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A GENERAL COMPUTATIOHAL TECHNIQUE TOR THE FREE VIBRATION ANALYSIS OF 
RECTANGULAR PLATES WITH CLASSICAL EDGE SUPPORT 

BASED ON THE SUPERPOSITION METHOD 

by 

D.J. Gorman 
Department of Mechanical Engineering 

University of Ottawa 
Ottawa, Canada KIN 6N5 

INTRODUCTION 

One of the most fundamental problems in the history of mechanical 
vibration is that of obtaining free vibration frequencies and mode 
shapes for thin rectangular plates with combinations of classical, 
i.e., simply supported, clamped, or free edge conditions. It is well 
known that such plates fall Into two distinct categories, or groups, 
the first group containing only those plates which have at least one 
pair of opposite edges simply supported and the second group containing 
all of the remaining plates. 

Free vibration analysis of plates of the first group, referred to 
hereafter as Group 1, is easily conducted in an exact analytical 
fashion. Lßvy-type solutions are obtained in each case, except the 
case with simple support along all edges, and enforcement of the 
boundary conditions leads to development of a transcendental equation 
for the eigenvalues which can be solved to any desired degree of 
accuracy. Eigenvalues for plates with simple support along all edges 
are available in closed form. 

The obtaining of solutions for plates of the second group above, 
referred to hereafter as Group 2, has presented researchers with much 
greater difficulty. This is because such problems are not amenable to 
solution by means of a simple Levy-type solution. Warburton was the 
first to perform a comprehensive study of these problems employing the 
Rayleigh method [l]. He represented the mode shapes by pairs of 
appropriate beam eigenfunctions thereby satisfying the boundary 
conditions exactly, except in the case of free edges. Later, these 
problems were explored further by Leissa who used several beam 
functions to represent the mode shapes [2]. 

At an even later date, the author analyzed 11 of the plates of 
Group 2 by means of a superposition method he de\aloped for this 
purpose. The method and computed results are to be found in Ref.[3]. 
It is not intended to discuss this latter method in detail here, 
however, It is pointed out that among Its advantages is the fact that 
no functions need be selected to represent the mode shapes and all 
boundary conditions, free or otherwise, are satisfied to any desired 
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degree of accuracy. It Is re-emphasized that beam eigenfunctions when 
used to represent the shape of plate vibration modes as discussed 
above, do not completely satisfy plate free edge conditions. 

The oVject of this paper is to describe a general computational 
procedure which allows immediate establishment of accurate eigenvalues 
and mode shapes for any rectangular plate of Groups 1 or 2. 
Eigenvalues for plates of Group 1 are obtained by solving the 
appropriate transcendental equation. Those of Group 2 are solved by 
the superposition method. Each displacement mode is normalized so that 
Its maximum dimerLsionless displacement Is equal to unity.  The 
dimensionless bending moment is made available throughout the plate for 
any angular orientation and it is shown how this Information is 
utilized to obtain the distribution of principal stresses. 

MATHEMATICAL PROCEDURE 

2.1  Plates of Group 1 

Little need be said about the frequency and mode shape analysis 
for plates of this group.  It is known thac with correct orientation of 
the axis the solution can ?.lways be written In the form (Fig. 1) [3] 

W(?,n,T) - W(F, ,n) sin COT (1) 

where 
w(?,n)   = Y(n)   sin mir£ (2) 

V*)   - V cosh V  + Vinh V  + Cmsin W + Dm cos    W       <3> 

2 2 
for      X S   (mir) 

and 
\(n)   = A^ cosh Bmn + Bm sinh ßmn + Cm sinh Ym„ +  Dm cosh y^  (4) 

2       2 
for X .? (mir) 

|| 2    T       if 2 
where ßm = 4> I X +(mn) , ym  - 4» U -(mir) 

2 

f(     -2   "2 or $ l(imr)~ - A~, whichever is real, and m equals the number of half 
sine waves running across the pl<*;.c in a direction normal to the simply 
supported edges- The coefficients A , B , etc., are adjusted to 
satisfy the boundary conditions. 

-S- 
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Fig. 1 View of rectangular plate of Group 1 with two opposite edges 
clamped and the other two simply supported. Choice of 
coordinate axis is shown as well as angular orientation of 
computed bending moment. 

A typical plate of Group 1 is shown in Figure 1. This is a 
plate which has two opposite edges clamped and the other two simply 
supported.  In this case, as in all cases of Group 1 where the edges 
running parallel to the. £ axis as shown in Figure 1 are identical, 
i.e., clamped, free or simply supported, it is advantageous to let the 
5 axis run along the center of the plate.  It is immediately obvious 
that all vibration modes of sucn plates will fall into two families, 
one family with modes symetric about the £ axis and another family with 
modes antisymmetric about this axis.  It is best to treat each family 
as a separate case of Group 1.  For each of these families, as a result 
of symmetry or antisymmetry, two of the coefficients of equations (3), 
or (4), can be eliminated immediately by inspection.  The analysis is, 
thereby, simplified significantly. Of coarse, if the edges running 
parallel to the £ axis do not have Identical boundary conditions, it is 
better to let the £ axis run along the upper edge of the plate (Fig.i). 
Regardless of the type of problem, the appropriate transcendental 
equation is easily written on enforcing the boundary conditions and 
exact solutions for the eigenvalues and mode shapas are computed 
following steps as described in Ref. [3].  In the case of a plate with 
simple support along all edges, no computation is required to obtain 
the eigenvalues. Beyond this problem, there is found to be seven 
separate cases to be handled in Group 1. 

Dimensionless bending moments along the plate edges are 
discussed in Ref.[3]. It can be easily shown [4] that for any angular 
orientation, a, (see Flg.l), a dimensionless bending moment can be 



written as, 

«nb 
TTS 

where 

{61 + 
H 3n      3C3TI 

(5) 

7      > 2 

cos a + v sin a 92" 
. 2        2 

sin a + v cos a ei 

63 - (l-v) sin 2a 

With the eigenvalue obtained the mode shape and bending moment can be 
readily coputed for a rectangular grid of points distributed throughout 
the plate. Computation of the principal stresses for this grid of 
points will be discussed later. 

2.2   Plates of Group 2 

All plate vibration problems of this group are solved by means 
of the superposition method as described in Refs. [3] and [5], although 
the selection of building blocks may differ slightly in order to 
minimize the computation work required. Again, advangage will be taken 
of symmetry where such symmetry exists. Only one case of Group 2 will 
be discussed in any detail in order to economize on space. 

We consider a rectangular plate with clamped support along all 
edges.  It will be appreciated that all possible modes of free 
vibration for this plate will fall into one of three categories. Modes 
which are fully symmetric about a central axis taken through the plate, 
modes which are fully antisymmetric about the same axis, and modes 
which are symmetric about one axis and antisymmetric about the other. 
In view of these observations, we need analyze one quarter of the plate 
only, provided the correct boundary conditions are enforced [3]. 

W&17) 

"mwM»MMwmw. 

W,^) 

■ymsfm 
M,(€) 

Fig. 2.   Building blocks utilized in analyzing the fully symmetric 
modes of the rectangular plate with all outer edges 
clamped. 
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We choose Co discuss, in a minimum of detail, the analysis of 
the fully symmetric modes. Reference is made to the quarter plate as 
shown on the left hand side of Figure 2. Boundary conditions which 
must be enforced along the axes are denoted as slip shear conditions. 
This implies that there is no vertical edge reaction along these edges 
and that slope, taken normal to the edge is everywhere zero. These 
conditions are designated by two small circles adjacent to the edges. 

In order to solve this problem, we develop solutions for the two 
forced vibration plate problems appearing on the right hand side of 
Figure 2. The first forced vibration problem, or building block, 
involves a plate given simple support along the edge, £-1, and with a 
condition of zero lateral displacement enforced along the edge, n-1. 
Along this latter edge we enforce a harmonic distributed bending moment 
of circular frequency io. Its spacial distribution is expanded in 
series form as, 

Mib 

ln=l  m»l,3,5 Em 
_mw£_ (6) 

In view of the boundary conditions enforced along the edges 
running parallel to the TI axis, it is known that a Levy-type solution 
for the forced response of this building block can be written as [3], 

W «.TI) -   E   Ym(n) cos 2£i 
m-1,3,5 

(7) 

where the expression for Y_(n) is of the form given by Equations (3) 

and (4). Two of the coefficients in these equations (the second and 
third) can be immediately set equal to zero in view of the boundary 
conditions enforced along the edge, ri"0. The remaining two 
coefficients can be evaluated as a result of the condition of zero 
displacement to be enforced along the edge, n=l, as well as the 
condition expressed by Equation (6). Following procedures as outlined 
in Ref. [3] we obtain, 

Wi(C,n) -'     £ 
m=l,3,5 

cosh ß„n cos v_n , „_P 
(Slim sTnTn^+°l3miTR^} cos Sf 

i 

m»K +2 

cosh ß„n 
t°22m ainh a 

cosh Yran , 
023m sinh v.    \ 

TTITTF 
COS   ^y*- (8) 

■■ 
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where ßm-  <f> | *2+(mir/2)2 , YB« * | A2-(mw/2)2, or 

ii   ". 2   r 
$ l(nra/2) - X  whichever Is real, 

and the first summation includes only those terms for which X?(mir/2)' 

"a   2    2 
(8m 

+ Ym > C08h V8lnh ßB 

613 __L 
»22 

<8m + Ym ) cos Ym/sin r„ 

622„- —r ^i- 

(ßm2 " O co8h 6m/sinh Bm 

023 m 1  

<em " ^m > C08h Vslnh *m 

Groupings for the parameters On,,,» etc., are quite different 
from those used in Ref. [3]. This constitutes a significant advantage 
since computer overflow problems encountered with the earlier 
formulations are eliminated here. 

It will be obvious that the solution for the second building 
block, W2(£,TI), can be extracted from that of the first. It is only 
necessary to Interchange the variables £ and ri of Eqn. (8) and replace 
the aspect ratio by Its inverse. 

Having obtained the solutions for the two building blocks of 
Fig. 2, construction of the eigenvalue matrix can proceed following the 
procedure described in Ref. [3J. One expands the slope along the 
driven edges of these blocks in cosine series of the type employed in 
Equn..(6).  Requiring that the net slope of the superimposed building 
blocks must vanish, necessitates that the coefficients of each term In 
the above pair of series must equal zero. This gives rise to a set of 
2K homogenous linear albegraic equations for the coefficients E ,etc, 

and hence construction of a 2K by 2K eigenvalue matrix, where K equals 
the total number of terms employed in each building block solution. 
Solutions for the eigenvalues and mode shapes are obtained by following 
standard procedures [3]. It is also required here to obtain bending 
moment distributions throughout the plate, according to EqiiaMnn s, for 
all points In the rectangular grid used for storing displacement data. 
Of course, in the cases of Group 2, one must enter the sum of 
derivatives taken from each of the superimposed building blocks when 
computing the bending moment at a point, according to Eqn. 5. 

It will be appreciated that the other two cases of plate 
vibration related to the fully clamped plate can also be solved by 
using pairs of building blocks slightly modified from those described 



A 

above. The 3ame general analytical procedure Is applicable to the 
completely free rectangular plate provided proper building blocks are 
selected* There will be some problems which are completely lacking in 
symmetry and some which have only one plane of symmetry, the cantilever 
plate for example* In this latter case one half of the plate, only, 
will be analyzed. 

It is appropriate at this time to enumerate the major 
differences between the analysis described in Ref. (3) for plates of 
Group 2, and the more advanced analysis described here. 

(1)  It is charccteristic of the method of superposition that numerous 
different combinations of building blocks can be employed to analyze 
any of the 30 distinct vibrations problems, or cases, which make up 
those of Group 2.  In fact, 30 different computer programs were 
developed in order to perform the analysis reported in Ref. [3]. Each 
one of the earlier programs generated its own matrix from which the 
associated eigenvalues were generated. 

In the computations reported here, a much more judicious 
selection of building blocks has been made.  It is found, in fact, that 
only 20 unique building block solutions are required and that many of 
these are easily extracted from others in the set. As indicated above, 
30 different matrices had to be generated to obtain th° results 
reported in Ref. [j]. These matrices varied in size from 2K by 2K to 
4K by 4Kj where K equals the number of terms in each series.  In the 
work reported here a new approach is taken. One master matrix of 10K 
by *" only, is generated and it Is found that all of the 30 matrices of 
interest can be extracted from this one master matrix.  It has, 
therefore, been possible to replace the earlier set of 30 computer 
codes by a single one. 

(2)  Formualtion of the building block solutions as shown in Eqn. (8) 
rather than as formulated in the earlier publications has contributed 
vastly toward simplifying the computations. It will be seen that the 
quantities 622m> etc., now involve ratios of the hyperbolic functions. 

These ratios can be replaced by the quantity, unity, for high values of 
the arguments. All of the integrations required in expanding the 
slopes, etc., along the plate edges are now called through computer 
subroutines. Again, because of the ratios of the hyperbolic functions 
involved (Equn. (8)), it is possible to arrange the integrals within 
the subroutines so that for high value« of arguments of the functions, 
overflow or underflow problems are avoided. 

(3)  A persistent problem that characterized the earlier computations 
was the uncovering of false eigenvalues as well as the genuine 
ones [3]. This came about because in the analysis of certain problems 
involving free edges (doubly symmetric mode vibration of the completely 
free plate, for example) it was possible to obtain non-trivial 
solutions for the fourier coefficients with the net displacement of the 
combined building blocks equal to zero.  In such a case, the 
displacement represented by one building block was equal and opposite 
to that represented by the other. Tihis left the boundary conditions 
satisfied. Fortunately, these false eigenvalues could easily be 
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predicted before computation began and they were rejected. This 
problem has been eliminated by prescribing forced edge rotation rather 
than distributed bending moment along the driven edge. In fact, one 
eliminates tht problem of false eigenvalues entirely by a judicious 
choice of prescribed edge rotations or bending moments along the driven 
edges. 

COMPUTATION OF PRINCIPAL STRESSES 

In order to compute the dimensionless normal stress, ov, at the 

various points in the grid, it Is only necessary to compute the bending 
moment as discussed earlier, with the orientation angle a equal to 
zero, and extract the value ov therefrom. A repitition of these 

computations with a equal t/2 permits establishment of the normal 
stress a . 

Finally, repeating the computations with 9i=92=0, and 93=v-l, 
oneobtains the dimensionless twisting moment 

si «   (1_v) f _^_ (9) 

from which the dimensionless shear stress T, is obtained. 

With the normal and shear stresses known at each point, the two 
principal stresses lying In the plane of the plate surface, as well as 
their orientation are easily obtained. The third principal stress, 
normal to the surface is, of course, equal to zero. With the three 
principal stresses know for all points in the grid the maximum shear 
stress is readily obtained. 

4.    SOME CHARACTERISTICS OF THE DIGITAL COMPUTER CODE ANALDYNE-1 

This digital computer code (analytical dynamics-1) has been 
developed to form a complete, highly accurate, free vibration analysis 
of all plates of Groups 1 and 2 as discussed above.  It is easy to 
employ in that one need only choose the group and case numbers for 
their nlat-p of Interest fron a prepared list and enter the required 
plate propertie». One can demand an eigenvalue search with a 
prescribed increment between prescribed limits, or, if the eigenvalue 
Is known, it may be entered and a complete analysis of the mode shape, 
bending moment, and stress distribution is carried out. An additional 
and important feature of the code is its ability to conduct a mode 
shape and stress analysis in dimensional form if the maximum 
anticipated displacement of the plate, while vibrating In the mode of 
interest, is prescribed. Highly accurate computation of the fatigue 
stress amplitudes are performed and fatigue life can be predicted. At 
present, the dimensions are in English units. 

10 
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The code generates the master matrix when solving problems of 
Group 2. Despite Its broad capabilities, its running time is very 
short and storage requirements are a minimum. Numerous verification 
runs have been performed on a large I.B.M. computer as well as a much 
smaller Vax machine. 

SUMMARY AND CONCLUSIONS 

In this paper an analytical procedure has been outlined whereby 
a highly accurate free vibration analysis of rectangular plates of any 
aspect ratio, and any combination of classical boundary conditions, is 
achieved. The most remarkable aspect of this procedure is that it has 
permitted the preparation of a single and relatively compact digital 
computer code which has the capacity to perform all of the 
computations.  In addition to computing mode shapes the code also has 
the capacity to compute principle stress distributions as well as 
maximum shear stress distributions throughout the plate.  This latter 
aspect Is of critical importance when fatigue stresses and fatigue life 
are under study.  Because mode shape solutions are available in 
analytical form the differentiation required for stress computation' 
does not present the difficulties characteristic of numerical methods 
such as the finite element method. Advances reported here have 
permitted development of a compact computer code which, for the first 
time, has the capability to provide analytical typesolutions for all of 
the classical rectangular plate free vibration problems. 

NOMENCLATURE 

> 

i 

a,b edge lengths of plate being analyzed 

D plate flexural rigidity = Eh /(12(l-v2) 

E Young's modulus of plate material 
h plate thickness 
K* upper subscript limit for terms of first summation 
K upper subscript limit for terms of series 
M plate bending moment 
W plate lateral displacement divided by edge length 
a angle of orientation of bending moment 
£ distance along edge divided by edge length a 
n distance along edge divided by edge length b 
T time 2   
X2 eigenvalue ■ ua !|p/D 

u circular  frequency of vibration 
p mass of plate per unit  area 
$ plate aspect ratio - b/a 
v poisson's  ratio of plate material 

11 
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MINIMISED INPUT POWER BY LINE FORCE EXCITATION 

P. Hammer and B. Petersson 

Department of Engineering Acoustics 
Lund Institute of Technology 

1. INTRODUCTION 

It is customary to couple the two subsystems, source and receiver, in a 
number of discrete points and the sound and vibration power transmission is 
thereby conveniently treated by means of mobility theory. A basic condition 
for such an approach is that the point - thereby used in a somewhat extended 
meaning - can be regarded as an area of dimensions smaller than a fraction of 
the governing wavelength. Consequently, some complications arise in the theo- 
retical treatment when an installation is suggested where the coupling is 
constituted by large line footings. Such a coupling however, can be appropri- 
ate e.g. for static reasons or due to strict requirements on alignment. 
Hence, it is important to study the alterations in the mobility approach that 
are necessary in order to incorporate large contact areas. 

The concept of strip mobility has been introduced [1], [2], To comple- 
ment this studies concerning strip-coupled subsystems the aim of the present 
work has been to seek the force distribution along a strip attached to an 
infinite plate which minimises the power transmission. 

The reason for choosing an infinite plate is due to the fact that 
common parts of built-up systems are pi ate-like. For systems found in prac- 
tice the dimensions are finite. However, valuable qualitative insight can be 
gained by simplifying the analysis by considering the plate as infinite. 

2. THEORY 

The analysis is restricted to comprise small displacements, hence 
linear theory is valid. Only sinusoidal motion is considered wherefore the 
time-base is chosen to be e^41*. However, throughout this text the time factor 
will be omitted. 

The infinite plate is considered to be homogeneous and thin which 
implies that the thickness is only a fraction of the governing wavelength. 
Rotational inertia and shear deformation will be neglected. Hence, simple 
bending theory for thin plptes is valid. 

Internal and radiation losses in the plate will be neglected, as well 
as the influence of the local contact phenomena including a possible portion 
of viscous damping at the excited region. Taking into account the external 
forces, the governing equation in phasor notation becomes [3], 

AAv - k4 y = Jf ff(x,y)    , (2.1) 
B 

where, y is the spatial transverse velocity of the plate, k the bending wave- 
number, B1 the bending stiffness per  unit width, a  the normal force per unit 
area due to the source that acts normal to the plate i.e. the receiving 
structure and A the two-dimensional Laplace operator. 

13 



H.nk.i
T5!J?]Ut10V°utqU*t10n (2-1» is a combination of two cylindrical Hankel functions of the second kind [3]. Thus, cylindrical 

v(x,y) - fj 2(x,y) Y0 fl(kr) dx dy  , (2.2) 

where Y0 is the input point mobility and H(kr) is the combination of the 
cylindrical Hankel functions 

(2)       (2) 
n(kr) * H0 (kr) - H0 (-jkr) 

It must be noted that in the present case the surface on which the 
force distribution £(x,y) acts is herein defined as a long narrow strip where 
the width of the strip is assumed to be only a fraction of the governing 
wavelength and the length of the strip may comprise several wavelengths. 
Hence, the force distribution formally may be written as 

£(x,y) ■ £(x) • £(y) 

Moreover, the spatial distribution of the force is chosen to be real 
and the net force 

e/2 
F =   /  (7(X) dx 

-e/2 

and symmetric, i.e. 

<r(x) = a(-x) 

(2.3) 

(2.4) 

A reason for presuming a real, spatial distribution is that such a 
distribution may be realised by combining simple, passive components. 
Secondly, the symmetry is a condition for no net moment. 

2.1  Minimisation of the input power 

Consider the configuration sketched in Figure 2.1. 

.y 

Figure 2.1. An infinite plate excited by a line force distribution a 
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The complex input power may be written 

Q ■ 1 l/f*   7 £(x) *(y) v*(x,y) dxdy 
2 -ft/2 -« 

(2.5 

By using equation (2.2) one may rewrite equation (2.5) as 

Y  ft/2        ft/2 
Q - -f _tIn o(x)  dx(_ I   £(x0) n(k(x - x0)) dx„)*. (2.6) 

Principally this is the equation underlying the minimisation. For 
engineering practice however, the active power transmitted often is of pri- 
mary concern, wherefore the real part of equation (2.6) is chosen for the 
minimisation. 

Thus, with the limitations introduced above, equation (2.6) is deve- 
loped to yield 

Yn  ft/2 B/2 
W ' 2 -e^2 ff<x) dx -t^2 "{Xo) J°(k(x " XQ)) dx°  (2'7> 

where, W is the real part of Q and J0 is the zero order Bessel function. 

A more tractable formulation is obtained by setting £  = 2*  and 
n  = 2x0/ft. 

Thereby, a modified force distribution of a(x) may be written as, 

ä(<) = 2F/ft • p(f) 

where p(f) is a dimensionless spatial distribution. Hence, with a change of 
integration variables, equation (2.7) becomes 

W = ^ p2 -{ PU)  d£-( PM  J° {? U " V)) äT> <2'7a) ikft 

» 

Introducing another force distribution pn(£) which has the property of 
minimising the active input power, the latter denoted Wn, a variational 
technique can be applied. Hence, the problem may be summarised as 

and 
W = Wr 

w > wr 

if   P(«) = P0(C> 

if   P(«) ♦ P0(«) 
(2.8) 

With the constraints in equations (2.3) and (2.4) and the conditions in 
eou2ticn (2 S) imDrte''*r' rtri **»."•«»**'*** (2 Ta) one cbtsins the infinite swstSm of 
integral equations, [4], 
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-I P°U) dk Jl ^ i}  df = ° 
1     <* \3 ...   M |PC{«) (S-)  J, (|* «) df - 0        n«1,2,3...  (2.9) 

1      j 2n-1   K 
_JP0(«) (JT)    «M*1 f) df = 0 

where J1 is the first order Bessel function. 

Finally, the choise of PQ({) remains. An admissible choice for a power 
series to describe Pg(£) is 

P0(«) " i " 2, ~r + I, 82m «2K u
    2  m=1 2m+1   m=1 *m 

since it fulfils the constraints stated in equations (2.3) and (2.4). The set 
of integral equations (2.9) is solved numerically. 

Knowing the force distribution, the strip mobility may be determined. 
This quantity is proportional to the power present at the excited region and 
may be interpreted as a transition from the continuous case to the 
equivalent, single ooint case. 

From the definition of the complex strip mobility, [1] and [2], 

Y    i i 
YQ " if? _{ a(f)df_7 a(i?)* n(|i(« - *»* av (2.10) 

where £ is an arbitrary spatial distribution. 

However, in the present case where Sg(f) is real and ,e| = 1 one iray 
find that the real part of the strip mobility is 

*e[Yql = Y0 .{ P(£)d£ _{ P*7*' Jl'f-lt ~  ">) d"    (2-n> 

Inserting the power series for pn'£) in equation (2.11) and using the 
binomial theorem one may rtwrite equation (2.11) in the form, 

""v-M0^(f>^(^jf-.,i-j, a2m + 

(sn* o    T.=U   -    -1      t.      m=i 2m+1 
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3.   NUMERICAL RESULTS 

3.1  Force distribution in the case of minimised input power 

The force distribution minimising the input power is shown in 
Figure 3.1. 
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Figure 3.1. The spatial variation of the force distribution minimising the 
active power transmitted for some Helmholtz numbers. (—): ke=3, 
( ): k«=4, { ): ki=7, ( ): k4=10. 

For low Helmholtz number, kB < 1.5, the numerical unstability in order 
to solve eq. (2.9) heavily affect the solutions. However, this is with 
respect to power transmission of minor interest, since the excited region may 
be considered to be point-like. 

Increasing the Helmholtz number, one may note that maxima ari minima 
come closer and closer. The distance between the peaks and trough', is app- 
roximately half a wavelength. Comparing this case with the simpliest discre- 
te ce case, namely two point forces, where the distance between the forces is 
d. The minimum input power would be obtained when d = A/2, f5]. Finally, the 
curves in Figure 3.1 indicate that the spatial distribution is periodic, but 
the variation of the amplitude versus kt is irregular. 

3.2  Normalised strip mobility 

In Figure 3.2 the real part of the normalised strip mobility for the 
two, real, excitation conditions - the force distribution giving the minimum 
input power and the uniform force distribution - are compared. In addition, 
the input power for the case of a cosecant shaped force distribution, [1], is 
included. The latter distribution resembles that found from half-space 
theory, [6]. 
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Figure 3.2. Normalised strip mobility versus Helmholtz number. ( ): mini- 
mising force, (—): uniform force and (-•-): cosecant shaped 
force. 

It is seen from Figure 3.2 that for low Helmholtz numbers the real 
parts of the strip mobilities are equal to the ordinary point mobility for 
the two force distributions, uniform and cosecant respectively. Naturally, 
for kB low enough this, also may be found to be valid for the minimising 
force distribution. In the region of kB inbetween 1.5 and 4 one may note that 
the rea1 part of the normalised strip mobility decreases more for the mini- 
mising force distribution than for other cases. 

However, as kB increases the difference in real parts between the 
different cases diminishes. This trend may also be found valid in the cases 
of other force distributions, [7]. 

4. CONCLUSIONS 

It is found from a variational approach that there exists a real-valued 
force distribution which, in a certain range of Helmholtz numbers, reduces 
the input power in comparison with other force distributions. Furthermore the 
input power by strip excitation is significantly less than in the point 
excitation case at high Helmholtz numbers. Hence, by a proper design of the 
strip interface (including some transmission elements) between the source and 
receiver structures, the power transmission may be minimised, given a net 
force. 

For high Helmholtz numbers in the strip excitation cases investigated, 
the input power tends to be independent of the excitation distribution. The 
asymptote is that of an equivalent point excited, infinite beam. 

18 



The constraints on the force distribution, hence, whether it is set to 
be complex or real with regards to its spatial variation, is of importance. 
Thus, reformulating the constraints to incorporate a complex distribution of 
the force will give a different input power compared with that obtained for a 
real-valued force distribution. 

Finally, for the special case of a real and positive force distribu- 
tion, the minimum is obtained with the distribution derived above, superposed 
on a uniform distribution. The magntiude of the uniform part is equal to the 
minimum stress of the alternating part. This distribution is realisable 
simply by a continuous bed of springs with varying stiffness. 
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EXACT SOLUTIONS FOR WAVE PROPAGATION IN 
RINGS AND ARCHES ON ELASTIC FOUNDATIONS 

Omer A. Fettahlioglu 
New York Institute of Technology 

1.    INTRODUCTION 

The purpose of this paper is to present closed-form solutions for the 
characteristics of traveling elastic waves in circularly curved thin rings and 
arches on elastic foundations, and then to exhibit the effects of extensional 
and shearing deformations and elastic foundations on the frequencies, phase 
and group velocities of the propagating waves in rings and arches with various 
boundary conditions. 

The present treatis« which deals with the problem in its general form 
has been developed previously in [1] from variational considerations using 
Hamilton's principle to derive the exact equations of motion for thin circu- 
larly curved beams and rings, together with consistent boundary, discontinuity 
and initial conditions in terms of the radial and tangential midsurface 
displacements and the rotation of the normal. The theory accounts for the 
effects of extensional, flexural and shearing deformations, and rotatory 
Inertia. The effects of distributed elastic foundations in the radial, tangen- 
tial and rotational directions are also incorporated into the equations of 
motion. 

! 

The vibration and wave propagation analysis on which the present investi- 
gation is based properly begins with the resolution of the foregoing equations 
of motion given in [2] into three-uncoupled sixth order homogeneous differen- 
tial equations in terms of radial and tangential midsurface displacements, and 
the rotatioa Using the classical form for the traveling wave solution, the 
exact equations for the frequency, phase and group velocities are derived 
herein for closed rings in terms of flexural, transverse shearing and exten- 
sional stiffnesses as well as the three spring constants of the elastic founda- 
tions as precisely identifiable parameters. The frequency equation reduces to 
that found by Lamb [3] neglecting the effects of extensional and shearing 
deformations, and elastic foundations. The governing dispersion relations are 
derived and exhibited in terms of short and long wave lengths, cutoff fre- 
quencies and standing waves. The effects of extensibility and/or shearing 
deformation and elastic foundations are also examined. 

With the exception of G^ff [*], little attention has been given to wave 
propagation in rings with or without the effects of extensional and shearing 
deformations. Dispersion curves and frequency spectra wherein the effects of 
elastic foundations, curvature, extensibility, shearing deforation and rota- 
tory inertia on the wave propagation characteristics of rings and arches of 
various boundary conditions may be assessed, are not available in the litera- 
ture. Moreover, Graff's frequency and phase velocity equations which neglected 
elastic foundations, the shearing deformation and the rotatory inertia do not 
reduce to the classical inex*ensional solutioa This is due to the fact that 
the effect of the tangential displacement on the rotation of the normal was 
not included in his strain-displacement relation which yields inconsistency in 
the resulting equations of motion. Furthermore«, Graff's study is confined to 
phase velocity only, thus in fact leaving out the group velocity with which 
the energy propagates. 
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Exact solutions for the midsurface displacements in the radial and 
tangential directions, the rotation and the stress resultants are also derived 
for steep arches in terms of six independent constants of integration. The fre- 
quency spectra for the steep arches with elastic foundations (fixed-fixed, 
fixed-hinged and hinged-hinged) are then developed by means of the exact 
deformations and stress resultants. 

2.    GOVERNING EQUATIONS 

A thin circular ring element (Fig. 1) that is symmetrical about the plan 
of its centroidal axis is considered to be deformed in ths plane of its 
initial curvature with normals preserved in the process (Bernoulli - Euler 
hypothesis). 

The present treatise properly begins with the steady-state solution of 
the deformation equations of motion of the following form given in [1]: 

a(v'-w)+c(w*,+v'-Rif* )-RjRw = pAR* 

a(v"-w')-c(w'+v-R<p)-K2Rv r pARV (1) 

DR2<p"+cR(w'+v-R9)-R3R<|> = pIR? 

in which dots and primes denote differentiation with respect to time and 
8, respectively, and p is the mass density of the ring. The spring 
constants of the elastic foundations lt\ , Kg and k3 indicate their 
resistances in the radial, tangential and rotational directions. The stiffness 
constants are defined as 

a = EA/R   i b = EI/R3    ; c - fAG/R (2) 

where A, I and f are the area, the moment of inertia of the cross section and 
the form factor for shear, respectively. 

The propagation characteristics of rings and arches are developed by 
considering the solutions of (1) for the dimensionless vector of deformations 
of the form 

2(6, T) .- 1(6). exp(i(o*T) (3) 
where, 

* *   [w/R,   v/R,   *)T (4) 

Y =   [V,   V,   +]T , Aexp(-iA8) (5) 

in which A is th? eigenvector whose components are the maximum amplitudes of 
the deformations. The dimensionless wave number and the phase velocity are 

X -- Rm ;        y » OVA (6) 

in which m is the dimensional wave number; and O* is related to the 
dimensional   circular   frequency,   w    as   follows: 

O» r ozX =  (t/r)w ; wR(p/E)X (7) 

The   term   (E/p)X   is   the   bar    velocity.   The   dimensionless   time,   T 
in terms of the dimensional time,  t is chosen to be:  T=(t/R)(E/p)X 

22 

i 



^\ 
"W 

3. SOLUTION FOR CLOSED RINGS 

The substitution of (3) into the normalized form of (1) and the elimina- 
tion of V,V and ♦ successively (considering the operational coefficients 
of the variables V, V and 4>) with the notation of D=d/d8 yields a 
system of homogeneous equations whose nontrivial solution exist, if and only 
if the determinant of its coefficient matrix is equal to zero. 

(V(B)' 

V(8)      =    0 (8) 

♦(6), 

where,   letting O^O^R^pA/EI) (9) 

at = a»nz(2»X)-z(<j1x><j2)-<J3/z 

cfc  --   (OZ)2(l+2X)«0(Z-XZ-l)U#(J1(l-2aXZ2+Z)*(52Z(X-CiXZ-aZ)-<}3(0*aX*2/Z)+ 

a3 : (fS)3x-(az)2(i*x)-fi2z»o(i«z)«(jl(a2)(i*z-c5C#)i<52i-iiaz(itzx)- 

cßzhO*i3tCi{i*K)-C^7X-i/Z)+6l62Z* (CEfo-l )»<52<}3X(CK-i )♦ 

The dimensionless spring constants of the foundations are defined in the form 

dj  =  KtRVEl      ;     h '■  H2R4/EI        i     <S3 =  K3/EA (10) 

The  dimensionless  quantities  Z and  X are the  measures of extensibility and 
shearing deformation, respectively, and are given by the relations 

X s a/c = E/fG     and     Z = b/a = I/AR2 (11) 

3. 1      Frequencies 

The subsequent substitution of (5) into (8) gives the frequency equation 

B^B^oS^B^B», = 0 (12) 
where, 

Bi  - XZ3; 

Bfc :   -CX2Z2(lt2X)+Ze(l»X)«ZiXZ(<51Z
2*<S2Z2»<53)3 

B3 :   X/|Z(2»X)n2(i-Z(l-X)3il»Z»(J1Z(2X2XZ#i»Z)»(J2ZtZx2(l«X)«l*ZX3« 

63H*kz)(l*X)*7Xl6i6z'2?*6z63*ii63) 

», =   -X2(X2-l)2-<J1X2(X2XZ»l«Z)-<52(Xi,Z«X2ZX*l)-<>3(l/Z)(X2-l)2- 

«JtdgZ« x2zx*i) -<jg<s3{ x2*x)-<j1a3( 1 »xx2 )-6^S3TX. 

The frequency polynomial (12) rewritten in terms of wave number is: 

X6-a1Xi»«o^X2-a3 = 0 
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For the special case of inextensibility (Z=0) and 1)3=0, the frequency 
polynomial (12) takes the form 

O2 --   txSuS-i^^jX^^Vd»*2) <13) 

which reduces to the form given by Lamb [3] in the absence of elastic founda- 
tions. Cutoff frequencies are obtained at X=0 for the three branches of 
the frequency spectra as follows: 

0!2=0 ; <fe2.-(i»Z*iJ/Z      i    Q32--(1+Z)/XZ2 (14) 

Computer results clearly indicate in Fig.2 and Table 1 that the elastic 
foundation, 6^ has a pronounced effect on the frequencies for wave 
numbers less than about 10, that is for long wave lengths; however, this 
effect attenuates as the wave number increases beyond 10. It Is also clear 
that the effect of extensibility increases significantly as the wave number 
increases from about five. The shearing deformation has also a considerable 
effect on the fundamental frequency, only for wave numbers greater than about 
five. 

An enlargement of the frequency of the first mode in the long wavelength 
region of Fig. 2 (in the absence of elastic foundations) would reveal that the 
fundamental frequency increases from zero at X=0 to a maximum of small 
magnitude, 0.34 at X=0.5; then it decreases to become zero at X = l, 
Table 1. In the absence of elastic foundation the phase velocity is also zero 
at   X=l   given   later   by   equation   (21). 

3.2     Velocities 

The roots of the frequency equation (12) give the solutions of the 
propagating waves of the following form for the vector of deformations (3) by 
means   of  (6)  and  (7): 

2 -- A.\xp[i(yr-9)X) (15) 

Consequently, (12) is transformed into a cubic in y2 or a quadratic 
polynomial  in X2 neglecting <jg and ($3 

X4(XZ)Y6-X2[X2Z(i»2X)iZ(l»X)U»>C22d1]y4»{X4Z(2+X)«X2(l-Z(l-X))«l»Z4 

«51Z(2X2XZtl»Z))Y2-Z[(X2-l)2«(51(X2XZtZ*l))  :0 (16) 

The group velocity, Vg which is the velocity of tnergy propagation 
is determined from either the slope of the tangent to the frequency diagram or 
the slope of the tangent to the phase velocity diagram by the formula 

Vg = dO*/3X = y*X3v/dX (17) 

From the former point of view using (7) 

Vg T  dQVdX  ■■  C/D (16) 

C = ZXi»ty',(lt2X)-2y2(2tX)*3)-X2tY2{l-ZtXZt2XZ2<51;«2Z(2-XZ<J1)) 

♦ZUtdjdtZ)] 

D = zx^yiaxyi^^inaxitafXitx^i^jztzxt^xijtijti-Zd-x) 

♦2X#<S1)ty(l4Z)(ltZ<J1) 
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For the special case of inextensifaility (Z=0), (16) and (id) reduce to the 
forms 

Vl£ •■ 0 ;  y2
2 =   (X2*l)/X2    and   Vgl  = 0 j  Vg2 s  l/y2 (19) 

Analytic solutions for certain limiting and special cases of the preceding 
equations are easily obtained as  follows: 

1) Short wave length limit. For X->o», two horizontal asymptotes 
shown in Fig.3 are obtained from (16) and (18) associated with the phase and 
group  velocities 

y : Vj, =  1       gives vp = Vg =  (E/p)X   , bar velocity 

y : Vg = X~X   gives vp = Vg =  (fG/p)X   , shear velocity 

where, vp and vg are dimensional phase and group velocities, respec- 
tively. 

2) Lone wave length limit. For X->0, the resulting limits are of the 
form 

y2 -- Vg2 = Z[l*6ill*Z)i/lUZ){UZ6i) (20) 

3) Standing  waves.   Substitution  of   y=0  in   (16)  gives   the  corres- 
ponding value of the wave number to be determined from the equation: 

x'*-X2(2-XZ<51)tltd1(l+Z) : 0 (21) 

which yields X=l neglecting the elastic foundation. With the inclusion of 
the elastic foundation, however, (21) has no roots. In fact the phase velocity 
(ift) has a minimum 

^min s Zt(X2-l)2«<J1l/(X2ii) (22) 

at a wave number 

X2 8  I2(<J1t4)X-2-XZ<}1V2 (23) 

These special cases provide useful checks for the numerical computations of the 
various dispersion curves. The group velocity has a jump discontinuity when the 
phase velocity is zero at X=l; however, with the inclusion of the elastic 
foundation it becomes a continuous function exhibiting a minimum lower than the 
minimum phase velocity, at a wave number greater than two, Fig. 4. Indeed, for 
the first mode Y<Vg when 3y/3X>0 on the short wave length 
branch, which is referred to as anomalous dispersion; conversely, Vg<y 
when dy/dX<0 on the long wave length branch, for which the normal 
dispersion occurs, Fig. 3 and 4. Moreover, for very long waves the first mode 
has negative group velocity. This implies that energy is propagated in the 
direction opposite to that of traveling waves as also was shown by Lamb [5] and 
Crandall [6,7] on straight wires and beams, respectively. The lowest mode phase 
and group velocities are asymptotic to the shear velocity, X~X for very 
large wave numbers; however, the higher phase and group velocities of the second 
and third modes are asymptotic to the bar velocity at very largt wave numbers. 
For the second and third modes the group velocity is always less than the phase 
velocity. Table 2 presents exact numerical values of the phase velocities 
corresponding to various levels of X and Z effects for numerous wave numbers. 
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The present steady-state solution indicates that there are three "criti- 
cal" load speeds. These are equal to (i) the speed of propagation in a bar, (2) 
the speed of shear waves, and (3) the substantially lower minimum phase velo- 
city. 

4.   SOLUTION FOR ARCHES 

The general solution of (8) gives the auxiliary equation 

r^c^r^tag^+aj = 0 (2*) 

The roots of this polynomial (24) are functions of Oj and the elimination 
of the arbitrary constants from the six boundary conditions (three for each 
end) gives the frequency values. The behavior of the roots of (24) is determi- 
ned by substituting the value of ?5 calculated from Lamb's "classical" 
inextensional solution [3]; the result is 3 pairs of complex-conjugate roots. 
Therefore,  the general  solution  of (8) for steep arches (a > 180) is 

V =   (exp PieHCjcosq^e+Cgsinqiejt (exp pgSJ^cosqge+C^sinqgS) 

+ (exp p3e)(C5COsq3e+C6sinq30) (25) 

The    expressions for V and ♦ are similarly written in terms of constants F 
ar.u H,   respectively.   The eighteen constants of integration are not all indepen- 
dent.    The conditions that insure that the equations of motion (1) are identi- 
cally   satisfied   by the substitution of the foregoing deformations (25) yield 
after substantial algebra the admissible deformations in terms of six indepen- 
dent    constants   of integration:  Cj,   i = i,...6.   The relations which connect 
the    twelve    dependent constants to the six independent constants are given in 
the   Appendix.     The    stress    resultants   are    then obtained from their general 
expressions given in [1,2). 

Arches of any boundary conditions can then be analyzed in a consistent 
manner accounting for the effects of extensional and shearing deformations, 
and tfte elastic foundation in the radial direction. The conditions yield six 
simultaneous homogeneous algebraic equations in terms of the frequency, the 
roots of the auxiliary equation (24) and the six independent constants of 
integration, Cj (1 = 1... 6). The determinant of the coefficient matrix must 
vanish for a nontrivia! solution of the boundary equations. In this analysis a 
trial frequency is calculated from Lamb's inextensional formula; thus permit- 
ting the explicit solution of the auxiliary equatioa With the assumed value 
of frequency and the calculated values of the roots of (24), the determinant 
is solved using UMJ "reguia faisi" method  (rule of false position). 

The effect of the elastic foundation on the fundamental frequency with 
respect to the angular span is exhibited in Fig. 5 for fixed-fixed, fixed- 
hinged and two-hinged arches. The effects of extensibility and transverse 
shear are illustrated in Table 3 for the fixed arch, wherein, an increase in 
each of the measures of extensional and shearing deformations causes a de- 
crease in frequencies. 

The calculations were performed usiong ADA computer program [8) which is 
written in FORTRAN IV. ADA runs presently on VAX 11/780 supermini computer of 
New York Institute of Technology under operating system VMS 4.6 , and is 
currently being revised for implementation on IBM-PC compatible hardware. 
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7. APPENDIX 

The deformations in arches are 

V =   (exp  p10)(Cicosqje+Cgsinqje)+(exp  p28)(C3cosq26+C4sinq26 ) 

> +   (exp  p3e)(C5cosq3e+CDsinq38) 

V =   (exp  PiÖHCjYi + CgYaJ+fexp  p26) <C3Y3+C4Y4) 

+   (exp  P3e)(C5Y5+C6Y6) 

♦  =   (exp  p1e)(01Y7+C2Y8)+(exp  p29)(C3Y9+C4Yt0) 

+ (exp P38)(C5Y11+C6Y12; 

The bending moment [1,2] takes the form 

M«   *   -<R/EI)M =   (d^/dO) 
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M«   =   (exp  p1e)[C1(q1Y6-PlY7)-C2(qlY7*PlY8)J 

♦(exp P2e)CC3(q2Y10-P2Y9)-C4(q2Y9+p2Y,0)) 

♦ (exp  PsejtCstqjYjj-pjYjt)-C6(q3Y114P3Y1g)] 

where, 

Yj   :   Dicosqi9+Dgsinq^e ; 

Yg c-Dgcosqj8+D|Sinqj0 

Y3 :   D3COSq20+DijSinq2e 

Y4 :   -D4COsqge+D3sinqg8 

Yg -   DsCOsq^e+DjSinqjS 

Y6 =   -D6cosq3e+D5sinq38 

Y7   :   D7co3qle-Desinq18 

Yg   :   Dacosqj6*D7sinqjfl 

Y9   a   D9Cosq20-D}QSinq2e 

Yjo  s   DjQCOsq28«D9Sinq2e 

Yll   :   DiiCOsq3e-D12sinq3e 

Yj2   =   D12COsq3e+Diis;nq38 

Dl = t-Pi(Ki'+JC2' )-h4(K1H11-K2H12) + h7Z(K1H12+K2H11)]/(Kl'+K2« ) 

D2=[qi(Ki»+K2' )*hliil!:iHl2*XiHll)*h7Z{KlHii-ZZHiZ))/(ti**Kit ) 

D3=t-P2(K3»+K4* )-h5(r3H33-K4H34) + haZ«K3H34+i:4H33)]/(K3i+KJli  ) 

D4--[q2<K3«+K4» ) + h5 (K3H34+K4H33 )+h8Z (K3H33-K4H34)]/ (K3» +£4' ) 

Ds^-PsO^*+*6* )-h6(K5H55-K6H56) + h9Z(K5H56+K6H55))/(t5«*K6« ) 

De'^ds' **(>' ) + h6(E5H56+K6H55)+h9Z(K5H55-K6H56)]/<K5«+K6' ) 

D7=[K1H11-K2H12]/(IC1«+K2«  )     ;      De=[KlH12+K2H11J/(i:1«+K2« ) 

D9--[K3H33-K4H34]/(E3'+K4' )     ;      D10= [K3H34+L4H33] / <K3» +K4« ) 

Dll"^tK5H55-K6H56)/(K5,♦K6, )     5      D12= tK5H56*Z6H55]/(K5«+K6i ) 

El   =   l-hih4+Zh7
2  j   E2   5   h4h7+Zhih7   j   K3   =   i-h^hs+Zhg2 

K4  =   h5h8+Zh2h8    :   *5  =   l-h3h6+Zh92  j   K6  =  h6h9+Zh3h9 

Hi 4 = hi Pi -hTQ 1 + h« nl     Hi 9 : hi a« + hrrDi + hi 1 :     Hi 3 s hilli- hoO->4 hi •> 

H34=h2(l.-   h8P24h13:   H55 = h3P3-h9q3+h14;   H56:h3q3+h9P3+hl5 

h1=X<p12-q12)+l1   ;    h2--X(p2
2-q2

2)+l1   ;    h3 = X (p3
2-q3

2 )+ J t 

h4^XZ(p1
2-qi2)+l2;    h5rXZ(p2

2-q2
2)+,l2;    h6 = XZ (p3

2-q3
2 )♦ 12 

h7=2piqiX  ;   ha=2p2q2X  j   h9=ap3q3X   ;    h10=(X+l)pt 

l»il'<X+l)qi   ;   h12MX+l)p3   ;   h13=(X+l)q2   ;   h14=<X+l)p3 

h15=(X+l)q3 ;    \r.XZ(Q-6&)-l ;    l2tX (QZ2-<J3 )-l 
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Table   I.     Effects   of  Sheartng  and  Extenslonal   Deformations   and 
Elastic   Foundations   on   Frequencies   of   a   Free   Ring 

rli n» 
X 0.0 3.0 3.0 

Z 0.0 0.001 0.0 0.001 0.00! 

X 0 500 0 500 0 500 0 500 0 500 

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 31 .62 38.72 

1 0.0 15.81 0.0 14.80 0.0 15.81 0.0 14.80 44.69 47.73 

2 2.68 20.17 2.68 19.93 2.68 20.18 2.66 19.92 70.68 71 .44 

3 7.58 22.53 7.55 22.37 7.58 22.52 7.45 22.34 99.98 100.2 

4 14.55 26. 12 14.43 25.89 14.55 26. 12 14.10 25.73 130.3 130.5 

8 62.50 66.30 60.60 64.30 62.50 66.30 55.97 60.02 255.0 255.0 

12 14-2.5 144.2 133.2 134.8 142.5 144.2 1 15.0 1 17.0 381 .0 381 .0 

16 254.5 255.5 227.0 227.9 254.5 255.5 183.5 184.7 507.0 507.0 

32 1023 1023 718.5 718.7 1023 1023 486.5 489.0 1013 1013 

Table   2.      Effects   of   Sheartng   and   Extenslonal    Deformations   and 
Elastic   Foundations   on   Phase   Velocities   of   a   Free   Ring 

% 1 a 

y 3 n 1 r\ 3 0 

Z 0.0001 0.001 0.0001 0.001 0.0001 0.001 

X 0 500 0 500 0 500 0 500 0 500 0 500 

0.2 .009 .214 .029 .572 .009 .214 .029 .572 5.098 5.217 5.099 6. !78 

1 0 .157 0 .468 0 .157 0 .468 1 .414 1 .423 1 .414 1 .509 

2 .013 .010 .042 .'315 .013 .100 .0415 .315 1 . 1 17 1 . 1 19 1 . 1 1 7 1 . 130 

10 .096 .099 .265 .273 .094 .096 .217 .228 1 .004 1 .004 I .004 1 .005 

20 . 185 . 185 .406 .408 . 167 .167 .279 .281 1 .001 1 .001 1 .001 1 .001 

100 .481 .481 .564 .564 .300 .300 .314 .315 1 .00 1 .00 1 .00 1 .00 
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P(0) 

Flg. I. Geometry of a Ring EUment 

Table 3.  Effects of Extenslonal and Shearing Deformations and 
Elastic Foundations on Frequencies of Fixed-Arches 

ni 

Of 200° 260* 

X 0 3 3 

H 0 50 0 30 50 0 30 50 

.0000 3.308 6.281 3.308 5.301 6.281 1 .562 3.940 4. «97 

.0007 3.299 6.233 3.266 5.247 6.210 1 .551 3.908 4.840 

.0050 3.242 5.931 3.039 4.946 5.800 1 .488 3.718 4.505 

30 



T 

1     2     3     A 5     6     7     8 

WAVE NUMBER, X 

Fig. 2  Effect of the elastic foundation on the 
frequencies of a free ring, 
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Fig. 3  Variation of phase and group velocities * • fh wave number 
for a free ring and short wave lengths v">*3 i Z=0.000l). 

32 



^r wwm'    "   *" ' '' ■^P^-^WP^^W* 

y v 

0.20 

0.18 

0. 16 

0. 14      - 

0.12      - 

0. 10      - 

0.08      - 

0.06      - 

0.04      - 

0.02      - 

4 6 

WAVE NUMBER,   X 

Fig. 4  Enlargement of long wavelength region of first 
mode of Fig. 3 (X=3 j Z=0.000l). 
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VIBRATION ANALYSIS OF FINITE  UNIFORM STRUCTURES USING THE HARMONIC RESPONSE 
FUNCTIONS OF THE INFINITE STRUCTURE 

D.J. Mead and Y. Yaman 

Department of Aeronautics & Astronautics 
University of Southampton 

Southampton S09 5NH, England 

Summary 

The harmonic response of a uniform infinite structure (e.g. a beam, flat plate, sandwich 
plate etc) to a point force or moment can usually be found in closed form by solving the 
corresponding wave equation. The motion of the infinite structure can then be easily 
understood in terms of the wave motion generated by the source. The harmonic transfer 
function so obtained can very easily be incorporated in an analysis to study the forced harmonic 
response of a finite structure to a point force when that structure is on multiple supports having 
elastic and inertial properties. The method has already been applied by one of the authors to 
determine the propagation constants of infinite periodic structures This paper shows how the 
concepts may be applied to finite uniform structures. As an introductory example Euler-Bernoulli 
beams on multiple irregular supports are studied. Harmonic responses are easily found. Both 
single-point and multi-point harmonic excitation can be studied wth equal facility The forced 
response of a single-point-excited infinite periodic beam is also demonstrated, this having 
application to railway lines on their flexible sleepers. Damping is easily included in the system. 
An example is also shown of the response of a heavily-damped sandwich piate which is stiffened 
at regular intervals and is excited by a line force. The superiority of chis method over other 
methods of analysis described. 

1.     '   INTRODUCTION 

In a previous study [1], Mead analysed the wave propagation in periodic uniform beams 
and plates. The systems were infinite in extent and had harmonic p'nased arrays of forces and 
moments imposed upon them by the supports at regu'ar intervals. The concept of an 'Infinite 
system point receptance function' was used. This function gives the response of the infinite 
uniform structure to just one harmonic force or moment and is easy to calculate 

The method of [1] has subsequently been applied to the study of free wave propagation 
in a uniform three-layered sandwich plate and has been found to yield satisfactory results. The 
forced response of the three-layered plate when forced in one of its bays by a harmonic force or 
moment has aiso been studied. It was found that the total response due to each of the supports 
and external forces can conveniently be analysed by considering their appropriate individual 
infinite system point receptance functions. 

These results encouraged further analyses of multibay finite structures using these 
functions. The conventional methods of analysis, such as finite structrue receptance approaches, 
can be very long and often tedious. The analysis gets further complicated if one wants to include 
both inertial and elastic properties of the supports (e.g. stiffeners on the piate). The purpose of 
the current study is therefore to develop this easy-to-apply and accurate analystical method. 

In finite uniform structures, each external excitation sends out waves in both directions as 
in the case of infinite structures and these outgoing waves are reflected from the ends The 
magnitudes of the reflected waves and the magnitudes of any intermediate reactions which may 
exist constitute the unknowns. They can be found by satisfying the relevant boundary conditions 
of the total structure at each end and at each intermediate support and forming these boundary 
conditions into a matrix equation for the unknowns. These equations enable one to analyse 
different external loading conditions with great ease. 

This paper basically illustrates the method by applying it to the simple cases of uniform 
Euler-Bernoulli beams having various support conditions. Damping was introduced through the 
complex flexural rigidity, in the form of El (1 +iri). Some results obtained from these beams are 
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presented together with some results from the more complicated case of sandwich plates 
supported on stiffeners. 

2.       THEORY 

Consider the infinite beam of Figure 1(a). When a harmonic force F0eiwl acts on the beam 
at i = 0 the transverse motion to the right or left of the force can be expressed in the form; 

™ -*  X   lUlt 

w(x,t) =  y   a e    * e 
.<--      n 

(1=1 

(1) 

-OO 

F„e A r° 
iojt w(x,t) 

Hx 9(x,t) 

"\Mo 

x 
w(x,t) 

S 8(x,t) 

X=0   \yL J 

3 ►      CO (a) 

(b) 

Figure 1. 
(a) 
(b) 

Diagram of Forcing, Response and Sign Conventions 
Infinite Beam with a Harmonic Force 
Infinite Beam with a Harmonic Moment. 

The kn's are the wave numbers of the N free waves which can travel in the positive 
direction in the beam. A purely real wave number implies a decaying motion, whereas a purely 
imaginary one define« a propagating motion with constant amplitude. N depends on the 
number of degrees of freedom of the cross-section of the beam. For an Euler-Bernoulli beam 
N = 2, the freedoms being transverse motion and rotation. In this case k\ = k and hi = '*. where 
k = (pwVEDi. In the case of three layered uniform sandwich plate N - 3 at low frequencies. 

Figure 1(b) shows an infinite uniform beam subjected to a harmonic moment. In this case 
the transverse motion to the right of the moment can be written as, 

' -I. iwt 
w(x,t) = M    >   be    " e 

n-1 

Similar expressions can be written for the rotations 9 = dwldx as follows: 

(2) 

9{x,t) = F   Tee    " e 
(3) 

k i tut 
9M = W   Y de    * e (4) 

Expressions for the coefficients an, 6„, c„, d„ can easily be found by consic jring the 
relevant equilibrium conditions at the point of application of the force or momer.c. For a 
uniform Euler-Bernoulli beam they are determined as [1] 
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at = -l/4£/*3 a2 = iai 
61 = -l/4£/*2 62 = -61 
ci = l/4£rt2 c2 = -Cl 

<*! = ViEIk d<i - id\ 
(5) 

In all the subsequent work, it will be asumed that all the forces and displacements are 
harmonic, so the eiwt term will usually be omitted. 

2.1       The Forced Response of a Finite Beam 

When a finite structure is harmonically forced at a point, the wave motion generated by 
the applied force propagates outwards to the ends where the waves are reflected In the case of 
uniform beams, one propagating and one near-field wave are reflected from each end and the',e 
travel back to the other end of the beam. Total motion in the beam is therefore the sum of the 
motion generated by the applied force as if it was acting on an infinite beam pi us the motion due 
to the four reflected waves. Figure 2 illustrates this total wave system for an Euler-Bernoulli 
beam. 

Figure 2. The Generated and Reflected Wr.ves of a Finite Uniform Beam Under the 
Influence of a Single Applied Force 

Within the context of the current study the reflected waves will be called 'free waves' 
whereas the motion generated by the applied forces will be referred to as 'forced wave'. Hence 
by considering the Figures 1 and 2 it can be seen that the forced wave responses are given by the 
relevant infinite system point receptance functions of equations (1) to (4) On the other hand the 
free wave response of the culer-Bernoulli beam is given by, 

* *.„ 1 (6) 
mix) =   Y V 

n = l 

where the A„'s are the coefficients yet to be determined from the boundary conditions. As 
an introductory example assume that the two extreme ends are simply-supported. By satisfying 
the appropriate boundary conditions the following equations can be obtained. 

4 2 _. 

wM = 0:YA+FS>'ae    " °= 0 -•—       n o   *—      n 
«=1 n = l 

w{o) = 0 :   Y  k2A   +F   y  k2 a e    "X°= 0 
*-•     n   n        o  *—     n   n 
n=l n=l 

w(L) = 0 :   y   A2A e " + F   >   k2a e    "       ° -0 
n=l n=l 

* k L 2 -k It-il /7\ 
w(L) = 0 :   y A e " + F   Y  a e    "       ° = 0 K'> 

4m*      n 0  J—     n 
n=l n = l 
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where "" indicates d2/dx2 

These simultaneous equations can be put into a matrix form and the resultant equation 
for the 4 unknown A„'s becomes: 

1 1 

ft2 k2 -k2 -k2 

k2kL    k2g-kL     _k2eikL    _k2e-ikL 

U. -kL ikL -ikL e e e e 

F Iv -*  *, 
n = l 

-i 0 

-* *~ 
F Y *2°« ~""° o ^—     -l   N 

-i=l 

r     '   ft a e 
o -—     -t   n 

-1 = 1 

F   >  a e 
o ^—     1 

-i = l 
-"(8) 

2 2       The Response of a Finite Beam to Multiple Forces 

Consider the beam of Figure 2 and assume that another force with a magnitude of Fi 
acts at i/. If the ends are simply-supported, the matrix equation can be shown to be: 

l.i l 

*2       k*        -*2        -A2 

hiJL    tl,-tt     _A2e.«.    _t2e-i«. 

r- — 

*2 

A4 

.1 = 1 -i - 1 

F   V *2ao "*Fjl!.«    »'" 
o ^—     fi   n 1 *—     n     n 

« = t n=l 

r    >   ft a e -f r ,   >   ft a e 

^ -A  <L-x_) 2 -*  IL-x.) 
F  \ a e    "       °+F, Y a e    n       ' 

n = l r» = J 

(9) 

Again, as in the previous section, the terms relating to the known external forces appear 
on the right hand side and those relating to the free (reflected) response are contained within 
the matrix on the left-hand side. One can easily and conveniently incorporate any number of 
external forces and/or any combination of external loadings. Notice that the left hand side of 
Equation (9) is identical to that of Equation (8). 

38 

i 



Once the unknown A„'s are found the total response V at any point ir can be 
determined as: 

k x 
w(x)~ y A e " r + F  y a e 

-k Ix - Ix -xJ 
n   r     u 

*  Ix  -x,l 

1 X—     n 
n = l 

(10) 

2.3       The Response of Finite Multi-Supported Beam 

2.3.1 The Beam on Simple Supports 

Now consider a six bay finite uniform beam on simple supports. Figure 3 represents the 
model. The intermediate supports supply unknown transverse forces each of which generates its 
own 'forced wave field' identical in form to the forced waves of the external forces, but 
porportional to the unknown reaction force. There are still four free waves' reflected back from 
the extreme ends. Hence the total number of unknowns are the magnitudes of four 'free waves' 
plus the magnitudes of the reactions R at the intermediate supports. This requires further 
equations which are found by satisfying the boundary conditions at each intermediate support 
location. 

Consider the condition at the support x = x2. The displacement at this point due to all 
the intermediate support reactions ßxp(p = 1, 5), the external force Fo and the waves reflected 
from the ends is, 

»<^-IV   +8,ilv ^Iv ^Iv 
n=l ra= 1 n=l n = i 

-vw 

rüjae    rt4    ^ + S Jae    " 5    2 +F  T a e -VVX2> (11) 

n=\ n=\ 

Similar expressions can be written down for the other intermediate supports. If these 
supports do not deflect, the corresponding vertical displacements should be set to zero. This 
yields 5 equations. Another 4 can be written down to express zero displacement and curvature at 
the beam ends. Altogether we now have 9 equations for the 9 unknowns (5 R x p's and 4 A„'s) 
and they are found by numerical solution of the equation. 

Xo TFo 

*l-*x2 "             t 

x5    _ 
 *. 

 H   M 

L 

Figure 3. 6 Bay Uniform Beam on Simple Supports 

The response at any point xr on the beam is now found from, 
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4 k  X 2 -*  Ix -x /        5 ? 

iv(x) = T A e " r + F  V a e    " °    r+yfi    T«, 
-*.*_-*_/   „=.       ^      -*„VV (12) 

n=l n=l p=l n=l 

2 3.2  The Finite Beam an Transversely Elastic Supports 

Now suppose the support at XJ is elastic, requiring a transverse force of sj to produce unit 
u; (xj). The reaction force Rj is given by Rj = -SjUiixj). Using Equation (11) for w (xj) one then finds 
the modified boundary condition for support x} (after some rearrangement) to be, 

2        -*„'*,-*,'     1 
Y A e " >+ Y R    Yae    nm    J   +R     T a e    " J    ' + - 
—      n *—      m A—     n j\   *—     n s 

m = 1 

= -F ya 

n~ 1 m-1 rc = l 1 = 1 

2 -* ix -x   I 
no     j 

€ J (13) 

n = l 

Five such equations exist for five elastic intermediate supports and four other equations 
exist which represent the boundary conditions at the extreme ends of the beam (as before) If 
those ends are elastically supported, the corresponding equations must be modif^d to allow for 
the support flexibility. The nine equations in all are easily solved for the unknown A„'s and 
R xp'i, allowing the response w(xr) to be calculated. 

3.        COMPUTED RESULTS AND DISCUSSION 

In order to verify the validity of the method, it was first applied to some simple cases 
where results from previous investigations are available. The above equations have been 
programmed for computer and have been studied for a number of cases. In the case of uniform 
Euler-Bernoulli beams the following non-dimensional parameters have been used. 

ND Frequency Q :  uXL? (p/El)y2 

ND Receptance: 
El 

F V XL3 

ND Transverse Stiffness 8Air) 
Wi tCre 

Ira*], XL = Bay Length [m], p = mass per unit length [kg/m], o> - Angular Frequency [radJs], s< = 
Translational Stiffness [Nlm]. 

3.1        Finite Beam on Simple Supports 

A six bay uniform beam having equal bays was considered. The intermediate supports 
were taken as simple ones, whereas the outer edge conditions were in turn made i) Simply- 
Supported, ii) Clamped-Clamped, iii) Free-Free. Very low damping (rj o 0.000001) was assigned 
to *he beams, and the frequency response curves were generated by using equation (12). 
Resonance frequencies were very precisely located by an iterative procedure. Figure 4 shows the 
frequency response curws (i.e. receptances vs frequency). The resonance frequencies obtained 
from these are compared in Table 1 with the natural frequencies of the beams quoted in [2].  It 
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can be seen that on the whole the agreement reached is impeccable, with a maximum difference 
of 0.2%. 

Simply-Supported Clamped-Clamped Free-Free 

Nat. Freq        Ref. 2       Present Ref. 2        Present Ref. 2     Present 
Work Work Work 

1 9.87 9.87 10.63 10.63 2.36 2 36 

2 10.63 10.63 12.65 12.65 2.38 2 38 

3 12.65 12.65 15.42 15.42 10.69 10.69 

4 15.42 15.42 18.47 18.47 12.73 12.73 

5 18.43 18.47 21.18 21.17 15.42 15.42 

6 21.18 21.17 2237 22 37 18 36 18.36 

Table 1. Comparison of Uniform Beam Natural Frequencies (fi's) 

The modes of vibration of the beam with free ends have been computed from equation 
(12) for two particular frequencies and these are presented in Figure 5. As can be seen they 
represent the fundamental symmetric and antisymmetric modes. 

3.2 Infinite Beam on Periodic Transversely Flexible Supports 

Space has not permitted the presentation of the theory for this beam, so this must be the 
subject of a future publication. However, a combination of this approach already outlined, 
together with the use of phased-array receptance functions [1] has permitted the calculation of 
the response :n an infinite beam to a single point force acting at x from the left-hand end of the 
excited bay (Bay length = XL). Figure 6 shows the ND response at the loading point, for 
different values of x. This particular problem can be applied to railway line vibration theory, tho 
line beinc. • upported on periodic flexible sleepers. 

Figure 6 shows that at low frequencies the response increases as the loading point moves 
towards the centre of the bay. At higher frequencies, the response may be highest when the 
load acts elsewhere. As the beam is now periodic, the peak responses occur in the characteeristic 
'frequency pass-bands', with much lower responses in the intermediate 'attenuation bands'. 

3.3 Finite Three-layered Sandwich Plate on Periodic Stiffeners 

A uniform sandwich plate having two ecal face plates has next been considered. A 
sinusoidal line force excitation was assumed to a^t in the middle of the second bay The plate 
rested on simple supports along the length whereas across the width the stiffeners having elastic 
and inertia! properties provided the constraints. The coupling between the tranverse and 
torsional motions of the stiffener was included in the analysis. Damping ß was introduced 
through the complex core shear modulus, in the form of Gc = Gc (1 + iß). The plate consisted of 
6 equal bays each with a length of XL = 0.17 [m] and an aspect ratio of 2 The thicknesses of face 
plates and core were taken as h = 0.87 [mm] and he = 1.1 [mm] respectively The responses of 
heavily and lightly damped six-bay plate are shown in Figure 7. 

As the structure is periodic, resonances are bunched together in the bands indicated by 
the lightly damped curve. With heavy damping the resonance peaks merge together to form, 
low humps in the same bands. Using the current method of analysis, the computational effort 
required to calculate the response and corresponding modes is less when the damping is heavy 
than when it is light, even though the modes are heavily complex. This is because fewer 
frequency points are required to define the response curve for the heavily damped structure. 
Scarcely any extra effort would be required to calculate the responses and modes if extra 
harmonic forces or distributed pressures acted on the plate. 
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4. CONCLUSIONS 

It has been demonstrated that the use of infinite system point receptance functions 
greatly simplifies the vibrational analysis of uniform beam structures. Those functions depend 
only on one set of wave numoers and a corresponding set of coefficients They are very easily 
obtained for the structures considered in this paper. 

Using these functions a simple and analytically exact method has been presented for the 
determination of the response of uniform multi-span beams and plates which are under point 
and line excitations respectively. The method is very easily developed to determine the response 
due to distributed loadings which have simple analytical forms. The superiority of the proposed 
method over the other traditional methods lies in the fact that any number and any combination 
of the possible loading conditions can easily be dealt with. Furthermore the bays need not to be 
equal and elastic and inertial characteristics of the supports can conveniently be included. 
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RANDOMLY DISORDERED PERIODIC 
STRUCTURES 

G. J. Kissel 
Jet Propulsion Laboratory 

Calif -nia Institute of Technology 

1      INTRODUCTION 

Spatially periodic systems occur in many engineering and physical contexts. Here we 
consider periodic structures in one linear dimension, like the skin-stringer panels of an 
airplane or a periodic truss structure to be deployed in space. Dynamically, periodic 
structures are characterized by mode shapes which are themselves periodic (see Figure 
l), or equivalently, from a traveling wave perspective, by frequency bands which 
alternately pass and stop traveling waves. This is the familiar passband/stopband 
property characteristic of all periodic systems. 

Because of manufacturing and assembly defects no structure will be perfectly pe- 
riodic. The disorder in periodicity is assumed to be distributed among all the bays 
of the structure and not sprinkled in a few. Disordered periodic structures have been 
examined in [l], [2] and [3]. The paper [1] considered a beam on up to six randomly 
spaced supports and numerically averaged frequency response functions when the 
beam was under point loading and connected loading. In [2] wave propagation was 
investigated for a section of beam on supports with spacing deterministically disor- 
dered between supports. The disordered segment was inserted between two perfectly 
periodic segments. Unfortunately, the:e was not a clear description of the underlying 
physics for the observed results in any of the above papers. 

Probably the most successful paradigm used to study the effects of disorder in 
periodic systems is the localization paradigm. Hodges in [3] was the first to identify 
the analogy between the localization phenomenon studied lor the p'ist '.0 years in solid 
state physics and the same effect manifesting itself in disordered periodic structures 
of interest to the engineer. Philip Anderson [4] was the first person to explain the 
localization phenomenon; this was in the context of electron propagation in disordered 
crystals. He was later awarded the Nobel Prize for Physics in 1977 in part for his 
work on localization. The appellation "localization" specifically refers to the fact that 
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mode shapes are now spatially localized in disordered periodic systems (see Figure 2). 
Equivalently, from a traveling wave perspective, waves are attenuated in all frequency 
bands, even in what had been the passbands of the correspond5 •» < perfectly periodic 
system. 

Once we have decided to rely on the localization paradigm to study the dynamic 
effects of disorder in periodic structures, we still have a surprising array of methods 
from which to begin our analysis. We might, for example, choose to study, numerically 
and analytically, the localized mode shapes of the disordered system. This has not 
proven to be a particularly fruitful approach. More success has come from using a 
traveling wave perspective. But even at this juncture there are several perspectives 
to take. Hodges used a heuristic wave approach in [3] to study localization effects 
in a beam on randomly spaced supports. His approach is not easily adaptable to 
other disordered structures and did not even give localization effects as a function 
of frequency. Anderson et al [5] used an approach based on the scattering matrix of 
each bay of the disordered system. This methodology can be cumbersome and again 
has not given localization effects as a function of frequency. Apparently the most 
successful approach to localization studies utilizes the transfer matrix formalism. Here 
each bay of the disordered periodic system is modeled via a random transfer matrix, 
and, as a result, the entire disordered periodic structure is modeled via a product of 
random transfer matrices. This in turn allows us to appeal to theories on products 
of random matrices from which we can infer asymptotically (as the number of bays 
becomes very large) the transmission properties of the disordered system. In addition, 
analytical equations are available from which frequency dependent localization effects 
can be readily calculated. Such an approach has been used successfully in [6], [7] and 
[8], It is the purpose of this paper to describe the dynamic effects of disorder in 
normally perfectly periodic structures using the localization paradigm along with the 
transfer matrix formalism and theories on products of random matrices. 

PREVIEW 

In the remaining sections, after discussing the modeling of disordered periodic struc- 
tures with transfer matrices, we will first consider the problem of localization in dis- 
ordered periodic systems carrying a single pair of waves. We will use the theorem of 
Furstenberg on products of random matrices to show that waves decay exponentially 
in a disordered system. We will then state a formula to approximate localization ef- 
fects as a function of frequency and demonstrate this approximation in Section 5 on a 
Bernoulli-Euler beam on simple supports with random lengths between supports. In 
Section 6 we will examine the localization phenomenon in disordered periodic struc- 
tures carrying a multiplicity of wave types at a given frequency. Here we make use of 
the theorem of Oseledets on products of random matrices to derive a localization fac- 
tor as a function of the transmission properties of the disordered multiwave system. 
Concluding remarks are made in the final section. 
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3      MODELING OF PERIODIC AND DISORDERED PERIODIC STRUCTURES 

Each bay of a periodic structure can be modeled with a transfer matrix, T, which 
relates a state vector, in physical coordinates, of one cross-section to the state vector 
of the succeeding cross-section 

x, = Tx,_, 

Because each bay is identical, the state vector after n bays is simply related to the 
state vector at the beginning 

xn = T Xo 

When a periodic structure is disordered it can no longer be modeled with Tn, but 
can be modeled with a product of random transfer matrices 

nT/ = T,,."Ti 

i 

Here we assume that the transfer matrix is a function of a random variable, a. 
So T = T(ct). Because the disorder is distributed among all the bays, the random 
variables are independent and identically distributed. 

We want to concentrate on the effects disorder has on propagating waves. Because 
strong wave attenuation already occurs in the stopbands, our focus is on the effects 
of disorder at the frequencies in the passbands of the normally perfectly periodic 
structure, which is where propagating waves exist. Our wave analysis is possible if 
we transform each transfer matrix into a wave transfer matrix, W;. This is done 
by using the average transfer matrix's eigenvector transformation, X, which makes a 
transformation from physical coordinates to wave coordinates. For the time being we 
look at a single disordered segment in the middle of a perfectly periodic structure. 
The perfectly periodic structure corresponds to the mean of the disordered segment. 
We have 

W, = X_1T,X 

where 

W,= 

So waves traveling along the perfectly periodic structure are either transmitted or 
reflected by the disordered segment j. Here tj is the transmission coefficient, r:- 
is the reflection coefficient and * is complex conjugate. Physically |£y|2 represents 
the ratio of transmitted energy to incident energy and |r;-|2 represents the ratio of 
reflected energy to incident energy for this disordered segment. Because we include 
no damping in our models, energy conservation implies that |ty|2 + |ry|2 = 1. (Note 
that in the passbands of the perfectly periodic structure tj = e~'* and r,- = 0 for all 
j, where t2 = — 1 and k is the wave number.) So the wave transfer matrix for the n 
disordered bays, again with a perfectly periodic structure on either side, is 

Wn-.Wj 
_£a 

r» 
X (1) 
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where T„ is the transmission coefficient and p„ is the reflection coefficient. Here |r„|2 

is the ratio of transmitted energy to incident energy for the n bay disordered system. 

4      CALCULATION OF LOCALIZATION EFFECTS VIA FURSTENBERG'S 

THEOREM 

While it is difficult for us to make a rigorous statement about the transmission prop- 
erties of a disordered periodic system with a finite number of bays, we are able to 
come to some rigorous conclusions when the number of bays becomes very large. We 
come to these conclusions by appealing to a theorem of Furstenberg [9,10] on products 
of random matrices. His theorem says that 

lim - In II Wn.-. Will =7,   w.p. 1 
n—oo n 

where 7 > 0, and w.p. 1 means the result holds with probability one. 

The physical interpretation of this limiting behavior can be seen by taking any 
matrix norm of the randor matrix product in Equati^A (1) and by performing the 
indicated limiting operation. Doing this we find 

7 = - lim - In IrJ   w.p. 1 (2) n-00 n 

which tells us that 

WM«-1")' 
the transmitted energy decays exponentially with the number of bays. This is the 
localization effect manifesting itself from a wave perspective. Here 7 is called the 
localization factor. This result holds for any level of disorder and even though no 
damping is present in our model. Note here that we are not taking an ensemble 
average in Equation (2). The result holds asymptotically. Variables that behave in 
this way are called self-averaging. It has been argued elsewhere [11] that the degree 
of spatial localization of the mode shapes is governed by an envelope of the form e-7". 

Clearly we do not want to take the above limits in order to find the localization 
factor 7. Fortunately we can use further results of Furstenberg to derive an approx- 
imation to 7 to first order in the variance of the random variable of the disordered 
periodic structure. Here we state that approximation; the motivated reader can con- 
sult [7] and [8] for the details of the derivation. Letting a be the random variable, o\ 
its variance and J^T the (1,1) term in the random wave transfer matrix we find 

Note that the second partial derivative is evaluated at < a >, the mean value of a. 
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5      CALCULATION OF LOCALIZATION EFFECTS FOR A BEAM ON SIMPLE 

SUPPORTS 

With Equation (3) we can now calculate localization effects as a function of frequency 
in the passbands of what is normally a periodic structure. To illustrate these calcula- 
tions we examine a Bernoulli-Euler beam on simple supports (see Figure 3) where the 
distance between supports is randomized. Here we take the random variable to be a 
nondimensional length, -^ = I, where it is randomized ±.1% from its average value 
of 1. The necessary calculations are quite involved and the interested reader should 
consult [8] for details. Here it will suffice to present the results graphically. In Figure 
4 we plot log10(7) versus a nondimensional frequency Q = wJJj for the first eight 
passbands of the periodic system. Localization would add a small amount of extra 
attenuation to the huge amount already existing in the stopbands. The results are 
confirmed with a Monte Carlo simulation which involved averaging -ln|i(a)| over 
an ensemble of 1001 realizations. Note that we did not have to take a product of 
random matrices to get good Monte Carlo results. From Figure 4 we see that the 
localization factor is most pronounced at the edges of the passbands, near the stop- 
bands, while it is diminished in the middle of the passbands. Clearly, the localization 
factor is a strongly varying function of frequency and contrary to the result of [3], 
the localization effects do not become constant at high frequency. 

The attenuation caused by the disorder is unlike that of dissipation. Here lo- 
calization prevents the wave from traveling along the structure, unlike the case for 
a perfectly periodic system, where the wave would travel without attenuation. Lo- 
calization tends to confine the wave near its point of origin, where it is eventually 
dissipated by the damping that exists in all real structures. The implication of these 
results is that experimental measurement made on a beam of supposedly evenly sep- 
arated supports could be most susceptible to the inevitable disorder that exists at 
frequencies near the stopbands. 

6      LOCALIZATION IN MULTIWAVE DISORDERED PERIODIC STRÜCTURI 

Most real structures do not carry a single pair of waves, but carry a multiplicity 
of wave types at a given frequency. This implies that their transfer matrices are 
of, dimension 2d X 2d with d > 1. This higher dimensionality greatly complicates 
the analysis of the localization phenomenon. Multiwave localization has received no 
attention in the engineering literature and only recently have researchers looked at 
the corresponding problem in solid state physics. Our goal in this section is to provide 
the multiwave analog to our single wave result of Equation (2) showing explicitly how 
the transmission properties are disrupted. 

•. 

Again, we model our disordered periodic system via a product of random transfer 
matrices, and we will rely on a theory for products of random matrices to guide our 
work. We use the theorem of Oseledets [12,10] on products of random matrices. In 
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addition, we will make two assumptions about our wave transfer matrices, W. First 
we assume that W is symplectic. A matrix is symplectic if 

WTJW = J 

where 
0    I 
-I   0 

An important property of symplectic matrices is that their eigenvalues occur in recip- 
rocal pairs, A and jk Note that wc take a matrix transpose in the above even though 
W is a complex matrix. The symplecticity of W is a consequence of its corresponding 
scathing and impedance matrices being symmetric. 

We also assume that W is an element of the special unitary group SU[d, d). The 
word special means that the matrix has determinant equal to one. A matrix W is an 
element of SU(d, d) if 

WHAW = A 

where 
" I    0 

0   -I 

This group theoretic property follows from the corresponding scattering matrix being 
unitary, which in turn follows from our assuming no dissipation in the system and 
excluding any evanescent waves that exist simultaneously with the traveling waves. 

The wave transfer matrix for the n bay disordered periodic structure is 

L       'n     rn 'n 

where T„ is the transmission matrix and pn is the reflection matrix. The special form 
of the wave transfer matrix above is a consequence of it being both symplectic and 
an element of SU[d,d). 

The theorem of Oseledets says 

nlimS(W„---W.)H(W„---W1)]^ =B   w.p. 1 

where B is a random matrix, whose eigenvalues are nonrandom. The 2d eigenvalues 
of B are e7', ■ • ■,eld, e~ld, • ■ •,e-"" where 7i > • ■ • > 7d > 0. The 7,-s are known as 
Lyapunov exponents of the random matrix product. 

The eigenvalues physically represent d pairs of waves traveling in both directions. 
The theorem of Furstenberg allows us to calculate 71, the uppermost Lyapunov expo- 
nent. However, in this multiwave case with 7d < 71, 7d represents the wave with the 
least amount of decay and so it carries energy along the structure farther than any 
other wave. Thus, the rfth Lyapunov exponent, 74, is the quantity nf ir,tprp«t when 
calculating multiwave localization effects. 

The derivation of 7,4 as a function of the transmission matrix takes a number of 
pages, so the interested reader is directed to [8] for the details. The derivation depends 
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heavily on the fact that the wave transfer matrices ar^ symplectic and elements of 
SU{d,d). We find 

Id- - lim - In \Tnii\max   w.p. 1 
»-»co n 

This tells us that the wave which propagates the farthest is governed by the element of 
the transmission matrix, r„, with the maximum absolute value, which makes perfect 
sense. Our result corrects the work of a few solid state physicists, including Anderson 
[13], who have studied multiwave localization. 

An analytical approximation for n, analogous to Equation (3), is at least theo- 
retically possible [8,10]. The actual derivation of the approximation is left as a future 
research topic. 

7      CONCLUSION 

In this paper we have explored the effects disruption in periodicity has on the trans- 
mission properties of normally perfectly periodic structures. Disorder is known to 
spatially localize mode shapes and attenuate traveling waves in all frequency bands. 
This "localization" in disordered periodic systems was first discovered in solid state 
physics, and we have chosen to exploit the analogy between localization occuring in 
disordered crystals and conductors and the corresponding effect manifesting itself in 
disordered periodic structures. 

We modeled our disordered periodic structures via a product of random wave 
transfer matrices, then, appealing to appropriate theorems on products of random 
matrices, explicitly showed the disruption of wave transmission. For structures car- 
rying a single pair of waves (those modeled with 2x2 transfer matrices) we also 
presented an analytical approximation for calculating the intensity of the localization 
effect. This approximation was applied to a beam on unevenly spaced supports. The 
results ohowed that the localization effects are most pronounced at frequencies at the 
edges of the passbands (near the stopbands). 

