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ABSTRACT

New algorithms are derived for polyline approximation of digital waveforms, us-
ing recursive least squares and generalized likelihood ratio techniques. Numerical
experiments indicate that the new algorithms may in some applications offer sig-
nificant speed and accuracy advantages compared to prior polyline algorithms.
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1.0 INTRODUCTION •
-vIN

The extraction of time-domain information from a waveform (e.g., pulse shape)
can be facilitated by preprocessing the waveform with a "polyline algorithm," i.e.,
an algorithm that approximates the waveform as a concatenated sequence of straight-
line segments. The polyline approximation, if properly accomplished, smooths in-
consequential noise structures while leaving significant structure well defined and
unsmoothed. Moreover, the polyline representation generally provides a large de-
gree of data compaction relative to the original time series.

Polyline approximation has recently been applied to a great diversity of problem
areas (see the Bibliography).

An early polyline application that in many ways anticipated our present work is
provided by McAulay and Denlinger' in their development of decision-directed %
tracking algorithms. An early scan-along algorithm was developed by Tomek, based
on the notion of finding the longest approximating line segment that can be con-
fined completely within a pair of parallel lines separated by a prespecified error toler-
ance.2,1 Some of the difficulties experienced with Tomek's algorithm are alleviated
by a scan-along algorithm variously referred to as the cone intersection and mini-
mum perimeter polygon method, discovered independently by Williams4 and by ," '
Sklansky and Gonzalez.

Pavlidis3 and Pavlidis and Horowitz6 describe a split-and-merge technique that
progressively improves on an initial segmentation until an a priori error specifica-
tion is satisfied. More recently, Pavlidis7 has devised an algorithm that recasts his
earlier split-and-merge approach into a scan-along structure that he refers to as a
hop-along algorithm.

The scan-along and split-and-merge algorithms, while effective in applications,
are not intended to be optimal in any sense. Vandewalle' has provided an algorithm
that, while slow in execution, is intended to provide an approximation that is op- - .
timal, in the sense of requiring the minimum number of breakpoints (or knots) to , ,
achieve a prespecified error norm. Similar concepts are cast into a somewhat more
formal setting by McLaughlin and ZacharskiK who refer to their algorithm as the
method of E-maximal knots.

A dynamic programming algorithm for polyline approximation has recently been
devised independently by Papakonstantinou"' and by Dunham.'' These authors

'R. .. McAulav and E. J. Denlinger, "A I)ecision-Directed Adaptive Tracker." IEEE Trans. Aer-
osp. Electron. , v.st. AES-9, 229-236 (1973).
21. Tomek, "Twro Algorithms for Piecewise Linear Continuous Approximation of Functions of
One Variable," [EEE Trans. Compul. ('-23, 445-448 (1974).
T. Pavlidis, Structural Pallern Recognition, Springer-Verlag, Berlin (1977).

'C. M. Williams, "An Efficient Algorithm for the Piecewise Linear Approximation of Planar
Curves,' Comput. Graph. linage Process. 8, 286-293 (1978). -1.4

'J. Sklansky and V. Gonzalez, "Fast Polygonal Approximation of Digitized Curves," in Proc.
1979 IEEE Cotpter Society Conf Pattern Recognition mage Processitg, pp, 604-609 (1979).

'T. Pavlidis and S. I.. ttorowit/, "Segmentation of Plane Curses," !EEE Trans. Complt. (-23,
860-870 (1974). -
T. Paslidis, A 'gorihoo _for (raphics and hna e ProcesSsing, (omputer Science Press. Rockville. -
MJ. (1982). .. 5.

.1. Vandewalle, "On the Calculation of the Piecc ise linear Approximation to a Discrete FuInc-
tion,'" IEEE Trans. Coiput. C-24, 843-846 (1975).

9H. W. McL.aughlin and ..1. Zacharski, "'Segmented Appro.imation." in ,.|pproxination The- -p1
orY. F. W. Cheney, ed., Academic Pre,,s, Ness York. pp. 647-654 (1980). X
iG. Papakonstantinou, "Optimal Polygonal Approxmatiot of i Digital (trves, Signal Process.
8, 131-135 (1985).
.1 G. Dunhan, "Optinun Uifitorm Piece ,ise Linear Approximation ot Planar Curves," IEEE
Trans. Pattern .nal. Mach. Intell. PAMI-8. 67-75 (19861.

9
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claim optimalti forri bin., ilile h eCnsc of obtaining anl approximation4
with a globally minimum n umber ofI knoils, f'or a prespecified peak fitting error.
The dynamic prograntning aisrorit hni "al upon thle cone intersect ion method
as a subroutine.

Numerical experience %% it thle opiiitnal alpontit nis indicates that thle dynamic
programming algorithmr pros ideS [1t01 eCdulced ritting error anid faster execution
speed, relative to thle nmethod of [-inaximal knot', a, discuIssed in Section 6 below.

In addition to providing at 1e0% dvulai tic pirograillmrtgii aluorithm., Dunham presents
performance comparisons of several prior poluten algorithmns against three test con-
tours. ''The measures of' algol ithtni pert l'rnWtate used by Dunham are execution
speed, degree of data compaction, atnd peaik aholtttc t'ittitlig error; algorithms evalu-
atedl included t hose b\ Pat\ lidis and i l~loo\ i/,' I'a\ lidis, \\illiams," Sklanskv and
(jonzalei,. Badi i attd Pci kai . aric Rohcrsie,: and Dunham,11.' Dunham's -

results show that:

1. Roberge's algorithrm, \\ hile coiltsistetttl lftstcst in execution, typically achieved
only half the data compact ion ratio of' tire optimal dynamnic programming so-
Ilution (for fixed peak error):

2. The Sklanskv;(itralet algorirlrn executed about as farst as the fastest of the
other algorit i it ( not ittchitdii nRob erge's) antd conistenttly achieved data com-
paction ra.4:o almrost &' good as the dvtanic programming algorithm,

Consequent!),, thle Skklnsk% (1ott/alet algorittirt ttta be cotisidered a benchmark
aeuainst which to cotmpare thIe per-foiniance of ot her met hods.

Pavlidis, in editor-iall erttmICt~rt r," has, noted that performance comparisons
Such as Dunham',, aire Clouded 1)\ utncertainrtiCs itt lgorithmi implementation. How-
ever, also as tioted by 11,1s lidis. Such niurtienical studies antd algorithm intercompari-
sons arc inotetheles' saluiaNc Folloss tng Duhamr, w\e presently both introduce nesv
algorit hins and compare tent to priorr orie,, ( oniri~ ng our wNork wvith Duinham's:

I . Otr ilterest Is in Irpploilatinvr 5fa tort ather than two-dimensional
eottottrs.

2. We base epartdcd rtire ,cope of erro ite ics to include average err or (i.e.,
bias), root ieart square 0rror. 11r(d ilsertL Ih'abslute error.

3. Our- selectiont of' poINline itleoiiirt or'm altraaion arid comparison, partially
os erlappium )ttrars ittludL-' tirose of kts idii'. Pttpakritistantinoua
5k lansk v antd(or/l, \\all ila Da If rt ic oti .- comk . arid MlcLaughlin
and /aclhtrski. \\a'ssell arite ress tic\\ ; r rlrtt presented in this report.I

As discussed ill Sectiont 6, tihe relar ise performaltee of th li\arious, algorithms turns
out to he solttess hat dceperrdertt orft rire error llterrre. Itt partictular, tile original al-

goritlinms presettd her C are eorriderabl\ sktperior to piir algorithmns. svith respect
to bias atid rIt1111M rrteat iar erll).

Our ties' algorit lints are (i t ikko s arinrt re. s rlr sse retevr to as rccurstse least -sqiuares

(RL-S) and igetitali/ed likelihoiodl ratol (() RI alorrllt'

Alt. tRidi tt, 'cLn "An:. Po,,na; l~~ 'broia ( inse of 11,11 Comin gielr-
pot. 1 rph.. .5vhnr~Sr 1. 2-14 1r.-

"1. Rorrcrg, '-\ rDali\ t''imwti~ \l'1111 I'l 1',11j ni \nlsnnar r I' tt mrr rap~. Crr

Proce\. t9 168 11. -19,0)
1. Pa.rt mtl . I dil,-irci , r' Yst rr~ Steni /II I

1
'l han,'riwo .\nnsarro Mac -a'
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~.a

Our RLS algorithms are derived in Section 4 based on a simple Kalman filter. S
Our numerical experience with these algorithms i. that, relative to the
Sklansky/Gonzalez algorithm, RI.S has

* Faster execution speed
* Slightly worse peak error
* Less average error
* Smaller room mean square error.

The original application of the statistical GLR method to formulating the prob-
lem of change detection in linear systems was provided by McAulay and Denlinger."
A general solution to the GIR formulation was provided by Willsky and Jones.
In Section 2 of this report we review the Willsky/Jones GLR formalism that, in
Section 5, we particularize to the problem of polyline approximation.

The most direct antecedent of our work is McAulay and Denlinger.' Features
common to our work and theirs are:

I. Use of a GLR formulation for change detection; ,
2. "... A piecewise linear model.., to [describe] the noiseless evolution..." of mea-

sured waveforms; ,
3. Tracking of "...straight-line segments with a simple two-term Kalman

filter..."...

Some points of distinction between our approach and theirs are: ,0.%

I. We develop a one-parameter recursive regression as our candidate no-jump
Kalman filter. The corresponding filter used in Ret. 1 is unknown since its _
discussion is quite brief.

2. Our "jump signature" solution in Section 5.3 is exact, derived as a special
case of the general solution in Ref. 17. The corresponding signature presented
in Ref. I is approximate, being based on numerical experience (cf. the discus-
sion in connection with Eq. 106). "

Although Ref. I is widely cited as the original GLR change detection formula-
tion, the casting of target tracking problems in terms of an equivalent polyline ap-
proximation has apparently gone unnoticed in the literature, perhaps due to the
brevity of this part of the discussion in Ref. I. Nevertheles we see this as poten-
tially of high interest, since algorithms for polyline approximation can be applied %'
to target tracking and vice versa. While there has very recently been some renewed
interest in applying polyline approximation methodology to problems in radar track- ,, ,-
ing, 1 there may still be considerable unexploited potential for cross-fertilization be-
tween the two areas. •

I*A. S. Willsky and 11. 1 Jones. "A\ (cncrali/cd Ilikelihood Ratio Approach to tile Detection IL,,,,,, -6

and F!tinialionl of .lumnps in t incar S ,em ."II'EI: Trunk..4uto. Control A('-2I, 108-112 (1976).
"S. F. Haase, ",,Mhaniccd Radar liacking Iechniques," in IR&D/B&13 Progratt Plan V'ol. 11

1 1'1988 , 11I1. All., laurcl, M d., 111. 11-375 to 11-397 (1988). , ,.

