
Naval Research Laboratory o ILC~
Washington. DC 20375.500LE0OP

NML Repeft 9124
Lfl

Design Changes in the Software
Cost-Reducton Project

Cl L. J. CHWURA, A. F. NoRCao, AND T. J. WICINSKI

Hwian-COnysuer haferacdmo Laborahtory
Iitfaton Technology Division

June 30, 1988

DTIC

Approved for pubic relmee; distribution unimted.

SEEC ,T (A , A N7 4 4 IAS 7AJ;"

REPORT DOCUMENTATION PAGE ,

1 a REPO4U I . A EA' I4A ,% W, VA-

UNCLASSIFIED
2a SECURITy (A F (A ' N A,/

T
,-5S 0 A'.. .'

2h DECLASS.FCA',ON EOWNauRA. 'V, SC-EDL Approved for public release; distribution unlimited.

4 PERFORMING ORPA,A'iON RE PORT N"MBFP(S 5 VON 'Onl '1.,4 A. ZA : -' "

NRL Report 9124

6a NAME OF PRPFORM ING OP AN'ZAT ON 16h OFF (E S'VBO
7
a %AM ,E)O . '<I .. , .

Naval Research Lab ora (it applicable
I Code 5530

6(ADDRESS :City State and ZIP Code) 'I, A SDD i 55 Cr, S!aj-1
,

a, Z'P C.,',)

Washington. DC 20375-5000

8a NAME OF L-uND)ING SPONSOR V,,:,S 13F -, - 'IS" 1-c .qEV; m E % I,
ORGANIZAT'O f (if ja able)

9Rc ADDRESS (Cty State and ZIPCode) ,,1 Q .) , , R0 r)- I.. , ~4P'0
-FV NO 0 I. N ,',", NO

61013N Rl947

11 TITLE (incude Securty Classfication,)

Design Changes in the Software Cost-Reduction Project

12 PERSONAL A.TOR(S.

Chmura, L. J., Norcio. A. F., and Wicinski. T. J.
13a -,P OF RP-PORT 3b Ti ME (0OvE Fit) a- ',A') OF RE IQ41 Yca, Vowth [)I,)

lnterim ['.)V 1/80 _" 12/87 1988 June 30 28
16 . PD, EVEN'APv N()Ta' O%

'1 tI?\"CCSA*" (()D, 18 S 9J(' C> V' 4 Conf,,4 e 91 '44(59 -c ,se J : 4 3 , b, bl,. '.sI -J

(,P,), (,P() Software engineering Data analyses
- Data colkction SCR project

9 A IS'QA Continue on, reverse if recessary and iderntify by bh(k nunlb,r

, This report presents analyses of early design changes recorded on change report forms (CRFs) from the Software
Cost-Reduction (SCR) project at the Naval Research Laboratory. SCR engineers are redesigning the operational flight
program for the Navy's A-7E aircraft by using software engineering principles such as information hiding. The two
major goals are to demonstrate the effectiveness of these techniques in developing, for example. easy to change real-time
software and to provide high-quality development goals for other to follow. The first part of this report describes the

SCR development goals for others to follow. The first part of this report describes the SCR development effort and
examines how well it is meeting its goals. Results are presented as time-based trends and are compared to similar data
reported from other projbcts, The second part examines the time-based ratios between SCR change data and personnel
activity and the possible general use of these ratios as indicators of design progress. Two similar ratios are identified
that show promise as indicators of design incompleteness. r

20 D STR'BI''ON AVAILAB:LITY OF ABSTRA(C I ASSTRACT SEE
F

JR I C' AS' , (AIAI)%

0 I.NCLASS.F FD UNtIMITFD CE SAVE AS RP" [)IC Ij5S I UNCLASSIFIED
22. NAE OF RESPONS.B.E NDiVI14'At 122 FFP, '1O% Enrlode Area(}19) .',

L. J. Chmura (202) 767-3249 Code 5533

00 Form 14,3, JUN 86 Prevous ed,t,ons are obsolte . 1 A ,

CONTENTS

INTRODUCTION I

Softw are C ost-Reduction Project I
Softw are Technology Evaluation Project .. I

COLLECTION OF CHANGE DATA ... 3

OVERVIEW OF EARLY SCR CHANGE DATA ... 5

General .. 5
E ase o f C h ang e ... 9

E rro r C a u se s 13
Change Data Related to Personnel Activity Data ... 14

D A T A A N A L Y S E S ... 15

D ate o f O rig in P IR .. 16
D ate o f R eso lu tio n P IR ... 16

RESULTS AND CONCLUSIONS .. 21

ACKNOWLEDGMENTS ... 23

R E F E R E N C E S 2 3

Aoaesion For

DTrC B

unazmmuned

DltftbutIon/

Av ilabbility Codes- --- - i an dl/ or

Dist Speaial

ii

DESIGN CHANGES IN THE SOFTWARE COST-REDUCTION PROJECT

INTRODUCTION

This report presents analywes of early dp-sign changcs proposed and made by 6uotware develop-
,,,, nt engineers working on the Software Cost-Reduction (SCR) project at the Naval Research Labora-
tory (NRL). The remainder of this section is an overview of NRL's SCR project and Software Tech-
nology Evaluation (STE) project. The second section describes the techniques and strategies that
were used in collecting and categorizing the data. The third section is a detailed discussion of the
change and error data. The final two sections contain the analyses of the data and their implications.

