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ABSTRACT

New algorithms are derived for polyline approximation of digital waveforms, us- i"" “-:"v
ing recursive least squares and generalized likelihood ratio techniques. Numerical o
experiments indicate that the new algorithms may in some applications offer sig-
d nificant speed and accuracy advantages compared to prior polyline algorithms.
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1.0 INTRODUCTION ®

v',‘,;-’

P
" .l‘\‘ ‘
The extraction of time-domain information from a waveform (e.g., pulse shape) ﬁ W

can be facilitated by preprocessing the waveform with a “‘polyline algorithm,”’ i.e., .-I‘l\-".:
an algorithm that approximates the waveform as a concatenated sequence of straight- ” -

line segments. The polyline approximation, if properly accomplished, smooths in- T .
consequential noise structures while leaving significant structure well defined and -‘:-}.-'_
unsmoothed. Moreover, the polyline representation generally provides a large de- ::.-:-:-:
gree of data compaction relative to the original time series. e

Polyline approximation has recently been applied to a great diversity of problem "_:'f\-'"

areas (see the Bibliography). L
An early polyline application that in many ways anticipated our present work is .
provided by McAulay and Denlinger' in their development of decision-directed .:':-.‘, 's-::
tracking algorithms. An early scan-along algorithm was developed by Tomek, based :-*;}H._-'
on the notion of finding the longest approximating line segment that can be con- -‘:.'é._;»:

fined completely within a pair of parallel lines separated by a prespecified error toler- :.1*:4-:.

ance.™ Some of the difficulties experienced with Tomek’s algorithm are aileviated ._.‘f\': y

by a scan-along algorithm variously referred to as the cone intersection and mini- ®

mum perimeter polygon method, discovered independently by Williams® and by ,-::,;-; {

Skiansky and Gonzalez.*

Pavlidis’ and Pavlidis and Horowitz® describe a split-and-merge technique that
progressively improves on an initial segmentation until an a priori error specifica-
tion is satisfied. More recently, Pavlidis” has devised an algorithm that recasts his
earlier split-and-merge approach into a scan-along structure that he refers to as a

P
2

X B
XL
IV

hop-along algorithm. = -.:.r‘.
The scan-along and split-and-merge algorithms, while effective in applications, .-__.':-"
are not intended to be optimal in any sense. Vandewalle® has provided an algorithm 'j,\;
that, while slow in execution, is intended to provide an approximation that is op- l-"_"_vf: ¢
timal, in the sense of requiring the minimum number of breakpoints (or knots) to ,'_;N::& :
achieve a prespecified error norm. Similar concepts are cast into a somewhat more AANO]
formal setting by McLaughlin and Zacharski,” who refer to their algorithm as the .
method of E-maximal knots. ‘.;,-:_\‘f }
A dynamic programming algorithm for polyline approximation has recently been ;:.,-:.,-
devised independently by Papakonslaminou'" and by Dunham.'' These authors H:"-"F
NN
'R. J. McAulay and E. J. Denlinger, “*A Decision-Directed Adaptive Tracker,” IEEE Trans. Aer- ':\ L--,"':
asp. Electron. Syst. AES-9, 229-236 (1973). PY
1. Tomek, **Two Algorithms for Piecewise Lincar Continuous Approximation of Functions of =
One Variable," [EEFE Trans. Comput. C-23, 445-448 (1974). },-:?;'
YT, Pavlidis, Structural Pattern Recognition, Springer-Verlag, Berlin (1977). ."'\."Q g
1

*C. M. Williams, *“*An Efficient Algorithm for the Piecewise Linear Approximation of Planar
Curves,” Comput. Graph. Image Process. 8, 286-293 (1978).

4 )\:_'.
L

*J. Sklansky and V. Gonzales, “*Fast Polygonal Approximation of Digitized Curves,” in Proc. -(M'F
1979 IEEE Computer Society Conf. Pattern Recognition Image Processing, pp. 604-609 (1979). 5 ..‘\ﬁ
*T. Paviidis and S. L. Horowitz, **Segmentation of Plane Curves,” IEEE Trans. Comput. C-23, ®
860-870 (1974). ~
“T. Pavlidis, Afgorithms for Graphics and Image Processing, Compuater Science Press, Rockville, '-,"-," ‘
M. (1982). A
*1. Vandewalle, **On the Caleulation of the Piecewise Linear Approximation to a Diserete Fune- {‘\f\d.
tion,”” IEEE Trans. Compui. C-24, 843-846 (1975). )
“H. W. MclLaughlin and JI. J. Zacharski, **Segmented Approximation,” in Approximation The- ‘.p.’.f::'
orv, E. W, Cheney, ed., Academic Press. New York, pp. 647-654 (1980). 'Jz.-“ !
¢G5, Papakonstantinou, **Optimal Polygonal Approximation of Digital Curves,” Signal Process. ®
8, 131-135 (1985). v,
"1, G. Dunham, “Optimum Uniform Piccewise Linear Approximation of Planar Curves,” [EEE : A
i

Trans. Pattern Anal. Mach. [ntell. PAMI-8. 67-7S5 (19YR6).

9
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claim optimality for their algorithmys, in the sense of obtaining an approximation ¢

with a globally minimum number ol knats, for a prespecified peak fitting error. "
The dynamic programming algorithms™ " call upon the cone intersection method

as a subroutine. .
Numerical experience with the “oprimal™ aleonthms indicates that the dynamic S_‘(. v,
programming algorithm provides both reduced fitting error and faster execution . :'
speed, relative to the method of E-maximal knots, as discussed in Section 6 below. s
In addition to providing a new dynamic programming algorithm, Dunham presents 7-:-’ y
- performance comparisons of several prior polvline algorithims against three test con- :.-: f
: tours."" The measures of algorithm performance used by Dunham are execution )
speed, degree of data compaction, and peak absolute Titting error; algorithms evalu- (- )
ated included those by Pavlidis and Horowiz,” Pavlidis, Williams,* Skiansky and o »
Gonzalez,” Badi'i and Peikari,'” Ramer,” Roberge, ™ and Dunham.' Dunham's o
results show that:
1. Roberge’s algorithm, while consistently fastest in execution, typically achieved é‘ !
only half the data compaction ratio ot the optimal dynamic programming so- P
lution (for fixed peak crror):
2. The Sklanskv-Gonvsalez algorithim executed about as fast as the fastest of the o
other algorithms (not including Roberge’s) and consistently achieved data com- ]
4 paction rades almost as good as the dyvnamic programming algorithm, ‘ o
I
Consequently, the Sklansky/Gonvzales algorithm may be considered a benchmark G
against which to compare the performance of other methods. L}.‘
Pavlidis, in editorial commentary,' has noted that performance comparisons ’ N
such as Dunham's are clouded by uncertaimties in algorithm implementation. How- ) Y
ever, also as noted by Pavlidis, such numerical studies and algorithm intercompari- "“; |
sons are nonetheless valuable. Following Dunham, we presently both introduce new —
algorithms and compare them to prior ones. Comparing our work with Dunham’s:
1. Our interest Iv in approximating wavetorms rather than two-dimensional "’:(
contours. s
2. We have expanded the scope of error metries to include average error (i.e., )
bias), root mean square crror, and average absolute error. ’
3. Our selection ot pollinge algorithms tor evaluation and comparison, partially N
overlapping Dunhwn's, includes those of Paslidis,” Papakonstantinou, ' ~
Sklansky and Gonvzales,” Wall and Daniclson, ™ Tomek,” and McLaughlin .
and Zacharshi,” as well as the new algotithms presented in this report. '(.‘:;/ 2\
.
As discussed in Section 6, the relative performance of the various algorithms turns ™ A
out to be somewhat dependent on the erroe metrie. In particular, the original al-
o) gorithms presented here are considerably superior to prior algorithms, with respect F{ J
X to bias and room mean squire Crror. '_:_\ »
; Our new algorithms are of two varicties, which we reter to as recursive least-squarces t
) (RLS) and generalized lthehihood ratio (GER) algonthms., - N
. )
y “F.Baditi and B. Pakan, cTuncnonad Approsamanon of Planar Curves via Adaptive Segmenta- .
h tion I o Sysrems Ser 130607 674 TN, oo
'5 UL Ramer, AR dictative Procedune o il Polveonal Approximation of Plane Curves,” Com- "':.‘ ~
put. Graph. Image Process. 10244 256 (1970 Y.
N, 1. Roberge, A Data Reduction Ateorihm tor Planar Curves,” Compudd. Vision Graph. Image
3 Process. 29, 168195 (YK3), ¢
. T Pavhidis, CEdiorial- Papers on Shape Anabhoas T JELE rans, Patters Anal. Mach, Intell. - 0N
PAMIS, | (1946). (
PRCWalt and P. Danichson, N Fast Sapenial Method tor Polyveenal Approsimation of Digi- -~
tized Curves,” Compur Grapdi. Insaze Process 28, 2200 227 (1984). N
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Our RLS algorithms are derived in Section 4 based on a simple Kalman filter.
Our numerical experience with these algorithms is that, relative to the
Sklansky/Gonzalez algorithm, RLS has

Faster execution speed

Slightly worse peak error

Less average error

Smaller room mean square error.

s o & 9

The original application of the statistical GL.R method to formulating the prob-
lem of change detection in linear systems was provided by McAulay and Denlinger.'
A general solution 10 the GLR formulation was provided by Willsky and Jones."”
In Section 2 of this report we review the Willskyv/Jones GLR formalism that, in
Section 5, we particularize to the problem of polyline approximation.

The most direct antecedent of our work is McAulay and Denlinger.' Features
common to our work and theirs are:

1. Use of a GLR formulation for change detection;

2. ‘.. A piecewise lincar model... to [describe] the noiseless evolution...”” of mea-
sured waveforms;'

3. Tracking lof *...straight-line segments with a simple two-term Kalman
filter...”.

Some points of distinction between our approach and theirs are:

1. We develop a one-parameter recursive regression as our candidate no-jump
Kalman filter. The corresponding filter used in Ref. 1 is unknown since its
discussion is quite brief.

Our “‘jump signature” solution in Section 5.3 is exact, derived as a special
case of the general solution in Ref. 17. The corresponding signature presented
in Ref. 1 is approximate, being based on numerical experience (cf. the discus-
sion in connection with Eq. 106).

129

Although Ref. 1 is widely cited as the original GLR change detection formula-
tion, the casting of target tracking problems in terms of an equivalent polyline ap-
proximation has apparently gone unnoticed in the literature, perhaps due to the
brevity of this part of the discussion in Ref. 1. Nevertheles -, we see this as poten-
tially of high interest, since algorithms for polyline approximation can be applied
to target tracking and vice versa. While there has very recently been some renewed
interest in applying polyline approximation methodology to problems in radar track-
ing,™ there may still be considerable unexploited potential for cross-fertilization be-
tween the two arcas.

VAL S, Willsky and H. 1. Jones, A Generalized 1ikelihood Ratio Approach to the Detection
and Estimation of Jumps in Lincar Systems,”” TEEE Trans. Auta. Control AC-21, 108-112 (1976).

S, F. Haase, “*Advanced Radar Tracking Techniques,™ in IR&D/B&P Program Plan Vol. If
FYI988, THUL APL., Laurcl, Md., pp. 11-373 to 11-397 (1988).
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2.0 DETECTING CHANGES IN LINEAR SYSTEMS

2.1 PROBLEM FORMULATION

This section follows Wilisky and Jones'” and like them provides results without
derivations. For completeness, the appropriate denivations are provided in Appen-
dix A.