We also examined the localization phenomenon in disordered periodic systems car- 
rying a multiplicity of wave types at a given frequency (those modeled with transfer 
matrices of dimension 2d x 2d with d > l). A new result was presented - the multi- 
wave localization factor as a function of the transmission properties of the disordered 
system. 
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Figure 1: Mode of a perfectly periodic structure. 

if 
Figure 2: Mode of a disordered periodic structure. 
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Figure 3: Bernoulli-Euler beam on simple supports. 
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FREE VIBRATION OF RING STIFFENED CYLINDRICAL SHELLS 

J. Wei and M. Petyt 

institute of sound and vibration Research 
University of Southampton 

1. INTRODUCTION 

Cylindrical shells reinforced with rings, stringers, or both, have 
been widely used in structural design by many industries, various methods 
have been developed for analysing the free vibration of such structures. 
These methods can be divided into two main typest those where the 
properties of the stiffeners are averaged over the surface of the shell and 
those that consider the otiffeners to be discrete. The first of these two 
approaches is only applicable if there are a large number of closely and 
equally spaced, identical stiffeners. A comprehensive survey of these 
methods can be found in reference [1] by Rosen and Singer. 

This paper is concerned with the analysis of ring stiffened 
cylindrical shells where the stiffening rings are considered to be 
discrete. One of the more popular methods of analysing discretely 
stiffened shells is the Rayleigh-Ritz method. Egle and Sewall [2] and Egle 
and Soder [3] have used this method to analyse orthogonally stiffened 
cylindrical shells. However, Egle and Soder observe that using the 
solutions for the unstiffened shell as the assumed displacement functions 
produces "erratic or, at least, unusual" convergence, in the present paper 
this approach is re-examined and applied to ring stiffened cylindrical 
shells. A modification is proposed which overcomes the difficulties with 
the convergence, indeed, accurate frequencies are produced using far fewer 
terms than in reference [3]. It is also shown that the proposed method is 
an extension of the method of Galletly [4] who used a one-term solution 
which accounted for the inter-ring deformation. 

2. THEORETICAL ANALYSIS 

The structure to be analysed is a uniform cylindrical shell of length 
L, radius R and thickness h, having freely supported ends. It is stiffened 
by means of thin-walled, open-section rings which are identical and equally 
spaced. The strain energy of the shell is derived using Fiuggp'n i-h»nry 
and mat ot the rings by viasov's thin-walled beam theory. Full details 
may be found in reference [5], 

f 
The circumferential modal displacements of a ring stiffened cylinder 

' i are either symmetric or anti-symmetric about a diameter of a cross-section. 
In order to illustrate the method, only the symmetric modes are considered. 
In this case the assumed displacements are: 

u = £ "mn cos ~r~ coa ne Bin nt 

v = £ vmn ■*■" r? »in  ne sin nt (1) m  *    L 

w = c "mn 8ih T~ <-oe  ne sin nt a  '   L 
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where u, v and w are the axial, circumferential and radial displacement 
components of the shell middle surface, x is the axial coordinate and m 
the half-Jwave number In the axial direction. e is the circumferential 
coordinate and n the circumferential wave number. a is the circular 
frequency and t denotes time. 

me expressions in (l) are not summed over n as ring stiffeners do not 
create any coupling between the circumferential assumed functions. When 
(1) are substituted into the strain and kinetic energy expressions for the 
cylinder alone there is no coupling between the axial assumed functions. 
This is because the assumed functions are the exact solution for the 
cylinder. However, when the expressions (l) are substituted into the 
strain and kinetic energy expressions for the rings there Is coupling 
between the axial aemumed functions. The coupling terms are functions of 
the following quantities: 

SÜÜSc 
L COS sea ci Cj = g cos 

ci »j = £ cos 

»i »I - x sm 5i29t 8in aaat 

»Hk 8iru5*29t 
Ii        L 

(2a) 

(2b) 

(2C) 

in which Xjc is the x-coordinate of the kth ring and the summation is tafcen 
over the number of rings. 1,3 = 1,2,3 ...etc. and mi# nij are the 
corresponding axial half-wave numbers. 

It la difficult to obtain explicit expression« for the values of the 
summations in (2), except when the rings are equally spaced. In this case, 
let % represent the total number of bays between rings and between rings 
and the shell ends, then it can be shown that 

IB», 

I 
ClC;j = 

z'*1 

0 

1*1 

if Imi - mjl = 2p»fb or |mj + n-j | = 2q»b 

if Inn - mjl = 2p»b and Im^ + ns-jl ■ 2q»b 

if Imi - mjl is odd 

otherwise 

(3a) 

(3b) 

(3c) 

(3d) 

BjSj 

2 

2 

10 

if Imi - mjl = 2p»b 

if Imi + mjl = 2qMf 

(4a) 

(4b) 

if Imi - mjl = 2p% and  |mi + mjl = zq/Xa 
or otherwise s 
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CiBj 

5iE _ „ja 5ÜT 
Hb Mb 

if |nii - Bjl  is even 

if tmi - mj| is odd 

(5a) 

(5b) 

where p and q are any integer or zero. The positive sign in Eq. (3) stands 
for the cases with rings on both end« of the shell (ifo = Nr - l, where Nr 
is the number of the rings) while the negative sign is for the cases where 
there are no rings on both ends of the shell (Hfo = Kr + 1). 

nie coupling between even and odd axial terns is caused by CJS-J (see 
Eq. (5b)), where even or odd terms mean the terms having even or odd axial 
half wave-number. However, the elements associated with CJS-J in both moss 
and stiffness matrices of the ring mainly contain the products of products 
of inertia of the ring cross-section, the coordinates of the shear centre 
and the ratio of the eccentricity to the radius of the attachment point. 
These quantities are usually small compared with others. Thus, the 
coupling due to these elements may be less important and neglig.ule. This 
is especially true if the ring cross-section has one symmetric axis passing 
through the attachment point. This kind of coupling may be called 
secondary coupling. Another secondary coupling is due to CJC-J shown in Eq. 
(3d). It causes the coupling between even or odd modes, and becomes 
relatively small if the number of the rings increases. It is interesting 
to notice that if only one end of the shell has a ring, this coupling will 
vanish. 

However, if these two kinds of secondary coupling are neglected, the 
coupling relations between the axial terms are simple. 

Por a given m, if ra < »&, the coupling exists only between the terms 
having 

mx = m, mz  = ZNb - m, m3 = 2Nb + m, m4 = 4Mb - m. (6a) 

with 

etc-, = »> t i 

£&      if |mi - m-j | = 2p% 

a , a . — 
-J.-J 

i - j*>       if lltti + m5 I = 2qNb 

1 If m = Nb, the coupling exists only between 

r 

mx = Nj,, mz = 3H),, m4 = 5Nb, ... i 

If m = 0, then 

(6b) 

mL «0,1,= 2Nb, ms = 4»b, ... i (6C) 

Por the latter two cases. 

ci°j = Nbtl ' 
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It la only necessary to solve an eigenvalue problem Which 18 farmed by 
retaining only the terms Which are coupled to one another. The resulting 
generalised eigenvalue problem has been solved by first reducing it to a 
standard eigenvalue problem. This eigenvalue problem was then solved using 
a combined Householder/QL algorithm. 

3.   APPLICATIONS 

Initially, calculations were carried out neglecting the secondary 
coupling terms. Thus, for a given m < %, only the coupling terms 
indicated by equations (6) were retained. 

3.1 comparison with an exact solution 

The present method is first applied to the shell analysed by Porsberg 
[6]. only the example Which assumes that the rings are attached to the 
shell along a line is considered. It is a four-bay shell Which is 
stiffened by three rings. The material properties and geometrical data are 
given in column A of Table 1. The natural frequencies for symmetric, 
external and internal rings are given in Table 2. 

The agreement between the two methods is good. For an eccentricity, 
he = 0, the present method predicts frequencies which are very close to the 
exact solution, the maximum difference being 0.4% for n = 4, m = 3. The 
ones predict-*! by the present method are greater than those predicted by 
Porsberg except for lc* values of m. For he = ± 4.572 mm, the predicted 
frequencies are also generally greater than the exact ones (except for two 
modes in each case), the maximum difference being 2.3% for n = 4, m = 1. 

Table 3 shows the convergence of the n = 2, m = 1 mode with increasing 
number of terms. Nine terms have been used for the results in Table 2. 

3.2 Comparison with the finite element method 

Al-Najafi and Warburton [7] have used axi-symmetric shell finite 
elements to analyse a six-bay shell stiffened by five external rings. The 
rings have rectangular cross-sections. Three different depths have been 
considered. The geometric and material properties» are given in column B of 
Table 1. They compare their predicted frequencies with experimentally 
measured ones. The frequencies obtained with the present method (rows 
marked (b)) are compared with both these sets in Table 4. It can be seen 
that the present method produces frequencies which are lower than those 
predicted by the finite element metnod. The differences are greatest for 
the largest ring depth and the laraer values of ift and n. For example. When 
d = 25.4 mm, n = 4 and m = 6, the difference is 10%. All but one of the 
predicted frequencies are greater than the measured frequencies. 

3.3 Comparison with the conventional Rayleiqh-Rltz method 

Egle and seder '3] have used the Rayleigh-Ritz method to calculate the 
natural frequencies of a 12-bay cylindrical shell stiffened by 13 rings 
having rectangular cross-sections. The geometricad. and material properties 
are given in column c of Table i. They used symmetry about x = L/2 to 
uncouple the odd and even axial modes. Their calculations were carried out 
using 19 odd terms». Frequencies have been calculated using both 3 and 9 
terms in the present method. They are compared with the results of Egle 
and Soder in Table 5. The 3 term solution produces frequencies Which are 
lower than reference [3] for low values of n and similar frequencies for 
high values of n. The 9 term solution produces frequencies which are lower 
than those of reference [3] for all values of n.  The modes corresponding 
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to high value» of n are dominated by inter-ring motion. The present 
analysis used the same shell analysis as reference [3], but a more accurate 
ring analysis. 

Using equation (5a), it is not difficult to explo^n what Egle and 
soder called "tha erratic or unusual convergence". For m = 1, the first 9 
coupled terns are those having m = l, 23, 25, 47, 49, 71, 73, 95 and 97. 
'Ihe terns between ^nd 23, 25 and 47, and 49 and 71 contribute little to 
the convergence and >, e a false impression until the next coupled term is 
included. 

The advantage of the present method is obvious. TO include the effect 
of the ninth coupled term in the conventional Rayleigh-Rltz method 
requires, for this example, the solution of an eigenproblem of order 147, 
whilst the presont method generates one of order 27. 

3.4 The effect of the secondary coupling due to c<Cj 

If the ring-stiffeners have a rectangular cross-section, the secondary 
coupling due to CJB-J (equation (5b)) does not exist. Therefore, such 
stiffeners can be used to investigate the effect of secondary coupling due 
to CjCj (equation (3d)). This causes coupling between even or odd terms 
only. 

Forsbexg's shell was analysed using 3& terms Which included secondary 
coupling due to CJC-J. It was also analysed without this secondary 
coupling. In this case, only le terms are coupled. The difference between 
the two sets of frequencies was less than 1%. 

Narburton's shell was analysed using 27 terms with secondai« coupling 
and 9 terms without the coupling. The results are indicated by rova (c) 
and (b) respectively in Table 4. In the case of the stiffeners with cepths 
of 6.35 ran and 17.78 mm the differences are less than 0.5%. But tor fl = 
25.4 mm, the differences are quite large for some values of n and m. Fcr 
example, When n = 2 and m = 5, the difference is 10%. In this case, the 
mode of vibration is dominated by the rings. The neglect of secondary 
coupling can be considered to be the same as applying some restraint in the 
rings. When the vibration of the shell is dominated by the rings, it is 
more sensitive to such restraints. Studies Which investigate the effect of 
the secondary coupling Cj3j for thin-walled open-section rings are given in 
reference [5], 

4.        INTER-RING MOTION 

inter-ring motion has been shown to be important by many 
investigators, especially When the shell is vibrating in the frequency 
vegion in Whict: its dynamic behaviour is dominated by the shell between the 
rings. Galletly has >tsed an additional cosine term *:, i.is one term 
displacement function to account for its effect [4]. W*'. and Bu [8] argued 
that the inter-ring displacement pattern may have ttv shape of a slightly 
modified half-sim* >av« in their example. Al-Naji.fi and warburton [7] 
discussed chat in practice the ring usually is not stiff enough to provide 
a clasped end condition for the shell between the rings and that the 
inter-ring displäc anent my be between the above two forms, but the latter 
is more liXely the case. Thus, it is hard to use one term to describe 
inter-ring motion. 

considering the displacement function used in the present method, for 
a given m < %. the radial component of displacement is 
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W = cos ne [stnx w     «iiv—- + w     »in- (2Mb 
msn Ii ...] 

(7) 

Letting w       = —*       = —w 
m2n m3n zn 

W       = -W «n etc. 

Equation (7) becomes 

W = cos ne  fw       +      Z     W„    cos ?3fe—] mine 
sin -—- <8) 

The first two terras in equation (8) are those used by Galletly, which 
is a special combination of the first three terms in the present method. 
This gives some understanding of how inter-ring motion can be expressed in 
the present method. The coupling relations combine the terms Which are 
important for inter-ring motion in a given axial mode m. In this sense, 
the present method can be considered as an extension of Galletly's method. 

Table 6 shows a comparison between the natural frequencies of 
warburton's shell calculated using Galletly's method and also the presrit 
method with 3 coupled terms only, compared with Table 4, it can be seen 
that Galletlys method becomes unsuitable as the rings become stiffer and 
also as m and n increase, which is towards the region dominated by the 
intpr-ring motion. The present method with three terms provides more 
flexibility for inter-ring motion than Galletly's method. Therefore, 
better results are obtained which are also better than the FEM results in 
the region dominated by the inter-ring motion. It should also be noted 
that Galletly's method is not suitable for calculating the frequencies when 
m > Nfj. 

5,   CONCLUSIONS 

The free vibration of cylindrical shells with equally spaced 
ring-stiffeners and freely-supported end conditions have been analysed 
using the Rayleigh-Ritz method. The coupling relationships produced by the 
stiffeners are discussed and a method of selecting the terms in the assumed 
series presented. The results obtained are compared with those obtained by 
other methods found in the literature. It is shown that the proposed 
method is an extension of Galletly's method which allows for Inter-ring 
motion. 
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Table 1. Data for numerical examples. 

A B C 

Material properties 

E Young's modulus) x ioa Mir* 

p   Mass density« kg m~s 

v   Poisson's ratlo« 

72.4 

2713 

0.32 

204.1 

7P33 

0.29 

206.9 

7822 

0.3 

Shell data = ram 

h   Length 
R Radius 

h Thickness 

411.5 

77.57 

1.524 

457.2 

108.0 

3.861 

609.6 

152.4 

0.381 

Ring data = mm 

Nb Number of bays 

Nr Number of rings 

b  Width 

d  Depth 

4 

3 

5.08 

4.572 

6 

5 

6.35 

6.35 

17.78 

25.4 

12 

13 

3.05 

9.55 

A = Forsberg's shell [6] 
B = Warburton's shell [7] 
C = Egle and Soder's shell [3] 

Table 2. Comparison with Forsberg's exact solution [6]. 

Symmetric ring External ring Internal ring 

n m 

he = 0.0 mm he = 4.572 mm hg = 4.572 mm 

Forsberg Present Forsberg Present Forsberg Present 

2 1 788 787 854 858 999 999 
2 2219 2220 2280 2274 2254 2272 

3 3796 3798 39_1K 3899 3710 3745 

3 1 1155 1149 1392 1424 2087 2090 

2 1661 1659 1840 1862 2397 2407 
1 2C17 2617 2806 2W17 3073 3092 

4 1 1988 1979 2187 2237 3161 3127 

2 2132 2132 2296 2338 3085 3071 
3 2535 2545 2644 2679 3i/14 3049 

* rresent results are calculated with 9 terms. 

Table 3. Convergence of solution. 

■! 

n m Forsberg Present 
l 

term 

3 

terms 

5 

terms 

9 

terms 

13 

terms 

;8 

terms 

2  1 

2  1 

854 

999 

External 

Internal 

958 

1107 

897 

1050 

872 

1019 

858 

999 

855 

995 

854 

993 
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Table 4.    comparison with rat. 

emit = Bz 

a an n m 1 2 3 4 5 6 

a 834 2317 3767 4895 5715 - 
2 b 832 2302 3734 4853 5673 6404 

a 809 2132 3421 - - - 
6.35 

a 2908 3014 3303 3795 4417 4903 
5 b 2904 3011 3298 3780 4382 4837 

a 2882 2985 3260 3741 4314 — 

a 1031 2257 3605 4701 5512 6038 
2 b 1031 2245 3574 4655 5453 5798 

a 996 1615 4265 - - - 
0.7.78 

a 4596 4558 4596 4710 4850 4927 
5 b 4551 4512 4534 4632 4746 4799 

d ~ 4518 4585 — 4780 
— 

a 1223 2279 3528 4509 5105 5209 

2 
b 1222 2265 3480 4388 4836 4492 
c 1222 2263 3447 4171 4383 4415 
d 1187 2082 3074 4285 - - 

25.4 
a 4006 3983 4113 4357 4610 4651 

4 
b 3963 3902 3975 4141 4285 4200 
c 3905 3864 3960 4052 4300 4299 
d 3881 3811 3883 - - 4126 

a = FEM's results from [7] 
(b = present results using 9 terms (without c^c-j) 

calculated with 27 odd or even terms (including cjcj) 
d = experimental results from [7] 

Table 5. Comparison with Egle and soder's results. 

ffl = 1 External ring symmetric ring 

n a b C a b c 

2 518 462 459 491 454 453 
4 1288 1171 1085 1226 1157 1155 
6 2277 2187 1997 2556 2514 2464 
10 2695 2682 2501 2995 2998 2842 
14 2507 2507 2373 2601 2605 2476 

a = Egle and soder's result calculated with 37 odd terms [3] 
b = present results with 3 terms 
c = present results with 9 terms 
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Table 6. comparison with Galletly's method (Warburton's shell). 

d« n m 1 2 3 4 5 6 

2 
a 884 2303 3736 4858 5685 6405 

b 833 2303 3735 4856 5677 6404 

6. 35 

a 2998 3114 3413 3913 4559 4839 

5 
b 2981 3082 3360 3831 4416 4037 

a 1050 2257 3597 4706 5550 5973 

2 
b 1045 2252 3587 4682 5502 5872 

17.78 

5 
a 4829 4951 5223 5665 6251 4800 

b 4748 4678 4654 4699 4766 4800 

2 
a 1257 2298 3562 4638 5462 5232 

b 1247 2289 3522 4525 5182 4767 

25.4 

a 4245 4367 4712 4271 5956 4314 

4 
b 4143 4066 4116 4260 4382 4247 

a = calculated by using Galletly's method [4] 
b = calculated by using the present method with 3 terms 

> 
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SENSITIVITY ANALYSIS AND DYNAMIC BEHAVIORS 
OF ROTATING PRETWISTED TAPERED BLADE 

T.N. Shiau  and  C.C. Pan 

Institute of Aeronautics and Astronautics 
National Cheng Kung University 

Taiwan 

1. INTRODUCTION 

Turbomachine blade failures are normally attributed to fatigue which usu- 
ally occurs when the blade vibrates at or near resonant conditions. Hence, the major 
goals of modern engine blade designs are to minimize the noise and vibration, to as- 
sure structural integrity, and to increase the overall performance of engine system. To 
achieve these goals, many factors that influence the dynamic motion of a rotating blade 
must be taken into account. For examples, the parameters of cross section asymme- 
try, pretwist angle, taper, rotation, disc radius, setting angle, the acceleration of rotor 
center, interblade coupling, elastic support stiffness, shrouding, and aerodynamic forces 
can significantly affect the motion of the blades. In addition, turbomachine blades will 
experiance instabilities caused by the gyroscopic motion. This precessional motion is 
often encountered in cases such as flight through severe atmospheric turbulence, taxing 
over rough runways, and turn maneuvers. Practically, it has been found impossible to 
determine the blade characteristics fully with taking account of ail the parameters. 

The vibration analysis of nonrotating pretwisted tapered blade has been studied 
by Carnegie and Thomas [lj, and Rao [2]. A parametric study of vibration of rotating 
pretwisted and tapered plate was investigated by Sreenivasamurthy and Ramamurti [3] 
using finite element approach. The effect of two types of precessional velocity on the 
dynamic behavior of rotating uniform straight blades was studied: (l) the constant 
angular velocity case, Sisto [4], (2) the harmonic time dependent angular velocity case, 
Sisto [5]. The effect of Coriolis acceleration was also investigated by Sisto [6] using 
perturbation method. Shiau and Tong [7] studied these two types of precessional velocity 
on the dynamic behavior of rotating tapered blade case using both a perturbation 
method and Floquet theory. 

In the picicüt pctpei, the eiTect of both constant ana harmonic precessional angular 
i velocity on the dynamic stability and response of a pretwisted tapered blade is studied 

using both a perturbation method and Floquet theory. In most cases, the rotor spinning 
speed is very high so that the biade can be assumed to be cantilevered at the hub and 
beam theory is applied to analyze the motion of high aspect ratio blade. The forshort- 
ening effect of Vigneron [8j, is considered for the displacement along the longitudinal 
direction of the blade. 

2. FORMULATION OF EQUATION OF MOTION 

1 
The rotating blade system considered in the present study is shown in Figure (la- 

ic) and simplified with the following assumptions: the rotor disc is very rigid, the spin 
speed of rotor is fixed, the magnitude of precessional velocity is very small compared 
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to the rotor spin speed but its direction is fixed, the acceleration of rotor center and 
the aerodynamic forces are neglected. To derive the system governing equation, two 
reference frames are used. The XYZ:F (xyz:R) triad is a fixed (rotation) reference with 
the X and x axes being colinear and coincident with undeformed rotor centerline. R 
is defined relative to F by a single rotation wt about X with w denoting the spinning 
speed of the rotor. The total angular velocity of the blade can be expressed as 

u =üM + n[cos(l + r)0 + cos(l -r)l)\/2j 

+ n[sin(l + r)0 + sin(l - r)0j/2k (1) 

where r = —w*/w is a nondimensional frequency and U and CJ* are the magnitude 
and frequency of precessional velocity, respectively, r is a nondimensional frequency. In 
addition, 6 s 7 — ut is a nondimensional time and 7 is the angle between precessional 
axis and Y axis. For the convenience, the local frame rj, £,, 2 is utilized for the calcula- 
tion of velocity (r) and strain ( zz) at any point of the blade. The total kinetic energy 
(T) and potential energy (V) can be expressed as 

T=\j        Jf p(r-'r)dr,didz,    V = \f        ff E(eZ2)2 dV d^dz        (2) 

where E is the Young's modulus and R and L are the radius of disc and the length 
of the blade. The expressions of velocity r* and strain tzz) in equation (2) are written 
as 

r~ = {(wcos/? + ncos0i sinß)[z + Sz + rjuß' - £tt') - fl(£ + u) sinSt} en 

4- {u + rjüs'mO\ - (wsin/3 - ficosöi cosß)(z + Sz -f r/u/3' - £«')} e$ 

+ {Sz + 71Ü3' - £ti' + (ojcosß - fJcosÖ! cos/3)(£ + u) -r)(ujcosß 

+ ncosÖ! sin/3)}e"; (3) 

6« =^uß'2-u") + n(uß" + ß'u') (4) 

where u and Sj. are the displacements of the center of cross-section in £ and z 
direction respectively The parameter 8 is the angle of f-axis and x-axis at z = z. 
The derivatives (') and (') are defined as ^ and,^ respectively. Let a be the taper 
constant and K be the pretwist. One can express the width of blade (6) and pretwist 
angle (/?) at any cross-section as 

b = bR [1 - a(z - R)IL\,        ß = ßR+n{z-R)/L (5) 

where a ~ (bR - (>T)/&R and $ = ßt — ßn- The subscripts R and T represent the 
position of blade root and tip. 

Using the assumed mode method, which is of the form: 

«0,t) = 3(t)[l - cos TT(Z - R)/2L] (6) 
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where %(t) is the displacement of blade tip, and the Largrangian approach, the nonlinear 
equation governing the blade tip motion is derived for the harmonic precessional case. 
It can be expressed as 

—- + [a0 +<2ai + egicosöi + 62g2cos2öi]u 
au* 

d2u ,dus 

= e*Fi BinOi cosöi + tF2 s'm92 + (F3 s'm9L (7) 

- e(3sin<?i - sintf2|93ü2 + ?4|-ü3 + 2ü2 — + 2ü(— )2] 

where      cos«! = [cos(l -t- r)9 + cos(l - r)9\/2 

sinOx S [sin(l+ r)9 + sin(l -r)0]/2 

sin02 3 [(1 + r) sin(l + r)9 + (l - r) sin(l - r)0]/2 

cos2öt = (-l+O.5cos2(l + r)ö + O.5cos2(l-r)0+cos20+cos2röj/2    (8) 

and the parameters oo, oi, ?i, gj, 7.3, and q4 are functions of taper constant, pretwist, 
and blade geometry. The forcing terms in the R. H. S of equation (7) are due to the 
contributions of gyroscopic effect. The gyroscopic factor e is defined as the ratio of 
magnitude of precestional motioi to the rotor spin speed, i.e. t = fl/w << 1. The 
parameter ao represent the nondimensional frequency without the gyroscopic effect. 
The parameters ai and q2 imply the centrifugal effect. The parameters qt and q3 are 
the linear and nonlinear term due to the Coriolis effect respectively. The term of q4 

represent the high order effect of displacement which can be neglected for high aspect 
ratio blade compared to other terms. The equation (7) can be reduced to the form : 

d2u 
—— + [a0 + e2ai + €171 cosfli + e2q2cos29l]ü - e[3s'm9i - sin02]<?3"2 

d9i 

= e2F1 sin 0i cos 9X + tF2 sin 92 + tF3 sin 9X (9) 

The solution of the linearized nonlinear differential equation system, described by 
equation (9) is assumed of the form: 

where ui satisfies the eqation 

u - uL + eu (10) 

+ a0UL = 0 (11) 
d92 

which has the solution: 

uj, = At, cos i/ä~^9 + Bi sin y/a^d (12) 

And u satisfies the following equation by neglecting the (eu)2 term: 

^+*(»)«-/(») (13) 
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where the coefficient k and forcing term / are both time dependent periodic functions 
i.e. k[6 + D» k(9), f(9 +• T) = /(Ö), and there are of the forms: 

k(0) = [ao + e2o1 +e<7i cosfli + e2q2 cos20i -2f(3sin0i - sin02) g3ut]       (14) 

/(Ö) = (3sinöi -siaÖ2)?3u| - («ai + ?i cosfli + «92 cos20i)uf, 

+ f2Fisinfi cosöi+ £^2 sin02 + 6^3sinöj (15) 

3.     STABILITY ANALYSIS 

The instability of linearized differential equation system, described by the Mathieu 
type equation (13) with time dependent coefficients,i3 investigated using a perturbation 
method and also the Floquet transition matrix method. The analysis procedures for the 
pretwisted tapered blade case using the perturbation method are very similar to those 
used in Sisto [6] for the uniform straight blade case. For the Floquet transition matrix 
method, one can convert equation (13) into first order differential equation system by 
setting 

du .    . 
Vi=u,    y2 = - (16) 

The result is given bv 
{y} + [D{0)\{y} = {G(0)} (17) 

where   f) EE ±  {y} = {yi,y2}, {G(6)} = {0, /}*, [£)(«)) = [fc(°fl)   "*]   , 

\D(& + T)] — [D(6)\ ,   t is the transpose of a matrix, and T is the period of the system. 

The stability of the linearized system, equation (17), is governed by the homoge- 
neous part: 

{y} + [D{6)] {y} = {0} (18) 

Based on Magnus and Winkler [5j, Bogolinbor and Mitropolsky [10], and Peters and 
Hohenemser [ll], the instability region can be determined by the condition 

|Afc| > 1       unstable (19) 

where  A*,  k = 1,2, are the eigenvalues of Floquet transition matrix  [Q(T)j   which 
satisfies 

{y[T)} = [Q(T)\ {y(0)} (20) 

The Floquet transition matrix (FTM) is of the form: 

lQ(T)) = [{VW}{yW}\ (21) 

where  {t/1'} and {y'2'}   are the solutions of equation (18) at  6 = T with initial 
conditions yi(0) = 1, y2(0) - 0 and yt(0) = 0, y2(0) = 1, respectively. 
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4.     RESPONSE ANALYSIS 

The steady state periodic response of the linearized time varying system, equation 
(17), can be obtained by directly solving the gyroscopically induced vibratory system. 
For most cases, it is very time-consuming to obtain the steady state periodic response 
for any arbitrary initial condition. 

In this paper a technique shown by Peters and Hohenemser [llj and Shiau [12] 
based on the Floquet theory, is presented to find the initial conditions for steady state 
periodic response by integrating over ane period. The solution of equation (17) is taken 
to be of the form: 

{y} = {VH} + {yp} (22) 

where {y/f} satisfies equation (18). The periodic response {y} of equation (17) can be 
written as 

{V(')} = W){V(0)}+\Q{0)\  I  \Q{r)\-l-{G(r)}dr 
Jo 

where \Q(8)} satisfies the equation 

[Q(8)\ + {D(e)\lQ(0)}=0 

(23) 

(24) 

with the initial conditions [Q(0)j = /. From the periodicity condition, i.e. {y{T)} — 
{y(0)}, one can find the initial condition {y(0)} for the periodic response from equation 
(23), and it is of the form: 

{y(0)} = [I- [Q(T)\] -l [Q(T)\ [   [Q(*)]-> {G(9)}d9 (25) 
Jo 

where T is the period of the response and \Q(T)\ is the FTM calculated in the stability 
analysis. To calculate the initial condition, one can defining the above integral as follow 

{v(T)}= I   [Q(B)}-1 {G(9)}d9 
Jo 

The differentiation of last equation yields 

{*(*)} = [Q(Ö)]-1 {G(8)} 

with the initial condition {v(0)} = {0}. 

(26) 

(27) 

To obtain the Floquet transition matrix [Q(T)\ and the vector {v(T)}, one can 
integrate equations (24) and (27) over the interval zero to T with corresponding initial 
values, simultaneously. By substituting \Q(T)] and {v(T)| into equation (25), the 
initial conditions for the periodic response is obtained. Therefore, the periodic response 
can be established by integrating one more cycle. Note that the total response of the 
balde tip motion is the sum of the response u/, and the response of gyroscopic effect u. 
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5.     EXAMPLES AND RESULTS 

Using the perturbation method introduced by Sisto [6], the stability transition 
curves are obtained for the constant precessional velocity case and the harmonic preces- 
sional velocity case. For the constant precessional velocity case, r = 0, the emanating 
points (a0,e) are (§,0), (j,0), and (1,0) and the corresponding stability transition 
curves are expressed as equation (28)-(30) respectively. 

a0 = i ± eq3 y/Al+Bl - 62 (a, + -q\ ± -q\BL y/' A\ + B\) (28) 

*0 - \ - §7i + J [-«, + f + *f (116A= - 8452) ] (29) 

  2 

a0 = 1 + 693 {2BL ± y/Bl + Al) - e2 [a, + | (A2, + 52) ] (30) 

Similarly for the harmonic precessional case, r = 1, the emanating points (oo, e) are 
(|,0) (1,0) and (4,0) and the corresponding stability transition curves are expressed 
as aquation (31-33), respectively. 

a0 = 1 + £(-I?1 ± ^%/Ii + fll) - 62U + — ?2 - Q- 
9       *■   2 4 V    £        L' ^ 160  '      4 

± ^SM/ATTBI) (31) 

a0 = 1 - -6?i - e2 [ai 4- -^ q2 4- — (21A? - 295?)] 
4 l 128      4 120 l        L L!] 

oo = 1 - -€?! - 62 [oi + -^- - -92 + — (29A? - 215?) (32) 
4 L 128      4 120 v       L Ll 

ao » 4 + e [-f + A (25, ± ^i+^i) 1 " «' (a' + & ^ + B^ 1      {33) 

Two parameter values chosen by Sisto [6] are used for the stability analysis and 
they are L = 25.4cm, ~ = 1.384. The effects of pretwist angle on the stability of blade 
tip motion are shown in Figures 2 and 3 for the constant precessional case with the 
emanating points (ao,e) = (g>0) and (j,0) respectively. Similary for the harmonic 
precessional case, the effect of pretwist angle on the blade tip motion are shown in Fig- 
ures 4 and 5 with ßü = 30° and 45°, and the emanating point (a0,e) = (§,0) and (1,0) 
respectively. The steady state periodic response exists only for certain parameter val- 
ues. Figure 6 shows the effect of initial conditions on the periodic response. The effect 
of pretwist angle on the periodic response is shown in Figure 7. 

6.       CONCLUSIONS 

The sensitivity of pretwist angle on the dynamic stability and response of a rotating 
tapered biade under the gyroscopic effect induced by precession of the rotor spin axis 
is investigated. It can be concluded that the instability region will decrease with the 
increasing of pretwist for the constant precessional case and also for the harmonic pre- 
cessional case. The increase of pretwist angle will result in small amplitude of response 
for the pretwisted tapered blade motion. 
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la1 Rotor blade system 
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Üb) Top view of blade at any cross section 

(lc) Side view 

Fig. 1 The configuration of rotating blade system (la) Rotoi 
blade system (lb) Top view of blade at any cross 
section (lc) Side view 
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Fig. 2 The effect of pretwist angle on the system stability 
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Fig. 3 The effect of pretwist angle on the system stability 

43S.a 448.8 4;5.j 
OIMENSIONLESS   FREQUENCY 

458.8 
«E-3 

Fig. 4 The effect of pretwist angle or the system stability 
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Fig. 6 The effect of initial condition on periodic response 
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74 



■f 

DIRECT SUPERPOSITION OF WILSON TRIAL FUNCTIONS BY 
COMPUTERIZED SYMBOLIC ALGEBRA 
* * 4 

Isaac Elishakoff , Charles D. Hettema and Edward L. Wilson 

SUMMARY 

The method of direct superposition of trial vectors, 
proposed by Wilson, is elucidated for the forced vibration 
analysis of systems. possessing damping, by the computerized 
symbolic algebra. The essence of the method is using a specific 
set of trial functions (Wilson trial functions) derived in a 
special manner from the appropriate static solution, rather than 
performing a mode superposition analysis by the exact 
eigenvectors of the system. Immediate advantage of the method is 
that the static solution, to which a dynamic solution should tend 
for the vanishing excitation frequency, is obtained 
automatically, by using a single vector, whereas within the exact 
eigenvectors, an infinite number of eigenvectors are involved to 
obtain a static solution. A specific example is numerically 
evaluated and it is clearly demonstrated that the superposition 
of the Wilson trial functions yields extremely accurate results 
with fewer vectors than using the conventional set of ' trial 
functions, utilized within the Rayleigh-Ritz method. 

1.   INTRODUCTION 

Usually the analysis of the forced vibration of the damned 
system is preceded by the free vibration study, na.nely by the 
evaluation of the natural frequencies and the mode shapes. Then 
mode superportion analysis .s performed, where the given 
(excitation) and sought (response) functions are expanded in 
terms of tne mode shapes of the undamped structure. As is well 
recognized, the numerical deter.tination of the exact natural 
frequencies ana mode shapes can :equire a large numerical effort. 
The usefulness of the prior knowledge of the natural frequencies 
lies in that one can forecast the possible resonant conditions, 
since in the vicinity of natural frequencies the magnification 
ratios assume considerable values. Modal superposition 
techniques may require however large amounts of modes to be taken 
into account to accurately predict the structural response. For 
tsAdiapie, IL IS well recognized that to capture the static load 
effects, especially for concentrated loads, a considerable amount 
of eigenvectors can be required [1,2]. Wilson et al. [3.A] 
proposed a new method whicn overcomes the above predicament «ihich 
may arise with using the exact eigenvectors.   The use of the 

*   * "    ™* " 
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alternative set of orthogonal vectors, which are not eigenvectors 
of the system, provides accurate solution at a reduced 
computational cost. The main idea of Wilson's method is as 
follows. The equations of motion of the system (written in terms 
of finite elements' read 

MÜ + Cu + KU = f(s)r(t) (1) 

where M,C and K are the mass, damping and stiffness matrices 
respectively. The vector f(s) represents the spatial 
distribution of the loading for fixed t, whereas r(t) is a 
temporary distribution for fixed s. The first «Ritz vector is 
found from the solution of the static problem Ku.= f(s). 

We perform then the normalization with respect to the mass 
matrix: 

ul u1/4ui
1Mu1 (2) 

so that u, Mu, = l. 

The subsequent vectors are generated from the following 
recurrence relationship 

Kui = Mu    • i = 2,3,...,N (3) 

where N is a number of terms taken into consideration. The 
vectors are orthogonalized at each step by the use of the 
procedure 

i-1 

j=i 

The vectors are then normalized, in perfect analogy with Eq. (3): 

* »   I RT  ill 
ui = ui ' h Mui (5> 

T As a result the set of functions u. is orthonormal u. Mu. = 6. . i l   j    u 
where 6      is Krorecker's delta. 

The vectors sc generated are used for the solution of the 
forced vibration problem. Such a procedure automatically 
captures the static response problem, since the first vector is 
derived from the static solution. We will use the Wilson trial 
functions for the forced vibration problem of the cantilever 
beam, previously treated by Leissa and Young [5] within the 
extended Ritz-Galerkin method for the forced damped vibration 
(one may also consult with the related papers by Lei3sa [6,7] and 
discussion by Warburton [8] of Kef. 6). 
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2.   BASIC EQUATIONS 

Consider a beam of  length L subjected  to a distributed 
transverse load q, sinusoidally varying in time 

q(x,t) = q(x)exp(iOt) (6) 

where O is an excitation frequency and x is an axial coordinate. 
The kinetic and strain energies are, respectively 

T = | J" pA(dw/*t)2dx , T = | J EI(*2w/öx^)2dx     (7) 
o o 

Leissa and Young [5] generalize the functional T  -V   used in max max 
free undamped vibrations by minimizing the following functional 

L    = (T    -D   )-(V    -W   ) max    max   max     max   max (8) 

where D is a dissipation functional and W is the work done by the 
force: 

L L 
D = (1/2) J  cw(#w/dt)dx  ;  W = Jf  wq(x,t)dx 

o o 
(9) 

Further, to apply the Ritz method,  assume that the vibratory 
motion w(x,t) may be expressed as 

w(x,t) = w exp(iOt) = Y C. y. (x)exp(iOt) 
Li J   J 

j=l 

(10) 

where vMx) are the trial functions which satisfy at  least  the 

geometric boundary conditions and C. are the complex coefficients 

R       I R 
C  = C  - iC.  where and C.  is a vector component of the 

J   J     J J 

response in phase of the exciting force and C  is the response 

component which lays the exciting force bv 90 degrees;  in Eq. 
(15) j denotes the number of terms retained in the series.   In 
Eq. (13) the index "max" implies maximum value (in time) of  the 
functional, so that 

^2 ,,, v r  _«r.2j„   ,,    _ i,  /„, r I,I,J2 ., 2.2 Tn..,x = (0 /2> X PAW <ix , Vmax = (1/2) J" E:(dzw/dxz)^dx 

(11) 
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L L 
'► Dmax = (iWj    cW dx • \ax  = J    0Wd* (12) 

o o 

The Ritz method requires L   to attain minimum so that 
max 

aLmax/9Cj   - ° • <J " I.» N) (13) 

where N is the number of terms taken into account.   This  yields 

in N linear simultaneous equations for C . or 2N equations for C . 
J J 

and C . "". 
j 

for the trial functions, in Ref. 5, the functions 

Vj(x) = xj (3   = 2,3 ,N) (14) 

were used, with numerical results reported for 2, 4 and 7 term 
approximations. In addition an exact solution of the problem 
wasreported. Here following Rsfs. [3]-[4] we will use the Wilson 
trial functions, in complete analogy with Ritz vectors described 
in the Introduction. 

3.   GENERATION OF WILSON TRIAL FUNCTIONS 

The static solution for the cantilever  is readily obtainable 

w(x) =(qo/24EI)u*(x) , u*(x) = x*   - 4x3L  + 6x2L2      (15) 

where, for the similarity yith the matrix notation in the 
Introduction, we denote by u.the unorthoncrmal  set. of  Wilson 

trial functions, whereas by u.  the orthogonalized set; and by u. 

the orthonormal set.  The analogue of the normalization equation 
is 

rL    « 2 U-^X) = u1(x)/ JpA(u,) dx (16) 
o 

and results in 

u2(x) = V3V5V2V2T1) (1/PVA"D) (1/LA) (x4-4x3L+6x2L2)     (17) 

The first approximation of the natural frequency squared is 
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(18) 

frequency 

co^ =  | u1EI(d
4U1/dX

4)dx = 12.461538 
o' 

which is 0.80% higher than the "exact" natural 

1.87410419434 EI/pAL* = 12.3623642 EI/pAL* 15]. 

For generation of further trial functions the computerized 
symbolic algebraic code REDUCE [9] was used. For applications of 
computerized symbolic £lgebra in various engineering problems one 
may consult the book by Pavelle [10]; applied mechanics 
applications are given in Refs. 11-13. In our circumstances, the 
Eq. (5) for subsequent trial functions is replaced by 

EI d u^ydx4 = pAu. 
(19) 

supplemented by boundary conditions (22). 

Once u.  is found,  the orthonormalization procedure  is 
performed with the following algorithm 

Algorithm 

FOR I: = 2: N DO 

FOR J: = 1: (1-1) DO 

<<CA: = INT(RO*A*U(J)*USTAR(I), X); 

C(J): = SUB (X-L.CA) - SUB (X=0,CA>> 

UD: = J: =1: (1-1) SUM C(J)*U(J); 

UDSTAR(I) USTAR(I) - UD 

DA- = INT(RO*A*(UDSTAfi(I)**2), X) 

UD1: = SUB(X-L,UA) - SUB(X=0,UA); 

U(I): = UDSTAR(I)/(UDl**(l/2); 

Comments 

Finding cj (Eq. 7) 

i-1 

Finding  Y cjuj 

.1 = 1 

Evaluation of Eq. (6) 

calculation of 

the denominator 

Eq . 18) 

Obtaining the new 
trail function 
Eq. (8) 

The so constructed three subsequent trial  functi 
listed as follows, with ? = x/L: ons are 
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ui(?) = (l/ypSD)?  (-30.61273645 -72.8225909? -47.6S85789?2 

+ 9.S2764375?4 - 2.80789821?5 + 0.33509872768?6)     (20) 

u2(0 = (1/ypÄL >)?2 (115.8769233 - 524.670645? + 698.9829412?2 

+ 753.370 1876?* + 661.5679963?5 - 208.2233227?6 

+  13.947 48035?8 - 2.535905519?9 + 0.21132S4599?10) (21) 

U (?) = (1/VpAL i)?2 (-291.61499 + 2052.590181? - 4317.372131?2 

+ 12586.1589 9?"1* - 19350.20111?5 + 11405. 15083?6 

- 3707.9871 21?B - 2038.397555?9 + 425.6576594?10 

+ 14.054461 34?1J;
 - 1.87392818?13 + 0 . 1171205112?14) (22) 

Interestingly, using one term Rayleigh or Galerkin methods 
for the fundamental vibration frequency yields 

L 
w2 =  f u. EI(dAu./dx4)dx . i = 1,2,...,N. (23) 
l    J   l      l o 

Now we turn to the forced vibration problem. Instead of 
arbitrary trial functions in Eq. (15), we resort to the Wilson 
trial functions, u.(x); so that Eq. (15) is replaced by 

w(x,t) =  y C.u.(x)exp(iOt1 (24) 

j = l 

term approximations. It is appropriate to quote here Leissa [8] 
"... the author is especially excited about the capabilities of 
using the method with only one or two trial functions on many 
problems to obtain adequate results by means of ordinary hand 
calculator". We will demonstrate that this is even "more true" 
using the computerized symbolic algebra, allowing us to obtain 
explicit expression for the response characteristics. 

4.  ONE TERM APPROXIMATION 

In this case w(x,t) = C u (x) 
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The Equation dL      /dC« = 0 reads max      l 

[130{,oALAn2   -   in4)   -   1620EI]   C^   =   -   9VTW   VpKT*   qL*      (25) 

so that 

-R _ yntn{-11.7o> + i4s.8)QVpKn 

i.69{cr+(T)   -  4212«  +   26244 

(26) 

r,i _  -n.yVntPQft  
1   " 2     2 169(a t/T6)   -  4212a +   26244 

where 

*, 4~2 _4 , 4 
a=e^O_       .     /.-g-     .     Q-ft- (27) 

The response of the beam at the cross-section x may be 
oDtained by adding the in-phase and out-of-phase components and 
combining them vectorially [5].  This implies that 

w(x,t) = W(x)exp[i(0-v)J '28) 

where W(x) is the amplitude of the response 

W(x) = j(C*)2 + (cj)2'u1(x) (29) 

This amplitude is nondimensionalized with respect to the tip's 
static displacement w . (L) = qL /8EI.  Additionally, the damping 

c is expressed in terms of the critical damping corresponding to 
tne urst natural  frequency c  ,  = 2pAw,  and is  taken as cr, l        l 
c/c  =6.For the nondimensional  tip  displacement  amplitude 

response W(L)/W  (L) we obtain the following analytical formula 

R=W(L)/Wst(L) = (1.01610?'
A+ 4. 064436j-2<52- 2 . 048S21)"2+ 1.032477)/ 

(YB  + 8y662 - 4.032069y6 + 16yA64 - 16.128356y462 

+ 6.096653?-4 + 8. 128871}'2<52 - 4.097042y2 + 1 032477)     (30) 

where y    =    O/w.  is tne excitation-frequency-to-first-natural 
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frequency ratio. For the damping coefficient, used by Leissa and 
Young [5J, 6  = 0.01, we obtain a simple formula 

W(L)/W t(D = 1.016109/</* - 2.015645r2 + 1.0166109)      (31) 

The numerical values listed in the table clearly demonstrate that 
this formula compares very well with the two term approximation 
used in Ref. 5. As is seen, computerized symbolic algebra allows 
one to obtain explicit analytical expressions. 

5.  MULTITERM APPROXIMATION AND DISCUSSION 

Under new circumstances 

Tn,av = («2/2)(c2 + ch max l 2 

V        =6 . 230769C2-7 . 015022C, C„+254 . 286828C2) (EI/pAL4) 

D =   (ic£V2pAL) (C2  +  ci?) (32) max l z 

W =   (0.789352  C.    -   0.4443S3  C'   )qyt/pA" 
fli3 X 1 £, 

Equations (19) read 

C1(pAL
AQ2-iOL^-12.461538£I)+C 7.015022EI = - 0.7893S2/LAVpÄT1 

(33) 

C17 . 01bO22EI+C2 (pAL^-iOL^-SOS . 573656EI) =0 . 444353L4VpÄT"« 

The nondimensional tip-displacement amplitude response becomes 

R = W(L)/W . = M/N 

where 

M   =   0.215269j'12+2.583230?'1Ü<58-56.327795j'10+10.332921r8ö4 

-  450 . 622356y8<52+5311. 677892^8+13 . 777229?'6ö6-901. 24473j"6<54 

+  29477 . 70047y6<52-214428 • 6689^6+32923 . 95559^464-832577 . 5833f A<52 

+   3279621. 37r4 + l 1474129. 24^e52-5936923. 794j'2 + 2866475 . 528 

(34) 
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N = j'16+16r1462-16ä.5S7556y1'*+96?'1264-2023.050668j'1262 

+ 10822. 74905r12+256}'1066-8092.202673}'10/' 

+ 100134. 5241rl0<52-320282.7948r'L0+2S6?-8i58-10789.60356>'8<58 

+281584.2381^864-2451272.69y862+4042714.61r& 

+216840.5066r666-4680566.041y664+2755549i.34y6s52 

-13178642.26y6+45971956.75^*6^-48147688.89/*62 

+18323638.19^+22945342.77*-262-11744558■43y2+2866475.528 (35) 

For the damping ratio 6  = 0.01, utilized in Ref. 7 we arrive at 

R = 10.215269^12-56.327536^10+5311.63283^-8-214425.7212y6 

+ 3279538. 112^-5935776. 381?'2+2866475 . 528) / (^16-168 . 585956/14 

+10822.5675r12-320272.7815/10+4042469.485^8-13175886.76r.6 

+ 18318Ö23.88?'4-11742263.89?'2 + 2866475. 528) (36) 

Results of the two-term, as well as four term approximations are 
listed in the table, along with the numerical values reported by 
Leissa and Voung [5], The last column is associated with the 
exact solution, derived and evaluated in Ref. 5. This exact 
solution turns out to be practically coincident with the 
seven-term approximation using conventional Ritz method [5]. 
Comparison of the present one-, two- and four-term approximations 
with the exact solution, demonstrates that utilizing Wilson's 
trial function metnod allows to converge to the exact solution 
much faster, than by applying the conventional Ritz method. 

6.  CONCLUSION 

By utilizing computerized symbolic algebra it is demonstrated 
that application of the trial functions, generated from th<= 
ayt/x update static solution, represents an improved approximation 
for the response of structures, possessing damping. It turns out 
to be a far superior procedure than the conventional Rayleign- 
Ritz method, since it yields extremely accurate results faster. 
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o N = 1 N = 2 N = 4 
r~   CO 

1 Present Ref. [5] Present Ref. [5] Present 

0.0 1.00000 1.00000 1.00000 1 . 00000 1. 00000 

0.5 1.32969 1.33134 1.33758 1. 33759 1. 33759 

0.9 5.06955 5.06759 5.29609 5, 29609 5. .29622 

0.99   29.44850 28.65560 36.08840 36. .08700 36. ,09010 

1.0     46.77830 45.88600 50.66940 50 .66970 50 ,67030 

1.01    42.83020 44.49840 35.57050 35, .57440 35 .57130 

1.1 4.96141 5.04832 4.81290 4. .83250 4 .81315 

1.5 0.81139 0.82658 0.82457 0 .824 73 0 .82472 

2.0 0.33688 0.34731 0.35254 0 .35276 0 .35276 

6.267 0.02634 0.03837 0.31930 1 .27647 3 .71133 

17.547 0.00328 0.00001 0.00124 0 .02056 0 .42110 

N = 4 N = 7 Exact 

Ref. [5] Present Ref. [5] Ref. [5] 

1.00000 1.00000 1.00000 1.J0000 

1.33759 1.33759 1.33759 1.33759 

5.29609 5.29622 5.29622 5.29622 

36.08700 36.09010 36.08960 36.08960 

50.66970 50.67030 50.66940 50.66940 

35.57440 35.57130 35.57130 35.57150 

4.83250 4.8131S 4.81315 4.81315 

0.82473 0. w2472 0.82472 0.R2472 

0.35276 0.352 76 0.35276 0.. 35276 

1.27647 3.71133 4.48085 4.48085 

0.02056 0.42110 0.83682 0.93829 

L 
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PROBLEMS OF STRUCTURAL DYNAMICS SOLVED 
BY CHINESE REMAINDER ALGORITHM 

I-Chen Chang 

Associate Professor, Department of Mathematics 
College of Staten Island, City University of New York, USA 

1. INTRODUCTION 

Because there is no Chinese alphabet, ancient Chinee mathematicians could not 
express their ideas by formulas. As a result, the style of Chinese mathematics is 
very different from its Western counterpart. In recent years books have been 
written in the English language concerning Chinese mathematics before and during the 
13th century [1,2,3], These works, however, are limited to issues of historical and 
philosophical interest without technical application for modern times. After the 
13th century, the Chinese made no progress in their type of mathematics beyond the 
promotion of the abacus to their neighboring countries. With the advance of modern 
computers, however, the abacus has become obsolete in the eyes of Westerners as well 
as Chinese, and it has come to appear that Chinese mathematics has been dead for 700 
years and that there is little prospect for its revival. Nonetheless, from studying 
the biographies of ancient Chinese mathematicians and from conducting the research 
for two short papers [4,5] on Chinese mathematics, the author has come to believe 
that the situation may not be entirely hopeless. This conclusion is based on the 
following observations: 

(i) In the year 1970, a young Russian mathematician, YJJ. Matiyasevic solved 
one of 23 important unsolved problems suggested by the great German mathematician 
D. Hilbert.  This solution indicated that the Chinese algorithm is still useful. 

(ii)     In  recent  years  the  textbooks  on design  and   analysis  of  computer 
algorithms [6 ] have been teaching the Chinese remainder algorithm. 

(iii) In Chinese mathematics, the emphasis is on algorithms rather than on 
proofs, and while the abacus served as device to store numbers, the tabulated 
diagrams (the Chinese type of mathematics) served as flow diagrams for processing. 
Now, the abacus has been replaced by personal computers since computing and graphing 
can be carried out without formula translation. Therefore, the Chinese type of 
mathematics may be found useful for modern computer applications. 

(iv)  The tabular form of Chinese algorithm can produce decimal numbers to any 
degree of accuracy [7] and can produce the values of special functions. 

(v) The modular representation of huge integers by sets of relative prime 
numbers can avoid long and tedious computation of multiplication and division 
operations. 

In this paper, the attempt is made to solve some typical vibration problems of 
continuous structures by using ancient Chinese algorithm techniques. Since Chinese 
mathematics has fallen behind 700 hundred years, this present scheme should be 
viewed as only a beginning effort and aa being very primitive. Nonetheless, its 
nurpoje is to stimulate the interest of engineers so that they might be able to 
ievelop an entirely different type of mathematics—a mathematics without formulas. 

2. FOUR DIFFERENT METHODS OF STRUCTURAL ANALYSIS 

That most modern engineering analysis requires higher mathematics does not mean 
simple numerical computations have no use for solving practical problems.   In 
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the yew 1932, for example, Professor H. Cross proposed a procedure known as the 
method of Moment Distribution [8] (M-thod I of the four approaches considered in 
this section). Although this method was not developed in a rigorous mathematical 
way, it was very effective for solving practical problems. This method has come tu 
be known by structural engineers all over the world and has maintained its 
popularity for over a quarter of a century. Before 1932, most structural 
computations had to be carried out by the method of virtual work, which required at 
least a working knowledge of integration. Mathematically speaking, Cross's 
procedure is a method of successive approximation [9 ]. The beauty of this method is 
that its operation is based on a set of well-defined structural terms such as the 
fixed end moment, MAB , the stiffness factor KAB , the carry-over factor from A 
to B, PAB, and the distribution factor r

AB at the end A of member AB. The well- 
known example of Professor Cross is shown by Fig. 1, and its detailed explanation 
can be found in References & and 9. 

17 
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Fig. 1.  Professor Cross's well-known example of continuous frame. 

In 1937 T.Y. Lin proposed a technique called the direct method of moment 
distribution [10 L Although his method is well-accepted by some of the Chinese 
writers [11], most American writers have been inclined to use the v-value method of 
L.E, Grinter [12]. 

By making use of the idea of Professor T.Y. Lin, the author was able to reduce 
a complicated structural system to a simpler network and to emphasize distribution 
factors rAS instead of stiffness factors K AB In tr process of analysis [13,14]. 
The reason for this shift in emphasis is that momei... distribution depends on the 
"relative" magnitude of the stiffness factors, i.e. KA? . Mathematically speaking, 
the distribution factors rAQ serve as a "weight" of distribution. An example of 
this is shown in Fig. 2, and a detailed explanation can be found in References 13 
and 14. 

saSaS&r? Äs was asrsrsawrf received little attention from American structural engineers and writers. 
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Fig. 2.    Simplified rigid frame analysis with distribution factors. 

From 1960 to 1980 most structural analysis work was done by large computer 
programs, and as a result, slope deflection equations and the matrix method 
(Method III) took the place of the method of moment of distribution. Only in recent 
years because of the u»t of the method of recurrence formula on personal computers 
(Method IV), has the investigation of the relation between the four methods come 
once again to writers1 Attention. 

The main formulo of the Kloucek's method is expressed if expressed, in the 
terminology of H. Cross's method is 

'" 2£Kih-Eai-n] •(2.1) 
where 0, is the angular deformation at joint 1 

YsMF\ is the sum of fixed moment at joint 1. 

1- 

ai2 
a 

(2.2) 
23 

1- '34 

and 
»ij"cijCJirUrÜ  (2-3) 

1-ect 

cijacji~i/^ ** tne earpy"cver factor from end i to end j of member ij. 

ij  is the 'distribution factor at the end i of the member ij.    If it is 
expressed in terms of slope-deflection formulation, then 

0, Z>i! 

and 
2( EV Bn 

.(2.4) 

B„ = 

-a, 1 
-a. 

0 

0 

0 
• a2 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0    -a n-2   i    - a 'n-i 

0 
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It can bt shown that the determinants Bn satisfy the raeurranec formula 

Bn " Bn-1" (an-l)2 Bn-2       (2.6) 
n ■  1.   2,   3   .. • t •» 

3.     TWO DIFFERENT MATHEMATICAL MODELS FOR STUDYING VIBRATION OF 
RIGID FRAME STRUCTURES 

There are commonly two different mather atical models used in the dynamic 
analysis of rigid frame structures. One of these is the continuous system model and 
the other is the discrete system model, i.e. the mass-spring model. In 1955, the 
author was studying the buckling strength of structures [17] under Dr. E.F. Masur 
[18] ana discovered the similarity between the stability analysis and the vibration 
analysis of rigid frames from a paper by Prof. T.C. Looney [19]. This however, was 
only a roughly formulated idea which crystallised later on, in reading the 
authoritative book of Prof. Bishop [20 ] and the brilliant paper (which then became a 

, book) of Dr. Marguerre [21,22], both in 1960. 

In 1962, by making use of characteristic functions, the author formulated the 
slope-deflection equations for structural dynamics and simplified them by taking 
advantage of the basic idea of moment and direct moment distribution method, for 
example, the stiffness factor 

K L    A   K       T^    conhAsinX'     ~fH f    I i. > (3.U 

and the carry-over factor 
F a .      sinhX- smX 8 a 2) 

where 
A El 
üj« natural frequency 

us   mass/unit length of the structural member 
L=  length of the member        I* moment inertia of the member 
£» Young's modulus 

F2 * ecs\ coehX . 

F5 ■ eo»\ sinhX - sin\ cash\ . 

F8 = sin\ -sinhX . 

are the characteristic functions used by Professor Bishop in „his tables of 
flexural vibration of beams [20]. 
Since all problems have to be solved by the trial and error process, this 

method Is not very practical in comparison with the matrix method used by large 
computer programs. In 1982, when hand-held calculators became widely used by 
students, the author decided to let engineers know of his long suffering endeavor 
[23,24]. An example is given in Fig. 3 and for detailed explanation, please see 
References 23 and 24. 
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Buaatil.  Find the first natural frequency of the frame shown in Fig. 3. 

A' 

<VBL 

V     ,B   El    E, 

-m 
El 

c 

08EI 

* 1- —j        O18L 

0»6M 
0.8EI 
(MM 

D 

Fig. 3.  A simple model of dynamic analysis of rigid frame. 

Solution: By using an estimated value \    of member BE and the equation 

M-(&)>».' 
we obtain all the values of   M.   (i"l,2,3) at B,  i«l to 4 

Joint B                 Joint E 
Carry 
-Over 
factor 

0 
1 Member K r Member K r 

J BE 3.820 0.698 0.220 EB 3.820 0.698 0.106 6.84 

2 BC 3.056 0.474 0.149 EF 3.056 0.474 0.072 

3 BA 3.362 1.997 0.631 EG 3.362 2.433 0.367 

4 ED 3.056 3.014 0.455 

z 3.169 1.000 E 6.619 1.000 
Tahl« 1.   TaleuUtton af nynamte ntotHhutinn F.fftnr« 

XBE   "V3-82      XAB=   3'362     and •After trying a few values of A    ", » 
Ag^.OSo 

Error ,.x. p2ra_r    *1 -(6.84)2(0,22)(0.106)  --0.091 

Theoretically, the continued fraction approach yields a very elegant formula 
for calculating the fundamental frequency of a continuous structure, according to 
equation (2.4) 

Bn(X)" 0  (3.4) 

When n » 2, we have „ 
1  -   PABPBArABrBA-  ° 

as on« may see from the given example, whereP'sand r's are functions of frequency. 

To the discrete model (mass-spring model) of rigid frames, this approach also 
can easily be applied. To illustrate this, we will take the example fron a well- 
known book of advanced engineering mathematics of A.C. Bajpai [25]. 
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The ch*racteristic equation for th« frame is shown by Fig. 4. 

V 
(K^Kj)-«2}^ "K2 

-K, (K2*K3)-«
2M2 

K3- (J'M3 

 (3.5) 
TIP 

It we express Eq. (3.5) in terras of continued fraction, we 
Bn(<y )  " 0 

Ffr. *»  A three-story 
rigid frame 

Bn « bx  ♦ Zx - 

b2 ♦ z2 - 
VZ3" 

ai "  Ki*l. 
bi " V Kin    andzi"-«Mi 

I 

In the dynamics of robot manipulator we have a similar equation [26]. For 
example, in studying the trajectory of manipulator, the spline segment equation 
takes the form!    [«]   [F'J -    [»] 

H 
"4 

0 

0 

0 

2<V  V 
2<V  t5)    - 

0 

0 

0 

0 

t_   ,     2(t     -♦ f     .) u-x n-*      n-i' "n-2 

[aj =s acceleration matrix, [ F'] SS coordinate matrix of points 

Therefore, the determinant of the matrix [m] can also be treated as 

All this, however, is not surprising because many more general cases in the 
theory of oscillations can be treated by the method of continued fraction. One of 
the welUcnown examples is an alternative to Routh-Hurwitz criterion given by Prof. 
H.S. Wall [27,28 J. We shall present a sih^lified version of his case for the 
practical use. 

Con.*«     f( X,-.0 X^aiX
n-^a2Xn-2 ♦     +an - 0    (3.8) 

as the characteristic equation 
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and let 

fj_U 
a<X)-t1\

n-i*,3x
n-3*1   X n-5. 

(3.9) 

then  g( X )    ':an b* «pressed as the expansion algorithm of a 

special ease of J-function a* follows 

,x«- i ♦  (3.10) 
b2x ♦ 

b^x ♦ 

a.- 
i-1  »   if    nä5.  then we havei V a. 

a2* a2~bla3'    a3"*3"b2(a4-bl*5)» a4**4~(bli'b3)a5'  and a5aa5 
The theorem is   i   "All roots of Kq.(3.8) will have negative 

real parts  if and only if all b.»   we will not prove the 
theorem but work out the condition for n*4. 

f(X)  - X4 ♦ a,   x
3 *    a2X

2 ♦ a3X* a4 - 0 

The result  is«  b>0  (i»l to 4) where b1"l/a1.  b2» a^/(a1a2-a3) 
b3={a1a2-c3)

2/a1(a1a2a3-a^-aja4) and ^»(a^a^-a^J/a^ 

4.     FROM CONTINUED FRACTION BACK TO ANCIENT CHINESE ALGORITHM 

Continued fraction without analytic theories and deep theory of convergence 
[29,30] is a low level mathematics of the kind that used to be taught in high school 
algebra courses 30 years ago [313. For the past 30 years practical engineers have 
no longer been interested in this topic. Since it is so useful in discrete 
mathematics, however, we can now make use of it once more to enhance our 
understanding of Chinese algorithm. 

In a large history chart of mathematicians from the 10th to the 19th centuries 
prepared by IBM [32 3, the only Chinee mathematician represented was Chin chiu-shao. 
In studying Chin's process of Ta-yen Chiu-i-shu (method of finding unity), I find 
that his tabulated form of mathematics is nothing but a flow-diagram of continued fraction. 

In solving the problem of Shang-yuan-chi-nien, Chin suggested a mathematical 
form of drill to obtain an answer for tha following questions 

What is the value of "a" such that     a(79>s 1        (mod 325) 

Solution:  c    ■ 1» c, ■ q, 
O 2 1 

ci " ci-l«i * Ci-2 

rl * 9> *1-W-4 

k 0 1 2 3 4         J 
ck 1 4 33 37 Cuai44aa 

Ok 325 4 8 1 3 

'* 79 9 7 2 1 
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t Just like the old master of kung-fu, what an old matt« of ancient Chines« 
mathematics like Chin did, was to offer a form of drill for his followers. Making 
use of his form, the following three examples are given as illustrations for putting 
Western mathematics of continued fraction in the framework of the ancient Chinese type of mathematics 

Fam» 1   Trivial case-Fibonacci numb«rs (Pi"«ti
al)   ci"ci-l*ci-2 

i 0 1 '■■V~ 3 4 5 6 7 a q 10 
ci 1 1 2 3 5 8 t3 21 34 55 89 
Mi 1 1 1 1 1 1 1 1 i 1 1 

Forrfl _g 

6137 
3  *  * 8l4T * 2-71828183 

Fornu 
Bn = 

b0+ — 
b,+ a2 

b2 + 
b3+» 

33 

'•+ an 

Bi " bi * Bi-1* ai*i-2 
B  .   ■  0,   B_2  ■  0 

Iff we use    4    "Arctan x 

x ■ 1 as an example 
ai "(2i-l)2,  1*0,1,2,,.. 

b0 - l. b.-2 

all are known,ther 
» 

i 0 1 !    2 3 4 5 6                           7 
bi i 2 2 2 2 2 2 2 

BJ 
l 

0 
1 

J2_ 

1 
3 

6 

9 
13 

30 

75 
105 

210 

735 
945 

1890 20 790 
135135 2,027,025 

8505 
10395 

114345 

|*in 1 9 25 49         81    j 121 144 169 

»„ ■ bj -1 * •oB-2 " 1 ♦ 0 • 1 
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81 • Vo ♦ mxBml • 2(1) ♦ (1)U) ■ 3 

Also 

B2 ■ b2Bx ♦ «2B0 » 2(3) ♦ 9(1)  • 15 

B3 ■ bjB2 ♦ •3B1 • 2(13) ♦ 25(3) - 30 * 7S ■ 105 ate. 

i qi Bin p0 " TT <»< » 
j--i 

i -1 0 1 2 3 4 5 6 7   ! 

ai+l 1 1 9 25 49 81 121 169 

\ 
1 1 3 15 105 945 10.395 135,135 2.027.025 

«i 1 1 1 5 
" 7 

7 
" 5 

9 11 
" It . 

13 
" 15 

15 

pi 1 1 1 l 
" 7 

1 
f 

i 
ii 

1 1 
" IT 

y " Arctan x 
J-l 1 

1*1     1 * 
1* 5  * 7 * 15 

5.     CONCLUSION 

With the wide use of microcomputers, more and more calculations ere performed 
on computers directly. In order to reduce the work of formula translation, effort 
is mad«; to carry out the vibration analysis of structures by recurrence formulas 
which are bssed on the theory of continued fraction and the tabulated form of 
ancient Chinese algorithm. 
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VIBRATIONS OF PLATES WITH CONCENTRATED MASSES 
AND PLATES WITH POINT SUPPORTS 

E. Hinton and B.S. Al Janabi 
Dept. of Civil Engineering, University College of Swansea 

I 

Summary 

This paper deals with vibrations of square plates carrying concentrated masses. To 
analyse these problems, a nine noded, quadrilateral Mindlin plate element is adopted. 
The effects of the ratio of the concentrated mass to the plate mass and the postion of the 
concentrated mass on the vibrational characteristics of the square plates is discussed. 
Skew plates resting on point supports are also considered 

1. INTRODUCTION 

Recently, Huang and Hinton [1] developed a new nine noded Mindlin plate bending ele- 
ment which provides superior performance when compared with earlier elements — i.e. 
no locking or mechanisms, patch test satisfaction and good convergence characteristics. 

In the present paper the new element is used to study the vibrational characteristics of 
square plates carrying concentrated masses and skew plates resting on point supports. 
Comparisons are provided with solutions from a comprehensive set of studies carried 
out using a spline element method based on thin plate theory [2]. 

2. VIBRATIONS OF SQUARE PLATES CARRYING CONCENTRATED MASSES 

General comments 

The studies in this section all involve square plates with side length o, thickness h, 
density p, flexural rigidity D, added mass intensity M and mass location £ = i/o, r? = 
y/a — note that the origin of the x, y coordinate system coincides with the bottom left 
hand corner of the plate. 

All finite element solutions are obtained using a 10 X 10 mesh of 9-node, Huang/Hinton, 
Mindlin plate elements. A lumped mass representation is adopted using a 3 x 3 Lobatto 
rule to evaluate the matrix — since the sampling points coincide with the nodal points 
a diagonal matrix results. 

The eigenvalues are extracted using the subspace iteration algorithm with Sturm se- 
quence check described by Bathe and Wilson [3]. The finite element program used in 
the studies is listed and documented by Hinton [4]. 

To simulate thin plate behaviour, a thickness/span ratio hja = 0.01 is adopted through- 
out these studies. 
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Simply supported and clamped square plates 

The vibrations of square, thin plates carrying a concentrated mass are considered. Table 
1 shows the first five natural frequency parameters, fl^ = ut a

2 {ph/D)l /a of square plates 
with various boundary conditions, and each carrying a concentrated mass at its centre 
(i.e. at £ = n = 0.5). The mass ratio, p = M/pha3 varies from 0.0 to 1.0. 

For the simply supported and clamped plates companions are provided with results 
obtained by Mizusawa [2] using the spline element method. Excellent agreement be- 
tween the spline and finite element solutions is obtained. For the simply supported, 
square plate with mrss ratio p — 0.25, further comparsions are provided with Mindlin 
plate solutions obtained by Nicholson and Bergman [5] using Green's functions. Again, 
excellent correlation with the results from the finite element solution is observed. 

For modes with nodal linec (i.e. contours of zero amplitude) passing through the location 
of the added concentrated mass, the resulting frequency parameter is independent of 
the mass ratio. 

Square plate simply supported on two parallel edges 
and free on the remaining edges 

A similar study is also undertaken for a square plate with two opposite edges simply 
supported and the remaining edges free. Thus, Table 2 shows the first five natural 
frequency parameters of square plates carrying a central concentrated masses with mass 
ratios varying from 0.0 to 1.0. Excellent agreement with the results from the spline 
element solutions presented by Mizusawa [2] is obtained. 

Influence of location of concentrated mass 

Table 3 shows the influence of the location of the concentrated mass on the frequency 
parameters of the plate considered in the previous section. A mass ratio of p = 0.5 is 
assumed. The last column of the table provides the frequency parameters for the case 
where no concentrated mass is added. The greatest effects on the frequencies occurs 
when the added mass is positioned at the midpoint of a free edge. Again, comparisons 
with the spline element solutions of Misuzawa [2] are excellent. 

Square, mti&ilemr plate 

Table 4 shows the effect of varying tht mass ratio on the first five frequency parameters 
of a cantilevered square plate carrying a concentrated mass at the acute corner of the free 
edge (i.e. at $ = 1.0,n = 1.0). Excellent correlation between the frequency parameters 
obtained using the spline and finite element solutions is again observed. 
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Table 1 Natural frequency parameter ft, of square plates 
carrying central mass with simple supports (SSSS) 

and clamped supports (CCCC): finite and 
spline element methods 

simple supports clamped supports 

mass modes fin. el. spline el. fin. el. spline el. 
ratic soln. soln. soln. soln. 
0.0 1 19.74 19.74 35.98 35.99 

2 49.35 49.35 73.40 73.39 
3 49.35 49.36 73.40 73.39 
4 78.95 78.96 108.20 108.20 
5 98.75 98.70 131.70 131.60 

0.25 1 13.73 13.74 21.87 21.92 
18.78* — — — 

2 49.35 49.35 73.40 73.39 
49.85 — — — 

3 49.35 49.35 73.40 73.39 
49.35 — — — 

4 64.99 
65.01 

65.64 89.52 90.70 

5 78.95 78.96 108.20 108.20 
78.96 — — — 

0.50 1 11.07 11.09 16.96 17.02 
2 49.35 49.35 73.40 73.39 
3 49.35 49.35 73.40 73.39 
4 59.60 60.32 84.52 85.78 
5 78.95 78.96 108.20 108.20 

1.00 1 8.475 8.492 12.63 12.69 
2 49.35 49.35 73.40 73.39 
3 49.35 49.35 73.40 73.39 
4 56.36 57.08 81.72 82.98 
5 78.95 78.96 108.20 108.20 

* Results obtained by Nicholson and Bergman [5] 

3. VIBRATIONS OF PLATES WITH POINT SUPPORTS 

General comments 

The studies presented in this section all involve skew plates with side length a, skew 
angle <f> (N.B. <j> - 0° represents a square plate), thickness h, denisty p and flexural 
rigidity D. 
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Table 2 The effect of the mass ratio p - M/pha3 on the first 
five frequency parameters Q, of a square plate with two 

opposite edges simply supported and the other two edges free: 
finite and spline element solutions 

P = 
modes 0.0 0.25 0.50 1.00 

1 9.630 7.905 6.815 5.514 
9.681* 7.909 6.820 5.520 

2 16.12 16.12 16.12 16.12 
16.13 16.13 16.13 16.13 

3 36.68 28.59 36.00 24.08 
S6.7S 28.68 26.11 24.21 

4 38.92 38.92 38.92 38.92 
38.95 S8.95 38.95 S8.95 

5 46.69 46.69 46.69 46.69 
46.74 48.74 46-74 46.74 

* Results given by Mizusawa [2] 

Table 3 Influence of location ((,«7) of the concentrated mass M on 
frequency parameters fi< of square plate with two 

opposite edges simply supported and two edges free: 
finite and spline element solutions 

ft 

t,r> = no added 
modes 0.5,1-0 0.5,0.75 0.25,1.0 0.25,0.75 0.25,0.5 mass 

1 5.224 6.506 6.357 7.587 7.810   
5.232* 6.510 6.364 7.590 7.814 9.631 

2 11.99 14.17 11.95 14.38 16.12   
12.00 14.18 11.96 14.89 16.13 16.13 

3 27.58 36.22 23.36 28.39 23.54   
27.66 36.27 28.40 28.44 23.62 36.73 

4 38.92 38.92 37.84 36.74 37.78   
38.95 38.95 37.87 86.78 37.81 38.95 

5 46.69 46.69 42.35 43.51 46.69   
46.74 46.74 42.39 43.56 46.74 46.74 

* Results obtained by Misuzawa [2] 
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Table 4 The effect of the mass ratio p = M/pha2 on the first 
five frequency parameters fl< of a square cantilevered plate: 

finite and spline element solutions 

fr 

P = 
modes 0.0 

3.471 
0.25 0.50 1.00 

1 2.299 1.799 1.345 
8.467* 8.897 1.798 5.5Ä? 

2 8.498 5.961 5.657 5.492 
8.J68 5.946 5.645 5.^W 

3 21.27 16.96 16.45 16.17 
81.19 16.94 Jfi.^Ä ifi.i5 

4 27.18 21.87 21.83 21.81 
87.18 81.79 81.75 81.78 

5 30.91 29.41 29.39 29.37 
80.77 «9.S5 89.81 20.50 

* Results given by Mizusawa [2] 

As with the previous study, all finite element solutions are obtained using a 10 x 10 
mesh of 9 node Huang/Hinton, Mindlin plate elements using a lumped mass matrix. To 
simulate thin plate behaviour a thickness/span ratio of h/a = 0.01 is adopted throughout 
these studies. 

Plates with point supports 

A series of point supported skew plates are analysed for skew angles <j> = 0°, 15°, 30°, 45° 
and 60°. In all cases the lowest five frequency parameters fi, = w<a*(^A/jD)1/9 are 
evaluated. The following plates are considered: 

(a) corner supported plates, see Figure 1, 

(b) plates supported at mid-side points, see Figure 2, and 

(c) plateR supported at corner and mid-side points, see Figure 3. 

The frequency parameters ü{ for plates (a), (b) and (c) are listed in Tables 5, 6 and 7 
respectively. In all cases excellent correlation is obtained with the results presented by 
Mizusawa and Kajita [6] who used the spline element method. 

4. CONCLUSIONS 

The Huang/Hinton, Mindlin plate element has been used to study various square plates 
carrying concentrated masses and also skew plates on point supports. The results are 
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Table 5 First five frequency parameters n< for skew plates 
with corner supports: finite and spline element solutions 

<t> = 

modes 0" 15° 30° 45° 60° 
1 7.103 7.573 9.089 10.20 9.424 

7.111* 7.583 9.104 10.20 9.433 
2 15.74 13.15 11.39 11.79 14.63 

15.77 1S.17 11.40 11.82 14.66 
3 15.74 19.54 22.63 27.73 36.20 

15.77 19.59 £2.65 27.76 36.29 
4 19.59 20.28 25.11 29.73 39.22 

19.60 20.29 25.18 29.78 39.52 
5 38.34 33.90 30.25 33.22 39.88 

S8.4S 83.97 S0.29 33.34 39.94 

* Results given by Mizusawa and Kajita [2] 

Table 6 First five frequency parameters n, for skew plates 
with supports at mid-side points: finite and spline element solutions 

1 

<t> = 

modes 0° 15° 30° 45° 60° 
1 13.45 12.17 10.58 9.449 8.718 

13.47* 12.19 10.59 9.458 8.718 
2 17.81 18.53 19.28 19.17 18.58 

17.91 18.62 19.37 19.21 18.61 
3 18.75 19.31 19.52 21.85 24.02 

U.84 19.40 19.59 21.97 24.12 
4 18.75 20.09 22.84 23.84 28.67 

18.84 20.23 23.02 23.99 28.87 
5 26.87 28.27 35.48 48.02 47.50 

26.96 28.33 35.51 48.49 47.79 

* Results given by Mizusawa and Kajita [2] 

in excellent agreement with results obtained by Misuzawa [2], [6] using a spline element 
method. 
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Table 7 First five frequency parameters fl, for skew plates 
with supports at corners and mid-side points: 

finite and spline element solutions 

<t> = 
modes 0° 15° 30° 45° 60° 

1 17.81 18.23 19.87 24.30 35.31 
17.91* 18.32 19.94 24.87 35.41 

2 34.82 36.45 41.84 42.81 39.51 
84.99 36.71 42.21 42.88 89.57 

3 34.82 37.18 42.67 47.71 52.54 
34.99 37.33 42.96 48.13 52.94 

4 38.34 39.33 44.80 51.22 57.77 
38.43 39.48 44.98 51.98 58.46 

5 59.91 56.64 48.85 61.09 80.82 
60.27 56.91 49.10 61.39 81.24 

* Results given by Mizusawa and Kajita [2] 
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Figure 1 Mode shapes for corner supported square plate 
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Figure 2 Mode shapes for plate supported at mid-side points 
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Figure 3 Mode shapes for plate supported at corners and mid-sides 
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FREE VIBRATION OF AN ORTHOGONALLY-STIFFENED FLAT PLATE 

By D J Mead, D C Zhu & N S Bardell 

Department   of   Aeronautics   &   Astronautics,   University   of   Southampton, 
Highfield, Southampton, S09 SNH, England. 

SUMMARY 

A flat plate, reinforced by a regular orthogonal array of uniform beams, is 
analysed using techniques developed for studying wave propagation in two- 
dimensional periodic structures. A "plane-wave" type of motion is considered 
which may be characterised by different propagation phase constants in the x- 
and y-directions. The Hierarchical Finite Element Method is used to set up the 
governing equations of free wave motion, and these are then solved as an 
eigenvalue problem for the frequencies at which particular waves will propagate. 

1. INTRODUCTION 

Reinforced flat plates are used extensively in aerospace and marine structures 
where both vibration-induced fatigue and excessive noise radiation can cause 
serious problems. The scant attention paid to the dynamic analyses of such 
structures in the past is clearly in need of rectification. 

The specific problem of a flat plate resting on equi-spaced elastic beams is 
addressed in this paper. The Hierarchical Finite Element Method is used to 
formulate the problem and also to improve the accuracy and economy of the 
computational processes. The frequencies at which waves will propagate with 
specified phase constants are sought from a matrix eigenvalue problem which 
contains the mass and stiffness matrices of the periodic element. The 
frequencies of attenuating waves have not been obtained. 

2. THE MATHEMATICAL MODEL 

2.1 Outline of the Method 

► 

■r 

The plate itself is assumed to be isotropic, homogenous, elastic and of uniform 
thickness. The stiffeners are assumed to be uniform beams possessing both 
flexural and torsional stiffness and inertia. In flexure, they are assumed to 
satisfy the Euler-Bernoulli equations of motion. Damping has not been included 
in this work, but its effect is easily incorporated via the Correspondence 
Principle and the complex elastic modulus. 

The mathematical analysis combines the periodic structural approach of Mead[l] 
with the Hierarchical Finite Element Method. The basic periodic element of the 
structure (a rectangular plate with a beam along adjacent edges) is itself 
considered as just three finite elements. In the x-direction, the plate and the x- 
wise beam are allowed to deflect in the conventional four cubic polynomial 
modes of the standard finite element approach. The Hierarchical Finite Element 
method allows these finite structural elements to deform in additional prescribed 
modes. The displacements of these additional modes are represented by the 
"interior coordinates" of Mead's generalised theory of periodic structure analysis. 
Similar modes of deflection are assigned to the plate and beam in the y- 
direction. When these modes are used, mass and stiffness matrices can be 
formed for the whole periodic element and these are then used to set up 
equations which govern so-called "plane" wave motion through the whole periodic 
structure. These are solved to yield the frequency at which waves of known 
wave-numbers will propagate. Much the same approach was adopted by 
Abdel-Rahman and Petyt who used conventional Finite Elements to solve a 
similar problem [2].   Examples are included which verify the work of Mead and 
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Parthan[3] and demonstrate the power of the Hierarchical Finite Element Method 
in dealing with the dynamic analysis of periodic structures. 

2.2       Formulation of the Problem 

Consider an infinite flat plate resting on an orthogonal beam grillage as shown in 
Figure 1. The beams are pitched at equal intervals, a, in the x-direction and b in 
the y-direction. 
Figure 2 illustrates a typical periodic element or bay of this structure and Figure 
3 shows its idealisation for compatibility with the Hierarchical Finite Element 
Method. Each bay is modelled with interior and boundary degrees of freedom and 
is coupled to its neighbours on all sides and corners, qj, Fj denote the internal 
displacement coordinates and internal forces of the bay, qL, F^, qR, FR, qB, FB 
and qT, FT denote the left, right, bottom and top side displacement coordinates 
and side forces of the bay: qLB, FiB, qRB, F«B, qr T, FLT, qRT, FRj denote the 
left bottom, right bottom, left top, and right top corner displacement 
coordinates and corner forces of the bay. The linear equations of motion of the 
undamped bay are then given by 

<OT-t/[M])fo} = {F} (1) 

[K] and [M] are the stiffness and mass matrices for the bay, and {q} and {F} are 
the coordinates and generalised force vectors given by 

if 
(2) 

{<?} = [<? LB iLT qRT qRB «i «« «B «r «/* 

and {F}: \F     F     F     F     F   F   F   F   F I lrLB rLT    RT    RB " t r R * B r T r [> 

It is convenient to partition the [K] and [M] matrices according to the corner, 
left, right, bottom, top and internal displacement coordinates hence 

LblB LBXJT       LBßT K IT 

LBfiB        LB I. K 
LBfi 

K K 
LBß       LB,T K LBJ 

K K K K 
LTIB        LTJLT       LTflT        LTJiB etc 

i 

RT£B       RTX.T       RTßT       RTfiB 

KRBIB    KRBIT    KRBßT    KRBßB 

[K]-   KLXB K t.L 

RJ£ KJ? 