Software Cost-Reduction Project

Since 1978 the Naval Research Laboratory, in cooperation with the Naval Weapons Center, has
been redeveloping version 2 of the operational flight program for the A-7E aircraft [1]. Software
engineering techniques such as formal requirements specification [21, information hiding i3], abstract
interfaces [41, and cooperating sequential processes [5] are being used. This research effort is
referred to as the Software Cost-Reduction (SCR) project.

The goals of the project are to demonstrate the feasability of using selected software engineering
techniques in developing complex, real-time software and to provide a model for software design.
The claimed advantage of the selected software engineering techniques is that they facilitate the
development of software that is easy to change and maintain. Reference I provides a thorough over-
view of the SCR project and Ref. 6 is a complete discussion of the project's software requirements.
Reference 7 provides a detailed description of the module design structure. Figure 1 is an example of
a module interface specification (i.e., a design specification) taken from a recent version of the spus..i-
ication for the device interface module 181. Reference 9 describes a standard organization for such
specifications.

The SCR project terminated at the end of 1987 after implementing three subsets of the opera-
tional flight program requirements. The subsets are being evaluated and tested by using ground-based
test facilities.

SCR project data have been colleted in three areas: personnel activity [10], changes to require-
ments [111, and changes to design and code. This report is the first published analysis of SCR design
and code change data.

Software Technology Evaluation Project

The STE project is a separate research project from the SCR project in terms of goals, staffing,
and funding.* The goal of the STE project is to evaluate alternative software development technolo-
gies. A major task of the STE project, therefore, is to provide the basis for an objective evaluation
of the methodology used in the SCR project.

*The project was at one time funded by the DoD STARS Program as Measurement Area Task G-06
Manuscript approved February 2, 1988.

a ,,, ,,dI~l w - . qln m i

CHMURA NORCIO AND WICINSKI

S

t

a

a

3
I 3C *

C zC a
44 - -

-, - - z
-; 0.

3
-j

4,
E-o

'C.0 ~
* C C 7 7

C

S

U

S
'C

- --J
0

S

-v

C

LI~~fJ

C
0z

*0
/ -cC

S

-C
Cr - S ' -~

o
-C 0 -J

C t
2: t

-

SCa ~ (S I4 .1
- -a. //

C(.2
it-, t 0'~

*'
7o .S -A a ~

-4- -r f *j-- ~.* Eq - -

~2

NRL REFGRT 9124

The approach followed in the STE project is to monitor, evaluate, and compare software
development teLhnologics used in different software projects. The monitoring and evaluating
processes consist of goal-directed data collection and analyses techniques t121.

COLLECTION OF CHANGE DATA

From 1980 until early 1985, SCR project engineers reported design and code problems, and
suggested design chan-es They logged their modification activity to baselined (i.e., published and
change-controlled) interlace specifications, pseudo code, and TC-2 codet on Change Report Forms
(CRFs). Figure 2 is an example of a completed CRF. There are two reasons for this procedure.
First, it is required by SCR project configuration management (CM) procedures. Second, such data
are needed by STE researchers for evaluating achievement of SCR project goals. The specific design
of the CRF form is based on a goal-directed data collection approach [13]. In 1985, the use of pap,.r
CRFs was discontinued. Since then, SCR engineers have noted problems and proposed changes by
using a computer-based configuration management tool.

STE researchers have validated primarily those CRFs that have been resolved either by official
acceptance and incorporation into the baselined documentation or by official rejection of the proposed
change. Ideally, validation shotld be a continuing activity that occurs as CRFs are generated and
resolved. Validation of SCR CRFs, however, has tended to be an aperiodic activity in which large
groups of CRFs are validated at one time. The validation cotasists of a checking completeness, accu-
racy, etc. It often includes discussions with persons who submitted the CRFs, authors of affected
documents, and SCR CM personnel. A major validation point concerns what constitutes a design or
code change. A proposed change must be stated by a simple declarative sentence; the change
comprise alterations to one or more baselined interface specifications or implementation documents.
Basically, the view taken is that a change is conceptual. In addition, a change must have a unique
basis-error correction, adaption to outside change, improvement, or other (see Fig. 2). The basis
for this scheme follows the scheme developed by Swanson 114]. Thus, a change that is described in
one CRF similar to a change in a CRF resolved and implemented in earlier baselines (i.e., a change
that requires completion or correction to earlier baselined alterations) is a unique or new change. A
proposed change that is rejected obviously results in no alterations.

This definition of a design or code change can cause problems. Occasionally a CRF is submit-
ted that incorporates more than one change. and different engineers sometimes submit the same
change on different CRFs. For example, it is not unusual for a CRF to describe two conceptual
changes as:

"The last sentence of the description is ambiguous. Replace it with . . .
Note also that the word descriptor is misspelled."