We assume a discrete-time systc.n whose dynamics evolve according to the state
and measurement equations:

XK+ 1) = &k + LA) - x(k) + T(h) - w(k) + b4,y - v, (4]
Wk+ D) =H®&+1D -x(k+D +vik+ 1), (2)
with all quantities being real valued (see the list below for definitions). Quantities

X, w, v, 2, and v may be vectors, while &, I', and H are real matrices of commen-
surate dimensionality.

Quantity Definition

k Discrete time

X State vector

" State noise

z Measurement/observation

\ Measurement noise

b Dirac delta function

Iz Jump amplitude

0 Jump occurrence time
State transition matrix

H Measurement matrix

The noise sequences w(k) and v{k) are assumed to be zern-mean and Gaussian,
with covariances

coviw(k)] = Elw(k)w (k)] = O(k) , (3)
coviv(k)] = R(k) , (4)

where in Eq. 3 E[-] denotes ensemble expectation, and a primed quantity denotes
the vector transpose.

The Dirac delta term in Eq. 1 indicates the presence of a discontinuity (or “‘jump’)
in what would otherwise be a smooth temporal evolution in the state vector. The
jump amplitude » and time ot occurrence 8 are presumed to be unknown, subsum-
ing the possibility that a jump never occurs (v = 0 or § = oo).

The objective of jump detection processing is to determine whether a jump has
oceurred and, if so, to establish accurate estimates for v and 6 by means of process-
ing operations performed on the measurements (k).

Since Eq. 1 has the stochastic driving term w, the state x must necessarily be a
random process.

12

'l"‘.l"'-',."l NS AY I I Vil Wl Sl Nt A L LN W Y T e T Y
X RataXal 8l 2 Aol o « . g

W

B

)

A

e,

L 20 W N T e |
‘.- ‘-

x

LN

!

e
AR

.

Pk ;
o i

oy
4
w

’
- v

&

5

PRA e
FA™ AN

/

RO =Y
TN

oY 4

4

-
ﬁhﬁ -

4
.
-
TN
Ny
7
¥
1N
]
reoa,
Y,
ey
oY

W ..
T,

h Y



UL L VOV WL A AN N T S Yo Ve Wy % )W U L SRttt L AL GL SR s s S e AdAg YUV RLRL Y VY VT ERETH VO WV WY

o b b s
L Rt
0
rn
THE !IOHNS HOPKINS UNIVERSITY . !
APPLIED PHYSICS LABORATORY \\ ~
LAUREL, MARYLAND ‘hi ~|
-
AP
(’"‘
o
2.2 KALMAN PREPROCESSOR '“'ﬁ;
AN
Our approach to detecting the presence of a jump in E:. | 1s to process the data 4::'_-;‘.
with a filter that will be optimal if no jump occurs and to moniior the filter’s per- ::,\:-.
formance to assess the continuing validity of the no-jump hypothesis. In the control :.-;'.4{:
systems literature, this approach is sometimes referred to as analytical redundancy, A
and the filter is sometimes called a no-fail observer or normal-mode observer. " L
Subject to the no-jump hypothesis (i.¢., prior to the jump, when k < 6), the op- s
timal approach for estimating the state is provided by a Kalman-Bucy filter: ;';.,,-: '
£(010), initial state estimate (5) :‘".J;;f
. . okt
P(010), initial covariance (6) N ®
. . Wi 0]
Xk + k) = @k + Lk) - 2(k|K) N Rty
i ""o'.f.""
2k + 1k) = Hk + 1) - X(k + 1]k) (8) ;.'l' o..f
g
vk + 1) = 2(k + 1) — 2(k + 1]k) ©9)
Pk + 1|k) = ®(k + LLk) - P(k|k) - &' (k + 1L,k) L
4
, Pt
+ I'(k) - Q(k) - T (k) (10) ‘\-,
..Q."
Vik +1) = H(k + 1) - P(k + 11k) - H' (k + 1) W
]
+ Rk + 1) (1 ’;:_?';;
Ktk+ 1) =Pk+1k -H (k+1) - V"k+1 (12) ;§{-\,‘;
(AL S, P
Sk 1] +1) =Sk +10k) + Kk + 1) - v(k + 1) (13) \;:-}’.3;
Pk + 1k +1) =[] = Ktk + 1) - Hk + 1)] - P(k + 1]k) (14) "\7:“
:)N'g'
:"-'
v

with all quantities in Egs. 5-14 being real valued. (See the list below for definitions;
note that quantity Z’ denotes the sequence of observations (1), 2(2), ..., 2().) The
flow of operations in the Kalman filter is depicted in I'ig. 1.

-
a’x
R

i d

®
Quantity Definition :::{j-: ¢
LAY "’l
Sy
- . .. . o,
Xk Conditional mean of x(k), given Z’ :_.':- '_-
(kL) Conditional mean of z(k), given Z’ ..-"\'4:.:
(k) Innovation R
Pk | Covariance of x(k|/) ®
V(k) Covariance of (k) N
K(k) Kalman gain S
RASAE
YRRy
AN
ENASAS,
o LS
A, Madiwale and B. Friedland, **Comaprison of Innovations-Based Analytical Redundancy - L4
Methods.”” in Proc. 1983 Am. Control Conf., pp. 940-945 (1983). .; Y N
"o
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] 2
[l)[w,m;ﬂ;uu pitedhie e L 8] [ Chovation covanance, Eq 11] \,v'\l
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Ll State update. Fq 13

/ ]Knlman gain, Eq. 12| [}
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~

— ¥ e

Covanance update, Eq. 12]

Figure 1 Kalman filter flow of operations.

r—1

vty
gt

- )
. . . -
2.3 GLR FORMALISM S W
W
: )
As first noted by McAulay and Denlinger,' the linearity of the system equations ;
allows their solution in response to a jump excitation to be written as the sum of S g

a jump-independent stochastic component (xv,) and a second component (v, ) linear- -
Iy proportional to the jump amplitude. Moreover, with the jump amplitude and ’
time taken as deterministic (though unknown) quantitics, the jump-dependent com-
ponent x> iy seen to be deterministic.

Following Ref. 17, we write the state as

N(A) = (k) + PR v, (15)

where v, (&) is the value that x(A) would take in the absence of a jump (v = 0), el
and (k.0 - ris the state perturbation in response to a jump, where ("_"
-
v': s
bkt = 0, A < @ (16) T

by 1 (17 - !

dh + L) - D+ LA - PLY) . (18) R ::

.

The proof of Egs. 16-18 is provided in Appendix A, along with the proofs for oth- o j-
er restlts presented in this section. N

From Egs. 2 and 15,

S(KY = I k) + MRy - dA e (19) -

Similarly, the incarity of the Kabman tilter equations allows their solution to be
written in a torm analogous 10 Fgs. 15 and 19, viz., for the state estimate, K,

SAAY) = X (ki) o+ Ry e (20) -

14
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and for the innovation,
yk) = v, (k) + G(k30) - v . 2D

The quantities F(k;6) and G(k;8) appearing in Eqs. 20 and 21 are sometimes referred
to as the jump ‘‘signatures’’; they characterize the Kalman filter’s response to a jump
excitation in the system equations.

It clearly must be true that

F(k;0) =

Gikd) = 0 k<@ (22)

|
o
N

in order to preserve the definitions of £, and v, as the Kalman filter responses in
the absence of a jump.
It can be shown that G(k;f) may be written in terms of F(k;6):
G(kif) = H(k) - [®(k,0) — kb — 1) - F(k = 1;0)] . (23)
The function F(k;6) appearing in Eqgs. 20 and 23 is given by
x
F(ki9) = Y, O(k:ij) - K() - H() - 0i.6) , 4)

=0

where the auxiliary variable O(k;/) is obtained recursively as

Ok0) = I — Klk) - Hk)) - ®hk — 1) - O(k — 1,9) (25
oK) =0, k<¥ (26)
66,0) = 1 @n

Assuming that the measurements z(k) generated according to Eqs. 1 and 2 are
processed by the Kalman filter, Eqs. 5-14, the innovation (k) will be a zero-mean
Gaussian process (v, ) until the jump occurs at & = 6, whereupon (k) will develop
a bias, G(k;0) - v. Jump detection is accomplished by detecting the innovation bias,
which, in turn, is accomplished by a form of matched filtering applied to the inno-
vation process.

Writing the GLR estimates for » and 6 as 5 and §, it can be shown that

By = C '(kiB) - d(kiO) |usiny (28)

where d(k;6) is obtained via a matched linear filtering operation on the innovation
process,

A
dikig) = Y, G'(m6) - ¥V () - y(n), 29

n—n

and matrix C '(k;8) is th> covariance of 5, computed as

A
Ckit)y = Y G (mf) - V "(n) - G(nih) . (30)

et
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The GLR estimate for jump time, §, is obtained as the value of # that maximizes ]
the generalized likelihood ratio, &&;0), i.c., rd
N
: W) = max (k) 31) v N
B 6 - 12 Lk :.Q! '
B "y 3
X
where
.i 1 :"\ )
K {k:0) = d'(kif) - C '(k;0) - d(k;8) . (32) )
[ .
N The GLR algorithm determines that a jump has occurred whenever dk;0) exceeds ¥
: a fixed threshold, ¢; the GLR estimate for the jump occurrence time is then provid- )
¥ ed by Eq. 31, and the GLR estimate for jump amplitude » is given explicitly by Eq. 28. - )
. We note that the function C(k;0) given by Eq. 30 is computable off line, as is
s the function [G'(:6) - V ()] in Eq. 29.
X e ilter flow of operations is diagrammed in Fig. 2a. Maximization in )
Y] The GLR filter fl f i is di d in Fig. 2a. Maximization i
y Eq. 31 occurs over & values of 8, corresponding to the k& parallel branches in Fig. :
: 2a. Because the number of calculations required to implement Eq. 31 increases with Y
time, implementing *‘full GLR”’ requires progressively increasing numbers of cal- ﬂ )
culations at successive time steps—an undesirable property. An approach to bounding ¢
. the number of required calculations is to restrict the range of § values in Eq. 31 )
‘ to the M ““most recent’’ values, i.e., to the range {(k — M + 1),k} (Fig. 2b). N
L . . SR
« When the jump vector » can be written as i,; :
e v = « - fl0), (33) ?u {
- where « is an unknown scalar and f{f) is a known vector function of 8, the formula- r! .
W tions for » and &k;6) may be written in the following forms, alternatives to Eqgs. N
’ 28 and 32: S v
‘ A ‘V._ g
\ k) = &(k0) - S(9) (34) 2w h
‘\. LA
a(kif) = b(k;0)/a(k:6) (35) ¢
%) 3@ |
ak:8) =~ b*(k;0)/a(k:0) (36) 4
2 -~ ‘:
™ where M0
) -~ (d
a(kg) = f(8) - C(k:0) - f(8) , (37a)
ﬂ: L3
o and @ 4
b(ki) = f(8) - d(kib) . (37b) .
-“ A-:. »
o1 . . 20 e L‘ "
We note that Basseville and Benveniste=" have suggested a modified form of the
o Willsky/ Jones algorithm in which thresholding is performed on the estimated jump o8
. amplitude », given by Eq. 28. Much simpler still, in Section 4.2 we propose threshold- L
> ing the normalized innovation y(k)/(V(k)) " directly, i.e., using the Kalman filter )
alone, with no additional processing other than thresholding, for jump detection. ’
~ O
M. Basseville and A. Benveniste, **Design and Comparative Study of Some Sequential Jump De- ¢
0 tection Algorithms for Digital Signals,” IEEE Trans. Acoust. Speech Signal Process. ASSP-31, -
M 521-535 (1983). B
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\ A

A 16 .t: .,




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
LAUREL, MARYLAND

Measurements
zlk}

Innovation, y{k)

r

|

g =1 g = 2 g -3 6 = k
Calculate: Calculate! Calculate]] Calculate:
1. ditk; 1) 1. dik;2) 1. dlk;31 | *** (1. dlkk)
2. Mk 2. ik;2} 2. t1k:3) 2. {lk;k)

K]

¥

1

I

((k:8" - max ((k:8)
{}

{
]

No jump

(a) Full GLR.