. N
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2.0 DETECTING CHANGES IN LINEAR SYSTEMS I

2.1 PROBLEM FORMULATION

This section follows Willsky and Jones 17 and likc them provides results without
derivations. For completeness, the appropriate derivations are provided in Appen-
dix A. ,, ,

We assume a discrete-time systcn whose dynamics evolve according to the state
and measurement equations:

X(k + I) = 4)(k + l,k) -x(k) + r(k) • w(k) + 6
0.A , (1) I 

'

z(k + I) = H(k + 1) ..v(k + 1) + vk + 1) , (2) .-

with all quantities being real valued (see the list below for definitions). Quantities %
_v, w, ., z, and v may be vectors, while ,D, F, and H are real matrices of commen- " %'f
suratc dimensionality.

Quantity Definition

k Discrete time
X State vector =. ;.

'II State noise
z Measurement/observation ' .

v Measurement noise ,-
6 Dirac delta function ,-'
,, Jump amplitude -
0 Jump occurrence time
(P State transition matrix
H Measurement matrix

The noise sequences w(k) and v(k) are assumed to be zero-mean and Gaussian,
with covariances

covlw(k)] - Efw(k)w'(k)J = Q(k) , (3) I

covlv(k)l = R(k) , (4)

where in Eq. 3 El] denotes ensemble expectation, and a primed quantity denotes
the vector transpose. 'A

The Dirac delta term in Eq. 1 indicates the presence of a discontinuity (or "jump")
in what would otherwise be a smooth temporal evolution in the state vector. The
jump amplitude I, and time of occurrence 0 are presumed to bt unknown, subsum- J*
ing the possibility that a jump never occurs (I, = 0 or 0 c,). :,:

The objective of jump detection processing is to determine whether a jump has
occurred and, if so, to establish accurate estimates for I, and 6 by means of process-
ing operations performed on the measurements -(k).

Since Eq. 1 has the stochastic driving term w, the state x must necessarily be a
random process.

12 -
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2.2 KALMAN PREPROCESSORI%Our approach to detecting the presence of a jump in E:, I is to process the data
with a filter that will be optimal if no jump occurs and to monitor the filter's per-
formance to assess the continuing validity of the no-jump hypothesis. In the control
systems literature, this approach is sometimes referred to as analytical redundancy, -.
and the filter is sometimes called a no-fail observer or normal-mode observer. 9 -

Subject to the no-jump hypothesis (i.e., prior to the jump, when k < 0), the op-
timal approach for estimating the state is provided by a Kalman-Bucy filter:,

X(010), initial state estimate (5)

P(010), initial covariance (6)

/(k + Ilk) = 4(k + l,k) . f(klk) (7)

1.(k + Ilk) = H(k + 1) • .(k + Ilk) (8)

y(k + 1) = z(k + 1) - 4(k + Ilk) (9)

P(k + Ilk) = 1(k + l,k) • P(klk) • 4'(k + l,k)

+ r(k) • Q(k) • F'(k) (10)

V(k + I) = H(k + 1) • P(k + Ilk) • H'(k + 1)

+ R(k + 1) (11)

K(k + I) = P(k + Ilk) • H' (k + I) • V'(k + 1) (12)

.,(k + II + I) = f(k + Ilk) + K(k + 1) --,(k + 1) (13)

P(k+ Ilk+ 1) = [I-K(k+ 1) •H(k+ 1)] P(k+ IIk) (14) S

with all quantities in Eqs. 5-14 being real valued. (See the list below for definitions;
note that quantity Z' denotes the sequence of observations z(l), z(2). z(/).) The
flow of operations in the Kalman filter is depicted in Fig. 1.

Quantity Definition

flkli) Conditional mean of x(k), given Z'
.(kj) Conditional mean of z(k), given Z'
-,(k) Innovation . -

P(k i) Covariance of x(klj)
V(k) Covariance of -y(k)
K(k) Kalman gain

"'A. Madi-ale and 13. Friedland, "Conaprison of hniovations-Based Analytical Redundancy S
Methods." in Proc. 1983 ..I,. Control Con.. pp. 940-945 (1983).

13
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Or~ala (jin Eq. 12,ii L

Figure I Kalman filter flow of operations.p

2.3 (AR FORMALISM

As first noted by NicAulay and Den lingzer.' the linearity of thle system equations
allows their solution )in response to a jump excitation to be written as the sum of
a jumip-independent stochastic component (x, ) and a second component (x2 ) linear--
Iv proportional to tile jumup amplitude. \loreomer, With thle Jump amplitude and-
ime taken as deterministic (though unknown) quantities, the jumip-dependent com- * -

ponent x, is seen to be deterministic.
F~ollo\\ine, Ref. 17, w e w\rite thle state as

xv(1) =sx (A) + 4(A.0) . ',(15)

shere x, (k) is the \aluc that .v(k) \\ ould take itu thle absence of a jump (ft 0),
and F)(k,6) t' is t he state perIt urbat ion in response to a jtmp, where

+(k,.1) 0, A- < (9 (16)

+- 10 40( 1,0k) 4'(A-,(J) .(18)

I he liroof of F.ls 16-18 X is pi os ided itn Appendix A, along with the proof's for oth-
er result,, presented itt thtis ,ectionm.

I Iroutl Ils. 2 aud 15.

,:K ,(A ± //(A- ' A) -. (19)

similalk, thme liuecarit\ of thle Kalmman filter equations allow\s their solution to be
writein t aform atmilogotis to Iqcs. I5 and 19, %i/., for the state estitmate, -

+I

14 * %Ja~s
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%

and for the innovation, -%
S

y(k) = ,(k) + G(k;O) v . (21)

The quantities -(k;O) and G(k;O) appearing in Eqs. 20 and 21 are sometimes referred
to as the jump "signatures"; they characterize the Kalman filter's response to a jump
excitation in the system equations.

It clearly must be true that

F(k;O) = 0 ) '<,. 0'
G(k;O) 0 k <0 (22)

in order to preserve the definitions of x1 and -y, as the Kalman filter responses in
the absence of a jump.

It can be shown that G(k;O) may be written in terms of F(k;O):

G(k;O) = H(k) • [4(k,O) - 'D(k,k - 1) • F(k - 1;0)] . (23)

The function F(k;O) appearing in Eqs. 20 and 23 is given by

A S

F(k;O) = O(k;j) K(J) H(j) -(.j,0) (24)

where the auxiliary variable O(k;j) is obtained recursively a, %

O(k;9) = [1- K(k) • H(k)• 4)(k,k - 1) • 0(k - 1,0) (25)

O(k;O) =0, k < 0 (26)

O(0;0) = I (27)

Assuming that the measurements z(k) generated according to Eqs. I and 2 are'"
processed by the Kalman filter, Eqs. 5-14, the innovation -y(k) will be a zero-mean
Gaussian process (-y,) until the jump occurs at k = 0, whereupon -y(k) will develop
a bias, G(k;O) • v. Jump detection is accomplished by detecting the innovation bias, -.

which, in turn, is accomplished by a form of matched filtering applied to the inno-
vation process. -

Writing the GLR estimates for i, and 0 as and 0, it can be shown that

(k) = C '(k;O) • d(k;O)I,-,;,k , (28)

where d(k;6) is obtained via a matched linear filtering operation on the innovation
process,

d(k;6) = G'(n;O). V '(n) -(n) (29)

and matrix C 1(k;0) is th? covariance of i), computed as r

C(ke) = . G'(n;0) I1 '(n) G(n;0) . (30)

15
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The GLR estimate for jump time, 6, is obtained as the value of 0 that maximizes 4
the generalized likelihood ratio, l(k;O), i.e.,

ttk;0) = max ikk;O) , (31) 1 %1

where

fqk;O) = d'(k;O) C 1(k;O) • d(k;O) . (32)

The GLR algorithm determines that a jump has occurred whenever Rk;6) exceeds ,
a fixed threshold, e; the GLR estimate for the jump occurrence time is then provid-
ed by Eq. 31, and the GLR estimate for jump amplitude i is given explicitly by Eq. 28.

We note that the function C(k;O) gi en by Eq. 30 is computable off line, as is
the function [G'(j;O) • V '(/)] in Eq. 29.

The GLR filter flow of operations is diagrammed in Fig. 2a. Maximization in
Eq. 31 occurs over k values of 0, corresponding to the k parallel branches in Fig.
2a. Because the number of calculations required to implement Eq. 31 increases with
time, implementing "full GLR" requires progressively increasing numbers of cal-
culations at successive time steps-an undesirable property. An approach to bounding
the number of required calculations is to restrict the range of 0 values in Eq. 31
to the M "most recent" values, i.e., to the range 1(k - M + l),k] (Fig. 2b).

When the jump vector P can be written as

V= c. flO), (33)

where x is an unknown scalar and f(0) is a known vector function of 0, the formula-
tions for and l4k;O) may be written in the following forms, alternatives to Eqs.
28 and 32:

i)(k) = & (k;6) • f(6) (34)

&(k;0) = b(k;O)/a(k;0) (35) I

l(k;O) b2 (k;O)/a(k;O) (36)

where

a(k;O) = f'(0) . C(k;0) •f(O) , (37a)

and

b(k;0) = f'(0) • d(k;O) . (37b)

We note that Basseville and Benveniste (1 have suggested a modified form of the
Willsky/Jones algorithm in which thresholding is performed on the estimated jump
amplitude , given by Eq. 28. Much simpler still, in Section 4.2 we propose threshold- .,'
ing the normalized innovation -y(k)/(V(k)) directly, i.e., using the Kalman filter
alone, with no additional processing other than thresholding, for jump detection.

%'

51M. Basseville and A. Benveniste, "Design and Comparative Study of Some Sequential Jump De- 4
tection Algorithms for Digital Signals," IEEE Trans. Acoust. Speech Signal Process. ASSP-31,
521-535 (1983).

16 5"

" V

N *~
4

*~ ~**, ~ ' *? ~ '. W S 4 I



THE JOHNS HOPKINSUIEST

APPLIED PHYSICS LABORATORY
LAUREL, MARYLAND

Measurements

nnovation, rlk)

Calculate: Calculate: Calculdte: allae:

1(01;' max 1(09;l

No jump No l;l> Ya Jump

(a) Full GLR.

Measurements

(nnovation, ylkl

Calculate: Calculate: Calculate: Calculate:
1dlk;k -19l ldlkk-18) 1.dlk;k -17) 1.* dlk;kl

12, lk;k - 9l! 12.'(k;k -18)1.l~k-7 2. 1'lk;k)

0k;6) --, max I lk 'k i - 1)
1,20

No_< . Yes
No jump (k -0) Jump

(b) Windowed GLR (M = 20).