A workable solution used by STE researchers for dealing with these situations is to split submitted
CRFs that incorporate more than one change into individual CRFs so that each CRF describes only
one change. Multiple CRFs that describe identical changes are consolidated into a single CRF. One
result of this policy is that a one-to-one correspondence does not exist between submitted CRFs and
validated CRFs. The other result of course, is that a one-to-one correspondence does exist between
proposed changes and validated CRFs.

Other sections of the CRF also cause difficulties. One difficulty is determining the basis of an
accepted change. Another problem is that it is not sufficient to define an error as a discrepancy

tTC-2 code is the assembly language code for the IBM System 4 PT model TC-2 computer. The A-7E operational flight program runs on
this machine.

3

CHMURA. NORCIO, AND WICINSKI

3 13

.11

NRL REPORT 9124

between a specification and its implementation. For example, it is sometimes difficult to decide if a
CRF describes an inadequate interface design (i.e., an error) or if it simply describes a better design
(i.e., an improvement). The only reasonable solution to this problem has been to let SCR lead
engineers decide between these situations. A second problem is determining whether or not a change
is a correction or a completion of an earlier change that has already been baselined. The fact is, after
a long period of time or after many versions of a document, authors frequently forget earlier changes
that had addressed the same issues presented in current CRFs. For each of the CRFs reported in this
study. STE researchers have reviewed all versions of all documents baselined prior to resolution ot
the CRF and discussed all questions with lead SCR engineers. This is a laborious process. but it is
necessary to ensure that corrections or completion errors are properly identified.

Finally. the SCR project's CM procedures are not perfect. Validators have found CRFs that
have not been resolved but, nevertheless, have been implemented in published specifications. The
only reasonable solution for this is to resolve these CRFs with the date of the latest issued baseline
specification and to submit additional CRFs for remaining aspects of the change. Validators have also
found modifications for which there were no corresponding CRFs. The policy for this has been to
submit CRFs and record them as imr,-ediately resolved with the date of issue of the baseline specifica-
tion.

OVERVIEW OF EARLY SCR CHANGE DATA

General

This study reports on 325 validated CRFs that were resolved before 1 January 1984. During
this period, engineers had submitted 424 CRFs. The 325 validated CRFs reported here map 296
(70%) of those submitted that were resolved by SCR CM personnel by this date. Figures 3 and 4 are
profiles of resolution activity for these proposed changes. By January 1984, -47,500 person hours
had been expended on the SCR project. The 400 hours of resolution effort accounted for - 1% of
proJect activity. Table I shows the distribution of the CRFs categorized by the originators' activities
when the CRFs were generated. In addition, only 15% of SCR project hours were spent on pseudo
coding, coding. and testing activities. Thus, the changes reviewed here can be characterized as
changes that are typically proposed and made early in software development, which contrasts with
changes reported cklwhere [15-171.

25(

RI . I.)

Jan-80 Jan K1 I;ln x2 Jan SA Jan S1

Sli ()rlt!in Dyate i% Reolul on

Fig. 3 - CRF accumulation

5

CHMURA. NORCIO. AND WICINSKI

35(0

3(X)

250 0
L!

200 R
S

ISO

I(KI

~5(1

Jan-80 Jan-81 Jarn -2 Jan S" jf "'4

D~ate of RcsLtWLtion1

Fig. 4 - Cumulative effort in resolving CRFs

Table I-Activities Leading to CRF Origination

Total
Project Activity CRFs Percentage

Design
(e.g.. module interface specification) 209 6

P;elido c - ' 53 16

Code 1 0

Test 26 8

Miscellaneous 15 5

Unknown 5 ?
Total 309 95

Nonproject activity

(e.g.. CRF validation) 16 5

Total 325 100

Twenty-eight (9%) of the 325 proposed changes were rejected, this required 18 hours (47 of

the total hours expended or, the changes (Figs. 5 and 6). The 9% figure is small compared to both
the 37% figure reported by Day 1181 for major maintenance updates to an operational Army command
and control system and the 20% figure repotted by Shooman and Bolsky 1191 for errors discovered
and corrected during test and integration of a modest-size control program at Bell Telephone Labora-
tories. The 4% effort figure is comparable to the 3% figure reported in Ref. 18. Care must be taken
with these comparisons, however. These two figures are from different times in different project life

cycles, and it is not clear if there is a common definition of hm1,gt;. More importantly, SCR require-
ments changes are a separate SCR CM concern and are not incorporated in the data reported here
l Ill.

NRIL REPORT 9124

Vitoal CR :35{

.JjnS() Jain-XI Jap J.1 1W ll

t t Rc nit n

Fig. 5 - Rejected CRFs: percentage of total

C)

4

S ()

-,tjl: . u~r,,,,-i! l 2 .A

.!:in JJl -S J,irl Ni I N- I

)atc of Resolution

Fig. 6 - Rejected CRF resoluti-n effort: percentage of total

The remaining 297 accepted CRFs resulted in modifications to baselined items. Table 2 shows
the bases for these changes. None of the changes were the result of changes to the software require-
ments specification. This can probably be attributed to the following:

* an extensive requirements specification was generated prior to design 161,

9 the requirements specification has been shown to be relatively error free and remarkably free
of ambiguities [I 1],

* as noted earlier, the changes reported are early changes, and

a the SCR project is redeveloping software for a fixed operational version of the A-7E flight
software.

