains p time point subtasks.

(f) Each subtask requires the same amount of computation time, 1/p time units.

(g) The time point locations on the time axis are identical in each task.

(h) No time step reductions occur due to excessive integration truncation error or

excessive Newton iterations.

(i) There is a sufficient number of processors such that each subtask (k.i.t ) can begin
execution immediately after all predecessors of (k. i) have finished computing the

time point at time ¢, and (k. i ) has computed the time point preceding ¢ .

These assumptions are generally not accurate. but are useful to demonstrate the basic
properties of the algorithms. Assumptions (e) and (g) do not hold exactly in practice
because the time points are chosen independently in each subcircuit based on the signal
activity within the subcircuit. Assumption (f) does not hold exactly because subcir-
cuits of different sizes have subtasks requiring diffzrent computation times. Generally
the assumptions tend to result in overestimates of parallelism.

When time point pipelining was originally introduced it was used in conjunction
with the Gauss-Seidel method as a way to increase the parallelism without giving up
the fast convergence properties of Gauss-Seidel. However, the technique is equally

applicable to any relaxation method that can be represented by a full window technique

task graph. including Gauss-Jacobi.
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Let T be any full window technique task graph. and consider the operation of the
time point pipelining algorithm applied to T as the parallel computation time !
progresses, using the stated simplifying assumptions. Let ¢ ({) be the number of active
tasks in processor time interval (({—=1)/p.l/p). Initially, each task in level 1 of T can
compute its first time point, and therefore ¢ (1)=W(T), assuming the task graph has
constant width. Once these time point computations are completed. the second time
points of the level 1 tasks can be computed concurrently with the first time points of
the level 2 tasks. resulting in ¢ (2)=2W (7). The parallelism continues to increase at a
rate of W (T ) until either all tasks in the task graph are active simultaneously, or until
the last time point is computed in the level 1 tasks. Consequently, the peak parallelism
is

mlulc (1)} = mintnm . W(T )p}. A (2.6)
After the last time point is computed in the level 1 tasks and after the first time point
is computed in the tasks of the final level, the parallelism decays at a rate of W(T),
because at each step another level completes its last time point and no new levels are
started. The final completion time is given by {D (T )+p—1)/p, because after D (T)
steps the bottom level tasks complete their first time points, and after p —1 more steps
they complete their last time points, where each step requires 1/p time units. Combin-

ing these results, a formula for ¢ (1) is obtained for all integers{:

w .0<l €min{D. p)
min{am . pW)} . min{D, p)<l Emax{D.p)
c(l)= , 2.7
(D+p=l)W . max(D.pl<i<(D+p-1)
0 . otherwise

where D and W are the depth and width of the full window technique task graph.
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Generic plots of the number of active tasks as a function of parallel processor
time, based on (2.7). are shown in Fig. 2.5(b) (p. 25) for Gauss-Jacobi and Gauss-Seidel.
The substitution W (T, ,, )=n has been used in the figure to emphasize the fact that

typically W (7, mg, )=n >>W(TGS.,.“ ). Note that the parallelism at each point using

time point pipelining is at least as large as the full window parallelism using the same
relaxation method. Also note that both the peak parallelism and the rate of growth of
parallelism are greater for Gauss-Jacobi time point pipelining than for Gauss-Seidel
time point pipelining. Finally, the number of processors required to use all the avail-
able parallelism of Gauss-Jacobi time point pipelining can be quite large for a large cir-

cuit if large windows are used.

25 Augmented Task Graphs

The task graphs Tg; ,, and Tgs ,, account for the evaluation of subcircuits and the
data communications between subcircuit evaluation tasks. Although these are the most
important tasks and data dependencies. they are not the only ones. Computations must
Je performed to determine when the iterations converge. The convergence checking
operations can either be packaged inside the subcircuit evaluation tasks, or they can be
treated as separate tasks. In either case, the task graph must be augmented by adding
arcs or both vertices and arcs. to account for the additional data dependencies and. in

the latter case. the additional tasks.

2.35.1 Separate convergence checking tasks

For each subcircuit evaluation task (k,i ) in window [¢,.¢, ], a convergence check-

ing task (k,i ), can be defined. which executes the following algorithm:

Algorithm 2.2. Convergence Checking Task: (k,i )

if (v, (¢ ) matches v, V(¢ ), for all ¢ €[t,.¢, ], within tolerance) {
unconv, *~unconv, —1
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if (unconv, =0) signal global convergence o

} i

' The counter unconv, represents the number of unconverged subcircuits in iteration &, =
XY

. and is initialized to n. The decrementing and testing of the counter must be performed

- N

in a critical section to insure the integrity of the count values since different conver- K

l gence checking tasks may execute concurrently. When global convergence is signaled, .
then any remaining incomplete tasks in the task graph are superfluous since they are for ’

' iterations greater than the iteration in which convergence was obtained. o

The addition of the convergence checking tasks and the accompanying data depen-

.

dencies are reflected in the augmented task graphs which are defined as follows:

Definition 2.8. For any task graph Tg; . or T .. the corresponding augmented task o
graph fol. norT 6s.m iS5 constructed by adding a 1ask (k.i ). for each task (k.i), and
adding arcs from (k.i) to (k.i),. for all k €{1....m},i €{1...n}, and adding arcs from e::‘;

(k—1.i)¢to (ki) forall k €{2,..m),i €{1...n}. b

An important feature of these augmented task graphs is that there are no new arcs ‘
terminating at subcircuit evaluation tasks. Consequently, the parallel completion time .
of the subcircuit evaluation iasks is not affected by the additions to the task graph. :
Convergence checking tasks can be executed concurrently with subcircuit evaluation .Q,
tasks, except for the convergence checking task corresponding to the last subcircuit e
evaluated in the converging iteration. Therefore, the parallel completion time for the ot
augmented graph is greater than the original graph by the time of one convergence i
checking task, which is much smaller than a subcircuit evaluation task. For this reason, Wy
the use of the unaugmented task graphs is justified in the study of parallel waveform g

relaxation, even though these graphs do not explicitly account for convergence checking.

v
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25.2 Convergence checking in subcircuit evaluation tasks

L

An alternative approach to handling convergence checking is to treat the conver-

gence checking task (k,i ), as part of the subcircuit evaluation task (k,i ). This results

in a simpler implementation with lower overhead for task scheduling. However, extra

¢ arcs must be added to the task graph to assure that the waveforms are available from
(k=1.i) as needed by the convergence checker inside (k.i). A different type of aug-

mented task graph results from this treatment of convergence checking, as given in the

following definition.

o

R &8 22 &

Definition 2.6. For any task graph T, ,, or T ., the corresponding augmented task
graph fG],m or fas.m is constructed by adding arcs from (k.i) to (k +1.i) for all

kel{l,..m-1},i€lt..n)

LR &

The added constraints produce an additional simplification in the implementation

of the paraliel algorithm. because the constraints prevent any subcircuit from being

&

active in more than one iteration at any moment of time. For example, tasks (1, 1) and
(2, 1) are not allowed 1o execute concurrently. because these are two instances of the
* same subcircuit in different iterations. However, different subcircuits are allowed to be
active in different iterations concurrently, to the extent permitted by the original task

graph. For example, in the task graph of Fig. 2.2(a), tasks (1. 4) and (2, 1) may be exe-

S N

cuted concurrently, because there is no path connecting them. The fact that only one

instance of each subcircuit can be active at a time means that some data structures can

-

be allocated once for each subcircuit and used by all instances without conflict.

Adding arcs to the task graph can reduce the degree of parallelism by requiring

some tasks to be executed serially, which previously could have been executed in paral-

(B &5 b 234 B2 9@

lel. The degree by which the parallelism is reduced by the additional arcs is investi-

gated in the following theorems.
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Definition 2.7. For a given G, let B;;(s) and B;s(s) be the maximum number of
instances of subcircuit s that can be active concurrently using the full window technique
based on the unaugmented task graphs Ig; ., and T, ., respectively, where the task exe-

cution times and number of processors are arbitrary.

Definition 2.8. For any directed graph H in which each arc is designated as a feedback
or feedforward arc, let f (H ) be the number of feedforward arcs in H and let b(H ) be
the number of feedback arcs in H .

Theorem 2.1. If s is a vertex of G then

fE@P+(CY | if s isinacycle
B r (5) = (2.8)
¢ co . otherwise
and
b(C) ifs isin a cycle
- (2.9)
Bos(s) = Lo , otherwise

where C, is a cycle of G which minimizes f (C,)+b(C,) and C, is a cycle of G which

minimizes b (C,).

To prove the theorem, first consider the Gauss-Jacobi case and suppose s is in a
cycle. For each k >0 there is a path from (k.s) to (k+f (C,)+b(C,).s) in T;; .
corresponding to one traversal of C,. Therefore, (k.s) and (k +i[f (C,)+b(C))).s)
cannot be active simultaneously, for any i €{1.2, --- . If (k,,5)..... (k. s ) are active
simultaneously. then k , mod (f (C)+5(C))) . ... k, mod (f (C)+5(C,)) must be dis-
tinct. Hence y< f (C,)+5(C,) which implies

Bss (s )Sf (C)+b(C)). (2.10)
Note that the first f (C,)+b(C,) instances of s are mutually independent, since any
directed path connecting two of them would violate the fact that C; minimizes

f(C)+b(C,). If these independent tasks have arbitrarily large computation times
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compared to all other tasks, they will be active concurrently. given enough processors.

&K

Therefore,

Bs;(s)2f (C)+b(C)). 2.11)
Combining (2.10) and (2.11) verifies the first part of (2.8). If s is not in a cycle. all

instances of s are independent, and an arbitrary number of them can be active con-

currently, thus completing the proof of (2.8). The Gauss-Seidel result is obtained by

s =)

noting that for each X >0 there is a path from (k.s) to (k+5(C,). s) in T4 o .
corresponding to one traversal of C,. and then following the same argument as for the
Gauss-Jacobi case to complete the proof.

In circuit simulations where a high degree of accuracy is required, accurate models

are used which invariably have bidirectional coupling between each pair of nodes that

are connected through a circuit element. Even MOS transistor gate terminals, which are

15 &5

nearly unidirectional, are subject to capacitive feedback from the source and drain ter-

minals. In terms of the subcircuit graph., a circuit which has only bidirectional Eoupling

==

will have an arc from vertex j to vertex i for each arc from i to j. The number of
possible concurrent instances of subcircuits is severely restricted for circuits with

bidirectional coupling, as evidenced by the next theorem.

)
N3
£y
B

“a

=

s
s

Theorem 2.2. If all coupling in G is bidirectional, and if G contains no isolated vertices,

ﬁ: then B;; (s )=2 and Bs5(s) = 1.

If 5 is a vertex of G. then there exists a vertex j such that there are arcs from s to j

S

and from j to s. These two arcs constitute a cycle C containing vertex s, such that
f (C)=b(C)=1. Since any cycle must contain at least one feedforward arc and one

feedback arc, C minimizes the expressions f (C)+b(C) and 5(C). The proof is com-

125 B8 i g &% @)

- pleted by applying Theorem 2.1.
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The preceding theorem indicates that the extra arcs of the augmented graph have
absolutely no effect on the parallelism of the Gauss-Seidel method for bidirectionally
coupled circuits. But in the Gauss-Jacobi case. a factor of up to 2 may be sacrificed in
parallelism. In the definition of Bg; . the computation times of the tasks are unspecified,
and consequently, B;, represents the worst possible combination of task times. It is
readily apparent that no concurrently active instances of the same subcircuit are possi-
ble in parallel Gauss-Jacobi if all the tasks in the task graph require the same amount of

computation time and if the number of processors is greater than or equal to the

i

i

l number of subcircuits. In this case all tasks in iteration & are active in time interval k.
and no overlapping of iterations occurs. In this case the extra arcs of the augmented

@ graph have no practical effect on the parallelism. This observation motivates the fol-
lowing theorem which relates the loss of Gauss-Jacobi parallelism in the T augmented

' graph to the degree of mismatch in the task sizes. First the concepts of task graph depth

b and width are generalized for graphs in which the vertices have weights representing

the computation times of the tasks.

Definition 2.9. Let D_(T') and W, (T ) represent the weighted depth and weighted

average width of directed graph T with weighted vertices, where D, (T') is the sum of o
the vertex weights in a path which has a maximum vertex weight sum, and W, (T)is

equal to the sum of all vertex weights divided by D, (T ).

Then D, is the parallel completion time and W, is the average parallelism, or the aver-

age number of active processors, assuming an unlimited supply of processors.

Theorem 2.3. If all of the following conditions hold,

(a) G has only bidirectional coupling and no isolated vertices;

OGO U IO NSO DOOC OO0 UOOCIUOAO ROSONTIOINOE
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(b) each instance of subcircuit i requires computation time w; , for each i €{1.2,..n };

(c) j is the subcircuit with the maximum computation time w, =w _.; and

() k is the subcircuit adjacent to j such that no other subcircuit adjacent to j has a
larger computation time;

then

D, (T4 ) 2w
orm’ g = (2.12)
Dw (rGJ.m) ww+"k

Each longest path in 75, . and each path of maximum weight in fa 7.m has exactly m
vertices, one in each iteration. Clearly the path with the largest weight in the aug-
mented graph contains 21! the instances of the subcircuit with the largest weight. Hence

D, (i'c,_,,,) = mw g, (2.13)
In the unaugmented graph. there exists a path starting at (1. j) which alternates

between instances of subcircuits j and k. Consequently,

m m
D,(To;m) 2 | = |Wamt | "k : 2.14)
2 2
Since w . 2w, . it follows that
m
D‘, (TG]'," ) 2 ‘2- (wm+wk ). (2.15)

Combining (2.13) and (2.15) produces the inequality in (2.12). completing the proof.

Theorem 2.3 implies that if the largest subcircuit is adjacent to a subcircuit of
nearly the same size, then the parallel completion time will not be significantly affected
by the augmented arcs of the task graph. However, if the largest subcircuit is adjacent
only to subcircuits which are much smaller. then the loss of parallelism will approach

the worst case factor of 2.
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2.6 Conclusion 4
Four perallel algorithms for waveform relaxation have been presented and
analyzed using a simplified computation model. The paraliel algorithms are derived by
3
using Gauss-Seide! and Gauss-Jaccbi relaxation in combination with the full window .
technique or the time point pipelining technique for exploiting paralielism. The choice ‘
between Gauss-Jacobi and Gauss-Seidel represents a tradeoff between greater parallel-
'
ism and faster convergence. and the choice between time point pipelining and the full .
window technique represents a tradeoff between greater parallelism and lower over- ‘
head. Task graph models for the algorithms have been defined which serve as the basis :
.
for analysis and implementation of the algorithms in subsequent chapters.
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CHAPTER 3

GAUSS-JACOBI/GAUSS-SEIDEL COMPARISON THEORY

The properties of the Gauss-Jacobi and Gauss-Seidel methods for waveform relax-
ation are closely related to the more basic Gauss-Jacobi and Gauss-Seide! algorithms for
the solution of systems of linear algebraic equations. which are examined in this
chapter. The algorithms are compared in terms of convergence speed and parallelism.
For the systems of equations which arise at each time point in the solution of node
equations of MOS circuits. when the time step is sufficiently small, it will be shown
that parallel Gauss-Jacobi is asymptotically faster than parallel Gauss-Seidel. when a
sufficiently large number of processors is used. The theorem which establishes this
result relates the spectral radii of the iteration mtnees to the available parallielism of
the methods. A formula is also derived whick compares the parallelism of the two

methods ia terms of the structural properties of the equations being solved.

3.1 Gause-Jacobi and Gause-Seidel Relaxation

Consider the problem of solving Ax =b by relaxation, where x.5 €R", A €R™™
is nonsingular, and the diagonal elements of A are nonzero. The i” equation is solved
independently for x; while using previously computed or guessed values for the other
variables. The update equation for the i vector element on the k™ iteration for

Gauss-Jacobi is given by

1 i=1 a
(k) (k =1) (k ~1)
x = _—Fi-z‘i,jxj - Z Q;X; 3.1)

‘l.i j=1 i®ie

and for Gauss-Seidel by

~

G (K &= M o 55 G a5 & o9
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1 i =1 -
) &) (&=
5= —l’“Z‘u‘i‘ -z ‘u";‘ "1 (3.2)

e ji=l j =i e}

Let D. L. and U be diagonal. strictly lower triangular, and strictly upper trisngulsr
matrices, respectively. such that A =L +D +U . Then the Gauss-Jacobi and Gauss-Seidel
iteration matrices are given by Mg;=—D (L +U) and Mgg=—(L+D)"'U. respec-
tively. The asymptotic convergence rates are related 1o p(M;, ) and p(My; ). where p
denotes spectral radius, since these are the factors by which the errors are reduced on

each iteration for general initial guesses. as the iteration count approaches infinity.

The Stein-Rosenberg theorem [Var62] relates p(M;;) and p(M;g). and conse-
quently the convergence speeds of Gauss-Jacobi and Gauss-Seidel. for s class of

matrices.

Theorem 3.1. Stein-Rosenberg: If Mg, is nonnegative and p(Mg;)<1, then
“Mos )‘“Ma} )

The condition that M, is nonnegative is equivalent to requiring that g, , /a,; €O for all
i j. The condition p(M;;)<1 is necessary and sufficient to assure convergence of
Gauss-Jacobi. Matrices arising in the transient analysis of MOS circuits satisfy both
these conditions when the time step is sufficiently small, provided that a capacitor is
present from each node to ground. and the gate-drain and gate-source capacitances are
included in each MOS transistor [Whi86). For these matrices. the Stein-Rosenberg
theorem implies that for a sufficiently smail error tolerance, Gauss-Seidel will generally
converge in fewer iterations than Gauss-Jacobi. However, on parallel processors, it is
possible to perform m iterations of Gauss-Jacobi in less time than m iterations of

Gauss-Seidel. Therefore. Theorem 3.1 does not indicate which method will be faster on

parallel processors.




3.2 Paralle] Gauss-Jacobi and Gauss-Seidel

The unknown update equations for Gauss-Jacobi and Gauss-Seidel. (3.1) and (3.2),
involve the same computation. in each case the i" unknown is updated by summing
n =1 products and a constant. Parallelism can be exploited in computing the products
and performing the summation. but the pu;allel‘sm of these computations will be the
same for both Gauss-Jacobi and Gauss-Seidel. The difference between Gauss-Jacobi and
Gauss-Seide! that affects how much t;vul parallelism can be exploited is that in the case
of Gauss-Jacobi all the unknowns can be updated simultaneously on each iteration,
whereas in the case of Gauss-Seidel the number of unknowns which can be updated
simultaneously is limited by data dependencies between different unknowns of the
same iteration.

In order 10 examine the difference between the two methods. let (3.1) and (3.2) be
treated as .tol!lit operations which can be computed in one processor step. Using this
convention. and assuming that at least n processors are available. one iteration of
Gauss-Jacobi takes one processor step. as all the unknown updates can be performed
simultaneously. and one iteration of Gauss-Seidel takes n processor steps if A is full,

as the i” unknown must be updated before the i +1 update equation can be completed.