Figure 2 GLR filter flow of operations.%

The GLR algorithm is not altogether simple to understand. As perhaps the sim-
plest application yet put forward of the GLR method, our GLR polyline develop-
ment in Section 5 helps cast insight into the structure of GLR generally. Some of
the simplifying features of our development are:

1. Low dimensionality: 2 x I vectors and 2 x 2 matrices are our highest-%
dimensional entities.

2.Closed forms: A number of quantities, generally available only as the solution
of recursion relations, are obtained in closed form (see Table 1).

17
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Table 1
Application of GLR to polyline approximation results in the development of

closed-form expressions for these quantities.

Variable )efinition ()pcn I-orm Closed Form

K(k) Kalman gain lq. 12 Eq. 62
V(k) Innoation co arialcc iq. II Eq. 63

O(k;O) Auxiliary %,ariabC Lqs. 25-27 Eqs. 87 and 89
F(k;O) State signature lIA. 24 Eq. 95
G(k;O) Innovation signatnic E'q. 23 Eq. 97
C(k;0) I inverse courian,.'c 1q. 30 Eq. 109

S

3.0 STATE VARIABLE REPRESENTATION OF NOISE-FREE
POIYLINES

In this section xic shosw that the polyine \axcforn approximation problem can
be given a state variable formulation, as required for application of the GLR for-
mealism.

Underlying our development is the assumption that waveforms of interest may
be approximated as noise-free polylines, with additive, zero-mean, stationary Gaussian
noise. Thus, our interest in this section is to cast the equations of a noise-free poly-
line int the form of Eqs. I and 2, in which the noise terms have been set to zero:

X.(k + I) = b(k + 1,k) •.(k) + ,A.I • (38)

z(k + 1) = H(k + 1) -.k(A + 1) . (39) 1,

We assume that the ordinate of' the initial breakpoint is known; subtracting the S
initial ordinate then results in a polvlinc ,.,hose initial breakpoint is at coordinates
(k,,,0). For further discussion, ,cc I-i. 3, vherc \wc define

(40) ". _ ,,

r 0- A k, .

Consideration of Fiu. 3 shoo,, that kc Ina\ %rite for the polyline slope .

SW • , " (1 r) . (41)

where i(-) is the unit -stl Iunciion. I-or offset c tix \write

1r(l) , • . (/ r) .(42) .i

1'8
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zik) , .

j " O (j - r) - --- -- -
// / I a J t

r~ a -

. L/0 -"--. - -.. . I

0 (k-k O)

ko k k'

(a)
Slope, -

s(k) I

ao L

r --1k - ko)

(b)

-a r - -

Offset, y(k)

Figure 3 (a) Noise-free, two-segment polyline; (b) slope; (c) offset.

Also, we note that

r + r) = i,r (43) ',

where 6 is the Dirac delta.
From the foregoing, we obtain the desired state-variable representation for the ,

noise-free polyline: 0
% 0X

(y( j+ 1) -. + 6r rf- (44)
"ss("+ ) S' "'-

and

(kY(+')) (45) ,SSz(ko +1j) = I l j I. {s~)} (45) '

Comparing Eqs. 44 and 45 with Eqs. 38 and 39, we obtain

x(k° + ) (j) (46)

19
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F (k + ],A) = 1 (47)

V - (48)

H(', + j) I j l. (49)

Comparing Eqs. 48 and 33, we see that they are of the same form, permitting
us to write

S(50)

4.0 RECURSIVE LEAST-SQUARES ALGORITHMS

This section comprises three subsections. In 4. I we derive a recursive least-squares "-"
regression formula for fitting a straight line to a set of random data, as a special
case of the Kalman filter. We assume that the initial coordinates of the fitted line
are known and only the line slope must be estimated. Since only a single parameter
(slope) is being estimated, our resulting "one-parameter recursive regression" is some-
what different from the usual two-parameter intercept/slope regression formula. 2'
In 4.2 we use our one-parameter regression formula to derive two algorithms for
polyline approximation, which we subsequently refer to as RLS algorithms. The per-
formance of these algorithms is compared in Section 6 to other algorithms. In 4.3
we slightly recast our one-parameter regression results into a form suitable for use
with the general GLR formulation presented in Section 2.

4.1 ONE-PARAMETER RECURSIVE REGRESSION

Takingj < r in Eqs. 41 and 42, we obtain the equations of a straight line, viz., ¢

v(j) - 0 (51a)

SO 51b) ." -

According to Eqs. 51, the line passes through initial coordinates (A,.O), with slope

From Eqs. 45 and 51a, and adding a noise term (as in Eq. 2), we obtain - ,.
P.

2'Y. Bar-Shalom and . F I ormann. Frackin and in)aa .1s"ociation, Academic Press (1988).
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( 0 , j (k - ko) = 0 5
z(k) = • s(j) + v(k) , 0 < j = (k - k,) < r ' (52)

where we assume that v(k) is zero mean, Gaussian, and stationary:

R(k) = cov[v(k)] = a2  (53)

Under the assumption that the initial ordinate of the line is known and can be sub-
tracted to obtain a line that goes through (k 0 ,O) (cf. Fig. 3), the single unknown
parameter remaining is simply the line's slope, s(') = a0. Although our constraint,
z(ko) = 0, may seem artificial, it is justified later in connection with our applica-
tion of the results in this section.

A simple recursive procedure for estimating the parameter s(j) = c0 in Eq. 52
may be developed from the Kalman filter Eqs. 5-14, in which all generally vector 6
and matrix quantities reduce presently to scalars. We identify the line slope s) as 9e

the "system state," which is time-independent (Eq. 51b). Consequently,

9(nlj) = f(mlj) (54) ,

P, (n j) = P, (nlj) , (55) 0

for all values of n, m, and j, and where we write P, as the covariance of 9. It fol-
lows that we may simplify notation by writing

9(j) =-(nj)
(56)

P(j) P,(nlij)

Equation 51b may be written in the form of Eq. 1 by making the identification

4(k + l,k) = 1 (57)

w(k) = 0 . (58)

From Eqs. 58 and 3, Q(k) = 0. Similarly, Eq. 52 can be cast in the form of Eq.
2 by writing

H(k) = (K - ko) = j . (59)

Using Eqs. 53 and 56-59, we obtain, corresponding to the Kalman filter Eqs. 8-14,

f(k- 1) = j. ("- 1) (8')

-y(k) = z(k) - (k - 1) (9') .

P, U) = PU) (10')

V(k) = j• P,(j - 1) + (II)

K,(j) = j . P, (j- l)/V(k) (12')

)= 9(J - I) + K,(j) • -(k) (13')

P,(j) = [I -j K(j)] • P,(] - I) . (14')
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where it is understood that k (k, + I) in Eqs. 8'-14'.
As shown in Appendix 13, the desired recursive estimation procedure for line slope ,

is obtained from Eqs. 8'-14' as

9(j) = (j - 1) + K,(j) y(k) j I (k - ) 2, (60)

where

'(k) = z(k) -j ,(j- I) , (61) "-.

and .,.~

6
K, (j) = -- (62) 0(i + 1) (2j + I)

We also find in Appendix B that

V~k) _ (1,(j) 2j +__l
V(k) Ivj) =2j --1_ (63)

and

6a2 4
P, (j) = (64)

j (i + I) (2j + I)

It can be shown that Eqs. 60-64 are equivalent to a recursive least-squares regres- ,- ,
sion for line slope, derived on the assumption that the initial ordinate is specified.
The recursion is initialized by taking .. ,,.

= z(k0 + 1) - z(ko) . (65) -

The first loop of recursive continuation follows from Eqs. 65, 60, and 61, in the
following sequence:

,(k + 2) = :(k, + 2) - 2 • (1) , (66)

,(2) = 9(I) + K,(2) • -<(k, -t- 2) . (67)

The slope estimate g(l) and measurement z(k o + 2) arc used in Eqs. 66 and 67 to
obtain the next slope estimate, (2). More generally, we interpret Eqs. 60 and 61 PI .
as a prescription for taking a slope estimate .(j - I ) and measurement z(k) to de-
rive the next slope estimate (j). ',

Inspection of Eq. 62 reveals two properties of the Kalman gain that are generally ' V
true even for more complex, higher-dimensional Kalman filters, viz.,

i. The Kalman gain, though time-dependent, is independent of the data and may
be computed off line.

2. The Kalman gain becomes progessively smaller as increasing amounts of data I"S X,.
are processed, i.e.,

lill K, (j) 0 (68)
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It follows as a consequence of Eqs. 60 and 68 that the RLS slope estimate 9(j) be- •

comes progressively less sensitive to the measurements as increasing amounts of data ,.

are processed. In a sense, the filter becomes increasingly "satisfied" with the good- 41,

ness of its slope estimate. This may be seen also from Eq. 64: the variance of the .
estimate, as calculated by the filter, decreases to zero. Naturally, the filter's assess- .1

ment of its own performance, as provided by Eq. 64, is only valid if the underlying
waveform model is correct, i.e., if the data realize a process composed of a straight
line and additive, white, Gaussian noise.

Our reasons for assuming that z(ko) is known, and our basis for choosing a val-
ue for z(ko), are discussed in the next section.

4.2 RLS POLYLINE ALGORITHMS

In this section we describe two polyline approximation algorithms based on the
premise that the development of a nonzero trend in -y(k) indicates that the underly- %

ing model, Eq. 52, is no longer valid and that the measurements can no longer be
fitted adequately with a single straight line. ,"- ,

Both of our simple RLS polyline algorithms are structured as follows (Fig. 4).

1. Equations 60 and 61 are applied to the data to generate the innovation se- ,

quence y(k).
2. The innovation sequence is tested in some fashion for the development of non-

zero bias.
3. When a nonzero innovation bias is detected, say, at time k = (0 + 1)

(k0 + r + 1), a breakpoint or "knot" is introduced in the waveform approx-
imation at time k = 0. The ordinate of the knot is estimated as •

(0) = (r + I) • 9(r) , (69) .5,.

which is obtained by substituting (k - 1) = 0 = (k, + r) into Eq. 8', and
9(r) is the last slope estimate generated by the RLS algorithm.

Measurements y(k) - z(k) (J 1 ) Unit delay
z(k) '( %

Slope estimate~~~~~Innovation. ,
j)

P ?

Stored off ine comp ration

y(k)

' [Bas deectedat l Bas 8 a S N o hf as " .
" time k= + 11 detectio

[~~~Terminate Current segmer Inihtialize rnew segnieni i?-~~~s. qC 71 L,_

/ i Tie 6 k0 + -,.1. Set zAk) nz(k)- 2(0)1-- "ew
/ .(0 ( +1 ;r)l 2 St 02. Smoothed ordinate 2.St o-emn

Figure 4 Structure of RLS polyline algorithms.
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4. The RLS algorithm is reinitialized by making the assignments P

z(k) - z(k) - 5(0) , k > 0 (70)

k- 0. (71)

The purpose of Eq. 70 is to translate the polyline such that the origin of the new
z axis is at the starting point of the new line segment. Similarly, Eq. 71 translates
the time axis such that the starting time of the polyline's new segment is set equal
to the ending time of the first segment. Figure 5 illustrates the result of applying
Eqs. 70 and 71 to Fig. 3a.