K, 
BJJB BJB 

: 

K TIB 

Ii£ etc 

T,T 

K 1.1 
A similar expression can be written for [M]. 

For free wavemotion, no external forces act on the bay apart from those on its 
boundaries from adjacent bays. Hence {Fj} = 0. The forces on the bay's 
boundaries are those which transmit the wave motion from that bay to its 
immediate neighbours. This wavemotion is ch»*acterised by the relationships 
between the edge displacement coordinates and their corresponding generalised 
forces in one bay to the corresponding coordinates and forces in adjacent bays. 

The left, right, top and bottom coordinates are related through 
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t  x    "*/  i     A t   x    **,  i (3a'b) 
{9»}=«   ilj and  {qT}=ey{qB} 

and the left, right, top ana bottom corner coordinates through 

/     i    "«/     i /    i    *JI     x      J /     v    ****y,    i (4 a, b) 

The forces along the left, right, top and bottom edges are related through 

K f» (5 a, b) 

and the left, right, top and bottom corner forces through 

^RB> = -eVri},{V = -eV££} and {FRT] = /« + *>^ (6 *' b) 

By substituting equations (3a-6b) into equation (1) and setting {Fi} = 0, the 
condensed matrix equation of wave propagation through the structure is given by 

<Hr(nx,iiy)]-n'[Jf <ux.iyi) 

«LB 

«L (7) 

where [K'(ux, uy)]= 

K K K K 
LBIB IBl LBß       LBJ 

KLIB KLL KLß KLJ 

K K K K 
BIB BL Bß         BJ 

and 
K LBIB 

KliB       KIJ.       KIB       K(J 

KLB±B + KlB£Te     +KLBßBe     +KLBflT* 

+ Krn,,„e    y + Krm,„ + K LTJB 

-v. 

LTX.T LTJRB 
i    y + K 

K„orr,e  "x + K„nrJ>  "X + K RBJM 

+ KRTIXe 

RBLT* , + Kn 

LTRT 

rx   ry 

RBBB RBBT 

f.. 

-I   ry 

-11 
KRTI.Te + KRT RRe + KRT RT 

K' LBJL' KLB± + KLBße * + KLTJLe~ ' + KLTfie *     ' + *We 

+
 KRBß + KRTjß      X     y  + KRTJie 

^LBB' 
KLBB + KLB,/y + *»—«""' + *'— ♦ *- ->e   "" LT3 tr,T ÄB.B 

ji -ji -(n +n ) 

KLB,I~ -H -ji -(n +11 ) 

^Z+V     y + KRB,,e     ' + KRT.I°      X     ' 
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^^^~-m i      |i ^P——-»- 

lMjr >».     -        ".     -        V, 

1 
+ /rfi,^e",,I + 'r' 

«£*- 
*I,L +*£,/' +*«./**+ iCi«.* 

RL»~ KL.B + KT<y + KRj*^KB,T^~*X 

«w- 'v***,/"* 

if B.ZJ3" 
*BlUJ 

+ 'W"' + 'W^ + ^B.*/^ 

+ K r,LB <~*, + XT,Lr + *T.u/r*, + K' T.fir 

KB,[ ~ KB,L + KB,Re     +KT,Le        + KT,Re 

KB,B~ KB,B + KB,/y + KT,Be'ily + KT,T 

KB,I~ 
KBJ + KTje     ' 

'■l.LB' KUl* + Kt,Jy + Kl,RB°X + Kl*'fX~*y 

*t.L = KI,L + KI,Re 

IB' KI,B + Kl,Sy 

K 
i,t 1,1 

The elements of the condensed M matrix hav(e the same form as the olements of 
the K matrix, but wjth Jh? K replaced by M. Q is a non-dimensional frequency 
factor given by Qz=wza4(m/D) where m=ph. The above formulation is a 
completely general result for a two-dimensional periodic structure. 

The condition described above is satisfied if a so-called "plane wave" of 
frequency <o propagates across the reinforced plate at an angle 9 to the x-axis. 
Each rectangular element then vibrates in the same complex mode w (x, y) e~'M , 
but there is a phase difference of ex between adjacent elements in the x- 
direction and of e„ between adjacent elements in the y-direction. These 
quantities are related through 

tan9 = (e/ex)(o/6) (8) 

2.3       Energy Expressions for the Periodic Element 

Use will be made of the standard expressions for the energies of a flat plate and 
beam expressed in terms of non-dimensional coordinates i,, n. which are related to 
the x- and y-coordinates by x/a={£+l)/2 and y/b=(n+l)/2.   (See Figure 2).   The 

114 



T 

total energy expressions are 

WaT 

8(GJ)a    fl 

&(EI)a* 

Db* 

J    (aWn) d\ + r j  t (*W*i) <«> 

r1    /„      ,\2 8(GJ) o   rl    / \2 
(aW) *i + r J  j ('"'**»] dn 

rl     / \2 32 (£D o 

D6" 

T = phabl2  i 
1    /       \2 Ax 

aw/at) dn^+irr 

2/ 
P* 

hb* 

11 

(dwldt) dl, 

Zi        fl     / \2 

ha3   i-A ' 

(10) 

2.4        The Hierarchical Finite Element Method 

The Hierarchical Finite Element Method adopts the reverse procedure to the 
ordinary Finite Element Method in that it keeps the size of the element constant, 
but allows an increased number of polynomial functions to describe its 
displacement mode. (The Hierarchical mode order p is related to the highest 
order polynomial with order p-1 used to describe a displacement mode of the 
structure). This is particularly well suited to the kind of problem described in 
this paper. The ascending hierarchy of functions used in this work me derived 
from Legendre orthogonal polynomials, and are given by 

(11) 
f. 

r/2     (_1}. 

• (o = y — 
n = 0    2   71! 

(-1)"     (2r-2ft-7)fl „r_2„_i 
(r-2n-D! 

^r r>4 

where r!! = r(r-2) (r-4)... .(2 or 1), 0!! = (-1)!! = 1, and r/2 denotes its own integer 
part only. These hierarchical modes have zero displacement and rotation at 
each end, and hence only contribute to the internal displacement field of the 
finite element. Table 1 presents the first ten out-of-plane hierarchical shape 
functions calculated from Equation 11. The first four of these are standard 
Her mite cubic functions which are independent of Equation 11. Then, the plate 
displacement is given by the product of both x- and y-modes as 

W«.n)=  XX  •r/r©«.0» 
(12) 

r-lf-1 
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This double series (in non-dimensional form) is firstly substituted into the strain 
and kinetic energy expressions (equations 9 and 10) for the complete element. 
The resulting expressions are then used in Lagrange's equations of motion to yield 
the stiffness and mass matrices ior t'ie periodic element, deferring to Equations 
1 and 12, it can be seen that if p is chosen to be 10, then the [K] and [M] matrices 
are each of order 100 x 100. 

All of the non-vanishing integral products within [K] and [M] and related to the 
higher order modes can easily be calculated by using the following unified and 
explicit integral formula[4] 

'r  vv'r+nvv   s        4-»-« r>4 

f]    (2r+n~l-s-t-2k) 
*=0 

(13) 

where G is the integration coefficient shown 'n Table 2, and s and t are the 
differential orders of the funcMon 

This method yields exact fractional answers, and thus keeps the numerical error 
to an absolute mininum, which is very important when high order modes are 
used. In general, the size of matrix which has finally to be used in the eigenvalue 
problern is conveniently reduced in size, i.e. for [K] and [M] of order p^cp , [K ] 
and [M] of Equation 7 are of order (p-2)2 x (p-2)2. This is a result of the 
condensation process mentioned in Section 2.2. 

2.5        The Eigenvalue Problem 

By supplying the propagation constants uand uy, Equation (7) may 
an eigenvalue problem to determine 0 .   Results are presented in tt 

K, and u - 
i Hermitfa 

be solved as 
igenvalue problem to determine Q2. "Results' are presented in this paper for 

the case when Uy and u^ are purely imaginary, i.e. ux=j£x, and U„=JEV.    This 
ensures that the LK'] ana [M'] matrices in Equation 7 are Hermitian and the 
eigenvalues (Qz) will always he real. 

3.    THE COMPUTED PHASE CONSTANT SURF; ",ES 

3.1        Flat Plate Stiffened by an Orthogonal Array of Line Simple Supports 

Figures 4, 5 and 6 show th* frequency plotted against £x, Ey for periodically 
simply-supported plates with support-spacing aspect ratios (a/b) of 1.0, 0.5 and 
0.25 respectively. The lines which are drawn correspond to (cx=0 or n and e„) or 
(ex an j £—=0 or r) and constitute the boundaries of "phase-constant surfaces" of 
the form first presented by Mead and Parthan[3]. The upper and lower bounding 
frequencies of these surfaces define the pass bands of the structure - i.e. the 
frequency bands in which "plane" wave motion can freely propagate. The upper 
and lower bounding frequencies of a particular phase constant surfspp nic0 
correspond tu the natural frequencies of a single periodic element with all its 
edges clamped and simply-supported respectively. 

With a hierarchical mode order of 8, the bounding frequencies of the first band 
agree to within i% with the results of Leissa[5]. Very close agreement is also 
observed for the bounding frequencies of some of the subsequent bands. 

The phase constant surfaces of Figures 4 to 6 luve been generated by usir_; 
hierarchical modes up to the order 8, the highere of which is a seventh order 
polynomial function with four maxima. The phas i constant surfaces so obtained 
can therefore only include those surfaces whese upper and lower bounding 
frequencies correspond to the natural frequencies of a single periodic element 
vibrating with m and/or ns4. The inclusion of hieiarchieal modes of still high .r 
order would permit more accurate computation of surfaces, corresponding to the 
hig.ier order natural modes of the single element. 
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3.2        Flat Plate Stiffened by an Orthogonal Beam Grillage 

The simple supports are now replaced by a general beam grillage having non- 
dimensional flexural and torsional stiffnesses characterised by 

KT =EI/bD,KT =EIa3/Db*   and   CR  = GJa2IDb3 andCR =GJa/Db2 
i y x y 

respectively. The effects of torsional and transverse inertia can be included by 
assigning specific values to the beam non-dimensional areas Ax/hb and A /ha and 
to the non-dimensional torsional inertias Ipx/hb3 and Ipy/ha3. It is assumed that 
the beam neutral axes coincide with the neutral surface of the plate so that in- 
plane wave motion of the plate itself is not coupled to the beam flexural motion. 

Two examples are now considered, and the structural properties of each are 
summarised in Table 3. The first case (structure "A") is a plate on ideal massless 
stiffeners. The second case (structure "B") represents the more realistic example 
of a section of flat aircraft skin, stiffened in the x-direction by integrally- 
machined flangeless stringers and stiffened in the y-direction by I-section 
frames. Flexural and torsional inertia effects are fully included, but the coupled 
in-plane motions of the plate which would result are neglected. 

Figure 7 shows the phase constant surfaces for configuration "A". The first 
phase constant surface now dips to zero at ex=Cy=0. The severity of the dip on 
the faces EX=0 and Ey=0 is determined solely by the beam flexural stiffness in the 
y- and x-directions respectively. If either of these stiffnesses were increased, 
the gradient of the dip would increase, until as KT and KTy-»°°, it would become 
vertically discontinuous. When ex=ey=0 and £1=0, the whole structure moves as a 
rigid body, with every bay in phase with its neighbour. This corresponds to a 
motion of infinite wavelength and zero frequency existing in the beams. As the 
frequency increases slightly, waves with non-zero values ex and/or e„ can exist. 
The motion of the structure is dominated in this region by tire flexural stiffness 
of the beams together with the mass of the beams and plae. Such wave motion 
of course, can propagate from zero frequency as shown by Heckl[6]. 

The curves on the face ex=n and ey=n are straighter than t lose obtained for the 
plate on line simple-supports. (Figure 4). This is due to t le torsional restraint 
introduced by the stiffeners, which raises the torsionallj-dependent bounding 
frequencies. 

The higher surfaces (Figure 7) are affected in a manne" similar to the first 
surface. That the higher surfaces appear to pass throi gh one another is of 
interest, though the full significance of this is not understood at present. The 
frequency stop/pass-band behaviour of the structure is preserved, although in this 
particular case it commences with a pass band. Heckl [fij showed this to be the 
case for periodic beam grillages, and it is clearly also true for periodically 
stiffened plates. 

The phase constant surfaces for configuration "B" are shown in Figure 8. These 
are seen to be rather complicated! Multiple intersections of each surface now 
occur, and no frequency attentuation bands are in evidence. Free wavemotion 
can propagate at any frequency, and there are no stop bands for this structure 
which can be used to control the vibration levels. The high value of the frame 
flexural stiffness, KT„, is seen to cause a very steep dip in the first phase 
constant surface on the face e_=0, whereas the lesser value of KTX causes the 
curve on the face Cy=0 to vary in a far gentler manner. 

4. THE   NATURAL   FREQUENCIES   OF   A   FINITE   ORTHOGONALLY- 
STIFFENED PLATE 

Mead and Parthan [3] showed that the natural frequencies of a finite plate with 
Nx bays in the x-direction and Ny bays in the y-direction occur at frequencies at 
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which 

e  = mnJN       & 

: 
t 

> 

e  = nn/N 
y y 

if the extreme edges are clamped 

if the extreme edges are simply-supported. 
N„-l). 

and   e =(m + l)n/N & e =(n+l)nJN 
x x       y y 

(m=0, 1, 2, 3,... N_-l and n=0,1, 2, 3, •.. «y */. 
Given one of the phase constant surfaces between two bounding frequencies, all 
of the natural frequencies of the finite plate structure in that frequency range 
can be found from the intersections on that surface of the planes ex=m/Nx and 
Cy=n/Ny.   These frequencies can be found in practice by assigning the above 
values of ex and ey, and then, by computing the corresponding frequencies from 
Equation 7. 

This has been done for the first phase constant surface cf Structure "A" in 
Section 3.2. A finite structure of ten bays in both the x-y-directions was 
considered. The construction grid to locate these frequencies is shown in Figure 
9, and the natural frequencies so obtained are tabulated in Table 4. If all the 
extreme edges are clamped, the last column and bottom row should be 
disregarded. If all the extreme edges are simply-supported, the first column and 
top row should be disregarded. 

This method of finding the natural frequencies is a computational generalisation 
for two dimensional structures of Sen Gupta's geometrical construction [7]. 

5. CONCLUSIONS 

A mathematical model has been developed to represent the most general case of 
a flat plate stiffened by an orthogonal array of beams. The pass/stop band 
nature of this type of periodic structure has been observed from the stacks of 
phase constant surfaces. These also assist in explaining certain dynamic 
features. The first surface has been used in one case to determine the natural 
frequencies of a finite periodic 100 bay plate with particular boundary 
conditions. The dynamic behaviour of the stiffened plate at low frequencies 
bears a marked resemblance to that of a periodic beam grillage. 
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TABLE       1 
The first ten Hierarchic»! Shape Functions 

vk-b* 

'« 8      8       8        8 

v-?-;^.1«' 

v>-i-»-ifi< 

7 48      16 16        48 

s 48       16 16        48 

/w.-L_!»^«(..Sr.+ iL(.      ,    
t0'0078l 

384      96        64        96 384 9 1-1 0.0078J   ' 

'»(S     384 <     96*      64r" 96 <   f 384 5 >"> JM V/O        ^     *1 

► 

TABLE      2 
The non-vanishing integration coefficient G 

s, t 2,2 1,2 1, 1 0,2 0, 1 0,0 otherwise 

n 

G 

0 

2 

, i 

♦ 2 

0      + 2 

4        -2 

0       *2 

-4         2 

♦ 1+3 

♦ 6 »2 

0    +2  +4 

12   -8      2 

0 

0 

TABLE      3 
Details of the parameters characterising structures "A" and NBM and the corresponding figure numbers for the phase constant surfaces 

t 

Structure Figure e/b KT_ KT, CR, CR A/hb A /ha l^/hb' l„'h*' 

A 

B 

7 

8 

1.0 

4.0 

8000 

I2S.Ü 

4000 

287«10' 

40 

260 

20 

27 0 

0.0 

066 

00 

1 42 

00 

0006 

00 

0001 
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TABLE      4 
Natural frequencies Q In th* first propagation band for structure "A" 

» 

Plate aspect ratio a/b ■ 1.0 KT,. 800.0. KTy. 400.0, CR, ■ 4.0, CR.» 2.0 

c.c' 0 n/10 2n/10 3rt/10 4n/10 5n/10 6n/10 7ii/10 8n/t0 911/10 n 

0 00 2 79 1090 2206 30.16 33 22 34 IB 34 46 34 52 34 53 34 52 

III/IO 3 94 483 11 54 22.23 30.19 3320 34 13 34 41 34 46 34 46 34 46 

]>i/IO IS02 15 24 17 98 2477 30.69 33 19 34 01 3448 34 29 34 28 34 27 

Jii/10 27 31 27 36 27 98 29 82 3202 3333 33 86 34 02 34 03 3« 01 33 99 

4ii/10 32 57 37 56 3260 3281 33.19 33 53 33.70 33 74 33 70 336/ 33.65 

5n/10 3385 3383 3376 3368 3362 3358 33.52 33 45 33 36 33 30 33 28 

6>i/10 34.06 34.03 3393 3379 33.63 33.46 33.30 33.15 3303 32 95 32 92 

7.1/10 3398 33 94 3384 3368 33 48 33 26 3306 32 87 32/3 3263 32 60 

811/10 33 85 3381 3370 3353 33.31 3308 32.85 32 65 32 49 32 39 32 35 

9ii/10 33 74 33 70 33.59 33 41 33.19 3295 32 72 32 50 32 34 32 23 32 19 

» 3371 3367 33 55 3337 33 15 32 91 32 67 32 45 32 28 32 18 32 14 

Figure 1 The two-dimensional periodic structure. Figure 2 

? = 1 

y=0 

v-1 

Diagram showing the periodic element - 
a flat plate with  a beam along two adjacent edges. 
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idealisation of a two-dimensional periodic  flat plate as an       The displacement coordinates and forces acting on a single bay 
assembly of bays joined together on all sides and corners. 0f tne periodic structure. 
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ABSTRACT 

In this paper is developed the theory of design sensitivity'analysis 
of structures subjected to dynamic and stability constraints, based on mixed 
finite element models. The theory is applied to the sensitivity and analysis 
of natural frequencies and critical stresses of plates. The results are 
compared with analytical and finite differences solutions. The advantages and 
disadvantagens of the mixed elements in sensitivity analysis of plates are 
discussed with reference to applications. 

1.   INTRODUCTION 

Sensitivity analysis of structures is the most important stage in the 
optimal structural design of structures [ 1 ] . The combination of sensitivity 
analysis, an adequate choice of objective function and constraints, with the 
correct selection of design variables and optimization algorithms are the 
basic requirements for the efficient optimal structural design. 

In this paper, the theory of the design sensitivity analysis of 
structures subjected to dynamic and stability constraints, based on mixed 
finite element models, is developed. The sensitivity analysis of beams based 

^csciiucu    icoein.ijf I ^ J lite     Ltiwi'y 
applied to the sensitivity of natural frequencies and critical stresses of 
plates due to thickness variation. The models are based on an isoparametric 
quadratic mixed finite element with eight nodes and thirty two degrees of 
freedom presented by Mota Soares et al. [3]. 

I i 

In finite element dynamic and stability analysis of plate:structures, 
mixed models offer some advantages over displacement models. The mixed models 
calculate the displacements and moments with the same degree of accuracy and 
the reduction of degrees of freedom of the eigenproblem is an exact 
operation. In sensitivity analysis of plates the advantages and disadvantages 
of the mixed elements are discussed with reference to application and the 
results are compared with analytical and finite difference solutions. 

•Sponsored by Instituto Nacional de Investigagäo Cientlfica (INIC). 
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2.   MIXED ELEMENTS IN PLATES 

Mixed elements are based on the Reissner's variational principle. Using 
the nomenclature defined in Fig. 1 the Reissner functional for plates is 4 

V_ = R =   JAtmiiri i + s<(lVw 4) - u* +n]dA -/. (n   r 

" \^m (rn " ?n> + m
ns 

(rs " ?s) + ^ (w - w)]  dr 

+ m r + s w) dr 

(1) 

Figure 1. Notation 

where A is the domain, that is, the area of the midsurface of plate, IV is the 
boundary with known forces, ru is the boundary with prescribed displacements 
and the superscript bar indicates the prescribed forces and displacements in 
the boundary. U* is the complementary energy per unit area and Ü is the 
potential of external forces. For a plate of thickness h subjected to lateral 
and axial loads we have 

fi = -/ (pw + - 0. . w 
'A 

where 0 

dA 

ij 

2 "ij  ,i  J 

are the stress components and p is the lateral distributed load. 

(2) 

In finite element analysis it is necessary to use a discretised form of 
the Reissner's functional. Assuming that there is continuity of variables 
between elements and that the boundary conditions are satisfied, then by 
integrating by parts the first term of equation (1) we obtain: 

VD =   t /. [r>< m, .   .) + 
ij.i 

i. w      - U* + nldA 
J     1J e    "e      J    J 

where A„ is the area of element e.  Assuming that 

(3) 
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s .  = m. .   . 
J iJ.i 

then equation (3) becomes 

u* + n) dA VR = Z /.  (s.w. 

(4) 

(5) 

In the theory of moderatly thick orthotropic plates, the complementary 
energy per unit area is 

1T_    1 T _ 
U* = - n C n + - s Ds 

where 
(6) 

T  r n =[mn 

T  r s = [Sl 

m22 mi2 

'-? 1/E1 - V12/E2 0 

" V12/E2 1/EX 0 

0 0 1/G 

5h 1/G13 

0 

0 

1/G23 - 

12 

plates"1'   ^   "12'   G^'   °13 3nd G23 are  the  elasti<= properties     of orthotropic 

Representing displacement and moment  fields by 

w = N q 

n = L m 
(7) 

(8) e 

where q and me are the displacement and moment degrees of freedom of the 
element and N and L are the shape function matrices (see Appendix) the slope 
and shear force fields are expressed by 

3w/3x 

l_3w/3x0 

"3/3x N 

.3/3x2 N 
q = N» q 
e    Me (9) 

3/Sx^^  0 3/3x, 

9/3=c2   3/3xxJ 
n = L* m. 

(10) 

Introducing equations (2) and (6) in the functional (5) we obtain, in 
material form 

VR = I  VST r " I ("T C » + sT D ■) - PW " | rT 2 r] dA . 
were 

Z = 

L 21 

12 
ö  . 
22 J 

(11) 
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Using equations (7) to (10) in the Reissner's functionai (11) we obtain 

(12) 
IT T TIT 

t  (- i m 0 m f ml H q - q f - ± q S q ) 
" * "   e e Me  ^e e  2 Me e Me Re   2 e e e 

where 

G = /.  (LT C L + L»T D L») dA 
e Ae 

H = /. L*T N» dA 
e Ae 

S = ;.  (h N*T Z N») dA 
e Ae 

f -A NT p dA 

Flexibility matrix 

Flexibility/stiffness matrix 

Geometric matrix 

Element force vector 

The kinetic energy of a plate in a discretized form is 

e ^ f  'IF' 12 
,2   2 

( a w ) 
»t 3x, 

32w 
at 3x, 

'dA (13) 

where p and t are the density and time, respectively. Applying equations (7) 
and (9) this equation can be written as 

T = I  | qT M q 
e 2 ^e e e 

where 

M = /  p[ h NT N + (h3/12) N»T N»] dA 

and q is the velocity vector. 

(14) 

Mass matrix 

The stationary condition of the Reissner's functional (12) without 
lateral load p leads to an equation at element level that, after assembling 
in the usual way, gives the global equation for the stability of plates 

- G H 

XS 

where X is the instability coefficient. 

(15) 

Aonlvinp    Hamilton'«   nrin^inlo    anH    nnncfwiri-inft   *-V*o    r»1/-*V>-il    ««..-,*-■;««-       ...„ 

obtain for the dynamic of plates without inplane loads the following equation 

H 

H 

(16) 

where q" is the acceleration vector.  Considering that 

m 

these equations can be transformed to 

G 1 H q (17) 

K q - X S q = 0 (18) 
I 
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K q + M q = f 

where 

T -1 
K = H G  H 

(19) 

(20) 

is the stiffness matrix of the system. It should be noticed that the reduction 
of degrees of freedom (equations (15)-(16) to (18)-(19) is an exact operation 
and that the moments are calculated (equation (17)) by a matrix transformation 
of the displacements. 

For free harmonic vibrations, equation (19; becomes 

K q = u)2 M q (21) 

where u are the natural frequencies of the system. 

3.   SENSITIVITY ANALYSIS IN FREE VIBRATIONS AND STABILITY OF PLATE STRUCTURES 

The equilibrium/compatibility equation for free and harmonic vibration 
(21) can be represented by the eigenproblem 

K q - \i  M q (22) 

where (i represents the square of natural frequency of the plate. Considering 
an eigenvalue 

^k = \(v b) (23) 

where b is the vector of design variables and q is the eigenvector which is 
normalized 

qk M qk = 1 (24) 

the sensitivity of the eigenvalue due to the variation of the design variable 
b^ is obtained deriving equation (22) and using equation (24) 
dMk   T ,3K      3M , 
db~ = %  (äbl " \  3b-> \ <25> 

Using equation (20) and the symmetry of G the sensitivity can be written 

<%   T ,„T 3(-G) _  , T 3H 
-  q,. (E -ü:— E + 2 E — - n dbi 

where 

3b, 3bi 
3M 

k 3b4 ) 1,. (26) 

E = G  H 

t 

In the case where the design variables are thickness of the plate, the 
previous equation can be simplified 

iü!5 J  fp
T 3(-G) 

dSi= qk(E rb~ E 3M , 
"k äbl) \ (27) 

Using equation (23) we have for free and harmonic vibration the following 
equation 

dbi — Q,. (E K  E - ».   —.) « 2w, Mk 
k 3b, k 3b, 
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By analogy,  sensitivity of the eigenvalue in the stability problem is 

as dx T  ,JT 3(-G)  „        .„  , 
Tb- ■ \ <* Jb7~ E -»ib~) \ (29) 

4. APPLICATIONS 

The mixed formulation derived in this paper ia applied to the design 
sensitivity analysis of natural frequencies and critical stresses of a simple 
supported plate due to thickness variation. The plate, represented by Fig.2, 
is discretized into nine mixed quadratic elements and the model has sixteen 
displacements and ninety-two moment degrees of freedom. 

»   I- 

 -  

!    7 8 9    ; 

J        4 5 6       j 

!    l 2 3       ! 

a =  1.20 m 
b = 1.00 m 
h = 0.01 m 
El=E2=2.00xlOU Nm-2 

'12= 0.30 

Gl2=Gl3=G23=8.077xl010 NnT2 

= 7.80xl03 Kg m"3 

Figure 2. Simple supported rectangular plate with discretization used 

First, we consider the thickness as the single design variable. For this 
case, the results for the sensitivity of the lowest six natural frequencies 
are nrpsprt-ort in Table 1. The results for t!ic oensilivity of the critical 
stress in x^ direction are presented in Table 2. For comparison we present 
the exact values obtained by derivation of the analytical expression of the 
natural frequencies [5] and critical stress [6] of a simple supported 
rectangular plate. Tables 1 and 2 also present the errors of the mixed model 
for the natural frequencies, critical stress and their sensitivity due to 
thickness change. 

As a second example, we consider the thickness of each element as a 
design variable. In this case, there are nine design variables that can be reduce 
to four considering the symmetry. The results for the sensitivity of the first 
natural frequency due to the element thickness are presented in Table 3. For 
comparison, the same table has the results obtained by Rayleigh-Ritz and 
finite difference solutions. Table 4 shows the results for the sensitivity 
of the critical stress in X-direction due to the element thickness variation 
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Table 1 - Natural frequencies and its sensitivities due to the thickness 
variation of a simple supported rectangular plate: comparison of 
the mixed model with analytical results. 

Mode sha.pe 
- half waves 
in x^ and *2 
directions. 

Natural frequency 
(rad/seg) 

Sensitivity to thickness 

Exact values 
Mixed model 
(% Error) 

Ex^ct values 
Mixed model 
(% Error) 

1-1 

2-1 

1-2 

2-2 

3-1 

1-3 

256.26 

571.34 

709.97 

1025.05 

1096.46 

1466.15 

258.83 
(1.00%) 

587.36 
(2.80%) 

727.13 
(2.42%) 

1086.24 
(5.97%) 

1135.47 
(3.56%) 

1495.54 
(2.00%) 

25626.16 

57133.72 

70997.05 

102504.62 

109646.34 

146615.22 

25866.76 
(0.94%) 

58649.53 
(2.65%) 

72588.11 
(2.24%) 

108320.04 
(5.67%) 

113215.73 
(3.26%) 

149024.99 
(1.64%) 

Table 2 - Critical stress in x, direction and its sensitivity due to 
tickness variation of a simple supported rectangular plate: 
comparison of the mixed model with analytical results. 

Critical stress 
(x E7 Nirr2) 

Sensitivity to thickness 
(x E10) 

Exact values 
Mixed model 
(% Error) 

Exact values 
Mixed model 
(% Error) 

7.473 7.611 
'1.84%) 

1.496 1.522 
(1.74%) 

■ 

; 
■■ 

''■- 

and, for comparison, it contains a finite difference solution. 

The finite difference are obtained by finite element analysis of two 
slightly perturbed designs of the structure. The difference in the value of 
the natural frequency or critical stress divided by the total design 
perturbation Ah is the approximate derivative. Tables 3 and 4 also show the 
error of the proposed model relatively to the alternative results. 

The results obtained in this paper show that sensitivity analysis of the 
stability and dynamical behaviour can be accurately and efficiently calculated 
with the mixed element model developed. The errors in natural frequencies or 
critical stresses and in the respective sensitivities due to the thickness 
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Table 3 - Sensitivity of the first three natural frequency due to the 
thickness variation of each element of a simple supported 
rectangular plat« discretized with nine elements: comparison 
of the mixed model with Rayleigh-Ritz and finite difference 
results. 

Design variable 

(thickness of 
element...) 

Natural 
frequency 
nu Tiber... 

Sensitivity to thickness 

rfixed model 
Rayleigh-Ritz 

Finite Difference 
(Ah = + O.Olxh) 

(% Error) (% Error) 

1 3432.2 3371.5 
(1.80%) 

3432.4 
(0.00%) 

1 2 5912.8 - 5913.4 
(0.01%) 

3 6741.5 — 6742.0 
(C.00%) 

1 1860.0 1855.0 
(0.27%) 

1860.3 
(0.01%) 

2 2 6166.5 - 6167.0 
(0.00%) 

3 13899.6 - 13899.0 
(0.00%) 

1 1845.1 1855.0 
(0.54%) 

1845.3 
(0.01%) 

4 2 9070.4 - 9070.3 
(0.00%) 

3 5776.9 — 5777.8 
(0.02%) 

1. 4727.6 4720.0 
(0.16%) 

4727.5 
(0.00%) 

5 2 4524.6 — 4525.8 
(0.03%) 

3 6296 _ 6270.9 
(0.03%) 

1 

Table 4 - Sensitivity of the critical stress due to the tickness variation 
of each element of a simple supported rectangular plate discretized 
with nine elements: comparison of the mixed model with finite 
difference results. 

Design variable: 
(thickness of 
element ...) 

Sensitivity to thickness 

Finite Difference 
(Ah = i O.Olxh) 

Mixed model 
(% Error) 

1 

2 

4 

5 

. 16076 

. 19171 

-.02135 

-. 54130 

. 16074 
(0.01%) 
. 19169 
(0.01%) 

-.02140 
(0.26%) 
. 53798 
(0.62%) 
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are of the same order shows that an adequate discretization for critical 
stresses or natural freauencies is an acceptable model for their sensitivities. 
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APPENDIX ISOPARAMETRIC MIXED QUADRATIC ELEMENT FOR PLATES 

I 

The mixed element used is an isoparametric quadratic element based on 
moderatly thich ortotropic plate theory. The element has 8 nodes and 32 
degrees of freedom, and it is represented in Fig. 3. The nodal degrees of 
freedom are the transverse displacement and the three moments. 

4 V = +1 

• node 

h. nodal thickness 

xli> x2- nociai coordinate 

£,n curvilinear local coordinates 

Figure 3. Isoparametric quadratic element. 
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The geometric, displacement and moment fields for mixed elements are 
represented by 

N x 

N h 
(30) 

w = N q 

n = L m 

where x , h , q and m are the coordinates, thickness, displacement degree 
of freedom and moment degress of freedom of the element and N and L are the 
shape function matrices. 

N = [N1 N2 N3 

L = I 

with 

Ll L2 L3 

N„ 

V 
(31) 

(32) 

The shape functions can be represented by: 

N. ~ a + e ) (i 4       o n ) (5 + n - l) 0   0   o 

for the nodes 1, 3, 5 and 7, 

N. = | (1 - 52) (1 + n ) 
1    i. O 

(33) 

(34) 

for the Mdes 4 and 8, 

N. = \  (1 + K   ) (1 - T!2) 
1   2      o 

for the nodes 2 and 6. 

In these expressions we have 

(35) 

5o = h* 
(36) 

no = V 
where (,.  and n. are the local coordinates of the node i. 

The element matrices are calculated substituting equations (30-36) into 
equations (12) and (13). All the matrices are integrated numerically using 
3x3 Gaussian mesh. 
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ABSTRACT 

The method of integrated displacement parameters is applied to the 
study of pretwisted straight beams. With the use of curvilinear coordina- 

tes, the formulation leads to a basic theory inlighting the couplings 
between torsion, longitudinal extension and warping. A new finite element 
of pretwisted beam is deduced allowing for the numerical computation of 
eigenfrequencies and modes. 

1.   INTRODUCTION 

As pointed out by LEISSA and JACOB [ll , the vibrations of naturally 
pretwisted beams have received considerable attention because this one 
dimensional formulation represents a first approximation of turbomachinery 
blade analysis. 

The static case of Torsion and Extension of pretwisted beams has been 
widely investigated by means of the "helical fibers" concept or in recent 
works by means of curvilinear coordinates formulations. Inl2l ROSEN shows 
that the initial twist increases the torsional stiffness of such beams sub- 
jected to uniform torsion and warping. Considering the influence of axial 
loading on the torsion of slender beams, HODGES 13] concludes that they 
untwist. A more general linear theory including non uniform warping has 
been developped by KRENK in 141 . It leads to the same conclusions especial- 
ly in Cue  study of L'UC coupling between toraicr. and extension: 

In the dynamical case, the three dimensional analysis III of vibra- 
tions of twisted parallelepipeds shows clearly that natural frequencies 
and modes are split in two sets which are uncoupled from each other ; the 
flapwise, edgewise and symmetric chordwise bendings are coupled in one 
class, whereas the torsion, the longitudinal extension and the antisymme- 
tric chordwise bending are coupled together forming another class . Thus, 
the aim of the present work is to set up a simple preliminary tool for the 
prediction of the coupled Torsion-Extension natural oscillations of pret- 
wisted straight beams, independantly from the bending vibrations. 

It has been shown I 51 that an accurate formulation of the torsional 
vibrations of beams should involve the non uniformity of torsion and war- 
ping of the cross sections. This is done here through a new warping par- 
meter ® defined by means of the SAINT VENANT warping function of the 
associated prismatic beam with the same cross section shape. The leading 
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features of the paper are obtained through the use of integral parameters 
defined over the cross section, associated with the corresponding genera- 
lized beam forces. In the general case seven parameters are defined for 
the study of beams vibrations but here, due to the uncoupling with bendings, 
only three are necessary if the secondary effects of warping are neglected. 
The numerical investigations will be conducted further by means of a new 
beam finite element with three degrees of freedom at each node. 

2. BASIC THEORY 

The beam under consideration is of constant doubly symmetric cross- 
section, the center G of which lies on the Xj axis. A schematic of the 
coordinate systems is shown in Fig 1. The fixed reference frame is 
0X5X2X3. Y and Z with unit vectors Y, Z, are the principal axis of the 
cross section. The beam is uniformly twisted along the center line the 
rate of twist X being a constant. We denote by x the longitudinal coor- 
dinate describing the position of G, and by 3C(x) the pretwist angle. Thus 
we have 

X'(x) (!) 

where the prime represents the derivative with respect to x. 

# 

Fig. 1 - Pretwisted Beam 

The cross section occupies the domain D with boundary ÖD and the 
position vectors of an arbitrary point in D before and after deformation 
are denoted by OMo and OM with 

G M = y Y" + z Z (2) 
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The displacement vector II., of the point initially at Mo is deduced 
..t. c JT Mo      r 

in the form of 

uMo 
OM - OMo (3) 

In the undeformed stale, at each point Mo a local cartesian frame 
with units vectors J, is associated. It is deduced by translation fromGXYZ. 
The displacement vector u      is then written in its component forms 

uMo 
u. J. 
l l 

or altenatively U Mo 
u X + u Y + u Z 
x    y    z 

(4) 

(5) 

because the unit vectors J. and X Y Z are identical. 
i 

Let us now define the tangential vectors t. by 

d Mo = t dx + t dy + t dz x     y 3 z 

where x y z form a set of non orthogonal curvilinear coordinates. By use of 
the FRENET differential formulas and recalling that in the local cartesian 

system we write d Mo 

(6) d Mo = J. d Xi 

we are led to the following expression for d U 

d ü Mo 

u' + X P(Uj) 

a»2 + X P(u2) 

u'3 + X D(u3) 

!Mo 

Vy Vz 

Vy Vz 
U3'y Vz 

dx. 

X 
dX„ 

2 

dx3 

(7) 

where Pis the differential operator D = z(), - y(), and (),  (), are 
the partial derivatives with respect to y and z.     ~      y 

Comparison of the infinitesimal elements of length d%       and dS before and 

after deformation 

d g  = OMo . OMo 
o 

df, Z = OM . OM 

leads to Green's s':rain tensor e . . in the Lagrangian description 

dg' dg dX. dX. 

(8) 

(9) 

The next step in the formulation is the definition of the displacement 

paramet°rs. 

3.   DISPLACEMENT PARAMETERS 

In order to set up a one dimensional theory, the displacement parame- 
ters are defined by means of weighted integration of UM over the cross 
section. Thus, we obtain in the GXYZ system, the generalized displacement 
vector V of the cross section 

r 
dS (10) V(x,t) = g 

•/.°»° 
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and the generalized rotation vector 9 

e*(x,t) -—• / G"MO x "uMo ds (li) 

' J D 
The I« are the polar and transverse quadratic moments of the cross 

section and S the area of the cross section. In GXYZ the components of V 
and 9 are denoted by (u, v, w) and (8 ,9 , 9 ). 

In order to provide a good beam approximate theory, the non uniform 
torsion and the non uniform warping should be taken into account. This will 
be done by introducing a new displacement parameter defined through the 
SAINT-VENANT warping function 0 (y,z) deduced from the classical homoge- 
neous torsion problem of the uniform beam with the same cross section 
shape. 

Thus, the warping parameter (H) is defined by the weighted integral 

®(x,t)=jLj 0  (y,z) . 1TMO . T dS (12) 

r'S is the quadratic warping moment of the cross section. 02 

From the aforementioned definitions there follows that the displace- 
ment field can be written in the form of the "functional developement" : 

u = u - y tf + z x              J     z 

üMo ~ u =v-z9 +n y                     x        y 

u =w+y9 +n 
z                     x        z 

tf +z8 + 0 (§) + tt 
y     -    x 

(13) 

4.   TECHNICAL FORMULATION 

The technical beam formulation is done through two hypotheses. 

HI - The lateral surface of the beam being free of any forces, we 
suppose that the stresses 0*22 > O33 and 0*23 are negligible compared to Cj j, 
0"i2 and 0"i3' Therefore 0^2 = «33 - ^23 * 0 

H2 - The complementary warning vector II is neglected 

It has been shown in l&l that taking II into account leads to couplings 
between shearing forces and torsion in the case of a uniform straight beam ; 

** so it can be expected that in the case of a pretwisted beam bending, tor- 
sion and longitudinal extension should be coupled. In order to avoid too 
complicated a study, we shall suppose that II • 0. In consequence, the cross 
section remains undeformed in its own plane. 

Making use of HI and H2 we deduce from (4), (9) and (13) the following 
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expressions for infinitesimal strains E.. in the cartesian system. 

t    = u' + z(e'   - xe ) - y(e* + xe ) - x ® 0(0) + 0 ® xx y z        J    z y \^>     -  ' ^ 

it =v' -e-xw-ze* + ® 0",„ 
xy z x       w   'y 

2   e =w'+6    +Xv + y9' +®0, xz y }    x     ^"'z 

(14) 

E     =   e 
yy zz 

C        =0 
yz 

with the subscripts 1, 2, 3 replaced by a "beam notation" x, y, z. 

It is now necessary to turn to the internal forces in the beam acting 
through each cross section. They are defined in the same way as the displa- 
cement parameters by means of generalized weighted integrals of stresses over 
the domain D of the cross section. Then the three generalized forces of 
interest are the axial force N, the twisting moment M and the bimoment B 

! 

N(x,t) 0"xx dS ; M(x,t) = Cyff» 
D 

zCTxy)dS B =/ 0C     dS h xx (15) 

For an isotropic elastic body with YOUNG's modulus E and shear modu- 
lus G, making use of the stress strains relations in (15) leads to the fol- 
lowing force - deformation relations 

N ES u' + E X (I - J) ® 

(M - GJ9x) = G(IX 

B = E l0   ® ' 

J)(8' ®) (16) 

J is the SAINT VENANT constant of uniform torsion and I the polar 
moment of inertia of the cross section. In view of (16) it isxclear that 
the three beam forces are coupled through the warping parameter @ and 
the rate of twist X . As pointed out by LEISSA and JACOB 111 , the other 
bending and shear forces are uncoupled from torsion, warping and "longitu- 
dinal extension. It is seen that the second relation (16) connects the non- 
uniform torsion moment 

nuf (M - GJ9') 

to the rate of twist 6' not necessarily linked with (H) as it would be in 
the homogeneous Lois ion of the beam. 

5. EQUATIONS OF MOTION 

They are derived by use of the principle of virtual work with a virtual 
displacement field analogous to (13) in which n is set to zero. 

Among the seven equations of motion which are deduced, we shall retain 
a set of three because they are coupled together and uncoupled from the 
bendings and shear forces set. Thus, the dynamical behaviour of pretwisted 
beams is governed by 
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N' 

M' 

B' 

p S ü 

pie 
i 

x x 
x - J 

(17) 

N + (M-GJe^) -E XZK2 H V*0® 

The last equation is the dynamical equation of bimoment and it tradu- 
ces in term of beam forces the coupling between the bimoment B, the non 
uniform torsion moment MnUf and the axial force N. This equation can be 
compared to equation (24), of l7l and it can be seen that for non rotating 
beams (17.c) and (24), are strictly identical if we suppose that the kine- 
matical constraint 8X ■ (§) links the two parameters. In (17.b) a coeffi- 
cient K2 appears ; it depends on the cross section shape and is calculated 
by means of 0 (y,z) as follows : 

K2 = J2 

and J„ 

(Ix - J)' 

D (0)  dS 

(18) 

In the case of a rectangular section h x b , 0  (y,z) is known and J2 
can be calculated. For a thin walled rectangular section beam we have the 
following approximations 

b x h bh' 
1? 

J ~ 
hb 

12 
bh 
80 

K2~ bV 
180 (19) 

values 

0(y,z! 

The Fig. 2 shows the evolution of the ratio JoTW/
J2ex ° 

: of J2 evaluated respectively by (19) and by the exact 
f the two 
function 

Ratio 

1.5 

2TW 

2 ex 

2TW 

-4- 

J-_u = Thin walled beam theory 

1 Exact value 

10 
-r~ 
15 

H> 

Fig.  2 - Ratio 2TW 
j  for a rectangular section 
2ex 

138 



"S '*■ T" 

In view of Fig. 2 we can conclude that J2TW is always overestimated 
and when h/b ■ 5 the error is about 20 % ; this value of h/b seems to be a 
limit for a correct evaluation of Ky  which is the leading coefficient in 
the prediction of the Torsion-Extension coupling. Having developed a beam 
theory for the analysis of pretwisted straight beams described by three 
displacement parameters, let us now turn to the Finite Element Formulation 
(F.E.F.). 

6.   FINITE ELEMENT FORMULATION (F.E.F.) 

The two node finite element of the pretwisted beam is depicted 
Fig. 3. At each end point Gj and G'i  the nodal displacements vectors 
q^(i=l,2) are defined 

T 
q£(t) lu.(t) e . (t) 

xiv ®.(t) 

Fig. 3 - Finite Element of Pretwisted Beam 

An approximate displacement field U (x,t) is deduced in the form of 

Ue(x,t) = Ae(x) . q(t) 

with     q(t) = | qj(t) q2(t) 

(20) 

The interpolation matrix A (x) is obtained by the resolution of the 
static equilibrium system deducea from (17), associated with the relations 
(16). The static and kinematic admissibility of the displacement field 
Ue(x,t) thus derived insures the improvement of the formulation and con- 
sequently a large finite element discretization will not be necessary. The 

I 
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internal beam forces are the aforementioned axial force N, Torsion moment 
M and generalized bimonent B. 

The setting up of the F.E.F. involves previous formulations of techni- 
cal expressions for the potential and kinetic energies and this will be 
examined now. 

If we consider an infinitesimal beam length dx and accounting for the 
technical hypotheses HI and H2, the elementary strain energy W'(x,t) reduces 
to the integral over the cross section 

W'(x.t)  - 4 ( <T     t     + 2 g       c      +2CT      e     )dS 
xx    xx xy      xy xz     xz ' (21) 

The constitutive stress - strains relations holding for an isotropic 
homogeneous material together with the expressions (14) defining the strains, 
lead to the following form of W' 

W'(x,t)   -1E[SU'
2
 + 2X(W)  @ u*  + Ifl   ®'2  +    X2®2 J2 ]+... 

+ lG[xX2 - 2(w)e; ® + (i.-j)® 
(22) 

The integration of (22) over the whole beam element of length 1 and 
the use of (20)allow for the derivation of the element strain energy 
We(t) by means of the modal vector qe(t) 

we(t) 
1 T _ 
T Q K q 2 Me e He (23) 

where Ke is the element stiffness matrix, terms of which are detailed in 
Appendix 1. 

The derivation of the element mass matrix Me is deduced from the 
kinetic energy Te of the element. The elementary kinetic energy T'(x,t) 
defined by f 

T'(x,t)=IJD PUMo. UModS 

is evaluated by means of (13) in the form of : 

T'(x,t)  4p[Su2 + IX;2+ @2J 

(24) 

(25) 

where the dot denotes the derivative with respect to time and p is the mass 
per unit volume. 

Performing the integration ot (25)  over the whole element by means of 
(20) leads to the element kinetic energy Te (t) 

Te(t> " i %      K    % (26) 

where Mg is the so called consistent mass matrix of the element ; due to 
its complexity the terms of Mg are not detailed herein but can be found 
in [91 . 

However, in finite element analysis, the lumped mass matrix can give 
good results in the estimation of natural frequencies of beams, and for 
that reason we have defined the following diagonal matrix M| 

Mf-diagf    'si     £V     'y.     'S1     ly     lv (27) 
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If the terms of M are obviously independant of the rate of pretwist 
X , Mg consistently accounts for and leads to a full symmetric matrix. In 
order to evaluate the consistency of the theory and accuracy of the F.E.F., 
several pretwisted beams have been experimented and the numerical eigen- 
frequencies computed were compared to those of the experiments. 

7.   CANTILEVER BEAM 

For the experimental purpose a pretwisted slender beam of thick rec- 
tangular cross section was machined and welded at one end on a thick flange. 
The numerical investigations were conducted by a discretization of the beam 
into twenty elements allowing for an accurate computation of the natural 
frequencies. The relative error between calculated and experimentally deter- 

mined eigenfrequencies is shown Fig. 4 

I 
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Fig. 4 - Cantilever beam (F.K.F.) 

The influence of pretwist on computed natural torsional oscillations 
of the beam has been evaluated through the comparison of the aforementioned 
results and those deduced from the SAINT VENANT theory of uniform torsion 
and from a F.E.F. of dynamical torsion of straight uniform beams E81 • 

The error values resulting from each of the th-ee approaches are 
plotted Fig. 4 where it is seen that they are of the same order of magni- 
tude. Thus, it can be concluded that due to the thick cross section and the 
slenderness of the beam, the moderate rate of pretwist provides no change 
in the prediction of torsional frequencies. The relative bad results obtai- 
ned for the first two modes are certainly a consequence of an imperfect en- 
castre root fixing. In the other hand it can be shown, in view of (12) and 
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(13), that the greatest influence of pretwist is obtained for thin cross 
sections because the coefficients (Ix-J). X and I^. X^ which are the leading 
terms of the couplings between Torsion, Extension and Warping have the lar- 
gest relative values. 

So a thin rectangular steel strip was tested in the case of free-free 
ends conditions. 

8.   FREE-FREE RECTANGULAR THIN WALLED BEAM 

The beam selected for this investigation was a flat strip of steel 
initially pretwisted on a lathe. A linear rate X = 13,65 rad/m was produ- 
ced over the central part (0.202 m) of a beam that was originally 0.4 m 
long. As shown in Fig. 5 a rather good accuracy of the predicted eigenfre- 
quencies is obtained for the five torsional mode. In this study the beam 
is discretized into ten elements. Any information about the values of the 
natural frequencies can be deduced either from the SAINT VENANT theory or 
from F.E.F. of dynamical torsion 181 . 

The lumped mass matrix leads to greater errors than those obtained by 
use of the consistent mass matrix. The mean values between the two results 
seem to be good approximations of the eigenfrequencies. 

-O* Error % 
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1     2     3   4#   5| 
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Fig. 5 - Pretwisted Thin Walled beam (F.E.F) 
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9. CONCLUSION 

The present study of the dynamical behaviour of turbomachinery blades 
which can be modeled by pretwisted beams, shows the necessity to encount 
for the non uniformity of torsion and warping of the cross section. This 
was achieved here by the definition of weighted displacement parameters 
including a warping parameter varying independantly of the twist angle. 
The coupling between torsion, longitudinal extension, warping and uncou- 
pling with bending and shear forces allow for the statement of a theory of 
pretwisted beams by means of three displacement parameters and three genera- 
lized associated beam forces. 

The study deduced from the 3-dimensional elasticity using curvilinear 
coordinates leads to the definition of new cross section coefficients the 
influence of which is shown to be essential for the accurate prediction of 
the dynamical behaviour of the beams. The new finite element defined here 
allows for the computation of eigenfrequencies of pretwisted beams with a 
straight center line. The numerical results obtained by use of the F.E.F. 
show the accuracy of the present formulation. 

Obviously, in the case of beams for which the center line is not a 
straight line, all the beam forces are geometrically and structurally cou- 
pled and a new approach must be developped for which the use of integral 
parameters seems to be well suited. 
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APPENDIX 1 

STIFFNESS MATRIX K FOR A PREVJISTED BEAM 
e 

We denote by a, 2 , 1} the coefficient." 

I 
X  1 ,   .  , / G  J        .1    T     

s 

I "J      »I    ,    *      V E alrt   ' v  J2 ,.  T,2 
1 + G I -J *  2 X 

and by IS  the following expression 

. I -J I .  I -J 
A= 4r . -r—   2(cosh2-l) -TTAT HsinhE] + x   -^- l[2(cosh2 -1)-   1)2 sinh Z 

EE        *x    L VJ 2S      L 

Thus,   the  terms K..  of K    are  found in the  form of   : 

AKU  = Y [2 ^~ (cosh 2- 1)  - 2(1  +»)  sinh 2] 
x 

. (I -J) 
12 = G     ~^~~   x[2(cosh 2 "  1)  -    2sinh 2] 

AK      = -| X El.  (cosh 2- 1) 

K14 = " Kll  ;  K15 = " K12  ; K16 = K13 

I -J I I 
22  = " G ~T~   [ IT TTJ Z sinhZ  "   X    T    2(cosh 2"  ')  " ü 2sinh2 ] 

x 

AK23  " " G I V«^2"  »   i     K24 = - K12   ;  K25  = - K22   ;  ^  = K23 

„  I -J „ I -J I 

S3 AK_ = E I0   [x    ^-(sinh Z-»2 cosh2 )  + ^-|— (sinh2- y4j 2 coshZ   )" 

K3A "      K13       ;       K35 ~ " K23 

A 9    I   "J I   ~J * 
AK

36 
= -E x0 [x -T"(sinh z"v l) + f ~r~ (sinh 2 " F=J 2 }J x x 

Ka=Kll       ;       K45=  K12       •   K46 = -K,3       ;    K55=K22 

K56 = " K23      ;      K66 " K33 
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A COMPLEX VIBRATION ANALYSIS OF A THREE SHAFT GEARED 
COMPRESSOR SET MOUNTED ON A STEEL ENTABLATURE 

S.S. Gupta 

GEC Engineering Research Centre 
Whetstone, Leicester, UK 

SYNOPSIS : 

Analytical and Computer Techniques developed for the prediction of 
the whirling response of multi-flexible-shafts in a response-prone 
entablature have been applied to the prediction of the dynamic unbalance 
vibration level for a three-shaft, geared compressor set mounted on steel 
foundations which have natural frequencies well within the machine's 
running range. Such foundations are generally referred to as being 
'low-tuned' and have raised some concern as to the validity of 
representing machines as flexible shafts supported to earth. It was 
necessary to include in this analysis the hydrodynamic bearing behaviour, 
gyroscopic couples, shaft and structural damping and other standard 
features relevant to whirling analysis. The shafts which had axisymmetric 
rigid discs can be assumed to be torsionally infinitely stiff and 
interconnected at constant drive speed. In the low-tuned system, the 
bearing was considered as being built-in, and forming an integral part of 
a multi-degree-of-freedom vibration system as well as being the means of 
location of the rotating vibration system. The vibration of points on the 
shaft must affect, via the bearings, the motion of points over the 
foundation. Whilst there are many papers and reports related to the 
whirling response and stability of shafts, none deal with the general case 
of a rotating shaft mounted via three or more flexible bearings in a 
heavy, flexible structure. The purpose of the paper is to establish a 
mathematical approach capable of dealing with the above dynamic system, 
without the use of over simplifying assumptions, and without damaging 
either its generality or realism. The approach, as it is based upon matrix 
algebra, should benefit directly from the ready availability of stiffness 
matrices which can be output from present day computer structural analysis 
programs at the same time as the stresses, strains and displacements of 
static load cases. The results of a complex analysis of the system are 
presented on the basis of vibration levels over the rotors and the 
structure caused by unbalances placed on each rotor in turn. The 
calculations were made by using MELDA 'The Mechanical Engineering 
Laboratory Dynamic Analysis' Suite of Computer Programs. The calculated 
vibration level«; «pro shown to be acceptable. 

1.   INTRODUCTION 

1.1  Machinery 

The pwer drive was a GEC 4-pole 21MW induction motor running at 
1492 RPM, integral with a deep underslung cooler. The unit was mounted in 
a rectangular box-section f-ame for ease of on-site installation. The 
bearings were of oil-lubricated tilting-pad design. Drive was taken off 
both ends of the rotor by means of MAAG gear couplings to two MAAG 
gearboxes. Both gearboxes were of the step-up type. The first gearbox was 
GN90, with a ratio of 1:6.686, driving the high pressure compressor via a 
Bendlx type diaphragm coupling and layshaft assembly. The second gearbox 
was GN70 with a ratio of 1:4.135 driving the low-pressure compressor 
through a similar coupling arrangement. The compressors were of GHH 
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manufacture and each incorporated a power recovery turbine mounted on the 
extreme outer end of its rotor. The casings of the turbines rested on 
separate stools. The turbines were of partial admission design, therefore 
there was a varying lateral thrust on the outer bearing of each compressor 
according to the degree of power recovery. All bearings in the compressors 
were of tilting pad design. The effect of the varying lateral force on the 
outer bearings was to change their stiffness and damping characteristics, 
which in turn affected the response-to-unbalance characteristics of the 
whole set. 

1.2 Foundation 

The machinery was mounted on a fabricated box type steel foundation 
of GHH design via various fabricated stools which were integral with it. 
An isoparametric exploded view is shown in Fig. 1. The 'Table top' of the 
foundation was supported on ten special columns each of which consisted of 
three coaxial square-section columns to form a longer and more flexible 
route for axial loads without giving rise to undue sway flexibility. This 
was done by joining the top of the outer tube to the top of the 
intermediate tube, and the bottom of the intermediate tube to the bottom 
of the innermost tube. The table top was supported on the top of the 
innermost tube and the base of the outer tube was fixed to the foundation 
slab. The top of outer tube was linked directly to the table top by simple 
flat springs which allowed up and down motion of the innermost tube 
relative to the outermost tube, but no lateral relative motion. 

1.3 Other Components 

The two most important items In this category were the coolers, 
referred to as cooler I and II, each hung by two brackets from the 
underside of the table top. The coolers were served by a system of water 
pipes and air duct;; which added to a fairly extensive network of similar 
items on the underside of the foundation. The lube-oil system consisted of 
a tank and pumps which were supported on a platform, in turn supported by 
the foundation four end columns, but very close to the ground. The oil 
coolers and filters were situated on the table top, at the HP compressor 
end. 

2.   OUTLINE OF METHOD OF ANALYSIS 

The program (MELDA) was developed at GEC Engineering Research Centre 
to specifically solve the complex whirling problems associated with the 
rotating and non-rotating parts of an overall structure, the important 
ractor being the dynamic inter-play of spinning shafts with a 
resonance-prone steel structure. Expressions are obtained in matrix form 
for the kinetic energy, potential energy and energy dissipation of the 
rotating and non-rotating structures. For the non-rotating structure, 
energy expressions are in terms of displacements referred to a fixed set 
of axes. The energy expressions for the rotating system are, when 
necessary, initially in terms of displacements referred to a set of axes 
located within the shaft. These energy expressions are then transformed 
into the stationary set of coordinates by the known neometric relationship 
between the two set- of axes. As each type of energy expression is 
formed, 1t is th»n substituted 1n the relative term, or terms of 
Lagrange's equation of motion, 1e. 
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to give a series of equations which ara then summed at the end of the 
analysis to form the final equations of motion of the system under 
consideration. 

The oil film system is, in general, non-conservative; hence to avoid 
involvement with complex energy functions, it is incorporated in the 
analysis as generalised forces Qi of Lagrange's equation. These forces are 
assumed linear functions of the relative displacements and velocities of 
the journal and housing, and after suitable transformation, they are 
assembled on the LHS of the final equation of motion. 

The program calculates the steady-state response to unbalance at 
every speed specified. Unbalance may be distributed along, and at any 
point around the axis of the shaft. The response of the shaft is expressed 
in terms of the ellipses of motion of the freedom datum-points and the 
amplitude and phase of the projection of the orbits onto the x and y 
planes. The motion of the bearing housings is described in the same 
manner. Journal run-outs relative to their bearing housings are also 
described in terms of ellipses. The response of the structure, other than 
at the bearings, is expressed in terms of amplitude and phase of the 
normal mode coordinates (eigenvectors) used to describe the motion. 

The purpose of the calculations was to predict the pattern of 
response of the three shaft-lines and the associated machinery and 
foundation structure due to unbalances placed on each of the three rotors 
in turn. A range of speeds around operating speed (1492 RPM at the drive 
motor, 9974 RPM at the HP compressor) was considered. The method is 
described in ref. [1]. It treats the system as being made up of three 
components: rotor; rotor support sub-structure; journal bearing lubricant. 
film stiffness and damping characteristics. These are treated by a program 
suite MELDA of which the main components are shown in Fig. 2. 

The program searcnes the data produced at each speed and finds the 
maximum shaft run-out and the degree-of-freedom on the shaft at which it 
occurs and the maximum structural deflection and the degree-of-freedom at 
which it occurs. 

3. IDEALISATION 

3.1 Rotor 

Ine rotors were idealised as an assemblage of finite elements of the 
beam type, with shear distortion effects included. The size of the 
elements was chosen to give a close description of their elastic 
properties. The inertia! and elastic properties of the rotors as 
represented by the finite elements models were reduced by a condensation 
process ref. [2] to a coarser mesh, which still has an adequate 
description of the dynamic distortion. The choice of elements and 
degrees-of-freedom for the three shaft-lines is shown in Fig. 4 to 6. The 
total number of nodes in the shaft system was 313, with 264 beam elements 
and 66 dynamic degrees of freedom in each plane. 

3.2 Sub-structure 

Each of the seven sub-structures shown in Fig. 3 was idealised as an 
assemblage of finite elements of the type plate, shell, beam etc. The 

149 



A T 

finite element idealisation is shown in Figs. 7 to 11. The link 
degrees-of-freedom were selected to link each sub-structure to its 
adjo'nlng substructure and to describe its dynamic properties. A total of 
3307 finite elements were deployed amongst the seven sub-structures using 
7415 nodes, to give a total of 31,166 structural degrees-of-freedom 
(structural analysis stage). Seventy-four common link freedoms were 
required to join the sub-structures together. After linking the 
sub-structures together and eliminating the unwanted link freedoms there 
remained 180 degrees-of-freedom to define the dynamic motion. 

4. STATIC REDUCTION 

A process of condensation [2] was used to produce a stiffness matrix 
relating load and displacement at the selected points. Two types of 
freedom, dynamic and link, were considered in this analysis. 

The link freedoms defined the motion at the interface between a sub 
structure and the sub-structure tc which it was to be attached. The 
sub-structure to which it was to be attached had a similar matching set. 
Once all sub-structure stiffness and inertia matrices had been linked 
together by the MERGE program, the interface freedoms were not required as 
dynamic freedoms and were eliminated leaving only the dynamic freedom. 

5. JOURNAL BEARING COEFFICIENT 

The calculation of bearing characteristics was carried out using the 
MELBA (MEL Bearing Analysis) ref. [7] program suite. Assuming linear 
behaviour about the steady running condition, the bearing oil film 
stiffness and damping properties can be expressed by a pair of 2X2 
matrices: 

Kll      K12 

^21 v22 

11 

J21 

D 121 X 

22 V 
(2) 

5.1      Pivoted Pad Compressor Bearings 

There are four bearings of this type; two in the high pressure and 
two in the low pressure compressor. Each bearing has five 
centrally-pivoted 60° pads. Two clearances are specified for each bearing: 
the pivoted clearance Cpi-V and the pad clearance C„ The radial pivot 
clearance  is  the  clearance at  each  pivot when the journal   is central   in 
+ Urt    k rt a r» ■» r\ rt        Th«    naH    /»"lr»ir»an/*A    4 r     +■ Ho    Hiffopftiii*o    Kafiiiaon    +" hrO    naH ' C     ParHlIC bifw     k/i-ui    niji      i 11 \_     I^UM     u • t_ M •   v* > i w w      ■ J      w I**     M i  i  i v. 4   -.»—I-     iJCviVvvil      *»IC     r ,- —     —      i  a«»J3 

of curvature and the radius of the journal. 

5.2 Motor Bearings 

These were partial arc bearings, the diameter, D = 280mm, length, 
L = 200mm, radial clearance, C = 0.24mm and the inlets are 8mm deep and 
have side lands 17mm wide. The circumferential length gulterways is 70mm 
which implies an arc of 151°. The bearings were centrally loaded. 

5.3 Gearbox Bearings 

Only the wheel bearings were considered. The geometry of the arc was 
specified by MAAG as being from -45° to 60° and from 135° to 240° from 
bottom dead centre. The direction of the load is relative to bottom dead 
centre in the direction of rotation of the journal. 
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METHOD OF BEARING ANALYSIS 

6.1  Pivoted Pad Bearings 

Under steady loads the oil force on each pad was taken to act 
through the pivot. Each pad was therefore treated as a partial arc bearing 
with a specified load direction. It was assumed that the leading edge 
temperatures were the same for all the pads. These temperatures were 
calculated by assuming no external load on the bearing and 100% carry over 
of hot oil from one pad to the next. Th^ analysis was performed using the 
MELBA multi-arc journal bearing program which considered a single pad with 
automatic heat balance facility. A series of load cases were run and film 
thickness at the pivot was calculated at each load. A small FORTRAN 
program was used to determine the journal position, power loss, oil flow, 
and maximum temperature for a given load. 

6.2  Motor and Gearbox Bearings 

The MELBA multi-arc journal bearing program was again uscu 
analyse the bearing. The program provides a combined solution of t 
energy and Reynold's equation and carries out balances to allow for mixi 
in the inlet wash away 

used to 
the 
ng 

7. UNBALANCE MOMENT 

7.1  Rotor Out-of-Balance Values and Standards as for Assessment of 
Predicted Response   "     "*"  "~  

The amount of out-of-balance applied to each shaft and its location 
was decided using ISO 1940 ("Balance quality of rotating rigid bodies") 
[4], and draft ISO proposal (IS0/DP5343, "Criteria for evaluating flexible 
rotor unbalance") [5], It was not possible to say prior to the start of 
the calculations what could be classed (in terms of the above standards) 
as "rigid bodies" and which could be classed as "flexible rotors". A 
policy was therefore adopted of choosing an unbalance distribution which 
met the residual unbalance requirements of both cases. 

The unbalance moment is controlled by paragraphs 3.3 and 3.4 of ISO 
1940. Clearly all three rotors must be classified as the "two correction 
plane type". The unbalance could be applied as a simple unbalance at the 
centre of gravity of each rotor, or as two anti-phase unbalances at the 
rotor balancing phases. To reduce the number of comoutina cases it was 
decided to combine the two effects (lateral forcing and pitching) by 
applying the whole of the unbalance at a point. The lateral shaking forces 
and pitching moments would be produced by off-setting the bearing mid-span 
in this way. 

Table 1 - Structural Vibration Limits, Microns 0-PK 

Unbalance 
Locations 

Good Satisfactory  Just Satisfactory  Unsatisfactory 

Motor       0-25.5  25.5-63.0    63.0-160.0 

LP Compressor 0-6.0    6.0-15.0    15.0-38.0 

HP Compressor 0-3.95  3.95-9.5     9.5-23.0 

•160 

»38 

>23 
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International Standard IS02372 has been considered but unfortunately 
1t did not state explicitly what could be considered as "Good", 
"Satisfactory", etc. 

8.   RESULTS AND DISCUSSION 

Two forms of results are represented in this paper. Firstly, a graph 
of maximum shaft run out vs. rotor speed, showing the locations of peak 
responses and, secondly deflected shapes at the instant of maximum shaft 
radial run-out at the peaks. 

8.1 Unbalance on the L.P. Compressor Rotor 

The amplitude vs. speed curves are given in Fig. 12 for the full 
power and zero recovery cases. Comparison of the two show negligible 
differences due to power recovery. A lower resonance occurs at 3800 RPM 
(all speeds are referred to the HP rotor shaft speed), well below the 
operating speed. The shaft shape - or 'snapshots' - for this speed are 
plotted in Fig. 15 where it can be seen that the mode is a fundamental 
bending of the L.P. rotor with all significant activity confined to it 
with very close investigations in the speed range near the peak. These 
show that the orbit is very nearly circular and that very rapid phase 
changes occur. The level of power recovery introduces sufficient 
differences in phase angle to affect the 'snapshot' when these are taken 
at the same speed. The 12000 RPM resonance does not represent any 
significant danger to its design. The structural vibration levels peak at 
2.6 microns 0-PK at 12100 RPM. This is well within the "good" standard of 
Table 1. 

8.2 Unbalance on the H.P. Compressor Rotor 

The resonance characteristics of the H.P. and L.P. rotor are very 
similar. The maximum amplitude vs. speed curves and mode shape are plotted 
in Figs. 13 and 16 for the full power and zero power recovery cases. It 
can be seen that the results are virtually identical. The peak rotor 
vibration levels reach 40 microns 0-PK at 11760 RPM. The peak bearing 
run-out at this speed is 3.60 microns at the drive-end, which is 5 percent 
of the pivot clearance - a very acceptable case. 

8.3 Unbalance on the Motor Rotor 

A no power recovery run was carried out for the motor unbalance 
raco       Tho     rfttnp     amnlS+nHo    \/c       cnaaH    rnrwo    ic    npacan+a/4    in    C-irt       1 A        Tho 

significant peak is 7 microns at 23000 RPM - well within the "Good" band 
of Table 1 and at over twice the operating speed. The mode shape at this 
speed, Fig. 17, shows 1t to be more in the nature of a fundamental 
free-free flexural vibration rather than simply supported (the deflections 
at the bearings are anti-phase relative to the motor centre). This case 
was repeated by assuming that the rigid and flexible structure, 
symmetrised bearing stiffness and damping cross-terms were divided by 100, 
an increase in response level of 30 microns was found as shown in Fig. 14 
The peaks are at 9000 and 16000 RPM. The mode shapes at these peaks have 
been plotted as shown in Fig. 17. The conclusion of these runs are that 
the main source of damping was due to the non-r.ymmetric nature of the 
bearing stiffness coefficients and due to the cou|»ling of the motor rotor 
to the gearbox shaft via the structure. 
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9.   CONCLUSIONS 

The response levels for both the rotors and the support structure - 
which includes items such as the coolers and the machine casings - appear 
to be very acceptable, certainly the structural vibration levels are well 
within the limits laid down in VDI 2056. There is a slight doubt, however, 
that both the LP and HP compressor rotors may have second-flexural 
critical speeds slightly below the operating speed plus 20 percent bound. 
The results of the motor unbalance case have shown that motor bearing 
characteristics which lead to very high levels of damping and that the 
dynamic coupling of the motor rotor to the gears shaft via the support 
structure also has a significant, ind similarly beneficial damping effect. 
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TRANSIENT DYNAMICS OF ROTATING FLEXIBLE BODIES 
WITH BASE MOTION EXCITATIONS 

Y. A. Khulief and H. T. Chiu 

Department of Mechanical Engineering 
University of Alabama at Birmingham 

Birmingham, AL 35294, U. S. A. 

ABSTRACT 

A method for modeling transient dynamics of rotating flexible components is presented. 
Such dynamic models are of practical importance for both design and control of several 
engineering applications. Examples are flexible links of high-speed mechanisms, manipulator 
arms, airplane propellers, and flexible appendages of spinning spacecrafts. This method is 
based on a nonlinear formulation of the Lagrangian form in conjunction with the finite 
element technique. A mixed set of generalized coordinator that accounts for inertia coupling 
between reference motions and local elastic deformations is employed. Component mode 
substitution techniques are used for generating a finite set of selected modal coordinates. The 
formulation accounts for component mode changes due to the effect of reference rotational 
speed of the elastic component. Base motion excitations, including impulsive forces, are taken 
into consideration. Numerical results are presented for a beam with its midpoint fixed to a 
rotatipe base which is subjected to sinusoidal pulse excitation. 

1.  INTRODUCTION 

The dynamic behavior of rotating flexible components is an important part of the 
dynamic analysis of interconnected multibody systems. Examples of such mechanical syftems 
are turbomach in es, propellers, high-speed flexible mechanisms, and space stations. 

In this analysis, the ecu figuration space of the flexible component is modeled by a mixed 
set of reference and local elastic generalized coordinates, [lj. The finite element method is 
employed to generate a tet of elastic coordinates that represents degrees of freedom of a 
selected set of disTete poinic in the structure. Utilization of such nodal coordinates results in 
a large dimensionality that often causes numerical Jifficulties An alternative representation 
suggtjts the use of a truncated set of modal coordinates, [2]. A modal transformation is, 
therefore required to perform a transformation from the nodal space to the mod \\ space. The 
precision of this transformation depends on the accuracy of the estimated modal 
uiaiacbeiuxi'» o.' tu« elastic component. 

Modal substitution techniques were employed by previous investigators [3-5], in modeling 
rotating flexible components. These methods, however, have relied upon modal chara,cter;-tics 
of a non-rotating structure undergoing free vibrational motion. Rotating flexible components 
are known to experience centrifugaily induced tensile forced that tend to increase the effective 
torsional and flexura! stiffness. A few investigators [6-10] nave conducted studies to estimate 
such rotational stiffening effects. The results reported in [11] show that the centrifugaliy 
induced stiffness lias greater influence on lower modes, which art significant to the dynamic 
response of such system«. Therefore, a proper set of elastic modal coordinates must account 
for modai changes induced by the centrifugal force field. 

In this paper, s computer-based dynamic analysis scheme is developed A detailed two 
dimensional analysis based on a nonlinear Lagrangian formulation is performed. The finite 
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element is used to generate modal characteristics that account for the effect of rotation. 
Modal truncation techniques are applied in order to obtain a reduced order model. The 
rotating flexible components are treated as members of a multibody system. Base excitations 
are permitted by the dynamic model. The dynamic behavior of a rotating flexible body is 
then examined under the influence of base motion excitations that give rise to primary shock 
loading conditions at different phase angles. 

2.  DESCRIPTION OF ELASTODYNAMIC MODEL 

In this formulation a general flexible body i is couoidered. The body is deforming 
elastically while executing a general reference motion. 

2.1 Generalized Coordinates and Velocities 

The configuration of the elastic body can be described by defining the global position of 
an arbitrary point in the body. For this purpose three sets of axss are introduced as shown in 
figure 1; the inertial frame XYZ, the body reference frame z'y'z', and the element coordinate 
frame z'>y''t'>. The global position of an arbitrary point p'' in element ij can be expressed as 

r^r'.+R' (Q')R" (ß" )N» R" (ß" )e'- (1) 

where R is a coordinate transformation matrix, R''(ß<i)=diag[R',(ßi'),l,R''{ß{'),l\ is a block 
diagonal matrix, TV' is the shape function of the assumed displacement field of element ij, 
and e'' is a vector of nodal coordinates defined with respect to an intermediate system of 
axes; located at the body origin and parallel to element axes. The rotation ß" defines the 
orientation of element axes with respect to the body reference frame, and 6' defines the 
orientation of the body reference with respect to the initial frame. Equation (1) can simply 
be written as 

r^r'.+R* (B^Wc' (2) 

where e' is the vector of nodal coordinates of the flexible body i, and TV*' is a modified shape 
function that accounts for a coordinate transformation from the element coordinates to the 
body-fixed frame, as well as a Boolean matrix transformation. 

The generalized velocity expression can be obtained by differentiating equation (2) with 
respect to time. This will result in 

r;'~[/ ,DH  ,-R''TV"]j'' (3) 

where the term fi'TW' is given by D':6', and V•'■''(«'',«*') is a function of the reference 
rotational coordinates of body i and the elastic coordinates of element ij. The generalized 
coordinate vector q' is given by 

\ »if, ,«   ,« 
(4) 

2.2 The Constrainted Lagrangian Equation 

Mechanical systems, in general, can be represented by a collection of bulky rigid as well 
as flexible structural components, that are interconnected by typical mechanical joints; e.g. 
universal, prismatic, revolute, etc. The kinematics of such joints can be expressed in terms of 
a set of nonlinear algebraic equations of the form 

C'(»,l)-0 ,5) 
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where j— { g1 ,q3  ,}"*    }    is the generalized coordinate vector of a mechanical system 
with Nb bodies. A virtural displacement iq of the system generalized coordinates, that is 
consistent with the constraints, can be written as 

-^ |*,«/*« -0 
(6) 

where J is the Jacobian matrix of the constraints equation. The L&grangian form of th« 
equation of motion is given by 

Mij'+K'q' + r'X-Qi+Qi. 
(7) 

where X is the vector of Lagrange multipliers, M' is the mass matrix, and IC is the stiffness 
matrix of body i. The vector QE represents externally applied forces, and Q'a represents force 
expressions that are functions of quadratic velocity terms, which account for Coriolis, 
gyroscopic and centripetal contributions. 
The vector Q'E represents externally applied forces, and Q'a represents force expressions that 

are functions of quadratic velocity terms, which account for Coriolis, gyroscopic and 
centripetal contributions. 

3. TWO-DIMENSIONAL ANALYSIS 

In this analysis, flexible bodies are assumed to be represented by straight beam elements. 
There are no restrictions, however, made on the type of element which can be used to 
generate the coefficient matrices of equation (7). 

3.1 Inertia Properties of Flexible Bodies 

Utilizing the velocity expression of equation (3), the kinetic energy of the flexible body i 
can be written as 

where a' is the number of elements in the finite element mesh of body i, p'! is the mass 
density, and v'' is the volume of element ij. The general form of Lagrange's equation of 
motion is given by 

«UM w/+UrJ+,/,x"% 

where U' is the strain energy stored in body i. Performing the differentiation of the first two 
terms of equation (9), one can write 

i{w} -{w]"Mir~Q° (10) 

where the mass matrix Af is given by 

m'7 

M1 
c<TS<TR'e

T   e'VV 

Symmetric 

SiTR<T 5«V 

(ID 
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■ and Qo is defined as 

Qa= 

& R'S't'-2Q'R^S'i' 

-»'«''m/e'-e'V»' 
6'Ve''-2ei,S,'V 

(12) 

The matrix R'$ is the derivative of R' with respect to 6, and m'J is the inertia 
properties associated with translational reference coordinate. Expressions for m't, S' and S' 
are given in the appendix. 

3.2 Stiffness Properties of Rotating Flexible Bodies 

The third term in the left side of equation (9) can be expressed as 

0 

eq< j 

Symmetric 
6' - K'q< (13) 

where K) is the elastic stiffness matrix defined with respect to the local elastic coordinates in 
order to satisfy the uniqueness of the assumed displacement field. If the local coordinate 
vector of point p'1, with respect to element axes, is given by 

= JW (14) 

where deformations are confined to the plane of rotation as shown in figure 2, and the elastic 
body is assumed to rotate about a fixed axis in the space. Neglecting shear deformations, the 
strain energy expression is given by [12], 

2 flx * öi" 5(t«s öz" <?i"   ; ' 
(15) 

The first two integrals of equation (15) represent linear strain energy, while the third 
term is a contribution of the nonlinear component of the strain. Therefore the stiffness matrix 
in equation (13) can be defined as 

K}=Ki+K'r 
(16) 

v.'hcrc K\ represents the lineai eiaalic otiiuieoa of uotiy i. The matrix K\ is found by 
performing the third integral of equation (15), where the term E''A'' { du''/dz'' } accounts 
for axial stress resulting from the centrifugal force fkld. Expression for stiffness matrices K', 
and Kj are included in the appendix. 

3.3 Reduced Order Model 

The dynamic relation expressed by equation (9), is written in terms of reference 
coordinates and elastic nodal coordinates of flexible body i. This type of representation often 
results in large dimensionality which gives rise to numerical solution problems. In order to 
reduce the dimension of the dynamic model, a transformation from the nodal space to the 

. \ i 

163 
■ 

§ 
' 

■;' 



A 

modal space may be invoked. Considering the expressions given by equtations (U)-(13), one 
can describe tbe free vibrational motion, associated with equation (0), in the form 

(17) s,'e' + [tf+A7-e'V]e'-0 

where the flexible body deformations are confined to the plane of rotation. Solving the 
generalized eigenvalue problem associated with equation (17), the modal transformation can 
be established in the form 

<18) 

1 

where r is the modal matrix representing a selected finite set of mode shapes, and <*' is the 
corresponding set of modal coordinates. The truncated set of modal coordinates is selected to 
include all modes that are significant to the elastic response of the flexible component, [2], 

The equation of motion of the flexible body i can be written in the modal form as 

(19) 

where a' = { r', ,6' ,a' } is the generalized coordinate vector in the modal form, and the 
bar (—), refers to a transformed, modal form. The composite equation of motion for a 
multibody system can be assembled in the form 

Md+Kd+JT\~QE+Qa 
(20) 

where d= { rf1 ,rf2 ,....,rfw   } is the generalized coordinate vector of the whole system. 

4. NUMERICAL RESULTS AND CONCLUSIONS 

Numerical results are obtained for a rotating beam configuration defined in figure 3. The 
beam is 2 meter long with its midpoint fixed to a hub rotating at 2400 rpm. The beam is 
made of Aluminum alloy 2014 T6 with modulus of elasticity 73 Gpa. The cross-sectional area 
is 0.16x0.02m rectangular shape. The beam is modeled by 8 unite beam elements of equal 
lengths. Modal characteristics of the rotating beam are generated using the numerical scheme 
developed in [11], and compared with modal frequencies of the non-rotating beam. This 
comparison is presented in table 1, which shows the stiffening effect of the beam rotation. 

Base motion excitation is modeled by a modified sinusoidal pulse of duration D.04 times 
the time period of the fourth frequency of the beam. The pulse delivers a force of maximum 
peak amplitude 100 times the total weight of tbe beam system. The lateral deflection of the 
tip point ( node 1 ) of the beam is monitered at different beam excitations. A nondimensional 
parameter ♦ represents the deflection at node 1 divided by the length of the element. Figure 
4 displays the response of the tin point, «sing the first four ruinie» of the beam. This figure 
shows the effect of using the centrifugally stiffened mode shapes on tbe beam dynamic 
response. Figure 5 represents the effect of the nature of the primary impulsive force on the 
excitation of higher modes. It is noteworthy to mention that when the pulse is applied at 
6*190°, the primary generated impulsive force will be purely transversal and therefore the 
flexural deflection of the beam will approach its maximum amplitude. Figure 6 shows the 
same behavior /or the beam with centrifugally stiffened mode shapes when excited at two 
different orientations; 6«45* and 0=180°. As anticipated, a pulse applied at 8«90° will 
produce an axial impulsive force that has minimal contribution to the flexural deflection of 

the beam ( figure 7 ). 

The numerical results presented in this paper emphasize two important observations. 
The first is concerned with the significance of using the actual modes of a rotating beam to 
the evaluation of its dynamic response. The second conclusion is related to the nature of the 
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primary generated impulsive force.   As depicted from figures 6 and 7, the direction of the 
primary impulsive force is relevant to the type of modes that are significant to this excitation. 

REFERENCES 

1. A. SHABANA and R. WEHAGE 1983 J. Structural Mechanics, 11, 401-431. A Coordinate 
Reduction Technique for Dynamic Analysis of Spatial Structures with Large Angular Rotations. 