When A is sparse. it is possible to exploit additional parallelism in Gauss-Seidel to
reduce the number of steps required for one iteration to well below n. The sparsity of

A allows some updates of a given iteration to be done simultaneously. For example, if

@; 41 ; =0, then x,-(“ can be updated simultaneously with x,-(f,) . It is also possible to

begin iteration k +1 before completing iteration k. For example, if @, ; through a, ,

(& 41) &)

are all zero. then one can compute x without waiting for x;” ' through x,,(“ to be

computed first.
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The number of steps required to compute m Gauss-Seidel or Gauss-Jacobi itera-
tions on a sparse matrixz can be determined from an m -iteration task graph. T¢s . OF
Tg7.m - respectively. Each vertex represents the task of performing an update as
specified by (3.1) or (3.2). and each arc represents s data dependency. The graph can be
constructed based on the nonzero structure of A. First the nonzero structure of A is
represented by a directed graph G which is analogous to the subcircuit graph defined
previously. The vertices of G are numbered 1 to n . corresponding to the vector ele-
ment numbers. and each off-diagonal element g, ; is represented by an arc from i to j.
For example, Fig. 3.1 shows the nonzero siructure of a matrix and its corresponding

graph G . The task graphs T, .. and g, .. can be constructed based on G in the same

x0x000
0x0x00
x0XXX0
OxXxXxX0x
00xXxx0
000x0x

(a)

(v)

Figure 3.1. (a) Nonzero structure of A ; (b) the corresponding graph G .
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manner 2s described in Chapter 2.

3.3 The Parallelism Ratio

A comparison of the times required for the parallel Gauss-Jacobi and parallel
Gauss-Seide]l methods must address their relative degrees of parallelism. The parallel-
ism ratio specified in the following definition will be used in comparing the asymptotic

convergence behavior of the methods as the number of iterations goes to infinity.

Definition 3.1. Let the parallelism ratio r be defined by the equation

D(TGS.M)
r = lim ———. (3.3)
m=wD(Tg; )

"
The existence of the limit and the relationship of r to the structure of A will be treated

- ‘.

in a subsequent section of this chapter. Equation (3.3) implies that m iterations of

L.

Gauss-Seidel require 7 times as many processor steps as m iterations of Gauss-Jacobi, in

the limit as the iteration count goes to infinity. The ratio r is directly related to the

number of Gauss-Seidel and Gauss-Jacobi iterations that can be performed in a given

=)

number of processor steps. and this relationship is given in Lemma 3.4 following a

definition and several other lemmas which estat ish some basic properties of the task

graph depths. First, functions are defined which represent the maximum number of

iterations that can be performed in a given number of processor steps.

Definition 3.2. Define the functions mgs.mg, Z—~Z such that mge(l) is the largest

BT &

integer satisfying D (Tgs Y&, and mg, (1) is the largest integer satisfying

D(TGI.MG](I))sl .

In the degenerate case in which G contains no cycles. the exact solution is obtained

132 o5

in a finite number of iterations, as reflected in the following lemma.
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Lemma 3.1. /f G does not contain a cycle, and M 30 is the length of a longest path in
G, then

D(Tcl-m )'D(TGS"‘ )’M +1. for ‘ll m )M +1. (3-4)

If M =0, G contains no arcs. and the task graphs contsin no arcs. Therefore. the task
graph depths are 1. If G contains a longest path P of length M >0, then there exist
corresponding paths P;; in T, ., and Pg¢ in Tgs ., both of length M. If either T, ,, or
Tas. . contains a longer path, then there is a corresponding path in G which contradicts
the fact that P is a longest path. Therefore, D (T, . )=D (Tgs . )=M +1. Since adja-
cent vertices of a task graph are always in the same or consecutive iterations, any task
graph for at least M +1 iterations will contain the longest path of length M, and have
depth M +1.

In the more interesting case in which G contains a cycle, the Gauss-Jacobi itera-

tions proceed at a rate of exactly one iteration per processor step.
Lemma 3.2. If G contains a cycle, then D(Tg; , )=m ,and mg,(1)=l, for allm,l €X.

Due to the construction of T;; , . the vertices in any path must have consecutive itera-
tion numbers. Therefore, D (T, ,, )€m. Since G contains a cycle. it contains a walk
of length m —1, and such a walk corresponds to a path of length m ~1in 7, , . There-
fore, D(T;; ,)3m. Hence. D(T;,,)=m. The relationship mg,(1)=l follows
immediately. using the definition of mg; .

The Gauss-Seidel task graph depth is more difficult to characterize. In fact the
expression D (T . 41)=D (T , ) is not necessarily constant as a function of m . Some

useful, but relatively weak, properties of the Gauss-Seidel task graph depths are given

in the following lemma.
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Lemma 33. If G contains a cycle, then the sequences D(Tss ) and mgs(l) are o i’
unbounded and monotone nondecreasing in m and l, respectively. "
Since G contains a cycle, it contains a walk of infinite length which maps to a path of H g
R |

infinite length in?Tos,_,. Consequently, the task graph depth goes to infinity. The addi-
tion of one more iteration to any task graph of finite iterations does not remove any arcs
or vertices from the original graph and therefore does not reduce the depth. Hence, the
depth is monotone nondecreasing. As a result. mg,(l) must also be unbounded and

monotone nondecreasing.

The ratio » can now be related to the number of iterations which can be per-

(B R 8 B8 & &=

formed in a given number of processor steps. The following lemma indicates that the

Gauss-Jacobi method can perform r times as many iterations as Gauss-Seidel. in a given -‘
number of processor steps. in the limit as the number of processor steps goes to infinity. :
for the nondegenerate case where G contains a cycle. | r?

M e
-

Lemma 34. If G contains a cycle, then

Mg, @)
lim
1= mgg (1)

=r, (3.5)

Due to Lemma 3.2 and Def. 3.1, for any €> O there exists M €Z such that

D (TGS.m ) g

—————— —r|<e€ forallm>M. (3.6) W

m i\

which implies Ky
D(Tos ) =[8(m)4r)m, forallm>M, 3.7

where [§(m )] <e. Since mg (1) is untounded and nondecreasing. there exists L € Z such

that mg, (1)>M . for all I >L. The definition of mgs and (3.7) imply that for I > L,

(RS 2 &2 = 223 &

mgs (1) is giveu by the largest integer m satisfying

48 &5
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(8(m)+rim <L (3.8)
Consequently. for any €>0 there exists L such that
()= |————|. forallli>L, 3.9
057 | S @ 4r .9
where [8(mg, (1 ))| <e. Dividing the equality mg, (1 )=l by (3.9) yields
mg; (1) {
= , foralll>L.
mgs (1) l (3.10)
a(mgs (l ))+r

Since 8(mg (1)) can be made arbitrarily small by making L large, (3.5) must hold. and

the proof of the lemma is complete.

3.4 Parallel Convergence Speed

If m iterations of Gauss-Seidel can be completed in ! processor steps. then rm
iterations of Gauss-Jacobi can be completed in the same number of processor steps. in
the limit as [ goes to infinity. In the limit. the error is multiplied by a factor of
p(Mgs)" in m iterations of Gauss-Seidel, and it is multiplied by a factor of p(Mg; )™
by Gauss-Jacobi in an equal number of processor steps. Therefore, Gauss-Jacobi will be
asymptotically faster than Gauss-Seidel if p(Mg;) €p(Mgg). In the following
theorem, which is the main result of this chapter, it will be shown that this relationship
between the spectral radii holds for the class of matrices to which the Stein-Rosenberg
theorem applies. Therefore, parallel Gauss-Jacobi is asymptotically faster than parallel

Gauss-Seidel for these matrices [Sma88a).
Theorem 3.2. If M, is nonnegative and p(M;,) <1, then p(M;;) Sp(Mg;).

If p(Mg;)=0 then p(Mg;)=0. and the theorem is trivially satisfied [Var62]. For the
case where p(M;;)>0. G must contain a cycle because the iterations do not converge in

a finite number of iterations. For this case, the proof of Theorem 3.2 utilizes the
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following lemma [Gan59)] and definition: ] I
-
Lemma 3.5. Perron-Frobenius: If matrix M €R" * s nonnegative, then it has a nonne- l
gative real eigenvalue egual to its spectral radius and a nonnegative eigenvector associ- ‘
ated with that eigenvalue. | 5 3
Definition 3.3. Let y z€R" contain the most recently computed iterate values for !
each vector element after | processor steps of the parallel Gauss-Jacobi and Gauss-Seidel 1
algorithms respectively. B '
! ince a Gauss-Jacobi iteration finishes in one processor step. y @ s equal to the "
Gauss-Jacobi iterate, and therefore |
y = 2 + i', - -aij-y,“'”- (3.11) )
Ui jmigm i 2
In general, z“) never corresponds to any iterate of Gauss-Seidel, because overlapping of ? ’
the iterations implies that the most recently computed element values can correspond to ,
different iterations. And because of data dependencies inherent in the Gauss-Seidel E ‘
algorithm, many of the elements of 2" are the same as those of z“ ™. Therefore, each ‘

o)

Gauss-Seidel update will be given by either

2=V (3.12a)
or ‘ ’
b, &
i,
0=y 2 ) (3.12b) 5
Q;; j i, j=1 ai,x’

where m (l,i, j)€{0, - - - ,1—~1}). Note that m(l,i, j) is used to indicate that in order to

55 2 =5 = ==

follow the Gauss-Seidel update formula, it may be necessary to pick out elements from 'jfl
several different, but earlier, z vectors. "‘
To complete the proof, consider the problem of solving Ax =0 by relaxation, ;
where A is such that M, exists and is nonnegative and 0<p(M;)<1. Let the initial g
[ )
- I
o
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guess x(°)=y @2z pe a nonnegative eigenvector associated with a nonnegative eigen-

value of M, equal to p(M;;). Since M, is nonnegative, g, ;/a;; SO for all i = ;.

(0)

Consequently. since x‘” is nonnegative and =0, each term in (3.11) and (3.12b) is

nonnegative for all i,l. Also. since y('o) is an eigenvector associated with an eigenvalue
equal 1o p(M;; ) <1, y¢ )=p(MG 7 Yy, and therefore y,.(” decays monotonically with [

foralli.

It will be shown by induction that

9.2, for alli. for all m €{0, - - - .1}, (3.13)
holds for all I. Clearly (3.13) holds for ! =0, forming the basis of the induction.

Assume that (3.13) holds for a given I, and consider processor step ! +1. In those cases

zi(l +1) (0 +1)<zi(1 +1)

where (3.12a) applies. y,"’<z2,’= . and y, because y,'’ is monotone

decreasing in I. In those cases where (3.12b) applies, each term of the summation in
(3.11) is less than or equal 10 the corresponding term in (3.12b) and all the terms are

9% Since 3, decreases monotonically.

nonnegative.  Hence y,
v *V€y,™<2™ for all m €I. Consequently. y,'*V'<z, ™) for all i and all
m €{0, ---,l+1}, thus completing the induction.

(mgo (1))
In ! processor steps, mgg (1) iterations of Gauss-Seidel are completed. Let x "es

be the Gauss-Seidel iterate on iteration mgg(l). Then for any i.l, there exists m €l

@)y (mee (1))
such that x; =zi<'"). Applying (3.13) for each i, it follows that y g %7,

where y(” is equal to the ! * Gauss-Jacobi iterate. As!—~co, Lemma 3.4 indicates that

r times as many Gauss-Jacobi iterations are completed as Gauss-Seidel iterations. In
(mgs 1)) . ) .

order for x to remain larger than y "', M;; must have an eigenvalue with mag-

nitude larger than p(M;; ) . the factor by which the Gauss-Jacobi error is reduced in r

processor steps. Therefore, p(M;; ) €p(M; ). and the proof is complete.
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3.5 Parallelism Ratio Bounds

(5 &%

It is interesting to note that the proof of Theorem 3.2 does not require explicit

knowledge of the value of r. but rather only assumes that » exists. The value of r is

of interest because it represents the degree of parallelism of Gauss-Jacobi compared to

Gauss-Seidel. On the average, parallel Gauss-Jacobi requires » times as many proces-
sors as parallel Gauss-Seidel if the full parallelism of the methods is employed. In this
section, several bounds on 7 will be presented, assuming that r exists. In the next sec-
tion, the existence of r» will be established, and an exact formula for 7 will be given in
terms of properties of G.

In the usual case where G contains a cycle, and m Gauss-Jacobi iterations require
exactly m processor steps, r is equivalent to the average number of steps between the

completion of successive Gauss-Seidel iterations. If no parallelism is employed in

(B =3 B &9 =N )

Gauss-Seidel, n extra steps are required for each extra iteration. If parallelism is util-

ized, the number of steps per iteration will be no greater than n , and therefore

(3.149)
This bound will be reached if A is full. or if G contains a cycle from vertex 1102 10 ...

r €n.

-

; ton tol.

If concurrent updates are allowed within a Gauss-Seidel iteration, then D (T ;)

steps will be required for the first iteration. And if parallelism is not exploited between

- “-» -

4

different iterations. each additional iteration will require an additional D (T ,) steps.

Since some. but not all, of the potential parallelism is utilized. it follows that

r < D(TGS.I) g n. (3.]5)
This tighter bound on r will be approached when nearly all of the Gauss-Seidel paral-

-

PR

lelism is due to intra-iteration parallelism.
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In some cases, most or all of the available Gauss-Seidel parallelism arises from the
overhi)ping of iterations. For example. if A is tridiagonal then D (% ) isequal ton.
since each update requires the result of the previous update of the same iteration. How-
ever, iteration k'+1 can begin after only 2 steps of iteration k. Because of the inter-
iteration parallelism. r =2 for a tridiagonal matrix, regardless of the value of n. In
cases like this, the bounds in (3.15) do not give an accurate indication of the high degree
of Gauss-Seidel parallelism. An exact determination of the value of r requires that

both inter-iteration and intra-iteration parailelism be taken into account.

3.6 Parallelism Ratio Formula

In this section, the limit in (3.3) which defines » will be shown to exist. and a for-
mula will be derived for r in terms of properties of G. In the following development,
L (P) will denote the length of path P. and D (v) will denote the depth of vertex v,
defined as the number of vertices in a longest path terminating at v. The notation
D(T). where T is a directed graph, will denote the depth of the graph as defined in

Chapter 2. The main result of this section is given in Theorem 3.3.

Theorem 3.3. The limi: in (3.3) exists, and

1+ (C)/b(C) .if G contains a cycle
r= . (3.16)
1 . otherwise

where C is a cycle of G which maximizes f (C )/b(C).

Note that any cycle of G must contain a feedback arc, so b(C) will be nonzero in

(3.16) when G contains a cycle.

If G contains no cycles, then D (7, , )=D (T ) for m sufficiently large. due to

Lemma 3.1. Therefore, r =1 in this case.
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If G contains a cycle. then both the Gauss-Seidel and Gauss-Jacobi task graph
depths go to infinity, and D (T, ,, J=m. To complete the proof. it must be shown that
lim{D (Ty4g , )/m J=1+f (C)/6(C). when G contains a cycle. This will be done in the

next two lemmas by establishing upper and lower bounds on the limit.

Lemma 3.6. If G coruains a cycle, then for any €>0 there exists M €L depending on €
such that

D(TGS.M) [(C
—_— D1+

m
where C is a cycle of G which maximizes f (C)/b(C).

)) —¢ forallm>M, 3an

Let v bea vertexof C. Forany j 21, let m=b(C)+1. Let v, and v, be the instances
of v in iterations 1 and m of Tgs , . respectively. There is a path P from v, to v,
corresponding to j traversals of C. because the iteration number increases by one every
time a feedback arc is traversed. Combining the relations D(Tqs ,)2D(v,).
D(v,)3D(v )+L(P). D(v,)31. L(P)=j(f (C)+b(C)). and j=(m—1)/6(C) pro-

duces

-1
D(Tgs ) 2 l+—;:(?)- [F (C)+b(C)]. for m €{1,5(C)+1,256(C)+1. - - - }.(3.18)
Bounds on the task graph depth for intermediate values of /» can be obtained using the

fact that D (T4 ,,) is monotone nondecreasing in m. The following lower bound on

D (T ) applies for all m:
m=b(C)
D(Tes ) 2 14—————[f (C)+b(C)). 3.19
GS. 5C) (s 3.19)

Dividing by m gives

D(T4s ) 1 1 1
—_—— 2 e |—— cl+(Cc)|. 3.20
m m |b(C) m lf )l ¢ )

Discarding the 1/m term and distributing yields
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DT )
Gs. )1+I(C)_f(C)+b(C). (3.21)
m 5(C) m
Note that f (C)+b(C )<n . as C contains at most n —1 arcs. Therefore.
D(Tge )
bl LIy ACP RN (3.22)

m 8(C) m
By setting M =n /¢, (3.17) is obtained. thus completing the proof of Lemma 3.6.

Lemma 3.7. If G contains a cycle, then for any €>0 there exists M €Z depending on ¢
such that

D(Tgs ) f(
—_— 1

) +¢ forallm>M, (3.23)
m )

where C is a cycle of G which maximizes f (C)/b(C).

Let u be any vertex of G and let 1, be the instance of u in iteration m of T4s .. Let
P be any longest path, consisting of one or more vertices. terminating at «,, . In order
to establish a bound on the length of P, partition P into subpaths Py. Q,. P,. Q,. ... .

P,_,.Q, . P,. such that the following conditions are satisfied:

(a) The concatenation of the arcs of P,. Q,. - . P, is equal to the sequence of arcs
inP.

(b) P, contains no two instances of a common vertex of G , for each ;.

(c) The endpoints of Q; are instances of a common vertex of G . for each .

(d) The origins of O, and Q; are instances of distinct vertices of G . for each i » ;.

The possibilities that s might be 0 and that P, or P, might be null are not ruled out.
Note that conditions (a). (b), and (¢c) are easily satisfied by putting subpaths with more
than one instance of the same vertex into Q subpaths. If a partitioning does not satisfy

condition (@). it can be modified by combining @, . 7;. .... @; into a single Q, subpath.

e
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Since P is a longest path terminating at u,, . D (u,, )=L (P)+1. Condition (a) then

implies

FE.J s
D(u,)=1+ L L(P )+ T L(Q,) (3.20)
A j=o i=
Based on this equation. an upper bound on D (x,_) will be derived which will lesd to

the result in (3.23). Condition (b) implies that L (P,)€n ~1, and condition (d) implies
s €n. Applying these relations to (3.24). plus the fact that L(Q, )=/ (Q,)+b(Q,).

yields
D(x,) € 1+(n +1Xn =1+ L [ (@, )+ (Q,)). (3.29)
i=
Recall that the first and last vertices of Q, are instances of a single vertex x; of

G . To obtain a bound on f (Q,). Q; is further partitioned into one or more subpaths,
Q, 1. -+ Q). 4 - such that each subpath starts and ends on an instance of x, . and no inter-
nal vertex is an instance of x,. Each Q; , corresponds to a cycleC, ; of G. Because of
the manner in which cycle C is chosen. f (C, ;)b (C, ;)& f (C)B(C). Using this
relationship and summing over all subpaths of Q;. the bound
1 Q)% (Q; )f (C)/5(C) is obtained. Substituting this bound into (3.25) produces

1€ 15s0,). (3.26)

j=1
Since (3.26) applies for any choice of vertex u,, in iteration m. D (u,, ) may be replaced

14

D(u,) €n%+

by D(Tgs ). Applying the relationship 35 (Q, )€b(P)<m and dividing by m yields

D(T4s ) 2
—-ff-'—-<-"-+1+f(C). (3.27)
m m b(C)

Chocsing M =n ?/¢ confirms the validity of (3.23) and completes the proof of Lemma
3.7. Lemmas 3.6 and 3.7 lead directly to the result stated in Theorem 3.3 for the case

where G contains a cycle, thus completing the proof of the theorem.
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SPEEDUP ESTIMATES

The objective of parallel processing is to reduce the overall run time of a program
by executing different parts of it on different processors concurrently. A convenient
measure of the success of parallel processing in a given situation is the speedup. which
indicates how much faster the program runs on a specified number of processors com-
pared 10 the run time on a single processor. In this chapter. several techniques are
investigated for estimating the speedup of parallel waveform relaxation algorithms for
a set of benchmark circuits. The simplifying assumptions introduced in Chapter 2 are
used as a starting point for computing simple estimates. The assumptions are then
replaced by more realistic assumptions producing more accurate estimates. In the pro-
cess of refining the assumptions, insights are gained into the extent to which different
factors affect the speedup. In subsequent chapters. the speedup estimates are used for
two purposes. Fast estimates are used to select the fastest parallel waveform relaxation
algorithm prior to performing a circuit simulation. Accurate estimates excluding mul-
tiprocessing overhead factors are compared with measured speedups to determine the
extent to which overhead affects the performance of the algorithms. Finally. in this
chapier. accurate estimates neglecting overhead are used to predict the potential perfor-

mance of the aigorithms when the number of processors is large.