Our two RI.S polyline algorithms, RISI and RI.S2, are distinguished by the means
used for detecting innovation bias. In RLSI, we first divide -y(k) by the square root
of its covariance, given by Eq. 63, to obtain the normalized innovation, S(k): I

S(k, + j) = y(k, + j) . . ... (72)
0 j + I 2j + I

Bias detection is then accomplished by applying a fixed threshold, t, to S(k):

If IS(O + 1)1 > ( ,
(73)

Then terminate current segment at k = 0.

As we will discuss later in Section 6, selecting a threshold to provide either a fixed
error norm or a specified data compaction ratio requires iteration on the value of

Our bias detector RLS2 is composed of two independent criteria such that a bias
is declared it either criterion is satisfied. One of the two bias detectors in RLS2 is . *

fixed threshold detection applied to S(k), ie., Eq. 73. The second bias detector in
RI.S2 is as follows:

If . (0 4 n) • (0 -+ n + I) > 0, n . . (N )
(74)

Then terminate current segment at k 0
,,.

ilk) p'

t

(k ko )

N

Figure 5 Application of Eqs. 70 and 71 to Fig. 3a. The polyline shown in Fig.
3a has been translated such that the end of the first line segment is at the start-
ing point of the second line segment.

24
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In words, bias is detected as a sequence of N values of -y(k) all having the same S
sign, where N (like E in Eq. 73) is a threshold parameter. The idea behind Eq. 74
is that the innovation sequence should be spectrally white, and therefore subject to
frequent sign changes, only so long as the one-segment waveform model (Eq. 52) %

is valid. A test similar in spirit to Eq. 74 was discussed by Pavlidis (Ref. 7, p. 288,"%
Fig. 12.5).

Our discussion of the performance of the RLSI and RLS2 polyline algorithms
is deferred until Section 6, where their performances are compared to those of a
number of other methods. %,.

4.3 REFORMULATED STATE EQUATIONS

In this section we slightly recast our one-parameter regression results into a form
suitable for use with the general GLR formalism presented in Section 2.

From Eq. 46,

P(k) = cov[x(k)] = E [ • ysi] - E v sl cov ) . (75)

However, from Eq. 51a,

covy] Ely sl = 0, (76)

and, from Eq. 64,

6a 2 edl

covts()l : PJJ : j. .( + 1)- (2 + I )

From Eqs. 75 and 76,,-

P(k) = P, (j) 0 . (77)

From Eqs. 46 and 56, we simplify notation by writing

% (i(k + j) .'(njko + j) (78) 5-: d(k j 9=( (j)) ".,"

independent of n.
From Eqs. 12, 49, 77, and 78, .,€"

K(k) = P,(j - I) • • • V (k)

or %

K (k) U j P,(j- I)/ V(k)l 1 q (79)"" '
(10)
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From Eqs. 79 and 12'

h (A) A, (i) • (80)

w'here K,(I) is giken b\ IEq. 62.

5.01 (GIR POILIINE ALGO;IRITHtMS "

5.1 St'.IMARI ()F, IPREI'S RI.'L,"S.. '

III t h , section \%c gallit IOl.tL'rge t or co l m'cieLl rclcrc 'ce the various prL .iouly
deriked qulhatile, nleeted to paiticulati/. thle iettL'ral (11 R lorinalisin to the poly-
lite appro ,,im atioil problem .

(A, v(J)1  (46) "
.\(k, 4 i ( i:/}

+ A I,k) ( (47)

HA, + I t 1 (49)

k/( , + 0 (4 A,, ) - 1 ( 50)

P(A ) p ( o o (717)

+ (/162) 1

t. I 2i 1 WA e

(~..I- '-4
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6oP, (j) =(64) *, €

j (j + I) (2i + 1)

We recall that, throughout the above equations,

j k - ,

r-0 -,. 
(40)

From Eqs. 16-18 and 47 we have

5.2 THE AUXILIARY VARIABIE

From Eqs. 49 and 80,

K(k) • H(k) = K, (j) 0 . (82) .

It then follows from Eqs. 81 and 82 that the difference equation for the auxiliary
variable, Eq. 25, presently simplifies to

0(k, + ° K (j-) . (k, + j -1;0) (83)

With the definition

( (j;r) 012 (j;r))0(k 1, + j~k, + r) = (. (~) O,(~) 8)

it follows from Eq. 83 that

On (j) = On (j - I) (85a)

0 12 (J) = 0 , (j - I) (85b)

0, - • .(,,J- 1) + [I -j. K,(j)] 0, (j - I) (86a)

0,2(j) -K, -j) 0),, (J- I) + II - j. K,(j) 1. O,,(j - I), (86b)

where for conciseness we temporarily suppress the second index (r) in the various
0,,,. We find from Eqs. 27 and 85 that

I , (87a)

Oij; r) 0 . (87b) %

and then from Eqs. 86 and 87 that

02 ,(j;r) - (j) + [I - j , (.,)l ():t ( 1 ; - Ir) . (88a) i-,V
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0-,(j;r) = [I - j A. (./1 0 . ( J- 1;r) . (88b) S

The solutions of Eqs. 88, with initial conditions given by Eq. 27, are developed
in Appendix C as "-"

3[r(r + I) - j(j + 1) I8-

Sj(j + 1) (2j + I) (

r(r + I) (2r + 1) (8b0-l- =j-)(j- - (89b)
().(j~) -j(j + 1) (2i + I)

Equations 87 and 89 proxide the desired closed forms for the elements of' 0.

5.3 JUMP SIGNATURES

From Eqs. 24, 81, 82, and 89, we obtain

f", (j;r) (j;r) 1 0 0 0)
F: (j;r) F,,(jr) -=Y K,(n) • 1z 3_ nj

(90) *A.

K, (n) • (n;r) • 0

From Eqs. 62 and 89b,

6n ,,
K, (n) • 0., (n;r) ( I ) (2 + 1) 91)

From Eqs. 90 and 91, , ?

f'-1 (j~r) = t1_, (jr) ( 0(92) I

and

6 6n" In 1,2 (93)
-F,,,((j;r) ( + I) __ + )

I

Hovever, since

n = 2 "j ( j  +  1),(94a) - .'2

t . (j + I) (2/ + I) (94b)

and °

./(n) L /(n) 0 .(n) , (94,01
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it follows from Eqs. 92-94 that

F,2 (j;r) = 0(95b)

3
F1 =iUi + 1) (2] + I) [1 + 1) -r(r - 1) ,(95c)

F 12(r Jl+1)2+ U(j + 1) (2j + 1) -r(r -1) (2r -1)] (95d)

From Eqs. 23, 49, and 8 1, it can be shown that

G, (j;r) = I - j /F1 (j - ;r) ,(96a)

G2 (j;r) = j - 11 F- (j - ;r)] (96b)

It follows from Eqs. 95 and 96 that

3r(r -1) (j/-I1) (j + 1)
G, (j;r) = C-1)(] 1) '(97a)

G2 C~r) r(r -1) (2r -I 9b
(j - 1) (2j -I1

Equations 95 and 97 are the desired closed forms for the elements of F and G,
applicable when j 2! r, F and G are identically zero when]j < r (cf. Eq. 22).

5.4 STATE ESTIMATE AND INNOVATION JUMP RESPONSES

As noted in connection with Eqs. 20 and 21, the state estimate and innovation
developed by the Kalman filter can be decomposed as

.5' (k) = fc (k) + .x( C;r) ,(98a)

()= -el (k) + 'VjC;r) (98b)

where we have defined

-Cl ;r) F(k;O) , (99a)

-Y2 (j;r) G (k;O) v.(99b)

5'We refer to i2 and -y2 as the state estimate jump response and innovation jUmnp
response, respectively.

We obtain from Eqs. 99, 9.5, 97, 78, and 48, for the state estimate jump response,

(jl r) [Cl + I) - r] ( (2] + I) + r] 109 2Clj;r) =~ 1(+ 1) (2] + 1) j 10
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and for the innovation jump response,

a r(j-_ r2 )
y2(J;r) = (-) (2-) j r (101)

The jump responses are related by the equation

3"2 (j;r) = z2 (j) - i, (j;r)
(102)

= • (j - r) - J -- (J - l;r) (102)

The asysmptotic behavior of -y, is derived from Eq. 101 as

limr_ -(j;r) = a r/2 , (103)

lim -T2(j;r) =a (j- r). (104)

To verify the correctness of Eq. 101, we operated on a two-segment polyline (Fig.
6a) with our recursive regression algorithm, Eqs. 60 and 61. As shown in Fig. 6b,
the difference between our closed-form expression for 7Y2, Eq. 101, and the recur- .
sively developed innovation, Eq. 61, is imperceptible on the scale of the figure.

Equation 101 indicates that, in general,
-U

sgn(-Y2 ) = sgn(a) , (105) __

ign of -y2 is the same as the sign of a. In Fig. 7 we provide an example
negative a. The dashed lines on Figs. 6b and 7b are the asymptotes given by
. 103 and 104. , r

Cit - numerical experience, McAulay and Denlinger' have assumed

Y2 (/;r) = . (j - r)' , (106)

with K an unspecified constant, independent of j ind r. (We have cast McAulay
and Denlinger's Eq. 19 into our notation to facilitate comparison with our Eq. 101.) %
We have not explored the conditions under which McAulay and Denlinger's ap-
proximation for -,2 will provide similar results to our exact expression, Eq. 101.

5.5 INVERSE COVARIANCE OF INNOVATION ESTIMATE

In this section we obtain closed-form expressions for the elements of the inverse
covariance of ,P(k), C(k;O), originally defined in Eq. 30. ' P',

With the definitions •

C(k,, + j;k,, + r) C,(j;r) C ,(j;r) (107)C, (j;r) Cj;r)) r.e,

and

G(k, ± j;k, + r) G, (j;r) (108)
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Figure 6 Numerical experiment validating the closed-form expression for inno-
vation jump response, Eq. 101. (a) Two-segment polyline with parameters (a0 ,cr)
= (0.1,0.8,250) (cf. Fig. 3a). (b) Innovation jump response (solid line). The differ-

ence between the analytical expression, Eq. 101, and the innovation generated
by recursive regression, Eq. 61, is imperceptible on the scale of the plot.

and with scalar V(k) given by Eq. 63, it follows from Eq. 30 that

C , (j;r) = ] G 2 (n ;r) / YV,,(n ) ,(109a) , , -

C (j;r) = ] G, (n;r) G. (n;r)/V, (n) , (109b)
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Figure 7 Numerical experiment validating the closed-form expression for inno-
vation jump response, Eq. 101. (a) Two-segment polyline with parameters (a0,c,r)
= (1.5,- 1.75,100) (cf. Fig. 3a). (b) Innovation jump reponse (solid line). The differ-
ence between the analytical expression, Eq. 101, and the innovation generated
by recursive regression, Eq. 61, is imperceptible on the scale of the plot.