2. R. GRAIG 1981 Structural Dynamics. New York: John Wiley. 

3. W. SUNADA and S. DUBOWSKY 1983 J. Mechanisms, Transmission, and Automation in 
Design, 105, 42-51. On the Dynamic Analysis and Behavior of Industrial Robot Manipulator. 

4. W. J. BOOK 1984 J. Robotic Research, 3, 87-101. Recursive Lagrangian Dynamics of Flexible 
Manipulators. 

5. Y. KHULEF and A. SHABANA 1986 J. Sound and Vibrations, 104(2), 187-207. Impact 
Responses of Multibody Systems with Consistent and Lumped Masses. 

6. D. A. PETERS 1973 NASA N78-33289. An Approximate Solution for the Free Vibrations of 
Rotating Uniform Cantilever Beams. 

7. D. H. HODGES 1979 J. Helicopter Society, 24(5), 43-50. Vibration and Response of Nonuniform 
Rotating Beams with Discontinuities. 

8. S. V. HOA 1979 J. Sound and Vibrations, 67(3), 369-381. Vibration of a Rotating Beam with 
Tip Mass. 

9. A. WRIGHT, C. SMITH, R. THRESHER and J. WANG 1982 J. Applied Mechanics, ,<J, 197- 
202. Vibration Modes of Centrifugally Stiffened Beams. 

10. R. B. BHAT 1986 J. Sound and Vibrations, 105(2), 199-210. Transverse Vibrations of Rotating 
Uniform Beam with Tip Mass as Predicted by Using Beam Characteristic Orthogonal Polynomials 
in the Rayieigh-Ritz Method. 

11. Y. KHULIEF and L. YI 1988 J. Computers and Structures, to appear. Lead-Lag Vibrational 
Frequencies of a Rotating Beam with End Mass. 

12. J. S. PRZEMIENIECKI  1968 Theory of Matrix Structural Analysis. New York : McGraw-Hill. 

APPENDIX 

The inertia and stiffness coefficient matrices of the flexible body i can be established using the 
standard finite element sequential assembly procedure as applied to the following element matrices: 

m'J - jy N*T N*'' rft>" (A.l) 

S'> - JT. p« W> dv'' (A.2) 

I* - /?l/''Är>T I N" dv" ;        / - ÄfeT R< (A.3) 
T 

*•""*/.,   [ö^JV*]    E" G'i ff'dv« (A4) 
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where Äfe is the derivative of R' with respert to *, and C'is a differential operator relating «trains to 
displacement«, [12]. 

The stiffness matrix K1,' can be derived from the strain energy generated by the centrifugal force 
field. This portion of strain energy can be expressed as 

*-**-*    #[*« (A.5) 

where the axial stress a1,' is generated by the centrifugal force. One can express the centrifugal force 
associated with a differential element located at point p'' of the finite element j, as 

FJ/-JvPiiAi>ei2t<>dx<>' 
(A.6) 

where the integration in equation (A.6) is carried out over the span between point p1' and the 
free end of the beam.  A'1 is the cross sectional area of element j. 

Table 1. Beading Frequencies of » Beam Fixed at its Midpoint 

Fig 3 Base Excitation of a Rotating Beam 
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1.       INTRODUCTION 

This paper is concerned with a theoretical and numerical investigation of the 
propagation of stress waves induced by surface impact on a laminated plate of finite 
depth and infinite lateral extent.    Attention is focussed on the problem of an impulsive 
line load acting on the upper surface of the plate and generating plane wave disturbances 
travelling in the laminate along the direction normal to the line load.    The plate is 
constructed of an arrangement of layers (or plies) of fibre-reinforced material in • which 
the reinforcement of each layer is a family of paral'el fibres lying in the plane of the 
layer.    The plies are assembled in a periodically repeating configuration of N unit cells, 
the configuration being defined in terms of the angles between the fibre direction in each 
ply and some specified reference direction.    For the present we have concerned ourselves 
with a simple 0/90 configuration.    Here the unit cell consists of two inner layers, each 
of thickness h, with the fibres running along the. reference direction, and bounded above 
and below by a layer of thickness h of the same material with fibre direction orthogonal 
to the reference direction.    This choice of unit cell is made purely for simplicity and the 
techniques that we use are applicable to any configuration of the unit cell. 

We model the fibre reinforced material as a homogeneous continuum of 
transversely isotropic elastic material with the axis of transverse isotropy along the fibre 
direction.    This means that we look at waves whose wavelengths are an order of 
magnitude greater than the fibre diameter and inter-fibre spacing so that on the scale of 
the wavelength the continuum theory might be expected to be valid.    Typical of the 
materials we have in mind is the ICI product PEEK, formed of carbon fibres embedded 
in a thermoplastic resin, for which typical dimensions are h = 125 ftm with the fibre 
diameter and inter-fibre spacing of the order of 6 /un.    Thus we are thinking in terms 
of wavelengths of the order of 1/2 to 1/3 the ply thickness or greater for which the 
non-dimensional wave number kli - 2rhiA (where A is tne wavelength) varies from zero 
at infinite wavelength to a value of approximately 18 at A = h/3.    For smaller 
wavelengths, of the order of h/10 or less, the continuum model will break down due to 
diffraction and scattering by the individual fibres. 

There is a considerable simplification in the mathematics to be gained by treating 
the composite as inextensible in the direct. >n of transverse isotropy.    This is an 
idealization of the fact that the extensional modulus of the continuum along the fibre 
direction can be of the order of 100 times that in the cross fibre direction. 
Mathematically, the effect of the idealization is to reduce the order of the differential 
equations and this leads to solutions involving fewer parameters.    A consequence of this 
reduction in the order of the equations, however, is that it is no longer possible to 
satisfy all the interface continuity conditions between the plies.    This leads to a singular 
perturbation problem, in which it is necessary to allow the tangential component of 
traction along the fibre direction to   * discontinuous across the interface, with a 
consequent singularity in the stress component along the fibres, associated with a finite 
load carried by the suiface layer of fibres.    This singular perturbation problem has been 
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examined in detail for static problems by Everstine and Pipkin [1] and for dynamic 
problems by Green [2], Green and Milosavljevic' [3] and Baylis and Green [4],[5].    In 
particular, Baylis and Green [4],[5], dealing with a four ply laminate, derive an 
expression relating the singularity along the fibre direction to the discontinuity in shear 
stress.    They present detailed comparisons of the stresses in the inextensi1'« laminate 
with those in a strongly anisotropic but not inextensible material.    These comparisons 
show that the inextensible theory provides an acceptable approximation to the stress 
variation through the laminate except in the very long wavelength region and the 
dispersion curves for the two material models are also shown to be in good agreement, 
again with the exception of the very long wavelength limit.    As with singular 
perturbation problems generally, the shear stress discontinuities are to be interpreted in 
terms of very narrow bands (boundary layers) adjacent to the interfaces, through which 
there exist high stress gradients, giving large changes in stress across the bands.    The 
associated singular stresses along the boundary fibres are to be interpreted as high stress 
levels in the boundary layers, which contribute finite loads in the fibre directions when 
integrated through the boundary layers.    It is with these interpretations in mind, that we 
adopt the idealization of inextensibility to give a mathematically simple model of our 
fibre reinforced material. 

We make no assumptions about the variation of displacements and stresses through 
the laminate, such as is done in engineering theories of plates and shells.    Our method 
is to solve exactly the system of governing equations appropriate to each layer, matching 
the solutions across the interfaces and satisfying the appropriate boundary conditions at 
the upper and lower surfaces of the laminate.    This analytical solution is carried out in 
the paper by Green and Baylis [6] which appears in these proceedings.    The method of 
solution involves taking Laplace transforms in time and Fourier transforms in the in-plane 
spatial coordinates, of the governing equations of the model, and yields the exact solution 
for the variation of the transforms with depth throughout the laminate.    The approxi- 
mations arise only in the numerical methods for inverting the transforms.    The solutions 
for the displacements at the upper and lower surfaces are reproduced in Section 2.    In 
this Section we also present the transforms of the in-plane displacement and the stress 
components both at the bounding surfaces and in the interior of the laminate. 

The problem of inverting the transforms is considered in Section 3.    There we 
show that it is necessary to solve the dispersion equation (relating frequency to 
wavelength) for plane waves travelling in the plate under traction free boundary 
conditions at the upper and lower surfaces.    Inversion also requires that we evaluate the 
residue of the inversion integral along each branch of the dispersion equation and we 
must perform an integration along each branch and a summation over all branches to 
obtain the solution. 

The numerical solution of the dispersion equation and the subsequent numerical 
integration over the branches of tne dispersion curves is outlined in Section 4.    It is 
here that the approximations come into play, since the solutions are necessarily limited to 
a finite number of branches and the integrations over each branch must be limited to a 
finite range of values of the wave number, k.    We have chosen as an upper value 
k = 20, corresponding to wavelength of the order of 1/3 the ply thickness but 6 times 
the fibre diameter and inter-fibre spacing, which we estimate as being the limit at which 
the continuum model would be valid.    We show that restricting the integral to a finite 
range of values ce k gives rise to the phenomenon of "windowing" and we apply the 
technique due to Hamming [7] in an attempt to reduce this effect. 

Graphs which show the variation of displacements and stresses, at the upper and 
lower surfaces, as functions of position at various times are presented in Section 5. 

2.       TRANSFORM SOLUTIONS 

We choose a Cartesian coordinate system of axes with the x,-axis normal to the 
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plane of the layers, the x2-axis parallel to the fibre directions in the two outer byers of 
the unit cell ana the x3-axL parallel to the fibre directions in the two inner layers of 
the unit cell.    We designate the layers with the fibre direction parallel to x3 as 
material / and the layers witb fibre directions parallel to x2 as material 2 and denote 
stress and displacement components in the layers with the corresponding suffix.    The line 
load which produces the disturbance is assumed tc act on the upper surface of the plate, 
along a line making an angU (ir/2 ~ y] with the x3-axis giving rise to waves travelling 
in the plane at an angle -y witb the x3-axis.    The displacercent components 
uj(x,,Xj,Xj,t), (i=l,2,3), and stress components tij{x,,Xj,x3,t),  (i,j= 1,2,3) in each layer 
of the lamiaste then become functions Uj(x,,x.t) and tjj(x,,x,t) of x,,t and 
x = x; sin y + x3 cos 7, only.    The stress components are related to the displacement 
components through the stress-strain relations appropriate to each layer, and these 
relations are given in detail by Baylis and Green [4],    These involve the density p, and 
squared wave speeds c*v c|, c? derived froü: the elastic constants of the continuum 
(Green [2]), and employ the abbreviations c = cos 7 and s = sin 7.    The stress 
components and displacement components must satisfy the equations of motion in each 
layer, together with continuity conditions at the interfaces between layers, traction free 
conditions on the bottom surface of the plate and the specified loading conditions on the 
uppe- surface. 

In o'der \o solve the problem, it is convenient to work with the quantities 
U,V,W,'i'jj, which »rf. obtained from the displacement components u,,u2,u3 and the 
stress components t;; respectively by taking Laplace transforms with respect to time t and 
Fourier transforms with respect to the variable x.    Thus, U,V,W, and Tj; are functions 
of the coordinate x,  normal to the plane of the plate only, but they also involve the 
Laplace transform parameter S and the Fourier transform parameter k.    The equations of 
motion and stress-strain relations in each layer then reduce to a system of ordinary 
differential equations and algebraic relations to determine the transformed displacements 
and stresses within the layer as functions of x, and the interface continuity conditions 
become a system of algebraic equations relating the transformed quantities between one 
layer and the next.    The solution of these equations using the propagator method is 
given in detail by Green and Baylis [6].    Here we quote their results for the 
transformed normal displacement components at the surfaces and derive expressions for 
the other transformed quantities, both at the surface and in the interior of the laminate. 
For a line load P(t) acting normal to the surface of an n-cell laminate (overall depth 
4nh), the transfo..ned normal displacement OW at the lower surface and u(n) at the 
upper surface are given by 

lj(0) P(s) 
2(k,s) 

U(n) m»(.H?  P(s) ,(TI7 (i) 

where P(§) is the Laplace transform of P(t) and m12(k,S), m22(k,s) are known functions 
of the transform parameters k,s\ the number n, layer thickness h and elastic properties 
of tile composite material,     i he elements mre (r,s=l ,2) are expressed in terms of the 
components p;; and qj:  (i,j=l,..4) of the propagator matrices in materials 1 and 2 
respectively.    For a tangential line load Q(t) on the upper surface, acting in the 
direction parallel to the x2-axis, the corresponding displacement components are given by 

U(0) 
n,2(k,s) 

U(n) nf^iy Q(s) (2) 

Here Öis1) is the Laplace transform oi Q(t), and n,2 and n22 are related to m,2> m2. 
and the elements pjj(k,S) of the propagator matrix defined by Green and Baylis [6], by 
the equations 

3 2mi; 
Pi 2 

(3) 
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Equation (1) gives the transform of the normal component of displacement at the 
up'per surface due to the specified normal line load.    From the propagator solution it is 
possible to obtain expression; for the transform of the tangential displacement V^f) at 
the upper surface and the transformed components of stress.    These are given by 

,(n) P«3» 
(n) 

l^JL _Lu£<|) 
P.»« (P44 * 0) 

(n)l Af - pc»{[l   - %]  PCS)  +  iks   [l  - £*-]  V<">}   , 

P(n) oCjikcV, r(n) pCjikcU, (n) 
(4) 

» 2 re 
PC3 P(s)  + 2iksvJn)]   - u;n)fi(x,-2nh)} 

In equation (4) the component Tvn) relates to the limiting value        approaching the 
surface from within the material and ti:is stress component jump» discontinuously to zero 
on crossing the surface.    The Dirac deltt function term in the expression for T(n] gives 
the singularity in the reaction stress along the fibres iii the surface, which is required in 
order to balance the shear stress discontinuity.    (In the argument of the delta function, 
the origin of coordinates has been taken to be in the middle surface of the 2n ply 
laminate.)    Results appropriate to the lower surface of the laminate may be derived from 
equations (4) on replacing u(n) by u(^), v(n) by v(0) and suppressing all the terms 
involving ?(§). 

Jt is possible to derive the displacement and stress transforms at any value of x, 
throughout the laminate.    As an illustration of the application of these methods we 
calculate the transforms of both displacements and stresses at the interface between the 
top layer of material / and the remainder of the laminate.    Writing T = T,,/pc2, the 
propagator solution gives T,  and U,  at the interface as 

T,   - 

-[ -»1   -^ *  ■ Iff 

*) PCS)    , 

H«] p(§) 

(5) 

where Sjj (l,j=l ,2) are known functions of the parameter«     Then the interface continuity 
conditions give T2 = T,, U2 = U,, together with V,   = Vr = 0 and W,  = W2 = 0. 
The tangential components of traction in materal / at the interface are then given by 

rO) 

rCO 

-pc I  fP»iTi+Pnui1 CP,2 * o) 
(6> 

pc,ik'~ü. 

and the corresponding components in material 2 are 

T<*> - p^lksU, 
(7) 

r<0 fq.,T,-q4,U,l l], (q„  *  0)    . 

The discontinuities in these traction components across the interface are balanced by 

pC
2 fq^n-M^ 
'     l «1« 
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singularities at the interface along the fibre direction in each material and combining 
these with the results derived from the transformed stress strain relations gives the 
in-plane stress components in the two materials.    The results are 

n(0 

r<0 

PC;[I - p]r, 

,2   2 

1        * 1 

rCO r(') 
2     2 (l)        (2) 

^T,   -   [L^Io_]5(x*), 

P^TH"-]«^-  T (O ,(2) 

(8) 

pc2[l  - 

where the argument of the 6 function is x* = x-(2n-l)h, corresponding to the origin at 
the middle surface of the laminate.    Results similar to those detailed in equations (5) - 
(8) may be obtained at any other interface of the laminate whilst at any interior point 
in any layer it is also possible to determine the non-zero in-plane displacement (V,  or 
Wj),    In the next section we consider the problem of inverting these transforms to give 
the required solutions. 

3. TRANSFORM INVERSION 

The techniques de\ sloped in Section 2 yield the transforms of the displacements 
and stresses throughout the laminate as known functions of the transform parameters k 
and S at any value of xr In order to determine the displacements and stresses as 
functions of the coordinate x = x3 cos y + x2 sin y, normal to the line load and of 
the time t, it is necessary to invert these transforms. Typical of the quantities to be 
considered is the transform of the normal displacement at the upper surface due to a 
normal line load, which is given by equation (1) in the form 

U(n)  . "»»(M?   p(S)   . 
m,2(k,s) 

Letting u,(2nh,x,t) denote the normal displacement on the upper surface x,   = 2nh, 
due to a line load which consists of a unit delta function in time P(t) =  5(t),  for which 
P(§) = 1,  the displacement u^(x,t) corresponding to the transform (1) associated with any 
P(t) is then given as the convolution of P(t) with u,(2nh,x,t) in the form 

P fc 

u,(x,t)  -   I     u,(2nh,x,r)P(t-r)  dr. (9) 

Accordingly we restrict attention to inverting the transform (1) with P(s) = 1, for which 
the formal solution is 

u,(2nh,x,t) 
(■w    r-y+ i oo 

•* -An    •" *./_ i r 

lii (k,s) 
4ir2i    J-co J

7-ico m, 2(k,s) 
(10) 

The integral with respect to s may be evaluated in terms of the residues of the 
integrand at the zeros of the function m,2(k,s) in the left half plane.    The equation 

,(k,iu)  - 0 (11) 

is the dispersion equation for plane wave propagation in *he laminate, corresponding to 
. -<ves travelling in the direction of the normal to the line load under traction free 
conditions at thj two surfaces of the plate.    This equation has an infinite number of 
pairs of roots, u-, = ±ü);(k)    (j=l,2,...), each pair corresponding to forward and backward 
travelling waves associated with one branch of the dispersion curve.    In terms of these 
solutions, equation (10) becomes 
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u,(2nh,x,t)  - L  f    dk    I    f?"0^  ei(kx-ist| (12) 2* J_„        ^  ldm,2/ds ig_ ±iü)j(k) 

Both m12(k,§) and m22(k,§) are even functions of s and equation (12) may be written as 

u, (2nh,x,t)  - -    V     j       Rj(k)  sin o)!(k)t  eikx dk (13) 

where 

1 2' s   -   +10) j 

Ldm,2/ds 

(k) 
(14) 

rm2?(k,s)-j 
ldm, ,/ds  J„ .      ... s - -iwj(k)   . 

It may also be »hown that R;(k) is an even function of k and equation (13) may be 
further simplified to give 

u,(2nh,x,t) -    J     {    Rj(k)  sin ü)j(k)t  cos kx dk (15) 
■ff       .    ,    J n     J J ' ' 

j-i '0 

Equation (4) contains an expression for v(n) which is valid provided p44 # 0 and 
which therefore has the same singularities as U(n) for the case 7(§) = 1.    It may be 
shown that p43/p44 is an odd function of k and we may therefore express the tangential 
displacement v,(2nh,x,t) associated with a unit delta function normal line load as 

v, (2nh,x,t) - - -    2    [    hj(k)Rj(k)sin o)j(k)t  sin kx dk  , (16) 

where hj(k) is the value of the ratio p43/p4„ evaluated at S = io);(k). 
The formulae for the transforms of the stress components in equation (4) involve terms 
of the form LklK") and ikv(n) and these when inverted give du, (2nh,x,t)/dx and 
dv)(2nh,x,t)/dx respectively. 

Equations (5) give the transformed normal displacement and normal component of 
traction at the interface between the top surface layer of material / and the rest of the 
laminate.    These have the same singularities as the expression (1) and their inverses yield 

u,[(2n-l)h,x,tJ  = -L    £    J    3,,(k)Rj(k)   sin «j(k)t  cos kx dk, 

(17) 
00 

t,, [(2n-l)h,x,t]  -  - -    I    |    s12(k)Rj(k)  sin 'jj(k)t   sin kx dk, 
T  j-1     ° 

where we have used the fact that s,, (k) is an even function of k and s, 2(k) an odd 
function of k.    Equations (6), (7) and (8) then yield the remaining stress components on 
the two sides of tue interface in a similar fashion, the resulting integrals being of the 
forms given in equations (17) but with different factors multiplying Rj(k). 

All the results derived in this section relate to the problem of ths normal line load 
acting on the upper surface of the laminate. Results for the effect of the tangential line 
load may be obtained in a completely analogous way by starting with the solutions given 
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in equations (2) rather than using the solutions (1).    Referring to equations (3), it may 
be seen that the zeros of the element n, 2, which determine the singularities of the 
transforms, occur at the zeros of m,2 and possibly at the zeros of p22.    A detailed 
examination of the product p22m12 shows, however, that this does not vanish at the 
zeros of p22 and therefore the singularities of these transforms occur on the same 
dispersion ci *v     as for the normal line load problem.    Thus all the inversion integrals 
associate/ ■:':        e tangential line load problem involve the residues Rj(k) multiplied by 
some ah;-._y..ate factor.    Hence for both the normal and tangential hne loads the 
problem of inverting the transforms reduces to evaluating an infinite sum of infinite 
integrals of the form 

CD 

l%   JofJ<k)RJ(k)   »»»'«jW*   {coskx}dk (18) 

where fj(k) is some factor arising from a function of k and S which is evaluated on the 
branch s = iuj(k) of the dispersion curve. 

The expression (18) consists of a sum of integrals, one along each branch of the 
dispersion curve.    In general both the integration and summation have to be carried out 
numerically and we must therefore limit the range of integration to some finite interval 
(0,k) and restrict the summation to a finite number of branches j=l,...,P of the 
dispersion curve.    We then have to construct a computer programme to solve the 
d'spersion equation 

V 0 (19) 

numerically in order to obtain^ values of u;(k) along each of the P branches for values of 
k taken at M intervals 4k = ic/M from k=& to k=k.    It is also necessary to evaluate the 
residues R;(k) at each of these values of k for each of the branches j=l,2,...P. 

4.       NUMERICAL METHODS 

To carry out the numerical evaluation we choose the values for the material 
parameters that were previously employed by Green & Baylis [4] and which are derived 
from measurements carried out by Markham 18] on a carbon fibre/epoxy resin 
composite.    For the inexttnsible model, these become c2/c2 = 4.297 and 
c^/c2

2 = 2.301.    We must also specify the number N, of unit cells forming the laminate 
and the results reported here relate to the simplest case of N=l  although the computer 
programmes have been written to cope with the general case of any specified number N 
of unit cells.    In order to obtain the dispersion equation (19) and the expression for the 
residues giv«.n in eauation (14), we havp mnrlp n«> n( the algebraic manipulation 
programme REDUCE.    The outputs from the REDUCE programme consist of a 
subroutine to evaluate m,2(k,§) and a subroutine for R(tc,§) = m22/(dm, 2/ds) from  which 
to calculate the residues R;(k) and these subroutines are incorporated into the computer 
programme which solves the dispersion equation. 

The computer programme to produce the solutions w;(k) to the dispersion equation 
m, 2(k,Sj(k)) - 0, where §j(k) = iwj(k), is based on the notion of fixing k, and then, 
starting from u = 0, marching up the w-axis evaluating m, 2 at each step until the 
required number of zeros of m,2 have been determined.    A zero is indicated by a 
change of sign of m,2 at two consecutive values of o>, and by reducing the step length, 
this zero can be determined to any given degree of accuracy. 

Clearly, this method is open to error in that two changes of sign which occur 
within the same step length will be missed and a change of sign indicates the presence 
of an odd number of zeros, not necessarily just one.    These two possibilities did in fact 
give rise O problems since adjacent harmonics do, on occasion, run very closely 

177 



together.    In theory, the answer is simple - the step length has to be chosen sufficiently 
small!   However, since a substantial number of harmonics are required, covering a very 
large set of values of k, the programme would then become excessively expensive in 
computer time. 

A refinement introduced to save running time is to estimate a value of Uj(fc) and 
then proceed to a fine search for a zero in its locality.    The programme is initialized by 
using the value for ü>;(0), derived by solving the dispersion equation at k * 0 
analytically.    It is then possible to use the history of the j* harmonic to estimate the 
location of the j* root under inspection.    For each new value kj+j of k the root 
corresponding to the fundamental mode, } ~ 1, is the first to be located and this is 
estimated by « = u,(kj) - t, where e = 54k, and ik is the step length in k.    This 
allows for the possibility of the dispersion curve having a negative gradient.    The step 
length h,(kj+j) in w is then taken as the minimum of 0.1 f and 0.1{ci)2(kj) - ü),(kj)}. 
Thus, if the previous history indicates that the fundamental mode and first harmonic are 
very close at kj, the step length at kj+j is chosen as a tenth of the gap at kj. 
Otherwise, experience indicates that an increment of f/10 is sufficiently small. 

For each of the remaining roots, u;(kj+i) for j  > 1, the first estimate is based 
not only on the history of that particular harmonic, but also on the roots already located 
at kj+j and is given by 

w - max{ü'j(ki)  - e,      ü>j_i(ki+1) + 0.1 hj.1(ki+1)}. (20) 

That is, if the root of w(kj) is sufficiently far above the previous root at k;+j, 
ü)j_l(kj+]), a substantial amount of computer time can be saved by stepping the first 
estimate of oJj(k;+i) over this gap.    The step length for locating this root is determined 
by 

hj(kI+1)  - min (e/10   ,     gj±l<kß^ilkl>      ,     "j <ki >ffl-l <ki >   ], (21) 

This allows for the possibility of the j* harmonic at kj being very close to either the 
0+1)* harmonic or the (j-l)01 harmonic. 

Once the step length h: and a first estimate ci> for ti)j(k;+n have been established 
# the procedure for locating the root u>j(kj+j) is as follows:    given kj+j and u, m12 can 

be evaluated,    u is then increased by the step length h: and m12 recalculated with this 
new value of co.    We continue to increase « by the step length until a change of sign 
of m,j is observed.    The step length is then reduced by a factor of 10, and the process 
is repeated using the last value of u) before the change of sign occurred as a new 
estimate of the root.    Once a change of sign has been re-established, the step length is 
reduced by 2 further factor of UM and Che complete procedure repeated, with termination 
occurring when w;(k) has been determined to the givei  degree of accuracy. 

i 

Having obtained the solutions of the dispersion equation and the associated residues, 
we are now in a position to perform the numerical integrations and summation involved 
in inverting the transforms through expressions of the form (18).    To do this, we restrict 
the range of summation from j = 1 to P and the interval of integration from k = 0 to 
k and rewrite the expression (18) in the approximate form 

j,  Jo fJ<k)RJ<k>  sin <"J<k)t  HZ 13 dk " C »»•«)  Gin kx) dk  ■     (22) 

where 

P 
H(k,t) -    I    fj(k)Rj(k)  sin ü)j(k)t. (23) 
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Of the two approximations involved in equation (22), the effect of restricting the 
summation to a finite number of roots (P) cannot be evaluated without some estimate of 
the contributions arising from the residues of the excluded branches and in general such 
an estimate is not available.    The effect of restricting the integral to a finite range is to 
produce a function F(x,t) which is defined in terms of the actual signal F(x,t) by 

A,       - f°°    *.,       -   sin k(x-y)   . ,„,. F(x,t)  -     J       F(y,t)  —J~h d.y, (24) 

The function F(t) defined in equation (24) is the convolution of the true signal F(x,t) 
with the function (sin kx)/x and exhibits the phenomenon of "windowing".    This 
phenomenon produces a spurious oscillation of wavelength 2x/k and in order to reduce 
the effect of the osculation we have made use of the Hamming window function s(k) 
defined by 

s(k)  - u +  (1-or)   cos   [i£ j   , (25) 

where a is some parameter satisfying O  <  a < 1.    The procedure is to replace the 
integrand over the finite range (0,k) by the product of the integrand with s(k) to give a 
new approximation F^(x,t) given by 

FH(x,t)   - Q F(x,t)  + i^2l  {>(*- £,t)  + F(x + £,t)}   . (26) 

The convolution terms in the braces are each half a waveiength out of phase with the 
convolution F(x,t) and this serves to dampen out the oscillation.    In evaluating our 
numerical results we have used the value a = 0.54 recommended by Hamming  [7].    Note 
that both F(x,t) and Fpj(x.t) tend to the true signal as k -> <».    There is one further 
approximation required in order to perform the integration and this consists of replacing 
the integral by a finite sum of terms.    This has been done using the trapezium rule, 
with interval length k/M and it can be shown that, this procedure is equivalent to 
replacing the convolution integral F(x,t) defined by equation (24) by the cc.ivolution 
F(x,t) defined by 

P 
Q       oo si" k(x-y)cos j-  (x-y) 

FCx,t)-K|       F(y,t)   ,  dy   . (27) 
sin £-  (x-y) 

The calculated result is then the Hamming function of this convolution and is given by 

F„(x,t)  - aF(x,t)  + ii^Hi (F(.C - l,t)  + F(x + l,t)   . (28) 

The convolution F(x,t) tends to F(x,t) in the limit as M increases to infinity, but for 
finite values of M the. function defined by equation (27) is pcriorUc in x with wavelength 
4irM/k and the numerical integration procedure is therefore limited to values of x 
satisfying 0 < x  <  4rM/k. 

In performing the numerical integration we havs chosen as unit of length the half 
thickness h of each ply and as unit of time the quantity h/c,.    For a given value of y, 
the dispersion equation lm been solved for eighteen modes (P=18) with values of kh 
ranging from zero to 20 (k=20/h) in steps of 0.002, corresponding to M = 10,000.    This 
gives rise to 180,000 values of w;(k) and an equal number of values of the residues R;(k) 
which form the data matrix for the numerical inversions.    The procedure for this is to 
specify a value of t and to form the sums H(k,t) appropriate to the particular 
displacement or stress being evaluated.    Each sum H(k,t) is multiplied by the 
corresponding value of the Hamming factor s(k) and the product Ls stored     Using the 
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trapezium rule, the integral is then evaluted for a range of values of x from x = 0 to 
x = c,t in steps of &a. = 2»/k. 

RESULTS 

In this section we present a set of curves showing the variation of displacements 
and stresses at the outer surfaces of the plate as functions of the propagation distance x 
at various times.    These results are derived by numerical integration along the dispersion 
curves and are presented here for propagation at the angle 7 = 60° only.    Calculation 
of each of these latter sets of results involves the use of 360,000 stored values for each 
angle of propagation y and results for other angles of propagation will appear elsewhere. 

The plots display the variation of displacements and stresses as functions of 
distance from the impact point at different values of the reduced time T = c,t/h. 
Figures la and lb show the normal displacement u, at the upper and lower surfaces 
respectively. 
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Figure  la Figure lb 

Each shews the variation with distance at limes I  = 10, 20, 30, 40, 50.    Figures 2a and 
2b show the upper and lower normal surface displacements at considerably larger times, 
namely T = 100, 200 and 50C.    The graphs indicate that the normal displacements on 
the upper and lower surfaces are nearly the same, which implies that the disturbance is 
mainly flexural.    This is not surprising since we are considering an impact on the upper 
surface, which induces a mainly bending deformation of the plate. 

The first arrivals shown in the figures occur at a disturbance of approximately 
fT.    This corresponds to a wave speed of -|c,  and is identical with the speed of shear 
waves in the outer material.    This result is consistent with the ghost velocity 
phenomenon discussed in [6].    Figures 3-6 inclusive, display the normal displacement 
u,, tangential displacement u2, the discontinuous shear traction t13 along the fibre 
direction and the in-plane shear stress component t23 respectively, all at time T = 40. 
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Each figure presents results at both the upper and lower surfaces, derived from using the 
transforms given in equation (4) at the upper surface and their equivalents at the lower 
surface.    It may be seen from equations (4) that the in-plane stress components X22 and 
13 3 have terms in the transforms which involve kV(n) and these terms may be evaluated 
directly from the stress term t23 by an appropriate scaling.    The normal displacements, 
shown in Figure 3 are obtained by inverting the transform given by equation (1) using 
the 
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Figure  3 

Hamming window.    The results show little trace of a spurious oscillation and the 
windowing appears to be successful.    The diseonrmnaiK tangential ctrcs; t, .  show« in 
higure 5 is in effect derived from this displacement by differentiation with respect to x. 
This serves to roughen the numerical results and there is now some indication of a 
superimposed oscillation.    The tangential displacement u2 is obtained by inverting the 
first expression in equation (4) which involves multiplying the normal displacement 
transform by the factor p43/p44.    The results shown in Figure 4 exhibit a considerable 
windowing effect, despite the use of the Hamming technique and this is further 
accentuated in Figure 6 since the in-plane tangential stress is essentially the x derivative 
of the tangential displacement. 

On comparison of the results obtained on the upper surface with the corresponding 
results on the lower surface, we find that the disturbance on the upper surface travels 
approximately two units further than on the lower surface.    This is a consequence of the 
fact that the effect of the impact has to travel through the plate thickness before it can 
affect the lower surface. 
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1.       INTRODUCTION 

The transmission of impact stress waves in plates and laminates is controlled by the 
dispersion curves for the propagation of plane harmonic waves subject to traction free 
conditions on the faces.    There exists an infinite number of these dispersion curves, 
which '•elate phase velocity to wavelength, corresponding to the harmonics of the 
dispersion equation.    Each of these harmonics will in general contribute to the transient 
motion but for a single olate the bulk of the disturbance is normally associated with the 
fundamental mode and the first two or three harmonics, see e.g.  Jones [1].    This 
corresponds to a speed of propagation of the front which is considerably less than the 
speed of longitudinal waves in an infinite medium whereas it is known that the first 
arrivals travel with this speed.    In order to obtain this result it is necessary to take into 
account the behaviour of the higher harmonics.    The dispersion curves for high 
harmonics in a single plate of isotropic elastic material exhibit a series of plateaux and 
step regions (see Redwood [2]) with the phase velocity along the plateaux being slightly 
above the velocity of longitudinal waves but slowly decreasing with wavelength.    This 
corresponds to a group velocity slighly below that of longitudinal waves.    The cumulative 
effect of a large number of high harmonics can therefore produce an extended range of 
values of wavelengths travelling with this group velocity and it is these which give rise to 
the precun0,   signal. 

In this paper we are concerned with the transmission of impact stress waves in a 
fibre-reinforced laminated plate.    The plate is made up of 4n plies, each of depth h, 
with the reinforcement in each ply consisting of a family of parallel fibres lying in the 

pairs being orthogonal to etch other, forming a symmetric lay up of n unit cells, each 
having a (0Ü/90°/900/0°) configuration.    We assume each ply to be of the same material 
and model the mechanical behaviour as 'hat of a homogeneous transversely elastic 
continuum which is inextensible in the direction of transverse isotropy.    This direction is 
taken to coincide with the fibre dir action in each ply and the idealization of 
inextensibiiity is a mathematical convenience which is intended to reflect the property 
that the extensional modulus of the composite along the fibre direction can be up to 100 
or more times that in the cross-fibre direction.    A discussion of the implications and 
possible range of validity of both the continuum assumption ?.nd the idealization of 
inextensibiiity is contained in the paper by Baylis and Green [3] which is included in 
these proceedings. 

We consider in particular a line load impact acting on the upper surface of the 
plate in such a way as to generate a plane wave disturbance travelling in the laminate 
with wave fronts parallel to the line load and orthogonal to the plane of the plies.    In 
Section 2 we intioduce a double transform of the displacement and stress components in 
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each of the plies and show that the equations of motion and stress-strain relations then 
yield a system of ordinary differential equations for the variation of these transformed 
quantities with depth in the laminate.    These equations are solved in each layer using 
the propagator matrix method of Gilbert and Backus [4] and the solutions in adjacent 
plies are related to each other through the boundary conditions.    This allows the 
transformed quantities at any point in the plate to be completely determined in terms of 
the transform of the impact load on the upper surface. 

The procedure for inverting the transforms is outlined in Section 3 where it is 
shown that this entails solving the dispersion equation (relating frequency to wavenumber), 
associated with the propagation of plane harmonic waves in the laminate under traction 
free conditions at the surfaces.    The complete inversion involves evaluating an infinite 
integral along each branch of this dispersion curve and summing the result over all the 
branches, which are infinite in number.    In practice both the rar.jje of integration and 
the number of modes are finite and a discussion of the effects of the former is 
contained in paper [3],    Here we are concerned with the effect of the number of 
harmonics over which summation takes place and in particular with the contributions of 
the high harmonics to the disturbance.    With this in mind, we include in Section 3 the 
results of the stationary phase approximation to the inversion integrals.    These bring out 
the significance of the group velocity and its turning points in determining the 
disturbance at large times. 

Finally, Section 4 contains plots of the dispersion curves and their associated group 
velocity curves, for propagation at an angle of 60° to the fibre direction in the outer 
material of a laminate consisting of a single unit cell.    The higher harmonic dispersion 
curves exhibit plateau and step regions, similar to those of an bctropic plate, 
corresponding to relatively flat maxima of the group velocity curves.    We also show plots 
of the upper surface displacements as functions of position at a given time, calculated 
using the first two modes, the first ten modes and the first eighteen modes of the 
dispersion curves.    These bring out the contributions of the higher harmonics to the early 
arrivals and display the phenomenon of channelling of the disturbance within the core in 
the short wavelength/high frequency limit. 

2.       GOVERNING EQUATIONS AND PROPAGATOR SOLUTIONS 

We consider a laminated plate composed of layers of the idealized fibre reinforced 
material which is inextensible in the fibre direction, the fibres being in the plane of the 
layers and with the fibre directions in adjacent layers being orthogonal to each other. 
We choose a Cartesian Coordinate system of axes with origin in the middle surface of 
one of the layers and with Ox3 parallel to the fibre direction in that layer.    Letting 
Ox2 be parallel to the fibre direction in the adjacent layers then the normal to the 
laminate coincides with the T -avi«     w» ;ha!! be concerned v/ith plans TäVCS generated 
by a line load acting on the upper surface of the laminate along a line making an angle 
(x/2—y) with the x3~axis.    The resulting disturbance will generate a displacement vector 
u(x, ,x2,x3,t) of the form 

y(x,,x,,x3,t)  - u(x,,x,t)   , (1) 

where 

x - x3 cos y + x2  sin y     , (2) 

which corresponds to a plane wave whose normal lies in the x2x3 plane at an angle —y 
to the x3-axis.    The components tjj(x,,x2,x3,t) of stress in each layer of the laminate 
will likewise reduce to functions tjj(x, ,x,t) and these are given in terms of the strain 
components via the constitutive equations appropriate to each layer (see for example 
Baylis & Green [5]).    Before proceeding further it is convenient to take the Laplace 
Transform in time and Fourier Transform with respect to the space variable x of both 
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the displacement components UJ(X,,x,t) and the, stress components tj;(x,,x,t).    Thus we 
define displacement transforms U,V,W by 

00 ,00 

C(x,,k,s)  - l_w }    u,(x,,x,t) 

V( x,,k,s)  -  ]       \    u2(x,,x,t)e"Ste"ikx dt  dx  , 
* -00    * 0 

(3) 

,00 ,,00 

W(x,,k,s)  -  f      I     u3(x,,x,t)e-Ste-lkx dt  dx, 

and stress transforms Tj:(x,,k,S) by 

Tij(x,,k,s)  -  f°    I     t( |(x,,x,t)e-Ste-ikx jt  dx 
J •* -co   ' 0 

(4) 

In a general elastic material the transforms of the constitutive equations and the 
stress equations of motion then yield a system of six first order ordinary differential 
equations for U,V,W,T, ,,T, j,T, 3, as functions of x,, together with three equations to 
determine the remaining stress transforms T22,T23,T3, in terms of these six quantities. 
For the idealized inextensible material, however, the displacement transform in the fibre 
direction is identically zero and the reaction stress associated with the inextensibility 
constraint is not determined by the constitutive equations but is obtained from one of the 
stress equations of motion.    Thus the equations reduce to four first order ordinary 
differential equations together with relations to determine the remaining stress 
transforms.    Using the subscript 1  to denote the layers for which the fibre direction is 
parallel to the x3-axis, the appropriate equations may be derived from those given in 
Baylis & Green [5].    The differential equations then have the form 

dU 
dx f-f*T,   -   [l   -l^jiksV, 

dV, 
dx. 

dT, 
dx, 

iks  U, 

(t^lsl u, . iks S| 

(5) 

£ÜL -   r^v 2^ 2 Ti   .  c2l   ,   kVcjl + s2i 
ÜX, C2J -J'l 

where  T, 
pel s, --^-4   , 1       pc2 cos 7    and    s - sin y 

The inextensibility constraint becomes 

W,  - 0  , 

and the stress transforms are given by 

(6) 
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» 
T„ - p(c,-2c2

2)  £j T,  +  lk*P4cj[l  - £j]v,   , 
' i 

T23  - pc*ikc  V,   , T31   - pcMko U,      , 
(7) 

-P "tr1  (T,  + 21ks V,)   . 

In equations (5) and (7),  p is the density of the continuum and cj,c|,c| are squared 
wave speeds derived from the elastic constants of the continuum (Green [6]). 

The solution of the differential equations (4) may be written in terms of the 
propagator matrix P(x,-x,) in the form 

Y(x,)  - P(x,-S,)Y(R,)   , 

where x, is some fixed value of x, within the layer and x, is any other value in the 
same layer, Y(x,) is the vector (T,(x,), S,(x,), U,(x,), V,(x,))' where T denotes t 
transpose, and the components of the 4 x 4 matrix P are given in Table 1. 

osS. p,S,        StoVs, 

(8) 

the 

E(h) = 

aC +(l-o)C2 

P,S,       CBSJ 
(1-a) -j- + ——   (l-a)ci +aC2 

2aVs. 
■*»«,-<:.>   2(l-a)plSl -j—^ 

2      U2    "pj 
(1-a) 

j^-CCj-Cj) aCt+a-a)C2   -(1-a (1    ^'S-   MS» 
s        p2 

lial (c -c i     u-oo s' -PjS* 
P, 3 

(l-a)Cj +tjc2 

TABLE 1   Elements of the propagator matrix P(h). 

Th; tcrss appearing in the matrix <tre defined by s = siny, c = cosy 

S, = sinh pskh,  C, = ooah Pjkh,  S2 = sinh p2kh,  C2 = cosh p2 

P! 

(clsJ+cJc'-v») (c*S*+C*C*-VJ) 

^ 'I  
..1-       3 

»»      ' 

kh. 

a = 1 — 
»„» 2c*s 

(vJ-c*c2) 

Using subscript 2 to denote the transformed quantities within a layer of material 
with the fibre direction parallel to the x2-axis, the constraint condition gives 

V, - 0 
(9) 

and the equations equivalent to (5) involve U2, W2, T2 and R? where R2 = T13/pc|. 
Letting Z(x,) denote the vector (T2,R2,U2,W2)T the solution of these equations is give: 
by 
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Z(x,) - Q(x,-a,)Z(x,) 

where S, is some fixed value of x, within the layer and x, is any other value in the 
same layer. The components of the 4 x 4 propagator matrix Q may be derived from 
those of P by the substitutions given in Table 2. 

(10) 

TABLE 2 Transformation taking elements p..  into q... 

The terrs appearing in the table are defined by 

{c2c2+c2
s

2-vl) ,      (cfc2tc2s2-v2) *r- 
■j • <- 

02 
2 

a = 1-. 
2c ?c2 

(v2-c2s2)   ' 

S, = »inh q,kh,       C,  = eosh q,kh, Sj = sinh q2kh,       C, = cosh qskh. 

Equations (8) and (10) yield the solution of the governing equations in individual 
layers of material with fibres parallel   o the x3-axis and the x2-axis respectively.    In 
order to obtain the solution in a multi-layered laminate it is necessary to satisfy the 
appropriate conditions at the upper and lower surfaces as well as continuity conditions at 
the interfaces.    In general, the conditions at the interface between two dissimilar elastic 
materials which are bonded together requires continuity of all three displecement 
components and the three components of traction across the interface.    In terms of the 
transformed quantities these continuity conditions are 

v, W,   - W2.   T,   - T,, R, 

For the idealized inextensible material, however, it has been shown by Baylis and Green 
[5] that there exists the possibility of a discontinuity in the tangential component of 
stress parallel to the fibre direction across any surface in the material and in particular 
this allows a discontinuity in S2 in material 2 at any interface or free boundary in these 
materials.    Thus at an interface between materials / and 2 conditions (11) reduce to 

(11) 

(12) 

äppueü   tu 

ü,   - U2,     T,  - T,,     V,   - 0,     «!, - 0, 

the last two conditions being a consequence of the inextensibility const; 
the displacement continuity conditions. 

We take as our unit cell, a layer of thickness 2h of material / sandwiched between 
two layers each of thickness h of material 2 and we assume that this cell is embedded 
in a repeating pattern.    Imposing the interface constraint condition V,  = 0 at the upper 
and lower surface of material I allows us to express all the displacement and stress 
transforms inside that material in terms of the components of the vector X = (T U)' at 
some fixed surface x, ■ constant.    Since the unit cell is embedded in a repeating 
pattern we can regard each of the outer layers of the unit cell as one half of a layer of 
thickness 2h of material 2 sandwiched on each side by material /,    Then the constraint 
conditions W2 = 0 which must be satisfied at the interfaces again allows us to express 
the transforms within material 2 in terms of the vector X at some      ed value of x,  in 
material 2.    Combining these then leads to a relation between the value x(B) at the 
lower surface of the unit cell and the value xW at the upper surface in the form 

XA - D xW 
(13) 
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where the components dn (r,s= 1,2) of the 2 x 2 matrix D are expressed in terms of 
the components of the propagators P(h) and Q(h) for layers of depth h of materials 1 
and 2 respectively.    Applying equation (13) to a sequence of (n-1) unit cells then gives 

x(n-*> - P<n-D XÜ) 

aS. ■1  ,n-l n-2 

(X,-X2) 
(14) 

where we haw used the Cayley-Hamilton theorem to express Dn~l  in terms of D, I 
and the eigenvalues Xt,  X2 of P.    Equation (14) refers to a set of (n-1) unit cells 
assumed to be embedded in a repeating pattern so that the consttaint conditions arising 
from inextensibility is operative on every layer of thickness 2h of both material / and 
material 2.    In order to consider wave motion in a laminate of finite depth 4nh, it is 
necessary to encase the (n-1) unit cells in two half cells, each consisting of an inner 
layer of material 2 and an outer layer of material /.    Then each of the layers of 
material 2 is still constrained by the inextensibility condition imposed by the outer layer 
of material / and the expressions previously derived for the transmission through 
material 2 may again be employed in these layers.    Each of the outer layers (of 
thickness h) of material / at the top and bottom of the complete plate must be treated 
separately.    Each is subject to the constraint V,  = 0 at the interface with material 2 
and it will be assumed that the tangential component of traction S,  vanishes at the outer 
surface.    These two conditions allow the transforms within these layers to be expressed 
in terms of the vectors X, as before, though the expressions differ from those relevant to 
material / when it is embedded in a unit cell.    (Details of the relations are given in the 
paper by Green and Baylis [7].)    Applying these gives for the overall laminate 

X(n) - M X(°) (15) 

where Xw and x(n) denote the value of X at the bottom surface and the top surface 
respectively and M is the overall transmission matrix for the laminate. 

If the upper surface of the laminate is subjected to a time dependent normal line 
load of the form 

t,,(x2,x3,t) = P(t)  *(x3 cos 7 + x2 sin 7) = P(t)  «(x) 

where S(x) is the Dirac delta function, and the lower surface of the laminate is traction 
free, then 

X(n) 
' P(s) 

,      x<0) - 
0 

. 0(n)  J [ 0(0) 
(16) 

where P(S) is the Laplace transfo.tn c? P(t).    Substituting from (16) into (15) then gives 
the displacement transform U(") at the bottom surface in terms of the stress transform 
P(S) as 

B(0)  _      gW       , 
1 m12(k,s) (17) 

and the displacement transform u(n) at the upper surface is given by 

u,n) - i$&8 ?<s> • <i8> 
Equations (17) and (18) relate to the normal line load acting on the urper surface 
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of the plate.    We may examine the case of a tangential line load in a similar fashion. 
Because of the inextensibility constraint in the x3 -direction at the upper surface the 
component t,3 of the tangential stress in the x3-direction induces a singularity in the 
stress compo tent t33 at the surface but transmits no disturbance into the material.    It is 
only the tangential component t,, in the x 2-direction that produces a wave motion in 
the underlying laminate.    To obtain the solution to this problem we proceed as above 
save that the conditions imposed on each of the outer layers of material / are that 
V.  = 0 at the interface of the layer with material 2 and that T.  = 0 at the outer 
boundary.    Writing X^= (S U)1  we can then express XW at the upper surface of the 
laminate in terms of x(0) at the lower surface in the form 

X(")  - N X(0), (19) 

where the elements of the matrix N are known functions of the elements of P(h) and 
900. 

For a tangential line load with component t, 2 given by 

t,2(x2,x3.t) = O(t)  5(x3 cos y + x2 sin 7) = Q(t) i(x) 

acting on the upper surface of the plate and with the lower surface traction free, 
equation (19) gives 

u(0) Q(S) 
,<k.iy 

U(n)  _ n„(k,s)Q(s) 
1 n,2(k,s) 

(20) 

where Q(s) is the Lapiace transform of Q(t) and U(p), LKJO are the transforms of th. 
normal displacements on the lower and upper surfaces respectively.    The components n, 2 

and n22 of the matrix N may be expressed in terms of the components of M and the 
propagator P(h) in the form 

'3 2'"12 
Pi 2 

(21) 

Combining equations (20) linearly with (17) and (18) gives the solution for an arbitrary 
line load on the upper surface of the plate. 

3.       INVERSION OF TRANSFORMS 

The propagator method developed in Section 2 yields expressions for the 
transformed displacement and stress components at any position in the laminate and it is 
necessary to invert these transforms in order to recover the solutions.    As an example of 
the inversion procedure we consider the normal component of displacement u,(2nh,x,t) at 
the upper surface x,  = 2nl. as a function of x and t due to a line load P(t) = 6(t). 
The transform is then given by equation (18) with P* = 1 and the formal solution is 

u1(2nh,x,t) 
1 

•>_a> •I'v-Ico Hi, 2 

CM) 
,(M7 

,St eikx dg dk (22) 

The integral with respect to S may be evaluated in terms of the residues of the 
integrand at the zeros of the function m, 2(k,§) in the left half plane.    The equation 

m,j(k,iü>) - 0 

I 
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is the dispersion equation for plane wave propagation in the laminate, corresponding to 
waves travelling in the direction of the normal to the line load under traction free 
conditions at the two surfaces of the plate.    This equation has an infinite number of 
pairs of roots, at; = ±o)j(k)    (j=l,2,...), each pair corresponding to forward and backward 
travelling waves associated with one branch of the dispersion curve.    In terms of these 
solutions, equation (22) may be written in the form 

u,(2nh,x,t) 1 
27 I 

J-l 

J^KjCk)   [e'^jO- .«<k*-j«>]  dk (23) 

where Ri(k) is the residue of m22/m12 at s" = iwj(k).    The terms on the right hand side 
of equation (23) involve integration along each branch of the dispersion curve and a 
summation over all the branches.    A detailed account of the approximate numerical 
evaluation of this expression is contained in [3].    Here we give a brief derivation of the 
asymptotic solution at large times, using the method of stationary phase. 

Writing the integrals which appear in equation (23) in the form 

where 

froRj(k) .«^jOak.j" 

9j - (Wj(k)   - k x/t), 

Rj(k) •It» 
j dk 

the rapid oscillation produced by the exponential term for small changes in k (and 
therefore 8:) at large values of t produces cancellation of the integrands, except for 
those values of k for which d#;/dk is zero.    The major contribution to the integral then 
comes at those values k„ of k fo 
the equation 

kg of k tor which 0; is stationary and which are given by solving 

:J<kg> x/t (24) 

where Cj(k) ■ dai;/dk is the group velocity on the j* branch of the dispersion curves. 
For a specified value of t, equation (24) determines one or more values of k- at any 
given value of x and the contribution from the integral at that value of x ana t is then 
given approximately by 

2xi    -|* 

dk 
g 

?j<kg> 
,i(kgX-ü>j(kg)t) 

provided d2ü)j/dk| 0.    At the stationary points of the group "elocity, 
- U, this result breaks down and the approximation must be carried 

to "higher order, giving the result 
d'uj/dk' 

2* 

^ 
g 

§ 
Rj(kg) e1(k8x-wJ<kg>t>Ai(v), (25) 

where Ai(v) is the Airy function and 

v -  [x - Cj(kg)t ][2/tSf 
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Thus the stationary phase approximation at ordinary points of the group velocity curve 
shows that the long time solution decays as t~i whereas at maxima and minima of the 
group velocity the decay goes more slowly as t~' ^3.    These maxima and minima are the 
points corresponding to the wave fronts and it is these wave front solutions, given by 
equation (25), which dominate at large times.    A detailed discussion of these phenomena 
for a single plate of isotropic elastic material is given in the paper by Jones [1]. 

4.       RESULTS 

The results we present in this section are in the form of graphs and fall into 
three sets.    The first set consists of the dispersion curves, relating the scaled frequency 
uri/c2 to the non-dimensional wave number kh for values of the angle of propagation 7 
= 90° and 7 = 60°.    The dispersion curves together with their associated residues 
provide the fundamental information required to invert the transforms, but we have seen 
in Section 3 that the long time solution is governed by the group velocity curves and in 
particular that the wave fronts are related to the maxima and minima of the group 
velocity.    Our second set of results displays a selection of group velocity at 7 = 60°. 
Finally, we show the variation of the normal component of displacement at the upper 
surface as a function of x at time t = 40h/c,, calculated for 7 = 60°, using the 2 
fundamental modes, the first 10 modes and the first 18 modes of the dispersion curves. 

The laminate with which we are dealing consists of an arrangement of 4 plies 
which is symmetric about the middle surface.   It may be shown that, in consequence, 
the dispersion equation factorizes into two distinct equations, one associated with the 
symmetric (longitudinal) motion of the plate and the other with the antisymmetric 
(flexi'i-al) motion.    The dispersion curves for the fundamental modes of these two 
equations have been examined in detail by Baylis [8] and Baylis and Green [5], [9]. 
They show that the limiting velocity of short waves (large kh) propagating at angle 7 is 
eithtr the velocity of Rayleigh type surface waves at angle 7 in the outer material or of 
shear waves at angle 7 in the inner material according as to whether 7 is less than or 
greater than some critical vaiue 7C, which, for the parameters employed here, is 46.3°. 
The limiting short wavelength velocity of all the other harmonics is either the velocity of 
shear waves at angle 7 in the outer material or the velocity of shear waves at an angle 
7 in the inner material, according as to whether 7 is less than or greater than 45°. 
These are the speeds v1s = (c2c2+c2s2)i in the inner material (material /) and 
v2S = (c2s2+c?c2)i in the outer material (material 2) at which p2 = 0 and q2 = 0 
respectively.    We can also associate with each material a dilatational wave speed 
vld = (c2sJ+c2

3c
2)i and v2d = (c2c2+c2s2)£ at which p,  = 0 and q,  = 0, respectively. 

For values of 7 < 45° we have tnat vld < v2d but vls > v2s with the inequalities 
reversed for 7  > 45°. (Note that vld > vls and v2d > v2S for all 7.)    On any branch 
of a dispersion curve at points where the phase velocity v = oi/k is greater than the 
suprcmum (vld,v2d) all of p,, p2, q,. q2 are pure .maginary and the solutions 
correspond to progressive waves in all regions.    As the phase velocity drops below the 
supremum (v.J. v,d) either p, or q,  becomes real and the associated dilatational wave 
motion is evanescent.    Continued reduction in v makes both p, and q,  real, 
corresponding to evanescent dilatational disturbances in both materials and as v decreases 
further with increasing k the supremum (vvs, v2s) is reached making either p2 or q2 

real and the motion subequently involves a progressing shear wave in one material with 
all the other waves being evanescent. 

Figure 1 shows a total of 26 branches (13 each of the symmetric and 
antisymmetric modes) of the dispersion curves for propagation at the angle 7 ~ 90°.    All 
modes except the fundamental mode of the antisymmetric motion exhibit a cut-off 
frequency in the long wavelength limit kh -* 0.    A striking feature of Use graph is the 
existence of the two clear ghost lines brought about by the osculation of the branches. 
(These are particularly clear when the graph is viewed at almost grazing incidence). 
These ghost lines have slopes «fk = c, and u/k = c3, which correspond to v = v1d 
and v = vJd = vJS respectively at 7 = 90°.   As the dispersion curves approach the first 
ghost line from the left they exhibit the plateau and step phenomenon described by 
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Redwood [2],    Along the plateaux the curves are almost parallel to the ghost line, with 
the phase velocity and group velocity virtually constant at the value given by the slope 
of the ghnst line.    On the steps the phase velocity exhibits a small but sudden drop, 
with an associated drop in the group velocity, either ending up on the next plateau, if 
still to the left of the ghost line, or passing through and moving rapidly towards the 
second ghost line, where the phenomenon is repeated.    On crossing the second ghost line 
the dispersion curves are virtually parallel, with the slope oi/k = c2, as they tend to the 
limiting velocity v,s of shear waves in the inner material as kh -» <*>.    Figure 2 contains 
two sets of dispersion curves, set (a) corresponding to symmetric modes and set (b) to 
antisymmetric modes at angle 60°.    As in Figure 1, all the branches except the 
fundamental antisymmetric mode (curves (b)), exhibit a cut-off frequency in the long 
wavelength limit kh -> 0.    The curves again display the. ghost lines through not to such a 
marked extent as in Figure 1 since the number of curves is now either 9 or 10 in each 
'igure.    Despite this, it is still possible to identify three ghost lines in Figure 2 as 
opposed to f.wo in Figure 1 since at 7 
become equal. 

90 two of the 4 speeds vld , v 2d 

► 

Figure  3b 

Figures 3 shows graphs of the group velocity Cg) against kh.    These have teen 
obtained by numerical differentiation of the dispersion curves, using a central difference 
formula.    Figure 3a shows the first five harmonics of the symmetric modes at y = 60° 
and Figure 3b gives the first five harmonics of the antisymmetric mode for the same 
angle.    At this angle of propagation we have v1d = 3.06, v,H = 2.62, v„ = 2.20 and 

1 81 
»2d 

:ncs tile value or v1d wnicfi & uui. &uipuMng 
since it may be seen from Figure 2 that the first ghost line is associated with harmonics 
of order greater than five.    There is one of the five curves of Figure 3a which has a 
maximum at Cg = 2.4, this being the highest of the five harmonics which may be seen 
from 2a to have a plateau close to the second ghost line.    Both Figures 3a and 3b 
possess harmonics with maxima close to CK = 2.20, corresponding to the third ghost line 
associated with this angle of propagation.    We have remarked in Section 3 that the local 
maxima and minima of tne group velocity curves correspond to the wavefronts, which are 
expected to dominate the disturbance at large times.    The higher harmonics shown in 
Figure 3 exhibit long flat maxima at the ghost velocities, which do not appear in the 
fundamental modes.    It is pointed out by Jones [1] for an isotropic plate, that the 
residues associated with the higher harmonics are small compared with those arising from 
the lowest modes and our numerical results show this to be the case here also. 
Nevertheless, the total contribution arising from the succession of plateau regions 
associated with these high harmonics at the ghost velocities, will give rise to precursor 
waves which are not exhibited by the solution from the fundamental mode alone nor 
from approximate plate theories designed to reproduce the fundamental mode. 
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In order to examine the effects of the harmonics, we have evaluated the 
contributions to the inversion integral (23) arising from the fundamental modes of the 
dispersion curves of both the symmetric and antisymmetric motion at t = 40h/c,, as a 
function of x.    These are shown in Figure 4a where the curve intersecting x = 0 at a 
value below -2 corresponds to the antisymmetric (bending) disturbance.    The contribution 
to Ov component of normal displacement at the upper surface due to these two modes 
is obtained by subtracting the symmetric mode curve from the anti-symmetric.    It may 
be se«". that each curve corresponds to a disturbance which has propagated to x * 27h 
corresponding to a speed of propagation v « 2.19 in the units which we are employing. 
These curves may be contrasted with that in Figure 4b which gives the upper surface 
normal displacement calculated using the first 5 modes of both the symmetric and 
anti-symmetric dispersion equations.    Figure 4b shows the disturbance having travelled to 
x « 30h corresponding to v * 2.44, which is close to the maximum group velocity to be 
seen in Figure ?.    The curve shown in Figure 4c is calculated using 18 harmonics and 
shows a disturbance having travelled a disUnce of the order of x •> 36h, corresponding 
to v "» 2.93, which is close to the speed of longitudinal waves in the inner material.    A 
feature of this curve which is not to be seen in either of the others is the oscillation 
(particularly evident between x = 30h and x = 40h), which arises due to the "windowing" 
effect associated with rutting off the uuiuericai integration at k = 20.    It is evident from 
Figures 2a and 2b that each of the first five harmonics of the symmetric and 
antisymmetric motion have crossed the last ghost velocity curve before k = 20.    The 
motion corresponding to these branches is therefore confined to a shear disturbance in 
the core at the cut-off value k = 20, so that no "windowing" is evident.    For the 
higher harmonics, which are included in Figure 4c, this is not the case and these would 
make contributions to the upper surface displacement for values of k beyond the cut-off 
at k = 29, and hence give rise to the "windowing" effect. 
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RESPONSE OF LAMINATED PLATES TO NON-STATIONARY RANDOM  EXCITATION 

by 

Gabriel Cederbaum1, Liviu Librescu1 and Isaac ElishakoffJ 

1. ABSTRACT 
The response of composite laminated plates subjected to non-stationary random excitation is 

determined. First-order shear deformation theory is used for the analysis of symmetric cross-ply 
and antisymmetric angle-ply plates, considered in this study. The time-dependent component of the 
forcing function is taken as a product of a well-defined, slowly varying envelope function, and a 
noise function, assumed to be white or narrow-band excitation. 

2. INTRODUCTION 
Some very important and practical dynamic loads are being treated as non-stationary random 

processes. Among these are earthquake ground motion, wind gusts, the launch phase of missile 
flight and pyrotechnic firing. 

A recent concept for modelling the non-stationary process is Priestley's evolutionary spectra [1], 
in which it is defined in terms of a stationary process, whose intensity and frequency composition 
varying deterministically with time. However, the mathematical treatment becomes much easier by 
assuming uniform modulation of the frequency composition and a deterministic function for the 
time-dependent description of the intensity. Such a description was given by Shinozuka [2], and is 
more justified where the excitation is of a very short time interval. 

The response of single and multi-degree of freedom systems to non-stationary random excitation 
is treated in [3-6], and [7-12], respectively, and that of continuous structures in [13-14], The case 
of composite laminated plates under stationary random loads was studied in [15-17] and by the 
authors of this paper in [18-19]. To the best of our knowledge, the present treatment of the non- 
stationary counterpart of the above is the first of its kind. 

The mean-square transvetse displacement is obtained herein for symmetric cross-ply and 
antisymmetric angle-ply, simply-supported, rectangular plates, modelled within the first order shear 
deformation theory [20-21]. Tho deterministic function is taken in step, pulse or exponentially 
decaying terms. The stationary ,-andom process is either an ideal white noise or a correlated noise - 
narrow-band.  Some approximate solutions are also presented and discussed. 

3. GENERAL CASE 
Using the modal analysis technique, the equation of motion for the generalized coordinates, 

Tmn(t), in a decoupled form was obtained as [18-19] 

Tmn(0 + 2fmn«mnT(t) + J   TQ) - yi- Fmn(t) (1) Jmn 
where Jmn stands for the generalized mass (norm), and 

,a»b 

Fmn(t) ?(x,y.t)Wmn (x,y,)dydx = Pmn P(t) . (2) 
n Jo 

For homogeneous initial conditions, the solution for Tmn(t) is 
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TWO - rnjj- f hmn(t - ^W <3> 
Jmn^dmn Jo 

where 

<"dmn " «mn J> -fmn !  W' - «i> - e*P Kmn<Wt - »i>l «n Kim,,« " «i)l ■ W 

The solution function for the transverse displacement is then 

W(x,y,t) - V Wnafcy)      Pnm      f (expRmnüWt - tx)] sin [«-ft - yjPCyjdt,. (5) 
ti "«W™ JO mn 
m,n 

The non-stationary random excitation is presented as [2] 
P(t) - g(t)G(t) (6) 
where g(t) is a deterministic slowly-varying function, and G(t) is a stationary random process with 
zero mean and autocorrelation function R(t, - t,). 

The mean-square transverse displacement at any time instant, t, is then 

E[W,(x1,y1,t1;xry1,g] - V V WBm(x1.y1)Wpq(x1,y1) JmR?™ 
m^ U Wd^d^pq 

* J J {«Pt-fmn«mn(t " 'Äm(' " *Mh) 

x expt-fpqWpqCt - gjiinK,^ (t - ttMW R(t, - tJWJti a RW •        (7) 
Since the natural frequencies of the laminated plates were found to be well separated (see Table 

1), and in the case of light damping, only the autocorrelation terms need be taken into account, 
which enables us to write Eq. (7) in the form 

RW " 2_! W«m   s     t   7     i   I J J {eXpK*n<"mn(t ■ li)] Sin [Wdmn(t - Wi) 
m,n Jmnumn [' * ^mn j   ° ° 

* «Pt-?mnwmn(« - t,)3 s>" Himn(t - t,MgR(t, - t^dt^ m <ty(t). (8) 

4.    CROSS-PLY LAMINATES 
In the following examples we will consider a rectangular cross-ply laminate (0°,90,90°,0°), in 

which each layer is made of graphite-carbon (Material 1) with the following elastic constants [22]: 
Ex = 25.1 MSI E, - 4.8 MSI 
Gw - 1.2 MSI G23 - 0.47 MSI    |/„ - 0.31 
and the shear correction f?*ctor k is taken tn be 5/6. 

4.1    WHITE NOISE EXCITATION MODULATED BY A UNIT STEP FUNCTION 
For this case 

1 t>^0 
g(t)-U(t)- " ; R(t2 - y - R(r) - 2*V(r). (9) 

0 t<0 
Equation (8) is then written as 

V^     PmnWmn(xi-yi)     f* 
RW - 2*S0 ^   -     t 7 j (exp[-2«mnWnin(t - gism'^d^d - t2)])dt,, (10) 

m,n Jmnwmn[1 " *mnj 
and for the case where the plate is driven by a point load, applied at its centre (x = a/2; y - b/2), 
the mean-square transverse displacement at the driven point is 
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r RW - 2»S0 ]T -     ;   \— — I [«K-^^d - g] sin,[Wdmn(t - g]W . 
m,n Jmn^mnf1-«!!«]   ° J 

Integration leads to 

Rw" *S° Z_. Z_i    .2     - f 1      ]   J 
m,n Jmn2€mn[1 - '»mnpn 

{1 - exp[-2*mna,mnt] 

x(1+tonn.sin[2wdmnt] + 2      % 

i     > 
it) mn ran 

<"d mn 
umn' sin uiA     t)} amn " 

Jmn 

(1!) 

(12) 

and setting ema , £q. (12) becomes 

1 -t mn 

RW - »Sp / 
£.%. m,n Jmn";mn (' - 4n}-; 

{! - exp(-2cmnwmntXl + t.nnsin [2wd     t] 

+ 24nsin2[u;d     t])). 'mn"    ' «mn 
In our case £mn « 1 from which emn « 1 too, and Eq. (13) can be written as 

(13) 

RW = *S0 y L_ ) {i . exp[-2fmnu,dmnt]} (14) 

rn^ Jmn2emnwdmn 

which is correct within an ordei of «.  A comparison of these two results is shown in Figure 1. 

4.2    WHITE NOISE EXCITATION MODULATED BY A RECTANGULAR STEP FUNCTION 
For a rectangular step function of duration t0 

g(t) - U(t) - U(t - y . (15) 
Equation (15) enables us to describe the response of the system as a superposition of two step loads 

g(t) 
1 g/t) 
0 t0 t 
-i s»(t) 

For t < t0, the mean-square response is as in 4.1.  For t > t0 the response is written as 
W(t) = Wx(t) + W2(t) (16) 
where W/t), and W2(*v are the result of g^t) and g2(t), respectively.  The mean-square is then 
E[W(t,)W(t2)] - EKWjG.) + w^giw^g + W2(t2)] 

- ElWjltjJWjtt,)] + ECWj^JWjd,)] + ElW^tJWjd,)] + EIW^MW.fyj (17) 
and for tx » t2 - t 
E[W2 (t)] « E[W*(t)] + E[W *(t)] + 2E[W1(t)W2(t)]. (18) 
If W (t) - Z(t) then W2(t) = - Z(t - t0) and 
E{W^(t)] - E{Z2(t)] + E[Z2(t - g] - 2E[Z(t))Z(t - t0)]. (19) 

From Eq. (8) it can be seen that (for a point load as in 4.1) 

E[Z(t)Z(t - t0)] - - 2*S0 Y 
WmnPmn(xiyx) 

t/.t-t„ 

(«PKmn«Wt - g] sin[wdmn(t - gj 

m^Jm»-ffin(l-4„)J0J° 
x exPKmn"Wt " *o " «iM sin KjmnC - t0 - t2)]6(t2 - g}dt2dt, 
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V i rut° - 2*S0 2^ -     t —        {exp(-2fmnü,mn(t - t„ - t,)] 
m.n Jmn

wmn I -fm„l J° 

3     ->* 

x sin [wdmn(t - t0 - t.WJdt, . (20) 

Comparison of the above with Eq. (II), Eq. (19) can be rewritten as 
EfW*(t)J - E[Z'(t)] + E[Z2(t - t0)j - 2E[z'(t - g] - E[Z*(t)] - EfZ'ft - t0)] (2i) 
and using the solution in Eq. (14) 

{1 -exp[-2<mnuymnt]} 0<t<to 

m,n   mn2ernna'mn 

(exp[-2emnWdmn tXexp{2emnü,dmn t0] - 1)) t > t0. (22) 

The obtained results are shown in Figure 2.   This problem was solved in [4] for a single degree 
of freedom system - SDF. 

4.3 WHITE   NOISE   EXCITATION   MODULATED   BY   EXPONENTIALLY   DECAYING 
FUNCTIONS 

For this case 
g(t) = g[exp(-at) - exp(-/?t)]U(t) (23) 
where a < ß are nonnegative constants, sufficiently small to keep g(t) slowly-varying, and g is a 
normalization constant, determined from the condition 
sup |g(t)| = 1 . 

t 

where sup denotes the least upper bound.   Equation (23) is frequently used in earthquake response 
[2] and in gust analysis [23]. 

For the same load as in 4.1 Eq. (11) now reads 

R\V = 2*S„  >    ~2—r~     e 8 Le + e ' 2e 

m,n   mn mn mn 

m>n 
Jmn"W    « mn' 

*5TJ^'^-«"2''-fr^-<»-,0"',,--2,)l oo 
and 

I*, 

-<«o      -.«« 
(25) 

(26) 

g = l/(e "'" - e *"° ); t„ - (to ß - to a)/0? - a). 
The results foi a * 0.1, ß ■ 0.5 are displayed in Figure 1 

A special case of Eq. (23) is for a = 0, so that 
g(t) - g[l - exp(-/9t)lU(t). 
For t -» oo, [1 - e~.p(-0t)] -» 1, so g s 1, and Eq. (24) now reads 

RW = 2*S0 £ ~—1 [i (1 - e-2t) 
m,n   mn^mn^   " * mn) 

+ __! fe"2ft _   -2t       _2_  ,-ft      -2»v ,, . 
+ 2(1 - fi) (e e      '     T^-ß t       - •     )i ■ (27) 

The results for 0 = 0.5 are shown in Figure 4. 
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4.4    NARROW BAND EXCITATION MODULATED BY A UNIT STEP FUNCTION 
For this case 

1 t^O 
g(t) - U(t) - (28) 

0 t<0 
and G(t) is noise correlated as an exponentially decaying harmonic function, for which 

oo 

R<1* - li) - 2_, R exp HW*» - *i)] ««PW'. " *i)] • (29) 
m,n 

where n^p is the center frequency of the exponentially decaying harmonic function. 
Defining <*mn in the form 

an.n = «mn ^mn - (30) 
then if emrn is sufficiently small, the center frequency of the excitation band lies in the 
neighbourhood of the damped natural frequency of the mn-th mode. This can be formulated 
through the relation 
Amn ■ "mn/^dmn " 10 + emn0 (31) 
where ß a 1.0 . 

Equation (8) for this case reads 

— I —E       "" 
if-er_l JoJo 

t. 

We next define the following parameters 

(expKmnüWt - »i)] sintwdmn(t - 0] _.      2 2       f 
m,n Jmna'mnl1    '•mnj 

x exp[-«mnwmn(t - t2)] sin[wdmn(t - t2)] expHmn/inmn|t2 - tjjcospimnft, - t^ldt^ .(32) 

'mn £mn«Wi    0 - 1,2) 
l^mnt 

R R 
2        2 

«m„Jm 

to obtain 

V-1 

Rw ~ Z_ Km"ex| 

m,n 

uln(' -4n) 

r'mnr 
Pt-2»!mn] ( 

Jo    J( 

c1     i2        4 

vmn mn mn 
(33) 

'mn r'mii 
{exp[r,       + r,      1 1   n 2mn      'mn' 

" expt-Amn|r        - r      I] Fmn)dr.      dr, 
mn 

where 
Fmn = cos[/?(r2 

zmn    Jmn (34) 

mn r,      )] + ««[k^r, 

cos k2{cos[kjr2 ßTi~   ] + :os[k.r,        - ßr,       1) 'ram ^  > 'mm     r 2mm 
Jmn 

'mm' 

'mnv sin k,{cos[k,r,       - £r,       1 + sinfk.r.        - ßr, 21      '  1 'mn      r 'mm1 H   1 'mm      H 2r 

'mn 

'mm 

'mm 
and 

K- 
2+«mn^ 2i»B 

cmn 'mn 
Extending the solution of this problem for an SDF system, presented in [5], by implying 

Riemarm's lemma, [24], Fmn in Eq. (34) may be written as 

W1' 
by which Eq. (34) is written as 

Rw-£ "■mn 
J_UL (1 - n) exp[-2i/mn] 

m,n 
ß1 + (1 + p)1 ß1 + (1 - ßf 
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T A 'I  

[/T + (1 + n) Iß   + (1 - ß) ] 

The stationary level of Eq. (36) is obtained by setting t -• oo (»jmn -» <x>y. 

f + (1 + it)   t—> 
m,n 

For 0 - 0 (flmn - uymn), Eq. (35) now reads 

R        Vif       f     1     , "Pt-^mn]     2exp(-(l ♦ ß)rimn] 
w " Z-,    mn     1 + /* 1 - P      '     (1 + MXl - P)     ' m,n 

and with p ■ 1, L'Hospital's rule yields 

RW = J] Kmn | (1 - (1 + 2nmn)«rt-^mn]} • 
m,n 

(35) 

(36) 

(37) 

(38) 

Results, normalized to the stationary level, are shown in Figure 5, for ß » 0.1 and ß - 0, 1 and 5. 

5.    REMARKS 
Remark 1.    Consider the solution of Eq. (32) for the case where the center frequency of the 
excitation band coincide with the damped natural frequency of the mn-th mode, i.e., ky      ■ nmn 

(solved in [13-14]).    Each term of the correlation function (29) may be rewritten, dropping the subscripts, as 
R = R0 e-aM cosflr a > 0        fl > 0 (39) 
and its spectrum function, obtained via the Wien?r-Khintchine relationship, is 

r 

(40) 

(41) 

(42) 

which does not depend on fi, so the system is actually excited by a white noise of the above 
intensity, so that there is no overshooting of the stationary level. 
Remark 2.    Although the stationary level is reached at t -» oo, it can be seen from Eq. (35) that the 
stationary level i« also reached (for the sanic l) as wmn increases. Since the natural frequencies are 
far apart and Kmn includes wmn in the denominator, it is justified, for this problem, to take into 
consideration the first mode only. 
Remark 3.    Considering a rectangular step function for g(t), in the same manner as in Eq. (19), and 
within the assumptions of [5],  it is seen that E[Z*(t)] is again as per Eq. (35), and so is E[Z (t - t0)] 
with »torn "♦ famn " %,„,)• where "?omn " fmn^mn'o. *o bein8 the endin8 moment of the pulse. 
The last term E[Z(t)Z(t - t0)] turns out, in integration, to be 

c     Ra 2 
W    + a2 ♦ n* 

■K 

■K 

OX 

S=^2 

u)* + 2ui\a  - n1) + (a2 + fl2)2 

2fl2 + a 2fl2 + a2 

4flV + a4 

Since 

S- Ra 

if + 2nV - 
a « n (iß « 

2n2
+a2 

204 + a* + 2a2 n2 + f)4 

1) 

~ M . J_ = _R_ 
*   2a2     2*a ' jr a2(402 + a) 

Rw - Y. Kmn i{ 
m,n 

-L±JL 1 % 

[ t + (i + ßi' ß1 + a . tf 
mn 
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^N 
^^^^^^^^ wmmmmwm* •wmnp 

+ ^xi-^i^r^i[C0S <*m* 

2uS 
^(l-M)V+(l+M)1]Sin0R'O'»»)e    '      J 

^(l&f(l-ri'l[cos^ 
■(» + M)umn + »0mn 

+ cos«»?mn-^0mn)e 
■(' * ^mn + >»o 'mn 

JM. 
t^<l-M)V+(l-^tSin(^mn)e 

•(, + Mtomn + \ mn 

+ sin/?fomn -»?0mn)e 
-(» + ">7mn + 1omn 

1 ± u       r2"™ + "°mn , 
0 + U - P) (43) 

When t -+ oo, the total mean-square should tend to zero, so that Eq. (43) is at first glance 
incorrect, since its time-independent components apparently depend on tj0, and thus do not cancel 
out their counterparts in the two preceeding terms (the trivial solution i)Q = 0 is irrelevant). 
However, it can be shown that within the same order of accuracy, e, these terms do not actually 
depend on %. Setting 

A= I r  LLä LzJi i 
2    ß* + (1 + tf      ß* + (1 - tf 

B = LUL+JP  
Iß1 + (1 + tflf + (1 - ßf] 

c = UL 
[ß1 + (1 + /,)V + (1 - M)*] ' 

the time-independent terms of Eq. (43) can be written, for each mn, as 

Ae    + B cos (ßv0)e      + C sin (ßri0)e 
Expending the trigonometric and the exponential terms in their Taylor series, namely 

e'° = l+,0 + V+^ ♦••■ 

(44) 

(45) 

Wo 
2   2 3   3 

"'o ■ 1 + Wo + -~ + -^- + ... 

cos flti0 - 1 - "V.. t< 
2! 4! 

sin 1 ßVn- 
a3*3        ol  B 

But the terms in which J?0 is at the powers of two or more, t is also at the power of two or 
(46) 

,„     ,,..,.. ... ."w vi uwn», c is ouu ai ine power ot two or 
more, respectively, so they can be dropped within the order of accuracy, «, and it remained only to 
verify that 
t)0 [A + /iB + ßC] * 0 or A + nB * ßC = 0, 
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which is in fact the case. The conclusion is that since these terms do not depend on ti0, we may set 
i?0 ■ 0 and obtain the asymptotic result (mean-square tends to 0). Yet, right after t0, the mean- 
square has negative values which are not of the order of t (see Figure 6). This yields the final 
conclusion that Riemann's lemma is inapplicable in the case of a rectangular pulse. However, from 
the engineering point of view, since overshooting occurs before t0, in order to calculate its amount, 
one can use this approximation for a rectangular pulse too. 

6. ANGLE-PLY LAMINATES 
An antisymmetric angle-ply laminated plate, made of the same material (Material 1) is 

considered next. 
By arranging the layers in the sequence (3O,-300,300,-30°), and by considering the excitation as 

in 4.4, we obtain the results shown in Figure 7. It can be seen that the respomse is similar to that in 
Figure 4.5 for ß - 0.1 and ß » 5. 

The level of overshooting are also investigated, for the same loading case and for different 
values of the angle 0. Two cases are considered: 1) a plate of two layers (0,-0) and 2) a plate of four 
layers (0,-0,0,-0). It can be seen from Figure 8 that the plate given superior performance with four 
layers at 0 ■ 15°. Addition of another even number of layers may improve the performance to some 
extent, as it was shown in other context in [25]. 

7. SUMMARY AND CONCLUSION 
The response of simply-supported rectangular plates to non-stationary random excitation is 

presented. It was found that no overshooting occurs in the case of shaped white noise, while 
overshooting up to 2.2 times above the stationary level was obtained in the cae of shaped narrow- 
band excitation, for both the cross-ply and angle-ply variants. In the latter, improved performance 
was found at 0 = 15° with four layers or more. 

Table 1 
NATURAL FREQUENCIES OF CROSS-PLY LAMINATE 

(0°, 90°, 90», 0°^ A = B - 50H 

Natural Frequencies (rad/sec) 
4859.0675 
20788.342 
53872.430 
100584.30 
33884.710 
42018.487 
67897.037 
110903.77 

M.B. PRIESTLEY   1967 Journal of Sound and Vibration J>, 86-97. Power Spectral Analysis of 
Nonstationarv Random Processes 

M N 
1 1 
1 3 
1 5 
1 7 
3 1 
3 3 
3 5 
3 7 
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NONLINEAR VIBRATIONS OF ANTISYMMETRIC ANGLE-PLY 
LAMINATES USING A SIMPLE HIGHER-ORDER THEORY 

S.P. Lim 
K.H. Lee 

N.R. Senthilnathan 

Department of Mechanical and Production Engineering 
National University of Singapore 

I. INTRODUCTION 

It was shown in reference [1] that a simple nonlinear shear 
deformation theory of plates can be obcained from a recently proposed 
higher-order theory [2] of plates by making the assumption that the 
inplane rotation tensor does not vary through the thickness. The theory 
was shown to have one variable less thai: the Reissner-Mindlin theories and 
accounted for a parabolic variation of the transverse shear stresses with 
zero values at the free surfaces. Numerical results for the nonlinear 
periods obtained from the present theory for thick rectangular Isotropie 
and transversely isotropic plates were found [3] to be in good agreement 
with those from Reissner-Mindlin theory. It is the purpose of the present 
study to extend the simple nonlinear shear deformation theory presented in 
reference to the nonlinear vibretlon of laminated plates. The solution 
method developed by Chandra and Basavnraju [4] for the nonlinear vibration 
of thin laminates is adopted here for the nonlinear vibration of simply- 
supported thick antisymmetric angle-ply (45°/-45°) laminates. Nonlinear 
frequencies from the present theory are compared with those from the 
Reissner-Mindlin theory [5]. 