Measurements

2lk)

filter

Ptk -1

Innovation, y(k}

No @ Yes
Jump

—

!

Y

sse

ki

i =20 i =19 i = 18 i =1
Caiculate: Calculate: Calculate: Calculate:
1. dtk:k—19% 1. dtk;k —18) |1.dlk;k~17) see | 1. dik:k)
2 Clk;k—18) [2. Cik:k— 18 {2.0(k:k-17) 2. flk:k)

B!

!
L

Clk:B) = max Ulkk i~ 1)
/= 1,20

|

No ‘ Yes
No jump @ Jump

{b) Windowed GLR (M = 20).

Figure 2 GLR filter flow of operations.

The GLR algorithm is not altogether simple to understand. As perhaps the sim-
plest application yet put forward of the GLR method, our GLR polyline develop-
ment in Section 5 helps cast insight into the structure of GLR generally. Some of

the simplifying features of our development are:

1. Low dimensionality: 2 x | vectors and 2 x 2 matrices are our highest-

dimensional entities.

2. Closed forms: A number of quantities, generally available only as the solution
of recursion relations, are obtained in closed form (see Table 1).
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Table 1 .
Application of GLR to polyline approximation results in the development of W AG
closed-form expressions for these quantities. ¢
[
- U
Variable Detinition Open Form Closed Form :-; t ‘¢
, ) 7t
K(k) Kalman gain Iq. 12 Eq. 62 .,
(k) Innovation covariance Lqg. 11 Eq. 63
O(k;0) Auxiliary variable Egs. 25-27 Egs. 87 and 89 :I 2
Fk;0) State signature by, 24 Lq. 95 o N
Gk [nnovation signature L. 23 Eq. 97 Eay
Ck:6) Foinverse covarianee Lg. 30 Eq. 109 ¥ el
A
L.
®
- "::.
%

MR

oU_w,

e N

A_K
.‘

3.0 STATE VARIABLE REPRESENTATION OF NOISE-FREE

POLYLINES ':
In this section we show that the polvline waveform approximation problem can > >‘|‘
. . . . . . . R . . J
be given a state variable formulation, as required tor application of the GLR for- 'p:::;
malism. {
Underlying our development is the assumption that waveforms of interest may E :l'.
be approximated as noise-free polylines, with additive, zero-mean, stationary Gaussian . 'l::'
noise. Thus, our interest in this section is to cast the equations of a noise-iree poly- -

line int~ the form of Egs. 1 and 2, in which the noise terms have been set to zero: el
X -l‘..'\

Nk + 1) = Bk + LK) - x(k) F By v, (38) E;-.‘H

nv\.

R

k+ 1) = HKk+ 1D -x(k+1). (39) AR
('

We assume that the ordinate of the initial breakpoint is known; subtracting the @

initial ordinate then results in a polvline whose initial breakpoint is at coordinates
(k,,0). For turther discussion, see Fig. 3, where we define

A Y
B
o
oy

-

t

o
S

(40)

Consideration of Fig. 3 shows that we may write for the polvline slope RS

s{) o, o -y ry . 41 < !.,;‘
x‘g’w

DI
™~ ot
e

RS

where (-} is the unit-step function. For offset we may write

v(/) TR ANy, . (42)
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2(k)

f jragta-lj—r
' roeo
i (a)
Slope,
slk)
] (ag + ol p=— === = r————m
]
]
[}
!
i
P o0 :
r ik - ko)
(b}
: 0 r i kT - ko)
[)
I L
Offset, ylk)
R {c}
. Figure 3 (a) Noise-free, two-segment polyline; (b) slope; (c) offset.
% Also, we note that
l"'(j—r+ l)—ﬂ(/_r)zéj+l,r ’ (43)
K where § is the Dirac delta.
From the foregoing, we obtain the desired state-variable representation for the
noise-free polyline:
' Yy + DY _ (y() (-
: {s(/+ l)} = {s(/)} ¥l { 1} ’ “4
and .
. d- .
W R ) yiy 4\‘\ '
kg + ) =1 1 ) {s(i)} : (45) NN
I‘f ‘%
Comparing Eqs. 44 and 45 with Eqgs. 38 and 39, we obtain o~ :S
. [\
. BL¥)] ®
x(ky +J) = g 46 . o
(ko J {S(/)} (46) ‘.\'.".
) A
I
{ "-'Q' 3
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Sk + LA) =1 47
P {"} (48)

|
Hiky + /) =4 1V j . (49)

Comparing Egs. 48 and 33, we see that they are of the same form, permitting

us to write
‘ —(0 - k —r
Slky +ry = { ( | "“)} = {]'} . (50)

4.0 RECURSIVE LEAST-SQUARES ALGORITHMS

This section comprises three subsections. In 4.1 we derive a recursive least-squares
regression formula for fitting a straight line to a sct of random data, as a special
case of the Kalman filter. We assume that the initial coordinates of the fitted line
are known and only the line slope must be estimated. Since only a single parameter
(slope) is being estimated, our resulting ‘‘one-parameter recursive regression’’ is some-
what different from the usual two-parameter intercept/slope regression formula.?!
In 4.2 we use our one-parameter regression formula to derive two algorithms for
polyline approximation, which we subsequently refer to as RLS algorithms. The per-
formance of these algorithms is compared in Section 6 to other algorithms. In 4.3
we slightly recast our one-parameter regression results into a form suitable for use
with the general GLR formulation presented in Section 2.

4.1 ONE-PARAMETER RECURSIVE REGRESSION
Taking j < rin Egs. 41 and 42, we obtain the equations of a straight line, viz.,
Yy = 0 (Sla)
O (51b)
According to Eqgs. S1, the line passes through initial coordinates (&, ,0), with slope

).
From Eqgs. 45 and Sla, and adding a noise term (as in Eq. 2), we obtain

2y, Bar-Shalom and T. E. Fortmann, Tracking and Duta Association, Academic Press (1988).
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) Z(k)={j.s(j)+v(k),0<1 (k —ky) <1’

where we assume that v(k) is zero mean, Gaussian, and stationary:

R(k) = cov[v(k)] = o . 3)

N Under the assumption that the initial ordinate of the line is known and can be sub-
) tracted to obtain a line that goes through (k;,0) (cf. Fig. 3), the single unknown
parameter remaining is simply the line’s slope, s(j) = «,. Although our constraint,
2(ky) = 0, may seem artificial, it is justified later in connection with our applica-
tion of the results in this section.

A simple recursive procedure for estimating the parameter s(/) = o, in Eq. 52
may be developed from the Kalman filter Egs. 5-14, in which all generally vector
() . s . . .

o and matrix quantities reduce presently to scalars. We identify the line slope s(j) as
the ‘‘system state,”’ which is time-independent (Eq. 51b). Consequently,

$(nljy = $(ml)) . (54)

(55)

P (nlj) = P, (m|)) ,

for all values of n, m, and j, and where we write P, as the covariance of 3. It fol-
lows that we may simplify notation by writing

$G) = $(nlyy ,

(56)

PS(.I) = P\(nl.l) v

Equation 51b may be written in the form of Eq. 1 by making the identification

1 (57

il

Pk + 1,k)

wk) = 0 . (58)

A

«
o

From Egs. 58 and 3, Q(k) = 0. Similarly, Eq. 52 can be cast in the form of Eq.
2 by writing

H(ky = (K — kg) =/ . (59)

Using Egs. 53 and 56-59, we obtain, corresponding to the Kalman filter Egs. 8-14,

35X

Bk —-1) =j-5G-1) ")

E Yk) = 2k) - Ek - 1) 9)
P,() = P,() (10") \
"H 2 i 2 ' .‘:'r,)
B V) =2 - PG — 1) + o 1)
'Evl'tAf.
K.G) =J - PG~ 1)/V(k) (12%) i

(137

SU-1 + KU - vk

n-j -KWw-prPu-0n,

(147
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where it is understood that &k = (k, + /) in Eqs. 8'-14".
As shown in Appendix B, the desired recursive estimation procedure for line slope
is obtained from Eqs. 8'-14" as
SU)Y =S¢U = 1) + K.() - v(k) J= (k= k) =2, (60)
where
YKk) = k) —j -8 - 1), ©h

and

6
K{j) = -~ — i,
N T T (62)

We also find in Appendix B that

. s J+ 1 2 + 1
Viky = Vy(j) = o - (:gﬂ) : (j*> ) 63)
J—1 -1
and
. 60"
P () = - . (64)

JoU+ D@+ D

It can be shown that Egs. 60-64 are equivalent to a recursive least-squares regres-
sion for line slope, derived on the assumption that the initial ordinate is specified.
The recursion is initialized by taking

S(1) = 2ky + 1) — 2(ko) . (65)

The first loop of recursive continuation follows from Eqs. 65, 60, and 61, in the
following sequence:

V(ku +2) = :(ku +2) —2-8(1), (66)
$(2) = §(1) + K (2) - v(ky + 2) . 67)

The slope estimate §(1) and measurement z(k, + 2) arc used in Egs. 66 and 67 to
obtain the next slope estimate, §(2). More generally, we interpret Egs. 60 and 61
as a prescription for taking a slope estimate §(; — 1) and measurement z(k) to de-
rive the next slope estimate §(J).

Inspection of Eq. 62 reveals two properties of the Kalman gain that are generally
true even for more complex, higher-dimensional Kalman filters, viz.,

1. The Kalman gain, though time-dependent, is independent of the data and may
be computed off linc.

2. The Kalman gain becomes progessively smaller as increasing amounts of data
are processed, 1.e.,

lim K () =0. (68)

IRES
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It follows as a consequence of Eqs. 60 and 68 that the RLS slope estimate §(j) be-
comes progressively less sensitive to the measurements as increasing amounts of data
are processed. In a sense, the filter becomes increasingly *‘satistied’’ with the good-
» ness of its slope estimate. This may be seen also from Eq. 64: the variance of the
) estimate, as calculated by the filter, decreases to zero. Naturally, the filter’s assess-
ment of its own performance, as provided by Eq. 64, is only valid if the underlying
waveform model is correct, i.e., if the data realize a process composed of a straight
line and additive, white, Gaussian noise.

) Our reasons for assuming that z(k,) is known, and our basis for choosing a val-

ue for z(k,), are discussed in the next section.

5 "&;r ’
RO

s
<x
D

5 42 RLS POLYLINE ALGORITHMS
In this section we describe two polyline approximation algorithms based on the ;\-'\,-
premise that the development of a nonzero trend in y(k) indicates that the underly- N
ing model, Eq. 52, is no longer valid and that the measurements can no longer be '_' ey
fitted adequately with a single straight line. .‘."‘:s_
Both of our simple RLS polyline algorithms are structured as follows (Fig. 4). ":_.-:
1. Equations 60 and 61 are applied to the data to generate the innovation se- ,.__.. -
o quence y(k). ".-:,u
h 2. The innovation sequence is tested in some fashion for the development of non- e
ko zero bias.

3. When a nonzero innovation bias is detected, say, at time kK = (6 + 1) =
(ko + r + 1), a breakpoint or ‘‘knot” is introduced in the waveform approx-
imation at time & = 6. The ordinate of the knot is estimated as

;7(

20 = (r+ 1) 8}, (69)

which is obtained by substituting (k — 1) = § = (k, + ) into Eq. 8’, and
§(r) is the last slope estimate generated by the RLS algorithm.