C, (j;r) = G O (n;r)/V, (n) (109c)

Substituting Eqs. 97 for G, and G, and Eq. 63 for V ,, we find that Eqs. 109 can
be put into the following form:

a . C,(j;r) 3s, - {12r"(r- 1)2 + 6r(r- I) + I] .s. + s, ,(llOa)
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2 C 2 (j;r) = (2r- 1) s, - r(r - 1) (2r - 1)• , (IlOb) •
O
2 1)

2  C3 (j;r) = - (2r- 1)2 [s, - 4r2 (r - 1)2 s] , (llOc)

where the quantities € are given bv

s, (j;r) r2(r- 1)
2  r 11(n 2 

- 1)

r2 (r - 1)2(2j + 1)
- r(r - 1) (2r - 1) -, (Ila)2 2j(j + 1)

I

s,(j;r) / l/(4n2 - I) S
n~r j _r-l

2j-1 2r-1 ' (lPb)i

s3 (j;r) F, n2/(4n 2 - 1)
n=r

. • (j - r + ) + s 2 (J;r) . (IlIc)
4

Equations 110 and 111 provide the desired closed forms for the elements of C(k;O).
Although C(k;6) can, in principle, be computed off line and stored, it is actually S
not necessary to do this, as we will show in Section 5.7.

5.6 THE FILTERED INNOVATION

In this section we provide simple recursive filters for developing the elements of
d(k;O), the filtered innovation, originally defined in Eq. 29.

With the definition

d(~r) %
d(ko + j;ko + r) - d(jr)] (112) .

(d2 (j;r) ',

we find from Eqs. 29, 63, and 108 that

I V'

a d1 (j;r) = -y(k, + n) [a2 G,(n;r)/Vo(n)]

".+(113)

a2 a d2(j;r) = y(k, + n) [a2 - G, (n;r)/V, (n)]

Substituting Eqs. 97 for G, and G, and Eq. 63 for V. in Eq. 113, we obtain 'N

a di (j;r) = y(k, + n) A(n;r)

,v (114)
a
2 • d,(j;r) = -y(ko + n) • B(n;r)
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where

A(n;r) - 3r(r I) - (n2 - 1)

(n + 1) (2n + 1) (115)

r(r - 1) (2r - 1)B(n;r) =
(n + 1) (2n + I) 9

With the definitions

D 1 (j;i) a• d,(j;j - i + ) 0.1%

(116)
D, (j;i) 2 • d, (;j- i+1)

it follows from Eq. 114 that

D, (j;i) D (j - 1;i- 1) + A(J;j - i + I) -y (k0 + j)
(117) ,

D, (j;i) = D, - 1;i - ) + B(j;j - i+ I) -y(k0  ) j)

Equations 117 are the desired recursion relations for generating the filtered inno-
vation sequences d, and d2 . Equations 117 arc used as follows. When a new mea-
surement is received at time j, the one-parameter regression generates via Eq. 61
a new innovation value, -y(k0 + j). Our interest is in obtaining the values of d, (;r)
and d,(j;r) for the M "most recent" values of r, where, to make our example con-
crete, we select M = 20 (cf. Fig. 2b). Thus, our interest is in obtaining d, (i;r) and
d (j;r) for r = j, (j - 1). (i - 19). With Eq. 116, we formulate our problem as

Given {DIU- l;i) , i = 1,2. 201 and -(k + J)
(118)

Calculate ID, (j;i) ,i = 1,2. 201

For i = 1, we obtain from Eq. 117 "

D, (j;l) = D, (j - l;0) + A(j;j) -'(k + j) . (119) ,

From Eq. 116, •

D, (j - 1;0) = a2 • d,(U - l;j) , (120) 1

and from Eqs. 22 and 29 "'S

d,U;r) = 0, j < r

so that

D, (j - l;0) 0 . (121)

.,:.
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The solution to our problem, Eq. 118, follows from Eqs. 117. 119, and 121:

DI (j;l) = A(j;j) •y(k, H j) 1,

DI j;2) = A(j;j- 1) -y(k0 + j) + D (j - 1;1)
(122)

D,(j;3) = A(j;j -2) -y(k o + j) + DI (j - 1;2)

DI (j;20) = A(j;j - 19) • y(ko + j) + D I( - 1;19)

The solution for D 2 is obtained by making the replacements

D 2 -D 11

B-A

in Eq. 122.
Although the coefficients A(n;r) and B(n;r) given by Eq. 115 could in principle p

be calculated off line, we chose in our implementation of the GLR algorithm to
alleviate storage requirements (at some cost in execution speed) by calculating the
coefficients as "

A (n;r) = Ra (r) N1, (n) - Na (n)
(123)

B(n;r) = Rb (r) • Nb (n)

The vectors R., Na, Rh, and N, were calculated off line and made available to

the algorithm, where

R.(r) 3r(r- 1) , (124a)

N n
( n )  2n + 1' (124b)

R, (r) r(r - 1) (2r- 1) , (124c)

= (n + 1) (2n + 1) (124d)

In our GLR implementation we calculated 200 values of each of the four vectors
defined in Eq. 124, for a total of 800 stored coefficients. Calculating the complete
set of coefficients A(n;r) and B(n;r) off line, rather than computing them as needed
via Eq. 123, would have required storing 2 x 200 x 200 = 80,000 coefficients.

5.7 GENERALIZED LIKELIHOOD RATIO

[' From Eqs. 37b, 50, and 112,
b(k o + j;ko + r) = d, (j;r) - r. d,(j;r) . (125)

355
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From Eqs. 37a, 50, and 107,

a(k, + j;k,, -- r) = r2 C, (./;r) - 2r . C, (j;r) + C, (j;r) . (126)

The likelihood ratio is then obtained from Eq. 36 as 1,4.

f'(k;O) = b 2 (k;O)/a(k;O) . (36)

At every time increment (i.e., when k increases by unity), Eq. 36 is used to corn-
pute M = 20 new values of i':

11k;k - i + 1) , i 1,2. 20 .

Recursive relations, Eqs. 117, are used to establish d, which in turn enter into the
numerator of Eq. 36 by means of Eq. 125. The C, coefficients, Eqs. 110, are used
in off-line calculations of a(k;O) via Eq. 126, which in turn enter into the denomina-
tor of Eq. 36.

The GLR algorithm flow of operations is shown in Fig. 2b.

W.
N
2,

6.0 NUMERICAL EXPERIENCE

6.1 INTRODUCTION

In this section we present some numerical results illustrating the effectiveness of _
several polyline algorithms. The algorithms evaluated numerically are listed in Ta-
ble 2, grouped according to speed of execution. "

Performance in all cases was based on approximation of the infrared cloud/sky
waveform shown in Fig. 8a.22,2' The various regions of the waveform (broken
clouds, blue sky, etc.) were identified by eye and labeled manually. However, one
objective of the current work is to facilitate the development of algorithms capable
of automatically segmenting this type of waveform data. An illustrative polyline rep-
resentation of the data is shown in Fig. 8b, as provided by algorithm GLR-M (dis- -
cussed in Section 6.5).

Comparison between generally similar waveforms (e.g., Figs. 8a and 8b) is facili-
tated by the use of numerical measures of similarity, or "error metrics." Our selec-
tion of error metrics (for approximations with a fixed number of knots, i.e., for
fixed data compaction) includes:

22R. A. Steinberg and NI. .1. McHugh, An Error Detection and Smoothing Algorithin fir Infrared
Data, .IHU/API. T(G 1355 (Apr 1986).

'1.. M. Howscr, Wide Area Guidance and Control Program: Investiatton of S'caning IR Seek-
er Performance in Background Clutter, .IHIJ/API. TG 1360 (1)cc 1986).
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Figure 8 (a) Infrared cloud/sky waveform used in testing polyline algorithms.
(b) Polyline approximation composed of 49 segments, generated by algorithm
GLR-M.

* Average error, E0
e Average absolute error, E,
e Root mean square error, E.
e Maximum absolute error, E_,
a Execution speed, T.

All calculations were performed on an IB3M PC AT computer.
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Table 2
Polyline algorithms evaluated numerically.

Algorithm Author/Reference Method

Slow
EMK McLaughlin and E-maximal knots

Zacharski"
DP Dunham" and )ynamic programming

Papakonstantinou .%
GLR Steinberg (Sect. 5) Generalized likelihood ratio -6

Fast -,, C
LSBPT Tomek- Longest segment between

parallel tangents
CIM Williams4 and Cone intersection method

Sklansky and Gonzalezi
HOP-F Pavlidis7  Hop-along algorithm (fast)
HOP-S Pavlidis' Hop-along algorithm (slow)
BAD Wall and Daniellson" Bounded area deviation
RLSI Steinberg (Sect. 4, Eq. 73) Recursive least squares (fast) 5
RLS2 Steinberg (Sect. 4, Eq. 74) Recursive least squares (slow)

6.2 A NOTE ON ERROR METRICS AND PERFORMANCE COMPARISONS

When the infrared camera used to obtain Fig. 8a is operated under closed-cover-

conditions (with the lens cap on), the output waveforms are reduced to zero-mean,
unit-variance Gaussian noise. In fact, all data obtained with this camera, including ,,
Fig. 8a, have an additive Gaussian noise component of one count root mean square. ','
In this section we discuss how additive Gaussian noise of known level affects the
relative usefulness of alternative error metrics.

It is common in the literature to select peak error, E_, as the primary measure
of polyline algorithm performance. Defining K as the number of knots in the ap-
proximation and P as the number of points in the unapproximated digital wave-
form, we obtain ,,

tim E, = 0, (126)

assuming that knot locations are required to coincide with the waveform's sample
values, a requirement commonly imposed by designers of algorithms that minimize
E . At fixed data compaction (i.e., for a fixed value of K), we can use E_ to coin-
pare the goodness of fit provided by alternative algorithms; the algorithms are ranked
according to how close E_ comes to the zero ideal value.

An alternative approach, which we adopt in the present work, is to select E, as
the primary performance metric. Ideal performance is expressed as

E, I , (127)

because the data are known to contain an additive component of zero-mean, unit-
variance Gaussian noise. If, corresponding to approximations A and B, we have S
root mean square fitting errors E.,, and E..,, and if

38
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0 < E2.1 < E. , < I , (128)

we recognize the B approximation as being better than the A approximation; both
approximations are under-smoothing the data and, very likely, using more knots ,,
than are really needed to represent the underlying structure.

6.3 AN EXPERIMENT AT 7:1 DATA COMPACTION

The ten algorithms listed in Table 2 were used to develop 50-knot approxima-
tions to Fig. 8a, corresponding roughly to 7:1 data compaction. The results are sum-
marized in Table 3.