4.1 Speedup

The parallel processing speedup achieved by an algorithm X . applied to a given

problem. running on & processors, is defined as




r———-————-—-——-—-——ﬁ

52

L4
S =—, (4.1)
7,

where 7, is the run time of algorithm X on & processors and 7, is a reference time

which in some sense reflects the time required to solve the same problem using only 1
processor. The speedup is 3 measure of how much faster the program runs on k proces-
sors compared to the time required to obtain the same solution on 1 processor.

One obvious choice for the reference time 7, is the time required to run the same
algorithm, X . on 1 processor. Speedups computed in this manner will be referred to as
unnormalized speedups. denoted as Sy, , . Unnormalized speedups satisfy the property

Sy . €&, and Sy , will be close to k if the computations are nearly evenly distributed

between all the processors throughout the execution of the program and if the parallel

R R2R G ae oan

processing overhead is small. The ratio Sy, , /k is a measure of the processor utilization,
or the fraction of time. on the average. that the processors are busy. not counting the

time spent doing extra work which is performed in the k -processor case but not in the

UNIProcessor case.

When using speedups 10 compare the overall performance of different algorithms
for solving the same problem, a common reference time must be used for all the algo-
rithms so that a greater speedup indicates an algorithm with a shorter run time. The
normalized speedup of algorithm X on & processors with respect to algorithm Y is
defined as

Tra Ty a
Sva® =Sy . (4.2)

Tx.a T Txa
where 72, m is the run time of algorithm Z on m processors, for any Z and m . A good

choice for the common reference is the time required by the fastest available uniproces-

sor algorithm. Then Sy , €S, , €&. Note that Sy , /k is not a measure of the utiliza-

i 5 &0 3 & =)

tion of the processorsasis S, , /& .
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Of the waveform relaxation algorithms under consideration. the Gauss-Seidel
maethod consistently runs faster than Gauss-Jacobi on a2 uniprocessor. And a uniproces-
sor waveform relaxation program which does not have the extra overbead of the full
window technique or time point pipelining will run faster than a program with the
extra parallel processing code. Therefore, a uniprocessor program using Gauss-Seidel is
a useful reference for computing normalized speedups.

4.2 Benchmark Circuits

The performance of the parallel algorithms is a strong function of the circuit being
simulated and the subcircuit partitioning, since the subcircuit interconnection structure
determines the structure of the task graphs. Five benchmark circuits, including CMOS
and NMOS designs. are used to compare the performance of the parallel algorithms.
The circuit characteristics are summarized in Table 4.1. All coupling is bidirectional, so

the resuits from Chapter 2 concerning such circuits are applicable.

Circuits dvs and den2k are portions of industrial designs which were extracted
from chip layouts. The inclusion of nonzero interconnect resistance on the power and
ground busses is responsible for the highly nonuniform subcircuit sizes in dvs, since

there are a large number of tightly coupled bus nodes which are placed in a single

Table 4.1. Circuit Characteristics

. N Nodes per Subcircuit
Circuit | FETs Nodes Subcircuits min max mean O
dvs 54 189 27 1 30 70 6.5
dpia 116 56 30 1 9 1.9 1.6
scdac 416 150 90 1 7 1.7 1.5
ben2k 805 3ss 119 1 54 33 6.2
digfi 698 378 222 1 10 1.7 1.2
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subcircuit. The den2k circuit is a portion of a static RAM. and the transistor connec-

€EF B R

tions rather than parasitic resistors account for the large subcircuits in this case. The

dpla circuit contains only a few interconnect resistors. and the scdac and digf circuits
contain none. These latter circuils have a comparatively high degree of uniformity of
subcircuit sizes. as demonstrated by the low maximum numbers of nodes per subcircuit

and by the small standard deviations.

4.3 Presimulation Estimates

Two categories of speedup estimates will be addressed: presimulation and post-
simulation estimates. The presimulation estimates can be computed without perform-
ing a simulation of the circuit. They provide insights into the nature of parallelism in
waveform relaxation, and they can serve as the basis for selecting the algorithm to be

used for a given circuit on a given number of processors prior to performing the circuit

(E SR Gk & & =

simulation. -

4.3.1 Type 1 estimates: uniform task times

Simplif ying assumptions were introduced in Chapter 2. and these assumptions are
applied 10 the benchmark circuits to produce the Type 1 speedup estimates for the full
window technique. The assumptions are that each task requires the same amount of
time, and an unlimited supply of processors is available. Under these conditions,

sU.-’w(Tx.l ) (4.3)
where X is either GS or G/, depending on the algorithm used. The Type 1 estimates for

ez 21 S8 53

the benchmark circuits are given in Table 4.2 for different numbers of iterations, since
the number of iterations required for convergence is not known prior to simulation.

The number of iterations is typically around 4. The speedups are unnormalized,

(= &2

because the number of iterations and the window boundaries chosen by the automatic

5B &2
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Table 4.2. Type 1 Speedup Estimates

. Gauss-Seide] Iterations Gauss-Jacobi Iterations
Cirewit | ;"9 4 8 1.2.4.0r 8
dvs 23 23 24 24 27
dpla 23 29 32 35 30
scdac 100 100 120 130 90
ben2k 3s 4.7 5.2 56 119
| digh 63 12 11 19 222

windowing algorithm will differ by unknown amounts for the two relaxation methods,

and these factors determine the ratio of uniprocessor run times.

The results show that the Gauss-Seide]l speedups are severely limited by the struc-
ture of the task graphs. Since the Gauss-Jacobi speedups are 10 to 20 times greater than
the Gauss-Seidel speedups. one would expect Gauss-Jacobi to outperform Gauss-Seidel
when the number of processors is larie. even if Gauss-Jacobi requires considerably more
iterations. It is also interesting 10 note that the Gauss-Seidel speedups are only weakly
dependent on the number of iterations, suggesting that most of the parailelism occurs
between tasks of an iteration rather than between tasks of different iterations. The
Gauss-Jacobi speedups are equal to the number of subcircuits, and are independent of
the number of iterations. Since all the task times are assumed to be uniform and all the
circuits are bidirectionally coupled, Theorems 2.2 and 2.3 imply that the Type 1
speedup estimates of the benchmark circuits are independent of whether the unaug-

mented or the augmented, T.task graphs are used.

43.2 Type 2 estimates: nonuniform task times

The uniform task time assumption automatically causes the tasks to be executed
one level at a time in the levelized task graph. Even if the task times are not uniform.

it is possible to enforce a rule which requires all tasks in one level to finish before any

........
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tasks in the next level begin executing. This is a relatively simple way to enforce the
precedence constraints but does not take advantage of all the available parallelism,
because some tasks in level [ +1 may have all their precedence constraints satisfied
before all tasks in level ! finish.

In the Type 2 speedup estimates. the tasks are forced to be executed one level at a
time, but the task times are allowed to be nonuniform. In this scenario, the time
required by level ! is determined by the largest task in the level. The speedup is

estimated as

) I
= x € {all tasks)
Sv.w D(T) : (4.4)

max  {w,}
-y € ltasksin level 1}

[}
where T is the task graph and w, is an estimate of the computation time for task x.

Note that nonuniform task times within a level will invariably have a detrimental
effect on the speedup in this model. However, differences in task sizes between different
levels may result in larger or smaller speedups. If one level contains many tasks and
another contains few tasks, then the overall speedup will benefit if the tasks in the level
with many tasks all have long computation times compared to the tasks in the level
with few tasks. On the other hand, if the computation time of levels with few tasks

dominate, then the speedup will suffer.

An estimate is needed of the computation times of the tasks. Since a task consists
of the evaluation of a subcircuit over a time window, and since subcircuits are typically
small, the task computation time is dominated by the evaluation of model equations.
The time to evaluate the model equations depends on the number of models to0 be
evaluated, their complexity. the number of time points at which the models need to be

evaluated, and the operating regions of the circuit elements. The number of time points
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and the operating regions are difficult 1o estimate without running a circuit simulation, ok
a!“ K

i‘)

and therefore these factors are ignored in the Type 2 estimates. However, the number
and types of models are known from the subcircuit partitioning. Since the number of
circuit elements in a subcircuit is typically proportional to the number of nodes. the

number of nodes in a subcircuit is used as a measure of the computation time for each L,

task which is an instance of the subcircuit. Therefore, w, is set equal to the number of ‘
nodes in the subcircuit corresponding to task x. The estimate could be further refined

by directly considering the number and types of circuit elements in each subcircuit.

The Type 2 estimates are presented for the benchmark circuits in Table 4.3. The s
nonuniformity of task sizes has a significant effect compared to the results of the Type tﬁ:‘:‘f
1 estimates. The impact is especially severe in the Gauss-Jacobi case, where the speedup ‘:'gﬁ'
is determined by the fraction of circuit nodes which appear in the largest subcircuit. i:“

For example, in the den2k circuit, 1/7.2 of the total circuit nodes are contained in the
largest subcircuit. even though there are over 100 subcircuits. and this limits the
speedup to 7.2. Type 2 estimates are also insensitive to whether or not the T aug-

-mented task graphs are used in the case of bidirectionally coupied circuits.

Table 4.3. Type 2 Speedup Estimates :3:’::2::
by
... | Gauss-Seidel Iterations | Gauss-Jacobi Iterations :‘:‘:':’;
Circuit Ealay
1 2 4 8 1.2.4.0r8 iy
dvs 15 15 15 15 6.3 Loy
dpla 16 19 21 21 6.2 L3
scdac | 34 39 41 43 21.4 i
ben2k (16 18 18 19 7.2 i
digfi 35 38 39 40 37.8 :{"i‘::f:}i
‘g:;is’;ﬁ

.‘ '6
“:l:‘l'
.|‘L:,'l‘

{ ]

TR N N NN DR 3 § B Yy Wt Ry .
R N N SRR .“".v‘i.) 22 N T TR S e SR e s e




58

4.3.3 Type 3 estimates: unsynchronized levels

The enforcement of a synchronization between each level, as assumed in the Type
2 estimate, has a negative impact on the speedup. To determine the extent of this
impact. the Type 3 speedup estimates retain the nonuniform task time estimates of
Type 2. while removing the synchronization of levels. In the Type 3 model. each task is
assumed to begin executing immediately after all its predecessors in the task graph are
finished. If P is a path in the task graph such that no other path has a larger sum of
estimated task times. then the parallel execution time is determined by P, and the Type

3 estimate is given by

z w
x € {all tasks}
Sy ™ (4.5)

z

x€ {tasks in P}

Table 4.4 shows the results of this estimation procedure. assuming the unaug-
mented task graphs are used. As expected. the speedups are greater than those predicted
by the Type 2 estimates. For these examples, the penalty for synchronizing the levels is
up to a factor of 2, and in most cases is considerably less than 2. In the Gauss-Jacobi
case. the speedup for an even number of iterations is determined by the two adjacent

subcircuits whose node sum is largest, because there is a path in the task graph which

Table 4.4. Type 3 Speedup Estimates: Unaugmented Task Graph

Circuit Gauss-Seidel Iterations | Gauss-Jacobi Iterations
1 2 4 8 1 2,4, 0r8
dvs 1.5 1.5 15 1.5 6.3 7.7
dpla 18 20 22 23 6.2 10.2
scdac 54 70 81 88 21.4 25.0
ben2k 19 23 25 26 7.2 9.0
dighi 45 50 53 54 378 54.0
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alternates between these 2 subcircuits on alternate iterations. For example, in the ben2k
circuit. there are two adjacent subcircuits whose node sum is 2/9 of the total circuit

nodes, resulting in a speedup of 9.

Type 1 and Type 2 estimates are independent of whether the unaugmented task
graphs T or the augmented task graphs T are used, because the levels are synchronized.
In the Type 3 estimate, the impact of the extra constraints of the augmented graph T
can be obseryed in the Gauss-Jacobi results of Table 4.5. In this case the Gauss-Jacobi
completion time is determined entirely by the largest subcircuit. since the task graph
contains a path including each instance of the largest subcircuit. Since all the circuits
are bidirectionally coupled, the extra constraints of fes have no effect compared to the

unaugmented task graph, as proved in Chapter 2.

4.3.4 Normalization to Gauss-Seidel

The unnormalized speedup estimates considered above fail to demonstrate whether
Gauss-Seidel or Gauss-Jacobi will be faster, because the ratio 75 /75, ; is unknown.
The benchmark circuits were simulated using both the Gauss-Seidel and Gauss-Jacobi
methods on a uniprocessor, to cbtain measurements of 755 , and 7g; ;. The ratios are

presented in Table 4.6. For all the benchmark circuits, the ratios are very close t0 0.7.

Table 4.5. Type 3 Speedup Estimates: Augmented Task Graph T, G

Circuit Gauss-Jacobi Iterations
1,2,4,0r8
dvs 6.3
dpla 6.2
scdac 21.4
ben2k 7.2
| digfi 37.8
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Table 4.6. Ratios of Gauss-Seidel to Gauss-Jacobi Uniprocessor Run Times

B <P GBS

Circuit | Ratio
dvs 0.7
dpla 08
scdac 0.7
ben2k 0.6
| dighi 0.7

o)

Y
-

This suggests that it may be appropriate to use the constant 0.7 as an estimate of
T6s.1/Tg;.1 In presimulation normalized speedup estimates. Multiplying the Gauss-
Jacobi speedup estimates by 0.7 results in normalized speedups which are still consider-
J ably larger than the Gauss-Seidel speedups. In Chapter 5. the normalized speedup esti~

! mates are applied to the problem of selecting between the Gauss-Seidel and Gauss-Jacobi

(¥ & B -

methods prior to performing a circuit simulation.

4.3.5 Time point pipelining estimates

The parallel performance of time point pipelining is a strong function of the
number of time points in each window ;md the positions of the time points on the time
axis. This information is not available prior to performing the circuit simulation.
However, for the purpose of predicting which of the 4 parallel waveform relaxation
methods is fastest for a given circuit and a given number of processors, it is not neces-

sary to actually predict the time point pipelining speedup. A technique for selecting the
fastest of the 4 methods prior to simulation, based on the speedup estimates for the full

window technique. is presented in Chapter 6.

A 4.4 Post-simulation Estimates

(R 35X B 4 8 ®)

Even the most sophisticated of the presimulation estimates suffers from the fol-

lowing limitations:
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(1) Differences in the amount of signal activity in different subcircuits affect the

task execution times. but are not considered in the estimates.

(2) The Gauss-Seidel/Gauss-Jacobi normalization factor can only be guessed based
on previous experience.
(3) Details on the number and locations of time points. which affect time point

pipelining performance. are unknown prior to simulation.

(4) Muhiprocessing overhead factors such as task scheduling, data communications,

and time spent waiting for access to shared resources are neglected.

All of these limitations except the last can be overcome by performing a simulation of
the circuit on a uniprocessor prior to computing the estimate, and using detailed infor-

mation on which tasks are executed and their individual computation times.

Accurate post-simulation estimates neglecting overhead have two applications.
The speedup on k processors can be estimated even if a multiprocessor with k proces-
sors is not available. This allows projections to be made of the potential performance of
the algorithms on machines which will become available in the future. The other appli-
cation is that of determining the degree to which multiprocessing overhead is responsi-
ble for the performance of the algorithms as measured in actual multiprocessor runs.
For example, if an algorithm has a speedup of only 2 on 8 processors, then either the
processors are idle most of the time due to a lack of work which can be done con-
currently, or the multiprocessing overhead is excessive. If the post-simulation estimate
of speedup neglecting overhead is 7, then one would conclude that the problem is one of

overhead rather than a lack of available parallelism.

Unlike the presimulation estimation techniques. post-simulation estimates are not
suitable to serve as a guide in selecting the fastest algorithm for a given circuit and a

given number of processors prior to simulating the circuit on a multiprocessor. Since a
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simulation of the circuit is required prior to computing the post-simulation estimate.

e

the need for running the simulation on a multiprocessor after computing the estimate is

obviated.

44.1 PARASITE description

The PARASITE program was developed to compute accurate post-simulation esti-

mates of the parallel execution time of any of the four parallel waveform relaxation

algorithms, for a given circuit on a given number of processors, neglecting multiprocess-

i}
T

ing overhead. The organization of the PARASITE system is depicted in Fig. 4.1. Firsta
circuit simulation is performed on the circuit of interest using a uniprocessor waveform

relaxation program which has been modified to produce two special output files for the

PARASITE program. The first file contains the subcircuit graph, which PARASITE uses

to construct task graphs. The second file contains information on each task that was

executed. For the full window technique, this file contains for each subcircuit evalua-~

tion task (k.i) the measured computation time of the task. r(k.i). For time point

.
relaxation number of

circuit metjhod Processors !

§ i - i
U task CPU times E
niprocessor Y

WR Progr‘m subcircuit Elgh ‘ PARASITE

waveforms parallel run time
neglecting overhead g
Figure 4.1. PARASITE: Parallel simulation time estimator. w

#
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pipelining. the file contains a record of each time point subtask (%.i.? ). its measured
computation time 7(k.i.t). and the corresponding initial location of the time point

b, (ki 2).

After the circuit simulation is complete, the PARASITE program is run. alsoon a
uniprocessor. The PARASITE program mimics the operation of the specified parallel
waveform relaxation algoritbm. but instead of performing computations to solve the
circuit equations, it just keeps track of the time that would be required to execute the
tasks on a specified number of processors. The windows are processed sequentially.
Within each window a weighted task graph T is constructed for either the full window
technique or for time point pipelining, as specified. The number of iterations i the task
graph is known from the record of tasks which were executed in the circuit simulation.
All the other information needed to construct the task graph is contained in the subcir-
cuit graph in the case of the full window technique. and in the subcircuit graph and 3
time point information in the case of time point pipelining. The weights are obtained |

directly from the measured CPU times of the individual tasks or subtasks.

PARASITE then simulates the parallel execution of the tasks in the graph on

N,

procs PTOCESSOTS, Using the algorithm given below. In the PARASITE algorithm, ¢ is

the estimated elapsed time, ¢, is the time at which processor i will finish its current N
task, x; is the task assigned to processor i , w (x ) is the weight of task x . P is the set of
active processors, and P is the set of idle processors. A queue is used to hold tasks that i
are ready to execute but that have not yet been assigned to processors for execution. i
The function gput (tsk ) puts task tsk on the queue, and gempty () returns TRUE if the
queue is empty. The function gget () returns a task from the queue and deletes it from O
the queue. The task obtained by gget () is the task of the lowest available iteration

number which has been on the queue for the longest time. The initial tasks are those e

P LAy by et ATh R O LR b2 ; o . ; 2
A T I S e O N W ot R N T e T T N T N T



which have an in-degree of O in the task graph.