Measurements = 3G - 1)—::]
—{ =2tk 3l 1) fe—————] Unit delay
> 2(k) ! rey

J 1 Siope estimate
\ Innovation, s4)
i vtk 1 ot = 8y 1 Kty
M Stored off line computation
> Ky = 6/ + 1i2j + 1))
vl §
- Bias detected at Bias No bras CC?::::;:J‘Q
time k=6 + 1 detection segment
' (
‘:\'f ]
y [, .
.f“a
v Terminate current segment Intialize new segment \'\' \
Ti — 6 - N Continue A
1. Time = 6 = ko + r 1. Set zlk) - 2(k) - 20—l new KN
A 2. Smoothed ordinate 2. Setkg = 8 segment oty
= = 38) = (r + 1) S0 s
®
Figure 4 Structure of RLS polyline algorithms. 5-’\. :
oy
|\‘
' 23 T
-N.h ()
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4. The RLS algorithm is reinitialized by making the assignments
S(K) = (k) — ), k>0 (70)
Ky — 0. n

The purpose of Eq. 70 is to translate the polyline such that the origin of the new
z axis is at the starting point of the new line segment. Similarly, Eq. 71 translates
the time axis such that the starting time of the polyline’s new segment is set equal
to the ending time of the first segment. Figure § illustrates the result of applying
Eqs. 70 and 71 to Fig. 3a.

Our two RLS polyline algorithms, R1.S1 and R1.S2, are distinguished by the means
used for detecting innovation bias. In RLS1, we first divide y(k) by the square root
of its covariance, given by Eq. 63, to obtain the normalized innovation, S(k):

St + /) = viky +J) - | (‘j—' 2j_l>‘: (72)
SRy J) = YKy J o U+l 2+ 1 . <

Bias detection is then accomplished by applying a fixed threshold, ¢, 10 S(h):

If SO + | > ¢
(73)
Then  terminate current segment at A = 6

As we will discuss later in Section 6, selecting a threshold to provide either a fixed
error norm or a specified data compaction ratio requires iteration on the value of'e.

Our bias detector RES2 is composed of two independent criteria such that a bias
is declared if cither criterion is satisfied. One of the two bias detectors in RLS2 is
fixed threshold detection applied to S(k), i.c., Eq. 73. The second bias detector in
R1.S2 is as tollows:

It YO 4+ n) -l o+ n o 1) >0, H L2, ... (N = 1)
(74)
Then  terminate current segment at & = .

21k}

A

Y

k kg

Figure 5 Application of Egs. 70 and 71 to Fig. 3a. The polyline shown in Fig.
3a has been transiated such that the end of the ftirst line segment is at the start-
ing point of the second line segment.
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In words, bias is detected as a sequence of N values of y(k) all having the same
sign, where N (like ¢ in Eq. 73) is a threshold parameter. The idea behind Eq. 74
is that the innovation sequence should be spectrally white, and therefore subject to
frequent sign changes, only so long as the one-segment waveform model (Eq. 52)
is valid. A test similar in spirit to Eq. 74 was discussed by Pavlidis (Ref. 7, p. 288,
Fig. 12.5).

Our discussion of the performance of the RLS1 and RLS2 polyline algorithms
is deferred until Section 6, where their performances are compared to those of a
number of other methods.

4.3 REFORMULATED STATE EQUATIONS
In this section we slightly recast our one-parameter regression results into a form

suitable for use with the general GLR formalism presented in Section 2.
From Eq. 46,

_ _ y _ A{covlv(y}] Ely - 3]
P(k) = cov[x(k)] = E [{S} ' lys]] = { Ely - s] cov[s()] } . (75)

However, from Eq. Sla,

covly] = Ely -

'J. e
>

o«
o

and, from Eq. 64,

st

SN
-2

=P =
VDI = PO = S

R '\.‘:‘
WA Y
XX

o>
>
o«

From Eqs. 75 and 76,

Py = pr - {5 )

From Egs. 46 and 56, we simplify notation by writing

sty + ) = [{U] = sk, + )

independent of n.
From Eqgs. 12, 49, 77, and 78,

Kky = PG — 1) {8 ?} - {j’} SV k)

U-P.G - VK - {0} .

s
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From Eqs. 79 and 127,
. o ()
NGERRUE H , (80)

where A (/) 1s given by Eq. 062,

5.0 GLR POLYLINE ALGORITHMS

5.1 SUMMARY OF PREVIOUS RESULTS

In this section we gather together for convenient reterence the various previously
derived quantities needed to particularize the general GER formalism to the poly-
line approximation problem.

PP €200 w
XA, 4D {\(./) (46)
1 Y S T I R (47)
B 0o ( l'?» (48)
!
Hik, + S B A (49)
_ 0 k) (0N
fkovy - (50
S R B B A
, R (U 5
Pk P o1 o
5 fromy _ oo 7
NCA, D l((./) = x(n'k, t ) (7%)
, , 0
ACK) A () {l} (R

6
oty -2

. i+ 2+
U ) IR ( > - ( > 63
/ ! ;o T (63)

(62)

-{‘
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‘/ L) ". {")‘}I"—
R

-~
1,
-

Py = (64) ey
T U+ )2+ D !

We recall that, throughout the above equations, }a

j=k =k a
(40) gt

r=60 -k, - A

From Egs. 16-18 aud 47 we have rornd
([) ' 81) hCOLY,

’

D

d(k,0) = {

v A

5.2 THE AUXILIARY VARIABLE

From Eqs. 49 and 80,

K(k) - H(k) = K, () - {? j’} (82)

It then follows from Eqs. 81 and 82 that the difference equation for the auxiliary ;)V‘J- ;
variable, Eq. 25, presently simplifies to .

Ok, + ;i) = { ! 0 } - Ok, + 4~ 1;8) . (83)

~K.G) 1= K)] .
With the definition -
3

0, (ir) 6, (ir) AN
0,, (/i) 0. (i)’ (84)

O(ky + jiky + 1) = {

it follows from Eq. 83 that :‘:ﬁ {

Y 0, =6, -1 (85a) SR
0,0) = 6,0 -1 (85b) Al
0,0) = -K()-Dyd -+ -/ KW -6,0-1  (86a) Ty
O,0) = “Ku) 8,0 - + [l —j-KGM-0a0G-1) ., (86b) '*,.J_'

where for conciseness we temporarily suppress the second index {r) in the various
0,,,. We find from Egs. 27 and &S that ®

0,0 = 1, (87a)
0, - 0. (87b) B
and then from Egs. 86 and 87 that Byl Aoy

040 = ~K () + [ =/ K- 00~ Lr) . (88) ey
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.I' q‘,;:' q J' .r o o S .-

0..(r) = b=y -AG-0nG - L. (88b)

The solutions of Egs. 88, with initial conditions given by Eq. 27, are developed
in Appendix C as

3r(r + 1) = jG + 1]

0. (i) = e (89a)
! JU+ D+ 1D

0. Gir) rir+ 1) (2r + 1) (89b)
U = e
- JU+ D (Z+ 1

Equations 87 and 89 provide the desired closed forms for the elements of ©.

5.3 JUMP SIGNATURES

From Eqs. 24, 81, 82. and 89, we obtain

FyGn) FaUin) oy gy (100 (0 0
{FN i) FaGiny L K. (m 0, O 1 n

n=r

(90)
!
= ”z;, K. (n) - 0. (mry - {10 2} .
From Eqgs. 62 and 89b,
K. (n) - O (mr) o (C2))]
)y 0Ly = e
- JU+ D2+ 1
From Eqgs. 90 and 91,
FioGy = Fis(iry =0 (92)
and
Fap i) 6 E, . 1.2 (93)
o GF) = e a"o,omo= 12 :
JU+ D+
However, since
/ ] )
E'I:,~JU+1). (94a)
n ) -
! R i ) .
Y= U+ Qi+, (94b)
no | ()
and
; . [
Y o= Y o - Y s (940)
6ot o no

28

o . . - . Y o
,‘u"_‘J'_J' J'\-f\-"\-( J": " I'd u"‘.' "’\-N \\1 o \ ", ,‘ b

o ¥, Dol 3

S Ve \‘- o ) \ \ St

>,
-

%Y
At

“z

s
&y

. 'I. r\

]

SACAAZA

-

%

b T

e

f.‘ll
o

rd

1Y

L
o h A A

v~
S

FERNAL 3. 3 S iy ]

P
g
s

.
a8, 8




S 3a7 030 fa% dab o B2l gt g ._(‘..A.-'. O @0 B0 8.8 SN T R B .. ¥R N &' '-|' *, - . - - C 2%y ava ate 1% el

Yo

ol ' Izﬁ
ro kIS

THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
LAUREL, MARYLAND

‘33 .

MO0
i‘
! it follows from Eqs. 92-94 that
--‘.h 3
FnGginy =0, (95a) ::"‘
@ Fu({ 0 95b .i
' i =0, . iy
2 Usr) (95b) T
Fy Gin) ? U+ 1D ( 1) (95¢) :
) = — , : —rir=1h, ¢ :
‘C% B JG+ 1) @+ ]
Fy, (ir) : UG+ 1D 2+ 1) = r(r = 1) (2r = )] . (95d) b
»n ) = — - . + ) + - r(r — 2r — . A,
< 2 G+ D @+ D &
~ &
'Q From Eqgs. 23, 4%, and 81, it can be shown that @
¥, |'
) GG = 1= j- FyG— 1), 96a) e
§
. GyUir) =j - 1l = Faf = L] . (96b) e
& A
It follows from Egs. 95 and 96 that b
) . . L) '\;
T . Ir(r—1) - (-1 + 1 ~iny
o, G, (i) = ¢ .) v - ) U ) , (97a) .§-,
. G- Q-1 Kt
AL
N _ rr—1) 2r - 1) s
G Uir) = — : . (97b) »iv
G-H& -1 ®
. NS
YR
" Equations 95 and 97 are the desired closed forms for the elements of F and G, :_.
" applicable when j = r; F and G are identically zero when j < r (cf. Eq. 22). Povs
- )
A
! 5.4 STATE ESTIMATE AND INNOVATION JUMP RESPONSES '.
o e
As noted in connection with Eqs. 20 and 21, the state estimate and innovation x5
. developed by the Kalman filter can be decomposed as E\;
N
M}
et XK = % (k) + 50630 (98a) o
AN
T YK) = 7 (k) + i) (98b) L
% N
- where we have defined N
& G = Fkd) - v, (99a) w
e‘ ::‘:‘p"
Y2 5r) = G(kib) - v . (99b) [}
> \‘"\‘
:: We refer to £, and vy, as the state estimate jump response and innovation jump '-::\
o response, respectively. I
We obtain from Egs. 99, 95, 97, 78, and 48, for the state estimate jump response, “e
. >
: AN
f — i+ 1) - 2+ 1)+
sun = YZOWED =AM D A 5L
JU+ 1) @2+ 1) N
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and for the innovation jump response,

Gy = S0 (101)
257 = e, ) 2
” G-D @<
The jump responses are related by the equation
Y200 = z=0) — £ 00
(102)
=a-(U-r—Jj-50G-5Ln.
The asysmptotic behavior of v, is derived from Eq. 101 as
im v.(r) = a - /2, (103)
j—oo
im v (r) =a- (G —1r). (104)
J—>
y-onj=0

To verify the correctness of Eq. 101, we operated on a two-segment polyline (Fig.
6a) with our recursive regression algorithm, Eqgs. 60 and 61. As shown in Fig. 6b,
the difference between our closed-form expression for v,, Eq. 101, and the recur-
sively developed innovation, Eq. 61, is imperceptible on the scale of the figure.