Table 3 I
v', Performance of polyline algorithms in developing 50-knot approximations to an

infrared cloud/sky waveform, Fig. 8a (data compaction = 7:1).

Error

Execution E0 E, E, E_
Algorithm Time (s) Average Avg. Abs. rms Peak

EMK 34.02 -0.81 2.95 3.74 8.80 ,

DP 12.14 -0.36 2.95 3.69 8.10
GLR 1.79 -0.05 2.24 3.00 11.24

LSBPT 0.24 -1.68 4.26 4.87 11.75
CIM 0.35 -0.81 2.95 3.74 8.80
HOP-F 0.24 0.23 2.61 3.59 11.62

HOP-S 0.54 0.13 2.60 3.57 10.70
BAD 0.17 - 1.82 4.21 4.95 13.77
RLSI 0.14 -0.01 2.76 3.40 9.26
RLS2 0.21 -0.01 2.76 3.40 9.26

Inspection of Table 3 shows that DP had the smallest peak error, while GLR had

the smallest root mean square and average absolute errors. RLS and GLR had, by

far, the smallest average error. The two fastest methods were RLS1 and BAD, with
RLS enjoying, relative to BAD, a small advantage in speed and large advantages

.e. in every measure of fitting accuracy.
Although McLaughlin and Zacharski claim that EMK "...allows.. one to optimally

approximate the data..., 9 it appears from Table 3 that this is not so. Although
"" EMK yields excellent results, its approximation is generally very similar to that provid-

ed by CIM, while CIM executes about 100 times faster. "
The slow and fast variants of RLS were found in this case to yield the same ap- ,-,

% proximation, although in our later tests this was found not to be generally true.
Tomek's algorithm, LSBPT, is of academic and historical interest as perhaps the

first linear-time polyline algorithm derived from geometrical reasoning (as contrast-
ed with, for example, the statistical and mathematical frameworks of least-squares 1.
and spline approximations). While LSBPT is very similar in structure to the subse-
quently developed CIM, Table 3 indicates that LSBPT executes about 500bo faster
than CIM but provides significantly poorer fitting accuracy. RI.S is both faster and

more accurate than LSBPT.
I note that Tomek2 describes both a fast and a slow variant of his algorithm.

Both of Tomek's algorithms were implemented, and it was found that the slo\\ al-
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gorithm offered almost no improvement in fitting accuracy. I consequently report
only the results obtained with Tomek's fast algorithm. ,,.

The fast variant of Pavlidis's hop-along algorithm, HOP-F, offers significantly
faster speed than HOP-S, for a relatively small penalty in fitting accuracy.

Our preliminary assessment based on Table 3 is as follows:

I. DP, while very slow, provides smallest peak error, Eo.
2. GLR, provides the smallest root mean square error, E, and average abso-

lute error, E,.
3. RLS provides very large improvements in speed relative to GLR and DP, at

relatively low cost in degraded fitting accuracy.

6.4 A CLOSER LOOK AT THE GLR APPROXIMATION

The statistics given in Table 3 are useful as an overall performance summary.
In this section we present additional ways of examining performance intended to
provide a more detailed and intuitively meaningful picture of algorithm strengths
and weaknesses. We confine the discussion in this section to GLR; similar details 'd
on the performance of several other algorithms are provided in Appendix D.

In Fig. 9a we show the original waveform with the polyline knots superimposed
(each knot is denoted with a + symbol). While the polyline approximation actually V

comprises a set of line segments connecting the knots, we have elected not to show - .
the line segments in order to avoid excess detail in the figure. In Fig. 9b we show %
the pointwise difference between the original waveform and the polyline approxi-
mation, i.e., the pointwise fitting error. The histogram of the pointwise error (Fig.
9c) is nearly Gaussian, with several outliers in one of the tails of the density.

Since it is common in the literature to see emphasis on the E_ metric, we present-
ly consider the performance of GLR where its peak error is worst, viz., in the neigh-
borhoods identified in Fig. 9 by the circled numbers 1-3. These peak-error
neighborhoods are expanded (zoomed) in Fig. 10; Table 4 presents the data from
Fig. 10 in tabular form.

Table4
Data in the neighborhoods of the three points of worst fit for the GLR algorithm

(data are plotted in Fig. 10).

k z(k) Knot -(k) (Z - 14) Max. Error

22 1336 1335.91 0.09 5
23 1296 1298.60 - 2.60 .. *-.-

24 1263 8 1261.30 1.70 , "
25 1254 9 1254.0() 0.00
26 1267 1278.24 -11.24 -1
27 1293 1302.47 - 9.47
28 1325 1326.71 - 1.71

29 1355 1350.95 4.05
30 1379 10 1375.18 3.82

275 1106 1108.48 2.48
276 I115 35 1111.64 3.36

277 1128 1131.05 3.05
278 1152 36 1150.47 1.53
279 12) 1211.18 -11.18 -2
280 1269 1271.89 2.89

40

'I,

-,. "',,?r"r"" ,,".", , ,, ,, " " " " e- " '' . . . • , . -p, . ,., ,, , ., , ' ,.. - , .,



THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAURELMARYLAND

Table 4 (Continued)
Data in the neighborhoods of the three points of worst fit for the GLR algorithm

(data are plotted in Fig. 10).

k Z(k) Knot W(k) ( - 4) Max. Frror

281 1340 1332.60 7.40
282 1392 37 1393.31 1.31
283 1416 1411.72 4.28

8 1252 1256.10 4.10
9 1257 4 1255.30 1.70

10 1270 1272.92 2.92
11 1283 1290.54 7.54
12 1298 1308.17 -10.17 3
13 1319 1325.79 - 6.79

14 1340 1343.42 3.42
15 1364 1361.04 2.96
16 1384 1378.67 5.33

6.5 A HEURISTIC MODIFICATION TO GLR

Petnaps the most important observation that can be made concerning Fig. 9a is
that GI.R unnecessarily uses a large number of knots to represent the unstructured
blue sky portion of the waveform (120 < k < 230). By representing this benign
portion of the data more efficiently, we can free up additional knots needed to rep-
resent the data more accurately in the highly structured parts of the waveform. This
suggested that we develop a patch to our GL.R routine (i.e., additional code to de-
tect the blue sky region) and implement the RLS2 algorithm rather than GLR in
this region.

We observe from Fig. 9a that the three largest errors are located on steep shoul-
ders, i.e., regions of the waveform where the slope is relatively large. This suggests
the following second ad hoc modification to our GLR algorithm: when the slope
is larger than some threshold value, (,, replace the nominal likelihood threshold
(Fig. 2) by a smaller number K • f, whcrL 0 < K < 1, i.e.,

%

-
(129)

where .,(j) is the current estimate of line slope, and j (k - k,,) is the dista:;,:e
from the previous knot. An appropriate value for (, may be developed from the
data in Table 4.

We refer to the resulting modified ve-sion of' GIR, which incorporates both ad
hoc patches, as GLR-M. The 50-knot approximation obtained with GLR-M is shown
in Fig. I1, analogous to our earlier Fig. 9 results for GI.R. Comparing Fig. I la
with Fig. 9a we note that the blue sky region is represented more efficiently b., GLR-
M; comparing Fig. I Ic with Fig. 9c swe see that the fitting error histogram is more
compact for GI.R-M than for (jIR.
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I1 Figure 9 GLR polyline algorithm evaluation. (a) IR cloud waveform (solid curve,
z) and polyline knots ( +). (b) Pointwise difference between z and polyline approx-

t- l~mation. (c) Histogram of (b) with fitted Gaussian density (circles and dashed curve). ,.

In Table 5 we compare GLR-M to DP and to our original GLR routine. Com-
pared with the other algorithms, GLR-M displays significantly superior performance
with respect to E, and E,, while simultaneously achieving a value of E. just 407o
worse than the dynamic programming solution.

The patch applied to GLR was tuned specifically to achieve a 50-knot approxi-
mation; i.e., GLR-M is not sufficiently robust to be directly comparable to the oth-
er algorithms (which is why GLR-M results were not included in Table 3).
Nonetheless, our experiments with GLR-M suggest that, with additional effort, it
may be possible to achieve excellent fitting simultaneously in all error metrics. W

J
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Figure 10 Data in the neighborhoods of the three points of worst fit for the GLR
algorithm. Figure 9a shows these neighborhoods within their larger context; Ta-
ble 4 provides these data in tabular form. (a) Neighborhood of peak error point.
(b) Neighborhood of second worst point. (c) Neighborhood of third worst point.

Table 5
Performance of three polyline algorithms. Results for DP and GLR as for Table

3; GLR-M is a heuristically modified version of GLR.

"-- Error

Execution E. E, E, E,
Algorithm Time (s) Average Avg. Abs. rms Peak

DP 12.14 -0.36 2.95 3.69 8.10
GLR 1.79 -0.05 2.24 3.00 11.24
GLR-M 1.70 0.13 2.17 2.77 8.45
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Figures GLR-M polyline algorithm evaluation. (a) IR cloud waveform (solid curve)
and polyline knots (o). (b) Pointwise fitting error. (c) Histogram of (b) with fitted
Gaussian density (circles and dashed curve).%

6.6 ROBUSTNESS WITH RESPECT TO DATA COMPACTION

All results reported in Sections 6.3 through 6.5 have been for 50-knot approxi-%

mations to Fig. 8a, corresponding to a fixed =7:1 data compaction. In this section
we present results of algorithm performance over a range of data compactions, viz.,
approximations of 40-70 knots. Our approach is to display the variation of each
performance metric (En, El, E,, E., and T) with the number of knots, for each
algorithm.

4i



THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUREL. MARYLAND ' 'p

Of the various algorithms describeu III the htcidiuic, CIM pr,;vides pcrhiaps the
best combination of good fitting accuracy, fast execution speed, robuitness, and
ease of use. For these reasons, the performances of the other algorithms are in ev-
ery case compared with that of the CIM baseline.

Results presented in this section compare GLR with CIM (Fig. 12) and RLSI with,
CIM (Fig. 13). Analogous figures for the other algorithms are provided in Appen-
dix E. In all cases, the dashed curves are for CIM.

The plots in Figs. 12f and 13f refer to the threshold parameter E as it appears
in Eq. 73 for RLSI and in Fig. 2b for GLR. The parameter E for CIM is simply
the peak error:

E , for GLR . (130)

Thus, as previously noted by Dunham,' CIM has an advantage in ease of use rela-
tive to algorithms (such as RLS and GLR) with c parameters that do not directly
control an error metric.