Algorithm 4.1. PAWSM&&WIW(NN.T)

P—¢
P -{12...N,.,}
'-‘ln‘zn "'-‘Nm‘-o
for each (initial task x) gpuet (x)
repeat {
/* Assign tasks to processors */
for each (i €P) {
if (gempey O=FALSE) |
x; =qget ()
(=t +w(x;)
addi woset P

remove i from set P

/* Advance time */

find i €P with smallest ¢;
t et
for each (successor y of x, in T with no other predecessor) gpwt (y )
remove x; from graph T
remove i from set P
addi toset P
} until (gempty )=TRUE and P =¢)

Algorithm 4.1 is used within each window, and the total estimated parallel execution

time is the sum of the times in all the windows.
4.4.2 Limitations

The estimates produced by PARASITE are considerably more accurate than the
presimulation estimates. but certain limitations should be noted. The fact that
PARASITE does not account for parallel processing overhead has been previously dis-

cussed, and this feature can be viewed as either an advantage or disadvantage, depend-

ing on the intended application. A speedup computed from a PARASITE time estimate

(5 5525 28 T 588 @)
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is an approximate upper bound on speedup. subject to certain conditions. Jt is an upper
bound because multiprocessing overhead is neglected. thereby resulting in an overesti-
mate of speedup. It is approzimate because PARASITE does not compute the optimum
schedule of the tasks on the parallel processors. The estimate is subject to certain con-
ditions arising from the assumption that the multiprocessing run executss exactly the

same tasks as the uniprocessor case.

PARASITE queues tasks as soon as their precedence constraints are satisfied. and
obtains a task from the queue as s00n as a processor becomes available 10 execute a new
task. This results in an optimum scheduling of tasks for those cases where the number
of processors. is either 1 or infinite. For intermediate numbers of processors. the task
scheduling may be nonoptimal. When more than one task is on the queue. then the
choice of which task 10 execute next can affect the overall paraliel execution time. Even
if a multiprocessor waveform relaxation program uses the same policy of obtining
work from the queue on a first-in-first-out basis. small delays introduced by overhead
in the multiprocessor run can result in a different order of execution and a different
assignment of tasks to processors. Normally the overhead-induced delays will result in
a longer run time than the PARASITE estimate. but it is possible for the delays to cause
a reduction in the run time, if by chance a more efficient scheduling of tasks on proces-
sors results. PARASITE could be modified to determine the optimum schedule of tasks.
but this optimization problem is NP-complete and would be too time consuming
[Gar79]). In practice. the disruption in execution order caused by overhead delays is
unlikely to result in a significantly different schedule, provided the overhead is small

compared to the task execution times.

The fact that PARASITE assumes that the same tasks are executed in the unipro-

cessor and multiprocessor cases has several implications. The study of asynchronous
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relazation methods [Cha69. Bau78). in which the task graph evolves during the execu-
tion of the relaxation process. is not possible with PARASITE. because the computations
performed can depend on the number of processors. The parallel versions of the strict
Gauss-Seidel and Gauss-Jacobi relaxzation methods do not present s problem for
PARASITE because the precedence constraints between tasks are designed to assure that
the computations in the parallel case operate on exactly the same data as in the unipro-
cessor case.
The PARASITE results apply only to the particular circuit, subcircuit partitioning,
subcircuit ordering, window boundaries. and relaxation method used in the reference

uniprocessor simulation. Each of these factors can affect the uniprocessor run time and

the degree of parallelism.

443 Results

PARASITE was applied to the benchmark circuits. producing the unnormalized
speedup estimates in Table 4.7. The PARASITE results for the full window, unlimited
processor case agree closely with some of the Type 3 estimates for the 4-iteration case.
and are as much as 2 times smaller in some of the other cases. The discrepancies are
greatest for the scdac and digf circuits which are comparatively large, evenly parti-
tioned circuits. These are the circuits that are most likely to bave a large number of
subcircuits with comparatively slowly changing signals in any given window. The
variable time step integration algorithm will choose very long time steps and will con-
sequently compute very few time points in these subcircuits, whereas the subcircuits
with rapidly changing signals will require many time points. Consequently, the subcir-

cuits with low signal activity cause a reduction in the available parallelism as compared

with the Type 3 estimates. It should be noted that even though subcircuits with low
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Table 4.7. PARASITE Speedup Estimates

67

Task . . Processors
Graph | Algorithm | Circuit | . 5, g7y 33 o
dvs 10 14 15 15 15 15 15
dpla 10 1.7 21 21 21 21 21
FWT-GS |scdac |10 20 37 53 56 56 S6
Tes ben2k |10 17 21 23 24 24 24
digh [10 20 33 38 39 39 39
or avs |10 18 23 24 24 24 24
Tes dpla 19 19 28 30 30 30 30
TPP-GS scdac (10 20 39 70 94 98 98
ben2k (10 19 28 31 32 32 32
digh 1.0 20 39 58 61 62 62
dvs 10 20 35 53 62 63 6.3
dpla 10 20 38 66 81 82 82
FWT-G] [scdac (10 20 39 72 110 126 129
ben2k |10 20 38 72 99 108 114
T digh 10 20 39 76 137 195 222
4 dvs 10 20 38 68 91 93 93
dpla 1.0 20 39 71 106 121 121
TPP-GJ scdac | 1.0 20 39 75 130 177 193
ben2k |10 20 39 74 117 135 141
digh 10 20 40 78 145 242 332
dvs 10 19 31 43 S50 S2 S2
dpla 10 20 37 57 63 63 63
FWT-G) |scdac {10 20 38 64 80 84 85
ben2k |10 20 39 70 92 100 104
F digh 1.0 20 39 74 120 148 159
4 dvs 10 20 38 67 86 88 88
dpla 10 20 39 67 92 99 99
TPP-G) scdac [ 10 20 39 74 111 132 138
ben2k |10 20 39 74 115 131 136
digh 10 20 40 7.7 142 212 256

signal activity reduce parallelism, they do so only because the uniprocessor waveform

relaxation algorithm already takes advantage of this situation by not computing

unnecessary time points in these subcircuits.

The PARASITE results are tabulated as a function of the number of processors.

For the Gauss-Seidel method with the full window technique. the speedups reach their
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maximum values very quickly as the number of processors are increased due to the
severely limited parallelism. The Gauss-Jacobi method with the full window technique
exbibits speedups close to the number of processors until about 8 processors. depending
on the circuit.

The time point pipelining speedup estimates are necessarily greater than the
corresponding full window speedups. since time point pipelining exposes greater paral-
lelism. and overhead is neglected. The degree by which the time point pipelining speed-
ups are greater than the full window technique speedups depends directly on t.heu the
window sizes. The windows are chosen by the automatic windowing algorithm of
RELAX2.3, which tends to favor @ll windows in order to keep the number of itera-
tions small. Larger windows would result in greater time point pipelining speedups
compared to the full window technique using the same enlarged windows; but very
large windows would cause the 1-processor reference time to be increased due to an

increase in the number of iterations.

Since the uniprocessor run times are known in computing post-simulation esti-
mates, it is possible to normalize Gauss-Jacobi speedups to Gauss-Seidel, as shown in
Table 4.8. The speedups less than 1 for the single processor case reflect the normaliza-~
tion factor. Even though Gauss-Jacobi starts out with this speed disadvantage on 1 pro-
cessor, the normalized Gauss-Jacobi estimates surpass the corresponding Gauss-Seidel
estimates when the number of processors is sufficiently large, for both the full window
technique and time point pipelining. Consequently, the Gauss-Jacobi method with time
point pipelining offers the greatest potential speed of the four algorithms when the

number of processors is large.

The break-even point between the Gauss-Seidel and Gauss-Jacobi methods is a

function of the circuit being simulated. Table 4.9 shows which of the relaxation
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Table 4.8. PARASITE Speedup Estimates Normalized to Gauss-Seidel

Task . . Processors
Graph | Altorithm | Circuit | | 5 4 g7 6 33 e
dvs 07 14 25 38 4.5 4.5 4.5
dpla 08 16 30 5.2 6.4 6.5 6.5
FWT-GJ |scdac {07 16 31 57 87 100 102
ben2k 06 13 24 46 6.3 6.8 1.2
T di‘ﬁ 0.7 14 27 53 96 136 155
(<4

dvs 07 14 27 49 65 6.7 6.7
dpla 08 16 31 356 8.4 9.6 9.6
TPP-G) scdac 07 14 28 353 92 125 136
ben2k | 06 13 25 4.7 74 85 8.9
digh 0.7 14 28 34 101 169 232
dvs 0.7 14 22 31 3.6 3.7 a7
dpla 08 16 29 45 SO S50 SO
FWT-G) scdac 0.7 14 2.7 4S5 57 59 60
ben2k {06 13 25 44 58 63 6.6
= digh (07 14 27 352 84 103 111

dvs 07 14 27 48 62 63 63
dpla 08 16 31 353 73 7.8 78
TPP-GJ scdac 07 14 28 352 78 93 98
ben2k | 06 13 25 4.7 73 83 86
dighi 07 14 28 354 9.9 148 179

Table 4.9. Fastest Method Based on PARASITE Using
Unaugmented Task Graphs and Time Point Pipelining

. Processors
Crevit | y 5 4 '8 16 32 w
dvs s 8§ J 1 13 J J
dpla s 8§ 1 1 1 J J
scdac S §$ § §8s S J J
ben2k |S S S J ) J J
di S 8§ § S J J J
Key: S=Gauss-Seidel, J=Gauss-Jacobi

IRV
methods is faster for each circuit, using time point pipelining. as a function of the :“x::lr"\
‘l‘g"!i-"f
. . . . . Foigt ety
number of processors, based on the PARASITE estimates. Typically, larger circuits '::.;f“:l'.:
(ol

have a higher break-even point because these circuits bave more subcircuits and greater

Gauss-Seide]l parallelism. But as demonstrated by the scdac circuit, circuit size alone is
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not a3 sufficient indicator of the break-even point. The Gauss-Jacobi method becomes
preferable only when the Gauss-Seidel method does not produce enough concurrent

work for the available supply of processors.

Table 4.10 summarizes the impact of the extra constraints of the augmented task
graph on the Gauss-Jacobi speedups predicted by PARASITE. Since all the benchmark
circuits are bidirectionaily coupled. the loss in speedup resulting from the use of the
augmented constraints in the full window case on unlimited processors is at most 50%,
as proved in Chapter 2. The results in the table are in agreement with this theoretical
result. If only a limited number of processors are available. then the effect of the aug-
mented graph may be greatly diminished, depending on the size and structure of the cir-
cuit. In the full window case, the larger circuits den2k and digf show less than a 5%
degradation in speedup on 8 processors, because there is sufficient work to keep the pro-
cessors fairly busy even when the extra constraints are added. The smallest circuit dvs
has very little parallelism, and the full impact of the extra constraints is evident on 8

processors in the full window case. The time point pipelining speedups are affected to a

Table 4.10. PARASITE Estimated Speedup Loss: T, vs. T,

Method | Circuit P;“”“‘“s
(- -]
dvs 18% 18%

dpla 13%  23%
FWT-GJ | scdac | 21% 41%
ben2k | 4% 8%

digfi 2% 28%
dvs 2% 6%
dpla 5% 19%

TPP-GJ | scdac | 2% 28%
ben2k | 0% 3%
dighi 0% 23%
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lesser degree by the extra constraints. This is not surprising. due to the parallelism -
which the pipelining affords between adjacent tasks in the task graph. On 8 processors
the decrease in speedup is no greater than 5% for even the small circuits, due to the

availability of many concurrently executable tasks. even with the added constraints.
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CHAPTER §

FULL WINDOW TECHNIQUE IMPLEMENTATION

The choice of Gauss-Jacobi or Gauss-Seidel relaxation and the choice of the full
window technique or time point pipelining both represent tradeoffs involving parallel-
ism and parallel processing overhead. Paralle] processing overhead is intimately related
1o the multiprocessor architecture, the parallel algorithm, and the details of the imple-
mentation of the algorithm on the multiprocessor. To study the performance of the
different algorithms in an actual parallel processing environment, the algorithms were
implemented in programs which run on an Alliant FX/8 multiprocessor. The FWT pro-
gram, which is described in this chapter. is an implementation of the full window tech-
nique. The TPP program embodies the time point pipelining algorithm and is described
in Chapter 7. Since TPP was derived from FWT, much of the discussion in this chapter

applies also to TPP.

The Alliant FX/8 hardware and software environment is briefly described in the
following section. Next, the locking mechanism for protecting the integrity of shared
data, and the task system which controls the parailel execution of tasks are described.
these features are common to both FWT and TPP. The implementation of parallel pro-
cessing in FWT is then described. Finally. performance measurements are given and

compared with the estimates produced by PARASITE.

5.1 The Multiprocessor

The Alliant FX/8 is an 8-processor mini-supercomputer [A1186a). Each processor

is capable of executing scalar and vector instructions. with a pezk rate of 5.9 Mflops

(R o M - G om
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when operating on 64-bit floating point operands. Each processor contains vector and
scalar registers and an instruction cache. All the processors share a common main
L memory system which is accessed through a shared cache. as shown in Fig. 5.1.
Although the Alliant machine is limited 1o 8 processors, the Cedar multiprocessor
supercomputer, currently under development at the Center for Supercomputing
Research and Development at the University of Illinois. will consist of multiple Alli-
| ants interconnected through a global shared memory [Kuc86). Consequently. the
results presented in this chapter for actual multiprocessor runs are for 8 or fewer pro-
a cessors, and the speedup estimates of previous chapters will be used for predicting the

performance on future machines with more processors.

f—
' Y e

The Alliant computer runs a UNIX operating system and has a FORTRAN com-

piler [Al185] which automatically vectorizes and parallelizes DO loops. based on its
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Figure 5.1. Alliant FX/8 architecture. I":!'*\v
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analysis of data dependencies. A compiler for the C language [A11860] is also available,
but it does not perform automatic vectorization and parallelization. The FWT and TPP
programs are derivatives of RELAX2.3. and all 3 of the programs are written in C. As
a result, these programs are not automatically vectorized and parallelized by the com-
piler. However, even if the automatic parallelizing features of the FORTRAN compiler
were available in the C compiler. the natural parallelism of waveform relaxation would

not be recognized by the compiler.

Suppose that the C compiler included the automatic parallelization features, and
that the main program of the uniprocessor waveform relaxation program is a realization
of Algorithm 2.1, in which the subcircuit evaluation task is realized with a subroutine
call. When the subroutine is called it is passed a pointer to the data structure for the
subcircuit, and this structure contains pointers to other subcircuits which supply its
input waveforms. When the main program is compiled. the compiler is not aware of
how all these pointers will be used when the subroutine is executed. and the pointers
are not even known at compile time because they are circuit dependent. Therefore, the
compiler would decide to execute the subcircuit evaluation tasks serially, because the
potential exists for arbitrary data interdependencies between the tasks. The interdepen-
dencies could result in improper operation if the tasks are allowed to execute con-

currently.

A FORTRAN compiler directive is provided which allows the different iterations
of a loop to be performed concurrently even if the loop contains a subroutine call. This
could be used directly for the subcircuit loop in Algorithm 2.1 when Gauss-Jacobi is
used. However, for Gauss-Seidel. the partial ordering of subcircuits within an iteration.
as dictated by the task graph. must be enforced. These constraints are not readily

recognized by the compiler because they arise from the interactions of executable state-
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ments and data structures which are built dynamically during program execution.
Consequently. the programmer must assume responsibility for setting up a mechanism

1o control the parallel execution of waveform relaxation tasks.

The concurrent use of multiple processors is implemented in the C environment
with the concurrent call feature. In a concurrent call, a C function is called a specified
number of times, M. Each of the M invocations is assigned a unique index number and
runs on a separate processor. provided M £8. Since the function can test its index
number and perform different actions based on its value. the processors may execute
any independent instruction streams. When all of the concurrent function invocations
terminate, control returns to the calling program which then continues running on a

single processor.

Vector instructions are accessible from C programs through calls to library func-
tions. However. vector instructions are not used in FWT and TPP. because most subcir-
cuit are small in size and yield small vector lengths. In previous work, vector process-
ing techniques have been used with the standard direct method algorithms applied to
the entire circuit. in which case the potential for longer vector lengths exists. Even in
this more favorable situation, the vector parallelism is limited due to the high degree of
sparsity in circuit matrices, the irregular structure of the matrix. and the different

equations which must be evaluated in different operating regions of the transistors.

The main memory of the Alliant FX/8 is shared by all the processors. One proces-
sor may communicate with another simply by writing 1o a memory location which is
later read by the other processor. It is the programmer’s responsibility to assure that
one processor does not corrupt the data needed by another processor. and that one pro-

cessor does not try to read data before the data are written by another processor. Data

accesses by different processors to common memory locations can be synchronized using
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either global or local synchronization techniques.

i B & =¥

The global synchronization technique is easiest 1o implement. A set of indepen-

dent tasks are allowed to execute concurrently. Tasks which require input data from
other tasks in the set are excluded from the set. When all the tasks are finished. a new
set of independent tasks are started. Each set can consist of the tasks in one level of a
task graph. However, performing global synchronizations between each level of the
task graph does not exploit the full parallelism of the graph, as observed in the results

of the Type 1 and Type 2 estimates of Chapter 4.

The local synchronization approach allows data to be exchanged between two pro-
cessors without waiting for the other processors to reach a global synchronization point.
Local synchronizations allow for the globally unsynchronized execution of a task graph

as assumed in the Type 3 and PARASITE estimates of Chapter 4. Local synchroniza-

(B &5 8 &R B 1)

tions are accomplished on the Alliant using locks. which are based on the atomic test-

and-set instruction.

v
e

5.2 Locks

Locks are typically used to protect shared data during critical portions of time

during which the data may only be accessed by one processor. For example. in Algo-

W e
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rithm 2.2 the global variable unconv, is accessed 3 times. Its value is read from ’
]
memory, and after the value is decremented it is written back to memory. Then it is gﬁ (""

read again 10 test if its value is 0. In order to guarantee the proper operation of this
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algorithm, no other processor executing the algorithm concurrently may access unconv,
during the time interval spanned by these 3 accesses. This ruie can be enforced by asso-

ciating a lock with the variable unconv, . and by locking the lock before the first access

R 82

and unlocking the lock after the last of the 3 accesses. If a processor tries to lock a lock

which is already locked. it will be forced 1o wait until the lock is released by the other

d 2 ==

SRR RARMD \ ) t 3 " e SN
WL AL N M‘l,n’l.;‘ld.l_. i) .'A‘.'u‘ IV oAt e h e By F 0 o GRS e AP A



17

processor before it is allowed to acquire the lock and continue.

Locks are implemented with the atomic test-and-set machine instruction. This
instruction is not directly accessible in a C language statement. but may be accessed
through a function call or through embedded assembly language instructions. The FWT
and TPP programs set locks using a LOCK macro. which is translated into either a func-
tion call or assembly language instructions prior to compilation. In either case. the
LOCK macro causes the execution of the following algorithm, in which x is a lock vari-

able.

Algorithm 5.1. LOCK(x)

repeat {
test-and-set(x )
delay
} until (the test-and-set operation is successful)

The test-and-set operation is successful only if x =0, in which case it sets x —1. The R
P oat iy i,y
‘l"“é AR
testing of the value of x and the setting of its value 10 1 are performed as an atomic G

operation to prevent two different processors from successfully setting the same lock
simultaneously. The delay is added for performance reasons 1o be discussed below.
Locks are unlocked in FWT and TPP by an UNLOCK macro. By convention, only the
processor which locked a lock is allowed to unlock it. The following rather brief algo-

rithm accomplishes the unlocking chore and is trivially implemented directly in C code.
Algorithm $.2. UNLOCK(x)
x+=0
When one processor tries to lock a lock which is already locked, it enters a tight

loop in which it repeatedly tests the value of the lock until tne lock is released by the

other processor. This has two effects on performance. The most obvious and important

effect is that the waiting processor does not do any useful work while it is waiting for .-.:,?:"’
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the lock. A second effect is that the waiting processor generates cache traffic while

repeatedly testing the lock. and thereby slows down the gainfully employed processors.