7

CHMURA. NORCIO. AND WIINSKI

Table 2-Bases of Accepted CRFs

Total
CRFs Percentage

Error Corrections

Original 144 48

Continuation of completion 55 19

Total 199 67
Modifications

Adaption to requirements change 0 0

Adaption to support environment change 0 0

Improvement in performance 2 I

Improvement in clarity 89 30

Other 7 2

Total 98 33

Actually. all 297 changes required updates to only 47 hasclined module intcrt&ce ,pecifications,. most
of which are packaged in two documents. The primary reason tor this iN that no module implementa-
tion documents (which include pseudo code) were haselined before JanuarN 1984. In other words. the
297 changes can he considered to be ear!y design changcs.

The percentage of error corrections (see Table 2 and Fig. 7) is high compared to data reported
for other development efforts 115.17,19 . but this is decreasing. The proportion of total CRF cfforl
spent on error corrections (Fig. 8) contrasts sharply with the 17, figure reported hN Llent, and
Swanson 1201 for commercial data processing soft ,are maintenance cffor,, and the 21'" figure
reported by Day 1181. This percentage of error correction effort is also decreasin- Note again ho, -

ever, that SCR requirements document change data are not included in this sunmmar\,.

Jan SOI

I

idtl 5t) .Jiui N", Ji)l N? .liii 5), I,,i 5

I)itc I I"t R"- 1 il 1

Fig. 7 Error corrections. percentage of accepted changes

8

NRL REPORT 9124

-i A (I t II I I C t I X I

I I I c' 1

Fig 8 Error 'oirctlon etffrt percentage of accepted CR- resolution ettort

The proportion of error corrections that involve completing or correcting a prior change (Fig. 91
is large compared to the 6% to 12%7 range of figures reported by others 115.17.21! and seems to be
incrementally increasing. The 12 figure is computed from data given by Weiss [211 and Weiss and
Basili 1171. This large proportion could be the result of the many hours spent by STE and SCR
engineers in assuring the correct identification of correction and completion errors.

T

)i~al lI rr r Corr .l n : 19) 0

R
R

M R
S

an WI) Jan SI Jan X2 Jan-53

I)ate ot Rs ltiion

Fig. 9 - Correction or completion errors: percentage of error Corrections

Ease of Change

A major objective of the SCR project is to produce a software design, code, and documentation
set that can easily specify and implement changes. Figure 10 shows the distribution of effort required
for understanding and incorporating the 297 accepted changes into the SCR project's design and docu-
mentation set; Fig. I I shows the distribution tor error corrections only. Only one of the 28 rejected
CRFs was not implemented because the proposed change was considered to be not worth the effort.
Most changes (81%) took an hour or less to understand and resolve; 98% took a day (i.e., 8 person
hours) or less. Eighty-six percent of the error corrections took an hour or less to understand and

9)

CHMURA, NORCIO, AND WICINSKI

(X)

90

80 17

70
0

60 F

[Total CRFs: 297 50 T
40 0
30

2O0L

Jan-80 Jan-81 Jan-82 Jan-83 Jan-84

I lour or Less . lour <...< Day ... Day < ... 5 Week

Fig. 10 - Accepted CRFs categorized by resolution effort

~I MO

0

7(0
0io

40~

Tlotal: i'49q 30 T
20 .%

...... 1 o .

............. (1

Jan 80 Jan-81 Jan-82 Jan 83 J<n-84

Dale of ReSolutiOo

I lour or ley. H lour< .. <)as 1. 1)a < ' W cek

Fig. I - Error corrections categorized by resolution effort

resolve; 99% took a day or less. Although the data shown in Figs. 10 and II exhibit downward
trends, these data suggest that SCR engineers are meeting their major objective of early changes and
error corrections. For errors uncovered and corrected late in the life cycle of a NASA/Goddard
Software Engineering Laboratory project, Basili and Perricone 115] report 36% of the error correc-
tions took an hour or less; 55% took a day or less. For errors uncovered and corrected late in the
WPADT project, Xu 1221 reports 24% of the error corrections project took an hour or less and 80%
took a day or less.