(a) 2.4 1 1 1 1 1 1 (d) 4, 5  1 1 1 1 1 1

2 4
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Figure 12 Performance statistics as functions of data compaction for GLR (so)-
id curves) and CIM (dashed curves).
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7.0 CONCLUSIONS

The extraction of shape information from waveforms can be facilitated by
preprocessing the waveform with a polyline algorithm, i.e., an algorithm that ap-
proximates the waveform as a concatenated sequence of straight-line segments. Poly-
line approximation accomplishes smoothing of snmall-amplitude structure while leaving
large-amplitude structure well defined and unsmoothed. Moreover, the polyline rep-
resentation generally provides a large degree of data compaction relative to the original
time series.

The new polyline approximation algorithms developed in this report are of two
types, which we refer to as recursive least squares (RLS) and generalized likelihood
ratio (GLR) algorithms. The performance of these algorithms is assessed in Section
6 by comparison with a number of alternative approaches. The Cone Intersection
Method (CIM) algorithm discovered independently by Williams4 and by Sklansky
and Gonzalez 5 is used as a benchmark against which to compare the performance
of other methods, including our own RLS and GLR algorithms.

The relative performance of the various algorithms turns out to be somewhat de-
pendent on the choice of error metric. In particular, the original algorithms presented
here are considerably superior to prior algorithms, with respect to bias and root
mean square error. I

Our RLS algorithms derived in Section 4 are based on a simple Kalman filter.
Our numerical experience is that, relative to the best of the prior approaches, RLS
has (Figs. 13 and E-6)

* Faster execution speed
* Slightly worse peak error

Slightly superior root mean square error -.F

RLS enjoys a significant speed advantage relative to the other algorithms we have
evaluated.

Our GLR polyline algorithm is derived in Section 5 as an application of a for-
malism originally provided by Willsky and Jones. 17 Some characteristics of GLR, r
relative to the best of the prior approaches, are (Fig. 12) v

* Worse peak absolute error %.
e Superior root mean square error

% .

Although most of our results indicate a trade-off between root mean square fitting ,
error (E2 ) and peak error (E_ ), our numerical experiments with a currently non-
robust GLR variant indicate that it may be possible to obtain excellent fitting in
all metrics simultaneously. •

Conclusions regarding other approaches are as follows:

I. The method of E-maximal knots ' yields nearly identical fitting performance
to that of CIM but is about 100 times slower in execution (Fig. E-I in Appen-
dix E).

2. The dynamic programming method of Refs. 10 and I I provides a small ad- '.
vantage in E. and nearly equal E, relative to CIM but is about 30 times slow-
er in execution (Fig. E-2).

3. Tomek's algorithm2 executes about 50% faster than CIM but provides sub-
stantially worse fitting accuracy both in E, and in E. (Fig. E-3).

4. Pavlidis's hop-along algorithm executes about 50% slower than CIM, is % e
slightly superior in E,, and significantly worse in E (Fig. E-4).

5. The bounded-area-deviation algorithm'' is only slightly slower than RLSI;
however, it provides significantly worse values of E, and E.' than RLSI (Figs.
E-5 and E-7).
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Appendix A
WILLSKY AND JONES GLR FORMALISM N

A.1 EXPLOITING LINEARITY

Willsky and Jones ' 7 provide without derivation a formalism they call the Gener-
alized Likelihood Ratio (GLR) method for detecting and characterizing discontinu-
ous (jump) inputs to linear systems. The elements of the GLR method are outlined
in Section 2.3 and, for completeness, are derived here.

We assume that the jump detection problem is formulated as per Section 2.1.
From Eq. 1,

x(k) = 1D(k,k - 1) • x(k - 1) + F(k - 1) • w(k - 1) + 68 v , O
(A-1)

from which it is obvious that x(k) undergoes a jump when k = 9.
As discussed in connection with Eqs. 15, and analogous to Eq. 98, we can write

x(k) = x,(k) + x2(k) , (A-2)

where x, (k) is the value that x(k) would take in the absence of a jump (P = 0 or
k < 0), and x2(k) is the state perturbation in response to a jump.

As first noted by McAulay and Denlinger, 1 the linearity of the system equations
allows their solution in response to a jump excitation to be written as the sum of
a jump-independent stochastic component (x,) and a second component (x2 ) linear-
ly proportional to the jump amplitude. Moreover, with the jump amplitude and
time taken as deterministic (though unknown) quantities, the jump-dependent com-
ponent x, is seen to be deterministic.

From Eqs. 1, 2, and A-2,
'

x,(k + I) = Ft(k + l,k)x, (k) + U(k)w(k) (A-3) %

z (k + 1) = H(k + l)xl(k + 1) + v(k + 1) (A-4)

and

x,(k + I) = b(k + l,k)x2 (k) + 60.k, I P (A-5)

zz(k + 1) = H(k + l)x-(k + I) . (A-6)

Equation A-5 is subject to the initial conditions

x, (0- 1) =0. (A-7)

A.2 SOLUTION FOR x,(k) 

Setting first k 0 - I and then k > 0 in Eq. A-5, and using Eq. A-7, we obtain

X, (A-)

and (

x,(k + I) = 4(k + ,k)x-(k) , k 0 . (A-9)

'.
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With the definition

x,(M) D (k, 0) v,(A- 1)

it follows from Eqs. A-7 to A-10 that C

FD(k,O) 0 , k < 0 (A-il1)

4(0,6 = I(A- 12)

'F(k + 1,0) = II(k + l,k) 4P(k,O) ,(A- 13)

which appeared in the text previously as Eqs. 16 to 18 (Section 2.3).
Equations A-12 and A-13 can be solved by induction to obtain

IF(k + 1,0) A1 'F(n + l,n) .(A- 14)

From Eqs. A-6 and A-10,

z 2 (kM H Wk) F(k, 0) v (A- 15)

A.3 JUMP SIGNATURES '

The linearity of the Kalman filter, Eqs. 5-14, allows us to decompose the state
estimate, analogous to Eq. A-2, as

.(kln) = t,(kin) + k2(kln) .(A- 16)

From Eqs. 7 to 9 and 13, we have

S(k + Ilk) = FD(k + l,k) , (klk) (A-17)

(k (klk) = i, (klIk - I ) + K (k) 72 (k) (A- 18)

72(k z, (k) -H(k)X ,(klk 1 ) .(A- 19)

From Eqs. A-IS and A-19,

y (k) H(k) [ 4,(k,0)v t,~ (klk 1 )]

which, with Eq. A-17, becomes

-y2(k) = HMk . 1F(k,0)i' 4(k,k - i,~(k -Ilk -1)] .(A-20)

With the definitions

.t,(kjIk) F-(k;O) .p(A-21)

and

-2k) G(k;6) v (A-22)
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Eq. A-20 becomes a

G(k;0) = H(k) •[4(k,O) - 4(kk - J)F(k - l;0)1 . (A-23)

Equation A-23 appeared previously as Eq. 23 in the text.

It can be shown from Eqs. A-17, A-18, and A-20 that ..1

.2z(klk) = [I - K(k)H(k)14(kk - 1)R2 (k - Ilk - 1)

+ K(k)H(k)4'(kO)p (A-24) I.

This can be written as

F(k;O) = A(k)F(k - 1;0) + B(k) , (A-25)

where we define

F-(k;0) • v R 2 (klk) ,(A-26) ..

A(k) [I - K(k)H(k)fb(kk - 1) , (A-27)

E ~ B(k) =-K(k)H(k)-t(k,O) .(A-28)

Defining the auxiliary variable 0(k;6) as the homogeneous solution of Eq. A-25,
i.e.,

e(k;O) = A(k)O(k - 1;0) (A-29)

with

O(0;0) = I (A-30) ,,

it can be shown by back substitution into Eq. A-24 that the solution of Eq. A-25
is given by

k%

F(k;O) = O(k;n)B(n). (A-31)

Equations A-27 and A-29 lead directly to Eq. 25 in the text, and Eqs. A-28 and ,
A-31 lead to Eq. 24.

From Eqs. A-24 and A-26,

F(k;O) = K(k)(H(k)[4(k,O) - b(k,k - l)F(k -1;0)1

+ 4)(k,k - l)F(k - 1;0) , S

which, with Eq. A-23, may be written as

F(k;O) = K(k)G(k;O) + 4(k,k - l)F(k - 1;0) . (A-32) '

Equation A-32 appears as Eq. 49 in Ref. 17. 5'

0
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A.4 THE LIKELIHOOD RATIO

Jump detection is formulated as a hypothesis testing problem as follows: '
H: Hypothesis that no jump has occurred, i.e.,thatk < 0 (A-3

(A-33)
H,: Hypothesis that a jump has occurred, i.e., that k > 0

and, equivalently,

(A-34)

H,: -y(k) = y,(k) + G(k;0) v , -

where ", (k) is zero mean and spectrally white.
Maximum likelihood estimates for 0 and v, denoted 0 and k, are obtained im-

plicitly as the values of 0 and P that maximize the joint conditional density:

p[-y(l ) -y(k) H, ,O, .

The choice between H, and H, is based on the criterion

> 7-H, (A-35)

where 7 is a threshold ultimately relatable to probabilities of false detection and missed
detection, and the generalized likelihood ratio A(k,0) is defined as N'.7

A(k,0) p[,l). (k)H,, ](A-36)
p[-y(l) ..... .(k)H 0](

Since the conditional densities in Eq. A-36 are both Gaussian, we can simplify the
implementation of Eq. A-35 by taking the logarithm of both sides, to obtain

i', = 2 ln[A(k,O)J = C' - V. , (A-37) "1

where ' 
-

-Y .t .l '•% (A-38)- .

and

f, - t,') / , , _ G,. o) . (A-39)

For conciseness of notation, subscripts and arguments are used interchangeably in
Eqs. A-38, A-39, and the rest of this section. For example, G,., = G(i;O). Also,
we recall that V,, in Eqs. A-38 and A-39 is the covariance of -y (cf. Eq. II in the
text), while G,, I, in Eq. A-39 is the mean value of y, subject to hypothesis H, .
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Equation A-39 can be expanded to obtain S

- , -.T y,," + ( T 
1  G,,

n=O n

(A-40)

- (_T VV'.T,, . T

n

From Eqs. A-37, A-38, and A-40,

(A-41) "

+ T T V-; -+ nGO " g " •"' .

With the definitions

dk, G V-, .' (A-42)

and %i- '

and noting that
dT T

dk.0  • . , (A-44)

we write Eq. A-41 as

lk~~o - ur  ~ " + 2d, " . (A-45) , -'

Equations A-42 and A-43 were given previously in the text as Eqs. 29 and 30,
respectively. ""All

Maximum likelihood estimates for v and 0, denoted P and 6, are obtained by set- ;.. -.
ting equal to zero the appropriate partial derivative of Eq. A-45, as follows. We
note that

V,(VT v) 
2Cko v (A-46)

and

v = k. (A-47) -A.

From Eqs. A-45 to A-47,

V, (fA,) = 2Ck " v + 2dk, • (A-48)
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However,

V () O) = 0. (A-49)

From Eqs. A-48 and A-49,

Pk = Cj "dk (A-50)

which appeared in the text as Eq. 28.
From Eqs. A-45 and A-50,

T -I -I T ItNeO= -d (C- ) C C ' d + 2d C-' d.