82 (P s

The cache competition caused by processors waiting on locks can be reduced by
adding null operations in the loop to effect a delay between successive accesses of the
lock. The null operations are presumably executed out of the local processor instruc-
tion cache without competing for access to the shared cache. As the delay in the loop is
increased. the cache traffic is further reduced. However. increasing the delay also
increases the average time that a waiting task will be delayed after a lock is released by
another processor before realizing that the lock is available.

A locking operation which uses a function call is referred 1o as a normal lock, and

the case of embedded assembly language is referred to as a fast lock. A fast lock which

L is successful on its first attempt executes only two machine instructions, the test-and-

(R &8 R &8 &8 A

set and a conditional branch. A normal lock includes the overhead of the function call

mechanism. which is significant compared to the time required for only two machine

instructions. If the lock is not acquired successfully on the first atitempt, the perfor-

mance difference between fast and normal locks becomes less significant.

Normal locks are portable and robust with respect to revisions in the compiler.

=2 )

Fast locks do not share these advantages because ihe interface between the C code and

assembly code is through a register which is assigned automatically by the compiler. §
4
When using many locking operations to control fine-grained accesses, the function call
¥,
overhead can be significant. especially if the lock is acquired on the first try in most gi

cases. since then only two machine instructions are executed. But, if the number of
locking operations is 2 small percentage of the total number of operations. then the per-

formance advantage of fast locks is insignificant. Due to the relatively large task

(2 228

granularity employed in FWT and TPP. the use of fast locks does not result in a
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significant performance improvement. Experimenis with finer-grained tasks have
demonstrated that fast locks can make a noticeable impact on performance in such

cases.

A more fundamental observation concerning locks on the Alliant compared to
some other machines is that even normal locks are quite fast. Therefore, when the level
of concurrency can be increased by using more locks. each controlling a smaller group
of shared variables, the resulting increase in the time spent performing locking opera-
tions will normally not be severe. Therefore, the general guideline applied to the use of
locks in the FWT and TPP programs has been to keep the amount of code in locked sec-

tions small, even if this requires extra locking operations and extra lock variables.

5.3 Task System

A central fixture of the FWT and TPP programs is the task system which gueues
tasks, assigns queued tasks to processors. and terminates the parallel processing mode
when all tasks are done. A central queue is used to hold tasks which are ready to exe-
cute. In some parallel procesi'ng architectures, some memory locations can be accessed
more quickly from a particular processor or group of processors. In such systems, the
assignment of tasks to processors may take the proximity of the required data into
account. However, on the Alliant, all data in the cache and memory are equally accessi-
ble from any processor. Therefore, data proximity considerations are not appropriate in

the task scheduler for the FWT and TPP programs on the Alliant. When a processor

becomes avai'able to begin working on a new task. the next appropriate task is taken

from the queue and assigned to the processor. ::l:a:'.jq
U
t';‘:::‘fz?f‘
Two complications are introduced by allowing one waveform relaxation iteration ::‘,.:::t:“
SR

1o begin before the preceding iteration is completed. One problem is that a task in a &

later iteration may become eligible for execution before it is determined that S
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convergence occurs on 3 preceding iteration. Consequently. unnecessary tasks may be
executed. and these tasks will use resources which would be better used for required
lasks associaled with earlier iterations. This problem is addressed by assigning each
task a priority based on its iteration number. Tasks associated with lower iteration
numbers are assigned higher priorities. Separate subqueues are maintained for each
priority level. When the task system obtains a task from the queue 10 be executed. it

selects a task from the nonempty subqueue with the highest priority.

The other problem arising from overlapping iterations is that convergence might
be obtained while some tasks are in the middle of execution. For this reason, and also
to accommodate some recoverable error conditions that can arise during the simulation
such as waveform buffer overflow. a facility is provided to gracefully kill all tasks
which are executing or queued and to prevent new lasks from being queued. Executing
tasks periodically check a flag. and if it is set they terminate with their associated data
structures in a state which is acceptable for continuing the simulation after the global

synchronization.

The operation of the task system is summarized in the following algorithm out-
lines. The global variable tg_count is the number of tasks which are queued or are exe-
cuting. The lock queue_lock protects the queue and tg_count . A task tsk of priority p

is queued by the following algorithm:

Algorithm 5.3. Queue_Task (¢sk, p)

if (kill_flag =FALSE) |
LOCK (queue_lock )
append tsk to subqueue p
tg_count ~tq_count +1
UNLOCK (queue_lock )

}

The execution of tasks on all parallel processors is under the control of the parallel task
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controller, which is executed on each processor using the concurrent call mechanism.

Algorithm 5.4. Paralle]l_Task_Controller—runs on each processor

tsk —NULL
while (¢¢_count >0) {
j LOCK (queue_lock )
‘ : if (there is 2 task on the queue) {
tsk «— (task from lowest numbered subqueue)
’ . remove tsk from subgueue
)
UNLOCK (queue_lock )
if (¢esk »NULL ) {
execute tsk
tsk =NULL
LOCK (queue_lock )
tq_count ~—tg_count —1
UNLOCK (queue_lock )

)

else delay

}

Note that if the queue is empty, then the if clauses are bypassed and the operations in
the loop consist of repeated accesses to a few global variables: guewe_lock , tp_count , and
the location in the queue data structure which indicates that the queue is empty. If
several processors are without work and the queue is empty. this results in excessive

cache traffic for these variables. which interferes with the operation of the working pro-

cessors. The delay in the else clause is introduced to relieve the cache congestion in this
B case, in the same manner in which the delay was introduced in the LOCK routine. The

value of the delay is optimized empirically.

i The task killer is invoked by any task which determines that all other currently
g queued and executing tasks are unnecessary. %:s‘
"o
ot
RN
Algorithm $.S. Kill_Tasks %\; :
i LOCK (quewe_lock ) ! 2\
kill_f lag =TRUE o
remove all tasks from all subqueues :::':‘ ‘
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decrement 2g_count by the number of tasks removed
UNLOCK (queue_lock )
wait until £g_count =1, (i.e., until all other tasks terminate)

(B =23 B2

S4 RELmod

The starting point for the development of the FWT program was the RELAX2.3
program developed by Jacob White [Whi86). RELAX2.3 is a uniprocessor waveform
relaxation program. It was modified to produce another uniprocessor program known

as RELmod. which contains additional research-oriented features. RELmod served as

the basis for the FWT multiprocessor waveform relaxation program which uses the full
window approach to parallelism. Finally. the FWT program was modified to create the

TPP program which uses time point pipelining.

RELmod uses the partitioning. ordering. windowing. and numerical integration

(2 &5 B -8 &6 o)

algorithms of RELAX2.3 without any substantive changes. The modifications incor-

porated into RELmod include corrections of bugs and features intended primarily for

<=

research use. Specifically, RELmod contains these features:

(2) The Gauss-Jacobi method. and hybrid Gauss-Jacobi/Gauss-Seidel methods are 5
implemented.

;g:

(b) Several bugs are fixed, the most notable being a bug in the resetting of the error L

tolerances when starting a new window. This bug had a significant negative

=

impact on the Gauss-Jacobi run times in some cases. where slow convergence led to

repeated reductions in window size and repeated reductions in error tolerance

which were never retracted.
(c) Overlapped partitioning of subcircuits is permitted as an option [Mok85).

(d) The subcircuit partitioning and ordering may optionally be specified manually.

= &

rather than being generated automatically.
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(e) Window boundaries may optionally be specified manually. rather than being

determined automatically.

(f) Optional output files may be requested containing the subcircuit partitioning and
ordering, and the initial conditions used. These files are in a format acceptable for
input to the program on a later run. This allows many transient analysis runs to
be made without repeating the partitioning. ordering, and initial dc¢ solution com-
putations. Also, it facilitates experiments in which minor changes are made in the

automatically generated partitioning.

(g) The rules for specifying periodic piecewise linear voltage sources are more user

friendly.

Since RELmod uses the same numerical algorithms as FWT without any of the extra
parzilel processing code, it serves as an ideal reference to which the performance of

FWT can be compared. Comparisons of the run times of RELmod and FWT indicate
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that the extra overhead of FWT on 1 processor increases the run time by less than 2%.

55 FWT

The FWT program uses RELmod as a base, and implements the full window tech-
nique for parallel waveform relaxation. It can be run on 1 to 8 processors of an Alliant
FX/8. Parallelism is exploited only in the transient analysis phase of the program, since

this is the most time consuming and the area of greatest potential payoff.

The basic idea behind the FWT program implementation is quite simple. A tem-
plate of the augmented task graph T is constructed for the specified relaxation method.
In each window, the initial tasks are placed on the task system queue. The task system

assigns tasks from the queue to available processors. As each task finishes execution, it

checks its successor tasks and queues those for which all the input waveforms have RIS
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been computed. Also. just before terminating. a task performs a convergence check on
its own waveforms. and checks the accumulated convergence status of all other tasks in
the iteration to see if convergence was obtained on that iteration. When convergence is

detected. all executing and queued tasks are killed and a new window is started.

Within each window, the iterations are partitioned into iteration groups, such that
each group contains x consecutive iterations. A global synchronization is performed
between each iteration group. The default value of x is 6. There are several reasons for
adding these global synchronization points. The primary reason is that it simplifies the
implementation of the periodic reductions of the window size and error tolerance which
occur when 100 many iterations are used. The second reason is that it allows for fixed
limits to be placed on certain arrays which require a separate array element for each
iteration of the group. Finally, it limits the number of unnecessary tasks, with itera-
tion numbers greater than the converging iteration number, which may be executed

before convergence is detected.

The added synchronization points between iteration groups can result in reduced
parallelism. However, in most windows convergence is obtained in the first iteration
group. and the extra synchronizations do not occur. Furthermore, the Type 3 speedup
estimates in Tables 4.5 and 4.6 indicate that the parallelism is only a weak function of
the number of iterations, especially when the number of iterations is greater than 4.
Therefore. even if several groups of 6 iterations are required in a window. the speedup
in each group will be about the same as could be obtained without the synchronizations

between groups.

The algorithm for the transient analysis phase of FWT, using iteration groups. is

outlined below. The currert window boundaries are represented by ¢, and ¢, . &,

and k,,, are the first and last iterations of the current iteration group. The
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global_converged flag becomes TRUE when convergence is detected in all subcircuits on
some iteration. For each subcircuit there are x counters, one associated with each itera-
tion of the group. Counter unsar, ; represents the number of unsatisfied precedence
constraints for subcircuit evaluation task (k.i ), i.e., the number of predecessors in the

task graph which have not finished execution.

Algorithm 5.6. FWT Transient Analysis
t,~0
while (2, <z, ) | /*window loop */

choose ¢,

kﬂun .-l

km’ -K

global_converged =FALSE

repeat { /* iteration group loop */

initialize unsat, ;. for k,,,, Sk €k,,,, . 1<i €n
queue initial tasks for iteration group
Parallel_Task_Controller ()
if (global_converged =FALSE ) {
koor: —kppp +1
Roop koo +K
reduce integration error tolerance
reduce ¢,

}
} until (global_converged =TRUE )
i, —t,
reinitialize integration error tolerance

}

The program runs on a single processor except when the parallel task controller is run-
ning. in which case N, ... processors are used. for a specified value of N, between 1

and 8.

The subcircuit evaluation tasks are executed under the control of the parallel task
controller. The initial tasks are queued prior to turning control over to the parallel task
controller. These are the tasks which have an in-degree of zero in the task graph. after

all tasks of previous iteration groups are removed. Before terminating, a task updates
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the unsar counters of its successors and queues successor tasks which are ready to exe-

cute, as specified in the following algorithm.

Algorithm 8.7. Subcircuit Evaluation Task (k .i)
/* Solve subcircuit */
Solve subcircuit i on iteration k over time interval [z, .7, ]
/* Check successors */

for each (successor (k,_.i, )of (k.i)inT){
LOCK(unmt_lock,.‘ )

unsat, O-un.rat,_‘,- -1

if (unsar, ; =0) queue task (k. .i.. )
UNLOCK(unsat_lock; )

/* Check convergence */

if (v, matches v,* 71 within tolerance. for z €[t ., D) {

LOCK (unconv_lock, )

unconv, +-unconv, —1

if (unconv, =0) conv —TRUE

else conv —FALSE

UNLOCK( (unconv_lock, )

if (conv =TR. )|
global_converged ~—TRUE
Kill_Tasks ()

(R G2 5 20 K &N &N P &8 =
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5.6 Data Structures
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The FWT program uses the augmented form of the task graph, T . which simplifies
the management of data structures and reduces the required memory space. Since only
one instance of any given subcircuit can be active at a time, most data structures associ- 5

ated with the subcircuit need only be allocated once, and may be reused by each task

W
.
which is an instance of the subcircuit. The most important data structures which fall N
into this category include .

£
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(a) space for the matrix and vectors representing the linearized system of equations on

each Newton iteration;

(b) the list of devices contained in the subcircuit, along with parameter values and
pointers into the matrix which indicate where contributions from the model equa-

tions should be loaded into the matrix on each Newton iteration;
(c) relative pointers 10 successor tasks: and

(d) the time values and vectors of voltages, currents. and charges at the last few time

points as required by the integration algorithm.

Some data structures, however, require separate copies corresponding to different itera-

tions of a subcircuit, including
(a) theunsar counters, and

(b) waveform buffers which contain the time/voltage pairs for the time points com-

puted at each node in the current window.

The number of unsat counters is xn , and these counters are simply allocated once and
initialized at the beginning of each iteration group. The waveform buffers represent a

larger investment in storage space.

Even though only one instance of each subcircuit will be active at any time, it is
possible in general that all « instances of the resulting waveforms of a given subcircuit
may be required simultaneously by other subcircuits. Consider the example in Fig. 5.2

of a circuit which is not bidirectionally coupled. If the instances of subcircuits 1 and 2

require a small computation time compared to the instances of subcircuit 3. it is possi- YRR
'!‘sh!.{‘:
ble that all « instances of subcircuits 1 and 2 will be finished before the first instance of :,:'e,e“
'lvsvelh-ﬁ\
(3 AN
subcircuit 3 finishes. Thus, while task (1, 3) is executing, the results of (1. 1) and (1, ;.‘;Sif";:
2) are needed as inputs to (1, 3), and the results of all other instances of subcircuits 1 X “.
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Figure 5.2. Waveform buffer example: (a) G . (b) T ;.

and 2 must be saved for future use. To accommodate this situation. a provision must

be made 10 have x waveform buffers existing simultaneously for the nodes of subcir-

(B &S B 8O &= @)

cuits 1 and 2.

Sometimes, separate waveform buffers are not needed for each iteration. The next

,,v.
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theorem provides a limit on the number of simultaneously required waveform buffers

in the case of bidirectionally coupled circuits.

Theorem 8.1. If G is bidirectionally coupled, then no more than 2 waveform buffers are

needed for each node at any one time in the FWT program based on either 7‘.‘6,.,‘ or ias.x-

Let (k.i) be any task in the task graph, and define a set I of tasks which are instances

of subcircuit i such that

F={(m,i):1<m <k -2}. (5.1)

When task (k .i) begins execution, it requires waveform buffers to store the results for

R N 8] R A

its internal nodes. This is the first time that these waveform buffers are needed. If the

(T

contents of a waveform buffer are computed by task x , then the waveform buffer is no
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longer needed after all successors of x have terminated. Since (k,i) begins executing
before any instance of i with a greater iteration number, it is sufficient to show that
when (k .i ) starts. all successors of tasks in I' have already finished execution. If this
is true, then every time a new waveform buffer is needed for a node, only one other
waveform buffer for that node on a different iteration is required simultaneously—
namely. the waveform buffer of the previous iteration. Equivalently, it is sufficient to
show that there is a path to (k.i) from each successor of each task inI'. Let (k. i,) be
any successor of any task in I'. Note that k <k —1. There is a path from (k. i,) to
(k .i) of the form

(ko ig) (kg i) (kotl,i), -~ . (k=1,8).(k,i)
or

(ko io) (kog+li), -+ (k=1,i),(k.i).
All arcs in the path except the first are arcs which are added when the augmented graph
graph is constructed from the unaugmented graph. The first arc must exist because
(ko.i,) is a successor of an instance of i and the circuit is bidirectionally coupled.
Hence, no more than 2 waveform buffers are needed for each node. Note that
waveform buffers for iterations £ and k ~1 are required simultaneously in order to

perform convergence checking.

To handle general circuits, the program must be able to provide separate
waveform buffers for each node on each iteration, all existing simultaneously. This
amounts to kN waveform buffers, where N is the total number of nodes in the circuit.
However, for bidirectionally coupled circuits, only 2N waveform buffers are needed at
any one time. In order to accommodate general circuits and not waste excessive
memory space for bidirectionally coupled circuits, the FWT program dynamically allo-
cates waveform buffers as necded. A pool of available waveform buffers is maintained

on each processor. When a processor runs out of waveform buffers, it obtains an
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additional set of buffers by executing the dynamic memory allocation program.
Although the dynamic memory allocator is executed in a critical section by at most one
processor at a time, contention between different processors is minimized because most
requests for waveform buffers are satisfied locally from the processor’s own pool of
waveform buffers. A counter is associated with each waveform buffer, indicating how
many tasks, which have not yet terminated. require the use of the waveform buffer.
The program is designed such that when the count reaches 0, the waveform buffer is
freed by returning it to the pool of available buffers. This design has not been fully
implemented in the current version of FWT. Currently, waveform buffers are not
freed until the end of the iteration group. Due to the large virtual address space, this

has not presented a problem in the simulation of the benchmark circuits.

5.7 Results

The performance results for the FWT program are given in Tables 5.1 and 5.2.
The results are compared with the PARASITE results in Table 5.3. The FWT speedups
on 8 processors are within 11% of the PARASITE estimates. The differences between
the measured speedups and the estimates inciude the overhead factors and the estimate
errors noted in Chapter 4. The FWT program sometimes generates slightly different
window boundaries under multiprocessing conditions than in the uniprocessor reference
run, which introduces an additional small error in the comparison. As a point of refer-
ence, the scdac runs using Gauss-Seidel used exactly the same window boundaries in all
the multiprocessor and uniprocessor runs. The good agreement between the estimates
and the actual results indicate that overhead plays a minor role in determining the per-

formance of FWT on these benchmark circuits.
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Table 5.1. FWT Gauss-Seide! Speedups

S Processors
Circuit 1 2 4 8
dvs 10 14 14 14

dpla 10 16 20 20
scdac 1.0 20 36 49
ben2k 10 16 19 21
| dighi 1.0 20 32 39

Table 5.2. FWT Gauss-Jacobi Speedups. Normalized to Gauss-Seidel

Processors
1 2 4 8
dvs ~ (07 13 22 31
dpla 08 16 29 40
scdac 0.7 14 26 45
ben2k 06 13 23 40
| digh 0.7 14 28 48

Circuit

Table 5.3. Comparison of FWT and PARASITE on 8 Processors

S Normalized Speedup Processor
Method | Circuit FWT PARASITE peedDiﬂ'erem:e Utilization
dvs 14 1.5 7% 18% :
dpla 2.0 2.1 5% 25%
g;gﬁ' scdac 4.9 5.3 8% 61%
ben2k 2.1 2.3 9% 27%
digfi 39 38 -31% 48%
dvs 31 31 0% 55%
Gauss- dpla 4.0 4.5 11% 63%
Jacobi scdac 4.5 4.5 0% 80%
ben2k 4.0 4.4 9% 79%
digfi 4.8 5.2 8% 86%

The processor utilizations shown in Table 5.3 are the unnormalized FWT speedups
divided by the number of processors. Consequently, these numbers do not include the

time during which processors are utilized to perform those overhead computations

which occur in the 8 processor case but not in the 1 processor case, and the time spent

by processors waiting for access to shared resources. RN
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5.8 Presimulation Selection of Gauss-Jacobi or Gauss-Seidel

When confronted with a circuit to simulate and a multiprocessor with a given

-
]
number of processors on which to perform the simulation, the choice between the @
Gauss-Seidel and Gauss-Jacobi relaxation methods should take both the circuit struc- E

ture and number of processors into account. For the benchmark circuits, the fastest of

the two methods is indicated in Table 5.4, as a function of the number of processors,

based on the performance results presented in Tables 5.1 and 5.2. In the typical situa-
tion for a given circuit, Gauss-Seidel is the faster method when the number of proces-
sors is small. As the number of processors is increased, a break-even point p, is reached
such that if more than p, processors are used then the Gauss-Jacobi method is faster
than Gauss-Seidel. The presimulation estimates of Chapter 4, together with rules of
thumb obtained from performance data of other circuits, can be used to estimate p, and
therefore serve as a guide in selecting the relaxation method prior to performing the

simulation.