Figure 12 presents the cumulative average eftort for all SCR changes and error corrections.
There seems to be a stepwise growth in cumulative average change effort as the SCR project life
cycle lengthens. This is consistent with Boehm's 1271 data that show an exponential growth in cost to
fix or change software for successive phases of the software life cycle. In terms of this result, the
SCR project seems no different than other software development projects. Figure 13 presents the
effort for an error correction based on number of days that the error is in the system. The figure
"days in system" is the difference between CRF resolution date and the earliest issue date for the

-t)

NRL REPORT 9124

!.6

1.4

1.2

0
0.8 0

0.6 S

0.4

0.2

Jan-80 Jan-81 Jai,-82 Jan-83 Jan-84
Date of ReoltIfion

Fig. 12 - Cumulative average CRF effort

40

30

10

ZD

00

I-

lO E

R = 0.07

0 a 13

DAYS IN SYSTI-%M

Fig. 13 -Duration of an error in the system

11I

CHMURA. NORCIO, AND WICINSKI

interface specifications containing the error. Boehm's data imply that the longer an error remains
undetected and uncorrected in a system. the greater the cost of the eventual error correction. Surpris-
ingly, this effect does not appear in the SCR data; the correlation between days in system and average
effort is 0.07. There may be four reasons for this. The first is that SCR requirements change data
are not included here. The second is that the changes reported here can be considered to be only
design-phase changes, and more of the SCR projects life cycle might have to pass before any relation-
ship appears. The third is that there are many very low effort changes. And the fourth is that the
SCR methodology lessens the impact of long-term unresolved errors!

The information-hiding principle is used in the SCR project for identifying and specifying
modules. A module is supposed to hide a likely changeable aspect of the A-7E flight software. This
means that a module's interface specification must be written such that the hidden information is not
revealed, that is, a module's hidden information is available only to the implementors of that module.
The anticipated result is that when an expected change occurs only one module implementation (i.e..
no interface) needs modification. Figure 14 presents the distribution for the number of modules
updated by changes (i.e.. the ripple effect of changes). A module is updated if its interface specifica-
tion (implementation document, or code) is updated. A change is considered to update zero modules
if updates are required in other documentation or in indexes and tables of contents associated with
packaged sets of module specifications. Most changes (90%) updated zero or one modules, and this
percentage is relatively constant. Figure 15 presents the proportion of changes that resulted in
module interface updates. A module interface is updated if a change to its specification (or imple-
mentation document, or code) causes or would have conceivably caused a change to programs of
other modules that use or would eventually use capabilities provided by the module. Examples of
interface updates are the modification of a parameter type and the addition of a system-generated
parameter. The percentage of changes that resulted in updated interface updates (56%) is growing.
The percentage of changes updating two or more interfaces (12%) is also growing. These trends
seem to suggest that a greater ripple effect and a more uniform distribution of change effort can be
expected in the future.

I

D ate. (I .\
J1l11-() lln- I] Jli 52 Jlii S.3Ji ,

(I "" ~)II ... RL\lj Iinllt Il

Fig. 14 - Accepted CRFs categorized by number of modules changed

12

NRL REPORT 9124

20

-'''' __.................I ' " ,-

•

3m-SO
Jdn-8I

Jan-8

Jan-83

.Ja-84

i

I t)atc of R
esoluiton

-

~ Fig. 15 - Accepted CRFs categorized
by number of interfaces

updated

i
Figure 16 shows the distribution of error causes. Thirty-three percent of the error corrections

are clerical, that is. they are characterized
as likely to have been made when the material was being

typed. This percentage.
which is growing.

is large in comparison
to other reported data. e.g., Basili

and Perricone
[51. Weiss

[24] however,
has reported a 36% figure for an earlier NRL software

The majority of errors (65 %) have "'other"' causes. An examination
of these causes shows that

engineers attributed the errors to failings on their part. Thus, this percentage is closc to the 68 fig-

ure tor programmer
error reported by Ostrand and Weyuker

1251.

Only two errors (%) were felt to be caused by poor SCR documentation!
This contrasts

to the

9% figure for poor documentation
reported

in Ref. 25. Either SCR engineers
are reluctant

to fault

their documentation,
or their documentation

is quite good, or they simply tend to blame themselves

for errors. The last % of errors had unknown
causes.

40 ~

30

0 0)

(I --

ii

r

II

[.:' l,

,,,l

T

J ar 50)
.

n

I
J 2

, an , 8
.In 84

D)ac of Rc' olu
on

Fig 15r Acepe CR- \t~n cateorjized by)thc r "f' i tfes upae

Fig. 16 - Error
causes:

percentage
of total

13

at

t hav
b e

made

w
e mia

w
eing

CHMURA. NORCIO. AND WICINSKI

Change Data Related to Personnel Activity Data

SCR project engineers report their activity weekly, using forms designed by software technology
evaluation (STE) researchers. Figure 17 shows the ratio of the cumulative changes uncovered during
a specific activity (i.e., design, code, and test) to the cumulative hours that were expended in that
activity. Figure 18 shows the ratio of cumulative hours for changes uncovered during an activity to
the cumulative activity hours. They show a similar pattern. Coding activity is the most "efficient"
way to uncover needed modifications and errors, followed closely by testing activity. This is true
only initially, however. In the long run, for the SCR project. design, code, and test activity are all
equally efficient in terms of uncovering changes. However, the amount of coding (6504.25 hours)
and testing (1487.5 hours) that accumulated by January 1984 is small compared to the amount of
design (21741.75 hours).

,4H

S(106

0 ()6

\

~ l l l f II I I I I
....... (- (....... 1 4 . I . I I I 1 0.

Jan-80 Jail 8I Jan S2 Jan X I Jatn 5ls

7, [~- I)c~iLnn4_ ... ('dinim ... "Icstin

Fig. 17 - Ratio of cumulative CRFs over cumulative origination activity hours

(1 0
l..... 00 I

(I(

J

............................. .