However, since

C =CT

and '

C = (C'1),.
,.

we obtain W

f(k;O) = dT(k;O) C-1(k;O) d(k;O) (A-51)

which appeared in the text as Eq. 32.

8'-t 14 '..

Fromft Eq. 2'an 1'

f .

Appendix B
ONE-PARAMETER RECURSIVE REGRESSION

I
In this Appendix we derive our one-parameter recursive regression algorithm, Eqs. ,e. p ,

8'-14'.'.- 
./=

From Eqs. 12' and 14', .

P,(j) = [I -j2 P'(j - I)/V(k)] P,] 1) . (B-I) -

Substituting Eq. I' into Eq. B-1, where

V(k) =j, • P,(j - 1) + , (l1') : -,

we obtain 
S..,

P(J) = jPP,(j -+ 'P1 ( - 1) . (B-2) -
ljp(1- 1) + ft.
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Defining

P(j) P(j)/la2  (B-3) %

it follows from Eq. B-2 that

p(j) = P(j - ')/[l + j .p(j - 1)],

which, upon inversion, becomes

[l/p(j)] =j2 + [l/p(j- l)] . (B-4)

With the definition

q(j) =- 1/p(j) , (B-5)

Eq. B-4 becomes

q(j) = q(j - ) +j 2 . (B-6)

Substituting the following trial solution into Eq. B-6,

q(j) = a. j 3 + b. j + c.j , (B-7)

we can solve for the unknown coefficients (a,b,c), to obtain

(a,b,c) - - (2,3,1) . (B-8) %
6

From Eqs. B-5, B-7, and B-8, p"p

p(j) = 6/U(j + l)(2j + 1)] . (B-9)

From Eqs. B-9 and B-3,

P,(j) = 6 2/ /U( + 1)(2j + 1)] , (B-10)

which appeared in the text as Eq. 64. From Eqs. B-3 and 11,

V(k) = a . [I + j . p(j _ I) . (B-1) .

Substituting Eq. B-9 into Eq. B-I i, we obtain

[j + 1 2j+ I ,

V(k) j -1 2j - I' (B-12)

which appeared in the text as Eq. 63. From Eqs. B-1O, B-12, and 12', %

K,(j) = 6/l[(j + l)(2j + I)] , (B-13) ."

which appeared in the text as Eq. 62. From Eqs. 8' and 9',
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y(k) z(k) - (j - 1) , (B-14) I

which appeared in the text as Eq. 61.
Equation 60 requires no derivation, having appeared previously as Eq. 13':

9(j) = 9 (j - I) + K, (j) -y(k) . (B-15)

Equations B-15, B-14, B-13, B-12, and B-10, appearing in the text as Eqs. 60-64,
provide the desired one-parameter recursive regression procedure. ..

*1. * a3

Appendix C -. -'
SOLUTION FOR THE AUXILIARY VARIABLE

In this section we derive Eqs. 89 as the solutions of the difference Eqs. 88 subject
to initial conditions given by Eq. 27.

With the definitions

AJ -0 ,1 (j;r) (C-1) r. %

B, -022 (j;r) (C-2)

C, -K,j) = 6/[(j + I)(2j + 1)] , (C-3)

Eqs. 88 are written as

A - (1 -j C,) A - C, (C-4)

B = (1 -j • C,) B,, (C-5) ,.

From Eq. C-3, I

C' (j 1) l(2j - I) .a

(Ij. C1) = -- -)-- 1) (C-6) .
(j + 1)(2j + I)

From Eqs. C-5 and C-6, ..-

(j + l)(2j + I) • B, = j(2j - I) B,., - (2j - I) • B, . (C-7) I

With the definition ', '

D, =- j(2j - ) • B, ,(C-8) :,

Eq. C-7 is written as

j D,, = (j I) D,
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0,1 (r;r) = 0 , (C-20)

Eq. C-19 becomes

0, -(j;r) 3[r(r + 1) - jj + 1)] (C-21)

0," J( + 1)(2j + I) '

which appeared in the text as Eq. 89a.

which has the solution

( - )D constant . (C-9)

From Eqs. C-2, C-8, and C-9,

constant

1 (1 + l)(2j + I) (C-O)

Obtaining the appropriate initial condition from Eq. 27,

022 (r;r) = 1 , (C-11) ,- .

Eq. C-10 becomes

0220;r) r(r + 1)(2r + I) (C,12
j(j + ))(2j + 1) I

which appeared in the text as Eq. 89b.
From Eqs. C-3, C-4, and C-6,

(j + 1)(2j + I) A A, - (j - 1)(2j - I) A - 6 . (C-13)

Defining

E, (j - 1)(2j - I) A,, , (C-14)

Eq. C-13 becomes

(j + 1) E,. j -E 6j . (C-15)

Defining

- E, (C--16)-.

Eq. C-15 becomes

I-', , 1' 6' (C-17) .

We can show by back substitution that the solution of Eq. C-17 is given by •
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F, =a- 3i(j- I) , (C-18) ".

where a is a constant.
From Eqs. C-I, C-14, C-16, and C-18,

a - 3j(j + I)
0, (j;r) = -" + - (C-19)

j (j+ 1) (2j + I)
Obtaining the initial condition from Eq. 27,

W

Appendix D
NUMERICAL EXPERIMENTS AT 7:1 DATA COMPACTION

In Section 6.4 we presented graphs depicting polyline fit, fitting error, and
histogrammed fitting error, for the GLR polyline algorithm. Here we provide results
in an identical format for the following additional algorithms:

EMK 50-knot approximation (Fig. D-l)
CIM 50-knot approximation (Fig. D-l) 
DP 49-knot approximation (Fig. D-2)
LSBPT 50-knot approximation (Fig. D-3) ::.,
I IOP-S 5I-knot approximation (Fig. D-4)
BAD 50-knot approximation (Fig. D-5)
RLSI 50-knot approximation (Fig. D-6)
RLS2 50-knot approximation (Fig. D-6)

Not all algorithms were able to provide exactly a 50-knot approximation; conse-
quently, the actual numbers of knots are given above for the fit shown in the fig- .
ure. This also explains the discrepancy between some of the performance statistics
appearing below the histograms in the figures and the corresponding results in Ta-
ble 3 (in the main text). If a particular algorithm could not obtain the desired 50-knot
approximation, the statistics in Table 3 are an average for fits of 49 and 51 knots.

Fits provided by algorithms EMK and CIM were identical in this instance and
so are provided as a single figure. Similarly, results for RLSI and RLS2 were identi-
cal for the 50-knot case and are therefore represented by a single figure.

References to the literature and definitions of the algorithm acronyms are provided
in Table 2 (in the main text).
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Bin size 1.173 Total counts 371 ?Nh

Minimum -8.800 Average -0.806
Maximum 8.800 Sigma 3.746

Figure D-1 EMK and CIM polyline algorithm evaluations. (a) IR cloud waveform '

(solid curve, z) and polyline knots (o). (b) Pointwise difference between z and poly-
line approximation. (c) Histogram of (b) with fitted Gaussian density (circles and
dashed curve).
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counts 371Minimum -8.193 Average -0.314
Maximum 8.161 Sigma 3.751

Figure D-2 DP polyline algorithm evaluation. (a) IR cloud waveform (solid curve,
z) and polyline knots (o). (b) Pointwise difference between z and polyline approxi- .

mation. (c) Histogram of (b) with fitted Gaussian density (circles and dashed curve).

64

VN- ZN
", '%', ' "'/" " " ' * " "," "-" " " " , ,'" " ' '.' ' • ",' "e " " ' " 

"
,c ,, , ,- ,. 'P



%-_

THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUREL. MARYLAND

N
(a) 1500 I I I I 

1400 

,'8

.> 1300 ,

S1200

110 -

ic) 0 i. I I I I I I I
0 50 100 150 200 250 300 350 400

Azimuth -

( ) 1 2 . 1 l 1 1 1 I I I l I0

0 50 100 150 200 250 300 350 400

Azimuth ~.

3c 757 9 11 13 15

Bin size 1.494 Total counts 371
Minimum 10.667 Average 1.678
Maximum 11.750 Sigma 4.875

Figure D-3 LSBPT polyline algorithm evaluation. (a) IR cloud waveform (solid
curve, z) and polyline knots (o). (b) Pointwise difference between z and polyline
approximation. (c) Histogram of (b) with fitted Gaussian density (circles and dashed
curve).
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Figure D4 HOP-S polyline algorithm evaluation. (a) IR cloud waveform (solid .

curve, z) and polyline knots (o). (b) Pointwise difference between z and polyline
approximation. (c) Histogram of (b) with fitted Gaussian density (circles and dashed
curve).
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Figue D- BADpolyinealgorithm evaluation. (a) IR cloud waveform (solid curve,
z) and polyline knots (o). (b) Pointwise difference between z and polyline approxi-
mation. (c) Histogram of (b) with fitted Gaussian density (circles and dashed curve).
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Figure D-6 RLS1 and RLS2 polyline algorithm evaluation. (a) IR cloud waveform
(solid curve, z) and polyline knots (o). (b) Pointwise difference between z and poly-
line approximation. (c) Histogram of (b) with fitted Gaussian density (circles and
dashed curve).
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Appendix E 0
PERFORMANCE STATISTICS VERSUS DATA COMPACTION

In Section 6.6 we presented curves of performance statistics versus data compac-
tion for the GLR, RLSI, and CIM polyline algorithms. Here we provide results
in an identical format for an additional set of algorithms:

EMK (solid curves) versus CIM (dashed curves) (Fig. E-l)
DP (solid curves) versus CIM (dashed curves) (Fig. E-2)
LSBPT (solid curves) versus CIM (dashed curves) (Fig. E-3) .,.-,,*.
HOP-S (solid curves) versus CIM (dashed curves) (Fig. E-4)
BAD (solid curves) versus CIM (dashed curves) (Fig. E-5)
RLS2 (solid curves) versus CIM (dashed curves) (Fig. E-6) •
RLSI (solid curves) versus RLS2 (dashed curves) (Fig. E-7)

References to the literature and definitions of the algorithm acronyms are provided %
in Table 2 (in the main text).

Of the various algorithms described in the literature, CIM provides perhaps the
best combination of good fitting accuracy, fast execution speed, robustness, and
ease of use. For this reason, the performance of the other algorithms is generally S
compared with that of the CIM baseline. The exception to this is Fig. E-7, where
we compare the two recursive least squares (RLS) algorithms developed from ana-
lytical considerations in Section 4.
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Figure E-1 Performance statistics as functions of data compaction for EMK (solid
curves) and CIM (dashed curves)..
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Figure E-2 Performance statistics as functions of data compaction for DP (sol-
id curves) and CIM (dashed curves).
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