2. EQUATIONS OF MOTION 

The nonlinear governing equations of the present theory[6] for the 
free vibration of unsymmetric angle-ply laminates in terms of the 
transverse displacements and stress function can be written (neglecting 
inplane rotary inertia) as 

A„-!JJ,   + [2A,„+ A,,)*,   + A. ,\|i 
22 'xxxx *■  12  66;T xxyy  11 yyyy 

r      * *    \   b        r      * * ^ I 
(2B26-B6l)<xxy-(2B16 " B&2lw- Ayyy 

3h 
* 1 8 

2  v~"26 "61JW'xxxy ,,.2 
4 

3h2 16    "61 •'"'xyyy        'xy      'xx  'yy 

phw'+ LjW + L2w + L4i|i - F(w,t) 

phw'+ L2wb + L3ws+ L.il» - F(w,i|i) 

where 

(1) 

(2) 

(3) 
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A 

t 

^♦«,♦-^♦4$ 

3x  3y 3y 3x 

3^ 

hi ■»-M^-«."^-^ 3x  3y 

,2 

"^->»»*?'»Jtr*t»--^»«'tJ'«)fr] 
L.   - - (2B* - B*  ) -iL - r2B* - R*  1       34 

*> 16      62'   3x3y3 

3h 
V (2E    - 
2  ^     26 

EJlH V(2E*    -E*  ) 61   »v3a„      iK2  ^    16        62} 

F(w,t)  - w        #        _  2w      ^        + 

ax-'ay    3h^ 

xy    xy 'yyT,xx 

3x3yJ 

w = w    + w  , p  and h are mass density and  thickness  of the plate (4) 
respectively. 

The unstarred elastic constants A^.., BJJ , E^.., DJJ, F^j and RJJ are 

defined in the same way as in reference [2] while the starred quantities 
are related to the unstarred quantities in the following way. 

• [AjjVi^r1. [»ij* »0"_l<j][Bij Eij] 
r     * *- r T 

h EiJ ] 

(5) 

In equations (2) and (3) i|> is the Airy stress function which is related to 
the inplane stress resultants by the following relations 

r    *         *- 
D        F 
ij       ij "Dij   Fij' 'Bij' 

*        * 
hi   Hij Fij   Hij. >. 

Nx " *'v»> N„ " ♦ ._ and N 'yy' y T,xx 

3.   BOUNDARY CONDITIONS 

xy xy (6) 

along
Letneax S J £.!^32^.?   '£   T8"   °f   ^   "«*»**<«  plate 

supported plate a^re given Jr """"^ conrfltion»  ^ the simply- 
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b   8   b    8    „ w - w ■ w,  -w,  »0 
XX     XX 

b   s   b    s    „ w » w ■ w,  - w,  »0 
yy   yy 

at x » 0, a 

at y - 0, b (7) 

The inplane boundary conditions corresponding to the movable edges (zero 
average normal and tangential boundary forces) are given by 

/ (♦'yyU.a dy " °   I  ^'xyU.a *> "  ° 

Q a 

(8) 

The inplane boundary conditions corresponding to the immovable edges (zero 
average shear force and zero tangential displacement) are given by 

v - 0 o at x - 0, a 

I  (*'xy)x-0,a  «* '  ° 

u = 0 o at y » 0, b 

H*'xyW  dx"° (9) 

where uQ and vQ are the inplane displacements at the midplane. 

APPROXIMATE SOLUTION 

A roib-teru Galer&in approximation will be applied to solve the 
coupled aonlinear governing equations (1), (2) and (3). Present method is 
an extension of the solution method proposed by Chandra and Raju [4] for 
the nonlinear analysis of clamped unsymme'.rio laminate» with movable and 
immovable edges. The notation, however, are tiv *e given in referei.es [7]. 
The displacement functions that satify the transv>""ae boundary conditions 
are assumed -s 

wb - h;b(t)(sin H sin IX) a     b ' 

w8 - h5
s(t)(sin S sin EL) (10) 

using equations (10) in the equations of motion (1,2,3) and following the 
procedure outlined in reference [4] it can be obtained that 

£•+ «J Cb + -J C8 + (a2 + y)  C3 - 0 
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C + i»2^ + «2 ;s + (a2 +       c3 _ 0 
(11) 

.b,  .s 
However  since C » 5 + 5    equations   (11)   can  be   reduced  to one equation in 
terms of  c given by 

6*+ üo
2i + (a2+ io) ;3  - 0 

where 

(12) 

,2/, * :-.• i*,; *»>,;♦*<«>* A; *sH 

^-.'$ i»,; ♦»'(«,; ♦«^♦»»«^♦si) 

■4 - ■* #■ [»il * »*»J * »w> * »*^i * ^-» 

4 * 
,tJ*    l   11 22> 16d 

11 

Tf_ ' 
'12 

8dll  [a        " alla22^ 
" .(^1 

4  *       * 
2 a22 

2    *      * *      * 
2\ an a22 + ax 1 al2) 

2    2 2       2 
(l)     (1). -  u.      o). _    o    3 4       1 

o               2 2 
U3 "W4 

2 2 2 2 2 
4    " wl  " Wo U3    " ü)2  ~ "l   '  W/'    " wi   ~ w 

H7  =r^e26  -e6li+-3-t2e 

^16'  E26«  E61'  E62-l " h    te16'  e26'  e61'  e62J 

E h5 

til'  Vzr  F66) " "IT til'  ^2« f22'   *M) 

16        62J 

3 ,  *        * 

5 

E,h 
{nn, H;2, 4, H;6). -i». (hjif h*l2, h*22, h6*6) <»> 

The starred quantities and other constants are defined in the same way as 
in reference [7]. YQ - 0 for the movable edge condition. 
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5. NUMERICAL RESULTS AND DISCUSSION 

* 
Equation (12) is the well-known Duffing'« equation whose solution 

methods are standard [7]« 

The nondimensionalised frequency (u> /» ) - amplitude (wQ/h) response 

of two-layered antisymmetric angle-ply (45V-450) laminates are shown in 
figures 1 and 2 for movable and immovable edges respectively. The 
corresponding results from a Reissner-Mindlin theory[5] for movable edges 
are also included in figure 1. It is observed that the present results for 
movable edges agree well with those from reference [5] for w/h < 1. The 
large differences in the two values at w/h > 1 could be due to the 
differences in the way the 'movable' edge condition is treated in the two 
references. Inplane conditions along the edges are satisfied in an average 
sense in the present analysis, whereas, they are satisfied in absolute 
terms in reference [5]. 

6.   CONCLUSIONS 

A simple higher-order shear-deformation theory of plates developed 
before by the authors is used to study the nonlinear vibration of simply- 
supported, thick antisymmetric angle-ply (45°/-45°) laminates. The 
simplicity of the governing equations allow a direct extension of the 
solution methods developed before for thin plates to shear-deformable 
plates. The nonlinear frequencies from the present theory agree well with 
those from a Reissner-Mxndlin type theory. 

7. REFERENCES 

; i 

2. 

3. 

5. 

S.P. LIM, K.H. LEE and N.R. SENTHILNATHAN 1987 Proceedings of the 
International Conference on Computational Engineering Mechanics, 
Beijing, China, 545-557. Linear and nonlinear bending of shear- 
deformable plates. 

J.N. REDDY 1984 Journal of Applied Mechanics _45, 745-752. A simple 
higher-order theory for laminated composite plates. 

K.H. LEE, N.R. SENTHILNATHAN, S.P. LIM and S.T. CHOW. Nonlinear 
vibration of thick rectangular plates using a simple higher-order 
theory. To be published in the International Journal of Nonlinear 
Mechanics. 

^ration 4G, 
R. CHANDRA and B. BASAVARAJU 1975 Journal nf Sound ar.d Vibratioi 
3S3-4ÜÖ. Large deflection vibration of angle-ply laminated plates 

K.S. SIVAKUMARAN and C.Y. CHIA 1985 Journal of Applied Mechanics 52, 
536-542. Large-amplitude oscillations of unsymmetrically laminated 
anisotropic rectangular plates including shear, rotatory inertia and 
transverse normal stress, 

N.R. SENTHILNATHAN, S.P. LIM, K.H. LEE and S.T. CHOW 1987, AIAA 
Journal _2_5, 1268-1271. Buckling of shear deformable plates. 

C.Y. CHIA 1981 Nonlinear analysis of plates McGraw-Hill company, 
N.Y. 

215 



. 

Fraquency ratio 

o 

H- 

c 
re o 

<  rr 

a a 

Q. rr 
IK   M 

0! 0! 
3 ft 

H O 
<t> 3 
I to 

T> 
H O 

•O 0! 
HJ 
» E 
ft   01 
re n 
to  re 

- u - v v 
«   \ 

■ "    V t\    1 
1 

* \ ° ! \\    \ 
i ^ V 9     B   c re     -—, — '           *  V 1?     3* S 2         H \\   \ 

2    o < =       w \ 3           c o re v\\ 
5 

\\\ \ \   vv  v^ 1 

216 



—Y 

Frequency ratio 

00 
c 

re 

B)   E5 
3   O 

O H- 
< to 
a v; 
a- a 

(t  1 < 
a H- p. 

re i-i 
en   ED tu 
•    3 rt 

t-1 o 
re 3 

•o to 

Co C 
rr Co 
tu >-t 
»l <t> 

217 

f 
& 



ON TRANSIENT RESPONSE OF LAMINATED COMPOSITE ELATES 
BASED ON A HIGHER-ORDER THEORY 

Mallikarjuna and T. Kant 

Department of Civil Engineering 
Indian Institute of Technology 
Powai, Bombay 400 076/ INDIA 

1. INTRODUCTION 

The transient analyses of laminated plates of finite dimensions have 
not received adequate consideration in the literature. The following brief 
review of previous research on transient response of elastic plates provides 
a background for: the present paper. 

For the dynamic behaviour of laminated plates, Mindlin's theory for 
homogeneous isotropic plates has been extended to laminated plates by Yang 
et al. [ 1 3 and by Whitney and Pagano [23« Moon Q3j, using Mindlin theory 
investigated the response of infinite laminated plates subjected to trans- 
verse impact loads at the centre of the plate. Chow £4 Jemployed the Laplace 
transform technique to study the dynamic response of orthotropic liminated 
plates. Wang et al. [_ 5 3applied the method of characteristics to investigate 
the dynamic response of unsymmetrical orthotropic laminated plates. Sun et 
al. £6-8j employed the classical method of separation of variables combined 
with the Mindlin-Goodman [_9 3 procedure for treating time-dependent boundary 
conditions and/or dynamic external loadings on plates under cylindrical bend- 
ing. Reddy Q10/113 presented closed form solution and finite element results 
for linear transient analysis of layered composite plates. All of these 
investigations are based on either the classical (Kirchhoff) plate theory or 
the first order shear deformable (Mi.ndlin/Reissner) theory. 

A higher order shear deformation theory developed by one ol! the pre- 
sent authors Q.2J is employed here to investigate the transient response of 
isotropic and layered anisotropic composite plates. The finite eLement ideal- 
ization is adopted and the quadratic nine noded Lagrangian isopar»metric 
plate element is used together with selective integration. Explicit time 
marching scheme is adopted for integration of the dynamic equilibrium equa- 
tion and a diagonal 'lumped' mass matrix is employed with a special procedure. 
Numerical results are prpspnfpr! and compared with results fros otr.ei." öoutueö. 
A review of the literature indicates that no previous finite-elenent analyses 
of higher-order theory for transient response of plates are avai'.able. 

2. THEORY 

The present higher-order shear deformation theory is based on the dis- 
placement model 

u(x,y,z,t) = uo(x/Y#t) +z8x(x,y/t) +z u (x,y,tl + z3e*(x,y,t) 

v(x,y,z,t) = vo(X/y,t) +z9 (*»Y»t) +z2v*(x,y,t) +z38*(x,y,t) 

219 

MMÜMl ritt* 



▼ T 

l 

w(x,y,z,t) = wQ(x,y,t) (1) 

where t is the time« u , v and w Are the inplane and transverse displace- 

ments of a point (x/y) on the mid-plane respectively and 9 , 8 are the rota- 
x  y 

tion* of normals to mid-plane about y and x axes respectively. The para- 
*  *  *  * 

meters u , v , 8 » 8 are the corresponding higher-order deformation terms 

in the Taylor's series expansion and are also defined at mid-plane. 

The strains associated with the displacements in (1) are/ 

+ 

e -•*—+ z-*—+z "57-+Z "55J- : e._ = -K—+z 
3u    38 

x  -3f + z-5F 
3v 

-y ^7H 

36 

ry 

--„  0 3v„   , 36' 

3u  3v 36  36 
„ *   * 

_4,  O .   O, 
36  3d 

yz 

8w 3w 
+ "?7 + z(2V+z2(36*) . Yzx = 9x+^ + 2(2u;)+z

3(3e*)   (2) 

The stress-strain relations for the L  lamina of the laminate co- 
ordinates (x,y,z) are written in a compact form as 

where a 

and   Q 

a   »  o e 

jvvwvf ; z = 
\i   e ■ i/j = 1/2, 

_°       V i/iii = 4,5 

(3a) 

(3b) 

Integration of (3a) through the plate thickness gives the plate constitutive 
relations. The following eighteen stress-resultants for the n-layered lami- 
nate are thus obtained: 

N ,N ,N x y xy 
* * * 

,N ,N ,N [_x y' xy 

M ,M ,M 
x y xy 
* * * 

,M /M ,M  . 
L* y *yj 

n   L+l a      ,g  , T 
I   /    x ' y ' xy 

L=l hr    z
2cr ,z2o ,Z2T  . 

L   |_  x   y'  xyl 

dz ; 

hr.4.i l%„ 

ii \   \?\>*\>Z\A L=l 

n     Vl 

dz 

n     hL+l 
<0x>Sx»Qx> "^ h/      Txz(l,z,z2)dz;    (Qy,Sy,Qj)-    X      /    Tyz(i,z,z2)dz 

L=l h. 

* * *   * 
where N ,N ,N , M . , 

x y xy  x 
defined in (4) above. 

(4) 

etc. are the higher-order stress resultants as 
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After integration/ this can be written in the matrix form as 

2ijöi 2^3 2ijH2 2ij94 
n 
I 2ijH5 2ij«4 V« 

L=l 
2ijH3 Vs 

SYMMETRICAL 
2ij«7 

e 

* 
e 

n 
I 

L=l 

fiUBl £m£92 SU*3 

^£H3 ^4 

SYMMETRICAL  Q „H. 
-m* 5 

(5] 

in which/ e = e /e #e  I    / e - e /e /e 
~o  |_ xo yo xyoj     £o  I xo yo xyo 

k =fk,k ,k 1T  , k*= fk*/ k*, k* 1 T |_ x  y  xyj     ~ {_ x  y  xyj 

t   =[*x' *y]       ' i *[exzo'eyzo'V*y] 

In all the above relations/ n is'the number of layers and 

9i = T (hL+l~hlb ' i = 1'2/3/4,5,6.7 (6) 

I 
i 

\ 

j 

3.   FINITE ELEMENT DISCRETISATION 

Whatever is the approximate discretisation scheme in space/ the dyna- 
mic problem (in the absence of damping) invariably gives rise to a set of 
ordinary differential equations of the form 

(7) 

in which the dots denote differentiation in time/ t,  a is the nodal displace- 
ment vector/ M is the mass matrix and £(t) is the vector of forces which 
varies with time/ t. 

In C° finite element theory/ the continuum displacement vector within 
the element is discretised such that 

NN 
a (x,y,t) = I    N,(x,y) a.(t) 

i—1 * "** i=l 
(8) 

in which the term N^x/y) is the shape function associated with node i, 
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NN is the number of nodes in the element. The elements of the stiffness 
matrix can readily be computed using the standard relation/ 

+1 +1 

Sij = { / h  2 Ej 111« an 

where B ia the strain-displacement matrix 

J is the Jacobian matrix. 

The mass matrix M in (7) is given by 

(9) 

5 ■  /  N m N dA 
Area ** (10) 

where *-= th'h - *»] 

and   m = 

n   'L+l 
I        " 

L=l hr 
(VVW m A .1   ci/ *2< z4,n P"d2 

-6,  L 

in which (I.,I_) and (I,/I.) are normal inertia# rotary inertia and higher- 

order inertias respectively« P is the material density of the L  layer. 

'"'   Oi.atri.itlG   niiu   STABILITY 

As already mentioned/ the integration in time of (7) is performed using 
the explicit central difference scheme which is given by 

.n+1 
if1 [(At)2 (-kan+P

n)-Man-1+2Ma
n7 

(11) - J 

where suffices n-1/ n,  n+1 stand for three successive time intervals and 
At is the time step length. If M is diagonal/ the computation at every time 
step is trivial. Unfortunately Ehis is not usually the case and further 
approximation has been made to bring about the diagonalization using a special 
lumping procedure (see ref. £l3j). 

The estimate of the critical time step length of the transient solution 
of Mindlin plates given by Tsui and Tong C14] *s used with minor modification 

222 



in the present study. The critical time step length is thus given as 

At = Ax   
.2 + 

P (l-O E2R 

0.83 (1-v) {lfl.5(Ax/h)2} ]'" (12) 

where R = E../E , Ax is the smallest distance between finite element node 

points/ v is the Poisson's ratio. 

5.  NUMERICAL EXAMPLES AND DISCUSSION 

In all of the numerical examples presented herein/ zero initial condi- 
tions were assumed. All of the computations were carried in single precision 
on CYBER 180/840 Computer. Due to biaxial symmetry of the problems discuss- 
ed/ only one quadrant of the plate was analysed except for angle-ply plates 
which are analysed by discretising full plates with 4x4 mesh. 

The following two sets of data and boundary conditions were used: 

DATA 1 

DATA 2 

2 Square plate/ a=b = 25cm/ h=5cm/ q   =10N/cm 

P = 8x10~6N-sec2/cm4, v = 0.25/ E2 = 2.1 x106N/cm2 

Plate with a = v/2   and b = 1, h = 0.2/ P = 1, q = 1 

v = 0.3/ E, = 1.0 (non-dimensional) 

BOUNDARY CONDITIONS: 

Simply supported plate: 
x =0/a 

y=0,b 

v = v = w ■■ 
o  o  o 

* 
U = U = W ' 
0   0   0 

= 0 

= 0 

Clamped plate 
x = 0/a; u = v 

o 
*  * 

'U_ = v =w 
b 'o  o  x 
*  * 

0/b; u =v =u = v =w =6 
o  o  o  o  o  x 

9 =6 =9  = 0 
Y x  y 

*  * 
6 =6 =9 =0 
Y x  y 

When an orthotropic or layered composite plate was analysed/ the ratio of 
E, to E„ was takf»n fn ho 0£- =»•' "  - " E., to E. was taken to be 25/ and G.,2 = G,. = G, 0.5 E2. 

In order to investigate the numerical convergence anr) accuracy of the 
Ltauaient benaviour of the element/ a simply-supported/ generally orthotropic 
(0°/90o/0°/90o) plate with suddenly applied uniform pulse loading was analysed 
using DATA 1. Table 1 shows centre deflection and normal stress for differ- 
ent meshes and time steps. From this table it is found that the safe estimate 
of the critical time step length given by (12) is valid for transient analysis 
of fibre reinforced composite thick plates. 

The second example is taken from Reismann and Lee [lS]i  who presented 
an analytical solution to the problem (see Fig. 1). The problem consists 
of a simply-supported rectangular plate subjected to a uniform pulse loading 
on a square (side = 0.2b) area at the centre of the plate. The present finite 
element solution for the centre deflection is in excellent agreement with the 
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thick plate solution. Since the bending moment: in the present study was 
calculated at the Gauss points/ it is not expected to match exactly with 
that at the centre of the plate. 

Table 2 presents centre deflection/ centre normal stress/ corner in- 
plane shear stress, and transverse shear stress at the midside for two layer 
cross-ply/ simply-supported square plate (DATA 1)/ subjected to suddenly 
applied sinusoidal loading. The present solutions with the closed form solu- 
tions (Mindlin's theory) [ 10] are compared. It is found that the Mindlin's 
theory predicts slightly lower values of period and stresses. To show the 

* * 
effect of the coupling between the inplane displacements (u /V /U ,v  ) and 

J oooo 
bending displacements (w 3 /9 /9 /8 )/ and boundary conditions on the 

centre transverse deflection and stresses/ a two-layer/ angle-ply (45°/-45°) 
plate (DATA 1) subjected to suddenly applied uniform pulse loading/ was ana- 
lysed for two different boundary conditions: simply supported and clamped. 
The results are shown in Fig. 2. It is seen that the coupling has a notice- 
able influence on the response of the plate. 

The last example is concerned with transient response of a four-layer 
(30°/450/900/00)/ clamped square plate (DATA 1) under impulsive loading: 

q0H(t- to)' t„ = 10 u-sec/ B(t) denotes the heavy side step function. 9 
Fig. 3" shows plots "of the centre deflection and normal stress with respect 
to time. Since no damping or internal friction is included in the present 
model the solutions do not decay with time. 

» 

6.   CONCLUSIONS 

Numerical results of the linear dynamic analysis of isotropicz ortho- 
tropic / and layered composite plates are presented. The present higher-order 
shear deformable theory does not require the usual shear correction coeffi- 
cients generally associated with the Mindlin-Reissner type of theories. The 
present finite element results agree very well with the exact solutions avail- 
able in the literature for isotroplc plates. New results are presented and 
compared wherever possible for the transient response of composite plates. 
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Table 1.  Convergence of centre deflection and stress for different time steps, (DATA 1) 

4 layer (0°/90°/0°/90o) square plate 

40 

*/    x 10 
Time 0 

w-aec top 

at » 0.25 u-sec at ■ 0.5 u-sec 

2x2 3x3 4x4 2x2 3x3 

0.23878  0.23878  0.23911    0.23880  0.23875 

193.157  189.934  189.071    193.230  189.929 

at - 0.74 u-sec 

2x2 

0.23867 

193.033 

80 o 

a 

0.47768  0.47692  0.47685    0.47767  0.47690 

391.481  385.588  387.391    391.078  385.182 

0.47768 

390.592 

120 
0.23701  0.23371  0.23185    0.23698  0.23361 

196.270  190.045  186.166    196.282  190.340 

0.23738 

197.333 

160 
-0.00092 -0.00371 -0.00113   -0.00091 -0.00566 

-2.0816  -11.367  -2.863 -1.32508 -11.389 

-0.00094 

-1.1805 

200 
0.24325  0.24566 

193.219  195.437 

0.24328  0.24573 

193.123  196.001 

0.24261 

192.712 

Table 2.     Comparison of transverse deflection and stresses obtained in the present study 
with Mindlin plate closed form solution  10  for two layer cross-ply (0°/90°) 
square plate (DATA 1) under suddenly applied sinusoidal load 

Time 
Centre deflection 

w_ x 103 
Normal 

0 

stress Inplane shear  stress Transverse shear stress 
u-sec o X T xy 

CF3 

* r 
Present CFS Present CF5 Present Present 

xz 
CFS 

20 0.0468 0.0365 38.95 28.48 2.527 1.6)1 2.190 3.450 
40 O.i 660 0.1472 125.5 113.6 10.41 8.506 5.730 6.699 
60 0.3136 0.2922 239.8 227.2 19.26 16.47 12.00 14.04 
80 0.4290 0.4116 324.0 319.1 26.96 23.85 15.89 17.34 

100 0.4697 0.4604 357.2 357.8 29.11 26.27 18.40 20.13 
120 0.4174 0.4173 315.2 323.1 26.13 24.12 16.19 17.09 
140 0.2945 0.3010 224.9 233.0 18.21 17.05 12.21 12.89 
160 0.1477 0.1562 112.7 119.6 9.079 8.848 6.327 6.501 
180 0.0354 0.0414 28.48 30.40 2.016 2.029 2.155 2.264 
200 0.0013 0.0013 3.324 0.742 0.159 0.248 0.548 0.937 
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FREE VIBRATION AND BÜCKLING OF CROSS-PLY 
LAMINATED SHEAR-DEFORMABLE SHALLOW SHELL-TYPE PANELS 

by 

L. Librescu, A. A. Khdeir, and D. Frederick 
Department of Engineering Science and Mechanics 

Virginia Polytechnic Institute and State university 
Blacksburg, Virginia 24061 USA 

1. INTRODUCTION 

A tremendous Interest in the analysis of laminated composite plate 
and shell-like structures has emerged in recent years. This Interest is 
due to the advent and increased use of high modulus, high strength, low 
weight composite materials in '■he various fields of modern technology. It 
is further fueled by the fact tnat the classical theory (based on Love- 
Kirchhoff (LK) assumptions) fails to predict accurately the static and 
dynamic response, when the structures in question are rather thick and/or 
when they exhibit high anisotropy ratios. 

In such cases more refined theories are needed. They are to 
incorporate the effects of transverse shear deformation, transverse normal 
stress as well as other higher order effects. Pertinent analyses devoted 
to the substantiation of single layered or laminated composite shell 
theories are presented in the literature, e.g., in [1] in which the reader 
could also find extensive pertinent references. 

The goal of this paper is two fold:  i) to develop a simple shear- 
deformable theory for doubly-curved shallow cross-ply composite shells and 
ii) to apply a powerful solution technique, based on the state-space 
concept to evaluate the (static and dynamic) response or iiuch shells for a 
variety of boundary conditions. 

The theory developed in this paper is aimed at preserving all the 
advantages of the first order transverse shear deformation theory (FSDT), 
both with regard to the number of involved unknowns and the order of the 
associated governing equations. However, in contrast to FSDT the present 
theory is based on:  i) an accurate representation of transverse shear 
stress components across the shell thickness (thus eliminating the need 
for a shear correction factor), and ii) the elimination of the 
contradictory assumption Involving the simultaneous consideration of zero 
transverse normal stress a      and zero transverse normal strain e«. 
Furthermore, the results obtained will be compared with their counterparts 
obtained wlti.'.n the iramewo*"1'. of KSsilT and classical theory (CST), for 
which their response characteristics will be determined by the same state- 
space technique. 

2. PRELIMINARIES 

Let us consider the case of a shallow composite panel constituted of 
a finite number, N, of homogeneous layers. We will consider that the 
material of each constituent layer is linearly elasti" and anisotroplc and 
that all layers are perfectly bonded. 

All points in the 3D space of the composite shell are referred to a 
the reference surface 
selected as the mid- 

Aii points in tne JU space or tne composite sn 
at of curvilinear orthogonal coordinates x , while 
S) a  of the composite shell defined by x - 0, is 
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surface of the laminate, so that the external boundary surfaces of the 
panel are defined by x ■ ± h/2 where h denotes the total uniform 
thickness of the laminated shell. 

3. BASIC ASSUMPTIONS AND GEOMETRICAL RELATIONS 

In order to reduce the 3D problem to an equivalent 2D one we shall 
use the equations connecting the covarlant derivatives of space tensors 
with their surface counterparts. Such relationships, useful in the 
forthcoming developments, are: 

*alB *:& v|S " \sT3> » al3 Ha v,3 

l3!a 
T,  + b^f, 
3,a   a 3 l3«3 L3,3 (1) 

Here, partial differentiation is denoted by a comma 
( ) . = 3/3xj, while ( )Hj and ( )!a stand for the covarlant 
differentiations with respect to the space and surface metrics, 
respectively, while the shifted components are identified by an upper 
bar. In the above relationships (as well as in the following 
developments) the Elnsteinlan summation convention applies to repeated 
indices where Latin indices range from 1 to 3 while the Greek indices 
range from 1 to 2. The conditions of shallowness cf a shell, are 
discussed e.g. in fl]. Let Z denote the amount of deviation of the shell 
reference surface from a plane II (measured normal to the plane). This 
quantity is assumed to be small when compared with a maximum length of an 
edge of the shell or with a minimum radius of curvature of the RS. For 
this case assuming properly that 

maxZ  « 1 (2) 

gives rise to the result that the metric tensors associated with the 
system of coordinates on o  and with its projection on the plane n are the 
same and in addition that the curvature tensor of the reference surface 
behaves as a constant in the differentiation operation. 

: 

These are important conclusions allowing one to infer that if the 
projected coordinate curves on n constitute a Cartesian orthogonal net, 
then the original ones on a  are to be, on the basis of (2), also a 
Cartesian orthogonal net. Due to the equivalence of the two metrics, we 
may also conclude that the surface covarlant differentiations may be done 
with respect to the plane n and thus it is possible to change the order of 
the covarlant differentiations (slno» Hi» P.iemjnn-Chrictcffcl tcnsor 
associated with the plane vanishes). 

that 
For the shallow shell theory (SST) we may appropriately consider 

a  ,_ .a   3.a.   .a 
"B (= 6P " *  V * 6B (3) 

where u„ referred to as the shell tensor plays the role of a shifter in 

the space of normal coordinates ([1]). From (3) we may also conclude that 
in this case 

u = lujl - (g/a)1/2 ♦ 1 (*> 
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where g = det(gjj) and a = det(aag). Here 6 and b denote the Kronecker 

delta and the mixed curvature tensor, respectively, while 'j,, and aaß 
denote the metric tensors of the space and surface a,  respectively. 

It is worth mentioning that the equations which will be obtained in 
this framework are not only applicable to the theory of shells which are 
geometrically shallow, but also to other kinds of shells (i.e., to closed 
cylindrical shells or in general to ones of zero Gaussian curvature), 
whose state of stress and strain exhibit a high degree of variability. In 
this connection it should be noted that the well-known Donnell-Mushtari 
Vlasov shell-theory corresponds entirely to such an approximate theory 
(see e.g. [1]). 

4. DISPLACEMENT REPRESENTATION AND STRAIN MEASURES 

In order to model the theory of laminated shells there are, roughly 
speaking, two main approaches: i) to start with some statical assumptions 
concerning, e.g., the variation of transverse shear stresses across the 
laminate thickness or ii) to start with a certain representation of the 
displacement field through the entire laminate (or through each layer 
separately, by preserving however its continuity between the contiguous 
layers). Although the first approach was used in several papers the 
second one appears more promising. 

While the stress field exhibits jumps, the displacement field is to 
be assumed continuous through the laminate thickness. That is why, in the 
following, the latter option will be adopted.  In this sense, the shifted 
displacements will be represented as: 

I 

Va(x
w,x ;t) 

where 

(0)    (1)      (2)      (3)  _ 
Va + x

J Va + (xV Va + (xV Va ; V3(x
w,xJ;t) 

(■)  Cm) 

(0) 
v3 (5) 

V1 = V1 (x ;t). 

The form of the representation given in Eq. (5) has as a goal the 
exact fulfillment of tangential static conditions on the boundary surfaces 
x3 = ± h/2, I.e., of 

^X% (0) 
a3 3,h/2 

-h/2 
J*3 

5(D (6) 

where cr  are the transverse shearing components of the stress 
.11  ...  a uciioui. u  , wane p H,Q.. and p,.> denote the tangential load and load couple 

components, respectively (measured per unit area of the reference 
surface). 

The constitutive equation employed is the one associated with an 
elastic anisotropic body 

a3 _  a3u3 
»3 (7) 

where eM3 denote the transverse shear components of the strain tensor e±i 
expressible in terms of the displacement components as 

äij 
V   + V (8) 
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In Che case of cross-piy laminated  shells,   (the axes of orthotropy 
coinciding In each point with the geometrical ones),  employment In (6)   of 
(7)   and  (8)   yields: 

(2)       l    a      <+> (3) 4 4a      <+>       (0) (1) yW 

In (7) and (9) E -'mn and F,i      denote the tensors of elastic moduli and of 
elastic compliances, respectively., while the plus sign in the brackets <> 
signifies that the respective quantity affected by this sign belongs to 
the top layer. In the remaining developments, the affiliation of a 
quantity to a certain layer k will be identified by including the letter k 

in the brackets <>, (e.g., E^?"1) •  By virtue of (9), upon fulfilling the 

static tangential conditions (6), the total number of nine unknown 
(0)   (a) 

functions, (i.e.,  V,and V , m • 0,3) may be reduced to five 
(o) (0)   ti)  a 

(i.e., V-, V and V ), i.e., to the same unknowns as in the case of FSDT. 

In the following, for purposes of simplification, we shall consider 

that p,»,. = p... =0. By virtue of (5), (9) and (8), the expressions for 
the nonvanishing components of the strain tensor are obtained and given in 
[1].  It is shown in [1] that when 

(1)     (0)      (0) 
V + - ( V,  + bp V ) (10) a v 3,a   a p 

and when the terms of order x /R are neglected with respect to unity, the 
strain measures reduce to the ones associated with CST of shallow 
shells. In the rase of FSDT, the displacement field across the laminate 
thickness is represented as 

va(xW, - v
a + * v

a ; Vx »x ;c) * v3 (n) 

while the associated strain measures are obtained and defined in [1]. 

5. CONSTITUTIVE EOTTATTONS 

The 3D constitutive equations associated with an elastic anisotropic body may be expressed as 

„aß  ~aßup       Eag33 33   a3  ,„a3u3 ,,„. 
CT    E   %P +  6A 13333 a  ; °      •  2E   ea,3-        (12> 

Here 

:aßUp _ „aßup _ E
aG33E33<,)p E""""" „ E 
E3333 

33 where 6^  Is a tracer identifying the contribution of a      in the constitu- 
tive equations (and later in the governing equations). 
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In order to express a  in terms of the basic unknowns, we will use 

the third 3D equation of .notion, in which the covariant space 
differentiation is to be converted into surface differentiation. This conversion yields: 

-r3"3!  ,  33      ßv   (°) 7 l6 + a,3 + \ß^-PV3 (13) 

where the dots denote time derivatives and p denotes the mass density. 
Integration of (13) over the segment [0,x ) and consideration of the 
assumptions pertinent to SST yields its expression displayed in [1]. The 
expressions for the stress resultants L... , L,-. and stress couples L™,\ are expressed as are expressed as 

,«ß      ,aß >o-1 / N      h<k> 
J(0)'   \l) 

k-1    h 
<k-l> 

<&a.«W ; ig, N      h<k> 

I    / 
K-i   h. 

a<k>dx    (14) 

,!<k-l> 
Considered  in  conjunction with  strain-displacement  equation  (see   [1])   the 
latter equations  yield  the constitutive equations  expressed  in  terms  of 
the displacements,  where h/^y and h^-]^ denote  the distances  from  the 

reference  surface  to  the  top and  bottom surfaces  of  the k      laye., 
respectively. 

They may  be expressed as 

(0)     2 CJ | S       p|u »    3' 3h2 uii'p p|u>' 

_±_    aß<op<°> 
3h2  T V3,.p-  \« 

3h< 

aßpu        4      ctßpu    <?) CD (0) 

3t/ 3>up       \\p + \ VY|p) 

,    y^ßtop/O) (0) (0) fg. 
6AX (V.|p+    Vp|B-  2Kp v3>   + «^«33^ 

T<*ß _ 1  _aBMp/°> (0) (0) 

+ I ATaß^P      4     .aSwp     ^) (1) 

3h »10 P u; 
2   IH /■AN 

-JL. qaSup\7 
3h2 \*P" VK 

.aßup 

__4_   a Sup    CO) (1) (0) (0) 

3h2R    )(V W >I\,P> - va0up( ?lp 

(0) 
+    V 

(0) 
„<>B33 (0) 

pi" 2b*p v+ vB«a633^; 

(15) 

L°l   - („^3 _4_   B3»3    (J)       (0) (0) 
,2*        > ( V

M +    V        + bY V ) , (0) 
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Hers F up...Ya up denote the various rigidity quantities defined in [1], 
while the tracer 6B identifies the contribution brought by the inertia 
terms in a-". As it may be seen, the constitutive equations (15) exhibit 
a coupling between the stretching and bending identified by the presence 

aS (1)    (0) 
in L-n. of the bending quantities (I.e., V« and V,) and in L.!;.. 

and L._v of stretching quantities (i.e., of V ). This physical coupling 

(occurlng in the constitutive equations) becomes Immaterial when the 
laminated composite is considered to be a symmetric layup. 

6.  THE GOVERNING EQUATIONS 

Thf: governing equations expressed in terms of the displacement 
quantities are obtained by replacing the stress-resultants and stress- 
couples (also expressed in terms of displacements) in the equations of 
motion of a shell element. 

The macroscopic equations of motion (in number equal with the number 
of unknowns) are obtained adequately by taking the moments of order zero 
and one of the 3D elastokinetic equations (see e.g. [1)). 

The equations of motion are: 

L(0) |a + p(0) f(0)       ° ; ba8L(0) + L(0) [a + p(0) " '(0) = °   (16) 

L(1)U  L(0) + p(l) f(i)  " 

Here the stress resultants and stress couples are to be considered in the 

sense of (14) while p,Q.. and p,.,. , according to the previous convention 
6    3      8 are to be considered as ztro quantities  Also, frn\t f (Cl\   and fn^  denote 

the inertia terms given by I /  W     U; 

(Ö)     (I)      (3) CO) 
/(0) = <"(1) \  + »(2) \  + "(4) V  ; '(0) ' "(1) V3     <17> 

(Ö)      (1)      (3) 

/(I) " (Dl(2) VX + m(3) VX + "(5) V™ 

where m/,* (i = 1,5) denote the reduced mass terms defined by 

N 

"(I) = L m- "iA p<k>(h<k>- h<k-i>> <18> 
k=l 

For computational purposes, we consider the case of a shallow panel whose 
reference surface projects on n as a rectangle. 

We will refer the points of a to a system of coordinates coinciding 
with the lines of curvature, these being assumed parallel to the axes of 
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orthotropy of individual layers and to the projection on n of the panel 
edges. In such a coordinate system (in which framework the distinction 
between contravariant, covariant and mixed tensors is immaterial and 
covariant differentiation reduces to partial differentiation), the 
governing equations may be compactly expressed as: 

£±JVj + F   - 0 (i,j 175) (19) 

where the displacement and the force vectors are: 

T       (0)       (0)       (0)       (1)       (1) 
[Vj] - [vx S Vx   , v2 i V2 , v3 E V3 , v4 a Vx , v5 E V2] 

[fj]7, - [0, 0, 0, 0, pj0)] (20) 

while the operators t,j are presented in [1]. 

7.  FIRST ORDER TRANSVERSE SHEAR DEFORMATION AND CLASSICAL THEORIES OF 
SHALLOW COMPOSITE SHELLS 

In order to compare the numerical results with the ones derived 
within the framework of FSDT and CST, several results pertaining to these 
theories will be recorded here. Consistent with the assumptions implied 
by FSDT, the associated constitutive equations are: 

aß _ aßwp( ' aßup( •    aß _    oßwp(U''  , „a3up(/ L(0) ~ F    % + G    % : L(l) " G    V + H 

2  a3w3 (1)  (0)     Y(0) K, VE"
WJ

( V + V,  + bY V 
(u)      lo   3,u)   u) Y 

«>P * "(1) = °    % + H    %    (2D 

;3 

2      2 
where K,.,.. and K.„v denote the shear correction factors. 

As in the previous case, the governing equations in terms of 
displacements may be obtained in a straightforward manner.  In the special 
case of the rectangular projection of the panel contour on II, the 
governing equations may be formally represented as in Eqs. (19). The 
operators L^;  associated with this case are displayed in [1J. For CST, 
the constitutive equations may be expressed as 

C - Faßup(e0) +Gaßup(i)  ;L^-Ga0Wp(e3  H*"'     (22) (0) tüp k\p   '       (1) wp UP 

where the strain measures are defined in [I]. Within the framework of 
CST, the transverse shear stress resultants have a static character only 
(in the sense that they intervene in the equation of motion only and not 

In the constitutive equations). Elimination of L... in (16)  , yields the 
equations of motion in an appropiate form as: ' 

L(0) a = /(0) •   V(0) + L(1)L + P..0) " '(0) " '(l)ß = °'   (23) 

wherefrom the governing equations in terms of the displacements may easily 
be obtained. For the case of doubly-curved panels of rectangular 
projection on II, they may be expressed as 
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where 

Li?s + fi 0    (i.j - 1,3) 

- (0)     (0)     (0) 
Iv,l    •  t *,,    V,,    V,J 

(24) 

(25) 

[Ft]
T - [0, 0, PJ0)] 

while the operators /... are displayed in [1]. 

8.  SOLUTION PROCEDURE 

A generalized Levy type solution considered in conjunction with the 
state space concept is used in order to analyze the free-vibration and 
buckling problems of composite shallow panels exhibiting a rectangular 
(£. x O projection on the plane n. 

The edges X2 * 0, £2 are considered invariably s.'.mply supported, 
while the remaining ones (x, ■ ± Aj/2) may have arbitrary combinations of 
edge conditions. We will follow Levy's procedure, and will represent the 
unknown quantities so as to satisfy identically the boundary conditions 

(0)   (0)   (1) 

'1 L22 L(0) 
22 

L(1) = 0 for HSDT and 
(BC) at x2 - 0, l2   (i.e. V3 - V,, 

(0)   (0) 
FSDT and V3 - ^  - L^ = L^ 

problem we are to drop the load term \>(n\   in tne governing equations (19) , 

(24), and represent the displacement quantities as: 

0 for CST). For the free vibration 

(0) 
V1(x1,x2;t) 

(0) 
V2(x1>X2;t)| 

1(0) 
V3(xl>x2;t)/ 

/(I) 
Vj^.Xjjt) 

I  V2(x1,x2;t) 

Wsln a2X2 

|Vm(x1)cos u2x2 

1Wm(x1)sin a2x2 

(X  (x. )sin a. x. 
Ul      i. L   Z 

lYm(x1)cos ct2x2 

JV 
(26) 

where j = /-T, a.    = mit/l-  and OJ denotes the eigenfrequency associated 

with the m  eigenmode. The representation (26) is available both for 

(0)  (0)    (0) 
FSDT and HSDT. For CST, in which framework only V,, V. and V. 

intervene, their representation given by (26) ^ 2 3 holds valid as well. 
For the static compressive buckling problem, tne'inertia terms are to be 

3 
dropped from the governing equations and in addition p,Q..   is to be given 
by 
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P(0) 

(0) (0) 
TV -TV 

11    3,11       *22    3,22 (27) 

where Tj^  and T22 denote the  compressive uniform loads acting on the panel 
edges.    The  representation  (26)   of  the displacement quantities  subsists  in 
this case,   too, where however, due to the non-oscillatory character of the 
problem,  wm -> 0.    Substitution of   (26)   into Eqs.   (19)   and  their FSDT 
counterparts results  in five differential equations  in the x^-coordinate, 
which may be presented,   for both HSDT and FSDT  in a  similar way as: 

Z' =■ AZ (28) 

where the matrix A is defined in [1] for both HSDT (and FSDT) as a 10 x 10 
matrix and for CST as a 8 r.  8 matrix. 

A formal solution to the equation (28) is given by 

Ax.. 
Z(xx) - e  K (29) 

Here K is a constant column vector associated with the boundary conditions 

while e   is defined in [1].  Substitution of (29) into the boundary 
conditions associated with the remaining two opposite edges x, = ± £ /2 
results in a homogeneous system of equations given by: 

MijKi = ° (30) 

where  (i,j = 1,10  for HSDT and FSDT)   and  (i,j  = 1,8 for CST) .    The 
condition of nontriviality applied  to  (30)   yields  the determinantal 
equation 

|M±JI   = 0 (31) 

wherefrom, the eigenfrequencies or the buckling loads (associated with the 
considered BC at Xi =■ ± JL /2) may be determined. 

9.  NUMERICAL RESULTS AND CONCLUSIONS 

A number of cases allowing one to obtain the trend of variation of 
eigenfrequencies ai.d of buckling loads with the variation of geometrical 
paramfitpr« anH/nr t-h« boundary conditions have beer, considered in [1].  IL 
was assumed that the thickness and the material for all the laminae are 
the same, having the following characteristics. For the eigenvlbration 
analysis: 

El - 25E2» E2 = E3> G12 " G13 " °'5 E2» 

G23 =• 0.2 E2; vi2 - vl3 - 0.25; v^ - 0.49, 

while for the buckling analysis: 

%l  - 40 E2; E2 - E3, G12 » G13 ■ 0.6 E2 

;23 - 0.5 E2, v 
12  V13 * °'25; V23 " °'49 
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The numerical results displayed In [1] allow one to Infer the following, 
a) In the case of non-thin panels or in the case of panels whose materials 
exhibit high orthotropy ratios, the effect of transverse shear deformation 
is always to be incorporated into the analysis. This is equivalent to 
saying that in these cases CST fails to predict adequately the panel 
response characteristics (in the sense that both the eigenfrequencies and 
the buckling loads are overpredicted, b) The fundamental frequencies 
obtained as per HSDT and FSDT, appear underpredicted within FSDT when an 
antisymmetric laminate is considered and overpredicted when an symmetric 
laminate is analyzed (throughout the present numerical analyses 
2     2 

K,,, - K 5/6).  c) The buckling loads predicted by FSDT are more 
(1)   (2) 

conservative when compared with their HSDT counterparts. The same 
conclusion emerges within every considered lamination scheme (i.e. 
symmetric or antisymmetric), d) The buckling loads experienced by the 
symmetrical laminates are higher than the ones arising in an antisymmetric 
laminate. In addition as it may be inferred this increase in the buckling 
loads is much higher within CPT than within FSDT and HSDT. For other 
numerical results and conclusions concerning this problem as well as for 
the effects of various edge conditions the reader is referred to the 
following Tables as well as to [1], The boundary conditions on the edges 
x-,  = ± Kll  are simply supported-simply supported (SS), simply supported- 
clamped (SC), clamped-clamped (CC), free-free (FF) , free-simply supported 
(FS), and free-clamped (FC). 
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Table I:    Hondinensionaltzed fundanental frequencies (■ = f„i,/h) /o/E,) of cross-ply 
if 1,/h • 10). spherical panels for various boundary conditions. .1. 

«/I, 

0-/90° 

0 790-/0- 

plate 

Theory 

HSDT 
FSDT 
CSI 

HSDT 
FSDT 
CST 

HSDT 
FSDT 
CST 

HSDT 
FSOT 
CST 

HSOT 
FSOT 
CST 

HSDT 
FSOT 
CST 

9.292 
9.247 
9.903 

8.966 
B.522 
9.588 

8.944 
8.900 
9.566 

12.200 
12.394 
15.290 

11.973 
12.178 
15.116 

11.958 
12.163 
15.104 

11.057 
11.004 
12.465 

10.691 
10.640 
12.165 

10.662 
10.612 
12.145 

14.084 
14.499 
22.640 

13.832 
14.264 
22.562 

13.815 
14.248 
22.557 

14.157 
14.083 
l£.d20 

12.772 
12.713 
15.822 

12.673 
12.622 
15.771 

17.387 
17.959 
32.785 

15.848 
16.487 
32.136 

15.739 
16.383 
32.093 

5.811 
5.787 
6.162 

5.790 
5.768 
6.132 

5.796 
5.774 
6.136 

3.894 
3.891 
4.009 

3.797 
3.794 
3.909 

3.790 
3.'88 
3.902 

6.130 
6.105 
6.510 

6.116 
6.093 
6.493 

6.123 
6.100 
O.500 

4.403 
4.397 
4.562 

4.329 
4.325 
4.490 

4.324 
4.320 
4.486 

6.533 
6.511 
6.971 

6.557 
6.535 
7.002 

6.566 
6.544 
7.014 

6.116 
6.163 
6.861 

6.097 
6.146 
6.863 

6.095 
6.144 
6.863 
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Table 2:    »ondtlwniionalUed fundamental freduenctts (Z -.  (ul,/h) /ill.) of cross-ply 

 I1.4.1..1     ...ula     t .... l^.it    Knimtlru    rniblit innt      * I tt        m    _    *0        a    fJ        1      fa cylindrical panels for various boundary condition«, 
ij/h • 10). 

«j • «. »,/», 

Lamination 

0-/90- 

R/l, 

plate 

0-/90-/0- 

pldte 

Theory 

HSO! 

fSOl 

CSI 

HSDT 

rSDl 

CS! 

HSOT 
FSOT 

CST 

HSOT 

FSUI 

CST 

HSOT 

I SOI 

CST 

HSDT 

FSD1 

CST 

8.959 
8.931 
9.598 

10.686 
10.647 
12.154 

12.705 
12.663 
15.747 

5.740 
5.716 
6.096 

6.054 
6.O30 
6.444 

6.547 
6.524 
7.014 

8.93« 
8.894 
9.560 

10.656 
10.609 
12.136 

12.672 
12.623 
15.757 

5.786 
5.763 
6.128 

6.110 
6.087 
6.489 

6.557 
6.535 
7.008 

8.944 
8.900 
9.566 

10.662 
10.612 
12.145 

12.673 
12.622 
15.771 

5.796 
5.774 
6.136 

6.123 
6,100 
6.500 

6.566 
6.544 
7.014 

12.009 
12.212 
16.136 

13.B54 
14.284 
22.560 

15.768 
16.408 
32.062 

3.776 
3.773 
3.894 

4.306 
4.301 
4.472 

6.127 
6.176 
6.901 

11.961 
12.166 
15.106 

13.817 
14.250 
22.557 

15.741 
16.385 
32.091 

3.789 
3.787 
3.902 

4.323 
4.318 
4.484 

6.097 
6.146 
6.866 

11.958 
12.163 
15.104 

13.815 
14.248 
22.557 

15.739 
16.383 
32.093 

3.790 
3.788 
3.902 

4.324 
4.320 
4.485 

6.095 
6.144 
6.863 

Table 3:    Nondlmenstonallzed critical buckling loads (T,    s T,,i?/E,h3. T,    .0) of 
cross-ply spherical panels for various boundary conanlons, {s,/la «  1, 1 

;/h • 10). 

Theory 

0-/90- 

0 790-/0- 

I 

= 
HSDT 

FSOl 

CST 

20 
HSOT 

fSOT 

1ST 

plate 
HSOT 

FSOT 

CST 

5 
HSOT 

FSOT 

CST 

20 
USD I 
FSPT 

CS- 

plate 
HSOT 

FSOT 

CST 

12.431 
12.214 
13.877 

17.995 
17.685 
22.341 

22.376 
21.511 
32.632 

5.003 
4.936 
5.552 

5.520 
5.447 
6.132 

6.290 
6.216 
7.028 

11.610 
11.406 
13.015 

16.812 
16.526 
21.193 

20.935 
20.131 
31.333 

4.916 
4.852 
5.432 

5.424 
5.355 
6.010 

6.240 
6.170 
6.972 

11.555 
11.353 
12.937 

16.720 
16.437 
21.116 

20.859 
20.067 
31.280 

4.916 
4.851 
5.425 

5.421 
5.351 
6.003 

6.237 
6.166 
6.968 

13.154 
13.072 
18.726 

15.209 
15.157 
29.888 

18.522 
18.427 
40.100 

2.045 
2.044 
2.139 

2.582 
2.579 
2.724 

5.563 
5.574 
6.972 

12.844 
12.7/3 
18.402 

14.624 
14.589 
29.527 

16.789 
16.799 
39.274 

1.932 
1.933 
2.020 

2.479 
2.478 
2.618 

5.490 
5.502 
6.931 

12.824 
12.753 
18.380 

14.585 
14.551 
29.503 

16.649 
16.662 
39.219 

1.925 
1.925 
2.012 

2.472 
2.471 
2.611 

5.485 
5.497 
6.928 

Table 4:    NO ncM men si anal ued critical buckling  loacs {T 
cross-ply cylindrica" 

T, 

<B1 

2        3 
'22  '   '22»/E

2
h  •  Tn  " °)  °f 

panels  for various bounaary conditions. 
1,   l,/h -  10) "I' 

Theory 

0 /90- 

plate 

079070" 

i 
plate 

FSOT 

CST 

HSOT 

FSOT 

CST 

HSDT 

FSOT 

CST 

HSDT 

FSOT 

CST 

HSDT 

FSOT 
CST 

HSOT 

FSOT 

CST 

11. two 
11.532 
13.187 

10.9^7 
16.688 
21.385 

20.790 
20,026 
31.298 

4.878 
4.811 
5.425 

5.38i 
5.310 
6.001 

6.267 
6.191 
7.051 

11.549 
11.369 
12.972 

16.730 
16.458 
21.134 

20.841 
20.057 
31.281 

4.909 
4.844 
5.425 

5.414 
5.344 
6.002 

6.233 
6.162 
6.974 

11.555 
11.353 
12.957 

16.720 
16.437 
21.116 

20.859 
20.067 
31.280 

4.916 
4.851 
5.425 

5.421 
5.351 
6.003 

6.237 
6.166 
6.968 

12.831 
12.759 
18.394 

14.593 
14.557 
29.506 

16.657 
16.669 
38.223 

1.918 
1.917 
2.012 

2.464 
2.462 
2.609 

5.553 
5.564 
7.018 

12.824 
12.753 
18.381 

14.586 
14.551 
29.503 

16.649 
16.662 
39.219 

1.924 
1.925 
2.012 

2.472 
2.470 
2.611 

5.490 
5.601 
6 933 

12.824 
12.753 
18.380 

14.585 
14.S51 
29.503 

16.649 
16.642 
39.21* 

1.925 
1.925 
2.012 

2.472 
2.471 
2.611 

5.485 
5.497 
6.92« 
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ON THE FREE VIBRATIONS OF LAMINATED CONICAL SHELLS 
OF VARIABLE THICKNESS 

N.Sankaranarayanan, K.Chandrcsekaran and G.Ramaiyan 
Anna University,Madras, India. 

1, INTRODUCTION 

Conical shells of constant and variable thickness find 
widespread applications as structural elements in missiles, nose-cones 
and off-shore structures. Because of their better specific and 
directional properties,laminated constructions of these elements are 
increasingly preferred. Recently the use of such structural elements 
as dynamic absorbers, in controlling machinery vibrations, has been 
suggested [1]. The study of their free vibrational characteristics 
for evaluating their dynamical behaviour is important. A simple and 
straight forward procedure, based on the Rayleigh-Ritz technique, for 
the free vibrational analysis of laminated conical shells of variable 
thickness, has been given by the authors [2,3]. The present paper 
deals with the experimental determination of the natural frequencies 
and the corresponding mode-shapes of two models and their comparison 
with the theoretical values. 

2. OUTLINE OF THE THEORY 

The detailed theoretical formulation and the solution procedure 
have been given in reference [j]. Love's theory, as extended to the 
analysis of laminated thin shells, forms the basis of the formulation. 
A general lamination sequence, with layers of specially orthotropic 
materials, is considered. A linear variation in thickness, with the 
thickness increasing proportional to the meridional distance from the 
vertex, is assumed. To facilitate easy computations a transformation 
of the meridional coordinate is effected as given by, 

I 
Xjl/IXj-X, o<yi 1 

A separable solution for the displacements is assumed as, 

itOt 
uly,9,t) 

v(y,8,t) 

w(y,8,t) 

U(y)  cos n6 e 

V(y)  sin n0 e 
itOt 

W(y) cos n6 e 
itOt 

<i; 

(?) 

where, u,v and w are the displacements at point on the reference 
surface along the three coordinate axes, as shown in Figure 1. A 
standard Rayleigh-Ritz procedure is adopted for the formulation of the 
free vibration problem using assumed displacement functions which 
completely  satisfy  the  geometric  boundary 
displacements are assumed in the following f ..i : 

M M 
u(y) = Z  a, f!i,y)r V(y) =Z-b, g(i,y) and W(y) 

conditions. The 

M 

L-.O   1 
p!i,y)  (3) 
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FIGURE 1  GEOMETRY OF SHELL 

In equation (3) a., b. and c. are undetermined constants. The 
functions f, g ana p, satisfying different geometric boundary 
conditions are given explicitly, in Table 1. On minimising the total 
potential with respect to the undetermined constants, a generalised 
algebraic eigenvalue problem results. A simultaneous iteration 
technique is used to obtain the dominant eigenvalues and eigenvectors 
and hence the natural frequencies and mode shapes. 

TABLE 1 

DISPLACEMENT FUNCTIONS 

End conditions 
Small End - 
Large End 

Geometric 
cond 

Boundary 
itions 

Small End 
y = 0 

Large End 
y = 1 

Fixed-Fixed U = 0 
V = 0 
W = 0 

dW/dy = 0 

U = 0 
V = 0 
W = 0 

dK/dy = 0 

Hinged-Hinged U = 0 
V - C 
W = 0 

U = 0 
V = U 
W = 0 

Fixed-Free U = 0 
V = 0 
W = C 

dW/dy = 0 
~ 

Free-Fixed 
U = 0 
V = 0 
W = 0 

dW/dy = 0 

Assumed displacement 
functions 

f(i,y> 
g(i,y) 

i+1 

d-y)ya 

P(i,y) 

(1-y»yiT'    (i-y)2yi+2 

M-y)y i+1 

yi+1      yi+2 

<1W     (l-y)V 
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3. EXPERIMENTAL INVESTIGATIONS 

Inorder to check the validity of the analysis procedure, 
experiments were carried out. on two shell models. A sweep test, using 
an electro-dynamic exciter and other related instrumentation, was 
conducted on the first model. A modal analysis test, using a FFT 
analyser and an instrumented hammer, was carried out on the other 
model. These two tests are described below. 

3.1   Sweep Test 

3.1.1 Fabrication Of The Model 

A conical shell model, made of aluminium, was fabricated at the 
workshop, out of a plate cut out to the required development and then 
rolled to shape. The two edges were welded together by TIG welding, 
to form the meridional seam. A thick end flange was welded on to the 
smaller end of the shell, for the purposes of machining and mounting. 
The shell was then mounted on a specially designed turning fixture and 
machined to provide the required variation in thickness. 

3.1.2 Experimental Procedure 

The test model was mounted, with its axis horizontal, using 
fixtures. Two very heavy and sturdy channels provided the support for 
a thick plate on which the flanged end of the shell was rigidly 
bolted. The entire set-up was then mounted on an isolation bed, to 
eliminate external influences. The schematic diagram of the entire 
test set-up is shown in Figure 2a. The photograph of the same is 
also provided. The electrodynamic exciter was located at a point very 
near the free end of the shell. An audio-frequency oscillator was 
used to vary the frequency of the excitation. The response was picked 
up using a piezo-electric accelerometer. The signal from the 
accelerometer, amplified by a charge amplifier, after passing through 
a ban.3 -pass filter, was fed to one of the traces of a dual-trace 
oscilloscope. The test procedure consisted of varying the frequency 
of excitation and observing the response to locate the natural 
frequencies. Several test rons were made to eliminate spurious 
frequencies and to provide reproducible results. After the natural 
frequencies were identified, at each of these frequencies, the pick-up 
was mounted at several grid points marked on the surface cf the shell, 
to identify the mode shapes. By oDserving the variation of the signal 
alo'üy Lhc ucexiuiaiib and alor.g tne circumrerance at several points on 
the meridians, the modal parameters for the particular frequency were 
determined. 

3.1.3 Experiment On The Laminated Model 

The aluminium shell model, used in the previous test, was laid 
up on the inner surface, with a composite consisting of chopped strand 
glass mat reinforcement and a polyester resin matrix. A number of 
layers were laid to provide the required tl.ickness. The laminated 
shell was once again mounted on the turning fixture on a lathe and 
machined to give the required variation in thickness. Simultaneously, 
a seperate plate was laid up of the same composite,  from which 
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(b) MODAL ANALYSIS 

FIGURE 2   SCHEMATIC  DIAGRAM  OF  THE  EXPERIMENTAL  SETUP 
AND THE RELATED INSTRUMENTATION 
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standard specimen were cut out in differenct directions, for tensile 
tests. These were tested in an UTM, to determine the Young's modulus 
for the composite. By standard immersion tests, the density of the 
composite was also determined. The values of the elastic modulus 
determined from the various specimen varied only marginally, 
indicating that the behaviour resembled that of an isotropic 
material. The avarage of all these values was taken as the modulus of 
the composite. The material properties are specified in Table 2. The 
sweep test on the laminated model was then conducted in the same 
manner as described earlier. 

TABLE  2 

MATERIAL PROPERTIES OF THE EXPERIMENTAL SHELL LAYERS 

Material Density 

f 

Young's 
modulus 
E 
XX 

Young's 
modulus 
Eoo 

Shear 
modulus 

G 

Poison's 
Ratio 

4   2  4 
x10 N.S /m 

10    2 
x10  N/m 

10    2 
x10lu N/m x1010 N/m'2 

Aluminium 0.2793 6.750 6.750 2.5960 0.30 

GFRP 0.1380 0.416 0.416 0.1664 0.25 

3.2.  Modal Analysis Using FFT Analyser 

3.2.1. Exper imental model 

One difficulty, encountered in the previous test, was that the 
shell possessed a high stiffness and consequently the natural 
frequencies were considerably higher. This resulted in difficulties 
of identifying the mode shapes corresponding to higher meridional 
modes and for higher circumferantial wave numbers. Hence it was 
decided to go in for another model, much thinner than the previous 
one, so that more frequencies could be identified. The second model 
was faoncated in the same manner as the first one. However, because 
of the difficulties encountered in machining the model to provide the 
variation in thickness, it was not possible to considerably reduce the 
thickness. This resulted in the same difficultues faced with respect 
to the higher modes. To enhance the credibility, however, it was 
decided to go in for a modal analysis test this time. 

3.2.2. Test procedure 

* 

A schematic diagram of the test set-up is shown in Figure 2b. A 
photograph of the same is also provided. The heart of the set-up is 
the FFT analyser interfaced to a micro-computer.  A modal analysis 
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software provides the results of the analysis. This software consists 
of four segments, viz., the set-up step, the mode identification step, 
the print step and the display step. In the first step, the 
parameters that describe the particular test, like the number of 
transfer functions, the .transducer sensitivities, the storage 
locations, the block size, etc., are specified to provide a 
caliberation in engineering units. After measurements are made, in 
the second step, the modal parameters are identified. The last two 
steps are for providing the results of these measurements by way of 
natural frequencies, the mode-shapes, the damping ratios, etc. 
Animated displays of mode-shapes are also possible. 

For the purpose of the test, 48 grid points on the shell were 
marked, to serve as points of excitation. The excitation was provided 
by an instrumented hammer. Impulses were given at all the 48 points, 
by striking with the hammer. The response was picked up by an 
accelerometer from a selected fixed point and fed to the FFT analyser. 
To ensure reasonable statistical accuracy, 10 recordings were taken 
for each point of excitation. For all frequencies below 2000 Hz, the 
natural frequencies and the corresponding mode-shapes were obtained. 

PHOTOGRAPHS  SHOWING  THE TEST SETUP,  SWEEP TEST  (LEFT) 
AND MODAL ANALYSIS (RIGHT) 

4. RESULTS AND DISCUSSIONS 

4.1 Results of Lhe Sweep test 

Figure 3 shows the comparison between the theoretically evaluated 
natural frequencies for the first meridional mode, for the homogeneous 
shell, and the experimentally determined ones.  A similar comparison 
is provided for the laminated model in Figure 4. 
figures,  the  crend is the same.   For lower 
circumferantial  wave number,  viz.,  n=1  and 
considerable difference between the two frequencies. 
values of  n,  these two move closer to each other. 

values of the measured frequencies, corresponding to 
could be due to the reason that these are the inextensional ones. 
Seide [4] has reported that for lower circumferantial wave numbers, 
the  condition of restraint on. circumferantial  and  meridional 

In both these 
values of the 
n=2,  there is 
For the higher 
The very low 

n=1 and n=2 , 
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displacements of the edges significantly affects the frequencies. The 
frequency of a shell with zero circumferantial shear force is 
considerably lower than that for a shell with zero circumferantial 
displacement. Arnold and Warburton [5] have also commented on this 
aspect, in the case of cylindrical shells. For cylindrical shells 
with circumferantially restrained edges, the energy associated with 
stretching of the middle surface is predominant, for low values of n. 
But the edge condition of zero circumferantial shear force inhibits 
the building up of a membrane stretching force and the vibration mode 
tends to be predominantly inextensional. This acccur.t.^ for the lower 
frequencies. For larger values of 'n' , bending pr 'inates, and 
edge effects die out, resulting in higher frequencit; -ice it is to 
be concluded that, in the present case, there mig., . e been some 
circumferantial slipping of the edge at the support, and only partial 
restraint was provided. Similar experiences have been reported by 
Weingarten and Gelman [6], Chandrasekaran and Ramamurti [7]and by 
Wilkins et al. [8]. The difficulties in identifying the mode-shapes 
for higher frequencies have also been experienced by Seide [4]. 
Considering all these aspects, it is observed that satisfactory 
comparison between theory and experiment has been obtained. 

4.2 Results of the modal analysis test 

Table 3 provides the comparison between theoretical and 
experimental results for the second model. The modal parameters were 
obtained from the displayed mode-shapes. Figure 5 shows the 
comparison by way of a graph. Once again, it is observed that for 
lower values of n, the measured frequencies are much lower than the 
predicted ones. For higher values of n, the comparison is better. 
Similar arguments as made earlier, could be advanced regarding the 
results. On the whole, there is reasonable agreement between the 
results. One more point to be noted is the versatality and the ease 
of the modal analysis procedure compared to the sweep test procedure. 

, The vast difference between the two methods has to be experienced to 
be understood. 

TABLE 3. 

COMPARISON  OF  EXPERIMENTAL AND THEORETICAL FREQUENCIES 
MODAL ANALYSIS. 

Theoretical Experimental Damping 
m n Frequencies Frequencies factor 

Hz Hz (Experimental) 

1 1 841   _. 
1 2 429 457.5 0.4453 
1 3 525 545.8 1.3800 | 
1 4 903 838. H 1.4386 
I 5 1419 1252.3 1.8809 i 
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FUTURE TRENDS IN MODAL ANALYSIS 

Bob Rost, Ph.D. Dave Brown, Ph.D. 

Department of Mechanical and Industrial Engineering 
University Of Cincinnati 
Cincinnati, Ohio 45221 

1. ABSTRACT 

Since 1980, the technical developments in the area of modal analysis has been accelerating. 
This period of development has been characterized by the influx of new researchers and international 
interest in the area. It has been the emergences of multiple-input/multiple-output measurement 
techniques and parameter identification methods based on the redundant information between 
multiple rows/columns of the frequency response function matrix. Much of the work has been driven 
by the need for better computer models to predict hardware changes for improved design. The 
development of improved measurement and data analysis equipment has triggered many of the newer 
developments. This paper will examine some of the current and future development trends in the 
area of modal analysis. 

2. INTRODUCTION 

Over the past ten years, there has been a significant increase in the technology associated with 
modal analysis. [1-5] These developments have been primarily in the areas of parameter 
identification. The majority of this effort has been documented in [he proceeding of the 
International Modal Analysis Conference (IMAC). These developments have triggered more recent 
efforts in the measurement and signal processing areas. New techniques for measuring frequency 
response functions for multiple-inputs and multiple-outputs have been developed. Also, new 
algorithms to compute the "best" frequency response function in the presence of noise on both the 
input and the output have been written. 

In this paper, work in progress at the University of Cincinnati and other research institutions 
as well as future trends tnat are just starting to be investigated will be discussed for the following 
areas: 

• Measurement and Signal Processing 

• Parameter Estimation 

• Modeling 

• Non-linearities 
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In the measurement and parameter estimations areas, the problem areas are broken into the 
following sub categories: 

• Troubleshooting 

• Finite Element Verification and Perturbation 

. Modal Model Generation 

A brief review of the current technology and future trends will be given for each category with 
a more detailed discussion of those technologies currently under development at the University of 
Cincinnati. 

3. HISTORY 

Modal testing during the mid 1960's was based upon sine testing methods. [6,7] Forced 
normal mode testing with multiple transducers for the affluent users and roving transducers for the 
ordinary user was the most common experimental method to determine the structures damped 
natural frequency, damping, and mode shapes. During this period of time, the transducer and signal 
conditioning for a single channel was between 1500 and 3000 dollars wliich limited the multiple 
transducer testing to large companies and/or government agencies. It was not uncommon for a large 
scale modal test to require months of data collection and data reduction. 

Tracking filters and Co-Quad Analyzers were a step improvement in the technology for the 
roving transducer testing but mode shapes were measured by roving a transducer over the test object 
one eigenvalue (natural frequency) at time to determine quadrature mode shapes. Testing was very 
slow and quadrature mode shapes were insufficient to separate closely coupled modes. In general, 
the forced normal mode or force appropriation methods which could separate the closely coupled 
modes were not practical with roving transducers. 

In, the late sixties and early seventies frequency response parameter estimation methods were 
developed to separate closel" coupled modes for the roving transducer testing methods. These 
methods required hundreds of frequency response functions to be estimated which was not practical 
to with swept sine testing methods. With the advent of the Fourier analyzers systems which were 
developed in the late sixties and perfected during the early seventies it became practical to measure 
many more degrees of freedom and therefore improve the system parameters estimated from a modal 
test. The Fourier analyzer also reduced the time required to make the necessary measurements to a 
much more reasonable time frame. 

During, the mid seventies the primary developments were single-input parameter estimation 
broadband excitation ami iigiiai processing tor these broadband methods. [8,9,10] For example: 

• Parameter Estimation Techniques 

i.   Single Degree of Freedom 

ii.   Circle Fits 

iii.   Least Squares Complex Exponential ' 
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• Excitation Techniques 

i.   Impact Testing 

a. Impact Hammers 

b. Force Windows 

c. Exponential Windows 

ii.   Random 

a. Pure 

b. Pseudo 

c. Periodic 

d. Transient or Burst 

iii.   Chirps 

a. Fast Sweeps 

b. Periodic 

These methods, coupled with animated displays, were adequate for general trouble-shooting 
and were used with success during the mid-seventies. 

During the late seventies, greater emphasis was placed upon Finite Element Model 
Verification and Modal Modeling. Initially, it was telt that single input testing techniques and 
parameter estimation would separate closely coupled modes and could be used for these applications. 
As single input methods were perfected, it became evident that for regions of high modal density and 
coupling, these methods were inadequate. 

Because of these limitations, it became obvious that multiple measurements (multiple- 
inputs/multiple-outputs) should be used to estimate global modal parameters. This technology 
guarantees consistent estimates of frequency and damping for measurements that are acquired 
simultaneously. [1-5] Therefore, in the late seventies, modal testing reached the same point that it 
had reached in the mid sixties with normal mode testing, measuring possibly hundreds of channels 
simultaneously. 

Fortunately, in the late seventies and the early eighties with advances in electronics and 
computer technology, it was practical to consider developing a system with a low cost per channel, 

1 making it possible to make hundreds of simultaneous measurements. Tie problem was to initiate 
I commercial development of such a system. It was chicken and egg problem, a commercial vendor 

had to be guaranteed of a sufficient market and the market could not be developed until the cost per 
channel was low enough. 

In order to convince vendors, it was necessary to develop the other parts of a modal testing 
system, the signal processing ™<\ the parameter estimation. Multi-input broadband testing methods 
were developed in the late seventies and the early eighties. During the eighties a large number of 
multi-input parameter estimation algorithms were developed. It was the development of the time 
domain polyreference algorithm which triggered the parameter estimation developments. Currently, 
there are a large number of rime, frequency and spatial domain methods which can be used to 
estimate modal parameters for multiple-input frequency response functions. In fact, most of the 
methods can be unified and derived from a common origin. [4] A much better understanding of the 
linear parameter estimation problem now exists. 

During the mid-eighties, prototype transducer systems were developed to demonstrate the 
feasibility of producing low cost per channel measuring systems.[ll] These system were designed so 
that the calibration, cabling and connectivity could be automated. 
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4. FUTURE TRENDS IN MODAL ANALYSIS 
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In this section a short description of future trends will be developed according to the 
categories and sub categories given in the introduction. 

4.1 Measurement and Signal Processing 

Transducers and Signal Conditioning 

The current trend in transducer design for modal analysis has been to build small light 
weight but sensitive transducers. These transducers, in general, have built-in electronics either 
charge or voltage with the resulting low output impedance, fhe low output impedance means 
unshielded and inexpensive cabling can often be used. The noise floor in the newer built-in 
electronics has improved drastically in the last several years making the newer transducers 
competitive against the transducers with external charge amplifiers. 

The cost has dropped from the $1500 - $3000 per channel price range of the 1960's to 
$120 - $400 for the transducer/signal conditioning today. 

The cost of the filtering and digital signal processing has also been dropping drastically 
in the last several years with the development of new integrated circuits for both analog and 
digital filtering. The top of the line systems which includes high sampling rates and processing 
speed, anti-aliasing in the 100 db per octave range and build-in zoom per channel cost in the 
$2000-3000 per channel range. In the future for the high channel count systems, the sampling 
rate and signal processing can be compromised to reduce the cost. This will be covered in 
more detail later in the paper. 

The types of data acquisition depends upon the application, therefore a brief summary 
of the trends for the primary modal applications are given below: 

• Trouble Shooting 

With the exception of the aerospace industry, trouble shooting vibration and 
acoustic problems has historically been the primary application of modal analysis. 
These modal analysis applications are characterized by quick look capability on 
operating system very often located in the field. The success of trouble shooting has 
played a significant role in expanding the field of modal analysis. 

• Number of Channels 

In the trouble shooting area, the emphasis on data acquisition hardware 
will be on portability and flexibility. The system will be 2 to 8 high cost channels 
in K small package. Several special signal conditioning channels will also be 
included for tachometer signals, since operating data is important in the trouble 
shooting applications. 

• Transducers and Signal Conditioning 

The transducers in the trouble shooting area will be a conventional 
transducers (accelerometers, load cells, microphones, strain gages, etc) that will 
operate in a variety of environmental conditions.   The frequency range, 
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sensitivity, and size will be depend upon the application. 

Signal Processing 

A full array of signal processing tools will be available including Fast 
Fourier Transforms, statistical functions, window functions for many types of 
data, octave band analysis, waterfall displays,etc. 

1 

Testing Configuration 

Very often, the operating configuration is tested in the trouble shooting 
applications. Of course, laboratory test are performed and the testing 
configuration can be free-free, fixed or a simulated operating constraint. 
Therefore, research in the area of correlating results from lab modal tests and 
operating tests is an ongoing and important area Completing this step would be 
a major improvement in the entire modal analysis area. It would allow for a 
much better understanding of the entire problem. 

Excitation 

For trouble shooting applications, impact testing or operating inputs is 
often used. In these cases, a quick look at natural frequencies and sometimes 
reduced mode shapes is obtained. For laboratory testing, electro-mechanical or 
hydraulic exciters are used with random or some other broadband excilation 
method. 

In the future, improved testing methods with operating inputs are likely 
to be developed. This may include the application of known inputs on rotating 
components to compute operating frequency response functions. 

4.2 Finite Element Verification and Perturbation 

In the finite element verification area, it is important that the modal analysis perform an 
excellent job of extracting the modal parameters. Therefore, finite element verification requires the 
highest levels of tecluiology both from a measurement standpoint and data analysis. Therefore, the 
most advanced parameter estimation algorithms will be used and these algorithms will require the 
most consistent measurements. Therefore, simultaneous measurements should be made if possible. 
In general, poorer quality simultaneous measurements are better than excellent independent 
measurements. 

• Number of Channels 

Large numbers of simultaneous response channels (256-1024) with a number of 
simultaneous input channels is very important for this application. This obvious will depend 
upon the size of the test article but for aircraft, spacecraft, automobiles, machine tools, etc. the 
channels count should be high in order to make the best possible measurements. 

.. 

Transducers and Signal Conditioning 

In order measure hundreds of channels of data, the channel cost has to be low. 
Therefore, the frequency range and environmental package can be compromised. The 
accelerometers are generally very low mass but very high sensitivity.   They should be 
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permanently mounted to the test object so that retests will be as consistent as possible. 

For large measurement arrays, automatic calibration and transducer identification 
(point number, direction, serial number, etc) methods will be developed to handle the cabling 
and connectivity problems. 

Optical techniques will be developed to supplement and/or replace conventional 
accelerometers especially for very small or very large structures. With optical measurements 
spatial domain parameter estimation will work well. 

> Signal Processing 

Presently, signal processing for hundreds of simultaneous broadband channels would 
be prohibitively expensive for most users. One solution will be to use sine testing, this will be 
the least expensive solution. Currently, at the University of Cincinnati the development of a 
spatial sine testing system is high priority. This system promises to be very inexpensive per 
channel and has a number of advantages from a data signal processing standpoint and also 
from a data analysis standpoint. [29-31] 

The second method and one that is currently used will be to multiplex banks of 
transducers into a multi-channel front end. This has the disadvantage that data is not taken 
completely simultaneous which is desirable. However, this can be minimized if the all the 
transducers are premounted on the structure to minimize frequency shifts. 

In the more distant future broadband systems capable of sampling hundreds of 
channels will be developed at reasonable cost. 

• Testing Configurations 

For finite element modeling, the current testing procedures is to test the structure 
cither in a free-free or a fixed configuration. The free-free testing configuration is in general 
the easiest configuration for laboratory modal testing. Unfortunately, it doesn't allow 
measurement of many of the constraint modes which can be very important in many modeling 
circumstances. 

In the future, mass loaded or perturbed ^jnfigurations may be tested. A number of 
perturbed configurations including the free-free and fixed cases may used to confirm a single 
finite element model. Tnis becomes possible if all the transducers are premounted, in this 
case the amount of time to test a given configuration is dtterrm.ied primarily by the data 
acquisition time. 

• Excitation 

Almost all finite element verification tests are conducted in a laboratory test. For this 
testing, electro-mechanical or hydraulic exciter systems are used. Historically, this has been 
primarily with broadband excitation signal but rr.ay include more sine testing in the near 
future. For very large structures initial conditions or operating inputs may be used. 

4.3 Moda! Model Generation 

In the future, theie will be a greater use of modal models generated directly from test data 
For this case, even more stringent requirements are placed upon the modal testing procedures. 
However, the comments which were applied to the finite element verification are applicable to this 
case, 
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4.4 Parameter Estimation 

Currently, there is a great deal literature in the multi-input parameter estimation area. Most 
of this literature can be found in the proceedings of the International Modal Analysis Conference 
(IMAC). It was the development of the time domain polyreference algorithm in the early 1980's 
which has trigger much of the recent development. The polyreference method changed the major 
concepts on parameter estimation from curve fitting to linear system analysis. 

Tne linear system analysis has unified many of the existing techniques. 

A list of the most popular current techniques are given below: 

Time Domain 

• Complex Exponential 

. ITD (Ibrahim Time Domain) 

• Polyreference 

. ERA 

• Direct Parameter Estimation 

• Frequency Domain 

• Orthogonal Polynomial 

• Polyreference 

s Direct Parameter Estimation 

« Spatial Domain 

• Littie-MAC 

. Multi-MAC 

• Complex Mode Indicator Function (CMIF) 

A summary of the characteristics of the above techniques is given in Table 1. 
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One of the newer concepts in parameter estimation is the concept of a characteristic 
space.[29-31] This space is defined as a volume (three-dimensional frequency response or unit 
impulse matrix) with the three axis corresponding to two spatial and one temporal. The two spatial 
axis corresponds to the input locations and output locations, and the temporal axis is either time or 
frequency. This concept coupled with linear system analysis allows the derivation from a common 
origin of most of the methods listed above. 

The future trends in the parameter estimation area appears to be more of the same. Using 
perhaps more spatial and perturbated configuration information in the estimation process. 
Perturbated configuration information refers* to the process of testing, a system in a number of 
constrained testing configurations (from free-free, mass loaded to fixed) and using all of this 
information in the estimation process. 

Future parameter estimation procedure will make better use of the finite element models as 
weighting matrices. Also the finite model will be used more directly to choose the input and output 
points for the modal test. 

Non-linear estimation procedures are in the initial phases of development and will be pursued 
more heavily in the future. 

4.5 Non-linearities 

Non-linearities ha"e always been a source of measurement errors in modal testing. New 
methods are being evaluated which help to identify and document nonlinear system parameters. 
Some of these techniques are based on Hubert Transforms [23-28] while others are based on higher 
order frequency response function algorithms. [23-28] Figure 1 is a summary of system non- 
linearities. 
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Figure 1. Evaluation of Linear and Nonlinear Systems 
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A great deal of work will be performed in the future on understanding non-linearities. 

5. SUMMARY 

This paper is brief survey on present state-of-the-art and future trends in the area of modal 
analysis. The main concentration has K- -1 in the area of measurements, signal processing and 
parameter estimation. 
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IMPULSE TESTING TECHNIQUES APPLIED TO LARGE VIBRATION ISOLATORS 

G. R. Tomlinson and P. Ml las 

Heriot-Watt University 
Department of Mechanical Engineering 

James Nasmyth Building 
Riccarton 
Edinburgh 
EH14 4AS 

1. INTRODUCTION 

The low and high frequency vibration isolation and transmissibi1ity 
properties of resilient mounts have been widely described by many authors 

[1-*43. 

The 3xistence of shear and compressional waves in vibration 
isolators is not usually a problem in the majority of applications but in 
some cases the high frequency signatures can play an important role in 
relation to the structure borne sound paths. 

Situations where knowledge of these are necessary usually relate to 
military requirements although components which are subjected to a wide 
range of excitation frequencies can suffer latigue due to efficient wave 
transmission patns at high frequencies. In the case of large vibration 
isolators (i.e. those capable of supporting masses in excess of say 
1000kg) the shear and compressIonal waves can occur at relatively low 
frequencies, certainly below 150 Hz. In order to measure the transmission 
characteristics of such mounts, procedures involving sophisticated and 
expensive equipment are often employed. Figure 1 shows a diagrammatic 
sketch of such a test used to measure the transmissibi1ity characteristics 
of a large vibratior isolator. The need for such an arrangement stems 
from the requirement of the large pre-load. However in many cases the 
pre-load will not cause a significant change in the material properties 
[5] which in turn implies that the wave effects will also not change 
significantly. 

This paper describes a very simple procedure for identifying the wave 
effects in large mounts using the well known impulse testing method. It 
is based upon the fact that a pre-load is not necessary to characterise 
the principal »-empress i c-a I önu »near wave frequencies. It is considered 
that the procedure cou'd be gainfully employed in assessing the relative 
performance of vibration isolators. 

■r 
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2. BASIS OF THE PROCEDURE 

The basic idea Is very simple. If one considers the Input/output 
relations for a mass and spring (modelled as a complex stiffness) as shown 
In Figure 2<t,tthe resulting equations for harmonic excitation are, 

T - 

G(u) 

(1 ♦ aV/2 

1  [(1 

x 

nV ♦ S*)m 

2    2.2 
; n ■ U A) 

Fin/, [(1 nV + <5
2]1/2 

(1) 

(2) 

If 8 < 1.0 ; (1+5 )1/2-> 1.0 and equations (1) and (2) become the 
same. By locating the vibration mount on a base with a very high dynamic 
impedance characteristic (compared to the mount) and applying an impulsive 
force as the input, the resulting transient response can be used to obtain 
the frequency response function G(u) of the mount, which to a first 
approximation, resembles equation (2) .Thus one can Identify the resonance 
condition. 