Jain-80 Jn- 1 J.1n X2 Jan . S1 Jan K4
D-lesigning ... (odinp ... esiing

Fig. 18 - Ratio of cumulative CRF resolution effort by
origination activity over cumulative activity hours

14

NRL REPORT 9.24

Figure 19 shows the proportion of error corrections for a project work month and the proportion
of implemented changes for a work month (i.e., 160 person hours). Although they appear to be
increasing, both ratios are small compared to the data reported by Weiss and Basili [17]. They report
-2 to 3 error corrections per work month and 4 to 8 changes per work month.

1.2

C
R
F

- 0 .8

-0.6 R

0.4 0
N

0.2 it

Jan-80 Jan-51 Jan 82 Jan-83 Jan-84

Fig. 19 - Ratio of cumulative error corrections and
accepted CRFs to cumulative project months

DATA ANALYSES

A previous study of SCR project activity data [10] has defined the Progress Indicator Ratio
(PIR). The PIR, which is a time-based ratio between a module's cumulative design discussing hours
and cumulative design creating hours, consistently correlates with total design hours for the module.
When the release dates for specification baselines are examined in conjunction with the PIR, the PIR
seems to indicate incompleteness of baseline specifications. The appearance of a baseline before the
PIR rises sharply or during a sharp rise seems to suggest that the baseline is probably far from com-
plete. Module interface specifications seem to become reasonably stable only when the PIR becomes
stable.

A major objection to the PIR is that it requires a data collection scheme that accurately captures
intricate information about personnel activity during the design process. Even though this seems pos-
sible 126], few software development efforts can readily afford and tolerate the collection operation.
Because many design efforts routinely record software change data, it would be desirable if informa-
tion provided by the PIR could also be provided by change data. Figure 17 suggests a possible use of
change data. Also, intuition suggests that a module's interface design would be unstable if people
who were working on that design were generating many CRFs against the current version of the
design or against the interface designs of other modules.

Table 3 lists some of the second-level modules of the multilevel hierarchy of information-hiding
modules resulting from the SCR design activity [7]. These modules have interface specifications that
have had one or more baselines, and each has been modified by one or more of the 325 CRFs. For
each of the-modules, time-based ratios between the number of CRFs resulting from module design
activity and the cumulative module design hours can be computed and plotted. These are the Date of
Origin PIR (DOOPIR) and the Date of Resolution PIR (DORPIR), based on CRF date of origin and
resolution, respectively. Table 4 is a summary of the data underlying these ratios, specifically, they

15

CHMURA, NORCIO. AND WICINSKI

Table 3-Abbreviations and Names of
Second-Level Software Modules

Abbreviation Name

AT Applications Data Type

DI Device Interface

EC Extended Computer

FD Function Driver
SS Shared Services

Table 4-Total CRFs and Design Hours
Through December 1983

CRFs Resulting Earliest CRF
Module from Design Date of Origin Design Hours

AT 2 Mar 81 1083.75

DI I I Sept 80 2859.00

EC 119 Mar 81 7477.50

FD 27 Sept 80 1235.05

SS 6 Jan 81 1848.45

are the number of CRFs that resulted during design work on the module, the date of origin of the ear-
liest of these CRFs, and the total design hours tor each module.

Date of Origin PIR

For each module, the DOOPIR is defined as the ratio between the cumulative CRFs uncovered
during design of the module by date of origin and cumulative design hours for the module. Figures
20 to 24 show DOOPIRs for each module. The vertical lines in these figures indicite issue dates lor
module specification baselines. Table 5 shows Pearson product moment correlation coefficients r and
coefficients of determination r 2 between DOOPIRs and the original PIRs for each module 1271. The
time period over which correlations are computed begins with the date of origin of the earliest CRF.
as presented in Table 4.

Date of Resolution PIR

The DORPIR is the same DOOPIR except that CRF date of resolution is used rather than date
of origin. Figures 25 through 29 show DORPIRs for each module. Again, vertical lines indicate
baseline issue dates. Table 6 shows Pearson product moment correlation coefficients r and coeffi-
cients of determination r 2 between DORPIRs and the original PIRs for each module [271. The time
period over which correlations are computed is the same as for the DOOPIR. Even though the date
of resolution occurred after the date of origin, hours of resolution effort include origination time plus
subsequent change time.

16

NRL REPORT 9124

(K)4

F 00015

0.(K)3

(O.(W(25
0t3I-2

Ttr ().(K 15 r
[T-OTAL CRF,: 21 0 (K)1

.00(

Jan Jan-79 Jan 0 Jan .8 Jan-s2 Jan-S.X Jati.4

Date of Origin

Fig. 20 - Date of origin PIR for AT

~().(X25

Module o rwi

AT -0.610* 0.372*

DI 0.727 0.528

EC 0.985 0.970

FD -0.679 0.461

SS -0.478w' 0.228*

*Not significant at the p - .05 level.