At the break-even point, the Gauss-Seidel method typically has nearly reached its
maximum possible speedup. whereas the normalized Gauss-Jacobi speedup is still n

increasing nearly linearly, with a slope close to the uniprocessor normalized speedup.

A0y
kA

Table 5.4. Fastest Method vs. Number of Processors

Circuit 1 Pr;c wsori 8 @
dvs S S J J
dpla S - ] ] g
scdac S S S S
ben2k S S J J

 digh s s s 3 §
Key: S=Gauss-Seidel, J=Gauss-Jacobi -
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Despite the variety of types of circuits included in the set of benchmark circuits, the
Gauss-Jacobi single processor normalized speedup is consistently close to 0.7. There-
fore. at the break-even point, the normalized Gauss-Jacobi speedup is approximately
0.7p, . Since the Gauss-Seidel and Gauss-Jacobi speedups are equal at the break-even

point, it follows that

Ses.
Py = ——, (5.2)

0.7
where S .., is an estimate of the maximum Gauss-Seidel speedup on an unlimited
number of processors. The maximum Gauss-Seidel speedup can be estimated by one of
the presimulation estimation techniques of Chapter 4. If the Type 3 estimate is used,
based on the assumption that 2 iterations will be used, then the break-even estimates of

Table 5.5 result. These estimates agree quite well with the observed break-even points

in Table 5.4.

It should be noted that the constant 0.7 used in the break-even estimate may in-
general depend on the partitioning and windowing algorithms. Any alterations to these
algorithms would necessitate a reconsideration of the value of the constant. It is also
possible that certain types of circuits will not agree with this choice of the constant.

Experience with a larger number of circuits is required to determine if a single value for

Table 5.5. Presimulation Estimate of Break-even Point

Circuit | p,

dvs 241
dpla 29
scdac 10.0
ben2k 33

digfi 7.1
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the constant always produces a reasonable estimate, or if different classes of circuits

0 B B

each need a different value for the constant.
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CHAPTER 6

TIME POINT PIPELINING IMPLEMENTATION

The implementation of time point pipelining in the TPP program is described in
this chapter. and performance results are presented. The TPP program is based on the
FWT program, with modifications to the procedures which determine when a task is eli-
gible 10 exec'sx and to the related data structures. The important implementation
issues of time point pipelining are exposed by describing how they were addressed in
the TPP program. The performance resuits show that TPP produces faster run times
than FWT when there are sufficiently many processors to make use of the extra paral-
lelism of time point pipelining. When too few processors are used. the extra overhead

of TPP results in slower run times than FWT.

6.1 Algorithms

The coordination of parallel computations is significantly more complex in TPP
than FWT. In FWT, each task consists of the evaluation of a subcircuit over an entire
window on a single iteration, and the task graph for an iteration group is known a
priori. The eligibility of each task for execution is monitored simply through its unsat
counter, which contains the number of incoming arcs in the task graph from tasks
which have not yet finished executing. In TPP, computations are coordinated at the
subtask level, where a subtask consists of the evaluation of a subcircuit at a single time
point on a single iteration. The subtasks cannot be identified prior to beginning the
iteration group, because the variable time steps used by the integration algorithm
depend on the waveforms which are computed during the iteration group. Conse-

quently, the subtask graph cannot be constructed a priori, and the use of unsat counters

TR
JOUSK
‘ng“:,

n "y A #‘.;"
R O R I O S I RO 2 S N N X T AR LA MO ’.ﬂ",;‘f-«‘*u't,;".v*




9

to monitor the eligibility of individual subtasks for execution is not feasible. Instead.
the subtasks to be executed and the precedence constraints between subtasks must be
determined dynamically during the solution process, based on the known full window
task graph and based on the actual time point values selected by the integration algo-

rithm.

In addition 10 the time point subtasks. TPP defines an initialization subtask which
precedes the first time point computation in each subcircuit evaluation task, and a con-
vergence checking subtask which follows the last time point computation in each task.
The coordination of the execution of all the subtasks is facilitated by a set of control
variables. Each of the kn subcircuit evaluation tasks of an iteration group is allocated a
set of control variables, {status . ¢t_done . t_next , t_ready . waiting_for , lock ). The con-
trol variables are initialized prior to starting each iteration group. The meanings of the

variables are summarized below.

status :
The status variable has the value UNINITIALIZED if the initialization subtask
has not been executed yet. Its value is INITIALIZED if the initialization is com-
pleted and the iast time point of the window has not yet been computed. After

the last time point is computed its value is set to JNTEGR_DONE .

t_done:
The ¢_done variable represents the time through which the subcircuit has been

solved in the iteration, and it is initialized to ¢, . the initial time in the window.

t_next:
In most cases, ¢_next represents the time of the next time point to be computed by
the task. that is z_done =t_next +h where h is the step size determined from the

local truncation error of the integration method. More generally, ¢_next is the
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time such that if all predecessor tasks have progressed at least to ¢_next , then the
task is eligible 10 execute its next subtask. The initial value of 7_next is ¢, +8.
where § is smaller than a minimum time step. Consequently. as soon as all prede-
cessors of a task compute at least one time point, the task becomes eligible to exe-

cute its initialization subtask.

t_ready:
The value of ¢_ready is a time through which all input waveforms of the subcir-
cuit evaluation task are guaranteed to be valid. The ¢_ready variable is always
updated in synchronization with waiting_for.

waiting_for:
If a task is not queued or running. then waiting_for points to one of its predeces-
sors which must advance before the task becomes eligible for execution. Other-
wise, if a task is queued or running. then waiting_for is NULL , indicating that it
is not waiting for data from another task. When a task is not queued or running,
the pr. .cessor indicated by waiting for is responsible for updating the task’s
t_ready and waiting_for variables, and for queuing the task when it is ready to
execute. Note that the waiting_for predecessor can transfer this responsibility to
another predecessor by modifying waiting_for .

lock :
This is a lock which is used to synchronize updates of the control variables, when

explicit synchronization is necessary.

Much of the infrastructure of FWT is used without change in TPP, including all
the task system algorithms presented in Chapter 5. The basic transient analysis algo-
rithm outlined in Algorithm 5.6 is also applicable to TPP, with the addition of the con-

trol variable initializations. The FWT subcircuit evaluation task of Algorithm 5.7,




which embodies all the parallel computations, is modified for TPP. Although the
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numerical computations which it performs are essentially unchanged, the control of the

computations is different. The subcircuit evaluation task is partitioned into subtasks E 3
which are performed sequentially. After each subtask is executed, its successor tasks —_
are checked. Each successor which is ready to execute at least one subtask is queued. If ﬁ
a task runs out of input data before all the subtasks are executed, then the task ter- %
e
minates prematurely. It is requeued later by its waiting_for predecessor when ’
sufficient input waveforms become available to allow the computation of the next sub- g ‘
task. An outline of the subcircuit evaluation task in TPP is given below. @ ' :
Algorithm 6.1. TPP Subcircuit Evaluation Task (% , i) N
/* initialization®/ i
terminate — FALSE ; cont_integration ~—FALSE
if (status, , =UNINITIALIZED ) { 2 B
initialize data structures - 3
* pick next time value,. ¢_next, KRN
status, ; ~INITIALIZED g n

update ¢_ready, ; and waiting_for, ;

if (waiting_for, ,#NULL ) terminate —TRUE o 3
UNLOCK(lock, ;) B

) o
/* integration */ g E;°

OOk

if ((status, ; =INITIALIZED ) and (terminate =FALSE )) cont_integration ~TRUE © o

while (cons_integration =TRUE ) | 2
compute time point at time ¢ €(¢_done, , .t_next, ;]
t_done, ; —t
pick next time value, ¢_next, ,

Check_Successors (k. i)
if (¢_done, ; 2¢,) {

(R & 993 ZTd

status, ; —INTEGR_DONE :‘Z*
coru_integration «—-FALSE :t;
)
else if (¢_next, , >t_ready, ;) | v‘e
LOCK(lock, ,) B
limit ¢_next, ; -

update ¢_ready, , and waiting_for, ;
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if (waiting_for, ; #NULL ) cont_integration —FALSE
UNLOCK(lock, ;)

/* convergence checking */
if (status, ; =INTEGR_DONE ) check convergence

A successor check is performed after each time point is computed. In addition to the
fact that successor checks are performed many more times in TPP than in FWT, the
successor check algorithm is more complicated in TPP, because the subtask graph is not

known a priori. The successor checking algorithm is summarized as follows:

Algorithm 6.2. Check_Successors (k, i)

if (less than 4 time points have been computed in (k,i)) t_ref «~ -1
else t_ref ~ (the time of the third previous time point in (k,i))
for each (successor (k, .i,) of (k.i)) {

queueit —~FALSE

LOCK(lock; , )

/* 3-step check */ .
if ((waiting_for, , #NULL) and (¢_ref >t_done, ,)and
t_next, —t_done, ;

waiting_for, , ~(k.i)

/* queuing check */
if ((waiting_f ory i =(k.i)) and (t_next‘.' ;i St_done, ;N
update ¢_ready, ; and waiting f or: ¥
if (waiting_for,  =NULL ) queueit ~TRUE

)
UNLOCK (lock, ;)
$''s
if (queueit =TRUE ) queue task (%, .i,) -
} R
O
Both Algorithms 6.1 and 6.2 perform updates of the ¢_ready and waiting_for control ::::‘::',.
'l'.inzg‘l
variables, using the following algorithm: '."'5‘
e
S
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Algorithm 6.3. Update waiting_for, ; and ¢_ready, ;
(%, .i, )~ (a predecessor of (k.i ) with minimum ¢_done, ,i’)
14
t_ready, ; ~t_done, ;

I 2 4
if (¢_ready, ; 2t_next, ;) waiting_for, , ~NULL
else waiting_for —(k, .i,)

6.1.1 Determining and modifying ¢_nexr

Except during initialization and convergence checking. ?_next, ; is the tentative
time value of the next time point to be computed by task (k,i). The actual time value
of the next time point may turn out to be less than ¢_next, ;. if, after the initial attempt
to compute the time point. the step size is reduced due to excessive local truncation
error or excessive Newton iterations. The final value of ¢_next, ; just prior to the first
attempt to compute the time point is given by

t_next, ; = minlt_done, ;+h, ty. timy ). (6.1)
In the first expression, k is the time step selected by the integration algorithm in its
attempt to produce a local truncation error which will be approximately equal to, but
not greater than, the specified error tolerance. The ¢, bound is simply the upper win-
dow boundary. The ¢,,, bound has the effect of limiting the step size in (k.i) to be no
greater than 3 steps of any of its predecessors. The reason for this limit is that the local
truncation error estimate is based on derivatives of the waveforms computed from
divided differences of previous time points. A sudden change in a circuit input
waveform, or a circuit nonlinearity. may cause a sudden change in a subcircuit input
waveform which cannot be anticipated by looking only at the past history of the
waveform. By forcing the subcircuit to be evaluated at least once for every 3 input
steps, these sudden unanticipated transitions will not be skipped over by inappropri-

ately long steps based only on estimated truncation errors.
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In uniprocessor waveform relaxation and in the FWT program, (6.1) can be
evaluated as soon as (k. i) computes the time point at t_done, ;. because all predecessor
waveforms are guaranteed to be available for the entire window. However, in TPP, the
input waveforms may not be available beyond ¢ _done, ;. Therefore, following the
computation of the time point at ¢_done, ;. an initial value is computed for ¢_next, ;
based on the information available at that time. As more input waveform points
become available in the future, it is necessary to reduce the value of ¢{_next, ; if one of

the inputs takes 3 steps in the interval (¢_done, ,.z_next, ;).

One possible approach for handling this situation in TPP would be to leave
t_next, ; unchanged until all the predecessor waveforms become available through
t_next, .. at which time task (k.i) would become eligible to compute its next time
point. Then all the information would be available to reduce ¢ _next, ; if :';ecssary
before actually computing the time point. This approach is not used in TPP, because it
can have a significant r;egative impact on the time point pipelining parallelism as

demonstrated in the following example.

Suppose all the subcircuits start in a dc steady state at the beginning of a window.
The truncation error estimate will indicate that an arbitrarily long time step can be
taken, a;ld the t_next values for the first time point of all tasks will be ¢, , based on the
available infermation at initialization time, except for those subcircuits connected to
external voltage sources which make transitions in the window. The subcircuits con-
nected to the voltage sources may compute many time points before reaching the end of
the window. However, if the ¢_next values of their successors are not modified, the
successors will be prevented from computing concurrent time points during this inter-

val because they will be waiting for their predecessors to reach t_next, ; =t,.
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This problem is avoided in TPP by checking the ¢_next values of all successors

after each time point is computed. The appropriate updating of successors is done in the

"3-step check” section of Algorithm 6.2. for those successors which are not running or

queued at the time of the successor check. Tasks which are running or queued are

1)

responsible for maintaining their own ¢_next values.

o

6.1.2 Synchronization of control variables

Some of the control variables may be accessed and updated by different tasks, and

“

therefore special precautions are required to assure their integrity. Parallel accesses to

the control variables of a task are synchronized through the use of the lock and
waiting_for control variables. When waiting_for =NULL ., the owner task is responsi-
ble for maintaining its own control variables, and no other task may modify them.

When waiting_for #2NULL , then only tasks other than the owner may modify the

control variables, but they must do so in a critical section protected by the lock control

variable.

When the owner task modifies its own control variables, it is normally not neces-

=)

sary to acquire the lock first, because waiting_for =NULL and no other task is eligible

-

-

to modify the variables. However, when the owner task changes its waiting_for value

o

- s
<

to non-NULL , the lock must be used. and all the status variables must be up to date at

the moment that the lock is released. When the lock is released, the responsibility for
updating the task’s control variables is transferred to the task’s predecessors. In partic-
ular, t_ready must be up to date in order for the waiting_for predecessor to be able to
properly queue the task when sufficient time points are available. And ¢_next must be
up to date based on all available input data points, because only those data points com-

puted by predecessors in the future will affect ¢_next through the successor check. The

(35 B = s

use of lock and waiting_f or to synchronize accesses to the control variables is shown in
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Algorithms 6.1 and 6.2.

6.1.3 Convergence checking

Although not shown explicitly in Algorithm 6.1, complications arise in scheduling
the convergence checking subtask in TPP because TPP uses the unaugmented task
graphs. as opposed to the augmented task graphs used by FWT. The reason for using
the unaugmented task graphs is discussed in the next section on data structures. In this
section, the impact of the unaugmented task graph on the convergence checker is con-

sidered.

The convergence checking subtask referenced in Algorithm 6.1 is identical in con-
tent to the convergence checking portion of Algorithm 5.7. However, extra precedence
constraint checks must be performed in the TPP program. Recall that the unaugmented
task graph does not include the dependency of (k.i) on (k +1.i). Therefore, it is possi-
ble that task (k +1,i) will finish computing its last time point before task (k.i) com-
putes its last time point. This situation can arise in Gauss-Jacobi relaxation even for
bidirectionally coupled circuits. When this situation occurs. task (k +1,i) may not
proceed immediately to perform a convergence check after computing its last time

point. Instead. it must suspend execution. to be requeued later by task (k.i).

6.2 Data Structures

In the FWT program, a subcircuit may be active in only one iteration at a time,
due to the use of the augmented task graph T. In time point pipelining, a subcircuit
may be active in more than one iteration at a time even if the augmented task graph is

used. In fact, Gauss-Jacobi time point pipelining requires that a subcircuit be allowed

to be active in different iterations simultaneously, because this is the only source of

additional parallelism which is exposed by time point pipelining compared to the full Wyl
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window technique. Gauss-Seidel time point pipelining also benefits from allowing a
subcircuit to be active in different iterations simultaneously, even if the circuit is

bidirectionally coupled.

The reason for using the augmented task graph in FWT was to avoid the necessity
of duplicating data structures for different iterations of a subcircuit. In TPP, the data
structures must be duplicated regardless of which form of the task graph is used.
Therefore, TPP uses the unaugmented form of the task graph, which offers the potential
of greater parallelism than the augmented form. The PARASITE estimates of Table 4.8
indicate that the unaugmented graph will not result in significantly better performance
than the augmented graph when only 8 processors are used for the benchmark circuits.

If more processors are used. the benefits of the unaugmented graph are more significant.

In order to allow different iterations of a subcircuit to be active simultaneously.
the TPP program allocates separate copies of those data structures which are used and
modified during the simulation of a subcircui't. This results in an increase in the
amount of required memory space by a factor of x for this class of data structures com-
pared to the FWT program. The contents of some data structures are not changed dur-
ing the simulation of subcircuits and these structures need not be duplicated. Conse-

quently, the overall increase in 'req_uired memory space is less than a factor of «.

Those data structures for which each subcircuit evaluation task is allocated a
separate copy include
(a) space for the matrix and vectors representing the linearized system of equations on

each Newton iteration;

(b) pointers into the matrix which indicate where terms computed from the model

equations of each circuit element should be added to a matrix element;
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(c) pointers 10 successor and predecessor tasks:

(d) ‘the time values and the node voltages, currents, and charges at the last few time

points as required by the integration algorithm.
(e) the TPP control variables; and

(f) pointers to the waveform buffers for all internal nodes and source waveforms

which affect the subcircuit on the specific iteration.

The subcircuit element values, model parameter values. and other invariant data

describing a subcircuit are maintained in a single copy for each subcircuit.

The approach of preallocating separate data structures for each task is memory
intensive and algorithmically simple compared to some other schemes wﬁich could be
used. Approaches which are more conservative of memory may be preferable for cases
where the virtual address space is not large enough, or where the real memory size is
not large enough and the resulting page misses encountered by the virtual memory sys-
tem cause a degradation in performance. One of the more conservative approaches to
memory usage for the subcircuit matrices will be briefly outlined. although the

approach is not implemented in TPP.