Equation 101 indicates that, in general,

sgn(y,) = sgnfw) , (105)

.. sign of v, is the same as the sign of «. In Fig. 7 we provide an example
negative «. The dashed lines on Figs. 6b and 7b are the asymptotes given by
gs. 103 and 104.
Cit: 2 numerical experience, McAulay and Denlinger' have assumed

vGiry = K- (G -nt, (106)

with K an unspecified constant, independent of j and r. (We have cast McAulay
and Denlinger’s Eq. 19 into our notation to facilitate comparison with our Eq. 101.)
We have not explored the conditions under which McAulay and Denlinger’s ap-
proximation for v, will provide similar results to our exact expression, Eq. 101.

5.5 INVERSE COVARIANCE OF INNOVATION ESTIMATE

In this section we obtain closed-form expressions for the elements of the inverse
covariance of 5(k), C(k;0), originally defined in Eq. 30.
With the definitions

" _ (G Uiy CyUsr)
Clky + jiky + 1) = {Cz Gir) Cs U:’)} (107
and
) . _ (G, i)
Glky + jiky + 1) = {G]: (j,r)} , (108)
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(h}
Figure 6 Numerical experiment validating the closed-form expression for inno-
vation jump response, Eq. 101. (a) Two-segment polyline with parameters (op,a,7)
= (0.1,0.8,250) (cf. Fig. 3a). (b) Innovation jump response (solid line). The differ-

ence between the analytical expression, Eq. 101, and the innovation generated
by recursive regression, Eq. 61, is imperceptible on the scale of the plot.

and with scalar V(k) given by Eq. 63, it follows from Eq. 30 that

K

CoGiny = Y, Gitmny/Vy(ny (109a)
A
G (i) = E G, (mr)y - Go(nir)/Vi(n) (109b)
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(b}

N
Figure 7 Numerical experiment vaiidating the closed-form expression for inno- ®
vation jump response, Eq. 101. (a) Two-segment polyline with parameters («g,c,n -~
= (1.5, ~1.75,100) (ct. Fig. 3a). (b) Innovation jump reponse (solid line). The differ- <
ence between the analytical expression, Eq. 101, and the innovation generated
by recursive regression, Eq. 61, is imperceptible on the scale of the plot.
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4
GG = ) Gi(mn/V,(n) (109)

n=r

?.

v s, e
', '’

Substituting Egs. 97 for G, and G, and Eq. 63 for V,,, we find that Egs. 109 can -~
be put into the following form:

' A

oy

« ¥}
/.
<%,

o' - C i) = 38, = {127 (r = 1) 4 6r(r— 1) + 1] -5, + 5, ,(110a)
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ot . C,(in) @r—=1) s, —r(r —1) 2r - 1} -8, (110b)
l bl bl b)
o’ - CyUyr) = 3 Q2r— 12 [s, — 4 (r - 1) . 5], (110c)

where the quantities s; are given by

J
siGir) = rr =D Y et -1

1 PAir- D32+ 1)
= _ . - -1) - , 1
s orr=h@r-n Yo+ D) (111a)
J
s;Gir) = Y, 1/(dn® - 1)
J r—1
- - 1
-1 2r—1’ (11e)
/ 2 2
s (ir) = E n/(4n- - 1)
L .
= Z-(_,—r+1)+sz(/;r). (11l¢)

Equations 110 and 111 provide the desired closed forms for the elements of C(k;6).
Although C(k;6) can, in principle, be computed off line and stored, it is actually
not necessary to do this, as we will show in Section 5.7.

5.6 THE FILTERED INNOVATION
In this section we provide simple recursive filters for developing the elements of
d(k;8), the filtered innovation, originally defined in Eq. 29.

With the definition

dik, + jiko + 1) = {‘(1;2((’[”))} , (112)

we find from Egs. 29, 63, and 108 that

J

o diGin) = Y vk + n) - [oF - GL(mn /Y, ()]
n=r (113)
J

g - dz(j;f) = E y(ky + n) - [02 -Gy () /Y,y (n)]

n

r

Substituting Egs. 97 for G, and G, and Eq. 63 for V, in Eq. 113, we obtain

J

o d i) = ¥ (ke + 1) - Almir)
":’ : (114)
L

o dyUir) = Y (ke + n) - B(mir)
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where

Ir(r—1) — (n° = 1)

Anirry s ———m8m8m— .
(i (n+1) (2n + 1) »
(115)
-~ 1) (2r -1
(n+1)2n+1)
=
&
With the definitions
D Gii) = o ~dyGij — i+ 1) -
) (116) 0
D,y =6 - ds(ij — i+ 1)
it follows from Eq. 114 that '.m ! l
‘h ’ "
DGy =D(G—-Ni—=1) + AU — i+ 1) -vlky +)) i
(117) o
Dy(siy =Dy~ Li— 1) + BG — i+ 1) - y(ky +)) -
Equations 117 are the desired recursion relations for generating the filtered inno- oy
vation sequences d, and d,. Equations 117 arc used as follows. When a new mea- n
surement is received at time j, the one-parameter regression generates via Eq. 61 h
a new innovation value, y(k, + j). Our interest is in obtaining the values of d, (;r)
and d, (j;r) for the M ““most recent”’ values of r, where, to make our example con- Mw
crete, we select M = 20 (cf. Fig. 2b). Thus, our interest is in obtaining d, (j;r) and o
d-Gsn forr = j, (G = 1), ..., (¢ — 19). With Eq. 116, we formulate our problem as )
)
Given (D, (G ~ ;i) , i= 12 .., 20) and y(k, + /) éﬁz
(118) b
Calculate | D, (j;i) , i= 12, .., 20}
§;|
For i = 1, we obtain from Eq. 117 (St
D, (i) = D, (j = L0) + AG) - v(ke +J) . (119) N
o
From Eq. 116,
i
N
DG -10) =0 -d(-1L), (120) )
and from Egs. 22 and 29 N
’\
dygrny=0, j<r,
so that :"\‘
D,y -10)=0. (121)
o2
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=y
a The solution to our problem, Eq. 118, follows from Eqs. 117, 119, and 121: ®
. - . n
F;Q D, (s1) = AU - ylky 4 ) !
" a4
N} D, (i2) = AGi = 1) - vtk +J) + DU = 1) o
(122) e
- Dy (j3) = AGiJ —2) ~ylky + ) + DG - 1L2)
I;!', 0
3 W\ ¥
i

D, (i20) = AU:J — 19) - vlky + /) + DG — 519)
The solution for D, is obtained by making the replacements

Dz "Dx

o o

eE 55
I
% o

i +.~‘(

-
o

B — A d
i in Eq. 122. 4L
Although the coefficients A(n;r) and B(rn;r) given by Eq. 115 could in principle ®
be calculated off line, we chose in our implementation of the GLR algorithm to ’ (:;
-: alleviate storage requirements (at some cost in execution speed) by calculating the A
’ coefficients as :,:..‘
. A(mir) = R (r) - Ny(n) — N, (n) o
g (123) o
B(mr) = R, (r) - Ny(n) _..:
X The vectors R,, N,, R,, and N, were calculated off line and made available to :::.\_ i
;\: the algorithm, where RS
Ca a
R, (r) = 3r(r - 1), (124a) \: ,
N ®
i'\ n—1 )
N,(n) = , (124b) "
2n + 1 T
¥ . Y
i R
. Ry(r)y=rir-10@2r-1, (124¢) ,,-':
,..
’B’ 1 ol
] N ny=s ———m——— . 124d
NG 5 (1) (n+1) (2n+1) (124d) :.}:
3
"’ In our GLR implementation we calculated 200 values of each of the four vectors e
e defined in Eq. 124, for a total of 800 stored coefficients. Calculating the complete ~
set of coefficients A(n;r) and B(n;r) off line, rather than computing them as needed
ia via Eq. 123, would have required storing 2 x 200 x 200 = 80,000 coefficients. %
N
:
‘ N
5.7 GENERALIZED LIKELIHOOD RATIO :E
l"'- .
(‘ From Egs. 37b, 50, and 112, s*
blky + jiky + 1) = dyGsr) — 7 - dy Gir) (125) )

&=
o f £
o
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From Egs. 37a, S0, and 107,
atky + jiky k) =07 C (i) = 2r - CyoUir) + CoGsr) . (126)
The likelihood ratio is then obtained from Eq. 36 as
Uk;0) = b (kib)/a(k0) . (36)

At every time increment (i.e., when k increases by unity), Eq. 36 is used to com-
pute M = 20 new values of {:

sk —di+ 1)y, @1=12,..,20.

Recursive relations, Eqgs. 117, are used to establish d,, which in turn enter into the
numerator of Eq. 36 by means of Eq. 125. The C, coefficients, Eqs. 110, are used
in off-line calculations of a(k;8) via Eq. 126, which in turn enter into the denomina-
tor of Eq. 36.

The GLR algorithm flow of operations is shown in Fig. 2b.

6.0 NUMERICAL EXPERIENCE

6.1 INTRODUCTION

In this section we present some numerical results illustrating the effectiveness of
several polyline algorithms. The algorithms evaluated numerically are listed in Ta-
ble 2, grouped according to speed of execution.

Performance in all cases was based on approximation of the infrared cloud/sky
waveform shown in Fig. 8a.”' The various regions of the waveform (broken
clouds, blue sky, etc.) were identified by eye and labeled manually. However, one
objective of the current work is to facilitate the development of algorithms capable
of automatically segmenting this type of waveform data. An illustrative polyline rep-
resentation of the data is shown in Fig. 8b, as provided by algorithm GLR-M (dis-
cussed in Section 6.5).

Comparison between generally similar waveforms (c.g., Figs. 8a and 8b) is facili-
tated by the use of numerical measures of similarity, or “*error metrics.”” Qur selec-
tion of error metrics (for approximations with a fixed number of knots, i.e., for
fixed data compaction) includes:

2R. A. Steinberg and M. 1. McHugh, An Error Detection and Smaoothing Algorithm for Infrared
Data, JHU/APL TG 1355 (Apr 1986).

.. M. Howser, Wide Area Guidance and Control Program: Investigation of Scanning IR Seek-
er Performance in Background Clutter, JHU/APL TG 1360 (Dec 1986).
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(b)
Figure 8 (a) Infrared cloud/sky waveform used in testing polyline algorithms.

(b) Polyline approximation composed of 49 segments, generated by algorithm
GLR-M.

* Average error, E,

® Average absolute error, E,

® Root mean square error, E,
e Maximum absolute error, E_
¢ Execution speed, 7.

All calculations were performed on an {BM PC AT computer.
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Table 2
Polyline algorithms evaluated numerically.
Algorithm Author/Reference Method
Slow
EMK McLaughlin and E-maximal knots
Zacharski’
DP Dunham'' and Dynamic programming
Papakonstantinou "’
GLR Steinberg (Sect. 5) Generalized likelihood ratio
Fast
LSBPT Tomek" Longest segment between
parallel tangents
CIM Williams® and Cone intersection method
Sklansky and Gonzalez®
HOP-F Paviidis’ Hop-along algorithm (fast)
HOP-S Pavlidis’ Hop-along algorithm (slow)
BAD Wwall and Daniellson'® Bounded area deviation
RLSI Steinberg (Sect. 4, Eq. 73) Recursive least squares (fast)
RLS2 Steinberg (Sect. 4, Eq. 74) Recursive least squares (slow)

6.2 A NOTE ON ERROR METRICS AND PERFORMANCE COMPARISONS

When the infrared camera used to obtain Fig. 8a is operated under closed-cover
conditions (with the lens cap on), the output waveforms are reduced to zero-mean,
unit-variance Gaussian noise. In fact, all data obtained with this camera, including
Fig. 8a, have an additive Gaussian noise component of one ¢count root mean square.
In this section we discuss how additive Gaussian noise of known level affects the
relative usefulness of alternative error metrics.