17

CHMURA. NORCIO. AND WICINSKI

Im~~~~~(7S' 1-7)LiLl '' ,

0,C1C M

(kll

Jan 78 J'an 71) Ja~n NO Jant S' J,'tI X, .Ell,)#,ti

I(w ot ()r pnIC

Fig. 22 D)ate of origin PIR for FD"

,lan-? J~im ?) Jdil S(C Jdtrl SI J;IIM? .11l~ 'bC JTr S

Fig. 23 - Date of origin PIR for FD

18

NRL REPORT 9124

W04

I I _

(X)

(IX 2)

10 [T..*\ C RI. : l (Xl2

(((X(II

Jan-27 Jan 71) Jan Jin-St Jn 92 Jan-X3 J an-8 4

Datc " riiin

Fig. 24 - Date of origin PIR for SS

K(IX 12S2

0 1X12

I III II T ..\I I I IIt I 4---:-4-4-X--4--- 1

/ll 'S J.n 7 Jan aIl S1 Jan- Jan-S3 Jan 5

Iaic (I Rcl1im

Fig. 25 - Date of resolution PIR for AT

19

CHMURA. NORCIO, AND WICINSKI

o(K)4

01.(X)35

0) (C;

Jain-78% Jan-79 Jan 80 J,,1 S IJan-82 JII Jan xm

Dale of R~lto

Fig. 26 -Date of resolution PIR for DI

(I l il

I OIAL1 CRIFS: I I 15

1-+44- H-- 4-- - 0

Jan-itS Jan-79 JanI-SI Jan-S I Jan-82, Jan ' Jan-54

IDai 11! ReNOItLM to

Fig. 27 -Date of resolution PIR for EC

20

NRL REPORT 9124

I'l(IM,~~I I' IsIl

I) l ,I Rc -'. 1l~

Fig 28 Date of resolution PIR for FD)

%I\ (RI

Fig. 29 - Date (if resolution PIR for SS

Table 6-Pearson Correlation
Coefficients Between

DORPIR and PIR

Module rrI

AT 0.391* 0. 152*

DI 0.698 0.487

EC 0.971 0.943

FD 0.709 0.503

SS --0.472* 0.223*

*Not significant at the p - .05 level.

21

CHMURA, NORCIO. AND WICINSKI

RESULTS AND CONCLUSIONS

An overview of the SCR project's early change data with respect to customary concerns and a
time-based view shows these major patterns:

" There is a high proportion of error corrections and error correction effort, although time-
based plots of these statistics show that both are decreasing.

" The percentage of error corrections that involve completing or correcting a prior change is far
higher than has ever been reported, and this percentage is increasing.

* The percentage of changes that took a day or less to resolve is extremely large, but this is
decreasing. Consistent with this decrease is a stepwise growth in average change effort, a
growth in the percentage of changes that involve modifying module interfaces, and a growth
in the percentage of changes involving to or more module interface.,.

" Surprisingly, no relationship has been shown between change effort and number of days that
an error exists in the documentation.

* Very few errors have been attributed to poor project documentation.

* Coding activity. followed by testing activt\, is the most efficient .ka\ ot uncoxering needed
modifications and error corrections. In the long run. however, design, code. and test acti', it,
appear to he equally efficient

Analyses of the design CRF data suggest that, in some cases, tairl\ simple change and personnel
activity data can be used as an alternative to the originally proposed PIR The DOOPIRs and the
DORPIRs for modules with a significant number of design changes show a strong relationship to the
original PIRs. Ten CRFs can be considered a reasonable threshold for scsitvit\. The DOOPIR
explains 52%/. 977, and 46% of the variation in the original PIRs for the DI. E(. and FI) modules.
the DORPIR explains 49/. 94/ , and 50/ of the variations for these same module.,

When issue dates for published baselines are superimposed on the DOOPIR and DORPIR plots.
patterns similar to if not even more sensitive than those observed with the original PIR are observed.
For module designs that have been specified with only one or two baselines, a prior instability with
the DOOPIR and DORPIR, a downward trend, issuance of the baseline, and then relative stabilit\ are
seen. For other modules, this pattern is lacking one or more of the earlier baselines. In other words.
both the DOOPIR and the DORPIR appear to indicate incompleteness in the interf:,ce specifications.
If these ratios have not surged and then turned downwards prior to appearance of a baseline and sub-
sequently stabilized, the design of the module's interface probably is not complete, despite personnel
claims and published documents.

There are two drawbacks to the DOOPIR and DORPIR. They are later indicators of design
progress than the original PIR, and they dre based heavily on the responsiveness and timeliness of a
project's change control process. If changes are not resolved promptly, the relationships between
these ratios and design progress are weakened.

Finally, we do not claim that the DOOPIR or the DORPIR are measures of the completeness of
an interface design. There may be many reasons why the ratios stabilize (e.g.. personnel have been
assigned to another m,,dule) or have taken vacations. However, the ratios do seem to indicate when
work on an interface is not complete. If completion is claimed prior to a downward trend and subse-
quent stability, more work probably must be done.