2.1  Compresslonal Wave Character1st ion 

The type of vibration Isolator in question Is shown in Figure 1. 
Some of these may be prismatic, whilst others may be quite complex in 
shape. For purposes of analytical and experimental comparison the 
isolators considered in this paper resemble a rectangular paral lelplped. 
The material properties of the mount obtained from a series of static 
compression and shear tests are shown In Table 1. These properties were 
used In the following analysis for calculating the wave frequencies. 

The compress1ona1 wave characteristics are calculated by applying 
the Love Theory [6]. This assumes that under deformation plane sections 
remain plane and that the longitudinal stresses are uniformly distributed 
across the section. Radial inertia effects are Included with this theory, 
this being important since the aspect ratio (width/height) of the isolator 
is close to unity.  The Inertance of the system can be shown to be [4] 

IN 
-u 'sin (N L) 

x2 = 0 A [cos(N L)-y(N L)sin(N L)] 
(3) 

-u^lnfN L) 

A  c 
(4) 
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2 . 
U p/ 

1 - u p v  k 

t      A (J p 
A  = r— 

(5) 

'■ m  

p is the mass density, y the ratio of the supported mass to the mass 
of the isolator, k is the polar radius of gyration of the isolator, A is 
the cross-sectional area, L is tt.*> length, E V the Youngs Modulus and 
Poissons ratio. The transmlssibi1it> function corresponding to equation 
(1) is [4], 

1 
T = 

cos(N L)-y(N UsfnCN L) 
(6) 

Equations (3) and (6) show that the conditions in terms of the 
resonance frequencies are the same, i.e. e -> 0. 

Equations (3) and (6) are shown plotted in Figure 3 for a simulated 
isolator where it can be seen that the same resonant conditions are 
identified from both curves. 

Thus by utilising the inertance function obtained from an impulse 
test, the compressional wave frequencies should be identifiable. 

2.2  Application to a Laroe Industrial Isolator 

; 

The isolator shown in Figure 1 was employed to study the usefulness 
of the impulse procedure. The basic equipment employed for the tests is 
shown in Figure 4(a), Figure 4(b) shows a typical set of experimental 
results. The first peak at 80 Hz corresponds to the mass-spring resonance 
of the mass of the top-plate on the mount compressi onal stiffness. The 
other major peaks at 275, 342 and 409 Hz represent the waves frequencies. 
The last peak at 805 Hz was shown to correspond to the first natural 
frequency of the top-plate considered as a beam on an elastic foundation 
[7] using the expressions 

f - [f2 
L 1 

I V2 
+ f 

f = 4.732 (EI)V2, 

2wL' 

KF/AF 

F %Tp~ 
EF AF 

KF 
LF 

(7) 

(8) 

(9) 
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where the subscript F represents the foundations, in this case the 
resilient material of tr„ Isolator. Using the values for the material 
properties given In Table 1 In equations (7) to (9) the calculated value 
of the first bending mode frequency of the top plate 1s 805 Hz. 
Confirmation of this characteristic was obtained by a simple modal 
analysis which revealed the mode shapes shown in Figure 5. Also shown in 
Figure 5 are the normalised theoretical first mode shape and the measured 
mode shape showing the similarity between the results. 

The theoretical predictions for the compressional wave 
characteristics based upon the estimated values of Youngs' Modulus and 
Poisson's are shown on Figure 6. It can be seen that the theoretical 
values of the resonance frequencies comoare closely for the first three 
resonances. However the overall amplitude characteristics differ from the 
theoretical model since the theoretical model treats the top plate as a 
mass whereas the experimental results display the top-plate flexural 
resonance. (In practise this top-plate flexural resonance would normally 
be suppressed due to the local fixing conditions). As a further check on 
the effectiveness of the impulse testing procedure, the isolator was 
excited at the same excitation point as the impulse method using a large 
v'brat ion exciter. The harmonic input force was measured using a force 
transducer and the inertance function measured over the frequency range 0 
-» 100 Hz. 

The results are shown in Figure 7 where it can be seen that almost 
identical characteristics are obtained with those of Figure 4b from the 
impulse testing method. 

Thus in summary, one can state that the impulse testing procedure 
can be effectively used to detect the comprassional wave effects in large 
vibration isolators. 

3.    TRANSVERSE WAVE EFFECTS 

In practise, vibration isolators are frequently employed in 
configurations where they are subjected to excitations which will induce 
compressional and transverse waves. The 'mpulse procedure can also be 
employed to investigate the transverse wave characteristics. Figure 8 
shows the results obtained from subjecting the top plate of the mount to a 
transverse impulsive force and measuring the inertance frequency response 
characteristi cs. 

Transverse waves appear to be present at 160, 296 and 448 Hz ; the 
32 Hz peak corresponding to the mass-spring characteristic in the 
transverse plane. lests repeated orthogonally to this direction revealed 
very similar results. Again, confirmation of theso results was obtained 
by connecting two mounts together (back to back) and subjecting these to 
harmonic forced excitation. Figure (9) shows the results which are in 
good agreement with the Impulse tests. 
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3. 1  Theoretical Predictions 

By considering the isolator as an element subjected to pure shear, 
the resulting equations governing the inertance function can be shown to 
be [8] 

IN 
-usin(n L) 
__ s 

A [cos(n L) - yn Lsin (n L)] 
s     s     s      s 

mass of end-plate 

(10) 

mass of resilient element 

2pu    (1   + v) 1/2 

K G A n 

10  (1   + v) 

12  +   11i>       (for  a  rectangle   [7]! 

A 

G 

cross sectional area of mount 

shear modulus 

Using the material and geometrical properties given in Table 1, the 
theoretical inertance characteristics for shear waves are shown in Figure 
10. In this case, the comparison between the experimental and theoretical 
results is not as close as the compressional wave case. The reason for 
this is due to the fact that the flexure characteristics of the mount have 
an influence on the behaviour. Treating the isolator as a shear beam, the 
natural frequencies are found from the equations [7] 

1/2 

s. 
i 

Ai 

2^L 

KG 

ß (11) 

cot A.- 
i MAL! (12) 

Using the parameters of Table 1 the fundamental natural frequency 
has a value of 46 Hz which compares with the theoretical value of 44 Hz 
from equation (TO). However, by combining the effects of flexure and 
shear using the well known Southwel1-Dunkerlay approximation, 

f2 = 

fJ,l 
f s 
1 1 

fi   si 

(13) 
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where f Is the fundamental frequency of a uniform beam with an end 
mass 1n flexure and f Is the fundamental frequency of a shear beam from 
equation (11), the resulting fundamental frequency for the Isolator Is 
calculated as 35 Hz, which Is very close to the experimental result shown 
In Figure 8, 9. In summary, the transverse characteristics of such 
Isolators need to be analysed using combined flexure and shear deformation 
properties by utilising for example, the Bresse-Tlmoshenko theory [6], 

3.2  Effect of Pre-load on the Wave Characteristics 

In practise, the Isolators are subjected to considerable pre-loads 
resulting in up to 10% strain In the compresslonal direction. In order to 
estimate the effect pre-load would have on the wave properties, the wave 
velocity through the resilient material was measured in the compresslonal 
direction as a function of pre-load. The velocity 1n the compressional 
direction was measured using an ultrasonic transducer which generated 
pulses at a frequency of 20kHz. The pulses were detected on the opposite 
face of the isolator using another ultrasonic receiver. The time delay 
between the pulses was measured for several pre-load ranges in the 
transverse and longitudinal directions which provided an estimate of the 
wave velocity through the mount. Typical results are shown plotted in 
Figure 11. The wave velocity in the longitudinal direction is 
proportional to the elastic modulus which in turn controls the wa'e 
frequencies. The variation in these properties is not significant over 
the range of pre-loads seen by the isolators in practise (from Figure 11 
the change is less than 10% for the normal operating pre-loads) thus the 
effect of the pre-load on the wave frequencies will be small. 

Consequently, for large vibration isolators it would appear that a rapid 
assessment of the dynamic properties is obtainable using simple impulse 
testing procedures. However, it should be stressed that with more complex 
geometries the effect of the pre-load may result In significant distortion 
of the Isolator geometry which may well lead to changes in the wave 
characteristics. Further, the effect of temperature and pre-load on the 
resilient material properties may also play an important role In the 
overall dynamic performance of an Isolator. Work Into the 
characterisation of these properties is currently being undertaken. 

CONCLUSIONS 

Impulse testing procedures can be gainfully employed to determine 
the compresslonal and transverse wave characteristics of large vibration 
isolators. For the types of Isolator tested it has been shown that the 
wave frequencies arc nominally invariant with the pre-load over their 
in-service operating range. As * result, the testing procedure can be 
considerably simplified. 

Theoretical predictions of the compresslonal wave frequencies can be 
successfully carried out for prismatic Isolators using the Love Theory. 
Accurate prediction of the transverse wave characteristics requires the 
application of the Bresse-Tlmoshenko theory which accounts for combined 
shear and flexure In the system. 
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TAELE 1: MATERIAL PROPERTIES OF 
VIBRATION ISOLATOR (AT 21 °C) 

Mean Youngs Modulus 7.9 E6 N/m 
(in compression) 

Mean Shear Modulus 2.2 E6 N/m 

Mass Density 1010 K"/m 

Top Plate Mass 5.5 Kg 

Loss Factor 0.1 

Poissons Ratio 0.4 

, 
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Experimental set-up for measuring the longitudinal inertance of the mount. 
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THREE METHODS FCR DETERMINING NATURAL FREQUENCIES AND DAMPING RATIOS 
FROM VIBRATION SPECTRA 

H G D Gcyder - Harwell Laboratory 

1 . INTRODUCTION 

A common objective in experimental studies is to determine the 
natural frequencies and damping ratios of a structure. In this paper, 
three new methods for achieving this objective are described. The 
approach taken is to develop s general theoretical model which describes 
vibration spectra and then ! 3e how the parameters of the model may be 
determined from measure' -.:■ t,a. An important part of this approach is 
to see how noise corrupts measurements since this controls the accuracy 
with which natural frequencies and damping ratios may be determined. 
Attention is also paid to the form the model takes. As will be shown, 
some simple recasting of the model often considerably simplifies the pro- 
cess of extracting the model parameters. 

The three methods described below for determining the natural fre- 
quencies and damping ratios have been developed for different types of 
vibration measurements. The first method is appropriate where only a 
response spectrum has been measured and it is assumed that the excitation 
is white. The other methods are applicable to the results of a mcda.l 
test where a complex frequency response function (FRF) (ie both magnitude 
and r ^se) has been measured. In each case, a frequency domain, rather 
than time domain approach has teen taken. The frequency domain 
approach has the advantage of separating resonances which have similar 
frequencies. In the time domain, similar natural frequencies causa beat- 
ing phenomena which maKes interpretation of the time histories difficult. 

2. MODELS FOR VIBRATION SPECTRA 

The basis of a vibration spectra is the FRF of the structure. The 
FRF is most easily defined for a sinusoidal force and is the ratio of the 
response amplitude to the force. This ratio is defined as a complex 
number so that both modulus and phase is represented. The vibration 
spectrum for a structure may be calculated from its FRF and the exci- 
tation spectrum. 

The  general   differential  equation describing a  linear structure  is 

n n- 1 
d"   '.', 

dt A 
+ an-1 dt' 

& ♦  b        4 .m      Dra-1 dt" dt" 
...   ♦ bQx (i: 

Here, y » y(t) is the response while x = x't) is the excitation force, 
a and b are coefficients in the equation. This equation may be deduced 
from the general matrix equation for linear systems, by eliminating all 
trie displacements except for the displacement where the structure is to 
be observed. 

Taking   the   Fourier    transform   of    the   above   equation   and   writing 
Y(iu)  and X(ia) for the Fourier transform of y and x,  respectively,  gives 
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Y(JID) 
XTuST H  (lui) 

bm(iu)»< ♦ br1(iw) m-1 

anUw) + an-1^"' 
(2) 

where H(iuj) is the FRF. In general the order of the differential equa- 
tion may be infinite so that both n and in are infinite. Equation (2) 
represents one raoael for the FRF. However thio model is rarely used in 
vibration work because of the large number of coefficients (a and bffl) 
involved. By faclorising the polynomials in equation (2) the FRF may be 
written 

H(ioj) 
(iu  -   c, ) (icj  -   c2 ) (iu. 

(U d,) (im - dj)       (iu V 
(3) 

Here G is a constant and cm and d are the roots of the polynomials. cm 

and d are known as poles and zeros respectively. Both c and d may be 
complex. Because the a 's and bm's are real, the roots of the poly- 
nomials are either real or occur in complex conjugate pairs. By com- 
bining complex conjugate pairs,  H(iou) may also be written 

H(iio)   = G 
(r,   +  iioa,- tu2) (r2+  iüis: ') 
(p,   +  iu^- ID

2
) (p2+  ius;- 

W 

Here, all the r's, s's, p's and q's are real. A further more familiar 
form for the FRF may be found by expressing equation CO in partial 
fractions. If the quadratic form of the denominators is retained, then 
H(iu)  becomes 

N      u.   +   iu Vj 
H(iio)   =    I 

J-1   Pj   ♦   li-Qj 
(5) 

Here,   N =  n/2.     A more  conventional  notation for this  equation is 

N 
H(iw)   -    I 

j-1 

lo) v. 

+  2^jujÜJ 

(6) 

where uu is the natural frequency while r,, is the damping ratio. As can 
be seen, the formulation above has led naturally to a definition of damp- 
ing ir terms of a viscous damping ratio. Hysteretic damping could also 
be modelled. However the use of hysteretic damping seems inappropriate 
since the objective is to identify damping associated with each resonance 
rather than mortal l \r\a damping as a single structural property. Also it 
should be noted that hysteretic damping is a valid model for only a 
limited frequency band [l]. It is not therefore as general a model for 
...amping as the viscous damping ratio. 

The    coefficients    p,    q    and    d   may    be 
equations 6,  5 and 3.    This gives 

\dentified    by    comparing 

w i = pj 

Im    d n1 - -j  /I"—- Re 

2^j  " qj (7),   (8) 

(9),(10) 

Equation '■    an be used for data fitting directly (see for example 
[2]), however he factorised polynomial ratio (equation 3) will be :ised 
in preference. 
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3.    NOISE MODELS 

In order to fit a theoretical model to measure data, it is 
necessary to have a model for the likely noise in the data. This is 
important because if the structure of the noise is ignored, then undue 
emphasis may be placed on fitting to regions where the noise is excep- 
tionally large. Similarly, not enough emphasis may be placed on regions 
where the noise contents is small. Clearly some technique for weighting 
measured data according to its noise content is needed. In this section 
the noise structure for three different measurement configurations is 
investigated. This noise structure is then used in each of the three 
fitting procedures developed below. 

3.1  Response Spectrum only 

If the excitation is unknown and unmeasured then it is necessary to 
make deductions from the response spectrum. This circumstance is often 
found where a structure is in operation and is excited by the operational 
environment. If the excitation is random and the spectrum is flat, at 
least within the bandwidth of the oscillator, then it is possible to 
deduce a natural frequency and damping ratio. If the (unknown) exci- 
tation spectrum is S„x(w) and the response spectrum is Syy(tu) then 

Syy^') |KU)|: SXXU) (ID 

I 

The measured spectrum S (m) is thus proportional to the modulus squared 
of the FRF if S (10) is assumed to be white. Because the excitation is 
random, the spectrum S (u) cannot be measurea exactly and only an esti- 
mate may be obtained. Thi? estimate contains noise due to the random 
nature of the excitation. By using a large number of averages in the 
calculation of S (u) the noise may be made small but it is generally not 

Wit insignificant. ith   ;he   assumption   that   the   excitation   is   white,   the 
noise content ef SVVUJ)  is Gaussian   (as long as  enough averages  have  been 

taken, in theory the noise is x2 distributed [3]). The important point 
however is that the noise is weighted by the FPF and is proportional to 
its magnitude squared. Thus the noise model appropriate to this circum- 
stance is 

SyyU) |HU)|2 [1 W(o (12) 

Here the overbar indicates that the spectrum is a measured spectra and 
includes noise. W(ui) represents a random variable which is Gaussian 
with  zero mean  ann  wii-h  the  same   variance  for   each frequency.     It  can  be 

seen that the variance of the noise on Syy(u) will be largest where 
|H((o)| is largest, namely at resonance. Equation (13) will be used in 
section '4, when considering the extraction of natu"al frequencies and 
damping ratios from response spectra. 

3- Transient Excitation 

Here it is assumed that a modal test is being performed and 
measurements of both the excitation force and the response are being 
taken. In a transient test the force is applied for a brief duration and 
the FRF calculated from a ratio of the Fourier transform of the response 
to the Fourier transform of the force. Two methods for applying the 
transient excitation are commonly used, nameiv, an impulse (eg hammer 
excitation) [4] or an electrodynami c shaker [5]. 
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The principle cause of noise in this circumstance is extraneous 
excitation which causes vibration in addition to ths applied excitation. 
Thus the equation describing each test is 

5f(iw) - H(üi) X(üä) + H(ui) Z(üi) (13) 

Here 7(ui) and 5T(m) are the Fourier transforms of the measured response 
and force respectively. Z(ui) is the unwanted excitation from the 
environment.    H(u>)  is usually calculated from 

H(iui)   .  Y(iu)/X(iuj) (14) 

where H~(iw) is the calculated FRF.  It can be seen that H(UJ) is given by 

H(iüi) - H(im) [l + Z(iiü)/Xüw)l (15) 

If both the environmental excitation Z(itu) and the applied excitation 
X(iiü) are independent of frequency (ie a flat spectrum) then the noise is 
once again proportional to the FRF and the noise model is 

H(itü) = H(iw) [1 <• W(iw)] (16) 

However, in some circumstances X(ioj) is not flat. This specially occurs 
when an electrodynamic shaker is used, since this tends to couple with 
the structure [6]. The problem with a electrodynamic shaker is that 
excitation at the resonance frequencies is limited due to the inertia of 
the coil and the back e.m.f. s generated within the coil. It can be 
shown that in this case the force spectrum is inversely proportional to 
the FRF. Thus 7(iu) may be modelled as 

X(W) = P(iw)/H(iio) (17) 

where P(ioi) is the Fourier transform of the signal used to drive the 
power amplifier which excites the shaker. The resulting noise model for 
this case is thus 

H(iiu)  = H(iui)[l   + H(lio)  Z(iu))/P;itü)] (18) 

or H(iw)   - H(itu)[l   + H(iui) W(iu>] (19) 

if both Z(iou) and P(iui) are flat spectra. Thus the noise in the measured 
FRF is proportional to the square of the FRF. This noise may cause con- 
siderable distortion to the peaks of the measured FRF 

3.3  Random Excitation 

Random excitation may also be used for modal testing. In this type 
or test, the random excitation is generally applied by means of an 
electrodynamic shaker and measurements are made of the excitation force 
and the response. Spurious excitation of the structure is generally the 
main source of the noise. The equation describing this measurement 
method is 

Syx(iü)) - H(iui) Sxx (iw) + H(iui) £2x(iw) (20) 

where S" (im) is the cross-spectral density function between the response 
and force, 3Lx(i'i>) is the auto-spectral density function of the force, 
and S2x(iw) is the cross-spectral density function between the applied 
excitation and the spurious  excitation.     The FRF  is generally calculated 
from 
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(21) 
H(iu) - Syx(lui)/Sxx(ia)) 

It can be seen that the calculated FRF is given by 

HCi.) -HU») [1 +szx(iM)/Exx(iu)j (22) 

....   -„   -..,  uwjuiucj ,bi<cti<   trie  environmental   noise  is  u 
the  applied excitation  and  the  cross spectral density function S7Y(i<jj) 
Will      hP     70^rt tr~.  -    v..~  ^.. woa  apectr-ai  density function Szx(i<jj) 
will be zero. However, because of the random nature of the excitation 
and noise, S„ (iu) vl P1 only approach zero as the number of averages 
becomes large. Consequently, this term will be the main contribution to 
the noise. If bot!) the excitation anG environmental noise are white, the 
model for the noise in the measured FBI' will  be 

H(iw)   =  H(iai)   [1   + WUu)] (23) 

Thus once again the noise is proportior.al to the FRF. If however, the 
shaker exhibits the feedback effect mentioned previously, then a more 
complex noise source will be created. Tl i s problem has been analysed and 
is presented in [6]. For this case, the noise cannot be simply modelled 
and detailed analysis of the interaction between the shaker and the 
structure is needed.    This is  beyond the scope of this  paper. 

4. METHOD  1:   RESPONSE SPECTRUM ONLY 

If a structure is being excited by a random force and if the exci- 
tation is assumed to be white, then the measured response spectrum is 
given by equation  (12).    This equation may be recast to give 

W(ui)     = Syy(ui)/|HU)|2  ~   1 (24) 

If the correct values for natural frequencies and damping ratios 
are inserted into the model FRF, H(iio), then values for the noise may be 
calculated using the above equation. If the noise model is correct, then 
these calculated values of W(») would be distributed as a Gaussian random 
variable. This condition may be inverted in order to obtain a criterion 
for selecting the parameters of the FRF. This criterion is the basis of 
the "least squares" fitting process [3J. Thus the mean square error 
associated with a set of frequency values may be written 

K 
Kc*  = J,   LSyy^iJ/lH^jh   -   11' 

. where E is the r.m.s. error. The unknown parameters in the FRF may now 
be chosen so that they minimise the value of e. An appropriate model for 
H(ito) is given by equation (3). If the summation is performed only in 
the region of a resonance, then this model may be simplified so that only 
one pole is significant. This simplification results in the model for1 

Hutu)  being 

JH(iui)|2   =  G/|iu -  dj |2   = G/(u2   -  2imi/l~TTz * uij 2) (26) 

where values for d- have been substituted from equations (9) and (10). 
All the poles and zeros, other than the pole of interest have been inc- 
luded in G, which is assumed to be a constant over the frequency range of 
the summation.     Equation  (25) may now be written 
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2  -  -|cE 

k»i 
(27) 

where D, = w j2 and D2 - 2iuj/(1 - tP. Values of D,, Dj and G may be 
found by calculating the derivative of GE

2
 and equating to zero. It 

should be noted that since equation (27) is quadratic in D,, D2 and G, a 
3et of linear equations is found and thus eac'i of D,, D2 and G may be 
found directly without iteration and approximation. The point of 
interest is that despite the noise source being complicated by being 
proportional to the FRF, the model fitting problem has ultimately led to 
a simple linear formulation. It is also interesting that the polynomial 
in the fitting equation is of second order which is the smallest order 
polynomial for three unknowns. A very simple and effective algorithm may 
therefore be constructed using this procedure. Figure (1) shows a reso- 
nant peak of a measured response spectrum. By using the abjve procedure, 
the natural frequency, damping ratio and value of G wf.re calculated. 
These values were then used to regenerate the response function. This 
regenerated function is also shown in figure  1. 

5.0       METHOD 2:   COMPLEX FREQUENCY RESPONSE FUNCTION 

If a complex FRF is available, then a complex model must be fitted 
to the data. Complex data provides twice as much information as real 
data, consequently more accuracy in determining natural frequencies and 
damping ratios is possible. For the case where the noise is proportional 
to the FRF, a similar analysis to that conducted in the previous section 
may be undertaken. The only difference is that a complex formulation is 
required. Thus from equations (16) or (23) the complex noise may be 
written 

W(iü H(l(i 
H(iio) 

1 (28) 

H(iu) may be modelled following equation (3) as 

H(iw) = — (29) 

where G is a. complex constant and models all the zeros and poles other 
than the po.1 e of interest. An error expression for the data interval 
being fitted way now be formulated. This error expression may be written 

k=1 
\u( i,„  W4.. - 

Jj' ^J IJUJ 

Here the second term in brackets is the complex conjugate of the first, 
(the (-) indicates conjugation) thus enabling £ "eal error to be cons- 
tructed. There are now two complex unknowns, d. and G which may also be 
expressed, as four real unknowns. These unknown3 may be found by taking 
the derivative of the above expression with respect to each unknown 
equating to zero, and obtaining a set of simultaneous equations. Because 
equation (30) is quadratic, the four resulting equations are linear and 
thus the unknown parameters may be found in one step. Thus a straight- 
forward one step method has been presented which takes into account the 
noise structure of the complex FRF. 

6. METHOD 3:  AN EXACT PROCEDURE 

The above analysis will be satisfactory as long as the noise is 
proportional to the FRF and it is reasonable to assumed that G is a con- 
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stant. It has already been pointed out that the noise can be more comp- 
licated than that assumed above. Also, it is not uncommon to find zeros 
close to poles, or poles and zeros close to poles. (this is the dif- 
ficult case of close natural frequencies). In this case assuming G to be 
constant can be dubious. Although the above analysis is entirely satis- 
factory, within its restrictions, a more exact method is worth con- 
sidering. 

An exact method may be developed by considering the reciprocal of 
the FRF. The favourable properties of the reciprocal FRF was first noted 
by Goyder [?]. Thus writing 

R(iw) = 1/H(iu)) (51 ) 

defines a new FRF, R(iui) which is the reciprocal of the usual FRF. The 
relationship between the measured and model reciprocal FRF ! unctions may 
thus be written 

R(iui) = R(iü))/(1 + W(lu)) (32) 

where the overbar indicates the measured reciprocal FRF function. Using 
equation  (3),   the model  for R(iio)  may  be simplified to 

R(iui)  =  (iw -  dj)  G(iui) (33) 

Here, the pole of interest has now come to the numerator and is written 
explicitly. The remaining zeros and poles are expressed by G(iw). Notvj 
that G is no longer considered a constant but is now regarded as a com- 
plex function o± frequency. Also G has been moved from the denominator 
to the numerator for convenience. Substituting this model into equation 
(32)  gives 

R(ioi)   «  (iw - dj) 0(iui)/(l   + W(iuO) (34) 

In this formulation the objective is to find the zero of the measured 
reciprocal FRF. If the noise function is well behaved then this is the 
classical problem of finding the zero of a function. The usual method 
for doing this is to employ Newton's method. In order to employ Newton's 
method, the following notation will be used. In equation (31!), d. is the 
j' th pole of the FRF. The subscript j will now be dropped and be supp- 
lanted by the subscript k. dk will be the k'th approximation to the pole 
of the FRF. Using Newton's method, an improved estimate dk + 1 to the pole 
may be found by calculating 

dk + 1   = dk  - R(iwk)/R'(icL'k) (35) 

uhrtyirt IT' / (.^ ia *-ina Hoci Vs*'' "^ o^ *~ he m eE?111 ured ve^ npAr-ni ffo/iiipn^y rPR— 

ponse function evaluated at the frequency wk Thus by calculating the 
slope of the measured reciprocal FRF and using Newton's method, a value 
for the pole may be found as exactly as numerical conditions allow. A 
number of points are worth noting. First, equation (3t) is a complex 
formulation of Newton's methods. The ordinary real method carries over' 
to the complex methoc exactly, with some advantages. Because of the 
analytic nature of the function being investigated, it is not necessary 
to determine the derivative in any particular direction. Thus the deri- 
vative may be obtained by calculating TT' (ia)k)  from 

R'(iV   = 35 Re   iR(ilVl   +   i 35 Im  {RC ioJk)} (36) 

Thus the complex slope is obtained by measuring separately the slope of 
the    real    part    and    imaginary    part    of    the   reciprocal    FRF.       This    is 
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generally a straightforward procedure because as may be seen from 
equation (33) the reciprocal FRF approximates to a straight line close to 
the root. In fact it is only the influence of noise and neighbouring 
poles and zeros  that make this function deviate from a straight line. 

In the usual application of Newton's method, the derivative is 
recalculated et the location of the current root estimate in order to 
obtain an estimate for the improved root. This is not possible here, 
since vakei of R"(iu) are only available for real frequencies. However, 
it is possible to recalculate the derivative at the point wk » Imjdk} 
which is cose to the actual location of the root. The only problem in 
calculating the slope is that the noise may introduce errors. In order 
to examine the influence of noise,  equation  32 may  be rewritten 

R(ito)   -- R(iu)(l   - W(ioi) ■) (37) 

where the noise term has been brought to the numerator by using the bino- 
mial expansion. It may be seen that the influence of the noise is a 
minimum at. the resonance because at this location R(iu) has a zero. This 
is a further advantage of using reciprocal FRFs. Because of the inf- 
luence of the noise, it is generally necessary to introduce some smooth- 
ing when calculating the slope of the reciprocal  FRF. 

It should be noted that there is a category difference between 
finding the natural frequencies and damping ratios using Newton's method 
and by the curve fitting method described previously. In the curve fit- 
ting case, errors in the model (eg assuming no influence of neighbouring 
poles and zeros or nois°) are reflected by errors in the values obtained 
for the natural frequencies and damping ratios. In the use of Newton's 
method, no assumptions are made about the disposition of neighbouring 
poles and zeros and the structure of the noise. The Newton's method can 
therefore be thought of as an exact method. Thus by using Newton's 
methods, natural frequencies and damping ratios may be found for very 
complicated FRFs with an unknown noise structure. 

The following technique has been developed in order to apply this 
method. First, the complex reciprocal of the measured FRF is calculated. 
This new function is then smoothed. The smoothing is achieved by fitting 
a straight line through a small number of points Thus for each fre- 
quency of interest, the value of Tf(iüik) is replaced by IT-dwiJ where the 
smoothed FRF is composed of a complex straight line formed from 3, 7 or 9 
points. The straight li,._s used are overlapping so that over the 
interval containing the resonance, the function Tf(ioik) has the same 
number of points as the function Ra(iw,J. Since the calculation of the 
j'.raighl line used for smoothing involves calculating the slope of tho 
reciprocal FRF, equation (36) may te calculated for each frequency value. 
Thua from each point on the FRF, a value for the natural frequency and 
damping ratio is obtained. This procedure is illustrated in figures (2) 
to (5). Figure 2 shows one resonance of a measured FRF. Figure 3 shows 
the    reciprocal     FRF. The    natural     frequencies    and    damping    ratios 
calculated from each point are shown in figures (5) and (6) on much 
expanded scales. Three points were used for smoothing. By analysing the 
spread of results it may be seen that the frequency has been determining 
to an accuracy of better than t 0.025? while the damping ratio has been 
determined   to   an accuracy better than ± \%. 
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7. CONCLUSIONS 

y Three    methods    for    determining    natural    frequencies    and    damping 
i ratios   from   measured   spectra   have   been   presented.      In   order   to  charac- 

terise the FRF o,' the structure being investigated, an unusual model has 
been used. This model takes the form of a polynomial ratio in which the 
polynomials are factorised. In order to facilitate the fitting of models 
to measured data, an analysis of noise has been undertaken. In general, 
the noise on a spectra has been shown to be proportional to the FRF. The 
first method for determining natural frequencies and damping ratios is 
applicable where only a response spectrum is available. A novel curve 
fitting procedure has been developed which turns out to be a surprisingly 
simple one-step method involving the solution of three simultaneous 
equations. The second method extends this model fitting procedure to the 
case where a complex FRF has been measured. The third method is appro- 
priate where there are close natural frequencies and a complicated noise 
spectrum. For this case, an exact method has been developed based on 
Newton's method for finding the roots of an equation. The method has 
been demonstrated with measured data. 
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FIGURE 4. NATURAL FREQUENCY VALUES CALCULATED 
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FIGURE 5. DAMPING RATIO VALVES CALCULATED 
FROM EACH MEASURED VALUE OF THE FRF 
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SUMMARY 

This paper describes the application of sequential frequency domain 
filtering to the estimation of physical parameters in linear models of 
vibrating structures. Preliminary experimental results from a portal frame 
rig are included to demonstrate the application of the technique. Model 
order, scaling and choice of frequency response function are shown to be 
important factors to be considered by the user. 

1, INTRODUCTION 

■i 

This paper is concerned with the estimation of mass, stiffness and 
damping properties of structures using measured vibration data without the 
use of a modal decomposition. The system identification technique applied 
in the paper is a least-squares filter. Least-squares methods are usually 
categorised, as either 'batch' or 'sequential'. 

In the batch processing case the computation is carried out on the 
complete set of data as a whole. This remains the most common method of 
data processing ana it has given rise to various algorithms such as Gauss- 
Newton and Quasilinearisation both of which are treated in the book by 
Kalaba and Spingarn [1], Stanway and MottershPad [2] have demonstrated a 
disadvantage of the batch processing method, namely that it depends on a 
preselected set of data which may be insufficient to allow parameter 
estimation with sufficient accuracy. This latter problem can be misleading 
to the novice user because it can lead to convergence of the estimates to 
erroneous values. Thui it is necessary to check the estimates by re-running 
the algorithm over an expanded set of measured data. 

In the sequential processing method parameter estimates are updated 
continuously while working serially through the data. The non-linear, cime 
domain filter of Detchmendy and Sridhar [3] is typical of this approach. 
The method of Detchmendy and Sridhar is operated in the continuous time 
domain and the algorithn equation^ involve integration which introduces a 
beneficial 'smoothing' effect in the presence of measurement noise. A 
further advantage of cperating in continuous time is that the parameters 
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extracted are the physical parameters of a differentia] equation. In a 
discrete time filter such as Unbehauen [4] the estimated parameters arc 
those of a difference equation. 

The user should be aware of the assumptions and approximations 
involved in the chosen approach to system identific£tion. For instance, if 
it is necessary to obtain values for the physical parameters or a linear 
system using a discrete time approach then it will be necessary to perform a 
logarithmic transformation. In order to avoid the significant errors which 
may be introduced by the log. transformation a continuous time approach may 
be preferred. However unless an analogue computer is used there will be 
approximations due to the process of numerical integration. 

In system identification of linear, large-scale vibrating structures 
involving many degrees of freedom it is helpful to reformulate the filter in 
the continuous frequency domain. Whereas the state vector of the time 
domain filter includes both the displacement and velocity states at each 
degree of freedom and the unknown parameter states, the state vector of the 
frequency domain filter comprises the unknown parameter states alone. Thus 
frequency domain filters involve smaller order matrix equations than do time 
domain filters for the estimation of the same number of unknown parameters. 
Various filter formulations have been implemented in the continuous 
frequency domain. An output error filter [5] resulting in a non-linear 
algorithm was found to converge slowly and despite the advantages of 
frequency domain formulation mentioned above it involved a complex matrix 
manipulation in an inner loop of the computer program which resulted in 
large CPU times. To overcome this latter problem a linear, equation error 
algorithm [6] was developed which converged extremely rapidly (about 1000 
times faster than the output error filter) but was prone to bias in the 
presence of measurement noise. Recently an instrumental variables (I.V.) 
filter [7] has been presented which results in swift convergence of 
asymptotically unbiased parameter estimates. 

In system Identification generally a major problem is that of non- 
uniqueness of the estimated model. This problem can be attacked by ensuring 
that any a priori information is made available to the algorithm. In the 
specific case of estimating physical parameters in vibrating structures the 
mass matrix is usually positive definite. Mottershead, Tee and Lees [8] 
have shown that when the filter algorithm is constrained to ensure positive 
definiteness of the mass matrix then convergence is accelerated and the 
algorithm is more tolerant of measurement noise. 

In this paper the authors describe some preliminary experimental 
results obtained from a portal frame rig. Scaling of the model parameters 
is discussed and the implementation of an automatic scaling method in a 
FORTRAN program is explained. The uf of displacement/force and 
acceleration/force frequency response functions is disoussed and the paper 
demonstrates how models can be built covering discrete frequency bands. 

2. STRUCTURAL MODEL 

A multi-degree-of-freedom vibrating system can be modelled as follows, 

q(iu) - B(«){z(u>) -5) (I) 

where q(ui) is a vector of known forces, 
z(w) is a vector of measured displacement responses, 
£   is a measurement noise vector 
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and  B~'  is the matrix of frequency response functions. 

Typically B(w) will have the form, 

B(u) - -u2M + juC + K (2) 

where M is the system irass matrix 
K is the stiffness matrix 

and  C is a matrix of viscous damping coefficients. 

Equation (2) can easily be altered to accommodate other forms of damping. 

Rewriting equations (1) and (2) in state space, then 

State equation: 
dx 

du 
(01 (3) 

where the 3tate vector x contains the unknown mass, stiffness and damping 
parameters which are independent of frequency. 

Measurement equation (given in complex form to indicate the difference in 
phase between the excitations and responses): 

Req(w) = Re[B(x,u>) z(w)J - Re(B(x,wHJ 

Imqtui) •>  Im(B(x,iD) z(w)j - Im(B(x,wH) 
(1) 

The problem at hand is to estimate the unknown parameter's x using measured 
responses z{u)  and known excitations q(u). 

3.   FILTER EQUATIOHS 

A linear frequency domain filter can be formulated by minimising the 
cost functional, 

J, 
e' Q E du (5) 

► 

where Q is a weighting matrix and £ represents the equation error given by, 

e = q(ü)) - B(x,u)z(w) (6) 

X is an estimate or' the unknown parameters and a matrix H is given by, 

H(u) - |j (B(a,w)z(io))T (7) 

The filter equations have been presented [6] in complex form. Estimates can 
D6 extracted from the real component of the equation srror  as follows: 

dx 

dli 
= 2 P'!))Re(H(n))Q Re(q(Q) - B(x,tl)z(Q)) 

dP 
— = -2 P(fi)Re(H(fi))Q Re(HT(a))P(n) 
dw    -    —   -   —   - 

(3) 
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Two further equations of identical structure can be formed to enable 
estimates to be extracted from the imaginary ccmponent of the equation 
error. 

Equations (8) are based on known excitations and measured 
displacements. They can be modified to allow for alternative response 
measurements. For instance if It is required to process measured 
accelerations then forming the accelerations in z(u>) the array B must be 
redefined such that, 

C   K 

In both cases the array P is a weighting array the elements of which 
converge to small values indicating accurate convergence of the parameter 
estimates x. It is a feature of linear filters (derived from linear state 
and measurement equations) that the array P can be computed independently of 
X. 

1.  SCALING OF THE STRUCTURAL MODEL 

It has been reported previously [5,6] that scaling of the structural 
model can be beneficial to the conditioning of the filter equations and 
convergence of the estimates. In [5] Mottershead and Stanway suggest 
scaling of the model as follows, 

[A K + j ,-Ja A C 
a  

(2) a2 A M) 1 (z 
a     e - O - A q 

e - - 

If A has the units of flexibility (stiffness" has the units of time 

(9) 

-1 

and e has the units of displacement, then A K is a scaled, non-dimensional 
stiffneäs matrix, a A C is a non-dimensional damping matrix and a A M is a 

non-dimensional mass matrix, 
1 e(^ £) is a non-dimensional displacement 

vector, -  A q is a vector of non-dimensional forces and I —J represents 
e  - — a 

non-dimensional frequency.  It should  be noted that in the case of the 
linear filter when a common scaling factor (A) is applied to both the 
applied forces and the parameter states then H(fi) is unaltered and the 
("■onvpr gpncp  of   P   and   thp   ^calpri   naramptprq   Y   rpmain<5   unr*h?ncrpri _ 

The frequency scaling factor a can be used to adjust the parameter 
values so that in the scaled form the numerical values of ma3S, stiffness 
and damping are of the same order. Unless scaling of thi3 type is applied, 
the filter tends to give convergence of parameters with the largest 
numerical values first and small parameters tend to converge much more 
slowly. The factor' a can be set once before processing begins and need not 
be adjusted again. 

It can be seen from equations (8) that if the vector of residuals (q - 
B z) is small then convergence of the filter results will be sluggish. This 
problem can be remedied by applying a large scaling factor Ve. Because the 
measured frequency response functions may have vastly differing amplitudes 
particularly around resonances it is necessary to alter the factor Ve 
during processing. Changing Ve interactively car be very time consuming 
and tedious so a method has been developed to automate tne task. 
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The automatic sealing technique relies on increasing 7e until an 
overflow or underflow error is generated by the program when computing the 

d8    dP 
derivatives -JJJ and—  .  The factor Ve is then reduced slightly to a large 

value which is just capable of avoiding the underflow/overflow error. In 
this particular implementation the process is achieved by using the SRRSET 
library routine which is available on the University's IBM 3083 computer. 
The only other reason for reducing ve is when undesirable trends are 
detected in the convergence of the P matrix. In particular if P tends to 
increase instead of reduce or if P becomes negative (often an indicator of 
numerical instability) then Ve will be reduced even though an underflow/ 
overflow error has not been generated. 

5. FREQUENCY RESPONSE FUNCTIONS 

The experimental results presented in the sequel use frequency 
response functions as the measured responses z. This has the useful effect 
of combining in one quantity the noise picked up in measuring both forces 
and responses. It also means that the elements of q are known to be either 
unity (at stations where excitation is applied) or zero. 

Convergence of the estimates is strongest at resonance where the 
amplitude of the frequency responses is greatest. It is usually the case in 
structures that displacement/force frequency response functions display the 
greatest peaks at the low frequency modes. Conversely the greatest peaks of 
acceleration/force frequency response functions are at higher frequencies. 
Thus frequency response data in many forms may be exploited by the 
perceptive user in the modelling of vibrating structures using the filtering 
technique. 

6. PORTAL FRAME RIG 

A portal frame rig was built in order that the frequency domain filter 
could be applied to physically realistic data. In particular the rig 
displayed features such as light damping and closely spaced modes which are 
common in the dynamics of larger structures. The rig is shown in Figure 1 
and its first three mode shapes are shown in Figure 2. 

7. EXPERIMENTATION 

An experiment WE.S performed using the portal frame rig. 
Accelerometers were mounted at the two ends of the top beam and at the 
mid-points of the supporting legs. Stations 2 and 3 (see Figure 1) 
correspond to the accelerometer positions on the top of the beam and 
stations 1 and 1) denote accelerometer locations on the two legs. Persistent 
multi-frequency excitation was applied to the structure at station 1. 
Station 1 is a suitable location for the exciter since it is likely to 
stimulate all three modes. The frequency band of the excitation was 0-200 
Hz, the highest natural frequency being at around 100 Hz and the fourth 
natural frequency being at around 390 Hz. 

Estimates of mass, stiffness and damping were computed usin^ the 
frequency domain filter. An initial estimate 8(0) was provided usir.g a 
reduced finite element model. A plot of the measured acceleration/force 
frequency response function at station 1 with the finite element simulated 
frequency respor.be function superimposed is shown in Figure 3. It can be 
seen that the finite element model is significantly in error.  The initial 
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values of the elements of P were set as follows, 

which are sufficiently large to 
inducing numerical instability. 

Pn(0) = 3.0 U-J) 
P1j(0) » 1.0 (i*J) 

promote rapid convergence X without 

The mass, stiffness and damping parameters were estimated in turn. 
Firstly the data was processed keeping the stiffnesses and damping constant 
whilst the masses were estimated. Then stiffness was estimated keeping mass 
and damping steady and finally the damping was computed. This strategy of 
selectively estimating the parameters was pursued on the basis that the 
filter results were likely to converge most rapidly when the number of 
unknowns was kept reasonably small. The filter was applied in regions close 
to the three natural frequencies of the rig and data was obtained using zoom 
techniques which are generally available on modern multi-channel spectrum 
analysers. 

8. RESULTS 

The results of the experiment are presented as reconstructed frequency 
responses (based on the estimated parameters) which are superimposed on the 
measured frequency response functions. Results were obtained corresponding 
to models of order 3 or t. 

,1 3-Degree-of-Freedom Model 

Figure I) shows measured and reconstructed arceleration/force frequency 
response functions at station 1 . In the region of the second and third 
modes there is almost perfect agreement both in amplitude and phase. 
Processing was confined to the band of frequencies 80-110 Hz in order to 
obtain these results. The naturax frequency at around 10 Hz does not appear 
on the reconstructed frequency response. 

In order to model the fundamental mode data was processed separately 
in the 10 Hz region. For example, Figure 5 shows the measured and 
reconstructed displacement/force frequency response at station 2. The model 
developed in the 10 Hz region is different from that developed in the 80-110 
Hz band. Such models are thus band limited. 

8.2  4-Degree-of-Freedom Model 

Figure 6 again shows measured and reconstructed acceleration/force 
frequency response functions at station 1 . The results were obtained by 
processing locally around the two higher modes (80-110 Hz) and the 1st mode 
is not represented in the reconstructed data. Generally the results are in 
good agreement though not quite as good as the results from the 3-degree-of- 
freedom model. Two computational modes were found in the reconstructed data 
at frequencies in excess of 1000 Hz. 

9.  CONCLUSIONS 

The continuous frequency domain filter has been applied to measured 
data gathered from a portal frame rig. The method is capable of providing 
models in terms of physical parameters (mass, stiffness and damping) in 
specific frequency bands around prominent natural '"requency peaks. The 
method does not rely upon a modal decomposition and it is tolerant of 
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significant errors in the original (finite element) model. 
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IDENTIFICATION OF LINEAR/NONLINEAR RESTORING FORCE SURFACES IN SINGLE 
AND MULTI-MODE SYSTEMS 

,   K. Worden, G.R. Tomllnson 

Herlot-Watt University 
Department of Mechanical Engineering 

James Nasmyth Building 
Rlccarton 
Edinburgh 
EH14 4AS 

ABSTRACT. 

An Implementation of the Masr1/Caughey Identification procedure is 
considered. Using an Improved Interpolation scheme the procedure is 
shown to accurately Identify both SDOF and MDOF systems. It is 
demonstrated that a slightly modified version of the procedure can 
Identify systems even If the modal matrix Is estimated Incorrectly. 

1. INTRODUCTION. 

The aim of this paper Is to describe the nonparametrlc 
Identification procedure devised by MasrI and Caughey [1,2,3]. It is 
hoped that the procedure can be used to identify the types of nonlinear 
dynamical systems whicA are of interest to modal analysts. 

The dynamical system 

my + f(y,y) = x(t) (1) 

where x(t) is a time dependent input force and y is the system 
displacement, Is identified by representing the possibly nonlinear 
restoring force f(y,y) by a surface over the phase-plane (the (y,y) 
plane). This surface Is In turn represented by a series expansion of 
the form 

m  n 
f(y,y) = E  £ Cij Tl(y) Tj(y) (2) 

1=o j=o 

where the Ti, Tj are Chebyshev polynomials. Orthogonal polynomials are 
used because the coefficients are independent of the a priori model 
order. Chebyshev polynomials are chosen because the integrals required 
for the evaluation of the Cij are quite straightforward. Also, 
Chebyshev polynomials provide almost the best polynomial approximation 
to a given function. 

Recently, Hammond et.al. [4] have provided an alternate means of 
obtaining the force surfaces using ideas from optimal control theory. 
In addition, O'Donnell and Crawley [5] have independently developed a 
variant of the Masr 1/Caughey procedure which they have used to study 
nonlinear joints in space structures. 
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2.  SOOT SYSTEMS. 

One begins with equation (i). 
of y,y,y and x are assumed known, 
measure y y and y simultaneously, 
notoriously difficult, one should 

The mass m and the time histories 
In general it is Impractical to 
As numerical differentiation is 

measure the acceleration y and 

Integrate to find y and y. In simulations and experimental studies a 
simple trapezium rule algorythm has proved adequate. Only simulated 
data 1s considered below. In this case data was produced by integrating 
equation (1) y,y, and y were obtained directly from the simulation. 

Data Is recorded with a constant sampling interval A. The kth 
sampling instant being tk = (k - 1) A. The sampled accelerations etc, 
are denoted by yk = y(tk), yk ■ y(tk) etc. Given the quantities y and x 
at a sampling instant ti, the restoring force can be calculated using 

(1). 

fi = f(yi.yi) = xi - myi 
(3) 

This procedure generates a sequence of triplets (yi.y'.fi) such that for 
each point In the phase plane corresponding to a sampling instant, one 
knows the height of the restoring force surface above the point. 

The Chebyshev polynomials are defined by [6] 

Tn(x) = cos (ncos x) 

cosh (ncosh x) 

1*1* 1 

1*1*1 

(4) 

and are orthogonal on the Interval [-1, 1] as follows: 

♦1 
S    dx Ti(x) Tj(x) u(x) 

■1 

(Stm + SonSom) (5) 

2,-1/2 
X ) where öij Is the Kronecker delta, and u(x) = (1 - x1) "' Is the 

weighting factor required for orthogonality, because evaluation of the 
ClJ In equation (2) uses the orthogonality relations.  The data (y,y) is 
mapped into the rectangle [-1,1] x [-1,1] In the phase plane.  The 

mapping being given by 

yi = <(yi)   = 

Ji - <(yO = 

yi - l/2(ymax + ymln) 

1/2 (ymax - ymin) 

yi -  l/2(ymax + ymln) 

(6) 

1/2 (ymax - ymln) 

In this case < does not mean d^/dt.  One now requires the expansion 

m   n 
f(y,y) -?(?,$> »I       I   C« T, [<(y)] T.[?(y)]      (7) 

1=o j=o 
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and the Cs clearly depend on the sample of data chosen. The 
orthogonality relation (5) allows one to evaluate the coefficients as 
follows: 

CJ- =X(1)X(j) SI    dxdy u(x)u(y) f(x,y) Titx)Tj(y)    (8) 
J -1 

where X(i) = (1 + 5oi)/»r. In the angular coordinates (.0,x), where G = 
cos"' x and x  ■ cos-' y.  The integral (8) becomes 

! 

c - 
Cj" = X(i)X(J) ST dBdx  f(cose.cosx) cos (16)cos(jx) 

o 

If the 6-pange is divided into ng Intervals of length n/n4 , and 
the x  range into nt 'ntervals of length n/nt The integral can be 
approximated by the summation 

n„ n 

V*    = X(UX(j) £  £ A9A* f (cos[(m-1) 
' m=1 n=1 

A9], cos [Cn-DA*]) 

x   cos[iA9(m-i)] cost jA*(n-1) ] 

It is evident that the C can now be evaluated if some interpolation 
scheme can evaluate f at the points (cos[(m-1)A9], cos t(n-1)A^]). 

3.   THE INTERPOLATION PROCEDURE. 

. 

The software package TILE4 [7] was used to interpolate a 
continuous surface from the irregularly spaced data. The package, using 
Slbson's natural neighbour method, can produce C'and C1 surfaces and is 
based on the construction of a Delaunay triangulation. For the sake of 
completeness the construction Is outlined here. A more detailed 
discussion can be founc in [8]. 

Consider a set of N points in the plane {Pi, 1 = 1.N}. One 
defines the tile Ti of a point Pi as the set of all points in the plane 
which have Pi as their nearest neighbour from the set {Pi}. The set of 
tiles covers the plane, the subdivision they provide is called a 
D .- ich let tessellation. If two tiles have a section of boundary in 
common, even if only a point, they are termed contiguous. Joining all 
contiguous pairs of fjuinLs with a line segment provides a triangulation 
of the plane called the Delaunay triangulation. The construction can 
now be refined. One defines the subtile Ti j of Ti as the subset of Ti 
containing those pcints which have Pj as their second nearest neighbour 
from {Pi}. These constructions are shown for the simplest non-trivial 
case of N = 4 i n f1^ure 1. 

One now denotes the areas of Ti and Tfj by Ai and At j respectively 
and introduces thj normalised subtile area Xij, where 

\ 

Atj -  Aij/Ai 
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If one now adds a point PN+1 with coordinates x one must refine the 
tesselation accordingly Tn+1 the t'le of PN+1 is defined. AN+I, IS the 
area of TN+I and AIM, ! is the area of Pi subtile.  If one then forms 

Ai(x) = AN+1, i/An+1 

It can be shown, that the Ai's provide a barycentric coordinate system 
for the neighbourhood of PN+1.  This in turn implies that 

reu = j; Xi(x) fi 

is a C" Interpolant for f over the point PN+1, if ff Is the value of a 
function over the plane at Pi. It is also possible to determine 
approximate gradients for f!at each Pi and to use them to construct a C1 

interpolation. 

This is only an effective Interpolation method over an area of the 
plane we 11-covered by data, i.e. It cannot extrapolate. In general, 
after scaling the data will not cover the region [-1,1] x [-1,1]. 
Figure 2 shows the distribution of 10000 points of data from a simulated 
Van der Pol oscillator, the data clearly does not cover the region. One 
circumnavigates this problem by performing another transformation of the 
type (6) to map a rectangle well-covered by data onto [-1,1] x [-1,1]. 
This step requires care as too restrictive a transformation will 
linearise the data. In the case of the Van der Pol data, the region 
inside the dashed rectangle shown was singled out. 

Another problem which may occur is lack of smoothness In the true 
force surface. It may not be differentiable as In the plecewise linear 
system (fig.3) or even continuous as in the system with Coulomb friction 
in figure 4. In this case the C1Interpolation may be badly behaved near 
singularities where the gradients are ill-defined. A way of obtaining a 
good surface Is to transplant areas of C* surface (the neighbourhoods of 
singularities) Into an overall C"Interpolation. The surface In figure 4 
was produced In this way. 

4.  MDOF SYSTEMS. 

For a Multi-degree-of-freedom system, Newton's second law (1) becomes 

[m]£ + f(y.£) = x(t) (9) 

where [m] Is the n x n mass matrix and underlines denote n-vectors.  If 
the system were linear one would have 

f ■ tt= [c]y + tk!y (10) 

where [c] is the damping oatrix and [k] Is the stiffneas matrix.  For a 
general nonlinear system the restoring force will approximately take the 
form (10) at low excitation levels.  If one estimates the modal matrix 
for this approximately 

linear system [i/i], and changes to 'normal' coordinates u = [^]< y, one 
expects slmpllratfons as follows: If the systom were linear the 
transformed equations would become (assuming proportional damping) 

tmJCj + fcjy + fkju = [^£x = q 
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where fmj = t0]{ [m] [#lt , FcJ and fkj are diagonal.  The system 
is clearly decoupled into n SDOF systems. 

miui + ciüi + kiüi = qi 

where mi, ci and ki are the diagonal entries of tm],   fcj and tk]. 
If the system Is nonlinear this decoupling does not occur, however the 
underlying linear system is decoupled so one expects some simplification 
to follow the change to 'normal' coordinates.  Equation (9) becomes 

IMü + h (u,ü) = q(t) 

here h = [0]Tf 

(11) 

As before, on-s assumes that [0]( , [m], y,y,y and x are obtainable 
so that the restoring force can be calculated from 

h = q - fmJü = [0][ (x - [m]y) 

and the 1 ' component of h is given by 

h. ■ q. - m.ü. 
i   l    ' 

and hi is not simply a function of ui and üi.  As a first estimate one 
assumes that the main dependence of hi is on ui and üi.  One forms 

.(1) hlf
,J(uf,üi) = 7 Y    C1U,mn Tm (ui)Tn(ui) 

m n 

which contains all terms of the form (ui)a(ui)^.  To Include effects 
from still coupled irodes one needs terms like (ui)"1. (uj)" and (ui)". (uj)'1 

where 1 * j.  In order to do this, one forms tha first residual term 

r[l)(u,ü) = hi(u.ü) - h((
l)(ui, ui) 

and then forms the expansion 

.(2) 

i        J m n 
C2<i)<j>Tm(ui) Tn(uj) = rC1)(u,ü) 

mn i   - — 

1nc1udi ng on1y those modes wh i ch  1nteract wi th  the  ith 

r\\ <5pi^c^m^nt ~ vel cci ty crc; 
manner. One forms 

mode, 
accounted fox'    in a similar 

<f'(u.ü) -<1) (u,ü) (2) (u,u) 

■\ 

and 

h(3)(u,ü) = T    Y    yC3(i)(i)Tm(ui)Tn(üj) Sr
(2>(u,u) 

i       'j* k   K     m ' 
So the final restoring force model has the form 

,d) <2>/ h.(u.ü) = h;"(ui\üi) * h^'fu.ü) + hl7 (u.ü) 
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Because the procedure can account for modal coupling we can remove 
the proportionality restriction on the damping. 

Example 1: The System 

+ 20 
y.' 

t m4 
" 2 -1" 

*yi" +5  x   109 

':•■ 

X 

y2 
-I 2 

y2j p o 

was simulated where x was a Gaussian white noise sequence of RMS = 
200. The force surfaces identified are shown In figures 5 -8. To check 
the accuracy of the surfaces, time data predicted using the model was 
compared with the true data. The result is shown in figure 9. An 
example of a Chebyshev fit to an interpolated surface is shown in figure 

10. 

In general, if one carries out the procedure for a MDOF system a 
problem arises if the estimated modal matrix [0]t is not accurate. The 
procedure effectively identifies the wrong system. Consider the linear 

system 

[m]£ + [c]y + [k]y = x (12) 

The Masri/Caughey procedure actually Identifies the system 

+   [0]{[k][#] [0]^ = [#]T&     (13) 

Usually, if [0]t is incorrectly estimated it will not be 
orthogonal, i.e. [01J017* 1 in which case system (13) is not physically 
equivalent to system (12) I.e. they are not related by a change of 
coordinates. The remedy is simple. If [0]^' is used throughout Instead 
of [0]T the two systems are equivalent, the change of coordinates being 
simply WJ'. y = Ü- There is nothing to be lost by adopting this 
modification as [0]"' = li/i\. If the estimate is accurate and the 
equations decouple as required. The results of modifying the procedure 
are shown below. 

Example 2: The system 

"SM [M      4 " 2    -1' fyil "x" 

h 
+ 20 .        +10 -1       2 y2 

0 

was simulated with x as before. The true modal matrix for the system is 
[0]t=j1 1] , using the incorrect W,*/ 1   11 . the system was identified, 

|l 1| b.5 -0.51 

first using the [0], version and then using the [0]L version. The 
results are shown In figures 11 and 12. The modified procedure gave 
significantly bitter results. The mean-square-error between the 
estimated and true time data is normalised so that using the mean level 
of the data as a model results In a mse of 100. 
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Some of the force surfaces obtained appear very noisy. There Is a 
simple explanation. Consider the linear system in example 2 with the 
estimated modal matrix 

I 

wl = 1  1 
0.5 -1 

In normal coordinates, u = [0] y_ the equations of motion become 

Ü + 20Ü, + 12.6 ü + 13416U + 37800u = q. 

ü + 12.6Ü + 20 
2       1 

+ 37800u + 30000u = 0 
1       2 

the restoring forces being 

h = 20Ü. + 12 6Ü + 13416u + 37800u 
11 2 1 2 

(14) 

12.6u 
1 

+ 20Ü + 37800U + 30000u 

If the surface h, (u, , Ct, ) is formed, because all information 
about time is discarded when the data is assembled in the phase plane 
the most one can say about the variables u, and Ü, at a particular point 
is that they have probability distributions. P(x,y) is the joint 
probability density function of two variables x an y and P% (y) is the 
p.d.f for the variable y with x constant. It is clear from (14) that 
the value of the restoring force h, above the point (u,, Ü, ) will be 

h (u ,C| ) = 20üi + 12.6 X1 + 13416^ + 37S00X 

where X, Is a random variable with p.d.f Pu, (Ci* ) and X,.is also a 
random variable with p.d.f. P*. (ut). This means that the interpolation 
procedure sees the deterministic u, , ü, dependent part of h, with a 
random ut , ixu dependent part superimposed. One can see this effect 
clearly in figures 5 and 7. If the surface is then modelled by a h, (ut 
, üt) expansion as above, the residual surface formed. 

R^'lU , u ) = 12.6Ü + 37800U 

will be much smoother, >s in figures 6 and 8. 

Because of this effect, one no longer has the option of forming 
C interpolations. This unpredictability in the restoring force data 
means tht one could have two data points arbitrarily close in the phase 
plane with different force values above them, this would make the 
estimated gradients excessively large and the interpolated surface would 
have large spikes in it. This effect has been observed. In this paper 
C'interpolations were used for the MDOF system and C' interpolations for 
the SDOF systems. 
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Conclusion 

The results presented here Indicate that a practical 
implementation of the Masrl/Caughey procedure is possible. Merits are 
(1) an easily interpreted picture of the nonlinearity is produced (ii) 
computer storage and timing requirements are modest, and (iii) there Is 
no restriction on the type of excitation which can be used as long as it 
excites the nonlinearities. Possible disadvantages are (i ) an estimate 
on [m] is required, the procedure does not seem sensitive to the [1/1] 
estimate. (11). It is not clear how to deal with systems with memory, 
for this reason hysteretic systems are excluded from this study. The 
procedure can not be considered as a replacement for other 
identification methods I.e. the Hilbert transform, NARMAX mode1ling and 
the Volterra/Wiener series as it produces different information. It 
should rather be regarded as a useful adjunct. 
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ON IDENTIFICATION OF LINEAR AND NONLINEAR STRUCTURAL SYSTEMS 

F. Benedettini, D. Capecchi, F. Vestroni 

Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno 
Universita dell'Aquila, 67040 Monteluco di Roio (AQ) , Italy 

INTRODUCTION 

> 

Syst2m Identification has received considerable attention in the field of structural 
engineering over the lasr. decade. This is due to the increased interest in building mathematical 
models able to predict correctly the response of structures to various external loadings, mainly 
those of a time-dependent nature. Many are the aims of structural identification and as a 
consequence many techniques and models have been employed to meet the particular case. 

When the behaviour of the structure can be assumed to be linear, system identification 
comes down to a question of parametric estimation in which more or less a-priori information 
is used in the analytical model. For many mechanical and civil structures the measured data 
are incomplete, however a meaningful mathematical model exists, so it is possible to apply 
parameter adjustment techniques selecting parameters in sucn a way as to reduce differences 
between measured and calculated quantities. In the work presented here a Bayesian identification 
approach is followed; nonlinear estimators are obtained also for linear elnsto-mechanical 
systems because the relationships between response quantities - like modal quantities - and 
structural parameters are nonlinear. To provide an analytical approximation of this 
relationship, two different techniques are adopted, one based on an interpolation method and 
the other on an asymptotic expansion. The techniques are particularly useful in the numerical 
procedures involved in the identification problem. Their validity and aspects concerning 
identifiability and proper selection of parameters and observed values are discussed through 
the solution of the identification of stiffness characteristics of a finite element model of 
spatial frame structure using pseudo-experimental data. 

Where the nonlinear response of structures is concerned, the mathematical models of the 
system are not so well established and structured compared with the elastic case. Nonparametric 
identification methods thus become attractive, since they are flexible and furnish a functional 
representation of the system. A nonparametric model described by polynomials is used for 
identification of the response of an elasto-plastic and a hysteretic degrading one-dimensional 
system. 

IDENTIFICATION OF LINEAR STRUCTURES 

i 

2.1. Bayesian estimation approach 

Available measured data of the response of structural systems under known loadings are 
often very limited since the response in all the principal degrees-of-freedom cannot be recorded. 
It is then convenient to adopt a physical interpretative model, such as a finite element model, 
in a system identification procedure which allows use to be made of all a priori information 
on system behaviour derived from the theory of structures and the knowledge of the constitutive 
mechanical relationships [1-4]. Uncertainties regarding some assumptions in system modeling 
are limited solely to the values of a certain number of physical parameters, which are determined 
in such a way as to minimize the difference between measured and predicted response quantities 
according to a selected iriteiium. 

Let h (x) be the function which relates the vector x of parameters with the observed response 
Z. The following relation between z and x is assumed: 

(x) + n (1) 
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where n is stochastic vector noise, independent of x. Errors are present both in the mathematical 
model and in the experimental data; so there is little sense in forcing the model to match the 
data. It is more correct in this context to follow a Bayesian approach according to which the 
best estimate x of parameters x is that which maximizes the probability of occurrence of x given 
measured quantities z. The value of S, assuming normal distribution for x and n, is furnished 
[3) by the minimum of the function: 

l(x) - [z-h(x)]T E^ [z-h(x)] + <x-x0)
T I?   (x-x0) (2) 

I 

. 

which plays the role of the objective function in the problem. It is made up of two terms, the 
first takes into account the difference betweetn measured z and predicted h (x) quantities, the 
second the distance of x from the initial estimated values of parameters xa, weighted by the 
inverse of the covariance matrices of the noise Z''n and of the parameters £"'x. Since the response 
quantities depend nonlinearly on the parameters, the minimization of 1 (x) is sough- by a 
numerical iterative procedure. For large structures this is not a simple task, because at every 
iteration step the direct problem has to be solved. 

2.2. Parameters and observed quantities 

The behaviour of a physical - finite element - model depends on a large number of parameters 
and furnishes a detailed description of the response by means of many quantities. In principle 
the algorithm h (.) in eq. [i ) establishes a relationship between all the p observable quantities 
and all the q governing parameters; actually only m < p components of z are observed in the 
real structure and only n < q parameters x of the model are considered. The need is felt for 
an optimal selection criterium of a limited number of z and x components The choice has to be 
made with the aim of obtaining a correct parameter estimation and a good fit for measured data, 
as the two requirements are not equivalent. Indeed fitting capability of the model always 
improves with an increase in the ratio n/m, while the parameter estimation can deteriorate; 
consequently the forecasting property of the model may become unsatisfactory. As far ;.s fitting 
is concerned, little can be done before the experimental values are known, so this ispect can 
offer no contribution to the selection problem. It is, however, possible to achieve a-priori 
accuracy of parameter estimation by adopting a statistical identification approach. Parameter 
covariance can be evaluated on the basis of statistical properties of the measured quantities 
[5, 6] . As the number of measurements is often fixed for practical reasons, the problem is that 
of choosing those parameters with the most satisfactory covariance and those observable 
quantities which furnish minimum covariance for the set of selected parameters. 

In the Bayesian approach, assuming normal distribution for the experimental and analytical 
errors, the covariance matrix of the parameters is approximately given [5] by: 

<H„ "n(m) "(m) ♦tff1 (3) 

3h 

9x * - lit 

is the sensitivity matrix of the problem and the sub-index (m) specifies that the quantity refers 
to a set of m measures among p candidates. 

When the variance of the i-th parameter, represented by the diagonal element au of Z , 
is too high for various sets of in measures, this parameter is eliminated from the model. After 
having chosen the parameters, the set of m quantities to be obrerved can be selected in such 
a way that a suitable norm of £,„„ is minimized; the trace is assumed as a norm: 

1 
*(m) 

tr tl(mll 

W 

The point made earlier still remains valid if a deterministic context is involved. In this 
case IB is only a weighting matrix, J^ vanishes and I is simply the Hessian matrix of 1 (x). 
In any case, the selection based on the minimization of the liSL 11 results in better conditioning 
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of the numerical identification algorithm. 

1 

2.3. Approximate models 

To reduce the amount of computational effort, two different techniques have been developed 
to obtain an approximate relationship of h(x) in the neighbourhood of the reference solution 
corresponding to the base value x° of the parameters. In both techniques reference is nnde to 
a finite element model of the structure and to natural frequencies and modal shapes as observed 
quantities. 

2.3.1 Asymptotic approximation 

The first technique which gives an analytical approximation of h (x) is an asymptotic 
expansion of response quantities in terms of the characteristics parameters which makes use 
of local properties of the reference solution h(x°) and of a perturbational procedure to determine 
the coefficients of the series up to the second order [7). Attention is focused on the 

relationship between tne eigenvalues and eigenvectors of the free oscillations of the structure, 
Xt  and ui  respectively, and the parameters x. 

of x: 
Let the mass matrix be considered costant and the stiffness matrix be a regular function 

K-Ko + X», Kh Si, + £„ I, Khl %%  fo(e3) (5) 

where £R is the variation of the h-th component of x and matrices Kh, Khl are directly defined 
by eq. (5). Under these assumptions the response h(x) (which stands for X or u) is also a regular function of x: 

h(x)  - h(x°)   + H, h„ Cj, + 2, Z, hhl E, e,  + 0(E
3) 

(6) 

where the unknowns coefficients \ and hhl are to be determined. By introducing the previous 
expansion in the equations of the eigenvalue problem and by equating the coefficients of the 

same monomials £h, ehl a series cf successive linear equations is obtained at different orders: 

<K„ \  «> % 
T 

<K„ 

(K„ 

\> M> uh " " <K„ - \  M) u0 

u* M uh - 0 

\ M) uhl = - (Kh - \  M) Ul 

(7) 

(Kj - ij M) uh - (Khl - ^ M) u0 

Since the left hand side operator is singular, the compatibility conditions at each order furnish 
the coefficients of the eigenvalues expansions: 

uo h  uo 
T 

* u„ Kk u 
T T 

+ J„ K, uh + u K 
(8) 

vhl 

The solution of the system (7) thus determines u, and uhl. 

An example has been developed to show the accuracy of the proposed technique; a symmetrical 
three span, ten-storey plane frame is considered (fig. 1-a) for which the stiffness (El) of 
the first and second interstorey columns and the first storey beams are considered as three 
variable parameters, x,, x2 and x3 respectively. Exact and approximate results for the first 
three modes are compared for percentage variations of parameters along trisetting lines of 
parameter space x1 x; Jt , The results obtained for 24 sets of parameters (± 401, ± 60% and ± 
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Table 1. Approximation errors (%) in modal values for different directions of parameter 
variations. 

Ax 
% 

Modal 
Value l 2    3 

Direction 
4    5    6    7 8 Mean 

40 
60 

K 0.55 
1.58 

0.22 0.01 
0.49 0.80 

0.28 
1.79 

0.25 0.68 0.71 
1.85 3.56 3.91 

1 26 
6.62 

0.50 
2.58 

40 u. 0.30 0.55 0.10 U.16 0.21 0.36 0.39 0.62 0.28 
60 0.91 0.29 0.56 0.90 1.22 1.72 1.91 2.78 1.29 

40 
60 

X, 0.47 
1.41 

0.25 0.10 
0.59 1.22 

0.19 
1.42 

0.48 0.52 C.77 
2.90 2.61 3.87 

0.94 
4.18 

0.47 
2.28 

40 u, 0.49 0.26 0.30 0.29 0.63 0.57 0.71 0.86 0.51 
60 1.49 0.66 1.50 1.42 3.23 2.59 3.29 3.60 2.22 

40 
60 

K 0.18 
0.58 

0.19 0.21 
0.50 1.25 

0.08 
0.11 

0.57 0.07 0.46 
2.88 0.46 2.08 

0.25 
0.93 

0.25 
1.10 

40 u> 0.50 0.35 0.48 0.40 1.01 0.62 0.85 0.76 0.62 
60 1.54 1.00 2.21 1.49 4.74 2.59 3.77 2.95 2.54 

80% parameter variation on the 4 trisetting lines) are very encouraging; some of the results 
are reported in Table 1 in the form of approximation errors defined by: 

for eigenvalues and eigenvectors rispectively, where X, u are the true vriues and X, u the 
approximate ones, while 11 . I! means euclidean norm. For modifications of parameters up to 60% 
a response variation of th« order of 10 + 15% is obtained compared with the basic solution, 
the maximum error between exact and approximate solution being 3%. For higher modifications 
the <jrrors ?row, as is evident from fig. 1-b. 

1  a) 

■ «tgvnwctor» 

°1 
40 in 

Pararwttr variation (X) 

b) 

Fig. 1 - Plane frame considered (a) and errors in eigenvalues and eigenvectors (b). 

2.3.2. Quadratic polynomial interpolation 

In this second technique each component h; (x) of t.'.e modal response is approximated by 
the interpolation formula: 

Mx) -hl(x°) + £k allt (x, - x°) +b, <x„ °>2 1, 2, (9) 

where n is the number of parameters and m that of observed measures [9, 10). The coefficients 
a1H, blt are determined by imposing passage through three points, namely the solutions furnished 
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by the model for three sets of parameters - the base x°, upper xu and lower x1 values - therefore 
(2n + 1) modal analyses have to be solved. As there are no mixed terms in the interpolation 
formula (9), by a suitable choice of x" and x', a block-diagonal system of equations is obtained 
and each couple of values of the unknown coefficients » , blK can be determined separately from 
the others [10]. 

The capability of the technique to provide a satisfactory representation of the 
relationship between response quantities and parameters in the neighbourhood of the base 
solution may be illu3trated by means of an example concerning the modal response of a four- 
storey spatial frame described by a finite element model, the plan of which is shown in fig. 
2. Some simplifying modelling assumptions have been made, e.g. the horizontal diaphrams are 
considered infinitely rigid in-plane, the soil-structure interaction is taken into account 
through a rigid mat and lumped springs, while the stiffness of infilling walls is represented 
by truss elements. 

Ten parameters are considered in this application: the soil shear modulus x , the nominal 
radius x; of the foundation, the storey stiffness x3, xjr x,, xfof exterior walls and the storey 
stiffness x,, xt, x,, x1B of the lift core. All parameters are dimensionless since they are 
normalized to their base value. The approximated model has been determined by adopting as the 
upper and lower values 1.5 and 0.5 times the base value, with the exception of x";, x's for which 
1.2 and 0.8 have been considered. The shape of the first ten modes, for the base parameter 
configuration, is shown in fig. 3. 

TV Y 

Fig. 2 - Geometry of F.E.   Fig. 3 - First ten mode shapes for parameter base values, 
model and definition of 
observed values. 

The errors in frequencies calculated with approximated model are reported in Table 2 for 

different cases obtained by varying ten parameters one at a time and finally all together; for 
the last case the euclidean norm of the error in a reduced set of eigenvector components is 
reported as well. The value of each varied parameter is collected in the vector: 

x. - (0.80, 1.12, 0.80, 1.15, 0.75, 1.20, 1.15, 1.20, 0.75, 0.80) 

In the range of parameters considered the maximum error for the frequencies is found to 

I be in the order of 1% and for th<» first six eigenvectors in the order of 3%. Higher modes exhibit 
more complex dependence on the parameters and greater differences arise between exact and 

\ 
approximated results. 

: 
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Tabl« 2. Approximation errors (%) in modal vilues. 

1 

Varied 

Param. 

x, 

x. 
*. 
X. 
X, 

\ 
X, 

x„ 

X.+X.. 

0.34 

0.09 
0.01 
0.00 
0.01 
0.00 
0.00 
0.00 
0.24 
0.00 

0.40 
0.10 
0.01 
0.00 
0.01 
0.00 
coo 
o.oo 
0.00 
0.00 

0.25 
0.09 
0.01 
0.00 
0.02 
0.00 
0.02 
0.00 

0.01 
0.00 

Mode 
5 

0.38 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 

8 

0.41 
0.19 
0.10 

0.50 0.71 0.43 0.52 

0.40 0.53 0.72 1.70 

0.71 

0.31 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.07 
0.00 

o.ao 
0.04 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.84 
0.08 
0.00 
0.00 
o.oo 
0.00 
0.00 
0.00 
0.00 
0.00 

0.05 
0.05 
0.00 
0.00 
0.02 
0.00 
0.00 
0.00 
0.03 
0.00 

10 

0.06 
0.06 
0.01 
0.01 
0.02 
0.01 
0.01 
0.01 
0.06 
0.01 

0.61 1.03 1.12 1.40 0.51 1.80 

2.10 3.25 6.51 7.10 22.70 19.23 

2.4. Structural identification 

The structure illustrated in fig. 2 and previously described is referred to in the solution 

of a problem of structural identification. Within this ambit the 'exact' finite element model 
is not used but the relationship between response quantities and structural parameters has been 
represented by an approximate model as per the Par. 2.3.2. technique. The aim of this study 
is to examine some aspects of identifiability conditions and the trend of errors in the estimation 
of parameters and in the prediction capability as a consequence of adopting the estimation of 
parameters and in the prediction capability as a consequence of adopting the simplified model 

and also of the numerical errors in the minimization algorithm. 

The ten parameter introduced in Par. 2.3.2. are here referred to. As the choice of observed 
measures concerns, 15 degrees of freedom are selected between 70 candidates, following the 
minimum parameter convariance matrix criterium. Their position and direction are indicated by 
arrows in fig. 2. The first 10 frequencies and the selected components of the corresponding 

eigenvectors obtained by means of the finite element model for a given values of parameters: 

x* - (0.80, 1.12, 0.80, 1.15, 0.75, 1.20, 1.15, 1.20, 0.75, 0.80) 

are assunied as paeudo-experimancal data. The analysis is performed in a deterministic context 
according to which £"' disappears from the objective function given by eq. (2) OKJ X"' has a 
diagonal form and is only a weighting matrix. Its coefficients are chosen in such a way that 
all observed values are uniformly scaled. Because of the fact that the expression of l(x) is 
polinomial in x, its minimum can be efficiently found using a gradient algorithm type. Given 
the quite regular shape of 1 (x), the Newmark method has been chosen owing its good convergence 

rate. 

The experimental information used for identification purpose varies from the total set 
cf observed modal quantities (10 frequencies and 150 eigenvector components) up to 2 frequencies. 
Moreover three cases of different sets of parameters are considered, ten (x, + x10), six (x , 
x,, x,, xs, x,, x,) and two (x,, x,) parameters are assumed. Identification results are checked 

for accuracy by means of the indices: 

II * - JC. II 
e" " II x5 II "■ . ... 

where x is the estimated parameter vector and m is the number of measurements considered. Table 
3 gives ex and et values for the various cases taken into account, where the observed values 
are indicated in the form of the number of frequencies plus the number of eigenvectors. As can 
be seen, when only the frequencies are used as observed values and their number equals that 
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of the parameters, identification results in a badly conditioned problem ess is evidenced by 
the condition number it, i.e. the ratio of the maximum and minimum eigenvalues of the Hessian 
matrix, in the order of 107, so the problem becomes very sensitive to numerical errors. The two 
parameter case provides the best estimate, for which K is iower and equal to 10s. 

Tab . 3. Identification errors (%) in parameters and in observed values. 

Observed 
values Ten parameters Six parameters Two parameters 

e»     ei e*      et ei      e. 

2+0 
6+0 

- lob.   oTo 
13.7     0.0 
7.6     0.1 

10+0 200.    0.0 14.1     0.1 4.9    0.2 
10+1 6.3    0.1 6.5    0.1 4.8     0.2 
10+5 3.2    0.2 4.4     0.1 6.0    0.2 
10 + 10 30.3    2.7 17.6    2.7 12.8    4.3 

When more measurements r,han parameters are considered the errors eH and er remain within 
satisfactory bounds, except for the 10 eigenvector case, where the bad results are due 
principally to the reduced approximation capacity of the model for higher modes already outlined 
and evidenced in Table 2. 

3. IDENTIFICATION OF NONLINEAR STRUCTURES 

3.1. Parametric and nonparametric models 

Identification of non linear response of structures is a more complex process than that 
involved in the linear case. On the one hand the solution of dynamic problems, usually made 
in the time domain context, is a very lengthy task, on the other hand the description of the 
dynamic behaviour is more difficult and calls for the study of very complex models. 

> 

When a good knowledge of the structure is available, use can be made of parametric models 
whose behaviour is defined by a limited number of parameters and rules. Where complex systems 
are concerned, for which there is insufficient information on geometry and materials and a 
detailed description cannot be made, the use of parametric models may not be realistic; in such 
cases nonparametric models beccme attractive [11-13] . These models consider the structure like 
a black-box and are extremely flexible, thus making a good tit of the structural response 
feasible whatever shape it assumes. 

r 

* 

r 

The nonparametric models considered in this paper are particularly suitable for the 
analysis of nonlinear elastic behaviour, however they can be used for hysteretic models too, 
though with a lower degree of accuracy. In the following discussion the nonparametric approach 
is used in the study of a single degree of freedom system with two different hysteretic force- 
displacement laws. 

f 
3.2. .Choice criterium 

The response z of the s.d.o.f. structural observed 3ystem, under excitation q, satisfies 

the equation: 

\ 
• m z + f - q                                                           (10) 

where m is the mass and f the restoring force. Assuming m to be known, and z, q to be measured, 
f is consequently obtained. 

* . 

i 
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If z is the response of the assumed analytical model, characterized by a restoring force 
f, to obtained an approximation of f, the following two fur.ctional expressions of f to be 

minimized can be considered: 

1(f) 
0 T 

- J Im'i 

(t) - fit)] dt (11-a) 

- j [f(U - l'(f) = 1 [m z(t) + fit) -q(t)l"dt>=J [f(U -f(t)."dt (11-b) 

0 0 

Expression (11-a) is related to the response errors and expression (11-b) to equation errors 
which are equal to restoring force errors. It should be observed that f (t) values are obtained 
by examination of z(t), z(t), while f (t) is given b" q(t) - m z(t) . 

The first functional expression permits a less biased estimate of f and does not require 
knowledge of tit) and z (t); however, it does need solution of differential equation (10) for 
each assumed model f of r. ."he second expression needs all the quantities z(t), 'z(t), z(t) but 
only requires the computation of f(t) each time. Following a parametric approach, the two 
functional expressions become ordinary objective functions 1(.) of the parameter vector y. the 
minimum for which can usually be obtained by direct search techniques. In the nonparametric 
case, the prec.aeding situation is again obtained when f is expressed in an approximate parametric 
form; otherwise a general function approximation technique has to be used. 

3.3. Polynomial nonparametric models 

The function f (t) - q(t) - m z (t) is seen as a function f (z, z") of the two state variables 
z", z, assuming for each f(t) value the corresponding z"(t), z"(t) couple. Actually, where 
hysteretic oscillators are concerned, f (z, z) is not a unique value function; the assumption 
made when a nonparametric model is adopted is that this fact is not so relevant and that an 
ordinary function f(z, z) exists such that the surface defined by f, in the space f, z, z, contains 
the curve f (t) . z'(t), z"(t) with a good degree of appro imation. The choice criterium (11-b) 
can then be written as: 

1(f) = 1, [f<z* *> f(zl, zk)]
2 (11-c) 

where the summation over N tin«- steps tt substitutes the integral ani zk,  zk means z(tk), z(tk) . 