If p processors are used, and if p <<xn . then a significant reduction in memory
usage can be achieved by allocating space for only one matrix per processor. The space
for each matrix must be large enough to accommodate the largest matrix of any subcir-
cuit. When a subtask executes on a processor, it uses the matrix space associated with
that processor. This is feasible since no data stored in a matrix by a subtask are needed
by any other subtask: when a subtask finishes. the contents of its matrix may be dis-
carded. The problem with this approach concerns the handling of pointers to matrix
locations. When circuit elements are evaluated, their contributions are loaded into the

matrix through precomputed pointers. If the destination matrix is not known in
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advance for a given task, then either p sets of precomputed matrix pointers are needed.
one for each possible destination matrix. or the pointers can be computed dynamically
when the terms are added to the matrix. If p is large, then the use of p sets of matrix
pointers results is too great of an additional memory requirement compared to the
memory saved by eliminating the matrices. The dynamic computation of matrix
pointers can be accomplished by adding a precomputed offset 1o the address of the
matrix origin when each term is added to the matrix. In this case. each matrix load

operation requires one extra address addition.

Matrix pointers are also used to indicate the structure of matrices stored in sparse
form. In FWT and TPP, these pointers are computed once in the presimulation phase of
the program. The pointers are used repeatedly during the solutions of the sparse sys-
1emsv of equations. In the scheme where only one matrix is allocated per processor, the
pointers representing the matrix structure could be determined once and stored in a
master copy of the matrix for each subcircuit. Then when a task needs to use a matrix,
it could copy its matrix structure pointers while adding an offset 10 account for the
location of the specific matrix space to be used in memory. This results in the added
requirement of one copy of the matrix structure for each subcircuit, plus a computa-
tional cost in initializing the matrix each time it is assigned to a particular processor. In
the TPP program, these extra computations are avoided by using the more memory
intensive approach of preallocating one matrix for each subcircuit evaluation task. The
matrix pointers for each copy of the matrix are computed once in the presimulation

phase of the program. and they are used repeatedly in each iteration group.

6.3 Results

The performance of the TPP program was measured for the benchmark circuits,

and the results are presented in Table 6.1 for the Gauss-Seidel method and Table 6.2 for
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the Gauss-Jacobi method. The results on 8 processors are compared with the

PARASITE estimates in Table 6.3. The TPP results are within 21% of the ideal

PARASITE estimates, reflecting the higher degree of overhead compared to the FWT

results which are within 11% of the ideal speedups. The comments in Chapter 5 con-

cerning the factors which influence the comparison with the PARASITE estimates are

Table 6.1. TPP Gauss-Seide! Speedups

Processors
Ckt 1 2 4 8
dvs 10 1.7 23 23
dpla 09 17 25 29
scdac | 09 18 34 59
ben2k | 09 1.7 23 27
digfi 09 17 34 46

Table 6.2. TPP Gauss-Jacobi Speedups. Normalized to Gauss-Seidel

Processors
Ckt 1 2 4 8
dvs 07 13 24 40
dpla 0.7 14 28 47
scdac | 0.7 1.3 25 45
ben2k | 06 11 21 137
dighi 06 13 25 45

Table 6.3. Comparison of TPP and PARASITE on 8 Processors

- Normalized Speedup Processor
Method | Circuit | 1pp pARASITE Difference | Utilization
dvs 23 24 4% 30%
_ | dpla 2.9 3.0 3% 39%
g:i:ﬁ scdac | 5.9 7.0 16% 74%
ben2k | 2.7 3.1 13% 37%
digh 4.6 5.8 21% 62%
dvs 4.0 4.9 18% 11% e
Gauss- | P12 4.7 56 16% 79% o ®
Tacon | scdac | 45 5.3 15% 87% wh
ben2k | 3.7 4.7 21% 80% PRt
ﬂﬁ 4.5 5.4 17% 87% \;:"'nk'
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applicable here as well.

6.4 Presimulation Selection of TPP or FWT

The fastest method as a function of the number of processors is given in Table 6.4,
based on the results in Tables 5.1, 5.2, 6.1, and 6.2. In Chapter 5 it was shown that the
presimulation speedup estimates can be used to select between the Gauss-Seidel and
Gauss-Jacobi methods when the full window technique is used. Time point pipelining
has at least as much available parallelism as the full window technique, and any
presimulation selection technique that does not take overhead factors into consideration
will always favor time point pipelining over the full window technique. However. it is
apparent from Table 6.4 that the full window technique is sometimes faster than time
point pipelining because of its lower overhead. For best performance. time point pipe-
lining should only be used in those cases where the full window technique does not
have sufficient parallelism to keep the processors very busy. This suggests that esti-
mates of processor utilization for the full window technique may be useful in selecting

between the full window technique and time point pipelining.

Table 6.4. Fastest Method vs. Number of Processors

— Processors

Circuit 2 4 8
dvs TS T) TJ
dpla TS FI=TI TI
scdac FS FS TS
ben2k TS TS=F} Fl

digfi FS TS FJ
Key: S=Gauss-Seidel, J=Gauss-Jacobi,
F=FWT, T=TPP
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A procedure is now presented for selecting the best of the four methods prior to
the simulation of a given circuit on a given number of processors. First, the choice
between the Gauss-Seidel and Gauss-Jacobi relaxation methods is made based on the
estimate of p, as described in Chapter 5. Next, the potential processor utilization for
the full window technique is computed by dividing the speedup estimate by the number
of processors. If the potential utilization is larger than some threshold i, . then the full
window technique is used: otherwise time point pipelining is used. The procedure is
specified in detail in the following algorithm. The circuit is assumed to be given. p is

the number of processors to be used, and ¥, is a predetermined constant.

Algorithm 6.4. Presimulation Selection

if (p=1){
r_method —~GS
p_method ~FWT
}
else {

Compute Sg; ., - the Type 3 speedup estimate for Gauss-Seidel using
the full window technique, assuming a 2-iteration augmented
task graph and unlimited processors.

Po.est *SGs.et 10-7

if (p <p, ., ) r_method —~GS

else r_method —GJ

Compute S, .50 e - the Type 3 speedup estimate for the full window
tech-nique using the relaxation method specified by r_method ,
assuming a 2-iteration augmented task graph and unlimited
processors.

U S, method.est /P

if (v 2u,) p_method ~FWT

else p method —TPP

}

At the conclusion of the aigorithm, the relaxation method is given by _method . and the

choice between the full window technique and time point pipelining is given by

p_method .
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The potential utilization represented by u is the fraction of time that the proces-

sors would have 1o be busy to achieve speedup S, , chos e ON P processors. where

2 d¢r &=

S, method.est iS the speedup of the full window technique assuming an unlimited supply
of processors. If « <1, then the processors will only be active part of the time. In this
case, the use of time point pipelining is appropriate to increase the processor utilization
and the speedup. If u is slightly greater than 1, then the processors will be busy all the
time if the computational load is perfectly balanced between the different processors.
However, the nonuniformities in task sizes and precedence constraint patterns result in

imperfect load balancing. Consequently, there will still be certain times when the pro-

= an I2x 1)

cessors run out of available tasks. Therefore, time point pipelining should be beneficial
in this case also. If ¥ >>1 then the full window technique generates much more con-
current work than the processors can handle. and consequently time point pipelining

should not be used because it will just add more overhead. The break-even value of u .

where the full window technique and time point pipelining have about the same perfor- N

S .
- =

mance is given by u,. The value of u, is expected t0 be greater than, but not much

greater than 1.

In order to determine if there exists a value of ¥, which would result in correct
selections of the fastest algorithms, the values of ¥ have been tabulated in Table 6.5,
for the indicated relaxation methods. The value ¥, =1.7 is found to produce good
results. With this choice of u,. the presimulation selection algorithm chooses the
methods shown in Table 6.6. In all cases except for one, the fastest method (or one
with nearly the same performance) is chosen. In the one exceptional case, the chosen

method is 8% slower than the fastest method.

These results demonstrate that a simple analysis of the task graphs can be used to

IR S B =8 x5 Al

get some indication of the relative performance of different methods prior to
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Table 6.5. Presimulation FWT Potential Utilization Estimates

Circuit Processors
1 2 4 8

dvs 1.5(S) 08(S) 16() 08Q)
dpla 20(8) 10(8) 16Q) 08Q)
scdac 70(8) 35(S) 18(S) 09(S)
ben2k | 2.3(S) 12(S) 18(H 09(Q)
| dighi 5.0(8) 25(S) 13(S) 4.7(D)
Key: S=Gauss-Seidel, J=Gauss-Jacobi

Table 6.6. Presimulation Prediction of Fastest Method

S Processors

Circuit > 4 8
dvs TS TI T)
dpla TS TJ TJ
scdac FS FS TS
ben2k TS FJ) T)*
| dighi FS TS FJ

Key: S=Gauss-Seidel, J=Gauss-Jacobi. UL,

)
*=Disagrees with Table 6.4 ":.s‘ e

(4 381

simulation. Details of the preeimulati_on selection algorithm may have to be modified if
significant changes are made in the implementation details of the simulation algorithms
or in the types of circuits being simulated. In particular, the Gauss-Jacobi/Gauss-Seidel
ratio of 0.7 used in the p, estimate, and the u, value of 1.7 are empirically determined
constants obtained based on the impiementations in the FWT and TPP programs as
applied to the benchmark circuits. For the benchmark circuits, which represent a
variety of types of MOS digital circuits, the presimulation selection method produces

good results using the previously mentioned constants.
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CHAPTER 7

LATENCY

The number of computations required to solve a set of circuit equations over a
time interval can be reduced by exploiting latency. Latency exploitation has been used
in a variety of forms in several circuit simulators [Nag75. Yan80. Whi86. Sal87a,
Sak81. Cox87, Rab76). Latency is exploited by recognizing situations in which a new
solution point will match some previous solution point. If this determination can be
done cheaply in advance of actually solving for the new solution point, then the com-
putations to solve for the new solution point can be avoided. Two types of latency are
addressed in RELAX2.3: time latency and iteration latency. This chapter considers the

use of these types of latency in the parallel waveform relaxation algorithms.

7.1 Time Latency

A subcircuit is said to be time latent in time interval [z,.2,] if the inputs to the
subcircuit are constant in the interval and the subcircuit is in a dc steady state at time
¢t . In this situation it is not necessary to compute the voltages for any time point in the
interval (¢ ,.¢,] since the values will be identical to those at ¢,. The sbeircuit is deter-
mined to be in a dc steady state at ¢, by observing that the subcircuit’s internal voltages
and charges are constant and the currents flowing into capacitors are zero, within some
tolerance. Once this determination is made, the end of the time latency interval can be
found by searching for the time at which the first change occurs in an input waveform

of the subcircuit.
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Even without explicitly bhandling time latency, the basic waveform relaxation
algorithm automatically exploits time latency and slowly changing signals by choosing
the time steps independently for each subcircuit. Therefore. the advantage of explicitly
managing time latency is not as great for waveform relaxation compared to other solu-
tion techniques which do not use multirate integration. The time latency algorithm
may be more efficient in placing the next time point exactly at the point in time where
the first input change occurs, whereas the time step computed based on the truncation
error does not look ahead to future input changes. except indirectly through the 3-step

check (see Algorithm 6.2).

A danger of time latency exploitation is that false latency detection can occur if
the tolerances are too large. This is especially important in linear circuits, where decay-
ing exponential waveforms satisfy the latency criteria before actually reaching their
final values. In digital circuits, the iikelihood of faise latency detection is reduced
because of the sharp nonlinearities which clamp signals to steady state values relatively

quickly after transitions.

7.2 Iteration Latency

Subcircuit i is said to be izerazion latent on iteration k& if all the input waveforms N
U
N . , . . . , - FXANX]
of subcircuit evaluation task (k,i ) are identical to the inputs of task (k~1,i), within gy

some tolerance. In this situation it is not necessary to solve the subcircuit on iteration

k since the solution will be almost identical to the solution of iteration £ —1. In previ-

ous work, iteration latency has been called partial waveform convergence. This is

H H s . $, X
because iteration latency most commonly occurs when some of the subcircuits converge Z:!.,:::‘,::;
AN ALK
AN
to the solution while the rest of the circuit requires additional iterations. After the first :St::}}::f
OO
UF R
subcircuits converge, they become iteration latent for the remaining iterations while the ™

other subcircuits continue to be evaluated. "\
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In the Gauss-Jacobi method. a signal change originating in one subcircuit may

=]

require some number of iterations j to reach subcircuit i, because signals propagate

through the subcircuit graph at the rate of one subcircuit per iteration. If subcircuit i

is in a dc steady state at the beginning of the window, it will be iteration latent for

&a)

iterations 1 through j—1. In this scenario, the terminology partial waveform conver-

ES
T

gence is inappropriate, because the latency is not due to convergence. The terminology

oy
R

iteration latency is more basic. and covers both of the situations described above.

e
o

Iteration latency can occur over an entire window, or over the first part of a win- :
dow. Let /. _, and 7, be the sets of input waveforms to the subcircuit when the subcir-
cuit is solved on iterations k ~1 and k . respectively. If the window is [¢,.¢, ]. then the
subcircuit can be iteration latent in subinterval [¢,. ¢, ]. for some ¢, €¢,. If ¢, <z, then

' t, is the last time point in the window for which the waveforms of J, match those of

(R 558 68

I, _, within the specified tolerance. The subcircuit solution of the previous iteration can

be used in the interval [¢,.2, ], whereas solution points in the interval (¢,.¢,] must be

a2

recomputed on iteration k. The final waveforms for the window are equivalent to

}

those that would have been computed if the /, _, input waveforms were applied to the

-
P
N

subcircuit through time ¢, , and the I, input waveforms were applied after t,. The
discontinuity of the effective input waveforms at ¢, can cause problems if the tolerance
used to compare the input waveforms is too large. Artificial glitches may occur in the
output waveforms and excessive time points may be computed after the discontinuity
due to the glitches. In extreme cases, one of these discontinuities can lead to a failure of
the integration algorithm. as the step size control mechanism repeatedly reduces the step
size in a vain attempt to reach an acceptable truncation error computed from divided

difference estimates of derivatives of discontinuous functions.
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RELAX2.3 uses iteration latency when the subcircuit is latent over the entire win-
dow, but not when the subcircuit is latent over only the first part of the window. The
likelihood of anomalous behavior due to input waveform discontinuities is redqced in
this case, since the number of iteration latency boundaries is greatly reduced. and a sub-
circuit is more likely to be in a dc steady state at a window boundary, although many
window boundaries occur during signal transitions in some of the benchmark circuits.
Consequently. the policy of using iteration latency only when the subcircuit is latent
over the entire window reduces the likelihood of latency-induced errors. but does not

assure that such errors will not arise.

Latency-induced errors can be made as small as desired by decreasing the latency
tolerances. However, very small tolerances lead to very little latency exploitation. In
effect, the use of iteration latency and the setting of the tolerances present a tradeoff of
simulation speed versus reliability and accuracy. The latency algorithms of kELAX‘2.3
produce acceptably accurate waveforms for all the benchmark circuits. using iteration

latency tolerances which are identical to the waveform convergence tolerances.

7.3 Impact of Latency on Speedup

Latency exploitation reduces the number of computations which must be per-
formed, and therefore reduces the uniprocessor run time, 7,. If some of the eliminated
computations are in the critical path of the task graph, then the parallel run time will
also be reduced. provided the overhead of latency management is not too large. The
parallel completion time of the program on an unlimited number of processors without

overhead is given by

Ta™ Z Wy (71 )

x € {tasks in P)

where w, is the CPU time of task x , and P is a path in the task graph which maximizes
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the expression in (7.1). If the overhead for detecting latency is negligible. then w, for
each task x will be reduced or remain the same when latency is exploited. Conse-
quently, latency exploitation will reduce the overall parallel run time. or at worst leave

it unchanged, neglecting the overhead required to manage the latency.

The speedup on unlimited processors neglecting overhead is Sy ,=7,/7T,. Since
both 7, and 7 are reduced when latency is exploited. the speedup may increase or
decrease. If the tasks in P exhibit more latency than other tasks, then the speedup will
tend to increase when latency is exploited. Otherwise, the speedup will tend to be
reduced. For circuits that partition into subcircuits of nonuniform size, there is a ten-
dency for P to consist of subcircuit evaluation tasks of the larger subcircuits. This is
especially true for Gauss-Jacobi, where P typically contains instances of 1 or 2 of the
largest subcircuits. Subcircuit evaluation tasks for large subcircuits typically have
many input waveforms from other subcircuits. The likelih60d that all of the inputs
will match the previous iteration, or that all the inputs will be constant in some time
interval is small by comparison with smaller subcircuits. This intuitive argument sug-
gests that latency exploitation will tend to reduce speedup. when the number of proces-

sors is large, and when the subcircuit partitioning is nonuniform.

As a counter-example, consider a circuit which during a given time window con-
sists of two essentially independent parts, one part consisting of a few small tightly
coupled subcircuits and the other consisting of large loosely coupled subcircuits. Since
the small subcircuits are tightly coupled, they will required more iterations than the
large subcircuits, and the large subcircuits will become iteration latent after a few
iterations. In this case, the large subcircuits in the critical path will exhibit greater
latency than the average subcircuit. and the speedup may be increased by latency

exploitation. Although this situation is less likely than the previous example, it demon-
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strates that latency exploitation does not necessarily reduce the amount of available

paralielism.

The effectiveness of time point pipelining is also affected by latency exploitation.

Suppose P is a path in the full window task graph consisting of relatively large subcir-

cuit evaluation tasks x,, ... . x,, and that time points occur at times ¢,. ... . f; in each

task. The first task cannot be iteration latent. since there is no previous iteration. Sub-

sequent tasks in the path will tend to be iteration latent over increasing portions of the

first part of the window. For example. suppose x, is nonlatent, x, is iteration latent

through ¢,, and x4 is iteration latent through z,. If the latency is not exploited. if 4

processors are available, and if only the tasks in path P are considered, then the paraliel

execution of time points will proceed as shown in Table 7.1, and will require 8 units of

processor time, compared to 20 units of time on a single processor. If partial-window

latency is exploited, the parallel execution will proceed as shown in Table 7.2, and will

require the same amount of processor time. 8 units. However, the uniprocessor time is

reduced to 14 by exploiting the latency. Consequently, in this example. iteration

latency exploitation reduces the uniprocessor run time but leaves the 4-processor run

Table 7.1. Paralle! Schedule Example: No Latency

Time || x x x x

[

Sl Inia]lWINV
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R 1=

Table 7.2. Parallel Schedule Example: Latency

<

il |alh|wWiN]m

time unchanged.

The parallel execution time will be reduced by latency if one or more of the tasks

in P are iteration latent over the entire window. For example, if x, is iteration latent

(R aE &N

over the entire window, then x, may compute each nonlatent time point one step ear-

lier. As noted for the full window technique, the critical paths in the task graph tend

to contain large tasks which are less likely to be latent over the entire window than
other tasks. Therefore, iteration latency exploitation typically reduces the amount of

parallelism in time point pipelining.

7.4 FWT Latency Implementation

The window-level exploitation of iteration latency in RELAX2.3 is readily imple-
mented in the FWT program, because the entire input waveforms are available when a
subcircuit evaluation task is started. Since FWT uses the augmented task graph T.the
entire input waveforms of task (k ~1.i) as well as the inputs of (k. i) are guaranteed

1o be available when task (k,i) begins executing. Consequently, iteration latency can

(55 S R 44 - )

be checked for the entire window before computing the first time point of the subcir-

cuit, and if latency is detected. no time points are computed. If the subcircuit is not N
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iteration latent, time latency is checked before computing each time point. When time
latency is detected, the input waveforms may be searched immediately for the next
change in value. which determines the next time point at which the subcircuit must be

evaluated.