22

NRL REPORT 9124

ACKNOWLEDGMENTS

We are especially indebted to Paul Clements, the lead SCR software engineer, who patiently
assisted CRF validators in resolving problems that were encountered. Also, to Ms. Kathryn Kragh
who for several years entered change and activity data into a computer database, checked the accuracy
of each entry, and updated everything when, for example. the names of modules changed. Without
her diligence, this report could not have been written.

REFERENCES

I. P.C. Clements, "Software Cost Reduction Through Disciplined Design," 1984 Review. Naval
Research Laboratory, pp. 79-87 (1985).

2. B. Meer, "On Formalism in Specifications," IEEE Software 2(l), 6-27 (1985).

3. D.L. Parnas "On the Criteria to Be Used in Decomposing Systems into Modules," Commun.
ACM 15, 1053-1058 (1972).

4. D.L. Parnas,. "'Use of Abstract Interfaces in the Development of Software for Embedded Sys-
tems." NRL Report 8047. June 1977.

5. EW\". I)ijkstra. "Cooperating Sequential Processes." in Programming ltnguages, F. Genu\ s.
ed. (Academic Press, Nev, York. 1968). pp. 43-112.

6. K.L. Heninger. J.W. Kallander, J.E. Shore, D.L. Parnas. and Staff. "'Softare Requirements
for the A-7E Aircraft." NRL Memorandum Report 3876, Nov. 1978.

7. K.H. Britton and I).L. Parnas "A-7E Module Guide." NRL Memorandum Report 4702. Dec.
1981.

8 A. Parker, K.L. Heninger. 1). Parnas, and J. Shore. "Abstract Interface Specifications. oi the
A7-F. Device Interface Module." NRL Memorandum Report 4385. Nov. 1980.

9. P.C. Clements, RA. Parker, D.L. Parnas. and J. Shore, "'A Standard Organization for Specif-
ing Abstract Interfaces' NRL Report 8815, June 1984.

1(, A.F. Norcio and L.J. Chniura, "'Design Activitv in Developing Modules for Complex
Software," in Empirical Studies of Programmer.,, E. Soloway and S. Iyengar. eds. (Ablex Pub-
lishing Corporation. Nor~vood, New Jersey. 1986).

II. I.,J. Chmura and D.M. Weis. 'The A-7E Software Requirements Document: Three Years of
Change Data." NRL Memorandum Report 4938, Nov. 1982.

12. V.R. Basili and D.M. Weiss "'A Methodology for Collecting Valid Software Engineering
Data," IEEE Trans. Software Eng. SE-10(6), 728-738 (1984).

13. L.J. Chmura, "Proposed New Design and Code Change Report Form (CRF) for the Software
Cost Reduction (SCR) Project.'' NRL Technical Memorandum 7590-34:LC (1983).

14. E.B., Swanson, "The Dimensions of Maintenance," Proceedings of the Second International
Conference on Software Engineering, IEEE Computer Society. (1976), pp. 492-497.

23

CHMURA. NORCIO, AND \ (INSHI

15. V.R. Basili and B.T. Pcrricone, "'So>ftware Errors and Complexity: An Empirical Investiga-
tion, Commun. ACM 27, 42-52 (1984).

16. A. Endres, "An Analysis of Errors and Their Causes in System Programs," IELE Trans.
Software Eng. SE-1(2), 140-149 (1975).

17. D.M. Weiss and V.R. Basili, "Evaluating Software Development by Analysis of Changes:
Some Data from the Software Engineering Laboratory," IEEE Trans. Software Eng. SE-I1(2),
157-168 (1985).

18. R. Day, "A History of Software Maintenance for a Complex U.S. Army Battlefield Autoniated
System," (1985), pp. 181-187.

19. M.L. Shooman and M.I. Bolsky, "Types, Distribution, and Test and Correction Times for Pro-
gramming Errors," Proceedings of the International Conference on Reliable Software, ACM
SIGPLAN Notices (1975), pp. 347-357

20. B.R. Lientz, E.B. Swanson and G.E. Tompkins, "'Characteristics of Application Software
Maintenance." Commun. ACM 21(6), 466-471 (1978).

21. D.M. Weiss. "A Comparison of Errors in Different Software-Development Environments."
NRL Report 8598, July 1982.

22. R.Z. Xu, "'An Empirical Investigation: Software Errors and Their Influence Upon Develop-
ment of WPADT," Proceedings of COMPSAC 85, IEEE Computer Society, pp. 4-8 (1985).

23. B.W. Boehm, Software Engineering Economics (Prentice-Hall. Inc.. Englewood Cliffs, New
Jersey, 1981).

24. D.M. Weiss. "Evaluating Software Development by Error Analysis: The Data from Architec-
ture Research Facility." J. Systems Software 1(), 57-70 (1979).

25. T.J. Ostrand and E.J. Weyuker, "Software Error Data Collection and Categorization,"
Engineering Workshop (1982).

26. L.J. Chmura and A.F. Norcio, "Accuracy of Software Activity Data: The Software Cost
Reduction Project," NRL Report 8780, Dec. 1983.

27. W.J. Dixon and F.J. Massey, Jr., Intr.mduction to Statistical Analhsis (McGraw-Hill Book Co..
Inc., New York, 1969).

24