Assuming regularity of f,   the following series expansion can be considered: 

f(z,   z)   - X j Xi alj «1   l7)  hj   (i) (12) 

provided that g1 (z) h (z) possesses the necessary completness requirements. Such requirements 
die oatisfied •.;hor. monomial i1, *] or order i,i Chebyshev polynomials are considered for g , 
h, functions. By cc.ridering the coefficient a up to order n an approximate parametric 
expression is obtained for f. The a values can be calculated by substituting the expression 
for f in (11-c) , which leads to the following objective function: 

1(aij»   * Xk tF(?*'   *k!   " Xi Xj aU gl   lSk>  h;   <V (13) 
l o 

An ordinary least squares method is used for the minimization of 1 (a ); this requires 
the solution of a linear system of (n+l)x(n+l) equations. When Chebyshev polynomials are 
considered, owiny to the fact tha"; they are orthogonal, a direct expression for each a1} 
coefficient is possible, without requiring any expl: cit paratiwtrization. This apprf ■ -h has been 
followed in ref. (11)• 

3.4. Identification example 

The fitting capacity of nonparametric models has been tested assuming ' wo different 
hysteretic models. In the first c<sse, concerning an elastoplastic oscillator, the non parametric 
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model in question is obtained using mononials like z1 z; up to an order of n - 3. Sinusoidal 

external force in the form q » t^ e"dt sinwt is considered. The expression of the oscillator 
response is approximately similar, so the form of the hysteretic loops obtained is regular and 
symmetrical. Fig. 4 shows the identified force-displacement and force-velocity laws in a 
nondimensional plane. 

b) 

Fig. 4 - Identified force-displacement (a) and force-velocity cycles (b) for elastoplastic 
oscillator. 

The second case considered concerns a degrading hysteretic model which reproduces the 
behaviour of reinforced concrete columns. It is a layr^d model which has been described in 
ref. [14] having a natural period T - 0.5 sec. The nonparan.etric model considers Chebyschev 
polynomials up to an order n - 3. The external action consists of Taft 21.07.52 N69W earthquake 
accelerogram scaled in such a way that the maximum displacement normalized with respect to the 
displacement at yielding is about four. Fig. 5 shows layered nodel loops and the identified 
ones. 

a) 

*/*, 

b) 

Fig. 5 - Histeretic cycles for degrading oscillator undf r Taft accelerogram excitation 
(a) and identified cycles (b). 

As it can be seen, agreement is not as good as in the preceding case. It is felt that further 
efforts shoulds be made to shed more light on the behaviour of these nonparametric models and 
studies are now being carried on in this regard 

CONCLUSIONS 

During the last decade structural identification has received great attention also in the 
field of civil engineering. For large complex structures the availability of experimental 
results could not be quite wide: therefore it is convenient to use all prior information in 
the modelling of the structure and to adopt physical models in the identification of linear 
dynamic behaviour. 

A finite element model of the structure is referred to in which some physical quantities 
are uncertain. Their values are determined on the base of a, comparison between measured and 
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predicted modal quantaties within a Baye3ian framework. An approximated technique is illustrated 
to represent the relation between response quantities and structural parameters; it is shown 
that this technique is very effective in the numerical procedure of parameter estimation and 
the sensitivity analysis. An example of structural identification of a building has been 
developed; the general aspects of the optimal choice of measured quantities, of identif iability 
and of numerical errors are discussed. 

For the identification of nonlinear structures, mainly when sparsely instrumented, 
nonparametric models can be attractive. A series expansion of the force-deformation relationship 
through ordinary and Chebyshev polynomials has referred to in the identification of the response 
of two different hysteretic oscillators subjected to a strong earthquake. The results are 
encouraging but further research is needed to enlight the effectiveness of nonparametric models. 
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INTR0DUC1I0N 

In multi-mode curve fitting algorithm 
are widely observed when the number of 
is set significantly greater than prio 
structure would suggest. The resulting 
called mathematical or "ghost modes" 
description is more suitable, since th 
represent genuine structural propertie 
from system noise. The most extreme c 
the class of free time domain methods 
method where the data space is complet 
(ie the number of identified modes i 
of measurement stations) [1,2,3], 

s, beneficial results 
modes to be identified 

r knowledge of the 
additional modes are 

Perhaps the latter 
e extra data do not 
s but are constructed 
ase of this practice is 
such as Ibrahim's 

ed with "noise modes" 
s  equal to the dumber 

The   author  knows  of no current literature  which explains 
adequately why the addition of ghost modes improves the 
confidence  of the  analyst in the genuine structural modes. 
Thus the current paper sets out to explain this phenomenon in 
a heuristic fashion using analysis based on the concept of 
the bounding properties of Oerschgorin discs.  The intention 
here is to present plausible explanations, founded on 
established numerical theory, rather than rigorous analytical 
results. 

This  paper  develops a number of previous works by  the 
author. Rank estimation was considered previously in ref"[4] 
and the analysis presented here will use as a case study 
Ibrahim's method which has been considered elsewhere in refs 
[5,61. The current paper should he seen as part of »   «»ripe 
which sets out to examine the fundamental characteristics of 
identification algorithms. It is gradually becoming 
understood that the underlying numerical procedures are 
common to a number of competing methods in structural 
dynamics identification, (this was recently observed by Brown 
[7]). A taxonomic study, in the same  style  as  that in the 
control literature by Eykhoff [8], is currently in progress. 
Tt is interesting to note that many of the strategies 
currently vying for favour in modal analysis,  eg maximum 
liklihood,  extended least squares, generalised least squares 
etc, are part  of Eykhoffs amorphous "bag of tricks" which 
was the subject  of his classification. 

I I 

319 



2   STRUCTURE OF THE IDENTIFICATION PROBLEM 

The identification problem of interest may be defined as 
follows: 

Given   a  series  of  observations of an  array  of 
sensors sampled simultaneously,  to identify natural 
frequencies (in complex form) and corresponding mode 
shapes. 

Factors which corrupt the data, for example due to the 
instrumentation and signal processing, are important in the 
theory of modal analysis (for example see Ewins[9]), but will 
not be addressed in this paper. The objective of the current 
work is to assess the consequences of  the errors rather than 
their origin. Neither is it intended in the current work to 
form any judgement of the suitability of different response 
measures (receptance/ mobility/inertance).  It is assumed 
that  the data can be represented in discretised (ie matrix) 
format, and that each of the measurements is independently 
subject to error. Two formulations will be discussed. In the 
first case,  the measurements are assumed to be expressed in 
the form of the receptance matrix,  with  the identification 
being carried out in  the frequency domain.  The  second case 
will use the initial transformation involved in the Ibrahim 
time domain algorithm. 

2.1  Receptance identification 

The output, from the  majority  of  current  signal processing 
hardware can be programmed so that it comprises a sequence of 
estimates of the receptances of a vector of measurement 
points as referred to the driving point. These in the 
majority of cases are measured  at f.'xed frequency intervals, 
although the spacing may  be varied eg logarithmically. 
Denoting this matrix of measurements as (J, then, assuming the 
data to be free of error, there exists a factorisation of £: 

E W (1) 

Where E is a matrix whose columns are the modal vectors of 
the structure (normalised in the least squares norm ie 
g.i ' a' = 1), W is the diagonal matrix of the weights of the 
modes in the observed data and the rows of F comprise the 
dynamic magnification factors of  each mode at the excitation 
frequencies. 

The identification is often achieved iteratively: 
(i) estimates are made of natural frequencies; 
(ii) the estimate to  F  is constructed; 
(iii) each side of equation (1) is post -multiplied 
by the inverse of F (or the Moore-Penrose generalised 
inverse or pseudo-inverse if F is not square or is square 
but singular (see Chen and Fuh [10] and Brandon [11,12]); 
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2.2 Time domain methods 

In the time domain methods, for example free decay methods, 
the data is again capable of representation in matrix factor 
form (see Brandon(6)) 

E W (2) 

wheii;, as before, E contains normalised modes, W comprises 
the modal weights, but D is now constructed from the 
transient time behaviour corresponding to each of the system 
modes. 

2.3 Canonical forms 

Although the analysis is not presented here, it would appear 
that a factorisation into the three matrices as shown above 
is common to a large class of identification methods and as 
such forms the basis of a canonical form of the 
identification problem,  ie a standard form  on which error 
analysis can be based. 

As will be seen, the numerical properties of this 
factorisation are far from ideal but represent a suitable 
first step. 

2.4   Segregation of the errors 

Consider the structure of equation (1) as defined:  the 
matrix  E comprises  only structural properties (the mode 
shapes); similarly F contains  corresponding  frequency and 
damping properties.  Under  the usual linearity assumptions 
prevailing in moda] analysis these  system properties  are 
fixed and unambigous.  The experimental indeterminancy can he 
isolated to the weighting matrix W  which represents the test 
configuration and excitation conditions. 

Experimental errors can thus be considered to cause errors 
only in the weighting matrix which should be re-defined: 

W Ws We (3) 

where Ws is the (diagonal) matrix corresponding lo th«a 
genuine data (signal) and We is the (generally full) matrix 
of experimental errors (noise). 

2 . 'S  Rank uncertainty 

In  experimental conditions it is usually not po^sibU- to 
make an a  priori  decision concerning  the number of  modes 
which will  be identified in a structure. Even where a 
theoretically derived model is available, eg a finite element 
study, it is not unusual to detect resonant phenomena 
unpredicated by the model or to fail, to measure predicted 
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modes.  Examination of teat results (eg Lembregts et al[l3|) 
shows» considerable uncertainties as to the rank of the data 
matrix and equivalently  the  number of identifiable modes 
(for  further related commentary see Brandon[4]). 

The rank of the data matrix affects the order of the matrices 
in equation (1). Assuming m measurement stations, f 
frequencies and k genuine modes, (£ is mxf, E should be mxk, W 
kxk and F is kxn (typically f>m>n). However the number of 
modes is in general unknown a priori and  the analyst uses a 
model containing  p predicted modes making  E inxp,  VJ pxp 
and  F  pxf. The additional columns of  E  and rows of F 
(similarl> scaled) must be chosen so that the matrices are of 
full rank,  ie  the rowa/columns comprise a set of p linearly 
independent vectors.  The remainder of the current paper will 
assess particularly the possible consequences of the common 
practice of choosing p>k (the oversized model) but also the 
effect of underestimates of the rank. 

■ 

3 NUMERICAL CONCEPTS 

Error analysis for the identification problem depends on the 
separation of the components of Ws and W« of the modal 
weighting matrix W. This is not however the whole story since 
the errors themselves may be affected by the scaling of 
product matrices E and F. In this case the advantageous 
computational properties of more well known factorisations, 
for example the Singular Value Decomposition (SVD),  do not 
necessarily apply to this problem. The power of the SVD stems 
from the property that the left and right factor matrices are 
unitary matrices, (see for example Noble and Daniel [14]) 
which consequently have a numerically neutral effect. In this 
case, however, whilst the columns of E and the rows of F 
respectively are normalised with respect to themselves, they 
are not orthogonal with respect to each other.  This is a 
consequence of the fact that  in structural dynamics the 
generalised eigenvalue problem is solved rather than  the 
standard one. 

3.1  Gerschgorin disc's- a suitable basis for error analysis 

Much  of the theoretical basis for error ^nnlysis is based on 
the properties of the eigensystem of the coefficient 
matrices. In matrix inversion, for example, the condition 
number, the key measure of the quality of the system matrix, 
is usually defined as the ratio of  its largest to smallest 
eigenvalue. In the solution of eigenproblems  the appropriate 
condition numbers depend on the closeness of pairs of 
adjacent eigenvalues (see Wilkinson [15]). From a heuristic 
point  of view therefore, there is considerable merit in 
examining the behaviour of the weighting matrix, when subject 
to error, in terms of the bounds of its eigenvalues.  This is 
particularly attractive in this case, since W is nominally 
dirgonal, ie the diagonal entries are the eigenvalues of  W. 
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In this respect the Gerschgorin theorems provide an ideaj 
analytical model. These are analysed in considerable detail 
by Klkinson[15]. Their use in structural dynamics was 
probably  first proposed  by Lancasterf16].  Both of these 
texts are however deeply analytical and may be inaccessible 
to the general reader. The text by Meirovitch[17J contains an 
accessible and concise description of  the theorems. 

The Gershgorin discs provide bounds for each of the 
eigenvalues of  a  matrix by comparing the diagonal  and off- 
diagonal terms. Specifically every eigenvalue n   of W lies 
within at least one  of  the discs 

Wm» as is,' 
i i m 

a m i (4) 

It  should be noted that there are two discs associated with 
each diagonal  element  ie  based on rows (as defined above) 
and columns (transposing the indices in (4)).  The smaller 
disc naturally provides the  stronger  estimate.  The 
Gerschgorin discs therefore allow  the estimation of possible 
errors in the diagonal entries of W in terms ofits off 
diagonal entries. 

example 

The Gerschgorin discs for the matrix 

1   +   i 0.4 0.1 ■ 
0.3 2.0 0. 1 
0.4 0.7 3.0-1 

are as shown in Fig 1, where Ci and Rj are the discs 
corresponding to the ith column respectively. It can be seen 
from this example that reliance on only eitherthe set of row 
or of column discs gives an unsatisfactory result,in this 
application, since overlapping discs imply failure to resolvp 
modes.       - >' 

Fig 1 Row and column Gerschgorin discs 
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It should be noted that the Gerschgorin discs, as defined 
above, give rather weak bounds on the eigenvalues. Methods 
are described by Wilkinsonf15]  for weighting the rows/ 
columns to achieve considerably sharper error bounds. 

3.2 Diagonal dominance- a related concept 

A related concept to Gerschgorin discs is that of diagonal 
dominance. This again compares the diagonal entry with the 
absolute row/column sum of the off diagonal entries.  In this 
case i f 

WBm J « 1" 
i I m 

for all m,  then the matrix is diagonally dominant . The 
consequence of diagonal dominance is that the matrix is 
guaranteed to be nonsingular (see  for example Noble and 
Danielt14]).  Strongly diagonally dominant matrices  (ie 
replacing > with » above)  have  attractive numerical 
properties, giving in general well conditioned inversion. It 
has rarely  been  remarked  in the literature that diagonal 
dominance  is equivalent,  to  the  condition  that none  of 
the Gerschgorin  discs encloses  the origin and that strong 
diagonal dominance often leads to disjointness in the discs 
(although this is implicit in Gerschgorin's second theorem 
(see Meirovitchf17])). 

3.3   Measuring the errors- various matrix norms 

i 

The definitions of Gerschgorin discs  and  diagonal dominance 
naturally use the absolute row sum and absolute column sum 
norms, the !!•!!»  and ! I . ! ! i norms respectively. The natural 
norm for eigenvalue  problems is the ',',,'] t   or least squares 
norm, which underlies  the theory of the pseudo-inverse which 
is in increasing use in identification problems[12]. The norm 
most easy  to compute in identification problems is variously 
termed the Frobenius/ Euclidean/ Schur  norm !!.,'!E •  It is 
not intended to discuss in any detail  the respective merits 
of these norms since their  properties are  all extensively 
recorded in standard texts (for example (14]).  It  should be 
realised however  that the availability of any norm allows 
the computation of bound» for aii the others. 

» 
i 

4    THE IDENTIFICATION PROCESS 

Although  not  a complete  description  cf the process, the 
estimation of a modal weighting matrix (implicitly or 
explicitly) is a central feature of many practical 
identification algorithms. As has been suggested the 
Gerschgorin discs indicate whether a mode can  be identified, 
although they do not necessarily provide a practical method 
of doing so. It has been shown that, the separation of the 
Gerschgorin discs  is dependent on the ratio of the diagonal 
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term to the absolute row/column sum of the corresponding off- 
diagonal terms. In practical terms the quality of the 
identification is judged in terms of a residual which 
quantifies the  discrepancy between the experimental data and 
the identified structural properties. In general an a 
posteriori estimate of the residual is formed by subtracting 
the effects of the identified modal properties from the data 
matrix . 

4.1   Significance of the residual 

Taking for example the frequency response case,in the 
formulation defined in equations (1) and (II), the structural 
properties are represented by the product E Ws F and I he 
residual by the product E W,. F. These oontribut ions may be 
characterised by  the Euclidean norm, where 

A  ill ■r »i j 

As the assumed rank increases the Euclidean norm of the modal 
weighting matrix Ws increases monotonioal1y (since this,is a 
diagonal matrix to which significant terms are replacing 
zeroes in the diagonal as the assumed rank increments), 
whilst the norm of the noise weighting matrix Wf 
correspondingly decreases monotonical1y. As has alread} been 
stated, the availability of any norm allows bound to be set 
on all other norms.  Particularly the monotonio decreasing of 
the Euclidean  norm  of the error weighting matrix  implies a 
consequent monocone reduct ion of the ! ! . ! ! i and \ \ . ) ', « norms 
and hence the radii of the Gerschgorin discs. 

1.2   Consequences of the error bounds for overdetermined 
systems. 

As has been described above, an increment in the assumed 
of the system causes a reduction in the Euclidean norm of 
error matrix, measured usually in terms of thr> magnitude 
the residual. (Wilkinson! 15 ] presents similar analysis f'o 
the Jordan canonical form of a general matrix.) By the 
bounding properties of the norms, the Gershgorin discs 
enclosing the diagonal terms in the matrix of identified 

rank 
the 

of 
r 

weights W j.. crcio t c.o J.nL 
analyst in the identified modes. It follows that when the 
system is overdetermined, i.e the rank of the system is chosen 
greater than the number of identifiable modes, the radii of 
the Gershgorin discs will continue to contract, (and 
consequently the confidence of the analyse will continue to 
increase), as the assumed rank is incremented. An unfortunate 
consequence of Lhe above analysis, however, is that the discs 
of  previous!} identified "ghost" modes will also contract, 
making them increasingly likely to be identified as genuine 
structural modes. It has been shown previously[5] that the 
effects of random noise cannot be completely eliminated from 
the identified modes. Conversely, the noise cannot be 

32b 



T T *T"~ 

isolated to or from the ghost modes. 

There  have  been  relatively few  studies  of identification 
algorithms tested on systems which have a simple known 
spectrum. Goyder reported the use of an incremental multi- 
degree of freedom algorithm on a simple cantilever structure 
{181. Although on theoretical grounds there should have been 
five modes, the algorithm identified fourteen modes within 
the frequency range studied (see also[19]>. 

5    CONCLUSIONS 

Error analysis of a number of identification algorithms can 
be based on the canonical form developed in the paper. 

Error bounds for identified modal properties depend on the 
radii of Gerschgorin discs for  the modal weighting matrix. 

The discs contract  as  the assumed rank is incremented, 
leading to increased confidence in the identified modes. 

The contract ing   Gershgorin  discs  can increase confidence 
indi scrlminately for both genuine and ghost modes.  Thus the 
increased confidence in the identi fied data may lead to 
§üy_Li°J.iä cone] usions . 
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AN EXPERIMENTAL TECHNIQUE FOR INVESTIGATING NONLINEAR STRUCTURES 

H G D Goyder - Harwell Laboratory 
A P Lincoln - Prosig Computer Consultants 

1. INTRODUCTION 

I 

Experimental techniques for investigating vibration are now widely 
used and there is a considerable literature. This approach to vibration 
is generally called experimental modal analysis and the book by Ewins [l] 
summarises the methods used in its application. Essentially a modal 
analysis is conducted by applying a force to a structure and measuring 
the time history of this force and the resultant motion. From these 
measurements, a transfer function is calculated which relates the res- 
ponse to the applied force. For linear structures, this transfer 
function completely characterises the structure, and by analysing the 
transfer function, basic parameters such as natural frequencies, damping 
ratios and mode shapes may be deduced. 

Most of the experimental methods developed for modal analyses rely 
upon the structure being linear. The purpose of this paper is to extend 
the theoretical and experimental techniques of modal analysis .so that 
nonlinear structures may be tested. Problems arise with nonlinear struc- 
tures because the effects of any nonlinear components depend on the 
amplitude and velocity of the structure. Thus when a modal analysis is 
performed, the resulting transfer function depends on the degree to which 
the nonlinear component is excited. Thus, for example, if an impulse is 
used to excite a nonlinear structure, a different transfer function will 
be obtained for each different impulse magnitude. If the structure is 
linear, every transfer function is identical. 

If a nonlinear structure is to be characterised by a transfer 
function, it is necessary to arrange for the non-linear components to be 
excited in an appropriate fashion. It is therefore necessary to choose a 
suitable excitation force. A good choice is to use the force which rep- 
licates the excitation that the structure will experience when it is in 
operation. An excitation of this form ensures that the nonlinear com- 
ponents will be excited in a realistic manner. An excitation which is 
chosen arbitrarily will not in general be suitable.  Thus one of the 
OujcCuiVcS   Oi    tui3   Study   W35   tu   deVclüp   ä   fiictuüu   fOi"   cXCiting   ä   StfuCtUfc 
in a realistic manner. 

A further consideration is the choice of excitation function. 
Typical functions used for modal analysis are sine waves, impulses, 
spectrally shaped transients and stationary random signals. Goyder [2] 
has compared the use of the these functions for nonlinear structures and 
has demonstrated that the use of stationary random signals has several 
advantages. These advantages may be summarised as follows. 

■i 

(i)  The transfer function is continuous. 
(Ii) The transfer function obtained may be interpreted in the same way 
as that of a linear structure, ie as a summation of resonances. 
(iii) The transfer function correctly models damping in the sense that 
all the energy dissipated within a nonlinear structure is properly 
accounted for. 
(iv) The transfer function is optimum in the sense that there is no 
better linear model (in the least squares sense) which describes the 
non-linear 3ystem. 
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Because of these favourable properties, it was decided that random 
excitation would be used for the modal analysis. 

This paper describes (i) the experimental techniques which were 
developed in order to apply realistic excitation forces to nonlinear 
structures and (ii) the method by which transfer functions may be deduced 
from the measurements. 

2.   THE PRINCIPLE DIFFICULTIES 

A number of problems must be overcome before a nonlinear structure 
can be satisfactorily tested. These problems are illustrated in figures 
1 to 3. Figure 1 shows the spectrum of a stationary random signal which 
was applied to a electrodynamic shaker. This spectrum is the voltage 
applied to the power amplifier which excites the shaker. The voltage has 
been arranged to have a band pass spectrum which is flat between 75 Hz 
and 350 Hz. Figure 2 shows the spectrum of the force actually applied to 
the structure. Although the band pass nature of the spectrum is still 
apparent, it is clear that there are several peaks and troughs. These 
peaks and troughs are a combination of characteristics from the shaker 
and structure. The modulus of the transfer function for the structure 
(inertance) is shown in figure 3. The structure, which was non-linear, 
consisted of a 3.36m tube with a 0.0175m outside diameter. The tube was 
loosely supported at its ends, by plates with clearance holes. Addi- 
tional vibration constraints were also applied by means of five friction 
restraints. The tube was allowed to slide against these restraints, thus 
allowing friction to oppose the motion (this experimental configuration 
models tubes within heat exchangers). The transfer function was measured 
by a technique which will be described below. It can be seen that the 
troughs in the force 3pectrum correspond to the resonances of the 
structure. The peaks in the force spectrum correspond to combined reso- 
nances of the shaker and tube. It can thus be seen that there is a 
strong feedback between the motion of the structure the force applied to 
the structure. 

One objective of the study was to determine how a force could be 
applied to a structure so that this force was representative of the 
forces likely to be found when the structure was in operation. The 
approach developed to over come the difficulties shown in figures 1 to 3 
was to weight the signal applied to the shaker so that the distortions 
introduced by the shaker were accounted for. For a linear structure, 
this procedure involves weighting the signal applied to the shaker by a 
transfer function which Is the 1 HVPPRP of the transfer function between 
the force and the applied signal. However, because the structure is 
nonlinear, this weighting cannot be performed directly and an iterative 
method must be used. 

A further difficulty arises in the calculation of the transfer 
function of the structure. The transfer function of the structure is 
found from the ratio of the spectrum of the response to the spectrum of 
the force (the details will be given below). When calculating this 
transfer function, it is desirable to use a method which rejects noise. 
This is particularly important for nonlinear structures because the non- 
linearities produce an additional response which is similar to noise. It 
is clear that both the force signal and the response signal are contami- 
nated by noise and that a method must be developed for rejecting noi3e 
from both of these signals. This is clear from figure 2 where the force 
signal is seen to be dependent on the motion of the structure and thus 
also dependent on the noise In the structure. The method for determining 
the transfer function given below rejects noise from both the force and 
the response signals. 

330 

■"^raunsmnmfaimnmmtSHftt.^};« 



~^\ 

Thus the principal difficulties to be overcome are due to the force 
applied to the structure being dependent on the motion of the structure. 
The way that this difficulty has been overcome is given in the subsequent 
sections. 

3.   CONTROL OF THE EXCITATION FORCE 

The method for achieving control of the excitation force is des- 
cribed in this section. In order to simplify this discussion, the fox- 
lowing nomenclature will be used. The auto-spectral density function 
(power spectrum) of the force will be called the force-spectrum. The 
auU-apectral density function of the signal applied to the power ampli- 
fier which excites the shaker will be called the drive spectrum (it 
should be noted that the actual signal to the shaker is dependent on the 
motion of the structure due to the back emf generated in the shaker coil. 
For this reason it is inappropriate to use the signal applied to the 
shaker in any control circuit. However the power amplifier used to 
excite the shaker acts as a buffer and the effect of the tack emf is not 
apparent at the input to the power amplifier). Finally, the desired 
force spectrum will be called the target spectrum, thus the objective is 
to adjust the drive spectrum so that the force spectrum becomes the 
target spectrum. 

The control of the force spectrum has been achieved by means of a 
computer. The control strategy operates as follows. First the target 
spectrum is input to the computer. The target spectrum is chosen so that 
it represents the likely environment; of the structure. A drive signal is 
then constructed. The drive spectrum may be adjusted to take any appro- 
priate form. The drive signal it; converted to an analogue signal and 
applie.i to the power amplifier which energises the shaker. The actual 
force «fhich is applied to the structure is measured and is fed back to 
the computer where it is digitised. Finally, the force spectrum is cal- 
culated and compared with the target spectrum. From the discrepancies 
between the force spectrum and the target spectrum, a new drive spectrum 
may be deduced. 

The process of measuring the force spectrum and updating the drive 
spectrum cannot be performed in real time. This is because of the long 
record length required in order to obtain an accurate spectra for the 
force. An iterative approach has therefore been adopted. During one 
iteration, the drive signal is maintained with the same spectrum and the 
force spectrum is measured. This situation is maintained until the 
measured force äüeoLiuüi haa reached a specified auouracy. The drive 
signal is then halted and a new (improved) drive spectrum calculated. 
The next iteration may now begin with an improved spectrum. Because of 
this iterative process any changes in the force spectrum due to nonlinear 
effects may be taken into account in the adjusting process. 

This algorithm has been successfully implemented aid the results 
are shown in figures 4 and 5. Here, figure 1 has been used as the target 
spectrum. Figure H is the drive spectrum and figure 5 is the force 
spectrum. It can be seen that a much improved force spectrum, con,pared 
to figure 2, has been achieved. 

1. THE ALGORITHM FOR FORCE CONTROL 

Details of the algorithm for force control are as follows. At the 
end of the nth iteration, let the drive auto-spectral density be Dn (w), 
and the measured force auto-spectral density be Fn(ui). The target 
spectrum is S(iu). The new drive spectrum for the n+1 th iteration is 
calculated from 
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Dn+1U> " g,Dn(w) SU)/82 
FnU1 (1) 

Here g, and g2 are gains whioh are applied to the drive spectrum and 
measured force spectrum respectively (it is necessary to control the 
gains in order to achieve good quantisation through the analogue to digi- 
tal and digital to analogue converters.) The drive signal is calculated 
as follows. In the frequency domain, a signal is calculated which has 
random phase but has a modulus spectrum equal to the square root of 
DnU). This signal is then converted back to the time domain by means of 
an inverse Fourier transform and then output as the drive signal. 
Attention has to be paid to the windowing of the spectrum since it is 
necessary to output a sequence of drive time histories which must be 
independent and yet Join together smoothly. By using this technique, 
record lengths of indefinite duration may be generated. 

It is important to show that the use of equation (1) will be 
successful and that by its implementation the force spectrum will con- 
verge to the target spectrum. In order to show this, it is necessary to 
model the transfer function between the drive signal and force signal. 
If this transfer function is written HU) then the relationship between 
Fn(u) and DnU) is 

FnU) = |HU)|2 Dn(w) + RU) (2) 

Here, RU) models the effects of noise and non-linearities. Thus all the 
non-linear effects are given by RU) while HU) models all the linear 
effects. This type of division may always be made [3]. Substituting 
equation (2)  into equation (1) to eliminate FnU) gives 

Dn+1U) = g,Dn(u)  SU)/g2  (JH(a>)|2Dn(oo)  + RU)) (3) 

This   is   a  non-linear   difference   equation.      The   analysis   of   difference 
equations   is   similar   to   that   of   differential   equations   [H], First   we 
determine the fixed points   (fixed points  are where Dn+1 U) = DU)). 
Thus selecting Dn+1 U) - DnU) gives fixed points (denoted by DiU) and 
D2U)   ) of 

D,U)  - 0 (i|) 
and 

gs|HU)|2 DiU)  + g2RU)  = gi SU) (5) 

°r I        I 
DJU) = g SU) - g EU)/g     HU) 2 (6) 

1 2 2  ' 

The resulting force spectrum corresponding to the fixed points may now be 
found by substituting DjU) and D2U)  into equation (2).    This gives 

F,U)  - RU) 

for the first fixed point and 

F2U)   - gtSU)/g2 

(7) 

(8) 

for the second fixed point. Clearly convergence to the first fixed point 
is undesirable, while convergence to the second fixed point yields a 
perfect result. 

By performing a stability calculat n it is possible to see if the 
algorithm will converge onto the desired .ixed point. It is only neces- 
sary to perform a stability calcula'-'on in the neighbourhood of the 
fixed point and consequently a linearised analysis may be conducted. The 
basis for the stability analysis is as follows. Equation (3) may be 
written as 
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Dn + 1(io)   =  f(Dn(ui)) (9) 

where  f(0   is   the  function  on  the  right   hand  side  of   equation   (3).     A 
Taylor series expansion about the fixed points yields 

Dn+1U)   - f(DjU))   ♦   (Dn(u)  - Dj(üi))  f'lDjtwj; (10) 

where DAm)  is the fixed point Di(w) or Da(w)  and f*   is the derivative of 
f at Daw).     This equation may be written as 

Dn+1U) - Dj(io)     - (Dn(w) - Dj(u))) f'(Dj(u))... (11) 

If   only   first   order   terms   are   considered,   then   this   equation   has   the 
solution 

Dn(u>)  - Dj(w)   = A(f(Dj(u))))n (12) 

where A is the starting condition for n = 0. This equation is convergent 
as long as 

f'CDjCu)) < 0 (13) 

For equation (3), the first fixed point yields 

f'tD^w)) = gi S(<a)/g, R(tu) (14) 

while the second fixed point yields 

f'(D2(«)) - g2 RU)/g, S(w) (15) 

Consequently the algorithm will converge to the desired fixed point if 

g2 R(oo)/g, S(w) < 1 (16) 

Thus for the algorithm to be stable, the noise contributed to the 
measured force must be less than the target spectrum. If this conditions 
is not met, then the desired fixed point (D2(u>)) is unstable and the 
force spectrum converts to the first fixed point. It should be noted 
that each spectral line is independent and that the above analysis 
applies to each line independently. Thus it is possible for the spectrum 
to converge at some frequencies and diverge at others. 

The algorithm has thus been shown to be effective because it con- 
verges to the desired targets spectrum unless it is overwhelmed by the 
presence of noise and nonlinearities. 

5. LIMITATIONS OF THE SHAKER CONTROL ALGORITHM 

There are computational and experimental difficulties which limit 
the overall effectiveness of the method. Firstly the drive and force 
signal have to pass through digital to analogue and analogue to digital 
converters respectively. This introduces a quantisation error. This 
error is severe because the signals have a Gaussian probability density 
function. The difficulty is that if the tails of the Gaussian distri- 
bution are to be digitised then the bulk of the signal will be limited to 
relatively few quantisation levels. The approach used here is to opti- 
mise the digitisation so that a compromise is made between adequately 
quantising the bulk of the signal while allowing some sampling of the 
extreme values. In order to quantify this compromise, it is useful to 
define a crest factor.  This factor relates the r.m.s. value of the 
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signal to the maximum level that will be realised (voltage values larger 
than the maximum are clipped). Thus the crest factor is defined as 

C = Maximum Voltage/r.m.s. Voltage 

A suitable value for the crest factor is about 3. 

(17) 

A second difficulty is the dynamic range of the measurements. The 
principle restriction to the dynamic range is due to the quantisation of 
the time domain signals. This effect is to some extent diminished if, as 
in this case, a spectral approach is adopted. The averaging used when 
calculating the spectra reduces this quantisation noise. The ratio of 
the maximum peak level in an auto-spectral density function to the noise 
floor expresses the dynamic range (in our case with 20*18 levels of 
quantisation, this gave a dynamic range of 30 dB). The most arduous case 
is where the shaker introduces a trough in the force spectrum (this 
occurs at a structural resonance). To compensate for the trough, the 
drive spectrum must have a corresponding peak. The noise floor is thus 
controlled by the height of this peak. If the peak is large, much of the 
dynamic range may be used in defining the peak and great accuracy in 
achieving a target spectrum is not possible. However, in most cases, a 
dynamic range of 30 dB appears adequate. 

Finally, experimental errors may cause difficulties. It sometimes 
happens that the link between the shaker and the structure does not 
transmit a straightforward force. Sometimes a bending force is trans- 
mitted or the structure is constrained by the link. In these cases, the 
forces being applied to the structure are not measured and are not fed 
back to the computer. This leads to a false excitation of the structure. 
Attention should thus be paid to the details of the link between the 
shaker and structure. 

6. MEASUREMENTS OF THE TRANSFER FUNCTION 

Figure 2 demonstrates that the force applied to the structure is a 
combination of the drive signal and the response. This combination is 
shown in figure 6 where the shaker and structure are described in terms 
of input/output control systems. The problem is that any noise or non- 
linearities are fed back to the force. This is represented in figure 6 
by an element with transfer function B(w). The shaker is considered as 
having transfer function A(m). The equations, in the frequency domain, 
which describe this coupled system are as follows 

Q(w) - H(u) P(w) + W(w) 

PU) - A(u) Z(u) + BU)Q(w) 

(18) 

(19) 

Here P(u) is the force applied to the structure, Q(u) the response of the 
structure and H(w) the linear transfer function. Effects of noise and 
and nonlinearity are described by W(w). The force P(u) is composed of 
the drive signal ZU) acting through the shaker transfer function A(u). 
The effect of feedback is described by the transfer function B(u). 

The objective is to calculate the transfer function for the 
structure from measurements of the force, response and drive signals. 
One conventional method is to calculate the cross-spectra± density 
function between the response and force (SQP(ID)) and divide by the auto- 
spectral density function of the force (sPP(w) 
function HjCw) thus 

ppV j)). This gives the transfer 
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H^u)   - S^pfuJ/SppCu)) (20) 

This calculation method is effective if P(u) is uncorrelated with 
W(u) in which caae H(u) ■ H,(cu). However, in our case, P(<u) is cor- 
related with W(w) as shown by equation (19). This means that the above 
expression gives 

H,(«)   = H(u))(JA(a))|2Szz(u))   +B Sy^U)}/(j A(u) | 2  + \Um)\*$mU)) (21) 

Thus,   unless  the noise  is  zero  (sww(u)   - O)   the  calculated transfer 
function Ki(w) is contaminated by noise. 

The procedure developed to overcome this problem is to use the 
drive spectrum Z(ui) and to calculate the transfer function H3(ui) accor- 
ding to 

■•• 

Hi (to) - SQ2(oi)/Sp2((i)) 

from equation 18 it may be seen that 

(22) 

Sg^do) = H(io) Sp2(iu) (23) 

Consequently H3(w) » H(UJ). The beauty of this estimation method is that 
Z(w) is available within the computer ana is thus completely uncontami- 
nated by noise. Consequently this method rejects noise from both the 
force and response spectra, thus leading to a very accurate ea -mation of 
the structural transfer function. 

The noise analysis presented above throws doubt on the usefulness 
of the standard definition of coherence. The coherence of a system is 
the relationship between the total response of the system and the res- 
ponse that is modelled by the transfer function. Thus for noise, which 
is uncorrelated with the force, the coherence is given by 

Spp( (M)/SQQ((IO 

or 

Y'"(w) = |H,(w) 

v2(w) = |sQp(u.)|2/SQQU)SppU) 

(24) 

(25) 

However, the noise is correlated with the force and thus the above 
equations are not applicable. The equivalent definition for our con- 
figuration is 

Y2U) = |H3 Cto) | 2 SppU)/SQQ(u) (26) 

An example of coherency calculated using this equation 1s shown in 
figure 7. This uuiierency corresponds to the transfer function shown in 
figure 3. The coherency calculated in this fashion indicates not only 
the degree of noise in the structure but also the extent of the non- 
linearities. This is because nonlinear!ties and noise are being modelled 
as similar effects. 

7. CONCLUSIONS 

Some '.echniques have been presented for axperimentally investi- 
gating a nonlinear structure. First, a method was presented for con- 
trolling the excitation force applied to the structure. This is impor- 
tant because a nonlinear structure will exhibit different characteristics 
depending on the level to which the nonlinear elements are excited. The 
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method presented enables the spectral content of the force to be speci- 
fied. A suitable specification being the spectra that the structure will 
experience in its operating environment. The method also enables 
unwanted effects introduced by the use of t.ectrodynamic shakers to be 
removed. The method for generating the specified spectrum is applicable 
to a fully non-linear structure and is achieved by means of an iterative 
algorithm. The algorithm has been shown to be stable and convergent. 
The second technique to be developed is a new method for calculating a 
transfer function. This method is designed to reject noise which may 
contaminate both the force and response signals. It has been shown that 
the conventional method for calculating the transfer function is inappro- 
priate. This new technique is particularly useful for nonlinear 
structures where the nonlinear effects appear like additional noise. 

Finally a fresh definition of coherency has been employed. Once 
again, this is necessary because the conventional definition fails to 
take into account noise sources which affect both the response and the 
applied force. 

These new experimental techniques enable modal surveys of nonlinear 
structures to be undertaken with confidence. 
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APPENDIX 

This appendix lists the relevant details of the computer system 
used to implement the procedures outlined above. Host Processor PDP 
11/23; Array Processor (floating point) SKYMNK-Q; maximum sample rate 
4096 samples per second; A to D and D to A Converters 12 bit + 10V 
parallel sample and hold; all spectra calculated with 2000 spectral 
lines and Hanning windows. 
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Nonlinear System Identification Usinj» the Surface of Nonlinearity Form: 
Discussion on Parameter Estimation and Some Related Problems 

H.R.Lo and J.K.Hammond 

ISVR, The University, Southampton, England. 

1. INTRODUCTION 

Nonlinear system identification usually involves the detection of the existence of 
nonlinearity in the system behavior, the identification of the form of nonlinearity from the 
restoring force (including both damping which determines the energy dissipation characteristic 
and the stiffness which affects the response level characteristic), and the parameter estimation of 
the nonlinear system model. 

There are many approaches aiming at resolving the nonlinear system identification 
problems, which include nonparametric methods such as the Volterra series^, parametric 
methods by Billings et al £2]13][4]> and procedures for the classification of nonlinearities using 
Hubert transform^5!. Extensions to frequency domain methods^ have been proposed to 
identify the nonlinearity by analysing the distortion of the frequency response function for 
several typical nonlinearities. 

A method of representing the nonlinearity form as a surface in an appropriately selected 
space(subset of the state vector written as SSV) has been developed 11. This is as proposed by 
Masri fgl and discussed in W. The basic procedures involve 

(1) Estimating the restoring force or the nonlinear portion of the restoring force 
(depending upon the prior knowledge) time history. 

(2) Choosing an appropriate SSV so that the state-vector dependent restoring 
force defines a single valued surface. 

(3) Transforming the restoring force time history into the SSV to create the 
surface. 

This method was applied to several types of nonlinear systems including both 
nonhysteretic and hysteretic systems, which are simulated on the computer. And also it has 
been applied to die identification and modelling of a cable type vibration isolator!?]. yn this 
paper, we will discuss parameter estimation and some related problems. 

2. CONSIDERATION OF THE EXCITATION SIGNAL. 

A system can be excited by various types of signals, e.g. sine wave, swept sine wave, 
random signals are very commonly used in tests. The responses of a system correspond to 
these different excitation signals are different in many aspects. One aspect is that their patterns 
in the SSV are different. For many systems, the SSV is the state space itself, i.e. for a second 
order system the plane formed by displacement and velocity (sometimes called the phase plane). 
For example, for the system with the mixed type of nonlinearities: of cubic stiffness and 
quadratic damping, its orbit in the phase plane with sine wave excitation is a fixed closed curve, 
one example of which is plotted in fig.l; and its orbit with a swept sine excitation is a group of 
similar curves with regular change in their size and shape, the curves for the same system are 
plotted in fig.2; while its orbit with random excitation is irregular in both size and shape and 
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covers an area of the phase plane, the curves of which are plotted ■'-' fig.3. From this fact, it is 
apparant that tests using periodic signals such as sine waves proviue limited information about 
the nonlinear force which is state dependent because the states accessed are very limited, and 
the tests using signals such as swept sine or random can give more information about the state 
dependent nonlinear force because the states accessed are much iarger. The deterministic signals 
like swept sine usually will give a deterministic pattern in a clearly defined region of SSV (we 
are excluding systems exhibiting 'chaos' from this discussion), while random signal will give a 
random pattern in an area of SSV. Hence, to get the surface representing the nonlinearity of a 
system, the excitation signal should be chosen as those with wide frequency band or with 
random nature. 

3. RELIABILITY OF THE SURFACE 

Because of the way in which the surface of nonlinearity form is produced, the quality of 
the surface depends on the density of the points on the SSV plane. Hence, the density of the 
'point of state' in SSV can be used as a reference for judging the relative quality of the surface. 

The density of points can be increased either by increasing the data length of the signals 
i.e.increasing the sampling rate or the time length, or by limiting the accessible area of the SSV, 
e.g.using swept sine siganl in appropriate frequency range may achieve better density than the 
random signal for the same data length in some area. 

But in practice, the data length is always limited, hence the surface can not be completely 
accurate. Basically, the surface suffers from two sources of error: the bias error and the random 
error. The bias error is due to the feature that a state point is determined in a square at a point at 
the middle and the value on the surface which corresponds to this square is computed by 
averaging the restoring force values whose corresponding state-vector are in this square. The 
bias error depends on the square size and the surface shape (e.g.the gradiant ana the curvature). 
The random error is induced from the random distribution of the points in the specified square, 
but usually this random error is relatively small in the sense that the generai shape will not be 
blurred by it. When the signals are contaminated by random noise, the random error in the 
surface may be large. The random error can be reduced by increasing the square size. 

4. PARAMETER ESTIMATION OF HYSTERETIC SYSTEMS WITH A PARTICULAR 
MODEL FROM THE SURFACE 

The previously discussed surface is a representation of the form of nonlinearity of the 
system. It can also be used to estimate the parameters in a mathematical model of the system. 
Parameter estimation will be demonstrated on the single degree of freedom hysteresis systems 
whirh rrmfnrrrt tr» Won'p mrw^»lf 101    i A   i c\rete>rr> H*»cr-n*l-w»/4 Uit 

x+Cx+z = f(t) (1) 

where the nonlinearity is described by 

z = Ax-alx|zlzi(n-l)-ßxlzln       (2) 

where et, ß, A and n are constant parameters of the system, z is the hysteretic force, x and x are 
the acceleration and velocity. 

Simulations of this model show that z displays a hysteretic form, i.e.z is a multi-valued 
function of x and z vs. x at any time depends on its history. So, obviously on the SSV 
composed of x and dx/dt, z will nffi form a single valued surface. From equation(l), on the 
SSV formed by z and x, z will be a single-valued surface. So the form of nonlinearity for this 
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system will be represented by the suiface formed by z vs. z, x. (In a practical system 
identification exercise where the form of model may not be known a priori, different 
possibilities for the SSV composition should be tried to find the most appropriate one). 

cases. 
The hysteresis model in equation(l) and equation(2) is simulated for both n=l and n=2 

Other parameters are selected as 

A=35530.6, a =3.0, ß =-3.0 

Swept sine signal and Gaussian random signal are used as excitations. 

For the cases of n=l, the state vector(z, x) end point orbit curves are plotted in fig.4 and 
fig.5 for swept sine and random excitations respectively. In these two simulations, the data 
lengths are the same. From the graphes, it can be seen that for the swept sine excitation, the 
points are limited in a ring-shaped area(denoted by R), while for random excitation, the points 
are distributed in an area(denoted by C). Generally, the density of points in R is larger than the 
density of points in C, 

The surfaces are plotted using simulation data in the square region defined by 
*min=-78, xmax=78, and zmin=-.25E5, zmax=.25E5 

and are shown in fig.6 and fig.7. The surface is designed so that in the area with no points, the 
surface values are set to zero. According to the state vector end point orbit curves in fig.4, the z 
vs.z at x = 54.6 and z vs.x at z=0.1755E5 have relatively large densities of points, hence they 
should give better quality cf surface. 

When n=l, equation(2) becomes 

z =A x - a lx| z - ß x Izl     (3) 

Using the parameters given above, the theoretical z vs.z with x = 54.6 is created and 
plotted in fig.8 together with the corresponding surface curves for comparison. **(see end) 

From equation(3) and the curve in fig.8, it can be seen that z vs.z is a linear relationship, 
and the slope has a switch at z=0, i.e. 

z = A x + [- a lx| - ß x sign(z)] z 

i.e. 

z = A x + [-a |xj + ß x] z    for z < 0 

= A x + [-a |x| - ß x] z    for z > 0 

Now, for x = 54.6 

z = 54.6 A + 54.6 (-a+ß) z       forz<0 

= 54.6A + 54.6(-a-ß)z       forz>0 

So, a standard least-square curve fitting program using polynomial curve fitting with the 
form of 
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1 
z = ao + aj z + 82 z2 +... + a„ zn 

was applied. 

It was found that both in swept sine excitation case and when parameter estimation with 
random excitation is carried out within an area with high density of points, the dominance of the 
Oth and 1 st orders took place, while if the parameter estimation with random excitation is 
carried out in an area in which the density of points is not high, the dominance of 0th and 1 st 
orders will not take place. The parameter estimation results are shown in table 1. In the 
estimation of oc and ß, the coefficients ao and aj are used. A, a and ß are calculated according 
to the formula 

A* = (ao- + ao+)/(2*54.6) 

a* = -(ar + ai+)/(2*54.6) 

ß* = (ai"-ai+)/(2*54.6) 

Similarly, for the case of n=2, the state vector(z, x) end point orbit curves for swept sine 
excitation and Gaussian random excitation are plotted in fig.9 and fig. 10. The surfaces are 
produced in the region defined by xmin=-0.9, xmax=0-9 and zmin=-230, zmax=230 for swept 
sine and random excitations and are plotted in fig. 11 and fig. 12. The theoretical relations of z 
vs.z at x=-0.54 is plotted in fig.13 and the parameter estimation results are listed in the Table 2. 

In this case, equation(2) becomes 

z =A x - a lx| z Izl - ß x Izl2      (4) 

This equation shows that z vs.x is still a linear relationship, while z vs.z is a quadratic 
relationship. As in the previous case, for swept sine excitation and random excitation with small 
area (i.e.the aiea with relatively high density of points), the dominance of the 0th and the 2nd 
orders still took place, but in this case, for random excitation with large area (i.e.the area with 
relatively low density of points), the dominance of the 0th and the 2nd orders also took place. 
Assuming that the polynomial in curve fitting has the form 

z - bo + bi z +b2 z2 + ... + bn zn 

and the estimated bo and b2 are used for calculating A*, a* and ß* according to the formula 

A* = - (bo" + bo+)/(2*0.54) 

a* = fa- - b2+)/(2*0.54) 

ß* = (b2- + b2+)/(2*0.54) 

From the above estimation res\ilts, it can be seen that: 

(l)For swept sine excitation, the area with high density of point in SSV is quite clearly 
defined and is quite limited. Within this area, parameter estimation gives good results. 

(2)For random excitation, the state vector end points spread over a larger area. The curve 
fitting on this large area suffers form random error significantly (in the sense that the dominance 
of the expected terms may or may not take place, and the parameter estimation may be poor). 
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But if only the area with large density of points is used for parameter estimation, the estimation 
can be reasonably good. 

5.       THE MODELLING OF A CABLE TYPE VIBRATION ISOLATOR 

The method of system identification using the nonlinearity form surface has been applied 
to the modelling of a cable type vibration isolator which has some difference in the hysteresis 
characteristics from the systems from Wen's model. 

The isolator under test is an Aeroflex series C3-H-610, which is made up of stranded 
wires. The dry friction between the strands and the changing stiffness of the cable make the 
restoring force and the displacement display a hysteretic relationship. One typical hysteresis 
loop from the measured signals of test 322 in compression mode, which was excited by swept 
sine signal, is plotted in fig. 14. 

According to the working mechanism of cable type structures which has been discussed 
with detail in PI, the SSV is selected as z*, x, in which 

z* = (z + sign(x) zo)/!zm + sign(x) zrjl. 

The state vector end point orbit curve is plotted in fig.15. The surface of z vs. z*, x is 
plotted in fig. 16. It should be noted that only in the area with large density of points, the 
surface is useful. 

According to the suiface and with reference of Wen's hysteresis model, the hysteresis 
model for cable type structure is proposed as 

z = - G sign(x) 
+ [A sign(x) - a z Iz*^-1) -ß sign(x) lz*N] IxlP (5) 

where z* is as defined above. 

And the curve fitting of the 'good quality' portion gives the parameters as: 

G=1050 
A=16115 
ct=0.55173E5 
ß=-0.53790E5 
p=0.48 
q=1.9 

The simulation of model in equation(5) with these parameters gives reasonably good 
prediction of the measured response and restoring force time histories. The measured and 
predicted accelerations and restoring forces are plotted.in fig.17 and fig. 18. 

6.     CONCLUSION. . > 

It has been shown that the quality of the surface representing the nonlinear form depends 
on the density of 'points of state' in SSV. The surface usually suffers from the errors of bias 
and random nature. In the areas of high density of points, the surface can be used for parameter 
estimation. 

Although for many nonhysteretic systems the SSV are the same as their phase planes, for 
more complicated nonlinear systems like hysteretic system, some synthesized state vectors may 
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have to be used so that a single valued surface can be produced. In this case, the selection of 
appropriate SSV usually needs some prior knowledge. For hysteretic systems from Wen's 
hysteresis model, the SSV can be chosen as z and x, while for cable type hysteretic systems, 
the SSV should be z* and x. 

According to the surface generated from the test on a cable type vibration isolator and 
with reference to Wen's hysteresis model, a hysteresis model is proposed for the cable type 
structures with hysteresis. 

** The z vs. x relation is always linear for Wen's hysteresis model. To save space of this 
paper, the estimation sample results for z vs. x relations are omitted 
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Table 1: Parameter Estimation of Wen's Model with n-1 

True parameters:   A=35530.6   a=3.0   ß=-3.0 

SWEPT Err 
SINE % 

A        35452.4 0.22 
a        2.967 1.1 
ß       -2.967 1.1 

RANDOM   Err 
(L.D.P) % 

38051.3 
2.436 

-2.354 

7.1 
18 
22 

RANPOM Err 
(H.D.P) % 

36240.8 2.0 
2.943 1.9 

-2.962 1.3 

Table 2: Parameter Estimation of Wen's Model with n=2 

True paramt^rs:   A=35J30.6   CC=3.0   ß=-3.0 

SWEPT Err 
SINE % 

A        35490.7 0.11 
a        2.921 2.6 
ß       -2.939 2.0 

RANDOM   Err 
(L.D.P)        % 

35351.9 
2.907 

-2.939 

0.50 
3.1 

2.0 

Note: L.D.P. represents Low Density of Point; 
H.D.P. represents High Density of Point. 

RANDOM   Err 
(H.D.P)       % 

35379.6 
2.930 

-2.961 

0.42 
2.3 
1.3 
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Fig. 1 State vector end point obit with sine 
input of a nonlinear system. Fig.4 (z, x) obit curve of a Wen's 

hysteretic model (n=l) with swept sine 
input. 

Fig.2 State vector end point obit with 
swept sine input of a nonlinear system. Fig.5 (z, x) obit curve of a Wen's 

hysteretic model (n=l) with random input 

Fig.3 State vector end point obit with 
random input of a nonlinear system. Fig.6 z vs z, x surface of a Wen's 

hysteretic model (n=l) with swept sine 
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Fig.7 z vs z, x surface of a Wen's 
hystereic model (n=l) with random input. Fig. 10 (z, x) obit curve of a Wen's 

hysteretic model (n=2) with random input 

Fig.8 z vs z relation of a Wen's hysteretic 
model (n=l). Comparison of theoretical 
curve, curve from swept sine input and 
curve from random input 

■<£s?o 

Fig. 11 z vs z, x surface of a Wen's 
hysteretic model (n=2) with swept sine 
input 

i.iJ 

*IJ 

Fig.9 (z, x) obit curve of a Wen's 
hysteretic model (n=2) with swept sine 
input 

0<f v\. 

.i^^^^^S^ 

Fig. 12 z vs z, x surface of a Wen's 
hysteretic model (n=2) with random input 
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Fig. 13 z vs z relation of a Wen's hysteretic 
model (n=2). Comparison of theoretical 
curve, curve from swept sine input and 
curve from random input. 

■ • 
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4- 
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Fig. 14 Hysteresis loops of an isolator with 
swept sine input. 

Fig. 16 z vs z*, x surface of the isolator. 

MUMM 
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Fig. 17 Comparison of the measured and 
the predicted accelerations of the isolator. 

Fig. 15 (z*. x) obit curve of the isolator 
vibration. Fig. 18 Comparison of the measured and 

the predicted hysteretic forces of the 
isolator. 
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1. INTRODUCTION 

During the oaat decades many substructure mode synthesi s 

technioues have been proposed for the dynamic analysis of 

complex structures. The fundamental, idea of mods] s^nthes"5 s 

method is to treat the structure as an assembly of connected 

substructures. The vibration modes for each component are 

determined separately and then synthesized into the system 

modes. In general, three kinds of basic modal synthesis method 

can be distinguishable depending on whether the substructure 

modes are obtained by specifying the interface as fixed [l-?] 5 

free Qt--6] or loaded [7-9] • Some other hybrid variants [lO-ll] 

may also be generated by different substructure interface 

identification. 

The substructuring and the mode superposition [V'-l-i] are 

significant problems in the study of the modal synthesis 

techniques. The substructuring requires a realistic analytical 

model of the system while from the computational point of view, 

it is desirable, th^t the mode superposition must bP easy to 

handling large matrices and large number or generalized 

coordinates. Thus, the balance of the dynamic modeling and the 

solving method is a very important question of the dynamic 

analysis. 
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The purnose of this paper is to show the idea and 

applications of the multilevel substructuring. The multilevel 

substructuring offers greater accuracy in the dynamic modeling 

and reduced storage and cost of computations in the mode 

supemosition. Practically all structures can be divided into a 

set of similar substructures having the same modal parameters. 

The primary substructures are subdivided into basic elements 

where it is necessary. Hereby the structural modification and 

the assembling are simplified and the multilevel substructuring 

is utilized both experimentally and theoretically. 

As an illustration of the method described a structural 

design is presented for an airborne telescope structure. The 

geometrical boundary conditions are determined by the allowable 

relative displacement and angular deflection of the mirrors. 

P. GENERAL MODAL SYNTHESIS 

There are two common ideas behind all modal  synthesis 

methods:  they all  regard a  structure as an assembly of 

connected substructures and the motion of each substructure  is 

represented by a linear combination of the substructure modes. 

The modal synthesis methods are  essentially a Rayleigh-Ritz 

type discretization procedures. 

The selecting of substructure modes has an assumptation 

that these modes can satisfy an ex^ct eigenvalue problem. If 

there were an exact eigenvalue solution at the substructure 

level, the synthesis wuuld be unnecessary. Unfortunately, there 

is no exact mathematical description for the effects of 

adjacent substructures. This is the reason for the broad 

variety of methods proposed (lr;-18J . 

In the modal  interpretation the dynamical  equilibrium 

equation can be written as follows: 

M q- K a    = 0 
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The damping and the external forces are ignored for 

simplification reasons. The system is of order m , the number 

of modes taken into account. 

According to  (l)  the uncoupled assembly of  A  and  B 

substructures is given by 

0 •dA 

tf 

0 (2) 

The modal analysis of substructures produces modal expansion 

r AI X 
a 
A 

x„ c 
B 

X 
c 
B M 

raa <DA  ! Tac I 0 0 ' A" 
a "a 

<j)A 
Tca 

(t)A    1 
.   Tcc4 

0      1 

0 0 < 

0 1 cc »ob 
B a -c 

0 
1 

0      1 <o ♦&, 
B 

% 

(3) 

where the partition of modal coordinates into interior /a ,b/ 

and interface /c/ components has no Physical meaning. The 

mods! expansion is truncated, as dim a < dim x. The interior 

components tend to the static condensation while, the interface 

one towards the identity. 

X     =     (()   q W 

The  synthesis of  substructure] modes    corresponds    to the 

i 

1 

accomhli   rvf   STihstriiotTiral   mncio   and stiffness   matrices. 

1 diag M*    =    (t)T    K 

diap KM    =    (}>T    K 

<t> (5) 

r 
The required compatibility     enuation     is     reducible     by    a new 

i 

J 

simplified modal   interface coordina te,  utilizing 

i 
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1 
o 

(j)A  o/  +  (t)3 Tcc  c    rcc 4 
(6) 

(7) 

or generally 

q = 2 q (8) 

See Figure 1  for the illustration of the whole procedure, 

the moö>l transformation from nhysical to modal coordinates (4) 

and the modal assembly transformation from modal to condensed 

coordinates (8) . 

5. MULTILEVEL SUBRTRUCTUHING 

The substructuring determines the possible ways of the 

mode  superposition,  therefore,  the  first  step  of the 

optimisation is the choice of a suitable model. Generally, the 

main problems in the computation of dynamic response for 

structures are the following: 

» 

- large  number of degrees  of freedom 
- nonlinear deformations 
- difficult  boundary conditions 

These properties appear often together in a complex 

structure. However, some advantageous characteristics may also 

be identified on thp structures} liv-p symmetrical or neriodioal 

parts, similar substructures having similar boundary conditions 

and same modal parameters. Hereby the dynamical modeling offers 

special simplifications without any source of error. 

Let us now consider a complex structural system having s 

substructures. The non-periodic substructures have different 

mode shapes and interface functions, while the periodic 

substructures have the  same modal  parameters.  Denoting the 
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periodic    /p/    and non-oeriodic    /r/    substructures 

q  = T ■n .      +     V 
.  1 (9) 

where the sura p. refers to the different type periodic 

substructures. The common mode shape matrix is Y , which has 

periodic and non-periodic parts  in the diagonalized form, 

Y   and Y,  „ respective!: 1 ri       ' 1. . .r 

0  I  0 

Y I o 

o i T. 

(10) 

The  Y  represents the oeriodic substructures, it must be 
p 

generated only once,  notwithstanding that the modal matrix 

includes it  r>  times beside the  non-periodic parts.  The 

elementary computations are reduced to the number of tyre  of 

the periodic substructures. If the periodic substructures have 

the  same modal parameters and interface  junctions,  the 

experimental and analytical modal analysis have  expanded 

convergence. 

Local nonlinearities c-°n be separated with this kind of 

substructuring, which is v°ry useful for mnomogeneous systems. 

The multilevel substructuring is shown in Fi>-rurp ?. 

1.   MODE SUPTCHPOSITION 

The mode sirnernosi ti r-n is time consuming or! the 1 ■"•r^est 

digital computers, even for simple structural systems. This 

fact is due to the change of the stiffness matrix with the 

deformation, '-'hereby the stiffness matrix must be recomputed at 

each step. 
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The governing eigenvalue problem using conventional mode 

superposition leads to the following form: 

K Z M ZA. (11) 

where Z is the matrix of eigenvectors and £. is the matrix 

of eigenvalues. It is of particular importance that both 

matrices K and M are diagonals. 

T 
If M is positive definite, then M = S S "l for any 

nonSingular matrix S , the problem of equation (ll) is 

equivalent to the solution of the standard eigenvalue problem. 

I Z = -A. Z (12) 

Wuere K = S"1K § and Z = ST Z . 

Another transformation matrix  5=35 is obtained using 

the spectral decomposition of M 

M ?  T 
(13) 

where the columns in R are the eigenvectors and  D 

diagonal matrix with the eigenvalues of M . 

2 
is a 

In lumped mass analysis, where M have zero elements on 

the diagonal, it is necessary to use static condensation. 

Rewriting the equation  (ll)  as 

vll 

\?1 

K 12 

K ?? z. 
«11   ° (14) 

where the notation is obvious.  The condensed eigenvalue problem 

is 

K,   z-j     =    \ M]   Zj (15) 
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where    K,   = K,,   - K,pKppKP,     and    M,   = M,,. 

The multilevel aubstructuring allows the using of the 

general mode superposition methods (lJ) _ (14) . This subject is 
detailed in   [9],    [IS-I7J . 

5.   APPLICATIONS 

The structural design of an airborne Oassegrain telescope 

is presented using the multilevel substructuring. The 

successful structural design requires the analysis of internal 

loads when the structure is nlaced in its operating enviroment. 

The dynamical boundary conditions are measured on the platform, 

see Figure  3. 

The mechanical structural design is combined with the 

optical quality parameters. The geometrical boundary conditions 

determine the relative displacement and the angular deflection 

of the mirrors. Due to the optical consideration the maximum 

relative displacement  and the maximum  angular deflection are 

max lCT^m 

•'max    =     3.5xlO-*rad 
(16) 

The telescope must be a lightweight structure and it has 

to endure the maximum loads by radial and axial direction 

separately. The radial loads causes disturbances in the torsion 

of the mirror wounlingy and bhe whole structure, the axial load 

changes the  focal  length. 

So, the basic conception of this telescope structure is 

that it should be a nod-like system with cross br?ces. This 

structure can afford the necessary flexibility maintaining the 

dynamic stability. If the comnonents wil] be rods and rings the 

problem can be drawn up as follows: considering the geometrical 

and dynamical  boundary conditions we have to  find    the    ontimal 

. k j 

'• f- 
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munbers,   sizes,  coupling noints,  material    properties    of    rods 

and rings   [l£Q . 

Figure 4—6 present the vibration test results of the best 

combination. The structural system has 4-0 substructures, 

p,   =8,     Po =  16,    n7  = 16,  thus each is oeriodic. 

The efficiency of computations at    substructure    level    is 

sub 
-  - *M 

= 15.3 (17) 

The percentage errors of natural frequencies,  namely the 

measured/calculated ratio is under 0.6$. 

6. CONCLUSIONS 

The main achievement of this study is the presentation of 

the idea and application of the multilevel substructuring. The 

division of primary substructures into elementary 

substructures result in a lot of loaded interface junctions. 

The loaded-loaded combination constitutes the best overall 

compromise with a very accurate low frequencies. The consistent 

interface load as well as a symmetric interface modal parameter 

are pronosed as optimum, outlined by Reference [l9J , comparing 

the fixed, free and loaded interface variant of modal synthesis 

techniques. 

The multilevel substructuring has no additional soiirce of 

error. Problem oriented interactive synthesis procedure is 

required, utilizing the periodic, symmetrical or modular parts 

in the substructuring. Some advantageous properties are proved 

as follows: 

- significant decrease in the number of operations 

- reduced storage 

- isolation of local non-linearities 

- flexible data handling 

- interface compatibility 
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METHODS USING FREQUENCY-RESPONSE FUNCTIONS FOR THE 
ANALYSIS OF ASSEMBLED STRUCTURES 

P.O. Larsson 

ASEA BROWN BOVERI Corporate Research 
5405 Baden-Dättwil, Switzerland 

ABSTRACT 

Substructuring is an effective tool for the analysis of assembled 
mechanical structures. A critical evaluation was made of the special class 
of substructuring methods making use of frequency-response functions that 
can be determined by theoretical methods or by measurements. The use of 
experimental data is of great advantage when dealing with structures of 
which the dynamic behaviour is influenced by phenomena that are difficult 
to describe theoretically. The possibilities and limitation when using two 
different formulations that have been suggested for this type of analysis 
were considered. Further, a study of the sensitivity to errors in the input 
was attempted in a more quantitative way than in previous works. Finally 
some further examples on what performance can be expected from these 
methods in practice are ?dded to those already found in the literature. 

1. INTRODUCTION 

The dynamic properties of an assembled system can be predicted on the 
basis of theoretical and experimental analysis of its sub-systems using 
different techniques of substructuring. In the many different applications 
of substructuring various aspects are of importance. In most cases the 
advantages are direct consequences of the inherent modularity. The 
substructuring methods in the present approach are one step towards an 
optimal use of experiments and theoretical modelling in a fruitful 
combination to determine reliably the dynamic properties of a structure and 
to obtain good descriptions that can be used for analysis and prediction of 
its dynamic behavior. This is especially useful when dealing with 
structures whose dynamic behavior is influenced by phenomena that are 
difficult to model theoretically, for instance assembled, non-homogeneous 
structures with bolted, riveted, glued or welded joints. The damping of a 
structure   is   a   quantity   that  must   almost   always   be   determined   from 

exclusively the methods for substructuring are limited to linear 
structures. After the coupling the substructures are forced to move 
together by the introduction of coupling constraints. Thus, mathematically, 
coupling systems together is nothing other than the determination of 
various properties of constrained linear systems. A manifold of methods, or 
of versions of the same methods, has been suggested for calculating 
properties of an assembled structure knowing those of its components. 

In this work important characteristics of the methods that primarilly 
deal with the determination of the response properties were studied. The 
response properties are most often in the form cf transfer functions or 
frequency response functions, and these methods are here referred to as 
COUPLING USING RESPONSE FUNCTIONS. The goal with this work was to assess 
the possibilities to use these methods as practical tools and to identify 
weaknesses and to suggest improvements. Because of the availibility of many 
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earlier studies and good review papers in this field, the present paper is 
concentrated on some selected problems. 

A short overview is given in the next section in which a few comments 
on other alternative methods are included. A detailed treatment of the 
possibilities and limitations when using some different formulations is 
given. An attempt has been made to find a useful measure for the errors in 
the frequency-response functions of the coupled structure resulting from 
errors in the data from the components. Finally some experience and results 
gained from applications to a laboratory-structure are presented. 

2. OVERVIEW AND  BACKGROUND 

Most of the methods that have been suggested for substructuring can be 
sorted into one of two categories depending on whether free-vibration 
properties or response properties are primarily being used to characterise 
the substructures. The difference is not always clear since, for linear 
systems, the response properties and free-vibration properties are closely 
related. With the present objectives of a combined theoretical and 
experimental approach it is essentially a question of sorting out and 
studying those methods that work well in combination with a set of 
properties that has been derived mainly from measurements. 

The first category of methods is characterised by the use of the free- 
vibration properties or the modal properties to describe the behavior of 
the structures. This is referred to as MODAL COUPLING and is essentially an 
application of methods belonging to the large class of methods of 
component-mode synthesis or CMS, using measured modal parameters. Common to 
these methods is the use of the coefficients in a sum of mode-shapes as 
generalised coordinates [1]. Most of these methods essentially mean 
formulating a constrained eigenvalue problem from which the free-vibration 
properties of the coupled system can be found. A rigorous treatment and a 
good summary of the use of CMS methods in conjunction with measured modal 
parameters has been presented by Craigh [2]. An application, similar to 
this presented within this work,  was presented in  [3], 

In this work those methods belonging to the second category have been 
studied. COUPLING USING RESPONSE FUNCTIONS essentially means calculating 
the frequency-response functions (FRFs) of an assembled structure knowing 
those of the substructures. In some versions the dynamic stiffness, or 
equivalently mechanical impedance, plays a central role and correspondingly 
in those cases these methods are then referred to as stiffness- or 
impedance  coupling 

The FRFs can either be derived from a theoretical model or be measured 
[4].In the latter case it can either be used directly, as measured, or 
after a curve-fit and following regeneration from a set of modal parameters 
using the equation 

-CD2 •' <E> , •' O 
I (co)=   R       + ]T— —~ i—   + R (1) 

for an FRF of inertance type. rO is the mode-shape vector, o)r the natural 

frequencies and iir, the modal damping factors. The Rif,ij and Rnf,ij are 
the low- and high-frequency residual terms representing those modes not 
included as individual terms in the sum. If the structure is free to move 
like a rigid body its inertial properties must be included in a good model. 
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This can either be done by including the corresponding rigid-body modes or 
representing them with the low-frequency residual terms [5]. A real 
advantage over the modal coupling have the present methods in situations 
where the required modal parameters are not so readily available. This is 
the case for structure? having very close natural frequencies or high 
damping. The FRFs are still well defined as long as the structure can be 
described as linear. However in this case it is not so easy to recognise 
the contribution from each individual mode and thus to determine the modal 
properties. 

The basic ideas of impedance coupling were presented long ago by Bishop 
and Johnson [6]. Ewins and co-workers, among others, have investigated the 
usefulness of these methods as engineering tools [7]. Goyder studied the 
propagation of errors in the case when only two FRFs were coupled together 
and found that the largest errors would occur at the natural frequencies of 
the coupled structure [8]. A comprehensive review of the possibilities and 
problems using these methods is presented in [9]. It was pointed out how 
problems with occurrence of erroneous peaks and a high error sensitivity, 
which tend to spoil the results when damping is low and modes well 
separated, are much less pronounced when damping is high and modes closely 
spaced. This is of interest because it is in those cases that the use of 
modal coupling becomes less attractive. A situation where at least one or a 
few components are included for which the modal properties are 
undeterminable is very common in practice. One example is when a structure 
is mounted to a foundation with less pronounced modal behavior than the 
structure itself. This motivates a general interest in coupling methods 
using response functions even in cases where modal coupling might be an 
alternative. 

Another problem often discussed is that of defining a useful set of 
coordinates. During measurements these corresponds to the points and 
directions in which measurements are made. For beam-type or slender 
structures proper coupling constraints are most easily formulated using 
rotations as coordinates. It is well known that these are difficult to 
handle when making measurements [10]. It is quite obvious and has also been 
shown that it is not satisfactory just to leave the rotational coordinates 
out without making sure that compatibility is being properly enforced when 
formulating the constraints between only the translational coordinates. 
Strictly speaking, this is not a problem only when coupling using response 
functions, but always when formulating coupling constraints when the 
deformation of the substructures is expressed using a limited set of 
coordinates. 

In [11] a comparison was made between modal coupling and the present 
methods. It was suggested chat these methods should hp «seen as a complement 
to the. moaal methods rathar than a substitute. These authors used a set of 
equations which is different from those normally used in stiffness coupling 
and which accepts very general forms of coupling constraints. The 
advantages of using different formulations are treated in the following. 

3. COUPLING EQUATIONS 

STIFFNESS COUPLING or IMPEDANCE COUPLING has been well described by 
Ewins[4]. This method can be easily understood by looking at the inverse of 
the receptance matrix, a--1- (raj, as a dynamic stiffness matrix, Z (o>), for 
each substructure,    a and b. 

Za(co)    =    (Cta)"1 Zb(cD)    =  (OD)"
1 (2) 
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< After having introduced the concept of dynamic-stiffness matrix it is clear 
that the dynamic stiffness matrices of coupled systems can be found by a 
normal matrix assemblage as it is often used in structural dynamics, for 
instance when assembling the system stiffness matrix from the stiffness 
matrices of the elements in a finite element model. The constraints in this 
formulation are introduced by setting the interface coordinates on both 
structures equal. The final formula for the frequency response matrix of 
the coupled system includes three matrix Inversions and is of the form 

ac = 

0 

zSz" (3) 

Superscript i refers to the interface coordinates and s to the rest. 
Another approach will result in equations with which very general forms of 
constraints can be handled. Therefore, this method will be referred to as 
THE METHOD OF GENERAL CONSTRAINTS. It was presented and also used for this 
type of coupling by Crowley and Void etc. [12] who presented a slightly 
heuristic derivation only for the case in which the response properties are 
expressed as transfer functions in the Laplace domain. Here any set of 
constraints that can be expressed as a system of linear equations of the 
form 

cT • X = 0 (4) 

! 

can be used. Where CT is the Ncx(Na+Ntj) linear constraint matrix 
expressing the Nc geometric constraints introduced through the coupling. X 
is the vector of complex response amplitudes including all (Na + N^) 
coordinates of both sub-structures, a and b. 

X '-ft} (5) 

The equations of motion of the linear system under action of a set of 
linear constraints can be written down using the Lagrange's equations of 
motion and taking the constraints into consideration using the Lagrange 
multiplier technique [13] . By specialising to sinusoidal motion and 
int-rnrturing complex notation a useful expression for the FRF of Lhe coupled 
structure can easily be found. It can be shown that the FRF-matrix of the 
coupled system can be written as 

<xc = ( 1-a-C    (cTa  c)    C T) a (6) 

where  a  is  the  frequency-response  matrix  of  the   total   system before 
coupling partitioned in accordance with  (5), 

-[:■;] (7) 
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It should be noted that the order of the matrix a,; is the same as the order 
of the FRF-matrix before coupling, a. Thus if two coordinates are set equal 
by the coupling constraints both will exist as separate coordinates in otc 
after the coupling. However the corresponding columns and rows will then be 
equal. 

Both equations (3) and (6) are valid if the receptances, otj., are 
replaced by the corresponding mobilities or inertances. That is, the ratio 
between the velocities or accelerations respectively, and forces. Both of 
the equations can also easily be generalised to include the cases where 
more than two substructures are involved without having to perform the 
coupling in many steps, although this might be useful in some cases. 

3.1 Applicability 

In many applications both suggested equations are equivalent and either 
can be used to give the same result. In certain cases the differences are 
important. For proper use it is important to know the limitation of the 
equations. Both suggested equations are useful as long as the included 
matrix inversions are well defined. Thus using equation (3) the FRF- 
matrices of all substructures and of the coupled structure must exist and 
must not be singular. Thereby many practically interesting cases are 
excluded. Equation (6) is useful as long as the expression (CTa C) is 
invertable. This expression contains only those coordinates included in the 
coupling constraints. In the special case of coupling where interface 
coordinates on both structures are simply set equal, the elements of the 
coupling matrix C will be 1, -1 or zero, and th*5 expression (CTa C) equals 
the sum of the partitions corresponding to the interface coordinates of 
each FRF-matrix. 

When investigating the nature of these matrix expressions, whether they 
are invertable or not, a distinction should be made between the true FRF- 
matrix of a structure and an eventual estimate for it. It may very well be 
the case that an estimate for the FRF-matrix, or a part of it, that has 
been generated from a limited set of modal data using the formula (1), is 
singular although this is not the case for the real structure.When using 
equation (1) to generate a FRF-matrix or a part of it, but neglecting the 
Influence from residual terms and including eventual freedom to move like a 
rigid body in terms of rigid-body modes., a criterion for the resulting 
matrix not to be singular is that the number of linearly independent mode- 
shape vectors included equals the number of coordinates. This is not always 
the case after leaving higher modes out [<3]. Refinement of the models by 
inclusion of more modes or residual terms will oft*»n remove the 
singularity. 

A situation where this is not the case is when many coordinates have 
been defined on a structure or on a part of it that is practically rigid. 
Then a dependence of seme of the coordinates resulting from the rigidity 
will prevent the mode-shapes from being linearly independent. If it is 
plausible to describe the structure as rigid, then the dependence of the 
coordinates must be accepted rather than be disguised by the inclusion of 
some small and approximate residual terms. 

Thus in situations where the respective matrices in equations (3) or 
(6) are singular this is either a result of a too coarse approximation or 
corresponding to a physical fact, considering the matrix inversion included 
in each algorithm it is clear that equation (6) is less restrictive in its 
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applicability than equation (3). The few remaining situations where 
equation (6) is not applicable correspond to situations where the number of 
coordinates Included in the coupling constraints i3 unneccessarily high in 
order to prescribe compatibility properly. 

3.2 Enforcement of compatibility 

Selecting an Improper set of coordinates can lead to break-down of the 
used algoritm. However, the choice of coordinates is often dictated by the 
need to assure continuity of the displacement field of the coupled 
structure. This is often achieved by setting translations and rotations 
equal. Since rotations are difficult to Masure directly they are often 
expressed in terms of translations. Whenever a rotation can be expressed as 
a linear combination of translations the method of general constraints in 
equation (6) is ideally suited. Thereby the need to determine the FRFs for 
rotational coordinates explicitly in a first step is eliminated. Only the 
proper rotational compatibility must be assured by finding the coupling 
constraints between a set of translational coordinates. 

Several expressions are given in the literature for calculation of 
rotations from a set of translations. In the simplest case an inclination 
is calculated from the translations of two points, which is exact if the 
structure is locally rigid and always in the limiting case when the two 
points are infinitely close [4,14], More sophisticated methods to determine 
rotations have been suggested that assume rigid-body motion of a group of 
points on a part of a structure  [15,16]. 

Another possible approach is based on the interpolation of the 
displacement field between the points of translational coordinates in order 
to find expressions for the rotations [13]. Then the distance between the 
points of translational coordinates can be choosen larger without 
introducing systematic errors. The risk of poor accuracy resulting from 
cancellation of terms is thereby reduced. This means loss in relative 
accuracy when subtracting two almost equal quantities from each other that 
are represented with a limited accuracy. Also in this case the resulting 
constraints are linear and can thus conveniently be treated when using 
equation  (6). 

4. PROPAGATION OF ERRORS 

At certain frequencies very small changes in the response levels of the 
Substructures will re>Rnl1- In hlg ohannfs In fht» FRFs nf t-hf» nnnnl «»ri 
structure. This is an inherent feature of the calculations. Intuitively 
this can be understood by realising that sharp peaks in the FRF of the 
coupled structure will frequently occur at frequencies where the response 
levels of the substructures are changing smoothly. In practice this will 
lead to a high error sensitivity. Errors in the individual FRFs of a 
substructure will result in a set of FRFs that do not correspond to a 
unique set of modal parameters according to the equation (1). Such a set is 
said not to be self-consistent. This will not only result in lower accuracy 
of the FRFs of the coupled structure but to FRFs that are difficult to 
interpret because of the occurrence of erroneous peaks or so called 'ghost- 
peaks ". 

These phenomena will now be tackled quantitatively, and a measure of 
error will be sought that could be useful In practice. An exact error 
analysis for both equations (3) or (6) is difficult. Three matrix 
inversions are included in equation   (3).   Therefore the propagation of 
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errors during matrix inversion were believed to be of interest, although 
not immediately giving information about the error sensitivity of the whole 
sequence of operations. How an error in a matrix A influences the accuracy 
of the solution x to tha linear equation system A x = b can be studied 
using the methods in [17] . The maximum-norm of a vector x and the 
corresponding matrix-ncrm of the matrix A are defined as 

|x| = MAX{|xJ} 
1-1,N   l '    M ' 

(8) 

IAI-MAXJ I|AJ1 
J=1'N  I !«1,N'   ' J (9) 

Using a procedure similar to those in [17], an upper limit for the 
error 8x in the solution x can be expressed in terms of the errors 8A in 
the matrix A as 

INI ^ ^ *  Sn   JliAi (10) 

K(A) is the condition number of a matrix A with respect to the given norm, 

defined as *(A)»||A||' IIA || _ Tnis can be used t0 fin(j ai, upper limit for 

the errors in the inverse of matrix A, 5(A_1), by realising that the 
inversion of a matrix can be looked upon as the simultaneous solution of a 
set of linear equation written as 

A' A'' = I (11) 

I 

Each column of the inverse A-1 is the solution to a linear system of 
equations with the righthand side equal to (0...1..0)T. The inequality (10) 
is now used with x replaced by the j:th column of A~l. Using that 

|(j th col. of A"') j| < MAX I |(A"') I 1    (j=l,N) 
i,j=l,N LI     «I J 

(12) 

MAX{||(jth col. of 5(A"'))| }   =  MAX{|5(A~').| } 
j-l.N i.j-l.N L I "I  J 

(13) 

an upper limit of the error in the inverse of the matrix A can be 
formulated as 

MAX {|8(A_1) 1} 
i,j = l,N 

MAX {A
-1
 :} 

i.j-i.N LI  Ml J 

<£  K(A + 6A) IISAJI 
A + 8A 

(14) 

I 
In a numerical experiment the FRFs for two structures were generated 

theoretically. These were used in coupling calculations before and after 
polluting them with random noise. The generated FRFs are not shown but the 
condition number of the FRF-matrices for each of the two components and the 
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coupled system are shown in figures la,b and c. The natural frequencies in 
each case are indicated with arrows. At each natural frequency the 
condition number is very large. The erroneous peaks in the FRFs of the 
coupled system that resulted when using polluted data is marked with a 
circle in figure 2. Each of them can be identified with a peak in some of 
the curves showing the condition number. Also when the condition number is 
a relatively coarse measure for the errors during matrix inversions and the 
three condition numbers do not directly give information about the error 
sensitivity of the complete expression (3), the result is in perfect corre- 
spondence with earlier assumptions of an error sensitivity that varies 
strongly with the frequency and is very high in the vicinity of the natural 
frequencies of any of the involved structures. 

5.   APPLICATION TO A REAL STRUCTURE 

The test structure can be seen in figure 3. It consists of three steel 
tubes of the same lengths that can be mounted very tightly together thanks 
to the relatively thick flanges with hole3 for bolts. Various 
configurations were assigned short names to make reference quick and 
convenient. Thus 'A' is a single tube-section mounted on the plate, 'B' is 
one free section, 'AB' means two sections on top of each other on the base- 
plate and 'BB' means two or three sections mounted together but otherwise 
free. The analysis was made in one plane. In the range 0 to 3.2 kHz the 
tubes, either free or fixed to the base plate, have well separated modes. 
THe modal data of components A and B are shown in table 1. The four modes 
of B within this range can be seen in figures 4 a and b. For A and B the 
whole upper half of the FRF matrix in the defined frequency range 0 to 3.2 
kHz was measured. For the built-up configurations AB and BB a limited set 
of FRFs were measured and analysed for later comparison with corresponding 
calculated FRFs. Several estimates of the modal parameters and the residual 
terms were found by curve-fitting using the program MODENT [18]. The low- 
frequency residual terms could be checked against estimates resulting from 
calculation of the inertial properties kncv/ing the mass distribution. In 
most cases the various estimates for a quantity were very similar. Having 
measured and analysed all FRFs required for configurations A and B 
calculation of the properties of various assembled configurations was 
attempted and the solution was compared to the results from measurements. 
Here any'of the equations (3) and (5) could be used. 

The coordinates used when studying the structure A3 are shown in figure 
5. At the coupling three of these from each component were included in the 
constraints. Coupling analysis was here made using the regenerated FRFs. 
Two calculated FRFs of the coupled system can be seen in the figures 6 a 
and b together with their measured count-1»parts for comparison. Both 

L calculated and measured FRFs could be analysed and a comparison of the 
' resulting natural frequencies and damping factors is shown in table 2. 