The implementation of latency in FWT affects only the subcircuit evaluation task
algorithm. which is given below in Algorithm 7.1. The current window boundaries are
represented by ¢, and t,. the iteration number is k. and the subcircuit number is i.

The convergence and successor checks are the same as in Algorithm 5.7.

Algorithm 7.1. FWT Subcircuit Evaluation Task with Latency (k. i)

determine time ¢ €£¢, such that the inputs to (k,i ) match the previous
iterationon [¢, . 2]
if ¢ =t,) v, e )v, e ). for all £ €le,.2, ]
else |{
t_done ~t,
pick next time point ¢_next
while (¢_done €¢,) |
if ((k.i) is in dc steady state at time ¢_done ) {
determine time ¢ €¢, such that the inputs to (k.i)
are constant on [¢_done.t ]
v, % e )o-v,* X(¢c_done )
}
else solve subcircuit at time ¢ €(t_done, t_next ]
t_done ~t
_ pick next time point ¢_next

}

check successors
check convergence

735 TPPL Latency Implementation

Time point pipelining presents unique problems for the exploitation of time
latency and iteration latency. Problems arise because only partial waveforms are gen-

erally available when time points are computed, and because long latent intervals can
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csuse pipelining bottlenecks.

When time latency is detected at time ¢, it may not be possible to immediately
determine the next time for which the task should be evaluated. because the input
waveforms may not be available through the time of the next input change. Conse-
quently, it may be necessary to mark the task as being time latent and suspend its exe-
cution. A mechanism must then be provided for the task to be restarted when one of
its inputs changes value. Note that this condition for restarting a time latent task is
different from the condition for restarting a nonlatent task. In a nonlatent task. the
time of the next time point, 2_next is determined before the task is suspended, and the
predecessors restart the task after they have all progressed through time ¢_next , regard-

less of whether or not their waveforms change value.

Bottlenecks can occur if time advancements are not propagated through time
latent tasks. For example. consider a task x with a set of predecessors P and a set of
successors S. Suppose that x is time latent on the interval [t . ¢ ). and that the tasks in
P and S will all be evaluated at times ¢,.2,. - - - .2, €(¢,.t,). This is not an unreason-
able situation, because tasks in S may also be immediate successors of tasks in P, and
the waveforms fed from P to S may be active even though those waveforms fed from
P 10 x may be unchanging. Task x does not compute any time points in the interval
(¢,.t_] because it is time latent. However, if the output waveforms of x are not
updated until the time point is reached at the end of the latent interval, at ¢ . then the
tasks in S will not be able to compute the time point at ¢, until after the tasks in P
have progressed all the way to time ¢ . This bottleneck can be avoided. If all tasks in
P have progressed to time ¢, and x is still time latent, then the waveforms of x can be
extended to time ¢, without computing a new solution point, and the successors of x

can then be allowed to compute new solutions at time ¢,. In terms of the TPP control
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variables. the bottleneck is avoided by having ¢_done of the latent task track the value

of t_ready, and by periodically updating ¢_ready to track the progress made by the

predecessor tasks during the latent interval.

If time latency is not handled explicitly, and the time steps are determined

exclusively based on local truncation error. then time advancements cannot be pro-

pagated through latent tasks as described above. Therefore. the explicit detection of

time latency has a beneficial influence on paralielism.

The use of iteration latency in time point pipelining presents a more fundamental

problem than time latency. The window-level approach to iteration latency used in

FWT is not particularly suitable for time point pipelining. Suppose that the window-

level latency approach were used for task x with predecessors P and successors S. The

determination that x is iteration latent cannot be made until all of x’'s input

waveforms are available over the entire window. In this case the output waveforms of

x are not known until all the tasks in P reach the end of the window. which means

that all the tasks in § will be delayed until the tasks in P are finished. If latency were

not exploited, the time points would propagate through x one at a time, allowing tasks

in S to be executing concurrently with tasks in P. Thus, window-level latency exploi-

tation has a serious negative impact on the pipelining parallelism.

Similar bottlenecks appear in the window-level latency approach even when tasks

are not iteration latent over the entire window. If task x is iteration latent on [z,.2].

for some t <t, . then the determination that x is not latent on the window cannot be

made until all the tasks in P reach time ¢. Only then can x compute its first time

point. If ¢t >>¢,. the delay in starting to solve task x will result in a significant

decrease in parallelism. This parallelism reduction will be comparatively small in early

iterations since the iteration latency boundaries will be close to ¢, . but the parallelism
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reduction will be comparatively large in later iterations as the iteration latency boun-
daries approach ¢, .

By allowing iteration latency to be exploited on partial windows. the time point
pipelining bottlenecks described above can be avoided. When partial window latency is
used. the latency status of a task can be determined time point by time point as the
input waveforms advance. For example, if the input waveforms to task x are available
through time ¢, and they match the previous iteration through time ¢ . then the output
waveforms of task x for the current iteration can be copied from the previous iteration
through time ¢ and these waveforms can be made available to S. If at time ¢, >¢ one
of the inputs to x differs from the previous iteration, then x becomes nonlatent at time
t, and begins computing solution points. Just as in the time latency case, it is impor-
tant to propagate tipe advancements through iteration latent tasks to avoid bottlenecks

on long latent intervals.

The detection of iteration latency requires comparing the current input waveforms
with the input waveforms of the previous iteration. Therefore, when checking iteration
latency at time ¢, it is necessary that the input waveforms of the previous iteration be
available through time ¢. In order to guarantee that the previous iteration waveforms
will be available, the augmented task graph T must be used, rather than the unaug-
mented task graph used in the TPP program without latency. The PARASITE results of
Chapter 4 indicate that the penalty for using T is small except when the number of
processors is very large.

Time latency and iteration latency have been implemented in an experimental ver-
sion of the TPP program which bears the unimaginative but functional name TPPL.
The algorithm for the subcircuit evaluation task is outlined below in Algorithms 7.2 -

7.6. The TPP control variables retain their meanings as defined in Chapter 6, except the
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status variable can take on additional values to indicate when a task is iteration latent
or time latent. When the TPP control variables appear without subscripts, the sub-

scripts k. i are assumed. The value of § is smaller than the smallest possible time step.

Algorithm 7.2. TPPL Subcircuit Evaluation Task (k.:)

more ~TRUE
while (more =TRUE ) {
if (status =UNINITIALIZED ) tppl_init (k.i)
else if (status =EVALUATE ) tppl_eval (k,i)
else if (status =ITER_LATENT ) iter_lat (k.i)
else if (status =TIME_LATENT ) time_lat (k.i)
else if (status =END_ITER_LATENT ) end_iter_lat (ki)
else if (status =END_TIME_LATENT ) end_time_lat (k.i)
else if (status =CONVERGE_CHECK ) {
if (global convergence achieved and ¢, <t, )
start next window
more —FALSE
}
if (more =TRUE ) {
LOCK(lock )
if (status =EVALUATE ) limit t_next
update ¢_ready and waiting_for
if (waiting_for #NULL ) more ~FALSE
UNLOCK (lock )

Algorithm 7.3. Tppl_eval (k.i)

while (status =EVALUATE and t_ready 2¢t_next ) |
if (¢_done 2t,) status =CONVERGE_CHECK
else if ((k,i) is in dc steady state)
determine time ¢ £¢_ready such that the inputs to (k. i) are
constant on [¢_done. ]
if (¢ >t_next) {
t ~t_done
t_done ~—t
t_next ~—minft +8,¢, }
status ~=TIME_LATENT
check successors
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if (status =EVALUATE) {
solve subcircuit at time ¢ €(¢_done, t_next ]
t_done «t
pick next time point {_next
check successors

&8 &b &858 M

Algorithm 7.4. Iter_lat (k.i)

determine time ¢t $¢_ready such that the inputs to (k. i ) match the previous
iterationon [¢,. 2]
if (¢ >t_done ) |
t_done ~t
t_next ~—minft +8.¢, }
check successors

}
if (¢_done =t, or t_done <i_ready ) status —END_ITER_LATENT
else ¢_next ~—min{t +8.¢, }

Algorithm 7.5. Time_lat (k.i)

determine time ¢ ¢_ready such that the inputs to (k. i ) are constant
on [¢t_done.t)
if (¢ >2_done) {
t_done ~t
t_next ~minft +8.¢, )
check successors

(B &0 &G & o= e

}
if (¢_done =t, or t_done <t_ready ) status —END_TIME_LATENT

Algorithm 7.5. End_iter_lat (k.i)

v, "¢ )=v, (e ), for all ¢ €lt,. t_done ]
pick next time point {_next
status —EVALUATE

Algorithm 7.6. End_time_lat (k. i)

v, % Ae_done )=v,* (¢ )
pick next time point ¢_next
status ~EVALUATE
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7.6 Results

The effect of iteration and time latency exploitation on a2 uniprocessor is demon-
strated in Table 7.3. The run times using Gauss-Seidel waveform relaxation with and
without latency are listed along with the run times of the standard direct method. The
latency results were obtained using time latency and window-level iteration latency.
Two observations are apparent: latency has a significant impact on the run time, and
waveform relaxation is not as fast as the direct method for most of the circuits in the
benchmark set. The exception is digfi. which is the largest and most uniformly parti-
tioned of the circuits. and has comparatively weak coupling between subcircuits. It

should be noted that the benchmark circuits were obtained primarily from real indus-

e
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trial circuits, and they were not prescreened on the basis of suitability for waveform
relaxation, aside from the fact that only MOS circuits were considered. Also, the
automatic partitioning and windowing algorithms were used without manual optimiza-
tion. Results have been cited in the literature which demonstrate that waveform relax-
ation is capable of speeds greater than the direct method on a uniprocessor for a variety
of circuits [Whi86). In the context of this chapter, the important point demonstrated
by Table 7.3 is that the use of latency is important in making the uniprocessor perfor-

mance of waveform relaxation to be as competitive as possible with alternative

’»‘{‘hx%"‘v

Table 7.3. Uniprocessor Run Times (in seconds)

. Direct WR-GS with
Circuit Method WR-GS Latency
dvs 57 127 97
dpla 54 110 65
scdac 420 1029 568
ben2k 297 594 331
| dighi 1342 1934 742
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algorithms.

As previously noted, the effect of time latency in waveform relaxation is small
because waveform relaxation is intrinsically a multirate integration algorithm. The
. impacts of iteration and time latency are shown separately in Table 7.4, where it is seen
that the time latency effect is negligible for the benchmark circuits. By contrast, itera-

tion latency accounts for a speed improvement close to 2 on a uniprocessor.

The results of the FWT program with latency enabled are given in Tables 7.5 and
7.6. The reference times in computing the speedups are the Gauss-Seidel uniprocessor
run times with latency exploitation. As expected, the speedups are generally less than
those obtained without latency. This. of course, does not mean that the run times are
longer when latency is used, it only means that the contribution of parallel processing is

reduced somewhat.

The performance of the TPPL program is summarized in Tables 7.7 and- 7.8. The
speedups are computed with respect to the FWT program with latency running on 1
processor. Since TPPL exploits iteration latency over partial windows and FWT
eiploits iteration latency only over entire windows, TPPL exhibits a speed improve-

ment over FWT even on 1 processor in some cases. In cases marked with asterisks, the

Table 7.4. Uniprocessor Speedups Due to Latency: Gauss-Seidel

Circuit No Iteration Time Both
Latency Latency Latency Latencies

dvs 1.0 1.39 1.00 1.37

dpla 1.0 1.74 1.02 1.81

scdac 1.0 1.84 0.99 1.82

ben2k 1.0 1.70 0.99 1.79

| digfi 1.0 2.51 0.98 2.58
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Table 7.5. FWT Gauss-Seidel Speedups with Latency

Processors
1 2 4 8
dvs 1.0 14 13 13
dpla 10 17 21 19
scdac 1.0 19 33 40
ben2k 10 16 18 18
dighfi 1.0 19 29 3.1

Circuit

Table 7.6. FWT Gauss-Jacobi Speedups with Latency, Normalized to Gauss-Seidel

Processors
1 2 4
dvs 07 13 20
dpla 07 13 24
scdac 06 12 21
ben2k 05 10 19
| digfi 06 12 2.1

Circuit

Table 7.7. TPPL Gauss-Seidel Speedups

Processors

1 8
dvs 11 24
dpla 1.1 35
scdac 1.2 7.8
ben2k 0.6* 1.6*
| dighi 1.2 52

Circuit

Table 7.8. TPPL Gauss-Jacobi Speedups. Normalized to Gauss-Seidel

Processors
1 8
dvs 0.6 29
dpla 06 34
scdac 0.6 4.1
ben2k | 0.2* 1.3*

| dighi 0.6 3.3

Circuit

tolerances had to be reduced below the default values. For the ben2k circuit, the itera-

tion latency tolerance, local truncation error tolerance, and Newton convergence toler-
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ance were all reduced in order to obtain accurate waveforms. and this resulted in a
significant degradation in the run times. For the digf run marked with an asterisk. the
iteration latency tolerance.had to be reduced to avoid a failure of the integration algo-~
rithm at an effective input waveform discontinuity. In the cases which did not experi~
ence such difficulties, the TPPL perf;)rmance on 8 processors surpassed the FWT perfor-

mance on 8 processors.

The Gauss-Seidel TPPL speedups compare favorably with the results excluding
latency in Table 6.1. The superior speedups are due to the use of partial window itera-
tion latency, rather than 10 an increase in parallelism. The Gauss-Jacobi speedups with
latency are significantly less than those obtained without latency. In the Gauss-Jacobi
case, the effect demonstrated in Table 7.2 is especially applicable, since a critical path in

an augmented Gauss-Jacobi task graph normally consists of instances of the largest sub-
circuit. which is unlikely to be latent over the entire window. A critical path in a
Gauss-Seidel task graph normally contains a mixture of different subcircuits, some of
which may be latent and others which are not. Consequently, when Gauss-Jacobi time
point pipelining is used for a circuit which is dominated by a large subcircuit, latency
does not have a significant effect on the parallel execution time if the number of proces-
sors is large compared to the available parallelism. However, the parallel run time is
reduced in those cases where the number of processors is small compared to the avail-
able parallelism, due to the reduction in the number of computations. This can be
observed more clearly in Table 7.9 where the run times of Gauss-Jacobi time point pipe-
lining on 8 processors show little improvement due to latency for the small circuits dvs
and dpla. but show a significant improvement for digf. where the subcircuit partition-
ing is more uniform and where the number of processors is small compared to the avail-

able parallelism.
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Table 7.9. Transient Analysis Run Times
Circuit

Method | Procs- | dvs  dpla  scdac ben2k digh |
Direct 1 57 54 420 297 1342 » 3
FWT-GS 8 91 S5 209 278 501 S
FWT-GJ 8 40 27 218 150 403 RO
TPP-GS 8 54 39 173 218 419
TPP-GJ 8 32 24 218 160 433
FWT-L-GS 8 70 33 121 168 216
FWT-L-GJ 8 34 25 162 105 201 -
TPP-L-GS 8 0 19 73 210* 140 :
TPP-L-GJ 8 31 19 138 257 226*

Key: L=latency exploited: *=tighter tolerances used I

Finally. Table 7.9 shows the run times of the different parallel waveform relaxa-
tion methods on 8 processors, and the run times of the direct method on 1 processor.
Parallel waveform relaxation on 8 processors is faster than the direct method on 1 pro- ‘ i
cessor, even if latency is not exploited and even though these circuits do not have good f;‘:'
waveform relaxation performance on 1 processor. Further performance improvements

are attainable with latency exploitation on 8 processors, but this performance advantage

comes at the expense of reduced reliability. o .




130

CHAPTER 8

CONCL.USIONS

Four different parallel forms of the basic waveform relaxation algorithm with
windowing have been studied. These parallel algorithms use Gauss-Seidel or Gauss-
Jacobi relaxation in combination with either the full window technique or the time
point pipelining technique for coordinating the parallel execution of computations. The
superiority of Gauss-Seidel over Gauss-Jacobi for the solution of MOS digital circuits
on a uniprocessor is well known. The use of Gauss-Jacobi relaxation for circuit simula-
tion has been largely avoided in previous work, because more iterations are required for
convergence. However, when sufficiently many processors are available, the overall run
time of Gauss-kc-obi is less than that of Gauss-Seidel. This relationship between
Gauss-Seidel and Gauss-Jacobi has been established formally for the linear algebraic
equation case in a theorem which relates the spectral radii of the Gauss-Seidel and
Gauss-Jacobi iteration matrices to the relative degrees of available parallelism. Results
of the PARASITE parallel simulation time estimator, which produces accurate estimates
of the parallel run times neglecting overhead, shows that the extra parallelism of
Gauss-Jacobi waveform relaxation is more than sufficient to result in faster run times
than Gauss-Seidel, when the number of processors is sufficiently large. These results
are confirmed by actual multiprocessor circuit simulations, using the FWT and TPP
parallel waveform relazation programs running on an Alliant FX/8. For 4 of the §
benchmark circuits, using the full window technique, the performance of the Gauss-
Jacobi method surpasses that of Gauss-Seidel on 8 processors. For the other circuit,

PARASITE indicates that Gauss-Jacobi will be faster than Gauss-Seide]l on 16 or more
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processors.

Time point pipelining exposes more parallelism than the full window technique.
and it introduces additional overhead. The results of the FWT and TPP programs
confirm that time point pipelining produces faster run times than the full window tech-
nique in those cases where the full window technique does not expose enough parallel-
ism to keep the processors busy. The previously unexplored combination of time point
pipelining and the Gauss-Jacobi method has been shown to be the fastest of the four
basic parallel waveform relaxation algorithms when the number of processors is large
enough. PARASITE estimates indicate that speedups of about one order of magnitude
should be possible on about 32 processors for 1000-transistor circuits. where the
speedup is computed with respect to the Gauss-Seidel method on a single processor.

The available parallelism of the Gauss-Seidel and Gauss-Jacobi methods can be
estimated prior to simulating a circuit, by performing a compuutionilly inexpensive
analysis of the task graphs. A presimulation selection procedure has been presented
which uses these estimates to choose either the Gauss-Seidel or Gauss-Jacobi method for
simulating a given circuit on a given number of processors. Furthermore, by using the
perallelism estimates to predict the potential processor utilization. the selection pro-
cedure chooses either the full window technique or time point pipelining.

The uniprocessor speed of the basic waveform relazation algorithm is improved
significantly when iteration latency (or partial waveform convergence) is exploited. On
paralle] processors, iteration latency exploitation reduces the amount of parallelism in
the benchmark circuit examples, but the overall performance is still better when
latency is exploited. Since latency exploitation reduces the parallelism to a greater

extent for the algorithms with greater parallelism, the differences in run times of the

different algorithms are reduced when latency is exploited. The choice of the latency
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tolerances involves a iradeoff between greater latency exploitation and reliability. since
loose tolerances can lead to inaccurate waveforms or failures of the integration algo-
rithm. The reliability problems are most severe when time point level iteration latency
is used.

Waveform relaxation on a uniprocessor works best for circuits which can be parti-
tioned into a large number of weakly coupled subcircuits of nearly the same size. These
are the same circuit properties which lead to good speedups in parallel waveform relax-
ation. Even though some of the benchmark circuits used in obtaining the experimental
results do not satisfy this criterion, the paraliel waveform relaxation run times on 8
processors are significantly less than the uniprocessor run times of both waveform
relaxation and the standard direct methods. Further speed improvements are possible
from the natural paralielism of waveform relaxation if more processors are used.
When large subcircuits arise due to large subsets of tightly coupied nodes. the same
techniques used to parallelize the standard direct methods can be used within the large
subcircuits to expose levels of parallelism which go beyond the natural relaxation

parallelism studied in this thesis.
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