It is common in the literature to select peak error, E,, as the primary measure
of polyline algorithm performance. Defining K as the number of knots in the ap-
proximation and P as the number of points in the unapproximated digital wave-
form, we obtain

lim E, =0, (126)
Keep

assuming that knot locations are required to coincide with the waveform’s sample
values, a requirement commonly imposed by designers of algorithms that minimize
E . At fixed data compaction (i.c., for a fixed value of K), we can use £, to com-
pare the goodness of fit provided by alternative algorithms; the algorithms are ranked
according to how close E, comes to the zero ideal value.

An alternative approach, which we adopt in the present work, is to select E, as
the primary performance metric. Ideal performance is expressed as

E, =1, (127)
because the data are known to contain an additive component of zero-mean, unit-

variance Gaussian noise. If, corresponding to approximations A and B, we have
root mean square fitting errors £, ; and E., and if
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O<E, <L, <1, (128)

we recognize the B approximation as being better than the A approximation; both
P approximations are under-smoothing the data and, very likely, using more knots
}j than are really needed to represent the underlying structure.

6.3 AN EXPERIMENT AT 7:1 DATA COMPACTION
ro
- The ten algorithms listed in Table 2 were used to develop 50-knot approxima-

» tions to Fig. 8a, corresponding roughly to 7:1 data compaction. The results are sum-

"’:‘ marized in Table 3.
Table 3
v, Performance of polyline algorithms in developing 50-knot approximations to an
;;A' infrared cioud/sky waveform, Fig. 8a (data compaction = 7:1).
Error
w5 :
,_f Ex.ecutlon E, E, E, E.
Algorithm Time (s) Average Avg. Abs. rms Peak
X EMK 34.02 -0.81 2.95 3.74 8.80
% DP 12.14 -0.36 2.95 3.69 3.10
GLR 1.79 -0.05 2.24 3.0 11.24
LSBPT 0.24 - 1.68 4.26 4.87 11.75
ﬁ CIM 0.35 -0.81 2.95 3.74 8.80
HOP-F 0.24 0.23 2.61 3.59 11.62
- HOP-S 0.54 0.13 2.60 3.57 10.70
" BAD 0.17 -1.82 4.21 4.95 13.77
» RLSI 0.14 ~0.01 2.76 340 9.26
RLS2 0.21 -0.01 2.76 3.40 9.26
i Inspection of Table 3 shows that DP had the smaliest peak error, while GLR had
the smallest root mean square and average absolute errors. RLS and GLR had, by
- far, the smallest average error. The two fastest methods were RLS1 and BAD, with
:w‘: RLS enjoying, relative to BAD, a small advantage in speed and large advantages
<. in every measure of fitting accuracy.

Although McLaughlin and Zacharski claim that EMK ““...allows...one to optimally
= approximate the data...””,” it appears from Table 3 that this is not so. Although
'f, EMK vyields excellent results, its approximation is generally very similar to that provid-

’ ed by CIM, while CIM executes about 100 times faster.

v The slow and fast variants of RLS were found in this case to vield the same ap-
:-(' proximation, although in our later tests this was found not to be generally true.
N Tomek’s algorithm, LSBPT, is of academic and historical interest as perhaps the

first linear-time polyline algorithm derived from gcometrical reasoning (as contrast-

.,3 ed with, for example, the statistical and mathematical frameworks of least-squares
::, and spline approximations). While LSBPT is very similar in structure to the subse-
; quently developed CIM, Table 3 indicates that LSBPT executes about 50% faster

) than CIM but provides significantly poorer fitting accuracy. RLS is both faster and
e more accurate than LSBPT.

. I note that Tomek* describes both a fast and a slow variant of his algorithm.
Both of Tomek'’s algorithms were implemented, and it was found that the slow al-
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(8 o
gorithm offered almost no improvement in fitting accuracy. I consequently report
only the results obtained with Tomek’s fast algorithm. LY
The fast variant of Pavlidis’s hop-along algorithm, HOP-F, offers significantly Nuf'
faster speed than HOP-S, for a relatively small penalty in fitting accuragcy. o t:
Our preliminary assessment based on Table 3 is as follows: : ) ."'
1. DP, while very slow, provides smallest peak error, £, . § v
2. GLR, provides the smallest root mean square error, E,, and average abso- v B
lute error, E;. ,-:- :
3. RLS provides very large improvements in speed relative to GLR and DP, at -t q"
relatively low cost in degraded fitting accuracy. - : )
. :,\ "
6.4 A CLOSER LOOK AT THE GLR APPROXIMATION ;
My W
The statistics given in Table 3 are useful as an overall performance summary. i s
In this section we present additional ways of examining performance intended to LS D"'
provide a more detailed and intuitively meaningful picture of algorithm strengths "(".
and weaknesses. We confine the discussion in this section to GLR; similar details S ; .
on the performance of several other algorithms are provided in Appendix D. WAy
In Fig. 9a we show the original waveform with the polyline knots superimposed .\_
(each knot is denoted with a + symbol). While the polyline approximation actually . _\-
comprises a set of line segments connecting the knots, we have elected not to show 3‘? 2
the line segments in order to avoid excess detail in the figure. In Fig. 9b we show W,
the pointwise difference between the original waveform and the polyline approxi- :-"
mation, i.e., the pointwise fitting error. The histogram of the pointwise error (Fig. o N’i
9¢} is nearly Gaussian, with several outliers in one of the tails of the density. »
Since it is common in the literature to see emphasis on the £, metric, we present- M
ly consider the performance of GLR where its peak error is worst, viz., in the neigh- ,?'Q‘
borhoods identified in Fig. 9 by the circled numbers 1-3. These peak-error .}' Pl
neighborhoods are expanded (zoomed) in Fig. 10; Table 4 presents the data from ‘nﬂ o
Fig. 10 in tabular form. N A
»
Table 4 FARRA,
Data in the neighborhoods of the three points of worst fit for the GLR algorithm N
(data are plotted in Fig. 10). i Iy y
LA
k AK) Knot (k) (z -2 Max. Error ";f ‘-
2 1336 1335.91 0.09 .
23 1296 1298.60 2.60 :.\_- -:.._
24 1263 8 1261.30 1.70 A
2 1254 9 1254.00 0.00 )
26 1267 1278.24 -11.24 -1 . o
27 1293 1302.47 - 947 e
28 1325 1326.71 1.71 Lo
29 1355 1350.95 4.05
30 1379 10 1375.18 3.82 RAY
N
275 1106 1108.48 2.48 e ol
276 1115 as 164 1.36 ':-.
277 1128 1131.05 - 3.05 }‘_:
278 1152 36 1150.47 1.53 ) §
219 1200 21118 -11.18 -2 4
280 1269 1271.89 - 2.89 \ )
O.’| I ’
I‘.‘
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Table 4 (Continued)
Data in the neighborhoods of the three points of worst fit for the GLR algorithm
(data are plotted in Fig. 10).

I& k k) Knot (k) (z = 13) Mav. Error
281 1340 1332.60 7.40
282 1392 37 1393.31 - 1.3l
F 283 1416 1411.72 4.28
o
8 1252 1256.10 - 410
H ';: 9 1257 4 1255.30 1.70
" 10 1270 1272.92 2.92
' 11 1283 1290.54 7.54
12 1298 1308.17 ~10.17 -3
g 13 1319 1325.79 - 679
14 1340 1343.42 S3.42
15 1364 1361.04 2.96
16 1384 1378.67 5.33

6.5 A HEURISTIC MODIFICATION TO GLR

Fol okl

A

Pernaps the most important observation that can be made concerning Fig. 9a is
that GI.R unnecessarily uses a large number ot knots to represent the unstructured
blue sky portion of the waveform (120 < & < 230). By representing this benign
portion of the daia more efficiently, we can frec up additional knots needed to rep-
resent the data more accurately in the highly structured parts of the waveform. This

s
'
,

¢
.‘)

. suggested that we develop a patch to our GLR routine (i.c., additional code to de- -'_:g-_ \
‘- tect the blue sky region) and implement the RLS2 algorithim rather than GLR in RN |
> this region. :‘}:"

We observe from Fig. 9a that the three largest errors are located on steep shoul- e

ders, i.e., regions of the waveform where the slope is refatively large. This suggests

iy the following second ad hoc modification 1o our GLR algorithm: when the slope

' is larger than some threshold value, ¢, replace the nominal likelihood threshold e
(Fig. 2) by a smaller number « - ¢, where 0 < « < 1, 1.,

‘%@’

5
¢ . R < e
€ {K S, S ='¢, (129)
n
) 'ﬁl
where §(j) is the current estimate of line slope, and j = (kK - k,) is the distasice
ey from the previous knot. An appropriate value for ¢, may be developed from the
: data in Table 4.
We refer 1o the resulting modified version of GLLR, which incorporates both ad
hoc patches, as GL.R-M. The 50-knot approximation obtained with GLR-M is shown AEAD
_; in Fig. 11, analogous to our carhier Fig. 9 results tor GL.R. Comparing Fig. 1la :.r:
- with Fig. 9a we note that the blue sky region is represented more efficiently by GLR- -.‘::\."'
M; comparing Fig. 11¢ with Fig. 9¢ we see that the fitting error histogram is more :',-: :
~ compact for GLLR-M than for GLR. N
L) :’-‘:\'
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Figure 9 GLR polyline algorithm evaluation. (a) IR cloud waveform (solid curve, '
. Z) and polyline knots (+). (b) Pointwise difference between z and polyline approx- - =
: ' imation. (c) Histogram of (b) with fitted Gaussian density (circles and dashed curve). -
g BTIN
"
v In Table 5 we compare GLR-M 1o DP and 1o our original GLR routine. Com- -
: pared with the other algorithms, GLR-M displays significantly superior performance .
with respect to £, and E,, while simultaneously achieving a value of E_ just 4% —
- worse than the dynamic programming solution.
X The paich applied to GLLR was tuned specifically to achieve a 50-knot approxi- N
v mation; i.e., GLR-M is not sufficiently robust to be directly comparable to the oth- i
S er algorithms (which is why GLR-M results were not included in Table 3).
g Nonetheless, our experiments with GLR-M suggest that, with additional effort, it «
. may be possible to achieve excellent fitting simultaneously in all error metrics. oAl
o |
> ™
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S Figure 10 Data in the neighborhoods of the three points of worst fit for the GLR

algorithm. Figure 9a shows these neighborhoods within their larger context; Ta-
-, ble 4 provides these data in tabular form. (a) Neighborhood of peak error point.
RS (b) Neighborhood of second worst point. (c) Neighborhood of third worst point.
bl Table 5
W, Performance of three polyline algorithms. Results for DP and GLR as for Table

3; GLR-M is a heuristically modified version of GLR.
::‘l Error
i
Execution E, E, E, E,
Algorithm Time (s) Average Avg. Abs. rms Peak
N
- DP 12.14 ~0.36 2.95 369 810
t- GLR 1.79 -0.05 2.24 3.00 11.24
. GLR-M 1.70 0.13 2.17 2.77 8.45
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6.6 ROBUSTNESS WITH RESPECT TO DATA COMPACTION o
T
r All results reported in Sections 6.3 through 6.5 have been for 50-knot approxi- j.;? :
] mations to Fig. 8a, corresponding to a fixed =7:1 data compaction. In this section -
we present results of algorithm performance over a range of data compactions, viz., - N
: approximations of 40-70 knots. Our approach is to display the variation of each :
- performance metric (E,, E,, E., E,, and T) with the number of knots, for each -
:0 algorithm. -
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Of the various algorithms described w the literaiuie, CIM provides perhiaps the
best combination of good fitting accuracy, fast execution speed, robustness, and
ease of use. For these reasons, the performances of the other algorithms are in ev-
N ery case compared with that of the CIM baseline.

Results presented in this section compare GLR with CIM (Fig. 12) and RLS1 with
CIM (Fig. 13). Analogous figures for the other algorithms are provided in Appen-
dix E. In all cases, the dashed curves are for CIM,
» The plots in Figs. 12f and 13f refer to the threshold parameter € as it appears
: in Eq. 73 for RLSI and in Fig. 2b for GLR. The parameter ¢ for CIM is simply
the peak error:

K, e = E, ., for GLR . (130)

Thus, as previously noted by Dunham,' CIM has an advantage in ease of use rela-
b tive to algorithms (such as RLS and GLR) with ¢ parameters that do not directly
control an error metric.
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7.0 CONCLUSIONS

The extraction of shape information from waveforms can be facilitated by
preprocessing the waveform with a polyline algorithm, i.e., an algorithm that ap-
proximates the waveform as a concatenated sequence of straight-line segments. Poly-
line approximation accomplishes smoothing of small-amplitude structure while leaving
large-amplitude structure well defined and unsmoothed. Moreover, the polyline rep-
p resentation generally provides a large degree of data compaction relative to the original
time series.

The new polyline approximation algorithms developed in this report are of two
¢ types, which we refer to as recursive least squares (RLS) and generalized likelihood

X ratio (GLR) algorithms. The performance of these algorithms is assessed in Section

6 by comparison with a number of alternative approaches. The Cone Intersection
W Method (CIM) algorithm discovered independently by Williams®* and by Sklansky
) and Gonzalez’ is used as a benchmark against which to compare the performance

of other methods, including our own RLS and GLR algorithms.

The relative performance of the various algorithms turns out to be somewhat de-
pendent on the choice of error metric. In particular, the original algorithms presented
here are considerably superior to prior algorithms, with respect to bias and root
mean square error.

Our RLS algorithms derived in Section 4 are based on a simple Kalman filter.
Our numerical experience is that, relative to the best of the prior approaches, RLS
has (Figs. 13 and E-6)

* Faster execution speed
¢ Slightly worse peak error
e Slightly superior root mean square error

- RLS enjoys a significant speed advantage relative to the other algorithms we have
W evaluated.

.« Our GLR polyline algorithm is derived in Section 5 as an application of a for- e
malism originally provided by Willsky and Jones.'” Some characteristics of GLR, oy

! relative to the best of the prior approaches, are (Fig. 12) - .

s’ A ¢ Worse peak absolute error r:: W

LA

¢ Superior root mean square error

““

]

(NI

LAY,
N Although most of our results indicate a trade-off between root mean square fitting r:r"_;
_' error (E,) and peak error (E,,), our numerical experiments with a currently non- ;.\;:-.
robust GLR variant indicate that it may be possible to obtain c¢xcellent fitting in vy
all metrics simultaneously. L d
>,'- Conclusions regarding other approaches are as follows: ? )
v 1. The method of E-maximal knots’ yields nearly identical fitting performance :',:-'_._-
R to that of CIM but is about 100 times slower in execution (Fig. E-1 in Appen- ;f_.:-: .
B dix E). ':.:-1. .
. 2. The dynamic programming mecthod of Refs. 10 and 11 provides a small ad- iR
vantage in E,, and nearly equal £, relative to CIM but is about 30 times slow- 9
- er in execution (Fig. E-2). e
.’_ 3. Tomek’s algorithm® executes about 50% faster than CIM but provides sub- ,‘5::
stantially worse fitting accuracy both in E, and in £, (Fig. E-3). LV W,
4. Pavlidis’s hop-along algorithm’ executces about 50% slower than CIM, is :-":“a ’
M slightly superior in E,, and significantly worse in £, (Fig. E-4). ._":_\i ,

5. The bounded-area-deviation algorithm'® is only slightly slower than RLSI;

however, it provides significantly worse values of £, and L, than RLSI (Figs.
E-S and E-7).

E"z'
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Appendix A -
WILLSKY AND JONES GLR FORMALISM PRI

A.1 EXPLOITING LINEARITY

Willsky and Jones'” provide without derivation a formalism they call the Gener-
alized Likelihood Ratio (GLR) method for detecting and characterizing discontinu- _\.

ous (jump) inputs to linear systems. The elements of the GLR method are outlined s

in Section 2.3 and, for completeness, are derived here. o 4
We assume that the jump detection problem is formulated as per Section 2.1. ;z:*n'-’
From Eq. 1, ety

M
x(k) = dkk—1) xthk=1) + Tk —1) - wk = 1) + 8, - v, ® L
(A-1) WAy
lvA‘ ¢

from which it is obvious that x(k) undergoes a jump when k& = 6.
As discussed in connection with Eqs. 15, and analogous to Eq. 98, we can write

SR

x(k) = x, (k) + x: (k) , (A-2) "'-‘-'A-
where x, (k) is the value that x(k) would take in the absence of a jump (v = O or f-:- "'v{:
k < 0), and x, (k) is the state perturbation in response to a jump. r'.:} A

As first noted by McAulay and Denlinger,' the linearity of the system equations 2 &f
allows their solution in response to a jump excitation to be written as the sum of ;:: o
a jump-independent stochastic component (x, )} and a second component (x,) linear- {-1‘: )
ly proportional to the jump amplitude. Moreover, with the jump amplitude and
time taken as deterministic (though unknown) quantities, the jump-dependent com- G

: e "
ponent x, is seen to be deterministic. e el

From Egs. 1, 2, and A-2, :\’CC

e
x (k + 1) = &k + Lk)x (k) + T(kyw(k) (A-3) ~ -;,}.
itk + 1)y = HK + Dxjtk+ 1) +vik+ 1) (A-4) r‘\"gr: ,
ENSN ),
and f:::‘:‘
Ca W)
Xk + 1) = dk + LEx, (k) + 8pevy - v (A-5) f.:'_;'\
e
Lk + 1) = Hk + D, (kK + 1) . (A-6) "‘"‘.
rlE
Equation A-5 is subject to the initial conditions A
. h. o
. — '-.ik.':-.
X0 -1y =0. (A-T) e
SN
.:'_s::_, :
A.2 SOLUTION FOR x;(k) o

Setting first kK = # — 1and then k > 6in Eq. A-5, and using Eq. A-7, we obtain

AN

.
’
v
L
(4

(0 = » (A-8)

S

and

1

Xk + 1) Pk + LExa(k), k=6 (A-9)
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With the definition
X5 (k) = 4>(k:0) TV,

it follows from Egs. A-7 to A-10 that

dko) =0, k<0
0,0) = I
dk + 1,8) = dk + 1,k) - Bk,6) .

which appeared in the text previously as Eqgs. 16 to 18 (Section 2.3).
Equations A-12 and A-13 can be solved by induction to obtain

K
ok + 1,6) = ] ®(n + Ln) .
n==0
From Egs. A-6 and A-10,

(kY = H(k) - ®(k,0) - v .

A.3 JUMP SIGNATURES

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

The linearity of the Kalman filter, Egs. 5-14, allows us to decompose the state

estimate, analogous to Eq. A-2, as
X(kln)y = %, (kin) + %, (kln) .
From Egs. 7 to 9 and 13, we have
Xk + k)Y = &k + Lk)x, (k1K)
X (klky = % (klk = 1) + K(k)y, (k)
v (k) = (k) — HK)Z (klk — 1) .
From Egs. A-15 and A-19,
v: (k) = H(K) - [®(k6)y — % (k[k — D],
which, with Eq. A-17, becomes
va (k) = H(Kk) - [®(k,0)r — $(kk — DX (kK- 1k - 1] .

With the definitions

It

& (k|k)y = F(kib) - v

and

G(k,6) - v,

'Y:(/\')

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)
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Eq. A-20 becomes

G(k;8) = Hik) - [¥(k0) — ®kk - 1)F(k - 1,0)] . (A-23)
0
:( Equation A-23 appeared previously as Eq. 23 in the text.
e It can be shown from Eqgs. A-17, A-18, and A-20 that
;‘,,. X (klk) = [I - K(OH(K)]®e(kk — D)X (k — Lk = 1)
U
+ K(k)H(k)®(k.,0)v . (A-24)
i" : This can be written as
F(k:0) = A(KYF(k — 1;,0) + B(k) , (A-25)
)@ where we define
‘ F(k;0) - v = % (klk) , (A-26)
@ Alk)y = [I - K(KYH(K))P(k,k - 1) , (A-27)
3 B(k) = K(k)H(k)®(k,6) . (A-28)
e ¢
’ Defining the auxiliary variable ©(k;6) as the homogeneous solution of Eq. A-25, : N
. a
N ie., ~§,_
, N
lo O(kf) = A(K)B(k — 1;0) , (A-29) o
"}.::‘-
. with o
)
I\ s
v 00 = I, (A-30) _~
S i

it can be shown by back substitution into Eq. A-24 that the solution of Eq. A-25
is given by

~

k

- Fko) = Y O(km)B(n) . (A-31)
J::' n=46
o~ Equations A-27 and A-29 lead directly to Eq. 25 in the text, and Egs. A-28 and
A A-31 lead to Eq. 24.
h From Eqgs. A-24 and A-26,
’;.:- F(k8) = K(k){H(k)[®(k,0) — d(k.k — 1)F(k — 1:0)]]
(&
+ ®(kk ~ 1)F(k — 1;0) ,

_: which, with Eq. A-23, may be written as

F(k;0) = K(KYG(k;8) + ®(k,k - 1)F(k — 1;0) . (A-32)
| . Equation A-32 appears as Eq. 49 in Ref. 17.
”
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7
A.4 THE LIKELIHOOD RATIO -
o
Jump detection is formulated as a hypothesis testing problem as follows: "’
-
o
Hy: Hypothesis that no jump has occurred, i.e., that k < 8 ;
(A-33) -
H,: Hypothesis that a jump has occurred, i.e., that k = 6 ,
=
and, equivalently, .
H,: Y(k) = v, (k) "
(A-34) e
Hy:  y(k) = v, (&) + G(k0) - v, o
where v, (k) is zero mean and spectrally white. i .
Maximum likelihood estimates for # and », denoted 8 and #, are obtained im-
plicitly as the values of 6 and » that maximize the joint conditional density:
ply(1), oo, y(h)LH, 0,0 ™
The choice between H, and H, is based on the criterion
>0 H ‘\.E
1 _ A -
MofZ 70 (A-35) .
where 7 is a threshold ultimately relatable to probabilities of false detection and missed -
detection, and the generalized likelihood ratio A(k,6) is defined as -
1), ..., y(k)|H,,0,5 .
Ak.60) = ply (1) Y(k)|H, 1 . (A-36) o
ply(1), ..., y(k)|H,] h%
Since the conditional densities in Eq. A-36 are both Gaussian, we can simplify the 7
implementation of Eq. A-35 by taking the logarithm of both sides, to obtain ,:4
Lo = 2IN[AL)] =8 — 6, (A-37) .-
-~
where o
k x
“I = E ‘Y"l : Lrnl *Yn (A‘38) :-:
n=f -_..
and
% :'
b= Y (-G 8, -Gy (A-39) ™
n=#
o~
For conciseness of notation, subscripts and arguments are used interchangeably in s

Egs. A-38, A-39, and the rest of this section. For example, G,, = G(;6). Also,
we recall that V, in Egs. A-38 and A-39 is the covariance of y (cf. Eq. 11 in the
text), while G, - » in Eq. A-39 is the mean value of v, subject to hypothesis H,.
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Equation A-39 can be expanded to obtain o

el = Z 'YnT ) V;i Yn + E VT' (G,:g . V—,,_l . G,,’g) -V ‘::\.-
(A-40) hGeg

—E(WZ'V;I'GII,R'V+VT'GIZ:0'Vn_l.'Yn)' ,,‘

T
LY e i
'r{&

P A

From Eqs. A-37, A-38, and A-40,

s

b

PR N 4
,

)

s
o
a

.
by = —v - [E Gy - V;'-Gn,a] v+ [E Gly - V! '7,.:‘ <
n n

(A-41)

2
‘oo
-.‘p

-‘-

P
o

- -
v, ’
«

e | on vt

S
" l' ’l: i)
- _ X 8

With the definitions °

do = Y, Gl - V' -+, (A-42) = -\‘:-,.
and ) LAy

Cio

P

Y Gl - Vi Gy (A-43) L

Pol o |
4 4 Ny
20 E
Va5

5%

and noting that

PRy

&

.'.J [ I

b
{..-

dly v =" -dg , (A-44)

s

we write Eq. A-4] as
— T T
Fk,ﬂ = -V . Ck,ﬁ v + ng A (A-45)

Equations A-42 and A-43 were given previously in the text as Eqs. 29 and 30,
respectively.

Maximum likelihood estimates for » and 6, denoted » and §, are obtained by set-
ting equal to zero the appropriate partial derivative of Eq. A-45, as follows. We A
note that ol

At

V0 - Cip - v) =2C, v (A-46) :

and .9
V., - v) = diy - (A-47) o

From Eqs. A-45 to A-47, o

T, () = =2C, - v + 2diy . (A-48)
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However,

V, ) |- =0 (A-49)

0=19

From Eqgs. A-48 and A-49,
b = Cif - dig (A-50)

which appeared in the text as Eq. 28.
From Egs. A-45 and A-50,

by = —d(CHcCc'd+2d"C'd.

However, since

c=cCT
and
c'=(™HT,
we obtain
0(k;0) = d"(ki0) - C ' (kif) - d(k;0) , (A-51)

which appeared in the text as Eq. 32.

Appendix B
ONE-PARAMETER RECURSIVE REGRESSION

In this Appendix we derive our one-parameter recursive regression algorithm, Eqs.
8'-14".
From Egs. 12' and 14,

P()=[ -7 -PGU—-1/VWK]-PG=1). (B-1)
Substituting Eq. 11’ into Eq. B-1, where
Viky =/ - PG —1) + o, (1)
we obtain

g

Py = | ot PG, B-2
v [j'P\(j—l)+02] v-b ®2
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Defining
pU) = P.(j)/a*,
it follows from Eq. B-2 that
py) = pU = 1/IL + - pG -],
which, upon inversion, becomes
[t/pUl = > + W/pG - D] .
With the definition
q() = 1/p()) ,
Eq. B-4 becomes
au) =qU -1 + /.
Substituting the following trial solution into Eq. B-6,
gi) =a-j +b-j+c-j,

we can solve for the unknown coefficients (2,b,¢), to obtain

(a,b,c) = - (2,3,1) .

[ R

From Egs. B-5, B-7, and B-8,
p() = 6/ + DN + D] .
From Eqs. B-9 and B-3,
P.G) =6-d' /U + )2+ DI,
which appeared in the text as Eq. 64. From Eqs. B-3 and 11°,
Viky = o - [1 +j°-p( - D].

Substituting Eq. B-9 into Eq. B-11, we obtain

V(k)=02.[u.2j+l]
J—1 2-1

which appeared in the text as Eq. 63. From Eqs. B-10, B-12, and 12",

K.) =6/1G + (2 + D],

which appeared in the text as Eq. 62. From Egs. 8 and 97,
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r ' N
y(k)y =z(k)y —j-35(G ~ 1}, (B-14) n 4
which appeared in the text as Eq. 61. :
Equation 60 requires no derivation, having appeared previously as Eq. 13": :_-i Q|
%
Fo
SUYy =3U -1 + K. () - v(k) . (B-15) !
Equations B-15, B-14, B-13, B-12, and B-10, appearing in the text as Egs. 60-64, 'f'-,
provide the desired one-parameter recursive regression procedure. -
.
v
L

’
TS el VRN O

o
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Appendix C ; Rt
SOLUTION FOR THE AUXILIARY VARIABLE : !"’
.. :I
In this section we derive Egs. 89 as the solutions of the difference Egs. 88 subject . 3 :_.
to initial conditions given by Eq. 27. T
With the definitions L
W e
A4, = 0y (i) (C-1) e b
Y
B, = By, (i) (C-2) ¥ e N
t:" P,
C =K =600+ D&+ 1, (C-3) - ;
o
Eqs. 88 are written as )
LI
A =0-j-C) A4, -C (C-4) BN
B =(1~j-C) B, (C-5) o
o
From Eq. C-3, ;'
- =
U-DZ-Nn S
1 -j-Cy= 2% . c6 U,
=78 = Gima+n o ¥
From Egs. C-5 and C-6, :::. ::
G+ D(2j+1)-B =j(2j-1) -8B, -(2~1)-B_ . (CT) g
x-{.’ Y
With the definition MASEEN
.‘." n\
D, =j2 -1 8, (C-8) ]
»o
Eq. C-7 is written as - "
j DL =G~1) D, ”
>
R0
T
RN
.’I
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O, (rry =0, (C-20) ®

Eq. C-19 becomes

Loy .'“"n

, r(r + 1) ~jU + 1) A

0, (ir) = , - ot
2 Uir) TSI RN (C-21) e

which appeared in the text as Eq. 89%a. \

"
N
[ which has the solution s
(j = 1) - D, = constant . (C-9)
¢ From Egs. C-2, C-8, and C-9,
. constant
OLUr = - . (C-10)

JU+ 1+ 1)
Obtaining the appropriate initial condition from Eq. 27,
6., (rry =1, (C-11)
Eq. C-10 becomes

rir+ D@Q2r+1)
0,Gg;r) = ——4—Mmm—— C-12
=00 = T D@ D )

which appeared in the text as Eq. 89b.
From Egs. C-3, C-4, and C-6,

ﬁ.

G+ D@+ A =(G-DQ@i-- -4, —6. (Cl13)

Py
a&&;ﬁ

Defining

& % e O
Py
<%

™~
(]
R

L= U - I =0 A, (C-14)

TR

s v

Eq. C-13 becomes

E

U
¥

" 'l’ a_
5"{ﬁ 5 0

r v
®

G+ E. =J - E —6. (C-15)

Ve

LN =L
"‘l"
‘.

Defining

r J'.l

Fo=j-FK, (C-16)

N
v,
e
P

.l

Eqg. C-15 becomes

l,.l
]
'

e e s e
" A

3
{/‘:’S‘

L o=F -6/ (C-17)

Pl

A

('

Y 4
Pl A

3
¥

We can show by back substitution that the solution of Eq. C-17 is given by

o
B

A t:e:{}

%,
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Fo=a-3(-1, (C-18) -

where a is a constant.
From Egs. C-1, C-14, C-16, and C-18, o
>

a -3y +1

oy Gin = 4T YYD (C-19)
JU+ D+ 1) =
Obuaining the initial condition from Eq. 27, "

o

Appendix D '\:{' o

NUMERICAL EXPERIMENTS AT 7:1 DATA COMPACTION »
oo
In Section 6.4 we presented graphs depicting polyline fit, fitting error, and - C;\
histogrammed fitting error, for the GLR polyline algorithm. Here we provide results RSV
in an identical format for the following additional algorithms: {"

EMK 50-knot approximation (Fig. D-1) »
CIM 50-knot approximation (Fig. D-1) " ]
DP 49-knot approximation (Fig. D-2) . J; g
LSBPT  50-knot approximation (Fig. D-3) ::- .:;
HOP-S  51-knot approximation (Fig. D-4) e
BAD 50-knot approximation (Fig. D-5) &

RLS1 50-knot approximation (Fig. D-6)

T

RLS2 50-knot approximation (Fig. D-6) ;_: v
Not all algorithms were able to provide exactly a 50-knot approximation; conse- ::'
quently, the actual numbers of knots are given above for the fit shown in the fig- o s
ure. This also explains the discrepancy between some of the performance statistics w ,“""
appearing below the histograms in the figures and the corresponding results in Ta- RS,
ble 3 (in the main text). If a particular algorithm could not obtain the desired 50-knot »
approximation, the statistics in Table 3 are an average for fits of 49 and 51 knots. ToA
Fits provided by algorithms EMK and CIM were identical in this instance and ,‘3.: :‘\
so are provided as a single figure. Similarly, results for RLS1 and RLS2 were identi- o
cal for the S0-knot case and are therefore represented by a single figure. “, :—
References to the literature and definitions of the algorithm acronyms are provided r:" -
in Table 2 (in the main text). L
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Figure D-1

EMK and CIM polyline algorithm evaluations. (a) IR cloud waveform

(solid curve, 2) and polyline knots (0). (b) Pointwise difference between z and poly-
line approximation. (c) Histogram of (b) with fitted Gaussian density (circles and

dashed curve).
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Figure D-2 DP polyline algorithm evaluation. (a) IR cloud waveform (solid curve, e
Z) and polyline knots (0). (b} Pointwise difference between z and polyline approxi- " -."
mation. (¢) Histogram of (b) with fitted Gaussian density (circles and dashed curve). e
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X Figure D-3 LSBPT polyline algorithm evaluation. (a) IR cloud waveform (solid
curve, z) and polyline knots (0). (b) Pointwise difference between z and polyline
approximation. (c) Histogram of (b) with fitted Gaussian density (circles and dashed
curve).
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Figure D-4 HOP-S polyline algorithm evaluation. (a) IR cloud waveform (solid
curve, 2) and polyline knots (0). (b) Pointwise difference between z and polytine
approximation. (c) Histogram of (b) with fitted Gaussian density (circles and dashed
curve).
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Appendix E
v PERFORMANCE STATISTICS VERSUS DATA COMPACTION

In Section 6.6 we presented curves of performance statistics versus data compac-
tion for the GLR, RLS1, and CIM polyline algorithms. Here we provide results
in an identical format for an additional set of algorithms:

EMK (solid curves) versus CIM (dashed curves) (Fig. E-1) .

DP (solid curves) versus CIM (dashed curves) (Fig. E-2) ROy

- LSBPT  (solid curves) versus CIM (dashed curves) (Fig. E-3) ::'x‘
g HOP-S  (solid curves) versus CIM (dashed curves) (Fig. E-4) K -:
BAD (solid curves) versus CIM (dashed curves) (Fig. E-5) g

RLS2 (solid curves) versus CIM (dashed curves) (Fig. E-6) )
. RLSI (solid curves) versus RLS2 (dashed curves) (Fig. E-7) f""__
References to the literature and definitions of the algorithm acronyms are provided 2::_::
in Table 2 (in the main text). 2 -~
N Of the various algorithms described in the literature, CIM provides perhaps the i
L best combination of good fitting accuracy, fast execution speed, robustness, and SN
ease of use. For this reason, the performance of the other algorithms is generally ) _' ,

. compared with that of the CIM baseline. The exception to this is Fig. E-7, where ﬁ{:
f we compare the two recursive least squares (RLS) algorithms developed from ana- '_-".:-::

) lytical considerations in Section 4. ’.'
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