Similarly in figure 7, a measured FRF for the configuration BB is shown 
together with the corresponding FRF when calculated using FRFs for the 
substructures that were regenerated from modal data. In figure 8 a FRF is 
shown that ftas been calculated using FRFs for one component directly as it 
was measured. The natural frequencies for the substructures(S) and for the 
coupled structure(C) are indicated with arrows. The well known difficulties 
with high error sensitivity and the occurrence of spurious peaks were 
recognised. The condition number for the FRF-matrix of the substructures is 
shown in figure 9. Calculating the condition number from the measured FRFs 
or using those regenerated from modal data resulted in only minor 
differences. Also here a correlation between peaks in the condition number 
and the occurrence of large errors was found. 
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6. CONCLUSIONS 

The methods for analysis of coupled structures that are dealing with 
the determination of response properties were studied. Since the general 
principles and problems are known, the attention was concentrated on a few 
special problems after a very short review. 

It is always importar.t to know the limits of the equations that are 
being used. Using a special formulation, here referred to as THE METHOD OF 
GENERAL CONSTRAINTS, all well, formulated problems can be treated uniformly. 
At the same time there are various ways in which the coupling constraints 
can be introduced. This offers many possibilities to enforce proper 
rotational compatibility when dealing with slender structures. 

The main problem u.iing these methods is the high accuracy of the input 
data that is required. Errors in the input data will not only reduce the 
accuracy but make the result hard to interpret. Ideas for finding a useful 
quantitative measure for the error sensitivity were tried out. It resulted 
in a fairly coarse measure because of the complicated algebra involved. 
Still a clear correlation between the suggested error measures and the 
errors in the result was found which can be interpreted as a verification 
of earlier assumptions about a strongly varying error sensitivity. Tb" 
experience from this and earlier works shows that these methods can.real! 
deliver useful results if care is taken in their application. 
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I 
TABLES AND FIGURES 

MODAL DATA 
COMPONENT    'A'                                              COMPONENT     'B' 

FREQUENCY                DAMPING FREQUENCY                 DAMPING 
Hz               Loss factor, r\ Hz               Loss factor, r\ 

62.1                    0.005 402.5                     0.003 
543.0                   0.002 1245                           0.009 

1097                        0.012 2323                           0.005 
1545                         0.002 2650                           0.005 
x692                         0.001 
2847                         0.002 

Table 1. Measured modal parameters of component A and B. 
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MODAL   DATA   OF   STRÜCTURfc    'AB' 

Estimated from Estimated from 
CALCULATED FRFS MFASUKED FRFs                       1 

FREQUENCY                  DAMPING FREQUtNC.                  DAMPING 
H2                Loss factor, n Hz               Loss factor, r\ 

26                           ? 27                             ? 
±19.4                   0.014 98.1                         ? 

1             394.4                    0.020 406.2                     0.015 
766.2                    0.C14 725.0                     0.011 

3 306                       Ü.005 1294                         0.005 
1856                         0.003 1819                         0.004           1 
2494                       0.003 2482                         0.005 

> 3200 3U5                         0.003 

Tslde 2. Compj-isoJi between modal parameters of structure AB that have 
been dx.xi.veC from calculated and measured FRFs respectively 
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Figure la,b. Condition number of FRF-matrices that have been generated from a set of 
modal parameters. The natural frequencies of each component ere indicated with arrow;. 

► 

750 

Figure lc. Condition number of the FRF- 
matrix of the coupled structure. The 
natural frequencies of the coupled 
structures are indicated with arrows. 

Frequency (Hz) 

Figure 2. Sample FRFs of the coupled 
structure. The circles indicate the 
occurence of erroneous peaks. 
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Figure 3. Photo of the test structure. 
Two tube sections mounted on the base 
plate. 

Figure 5. Definitlor of coordinates 
of structure AE. 
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Figure 4ao, The four lowest modes of component B. Three bending modes and one 
longitudinal mode. 
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Figure 6ab.    Calculated and measured FRFs of structure AE. 

—  -48.B* 

BBG/BBG 

FREQUENCY  (Hi) 

648.0   12BB.B   |3«B.B   256B.B   3?C0. 

1000 2000 

Frequency(Hzj 

3000 

Figure 7. Calculated and measured FRFs 
of structure BB. 

Figure 8. FRF of structure BB. Calcu- 
lated using measured FRFs for one of 
the substructures and FRFs generated 
from a set of modal data for the other. 

Figure 9. Condition number of the FRF- 
matrices of the substructures. Calcu- 
lated using measured FRFs. 

The arrows marked S and C indicate 
the ratural frequencies of the subs- 
tructures and of the coupled struct- 
ure respectively. 
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LMS-LINK CORRELATING AND VALIDATING FINITE ELEMENTS 
ANALYSIS FOR DYNAMIC STRUCTURE BEHAVIOUR WITH 

EXPERIMENTAL MODAL ANALYSIS. 

Johann Zeischka, Marc Brughmans, Olivier Starrer 

1. INTRODUCTION 

The study of the dynamic behaviour of the structures can be divided into two classes 
namely analytical-numerical and experimental methods. The most widely used method for 
analytical-n\ merical analysis is the finite element method. Modal analysis is the preferred 
method for the experimental oriented analyst 

For complex real-life structures the application of the finite element method requires 
usually a simplification of reality to obtain a manageable FE model. In addition to this fact a 
number of design parameters of a FE analysis are not under direct control of the FE analyst. 
As design parameters one can regard boundary conditions, variations of plate thickness and so 
on. 

The unknown quality of FE-results demand a verification by experimental analysis. 
Recent developments in hardware and especially in software for experimental analysis 
resulted in more accurate and faster modal analysis [11. One can expect that experimental 
modal analysis reflects the true dynamic behaviour of structures. 

The scope of LMS-LINK is to combine and evaluate data of finite element analysis and 
experimental analysis. The principal functional modules of LMS-LINK are shown in fig.l and 
will be described hereunder. 

FE-analysfs 

LMS-LINK 

- 

I 

1          Interfaces 

♦ 
correlation analysis 

' 
I     design sensitivity 

experimental 

modal 

analysis 

 t» updating 

Fig. 1 : Principal functional modules ofLMS-UNK. 
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2. INTERFACES 

A neutral file interface based on Esprit CAD*I project nr.322 guarantees an easy 
interface,g of different finite element programs to LMS-LINK. The CAD*I neutral file also 
facü"if*^s • a transfer between different hardware installations. A common database of finite 
elemcui <tnd experimental data ensures data consistency. 

3. CORRELATION ANALYSIS. 

In a real-world finite element analysis a huge number of variations of design parameters 
should have to be evaluated in searching a state as close as possible to the reference state; in 
the following the experimental data will be referred to as reference state. It is obvious that an 
updating process without limitation of the design parameters will yield to unacceptable 
requirements in computer resources. Therefore a proper correlation analysis is the essential 
tool in selecting the design variables. Mode shape correlation analysis can be divided in 
qualitative and quartitative correlation. 

3.1. Geometrical correlation. 

The first step in the correlation analysis is the determination of the geometrical 
correspondence between finite element nodes and measurement points. A semi-automatic 
procedure will assist the user in establishing a common wire frame model. Local coordinate 
systems are supported. See fig. 2 for the FE model of the supporting bridge of the ORA 
experiment (Occultation radiation anemometer) and the equivalent wire frame model for 
correlation analysis. The ORA experiment will be mounted on the European retrievable 
carrier (EURECA). 

Fig. 2 : FE Model and wireframe of the stq>porting bridge of ORA 
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3.?. Motfe shape correlation bv animation. 

A qualitative correlation can be gained from extensive real time animation features. 
Multiple windows help to evaluate different mode shapes. Mode shapes can be manipulated 
such as substracted from each other to visualize differences between two mode shapes. As an 
example of mode shape animation we refer to fi^. 3 where the first experimental and 
analytical mode shapes are depicted. 

1 rial 
Ireq 
/en 

II?. ItJ Hi 
IHH) X 

IU> lttW.3 

Hud*!   t 

(■>e*i 
7eu 

in vv ib 
8.600 >. 

Figure 3 : Mode shape animation. 

3,3, Mode shape correlation by Moda' Asswrance Criterion, 

The modal assurance criterion (MAC) between two eigenvectors <E*and <E>jis defined by 

(1) (OfO,) 
MAL,, = " tfmtifa) 

The MAC is an averaged value for the correlation of mode shapes. The value of the 
MAC lies in the range between zero and one, close to one implies a good correlation. An 
example of correlation by MAC value is given in labie 1 and 2 for the bridge of ORA 
(Occupation radiation anemometer) spacecraft structure. Smoothing will be discussed later. 
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l 
2 
3 
4 
5 

Hz 

1H. 537 
132.932 
140.771 
319.496 
331.874 

01 
112.133 

.844 

.000 

.011 

.005 

.008 

02 
132.857 

.000 

.701 

.026 

.015 

.000 

03 
102.836 

.026 

.003 

.858 

.064 

.130 

04 
338.811 

.010 

.028 

.004 

.710 

.393 

Table 1: Modal Assurance Criterion : MAC 
rows: exp. - transformed     columns: anal-original 

.000 

.150 

.000 

.000 

.039 

Hz 
01 

112.133 

111.537 
132.932 
140.771 
319.496 
331.874 

02 
132.857 

03 
182.836 

04 
338.811 

05 
437.817 

        ... i I , I 111  
Table 2 : Modal Assurance Criterion: MAC with smoothed experimental eigenvectors 

rows: exp. - transformed     columns: anal.-original 

3.4. Statistical mode shape correlation. 

In contrast to the MAC a basic statistical procedure allows a more subtle evaluation of 
the finite element results compared to experimental data. A statistical evaluation can be based 
for example on the error«,' between experimental and analytical mode shapes <t>„p,, and 0^ 
for component K and mode i. 0^ is the minimum amplitude to be assumed as reliable. For 
example O^ can be expressed in percent of the maximum amplitude. 

(2) 
*     *Lp,-&FEJ e, = ■forWwhere abs(4>*sp,) > O^ 

with a mean value for n degrees of freedom for component k 

(3) 
7*     1  v    * ei=- I et 

ftm = l 

and a standard deviation of 

(4) 
i        1      " 
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An evaluation of the results of (2) helps to identify alignment errors by minimisation of 
the errors. Further evaluation allows identification of significant differences between FE and 
experimental analysis ; such differencs for example can be caused by local modes not 
adequatlcy present in the FE analysis. After deletion or modification of components 
calculations (2) (3) and (4) can be repeated for a new set of comparable components of the 
eigenvectors. A scaling of the eigenvectors (5) (6) can be based on the modal scale factor 
(MSF). 

(5) 

(6) 

MSF, = 
^exp,i,*rapIi 

or the average error e. The average error e can be selected as mean value for all components 
or « can be" the mean value ?, for the most participating component. 

(7) o'.= 1 
1 

= 0. 

Table 3 and 4 show the results of a statistical evaluation of the components for the first four 
modes of the ORA bridge. 

Table 4 : average error e, in percent of Ft analysis with respect to smoothed experimental 
analysis for ORA bridge. 
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For interpretation of table 3 and 4 one has to know that the components in Z-direction 
are substantially smaller than those in the other directions. It is beyond the scope of this paper 
to explain details of tables 3 and 4; the reader should review tables 1 and 2. In general only a 
careful qualitative and quantitative correlation will yield to valuable conclusions concerning 
the discrepancy between FE analysis and experimental data. 

3.5. Mode shapes expansion. 

One inherent difference between finite element analysis and experiment modal analysis 
is the number of degrees of freedom involved. In an experimental analysis this number 
usually does not exceed a practical limit of a few hundred measurement points, where a finite 
element analysis might show more than 10.000 degrees of freedom. 

Several schemes for expansion of the set of measurement points are available such as 
static (8) and dynamic expansion (9). The subscript a indicates the set of measurement points 
and the subscript o to the remaining degrees of freedom of the finite element analysis. 

An alternative to (8) and (9) is the expansion based on an orthogonal projection of the 
experimental modes on modes of a FE analysis (10, 11), where T is a transformation matrix 
determined by equation (10). 

(8) o,=Ow*>a 

(9) 

(10) 

(11) 

<D, = -(Koo - tfMoo)-1 (K0A - Cö2M0Ä 

*«P, = W 

*«P„ = <W 

In [2] it has been shown that expansion and smoothing by orthogonal projection 
removes random unbia;.id noise of the experimental mode shape. See for example table 2 of 
the MAC values after smoothing which have to be compared to table 1. 

4. SENSITIVITY ANALYSIS. 

The simplifications incorporated in a finite element analysis will require an updating of 
the stiffness and mass matrices by changes of parameters {p} about {dp}. From the equation 
of free motion first order sensitivities can be derived for the frequency and the eigenvectors. 
[3] see equations (12) and (13) for unit modal mass scaled eigenvectors. 
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In LMS-LINK tools are incorporated to group and select elements for design sensitivity 
analysis. The changes of the stiffness and mass matrices are based on proportional updating of 
element matrices [4]. This procedure combines good computational efficiency with reliable 
results. Graphical presentation of the results with colour permits visual recognition of most 
sensitive regions. 

5. UPDATING 

The theory in progress of implementation in LMS-LINK is based on [5] and will be 
briefly outlined hereafter. 

The stiffness and mass matrices (K,M) are assumed to depend on some set of 
parameters {p}. The eigenvectors determined by means of the finite element model fulfill the 
well known orthogonality conditions. The orthogonality conditions are given in (14) and (15) 
for eigenvectors scaled to unity of modal mass. 

(14) *?n£*nr ■««A3**» 

(15) 
WFEJMQFEJ*^ 

The finite element solution based on the current state of the parameters should lead by 
appropriate changes about (dp) to the reference state, hence 

* 
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; 

(16) 

(17) 

(18) 

G>EXP,5//2 - ky+if QT
m<iIJ-QEXPJ dp 

^j = my + ifQlxpj-^QwjW 

v8^r 
Equations (16) to (18) are ordinary sensitivity equations of the form 

(19) {q} = {q,} + [S){dp} 

where q, indicates the state variable for current parameter values and q presents the desired 
state. The equation of type 19 is solved by a Bayesian least square fit (20), where w, and w, are 
some weighting functions, which allow to express the confidence of the analyst. 

(20) \\lwJ[{qs} + [S]{dp}-{q}]\\2 + \\[wsuba}{ps} + {dp}-{po}\\2=0 

This method has been successfully applied for the simulation of detection of structural 
damage of a steel offshore platform jacket (see fig 5) [6]. First the finite element mod A was 
reduced to the measurement points and then updated to reflect the undamaged states. After 
formation of a structural failure the monitoring will show changes in the modal parameters. 
See table 4 for a comparison of the first three eigenfrequencies, for the different states of the 
structure. 

Figure 5 : Offshore platform jacket. 
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Mod* 
(HK) 

Undamaged Damaged 

reference 
sat 

condensed 
FE model 

update 
condensed 
FE modal 

reference 
set 

updated FE 
model 

1 
2 
3 

.6441 

.7265 

.8497 

.7795 

.8556 
1.1946 

.6440 

.7265 

.8950 

.6265 

.7265 

.8843 

.6271 

.7252 

.8343 

Table 5 : Comparison of first three eigenfrequencies (Hz) for different states           | 

Application of the above outlined theory indicated following relative stiffness matrix 
changes (see table 6 for following relative stiffness matrix changes). These stiffness changes 
correspond with the simulated failure in a diagonal (dofs 16 and 18) with high accuracy. 

1 t7,7) 0. (8,8) 0. (9,9) 0. 
(10,10) 0.0007 (11,11) 0. (12,12) 0.0022 

I   (13,13 -0.0016 (14,14) 0.0020 (13,13) -0.1243 
1   (16,16) -0.8619 (17,17) -0.1197 (18,18) -0.8289         ! 

(19,19) -0.0023 (20,20) -0.0080 (21,21) 0.                 1 
(22,22) -0.0002 (23,23) 0. (24,24) -0.003 

Table 5 : Relative stiffness matrix changes. 

6. CONCLUSION 

Efficient correlation analysis will play a key factor in the determination of discrepancies 
between FE analysis and experimental analysis and in reducing the number of design 
variables to a minimum. A proper correlation analysis will also eliminate artificial reference 
states. 

A tight connection between finite element department and the experimental department 
will result in a faster and more reliable design methodology. 
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VIBRATIONAI POWER TRANSMISSION THROUGH DISCONTINUITIES 

J.L. Homer and R.G. smite 

Institute of sound and vibration Research 
University of Southampton 

1.   INTRODUCTION 

When attempting to control the vibration levels transmitted from a 
machine through the structure upon Which it is mounted, it is desirable to 
be able to identify and quantify the vibration paths in the structure. By 
absorbing the mechanical energy along the propagation paths in some 
convenient manner, it should be possible to reduce the sound radiated from 
the structure. One method of obtaining path information is to use the 
concept of vibratior.al power transmission. 

in any vibrating system there are a variety of mechanisms by which the 
vibration 1B transmitted through the substructure. The concept of power 
flow allows the various transmission paths to be compared. simple 
measurements of vihration amplitude at various points in the structure are 
not sufficient to identify the vibration paths. If stationary waves are 
present in the structure, large vibration amplitudes will be measured while 
little power is being transmitted through the structure. Thus, it is 
necessary to measure the structural wave intensity which indicates the 
distribution of vlbrational power. 

By using the concepts developed by Pavic [1] and implemented by 
Redman-White [2], it is possible to measure time-averaged power flow In a 
beam or a plate to within half a wavelength of a discontinuity. The work 
presented in this paper is r^oncerned with the effect of discontinuities on 
power transmission in unifona beams. Methods for predicting the effect of 
various types of discontinuities on the power transmission in a beam have 
been developed and the power flow in the far and near field of beam 
discontinuities has been measured. 

Previous work in this field has been concerned with measuring power in 
a beam away from the effects of discontinuities. Apart from the 
time-domain methods developed by Noiseux [3] and Pavic [1], frequency 
domain methods for measuring power flow have been developed by Verheij [4] 
and Mayer [5]. Before it is possible to predict power transmission, it is 
necessary to know the effect the discontinuity has on a wave which impinges 
upon lt. Doyle »mi xami» [B] predicted the reflection and transmission 
coefficients for a beam with change of material or area. Experiment 
confirmed the predicted coefficients. Work on beams with bends or branch 
joints was carried out by Lee and Kolsky [7j, Desmond [8], Rosenhouse, 
Ertel and Mechel [9] and Doyle and Kamle [10]. By using the reflection and 
transmission coefficients for different types of discontinuity, it is 
possible to predict the vibrational power associated with flexural and 
longitudinal waves on either side of the discontinuity. 

2. THEORY 

2.I Input Power to a Structure 

Assume a harmonic force input, IPlSinut, to a structure with point 
lnertance, ll^ie1*. The time averaged input power <P»in c*n bo found [11] 
from 
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<P>in "»I IPI ivisinwt sin(ut + «)dt 

<*>in - | UM* I" p**} 

2.2 Transmitted Flexural Power In a Uniform Beam 

(1) 

consider a section of a uniform beam with a flexural wave propagating 
through the beam (figure 1). Two loads act on this beam element« the shear 
force and the bending moment. Assuming the flexural wave can be described 
using Euler-Bernoulli beam theory, by 

W * A4Sin(wt - kfX) 

0*M 02tf 
Shear force on section S = EI—3 ; Bending moment on section M = El~j 

instantaneous rate of t^rking in cross section X, 

x ~ sät - "ixet 

a»w  aw E1£fw  »*w 
ax3 ' at "  ax* ' axat 

x = Elk* MA* 
£   4 

Time Averaged power <p>t ■*I xdt = Eik*uA
z 

f * 

<p>t »I xdt 

(2) 

(3) 

2.3 Power Plow through Two Changes in Cross-section or Material in a 
colllnear Beam 

in a substructure it is likely to encounter a discontinuity consisting 
of two changes of cross-sect'on or material, i.e. change in section due to 
a welC or a lap joint. It is a complicated wave problem as multiple 
reflections can occur within tfca joint, rigurs 2 shows such a joint at 
four different time intervals. 

It was assumed that the joint was of such dimensions that near field 
waves decayed before reaching the other discontinuity. It was also assumed 
that a travelling wave which was the product of a second reflection would 
have insufficient energy to produce any effect on its third impingement. 

Thus, the wave motion at 1, the left hand side of the joint at 'a' 
would be. 

t 
W±(x,t) - {A4e

-iXlX + (As + F,*1*1* + (Ax + Pi)ekiX]eiwt 

For 2, the right hand side of the joint at 'b', 
w2(x,t) = JD4e     r    + Die~KlX]eiwt 
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For Ji, the sight hand side of the joint at 'a', 

Mjl(x.t) = (<B4 + E4)e
_1X*X + c,«1*** + (Bz + E2)e"

K*,tje 

and for JC, the left hand aide of the Joint at ■»•, 

Wj2<x,t) = |B«e    + C,e * + C,e z je 

■me power flow expressions on either side of the joint can be 
determined in the same manner as section 2.2. 

If -sA *4- Fs = rsF *«» &i = r»A A4 a™1 pi = riF A* 
then the power in the near field of team 1 is. 

K,X 

[(r^ + rsP){Cos(2uT + Jcj.x) + sin(2ufl" + KAx) - cosJqx 

- SinKjX} + (Cos(2uT - Xxx) - Sln(2wT - XLx) + Cosk1x 

- sinlejc)] (4) 

in the far field,  this reduces to 

<P>t = BXuk'TU - (rrt + rjp)1) (5) 

nie power  in the  near field of beam 2,   if D4 = t4A4 and D2 = t2Az, 
is, 

<P>t = K**Vtt* - ±*^£ 
"■ 14    4 2tr 

-Xxx 
Goskjc] 

in the far field,  the above becomes. 

<P>t = ElwJcsA*t2 
1 14 4 

(6) 

(7) 

To obtain the reflection and transmission coefficients for the joint; 
it subscript, a, denotes the joint end at a and subscript, b, denotes it at 
b, then using eqns. (9) - (12). 

rsA = ^as 
riA = rai 
tz = ta4 tb2 

r»P = *b4 ^bs fca4 
*iP = tb2 rj,, ta4 
t4 = ta tb4 

where, from reference [6], the following expressions are given for the near 
and far field reflection coefficients, 

Q = 4 "a*A 

D = 2RQ(R* + Q*> + (1 + R*Q*) 
_ (1 - R«Q«)(1 - 1) 

1 D 
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r, - 
2HQ(K» - Q«) - 1(1 - R»Q')' 

t . ~2(1 - K*fl*)(» *  1Q> 
* DQ 

2 + (1 + R«Q«)(R + Q) 
* DQ (12) 

AB expected, analysis of the above equations «how« that a joint In a 
beam reduces the power transmitted through the bean- If a beam of area 
3 x 10-« m* has a joint in it of 9.6 x io-4 mz, the power transmitted by 
the joint is 50% of the power impinging on the joint. 

2.4 Power Plow through Mon-coiiinear Beam 

Assume a beam is bent through an angle • (fig-ire 4). A flexural wave 
impinges on the bend, causing longitudinal and flaxural waves to be 
transmitted and reflected. 

lut 

On the Incident side of the junction, 

W_(x.t) = {A4e
_1XfX + Aje1*** + »/«"Je 

V_(x,t, = A^e1*^ elwt 

consider an element of the beam (figure 4) and the loads acting upon 
it. Thus, instantaneous rate of working X, 

»t "  *X*t "   »X »t 

X = -EIwJc*  [A^e*** (Sin(2wt + KfX) - Cos(2wt + XfX) 

+ AjA^** (Sin(2wt - KfX) + COS(2(dt - XfX))  + A* 

- A*]  - EAKi, A^uSin^wt + Kjji) 

1 

> 
if A, - r,A4, Ax = rxA4 and A^ ■ *iA4, then the power in the near 

I                                                                    field is 

<P>t = E**£ (ci - r*] + ^ cosXx] - A*  [5M^f]         (8) 

f 

Similarly, for the angled arm of the beam,  if * ■ xcos*. 

*+ (*.t) = [B,.-*** + B^-"^] eiMt 

u+ (.,t) = **•'**** eiwt 

\                                                                   men, 

X - EMC*   (B* + BeB4e_X:BX (Sin(2(Ut - KfX) - COS(2wt - KfX))] 
i 

'                                                                                                                                                                                                                                 1Q{\ J7U 

1 

1                                                                                                                                                                                       ; •                                  .■ '■ ii. 
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+ EWtt/iiB* Sinz(ut - kj») 

and if Bz = tjA4, B4 = t4A4 ana 8Ll = t^A», 

-XfX 
<P>t = E1*J A* [t* - ^~^ COBXfX] + P*^'»«'        (9) 

To obtain the reflection and transmission coefficients, the conditions 
of equilibrium and continuity at the discontinuity must be considered. 
There are six conditions and these arei 

fr 

w_ (o) = u+. (o)Slne + w+ (o)Cose, 

u_ (o) = u+ (o)cosa - w+ (o)Sine, 

aw. (o) _ aw+ (o) 
ex a** 

a*w_ (o)  gfy*l£j 
ax*  3  a»2 

afHr-ISi . EA^Ii^ ow - Ei2^i£2 sine 
ax a» a»3 

EI£!^(2i = EA2H±-<2i sine + «Ü^co-. 
axs      a» a»* 

By substituting the correct wave equations into the above, expressions 
can be obtained for the reflection and transmission coefficients for the 
discontinuity. 

3.   MEASUREMENT OP VIBRATIONAL POWER IN A BEAM 

3.1 Measurement, in the Far Field of a Discontinuity 

From eqn. (2), it can be found that, in the far field of a 
discontinuity, the power due to the shear force equals the power due to the 
bending moment. Thus, 

Total Power Flow = <Pt-> = 2<PB> ■ 2<Pm> 

Where 

and 

<P-> = El--< 
a»w m 
ax* ' at 

Now the shear force component is 

P8 * EIWk'A* COS*(Mt - KfX) 

The output of a linear accelerometer attached to the beam would be 

a*w 
TTi = -*»2A4 sin(wt - XfX) 
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anfl the output of a rotational accelerometer attache« to the beam would be 

j—p m lew**« cos(«t - k£X) 

Applying a - n/2 phaaa shift to the output of the linear accelerometer 
would give 

awTT^ " W*R* °°*<wt " k£lt> 

«-.       ♦t-^^&S«^ (10) 

Ming finite difference method* to evaluate tin spatial and temporal 
derivatives [1]. 

SM-i   SI ♦ *«w 
9t* Jo M *ti i. ■ 0t 

2 2 

«"'Jo" 1 ** L" »it*_L I *t*  |.  at* . a 
lp=~2 

and letting ^ j = aA and ^ | » aa 

~- 2 ~ 2 

mus eqn. (10) becomes, 

<P>t • *-*jr < (»* " ai)(*i(q) + »i(q)) > ("> 

<p>t * ^S^ < *»*i(q) > <") 

»e above two equations can be used to measure power flow in the far 
' field of a beam discontinuity.  To account for the errors introduced by 

using finite difference techniques, a correction factor must be used on the 
measured result. 

<P>t = <p>measur»d sin(ICA) 

3.2 Measurement in the Hear Field of a Discontinuity 

In the near field of a discontinuity, the flexural wave equation is of 
the form, 

w = Re {l^e** + Aje1** + a«-1**} m1** 
I 

Ihus, in this region, the instantaneous rate of working is equal to, 

X = -EU*9   [Al»»*** (Sln(2Wt + XX) - COS(2ttt + *K)) 
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+ AjA^e** (sin(Zwt Jcx) + cos(2ut - tac)) + Az - A2] 

It can be found that the above is approximately equal to, 

ra*w 
Ut* 

rafw  £fw(qjl 
~ [at2  ' axat* J. 

p*w  a »weg) _ a'w(g)   a*w i 
axa^^^ FIELD axat* at* 

'PAR FIELD 

Thus, in the near field, 

4EIK* 
<P> a 

4EIK     F ] 
"2J1-   [<ai*i(«[>>HEAR riEW - <aiai(>3)>FAR FIELD] (13) 

The above equation allows near field power to be measured using two 
accelerometers in the far field of the discontinuity and two accelerometers 
in the near field. This allows great access to the near field of a -joint 
than previous techniques, i.e. Pavic [1] used four accelerometers in the 
near field and physical transducer size was a great limitation. 

3,3 Comparison of Theoretical and Measured Power Flow in the Region of 
a Beam Discontinuity 

A6mmx50mmx6m mild steel beam was suspended at four points by 
wires. The ends of the beam were embedded in sand boxes to reduce end 
reflections. The beam contained a butt weld at a position 900 mm from the 
mid point. The butt weld was of dimension 7.5mmx5lmmx8 mm. The beam 
was excited at its mid point using a 30 lb electrodynamic shaker. input 
power was measured using digitally acquired signals captured from a force 
transducer and an accelerometer at the point of excitation. Transmitted 
power was measured using two accelerometers connected via charge amplifiers 
to the Power Flow Meter developed by Redman-White [2]. This meter 
implements equation (11). 

Initially, power was measured in the far field of the beam 
discontinuity. Figure 5 shows the comparison of measured and predicted far 
field power. The far field power was predicted using equations (5) and 
(7). From figure 5 it can be seen that the predicted far field power on 
the "reflecting" side of the joint is slightly greater than that measured. 
This is due to the prediction being based on the amplitude of the wave in 
the section of the beam without any discontinuities. This wave amplitude 
would be slightly different than the amplitude of the impinging wave on the 
weiii iim-anne the isspir.gir.g vavs contains an exlia component due to tne 
reflection of the reflected impinging wave on the source. The difference 
between predicted and measured transmitted power is due to energy losses in 
the joint which are not included in the model. The joint was modelled as 
an energy conserving system. Also, the quality of the joint is unknown. 
Any dislocations in the weld would reduce the transmission of power through 
the joint. 

Power was also measured in the near field of the discontinuity. Where 
the forward travelling wave impinged on the weld. Figure 6 shows the 
comparison of measured and predicted near field power. Near field power 
was measured using equation (13) and predicted using equation (4). The 
discrepancies between measured and predicted values were due to the 
approximation in the near field measurements. The predicted values were 
based on measured far field results. 

- 
i 

i 
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CONCIA IONS 

' * 
It IB passible to measure the fiwxurai wave 

uniform beam. By considering the loads acting on 
poBaini« to predict the pownr tn tiio near and far 
in the bean.  Ubing the prediction equations, 
dmtign joints Which minimise the tranralnition of 
tnchniquos unnrt to measure powar on either side 
bean, could equally be applied to each arm of a 
the longitudinal wave power component, »train 
attached to the beam. 

power transmit* a*"i along at 
an elnment of beam, it is 
fields of discontinuities 
it should be possible to 
powttr through them. The 
of a weld in a collinear 
branch joint. To measure 
gaugos would have to be 
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APPENDIX! NOTATION 

A ■ area 
At * amplitude of reflected exponentially decaying wave 
A9 = amplitude of reflected flexural wave 
A4 = amplitude of forward travelling flexural wave 
Bt  = amplitude of transmitted exponentially decaying wave 
B4 = amplitude of transmitted travelling flexural wave 
Cx = amplitude of reflected exponentially decaying wave 
Cj = amplitude of reflected travelling flexural wave 
D = material constant 
D2 = amplitude of transmitted exponentially decaying wave 
D4 = amplitude of transmitted travelling flexural wave 
E = Young's modulus of elasticity 
Ej = amplitude of reflected exponentially decaying wave 
E4 = amplitude of reflected travelling flexural wave 
F = force 

Fx = amplitude of transmitted exponentially decaying wave 
F, = amplitude of transmitted travelling flexural wave 
I = moment of inertia 

■ Jii ~ point iiiertance of a structure 
Kf = flexural wave number 
lea = flexural wave number in Section A 
kB = flexural wave number in section B 
M = bending moment force 

<P> = time averaged power 
| Q = material constant 

R = material constant 
rt = reflection coefficient for exponentially decaying waves 
r3 = reflection coefficient for travelling waves 
s = shear force 
T = time interval, averaging period 
t = time 

t; = tr»nami«qion r'nafficiep.t for exponentially decaying wave» 
t4 = transmiiision coefficient for travelling waves 
v = velocity amplitude 
w = displacement 
X = instantaneous rate of working in cross-section 
x = distance along beam 
0 = anole of bend in beam 
« = phase angle 
u = frequency in radians 
A = accelerometer spacing 
A = wavelength 

: 
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GIANT MAGNETOSTRICTIVE DEVICES IN STRUCTURAL ACOUSTICS 

B.A.T. Petersson 

Department of Engineering Acoustics 
Lund Institute of Technology 

1.   INTRODUCTION 

In several branches of structural acoustics rather specific and deman- 
ding requirements are put on the experimental equipment. Hereby a manifold of 
devices and principles Is needed. Moreover, often the experimentalist desires 
to tailor fit a device or  a technique to the situation. 

The magnetostriction phenomenon, in principle, realises another possi- 
bility to register the dynamic behaviour of or excite structural systems. The 
exploitation of this material property however has been hampered by its 
"weakness". Recently, alloys posessing huge magnetostrictive features have 
been developed leading to significant figures of merit. The alloys have been 
termed giant magnetostrictive. Summarising the advantages and disadvantages 
it is found that a high output may be gained from a small size sample but 
this is counterbalanced by a relatively high cost and design difficulties. 

Principally the alloys can be applicable in a variety of situations but 
to mention a few relevant, vibration excitation, active vibration control and 
motion registration may be put forward. 

The intention of this paper is to give an overview of the application 
of the alloys in vibrjtion excitation and more specifically in moment excita- 
tion where advantage is taken of the small physical size [1]. Hereby hope- 
fully some light will be thrown indirectly on the application in other situa- 
tions. 

2.   MAGNETOSTRICTION 

Since the mid of the last century transition metals such as nickel have 
been recognised to be magnetostrictive. Their usefulness in applications with 
respect to magnetostriction however is rather limited since the exhibited 
magnetic moments are sme.11. 

The extraordinary magnetostrictive characteristics of rare earth metals 
have been known for more than 20 years [2]. The hindrance in this case has 
been the low ordering temperature below which the magnetostriction dominates 
the thermal expansion. In the beginning of the 1970's the research on 
magnetostriction was focussed on obtaining RFe2-alloys (R denotes rare earth 

magneto- 
is to be 
magneto- 

strictive transduction phenomenon become feasible. 

magnetostriction was rocussea on ootammg ureo-aiioys (K aerotes rar 
metal) with ordering temperature above room temperature [2]. The magr 
striction realised for such alloys is of the order of 2-10"3 which is 
compared with that of nickel, 3*10 . Thus the exploitation of the mi 

Briefly, the magnetostriction originates from the fact that the magne- 
tic anisotropy energy depends upon the strain. In order for the crystal to 
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minimise its energy th< crystal deforms when presented to a magnetic field. 
Conversely, a change .r. the interior magnetic characteristics is encountered 
if the crystal is deformed. 

It is noteable that no linear magnetostriction Kill result if the mag- 
netic anisotropy is independent of the strain but that, at the same time, the 
anlsotropy can be a hindrance to obtain a large magnetostriction. This means 
that grain orientation by some directional solidification becomes necessary 
to achieve a useful performance of a polycrystalline sample if a low excita- 
tion field is desired. 

Among the alloys exhibiting the giant magnetostrictive feature, the 

composition TbQ 27
D
VQ 73Fe2 may D* ar9ued t0 De the "°3t »dvanced and has 

been given the name Terfernol-D. 

Apart from the large magneto-elastic coupling for the RFe2 alloys, 
also, the static and dynamic material properties can be strongly influenced. 
As an example, a variation of up to 60% in the Young's modulus is possible 
which, in turn, affects the speed of sound for the material [2]. 

A very useful feature of RFe2 alloys is the possibility to tailor make 
their characteristics to suit a certain application. Some examples of such 
tailor made characteristics are: 
- TbDyFe, compounds show step wise change in the thermal expansion above a 

certain temperature where the break temperature can be adjusted by means 
of the magnetic field. 

- RFe2 alloys in bi-metal configurations eq. TbFe2 (positive magnetostric- 
tion) and SmFe, (negative magnetostriction) reveals a large bending moti on 

Table 1 below shows the aagneto-elastic forces and energies which can 
be produced by RFe2 alloys. The quantity EAS can be interpreted as the pres- 
sure a blocked rod with a cross-sectional area of 1 mz can give whereas E-<|/2 
refers to the amount of magnetic energy per unit volume which can be trans- 
formed into elastic energy. As seen from the table the possible energy trans- 
formation is about 103 times bigger for Ttce2 than for a classical magneto- 
strictive material as Ni. 

Table 1. Elastic and magneto-elastic properties a), [2]. 

TbFe, ElFe, YF«, TbFe, Ni 

Brim/tec) 3940 4120 4340 4230 _ 
e,(m/»ec) 1980 2180 2720 2320 - 
PU'em1) 9.1 9.7 6.7 9.4 - 
£ x 10"" 9.4 12.1 12.7 13.1 21" 
(newton/m1) 
A,xl<r 1750 -229 - 693 -31" 
£A. x 10-' 17 2.8 - 9 0.7 
(newton/m1) 
E»;/2x|0-' 14} 3.2 - 32 0.1 
Üoule/m') 

•'Clark eiil. (1973b). 
""Nickel", The InurntiouJ Nickel Co., Inc., (W51). 
"Went <!«!). 
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As stated earlier, the giant magnetostriction of RFe2 alloys 
useful as high-power elements in transducers. One of the most 

? 

makes them 
very useful as high-power elements in transducers. One of the most prominent 
parameters with respect to such transducers is the so-called magneto-mechani- 
cal coupling factor which expresses the fraction of magnetic energy which is 
converted into elastic energy or vice versa. The diagram in Figure 1 shows 
the coupling factor, kj3, as function of the field applied. As is seen the 
coupling factor has a maximum between 100 and 500 Oe (8 - 40 kA/m). 

MIM        »M  IBM 
MAS R&D (0e) 

Figure 1. Coupling factor k33, Q factor and relative permeability pr  of 
Tb0.3DyP.7Fe2 as 8 funct,ion of bias field. Qz, the quality factor 
at constant current drive includes both mechanical and electrical 
losses whereas Qy, the quality factor at constant voltage drive, 
includes only mechanical losses, (taken from Savage et al. 1975), 
[2]. 

In this diagram also the permeability, (ir,  should be considered. As is 
seen, the permeability is low which in certain applications must be conside- 
red as beneficial since the inductance in the driving coil then will be small 
and its performance at high frequencies is improved. 

Finally, some operational curves for Terfenol-D are given in Figure 2. 
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Figure 2. Magneto-elastic strain as a function of applied field at various 
static stresses for Tbn>27Dyn>73Fe1 >g5, [A). 

The prestress is varied up to 48 MPa but this value should not be con- 
sidered as an upper limit [3], A prestress is advantageous and necessary in 
most applications and can be achieved mechanically, co-linear with the opera- 
tional direction. Alternatively, the prestress can be obtained by means of a 
secondary magnetic field perpendicular to the exciting field so that tne 
lattice is end-positioned [A], 

A refitted branch worth mentioning in this context is amorphous magnetic 
alloy called Metglas [2], [5]. This material is featured by an extremely 
large magneto-mechanical coupling. Thereby high sensitivity transducers for 
the registration of stress, strains and the like can be made. The sensitivity 
can be compared with the sensitivity of ordinary strain gauges and is found 
to be of the order 103 better. Metglas is made as film-like ribbons but can 
also be sputtered on a specific base plate. 

Accordingly there are several reasons to further investigate the possi- 
bilities opened by the giant magnetostrictive materials with respect to app- 
lications in structural acoustics. 

MOMENT EXCITATION 

lems 
A survey of the pertinent literature reveals four main types of prob- 
1n experimentally obtaining moment mobilities, [1): 

a) The physical size of the excitaiton arrangement, 
b) the fastening of the excitation ar-angement, 
c) registration of the excitation, 
d) numerical procedure for deriving the moment mobility from measured, 

raw data. 

These types of difficulties all are more or less intimately related to 
the way of excitation. Moreover, the literature survey points at the circum- 
stance that a direct measurement technique has not been paid as much interest 
as variations on indirec • techniques. Hereby, it seems concludable that in 
order to minimise the numerical problems a direct technique is desirable. 
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The fact that new materials have opened alternative means for excita- 
tion whereby, at the same time, the physical dimensions may be reduced also 
has made the direct technique more feasible. Therefore the experimental work 
carried out has been focussed on direct techniques. 

The first attempt in the direction of a moment exciter is sketched in 
Figure 3, [6]. 

blocking mass 

shroud   screws 

giant magneto- 
strictive  rods 

yoke 

force transducers 

indenter 

Figure 3. Sketch of prototype to a moment exciter. 

In this exciter two Terfenol-D rods of length 50 mm were used. The 
coils were made up of ü00 turns, 1 mm copper wire. An aligned precompression 
was established by means of shroud screw-like arrangements. 

To obtain a modulated magnetic field for the magnetostrictive rods, a 
dc-current was added to an amplified ac-current in the secondary coil of the 
amplifier. Both the current and the voltage were controlled so that the 
strain was nominally equal for both the rods. Two ordinary force transducers 
registered the forces acting on the measurement object via a circular inden- 
ter and two miniature accelerometers registered the motion. 

Both the signals quantifying the force couple and the accelerations 
were fed to summation/subtraction-devices leaving two signals, one propor- 
tional to the moment and the other proportions! to the angular acceleration. 
In turn, the transfer function was derived by means of a two-channel FFT- 
analyzer. 

The experience gained from this prototype pointed at problems in reach- 
ing the correct operational point. Furthermore, some mechanical deficiances 
were recognised. 

A serious drawback of using a dc-current to establish the necessary 
magnetic bias field is the heatinp of the coils. The improvements of the 
prototype therefore included permanent magnets and a common prestress 
arrangement cf. Figure 4. 
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— compression screw 

— permanent magnet 

seismic mass 

giant magneto- 
strictive rods 

indenter 

Figure 4. Revised version of prototype to a moment exciter. 

Another difference between the second and the first version is the 
exclusion of the force transducer. This introduced the necessity of 4-channel 
measurement, cf. [1]. 

A few results from the test with the second version of the moment 
exciter are shown in Figures 5 through 8. 
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Figure 5. Magnitude and phase of the complex ratio of the accelerations at 
the unloaded indenter for the two positions opposite to the 
magnetostrictive rods. 
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Figure fl. Moment mobility for an aluminium plate (1 mm thickness) embedded in 
sand. Measured { ) and calculated with Ideal moment (—) and 
rotatory (-•-•-) excitation. 

A comparison of the results in Figures 5 and 6 reveals* a small diffe- 
rence in the performance between the loaded and the unloaded exciter. Hence 
the stability is not satisfactory. From Figure 7 it is seen that despite a 
manual tuning of the exe'ter, the suppression of the translatory component is 
not sufficient. It therefore seems appropriate to include magnetostrictive 
strain gauges on the Terfenol rods to monitor their operational conditions. 
Such an inclusion also make a feedback control feasible. 

Finally, the measured moment mobility in Figure 8 refers to a thin 
aluminium plate embedded in sand. The results exhibit the, essentially stiff- 
ness governed, behaviour of a moment excited plate. The application of the 
excitation at the plate surface introduces an ambicu'lty with respect to the 
actual excitation condition. This is also reflectec' in the results whereby 
these are to be compared with the theoretical results for ideal moment and 
rotational excitations. Such a comparison moreover points at the necessity of 
a minimum lever. 
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4.   CONCLUDING REMARKS 

This study indicates that giant magnetostrictive devices may be useful 
in experimental structural acoustics. Their limited physical size combined 
with the comparatively large mechanical output make them attractive for 
experimental work. For the specific case of direct moment excitation these 
features are essential if the desirable range of Helmholtz numbers is wide. 
The inherent non-linearity in the operational characteristics of a giant 
magnetostrictive sample introduces disadvantages with respect to the managea- 
bility. Hereby the control of the mechanical and magnetic parameters is of 
vital importance if a decoupling of excitation components is to be achieved. 
Th» results obtained must be judged promising and further development of the 
device for moment excitation seems appropriate. It can be concluded that the 
control of the actual strain of the rods is desirable whereby an inclusion of 
Mttglas ribbons, fastened on  the rods realises a suitable means. In such a 
way a complete feed-back control can be established. The very high degree of 
similarity of the magnetostrictiva rods substantially improves the possibi- 
lity to achieve a satisfactory performance of multi-rod arrangements. 

Finally, the influence of the excitation condition with respect to 
moment mobility should be emphasized. 
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RECENT ADVANCES IN STRUCTURAL DAMPING 

David I.G. Jones 
Materials Laboratory, AFWAL/MLLN 
Wriaht-Patterson AFB, Ohio 45433 

INTRODUCTION 

It is quite impossible to describe the current state-of-the-art in 
structural damping in a few short pages. Of necessity, therefore, this will 
be a brief, selective, even biased, survey of those developments which seem 
of most significance in the near future, both with respect to technical 
questions and potential applications. Current work in the damping area 
spans a very wide variety of activities, ranging from very abtruse, 
scientific, questions which nevertheless impact all other activities, to the 
very complex issues involvea in the application of the technology for noise 
and vibration control, which takes one into economic, management, national 
policy, production and other arenas. The scientific questions which 
continue to abound may often be addressed by individuals and small research 
groups with the expenditure of modest resources, but the application 
questions will involve large programs, large organizations, 
government/industry cooperation etc. Both types of activity, however, are 
equally important in their respective ways, and each affects the other quite 
strongly. This paper will review the state-of-the-art in each of these 
areas, including damping of built-up structures, friction damping, behavior 
of viscoelastic damping materials, and applications in the automotive, 
aerospace and engine areas. 

2. STATUS OF THE TECHNOLOGY BASE 

2.1. Damping in Built-Up Structures 

Twentieth century technology continues to depend on the construction of 
a wide variety of structural systems for specific purposes, and the general 
changes which have taken place in the technology during the past fifty years 
are  fewer than might be expected. For example, aircraft are still made 
using skin-stringer-frame types of structure, automobile engines and 
transmissions have not changed in basic concept for even longer, and future 
space structures will use truss-like elements not unlike those used for well 
over a century in bridges and towers. What has changed, in many instances, 
is the requirements set upon these structures. Aircraft and automotive 
structures must serve, more than ever before, to separate passengers from 
noise sources, for example. The stabilization, vibration controi and 
specific weight requirements which may be placed on some space-truss 
structures would have horrified the Nineteenth Century bridge builders. So 
we might ask, what developments have taken place with respect to our 
understanding of damping of built-up structures? The answer seems, 
surprisingly, or perhaps not, very little! Structures may have changed in 
some aspects of detail design, materials may have changed, as have 
requirements, but it would be difficult to find any recent studies which 
have advanced our ability to predict joint damping better than Ungar [1,2] 
did or to predict the response of built-up jointed structures better than 
was achieved by Mead [3,4], Lin [5] and others, in the 1960's. The only 
major change has been in computer power, software including finite element 
codes, test instrumentation and electronic analyzers. The'difficulty 
remains in the modelling of the damping, and in the variability of 
mar«'ru-t,r".i structures, even when the process is automated. 
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2.1.1. Damping of Space and Aircraft Structures 

Graphic Illustration of the still remaining variability of structural 
damping in spacecraft structures can be found in the current literature. 
Figure'l summarizes the results of several investigations [6-8], in the form 
of plots of modal loss factor versus frequency. The data represents 
measured modal loss factors for low order modes on several space and 
aircraft structures, at low stress levels in air. Scatter is seen to be 
very large, and is quite reminiscent of scatter reported in earlier years 
for similar structures. The graph does not illustrate the effects of vacuum 
or of higher order modes, and should therefore be used with caution. 
Without doubt, the Increasing use of composite materials will lead to 
changes of damping levels, but it does not seem likely that modal loss 
factors will be any more predictable and we may have to live with this 
unpredictability for a long time to come. Deliberate efforts to increase the 
damping by use of additive polymeric damping materials, or by deliberately 
introducing damping into some composite members by increasing material 
damping of matrix or fibers, may reduce the variability to some degree, as 
well as provide higher baseline levels. Figure 2 shows the results of some 
analytical and experimental investigations of the effect of composite ply 
orientation on stiffness and damping of specimens representative to some 
degree of a single truss member [9]. It is seen that it is difficult to 
achieve the highest levels of stiffness and damping at the same orientation, 
at least for the case where the major damping contribution is from the 
matrix. Other investigators have drawn similar conclusions [10]. In the 
final analysis, it Is probably reasonable to conclude that adequate damping 
will exist, in projected space structures, to meet baseline active control 
needs in the low order modes, but that higher order modes must be provided 
with additional passive damping in order to reduce excessive demands on the 
active control systems, especially with respect to minimization of post 
maneuver/disturbance stabilization times and to reduce the number of 
sensors/actuators needed. 
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2.1.2. Friction damping 

Another type of damping which has found some applications, for example 
in jet engine turbine blades, is sliding friction damping. Some improvement 
in understanding this type of highly nonlinear damping mechanism have taken 
place in the past decade or so [11-20], In simplified systems, in 
particular, where one or  two-degree of freedom models have been used, as in 
Fig 3, analysis and test data have correlated fairly well, as illustrated 1n 
Figure 4 [19,20], for example. In these investigations, simple Coulomb 
friction laws were ubeu, for which the friction force is independent of 
velocity except with respect to direction and depends only on a "coefficient 
of friction" and an overall normal load, corresponding to a "macroslip" 
model. While this "law" 1s only of limited validity, little data on more 
realistic laws is available, and this limits the value of more precise 
analytical techniques, such as finite element methods, which have been used 
in efforts to develop "microsllp" models as opposed to the "macroslip" 
models [15]. Approaches which have been used in analysis of friction 
damping include: 

(1) Simple one degree of freedom model [12,13] 
(ii) Two degree of freedom model [13,14] 
(iii) Receptance/Impedance methods [20] 
(iv) Component mode synthesis [18] 
(v) Finite element approaches [15] 
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These approaches have been used for investigation of response behavior of 
single structural elements, such as turbine blades, and for larger, coupled, 
systems such as multiple blade-disk structures. While much work remains to 
be done, a good qualitative understanding of "macros!ip" features of 
frictional damping behavicr of quite complicated structures seems to have 
been achieved, along with some progress toward understanding "microslip" 
behavior. 

2.2 Material Damping 

A number of interesting developments have taken place in the area cf 
polymeric viscoelestic damping materials, which in turn have facilitated 
major applications. The advances were generally evolutionary, building on 
work going back as far as the 1950's, rather than revolutionary, but they 
took place nevertheless. Important basic advances include (a) an increased 
variety of commercial sources [21-37, for example], (b) a wider variety of 
commercially available test systems [38-41, for example], (c) improved 
approaches for characterizing the complex modulus properties as a function 
of frequency and temperature [42-44], (d) increased availability of complex 
modulus data [45-48] and (e) improved understanding of viscoelastic material 
dynamic behavior, including impulse response [49]. On the other hand, many 
questions raised in the past have not yet been fully clarified, including: 
(a) determination of *.he variation of Poisson's ratio with frequency and 
temperature, and whether it is a real or a complex number, (b) how does the 
relationship between the imaginary and real parts of the complex modulus 
relate to our understanding of material characteristics, as opposed to a 
limited current use for identifying erroneous data, (c) how best to 
determine shift factors in temperature-frequency superposition. 

2.2.1. Characterization of Polymeric Material Damping Behavior 

The complex modulus model of viscoelastic material damping behavior has 
gained increased acceptance in recent years. It has become more widely 
accepted that, while the model is formulated in the frequency domain, 
nevertheless time domain problems can be addressed by inverse Fourier 
Transforms provided that the variation of properties with frequency are 
allowed for over a sufficiently wide range, usually not less than four or 
five decades [42,49]. The literature on complex modulus behavior of 
polymeric materials, ranging in style from abstruse scientific studies of 
carefully characterized pure polymers to engineering evaluations of 
commercial polymeric damping materials, has continued to grow over the past 
decades and shows no sign of abating. The frequency or time-temperature 
superposition approach is still widely accepted [42,50], and used for 
complex modulus behavior data analysis, though some autnors have raised 
questions regarding its full validity [51], For engineering purposes, the 
errors involved do not seem to be very important in view of the usual 
scatter of measured data, and only unler rather exceptional conditions are 
the discrepancies sufficiently great to be even of scientific importance. 

Figure 5 illustrates a plot of shear modulus and loss factor versus 
reduced frequency for a typical polymeric material [48]. The data was 
obtained by several measurement methods, including the resonant beam, 
impedance and stress relaxation techniques. While ehe agreement of the 
various methods is generally good, and the scatter is apparently quite low, 
it is seen that the dynamic range of the modulus values, in particular, is 
enormous, being about five decades (100 db). This means that differences in 
the values of the extremal moduli, at very high frequencies and at very low 
frequencies, even as large as 50 percent, are barely perceptible. The 
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corresponding shift factors, illustrated in Figure 6 versus 1/T, are equally 
susceptible to scatter and cannot usually be estimated ti  within better than 
about half a decade (about 10 db) overall. This too means that selection of 
appropriate analytical functions to represent the shift factor versus 
temperature relationship are  subject to much uncertainty. Again, the 
scatter is often greater than the systematic differences being sought. 
While claims are made from time to time that better accuracy (lower scatter) 
can be achieved by particular equipment and methods, any efforts to conduct 
repeated tests on duplicate specimens, even from the same batch of material, 
tend to bring back the scatter. This plot represents a fundamental 
relationship between loss factor and modulus for any given polymer, and 
scatter is indicative of errors. Another question which has not been 
resolved with complete success is the measurement of Poisson's ratio over a 
wide range of frequencies and temperatures. Figure 8, for example, shows a 
plot of shear modulus, Young's modulus and loss factor versus reduced 
frequency for the same typical acrylic polymer, again based on several 
measurement techniques. Poisson's ratio can be determined from the 
relationship: 

" =  E*/2G*- 1 (1) 

where E is the complex Young's modulus and G is the complex Shear modulus. 
Figure 7 seems to indicate that v  is a real number and varies from about 
0.35 at the high frequency extemity to 0.50 at the low frequency extremity, 
but the scatter makes it difficult to establish this with any degree of 
confidence. 

Figures 9 and 10 show two types of nomogram designed to graphically 
display engineering damping properties. The first (Reduced Temperature 
Nomogram) is a plot of modulus and loss factor versus reduced frequency with 
additional scales for frequency and temperature superimposed, and is the 
current approach being considered for US National standards and 
International Standards [50,52]. The second is a plot of loss factor versus 
modulus, with frequency and temperature scales added, and with the reduced 
frequency eliminated [53]. Both plots have advantages and disadvantages, 
and are not equally useful for all purposes. The Reduced Temperature 
Nomogram is often used, currently, for displaying engineering damping data 
for a wide variety of commercial damping materials, allowing users to 
quickly and easily s:an a variety of materials in search of particular 
requirements. 

2.2.2 Response of viscoelasticaily Damped Systems 

For prediction of structural response in the frequency domain, 
analytical techniques for elastic systems may be translated into those for 
viscoelastic systems by using the Correspondence principle i.e. replacing 
real elastic moduli by the corresponding complex moduli whenever 
viscoelastic materials are modelled, not forgetting to allow for the 
variation of the moduli and loss factors with frequency and temperature. 
Thir means that functions of complex variables replace functions of real 
variables, and in particular real matrix equations are replaced by those 
having some complex terms. This increases the order of many problems, but 
is of course a necessary step. One simplification which may be used to 
minimize this problem is the modal strain energy approach [54], in which the 
problems are initially solved for the elastic system, strain energies in 
each mode of the corresponding normal mode solution are  computed and the 
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modal loss factors of the damped system are determined by the simple 
relationship: 

Uni (2) ni 

where »?„,is the loss factor of the ith viscoelastic element (in a finite 
element analysis), U„i is the strain energy in that element, and vn 

is the modal loss factor in the nth mode. This relationship is valid 
only when the damping does not materially alter the mode shapes, which is 
often the case in engineering problems. 

In transient response situations, the problem may be solved by working 
first 1n the frequency domain, then using the Fourier Transform to return to 
the time domain. This usally has to be accomplished numerically, and the 
frequency dependence of the viscoelastic materials must be allowed for over 
a very wide frequency range, usually five decades or more 1n magnitude. The 
old nemesis of viscoelastic damping, namely the widely held belief that the 
complex modulus model is invalid because of non-casuality, arose because 
such non-casuality does indeed occur for "hysteretic" damping for which 
modulus and loss factor are constant [49, 55]. As soon as the real material 
variation with frequency is allowed for, however, the problem vanishes, as 
illustrated in Figures 11 and 12 [49]. The problem has led to searches for 
alternate approaches, however, and has been a healthy stimulant for further 
research. One outcome of such research has been the Fractional derivative 
model, which seeks to develop a relationship between stress and strain in 
the time domain through series of fractional derivatives of stress and 
strain [5G]. This allows Laplace transforms to be used for time domain 
problems. 

While finite element codes have now been developed to the point where 
prediction of the effect of selected damping treatments on dynamic response 
is not, in principle, a difficult problem, the analyses conducted many years 
ago fqr very idealized problems have not been lost, but have evolved into 
useful, simple, approaches for making initial, "back of the envelope", 
estimates of damping in complicated structures, as a prelude to more exact 
analysis. For example, the analysis of Ross, Kerwin and Ungar [57] for a 
constrained layer treatment on a pinned-pinned beam now forms the basis for 
simple computer codes to determine initial estimates of the effectiveness of 
layered damping treatments on complicated structures and for usually 
sufficiently accurate determinations of damping material complex modulus 
properties from tests on sandwich cantilever beams [42]. 

2.3 Damping/Dynamic Response Issues 

Damping is a measure of the energy dissipation characteristics of 
polymeric material behavior. It is also a measure of the linear parameter 
controlling the peak amplitude of each component of the modal response of 
structures having a unique relationship between the damping, stiffness and 
mass matrices, known as proportional damping. However, in'many complicated 
structures, the mechanisms of energy dissipation may not be distributed in 
such a mathematically convenient manner, but may be located at arbitrary 
areas so that at resonance all points of the structure do not move perfectly 
in or out of phase i.e. the normal modes become complex. TMs behavior is 
now well recognized as a consequence of non-proportional damping and is no 
more difficult to analyze, at least in principle, than proportional damping 
in finite element analysis [58], In most aerospace structures, where the 
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damping sources are well distributed, obscure in mechanism, and not. unduly 
great, very little advantage is gained by treating the damping as being 
non-proportional. Therefore, finite element analyses or experimental 
investigations often treat the damping as a number to be defined 
arbitrarily, or by measurement, for each term of the modal expansion. Where 
damping is deliberately introduced by viscoelastic material configurations 
in properly selected areas, this approach is still profitable, and forms the 
basis of the well known Modal Strain Energy Method [54], 

In the area of experimental modal analysis, compliance measurements 
conducted by a wide variety of commercial test systems, using various 
excitation methods, including impact, random, digital sine -sweep etc., and 
a wide variety of methods for identifying the modal parameters have been 
developed and used [59]. These identifications are very useful for 
providing insight into uhe contribution of each mode, complex or real, in 
the response of the structure, and may provide an experienced mechanical 
engineer with useful insight for developing structural modifications to 
reduce the severity of specific vibrational problems encountered in real 
engineering systems. 

The problem of identifying useful structural modifications which change 
modal characteristics in a user selectable manner, or  of identifying the 
physical characteristics of specific parts of a system from dynamic response 
measurements is not so readily addressable. This is because modets have to 
be conceived and the parameters adjusted until the predicted and measured 
responses agree, and this may require many iterations before success is 
achieved. The use of identified finite modal expansions, for which modes, 
frequencies, modal masses and loss factors have been determined during modal 
analysis, to create compliance matrices of order equal to the number of 
modes may be more fruitful in the future. The inversion of the compliance 
matrices to create dynamic stiffness (impedance type) matrices can then lead 
to rational discrete models of the measured system which may or may not 
correlate well with actual physical characteristics. Dynamic stiffness 
models which correlate well with the corresponding physical system have been 
achieved for rotor-benring systems, and have led to measurements of rotor 
and bearing parameters which were extremely difficult to measure in any 
other way [60]. The dynamic stiffness approach also provides an effective 
method for identifying system modifications necessary to achieve specific, 
user selected, chanaes in modal characteristics of a complicated structure 
[61]. 

3. APPLICATIONS OF DAMPING 

> 

t 

Many significant applications of damping technology have been 
engineered in the past ten years or so, and many more are beinq planned for 
the future. It is in this area, in fact, that by far the most has been 
accomplished; indeed the point has been reached where a design guide [45], a 
major conference proceedings [62] and a textbook [42] have recently been 
published, representing a summary of the state of the art with respect to 
design of damping treatments. 

3.1 Aerospace Applications 

Applications of damping for control of vibrations in printed circuit 
boards have been developed [63], and in the future we can expect the damping 
to be incorporated much more integrally into the manufacturing process. 
Damping has also been evaluated and applied for cabin noise control in many 
aircraft [64, 65]. The gains to be made in this area in the future will 
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depend critically on how well damping can be integrated into the design 
process, since the use of damping in an additive sense is very inefficient 
without also controlling the mass and stiffness characteristics of the 
system. 

3.2 Space Applications 

The PACOSS [66] and RELSAT [67] programs have initiated the process of 
designing and space-qualifying viscoelastic damping systems for vibration 
control in major space structures. This technology will be particularly 
necessary for control of jitter in SDI systems and in optical 
inter-satellite communications systems. 

Some experiments and analyses have already begun to quantify the 
requirements. Figure 13, for example, illustrates the distortion 
requirements for a large mirror system, while Figure 14 shows the effect on 
transfer functions and response time history of a change of modal loss 
factors from 0.02 to 0.20 [68]. Figure 15 illustrates the effectiveness of 
passive damping in easing the requirements on an active control system [69]. 
Several other important studies have paved the way for design of effective 
space-qualified damping systems [6,7,70-73]. Much work remains to be done. 
For example, the viscoelastic materials used will have to remain in space 
for several years, so outgassing behavior in vacuum will need to be 
understood and quantified better than at present. 

3.3 Gas Turbine Engines 

Several applications in Gas Turbine engines have been developed in the 
past several years [42,74-76]. These have been ad-hoc, additive, treatments 
developed in response to specific problems which have arisen during the life 
of particular engines in the US Air Force inventory. The treatments have 
often been expensive to develop and apply, since they had to work without 
modifying the components suffering the vibrational problems. Nevertheless, 
the cost savings achieved by eliminating these problems have been 
impressive. In most cases, the 'bottom line' has been the driver, but 
flight safety has gained in the process. 

3.4 Automotive 

Possibly the greatest advances have been made in this area, because the 
damping has had to be applied sparingly, for control of internal and 
external engine noise, at extremely low cost, in order to be accepted even 
to a degree. Applications in valve covers have been effective, particularly 
when combined with isolation [77-81]. Steel laminates are being produced, 
and pressed into a number of body parts [82-84]. 

CONCLUSIONS 

In the short time and few pages available, the author has attempted to 
give a brief, selective and not unbiased summary of the current state of the 
art in Structural Damping. Clearly this represents only a sampling, and 
many times the number of references could easily neve been added given the 
space. What we see, in essence, is a very significant maturing of the area, 
both with respect to the manner in which old questions have been answered, 
solved or by-passed, and with respect to the widespread efforts now being 
made to apply damping for the solution of relevant engineering problems and 
the critical, yet positive, "can-do", approach being adopted in a large 
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number of these efforts. This is a major change from the situation even ten 
years ago, when the response one might have received to a suggestion that 
damping be used to solve a relevant engineering problem would often be a 
statement such as "damping was tried in 1964 and it didn't work" or "I won't 
put any of that stuff in my system". Now we see greater understanding of 
the behavior of damping materials, careful balancing of the pro's and con's 
for each application, and a healthy concern for cost-benefit ratios. 
Hopefully, this will be the tone for the future, and if that remains the 
case, it might well be said that Damping has come of age at last. 
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ABSTRACT 

Described in this paper is an investigation of the vibration damping behavior of 
Polyurethane foams of the type normally used to control airborne sound. From measure- 
ments initially performed to determine the foam's Young's and shear modulus, it was 
found that when the foam was applied in deep layers to one side of a metal beam or used as 
the core between two adjacent metal beams high damping can be produced over extended 
frequency ranges. This effect appears to result from the finite depth of the foam layer and 
thus is not accounted for by most existing theories which require the depth of the damping 
layer to be thin compared with the flexural wavelength of the structure. It is known that in 
general two wave types (longitudinal and transverse) propagate simultaneously in damping 
media. Conventional "thin layer" theories generally assume that only one wave type exists 
depending on the nature of the beam construction. To account for the observed damping 
effect a theory has been developed which is applicable to beams with damping layers of 
unrestricted depth and allows for the existence of both longitudinal and transverse wave 
types simultaneously. This theory models the damping layer as a two-dimensional duct-like 
acoustical field. Calculations made with this approach have indicated that layers of elastic 
porous materials may be used in two roles: to control structural vibrations while simultane- 
ously reducing airborne noise. 

1. INTRODUCTION AND EXPERIMENTAL PROCEDURE 

The demand for lightweight damping materials such as noise control foam has resulted 
in the use of layer thicknesses from 0.006m to more than 0.025m to produce efficient 
damping [1]. In a previous paper [2] the dynamic properties of this elastic pnrous material 
were determined by means of measurements in conjunction with laminated thin beam 
theories as derived by Oberst [3,4] and Ross, Kerwin and Ungar [5], From experiments 
performed using both beams with a one-sided foam layer and sandwich configurations it has 
been found that the vibrational behavior and damping effect of these attached layers are 
quite different from those observed for conventional damping treatments (see Figures 1 and 
2, illustrating the transfer functions of a free-free 2.0m long beam (0.0017m thick and 
0.038m wide) with a 0.025m deep foam layer attached to one side of it and that of a free- 
free 2.0m sandwich beam with a 0.006m deep foam coie held between identical steel beams 
(as above), respectively). In a broad frequency range a substantial reduction in vibration 
amplitudes is observed and the foam's damping effect may be considered as equivalent to 
the damping effect caused by ordinary, relatively heavy, damping coatings such as 
polyvinyl chloride materials [2]. 
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However, none of the above-mentioned theories [3-5] can be appropriately used to 
predict the observed vibrational behavior of these beam structures with foam treatments, 
since they require the laminated beam to behave like a homogeneous structure. The 
experimental investigation of the flexural motion of the two external steel beams in the 
sandwich configuration has shown that they experience relative transverse motion over the 
highly damped frequency ranges and consequently the composite beam cannot be treated as 
a homogeneous beam when this feature is observed. In Figure 3 are shown the transfer 
functions of tha 2.0m sandwich beam with 0.006m foam core; these measurements were 
made using an end-mounted transverse point excitation force (shaker) mounted to one side 
of the sandwich (the front) and an accelerometer mounted alternately on the front and back 
beams of the sandwich. Figure 4 shows the ratio of the magnitudes of these transfer 
functions. It is clear that at frequencies above 600 Hz the degree of relative motion between 
the constraining beams begins to increase thus confirming that the composite beam is not 
behaving like a homogeneous beam. 

The experiments performed on the sandwich beams have further indicated that the 
damping process due to the foam core involves more complicated actions than previously 
assumed. The phenomena observed (i.e., conventional resonant behavior in the lower and 
higher frequency range, while anomalously high damping occurs between 500 Hz and 1000 
Hz (Figure 2)) and the need for a theory which allows the depth of the attached damping 
layer to be unrestricted have led to the derivations of a "deep layer theory" which will be 
described in the following sections. 

2. DEEP LAYER THEORY 

2.1 Background 

The damping performance of the foam layer attached to a metal beam is quantified by 
predicting the point and transfer accelerances of the composite structure. The steel base 
beam is assumed to conform to the Euler-Bemoulli model: i.e., the equation governing 
transverse displacement is fourth order and rotary inertia effects are neglected. The foam 
damping layer is modeled as a two-dimensional duct-like acoustical wave field which is 
coupled to the base beam via distributed stress forcing terms and velocity continuity 
conditions. The presence of two different wave types (longitudinal and transverse) 
propagating simultaneously in the foam damping medium is accounted for. Based on the 
expansion theorem for continuous functions (similar to a Fourier series expansion) the 
beam's eigenfunctions, obtained from a modal solution approach, are used to expand the 
acoustical field parameters as necessary to apply boundary conditions. The application of 
boundary conditions at the beam's free ends, and continuity conditions at the interfaces, 
results in an infinite set of equations which can be solved for the displacement coefficients 
of the base beam on a mode by mode basis by making use of the eigenfunctions' 
orthogonality. 

The theory is developed by deriving an "acoustical" model first, which accounts for 
longitudinal waves traveling in the damping layer only. The damping material is assumed 
to possess no significant shear stiffness and thus exhibits the properties of an ideal gas or 
liquid. Calculations made with this model will show that it is feasible to model the 
unconstrained, deep foam layer, as an acoustical medium in the lower frequency range. 
Then the general model in which in addition to the longitudinal waves transverse wave 
propagation is allowed will be described briefly. In this approach the damping layer is 
modeled as a linear elastic compressible solid medium. 
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2.2 Acoustical Model 

As the damping layer in this model is treated as an ideal two-dimensional duct-like 
acoustical medium, no tangential stresses exist and the traveling waves are purely 
longitudinal. All field variables are assumed constant across the width of the beam, an 
assumption which is valid so long as the width of the beam is very much less than its length. 
The governing equation which describes the two-dimensional acoustical field may be 
expressed in the form of the linearized wave equation in terms of the acoustic pressure, p: 
i.e., 

V2p + k,2p = 0, (1) 

where V is the gradient operator and k, is the longitudinal wave number. For pure 
longitudinal waves traveling in the acoustical field the propagation speed, c1? is related to the 
material properties (bulk modulus, B0, and mass density, p) by C] = (fijp)i/l = co/kj, with co 
being the circular frequency. The classical approach to the solution of equation (1) is in 
terms of a scalar velocity potential, O, from which the pressure, p, and the particle velocity, 
% are obtained as: 

p=pir=JC0p* (2) 

V, = - V <D. (3) 

An appropriate solution for O is: 

<D = (A e -Kx + B ejkuX) e** + (C e~jkuX + D e*"*) e**3', (4) 

where kk and kly are the components of the wave number, k,: i.e., k{ = y]klx
2+k]y

2. The 
constants A, B, C and D are determined by the boundary conditions. As the beam structure 
is assumed to be free at both ends, pressure release boundary conditions apply at x=0 and 
x=l G being the length of the beam): i.e., 

p(x,y)--jcopC)(x,y) = 0 atx=Oandx=l. (5) 

Note that this assumption implies that sound radiation from the core material is neglected. 
After substitution of (4) into (5) one obtains the characteristic equation 

sin(kIxl) = 0, (6) 

yielding, kixm = mit/l with n = 1,2,3... Consequently there are an infinite number of 
longitudinal wave numbers, k; = \(mn/\)2 + fcj2 J , and the velocity potential, 4>, may be 
expressed in terms of an infinite sum over all contributing acoustical eigenfunctions: i.e., 

<P = -2j £ sin(klxmx)(Ame-jk,-y + Cm^). (7) 
m=l 

In the case of a sandwich beam the two further boundary conditions necessary to determine 
Am and Cm are found from the force coupling conditions and velocity continuity 
requirements at the interfaces, y=0 and y=h2 (with h2 being the thickness of the damping 
layer). For the unconstrained damping layer, a further pressure release condition at the free 
surface (y=h2) and a normal velocity continuity condition at the interface with the base 
beam (y=0) are required. They are, respectively: 
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p(x,y=h2) = jcop 0(y=h2) = 0 (8) 

jcow(x)=vly(x,y=0). (9) 

Here, w(x) denotes the transverse displacement of the beam, white viy is the normal 
component of the acoustic velocity defined in equation (3): i.e., vly = - d<D/9y. The damping 
medium is coupled to the beam's flexure by a distributed normal forcing term. This 
function, due to the pressure in the acoustical medium, q(x) (see Figure 5), is obtained by 
multiplying the pressure, p, by the beam's width, b: i.e., 

q(x) = pb = jO)pb<t>. (10) 

The differential equation which describes the vibrational response of the laminated beam is 
then derived from the fourth order Euler-Bernoulli beam equation resulting in: 

d2  /c, 32w(x) . , „ k d2w(x)     ,, .      . . .... —Y(E1       V
2    ) + pbA    -*    = f(x)-q(x). (11) 

Here E is the Young's modulus, I is the moment of inertia, pb is the mass density of the 
beam material and A is its cross-sectional area. Here f(x) represents the point excitation 
force: i.e., f(x) = F08(x-x0). To solve this equation on a mode by mode basis all 
displacement and forcing functions are expanded in terms of the beam's eigenfunctions, 
Tn(x), restricting the number of vibration modes to N: i.e., 

w(x)=£Wnrn(x), (12) 
n=l 

N f f(x) = £ Fn rn(x) with Fn = J f(x)rn(x) dx, (13) 
n=l 0 

N 1 

q(x) = I Q„ Tn(x) with (i, = J q(x)rn(x) dx. (14) 
n=l 0 

Thus, equation (11) may be written as: 

£ (EI^-pbAo)2) W„rn(x) = I Fnrn(x) - £ QT». (15) 
n=l n=l n=l 

Here Xn is the n* eigenvalue of the free-free beam found from a modal solution approach; co 
is again the circular frequency. In a similar manner equation (0) becomes: 

j©£Wnrn(x)=£Vlyrn(x) (i6) 

n=l n=l 

where: 
l l      -. 

Vly = Jvlyrn(x)dx -/(-■?■) rn(x)dx . (17) 
o o   dv 

After substitution of the corresponding expression for <I>, and requiring that the number of 
acoustical eigenfunctions (equation 7) and modes of vibrations, N, be the same, equations 
(15) and (16) may be written in form of a square matrix from which the displacement 
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coefficients of the base beam, Wn, may be obtained and the transfer function of the 
composite structure can be predicted. Note that when a constrained damping layer is treated 
in this way the pressure release boundary condition at y=h2, equation (8) must be replaced 
by velocity continuity and forte coupling terms. The displacement of the constraining metal 
beam is also described by a fourth order partial differential equation similar to equation 
(11), and thus the order of the matrix equation to be solved doubles. 

Equations (15) and (16) were programmed on a VAX 11/780. Calculations made with 
this model yielded an improved agreement with experimental results when compared with 
predictions of the Oberst theory. The transfer function of a 1.0m long beam with a 0.025m 
deep foam layer was predicted using the foam's material properties determined as described 
in reference [2]: i.e., a Young's modulus of E^ = 8.5xlCr Nm""2, a loss factor of 0.16 and a 
mass density of 27 kgtrf J. As the foam is known to possess some shear stiffness the bulk 
modulus, B„, in the expression for q was replaced by the longitudinal stiffness, D: i.e, 
c1 = (D/p)',4 = [B0(l-^)/(l-2n)(l+n)]1'4 with n = 0.3 being the foam's Poisson's ratio [61. 
Figure 6 shows the predicted transfer function which agrt ss well in characteristic with the 
corresponding experimental data in the frequency range below 800 Hz (Figure 7): i.e., it 
accurately predicts that the presence of a foam layer causes the beam eigenfrequencies to be 
shifted to lower frequencies. In contrast, Figure 8 demonstrates that the approach based on 
the conventional Euler-Bernoulli beam equation in conjunction with the modified bending 
stiffness expression (to account for the individual layer properties as derived by Oberst 
[3,4]) fails to predict the observed shift in eigenfrequencies correctly. The lack of 
agreement between the modeled results and the experimental observations in the higher 
frequency range and for transfer functions of sandwich configurations (data not shown here) 
is not unexpected as any shear actions and thus transverse wave propagation are not 
accounted for in the acoustical model. 

2.3 General Model 

The approach described here has been extended to a general model in which the 
damping layer is allowed to support longitudinal and transverse wave propagation 
simultaneously. However, its development has not been completed at the present time and 
therefore calculations with this model have not yet been performed. 

The damping layer in this approach is modeled as a two-dimensional elastic 
compressible solid field and is described by the general field equation in terms of a 
displacement vector,"?, [6]: i.e., 

dt2 
a cv2-?+ —i~ V div-S*! = 

l-2n 
(IX) 

Here, G is the medium's shear modulus, u. its Poisson's ratio, p its mass density and V and 
div are the gradient and the divergence operators, respectively. This field comprises an 
irrotation^ and a divergence-free component and can therefore be described by two velocity 
potentials, <J> and *P, assumed to be of a form similar to equation (4). As *P accounts for the 
sourceless velocity in the field, i.e., v*, = Vx*r and div 4* = 0, its coefficients and wave 
numbers refer to the transverse waves traveling in the medium. The total particle velocity is 
then obtained by superimposing the velocities of the the longitudinal and the transverse 
waves. To-date the characteristic equation of the damping medium has been derived by 
applying the corresponding boundary conditions at the free beam's ends and requiring that 
the normal and shear stresses be zero. The damping layer is coupled to the beam's flexure 
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by forcing terms and velocity continuity in both normal and tangential directions. These 
conditions are also expressed in terms of the potentials, O and *P, and thus require the exact 
determination of the longitudinal and transverse wave number components. As in the 
derivations of the acoustical model the governing equations are expressed in matrix form to 
obtain a solution for the beam's displacement on a mode by mode basis. A fuller 
description of this approach may be found in reference [7]. 

3. SUMMARY AND CONCLUSIONS 

A theory related to the damping of vibrating systems by relatively deep layers of 
acoustical noise control foam has been presen-ed. Experiments with unconstrained and 
constrained foam layers attached to the beams have motivated the development of a "deep 
layer" model which allows for the interaction of longitudinal and transverse wave 
propagation in the damping medium at the same time. The theory has been derived by 
extending an acoustical model (in which the damping layer is treated as a duct-like 
acoustical medium) to the general model in which the damping layer is modeled as an 
elastic compressible solid medium. Calculations with the acoustical model have proven that 
it is feasible to predict correctly the low-frequency behavior of structures with foam 
damping layers of unrestricted depth. 
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ASSESSMENT OF FRICTIONAL DAMPING 
IN TANGENTIALLY LOADED METALLIC INTERFACES 

S.N.SHOUKRY 

Prod. Eng. Dept., Helwan University, Egypt. 

1.   ABSTRACT 

This paper presents a derived mathematical expression 
for the energy dissipated per cycle, which occurs, at the 
metallic interfaces of plane surfaces when subjected to 
oscillating tangential loads that do not exceed the limiting 
friction forces. The mechanism of damping has been clarified 
and its value was quantified in terms of the fundamental 
information known about the interface; that is, the surface 
topography, the material properties and the coefficient of 
friction. It has been found that our mathematical expression 
gives theoretical results which exactly fit the experimental 
results measured by Rogers et al (1975) for different 
metallic interfaces. 

As a result of the present work it should be now 
possible for the machine designer and its builder to make a 
reasonable assessment of the expected damping at various 
machine connections. 

2.   INTRODUCTION 

The first systematic treatment for the mechanism of 
frictional damping was made by Mindlin [1] in 1949. His work 
was concerned with the relative elastic displacements which 
occur under the action of a tangential force acting in the 
plane of the Hertizian contact between two spheres. The 
treatment was based on the assumption that slip between 
adjacent points in the contact region will take place 
whenever the tangential stress at these points has exceeded 
the product of the normal pressure times the coefficient of 
friction of the contacting materials. In other words, 
Mindlin assumed that Amonton's law of friction was applicable 
to indefinitely small contact spots within the Hertizian area 
of contact. Mindlin's assumption came during an era where 
researchers widely believed that the contact spots within the 
true area of contact between elastic bodies were the result 
of plastically deformed roughness asperities, and that the 
force of friction arose from shearing such spots of contact 
(see Bowden [2]), thus Amonton's law could not hold 
indefinitely and hence Mindlin's work applies only to 
perfectly smooth contacting spheres. inspite of such an 
argument, Mindlin showed that the experimental results agree 
with his theory [3, 4] and further expanded his w.rk to the 
case of an oscillating tangential force acting in the plane 
of elastic contact between spheres. Further experimental 
varification of the validity of Mindlin's work has been 
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reported by Johnson [5] and Gcoaman [6]. 

Earls and Philpot [7] considered Mindlin's work too 
sophisticated to be applicable to plane contacting surfaces 
since the theory was founded on an elastic mode of 
deformation whilst roughness asperities deform plastically. 
They went on to build a mathematical model in which roughness 
asperities deformed plastically and concluded an expression 
for the energy dissipated by friction based on the work of 
Panovko et al [8] on friction damping occuring between the 
leaves of composit cantilevered beams. It is, firstly, 
rather striking to find that Panovoko's work was founded on 
Mindlin's analysis . secondly, the experimental results of 
Earls & Philpot showed that the coefficient of friction 
between metallic surfaces remained fairly constant during the 
course of repeated cyclic tangential loading (two millions 
cycles) as long as the displacement amplitude was small. For 
high amplitudes (near to gross sliding), the coefficient of 
friction increased towards the limits. Thus Earls and 
Philpot concluded that for practical application where it is 
sufficient to estimate the frictional damping within ±30%, 
the coefficient of friction could be considered constant 
which again confirms one of Mindlin's fundamental 
assumptions. 

Courtney Pratt and Eisner [9], found that the relative 
displacement between two bodies in contact consisted of a 
component of elastic deformation and a component of relative 
slip with negligible or no plastic deformation. The same was 
also observed in the work of Johnson and O'conner [10]. 

The experiments carried out by Masuko et al [11] on 
bolted joints subjected to slowly varying tangential 
oscillating loads revealed that the tangential stiffness and 
the micro-slip were influenced by the normal load, surface 
roughness and the direction of machining lays (perpendicular 
or parallel). Tsutsumi and Ito [12] further investigated the 
problem and found that the energy loss per cycle could be 
estimated from the knowledge of the tangential stiffness at 
zero tangential load, the coefficient of friction, the normal 
load and the peak tangential displacement amplitude. The 
stiffness at zero tangential load used in their work was 
introduced as a term which contains the condition of surface 
topography of the interface, this stiffness parameter had to 
Lie experimentally measured. 

Rogers and Boothroyd [13] carried out experiments on the 
frictional damping in tangentially loaded metallic 
interfaces, they found that no visible change in the 
force-displacement hysteresis curve was exhibited in the 
frequency range 5 to 200 HZ. They also observed the 
dependance of the amount of the energy dissipated per cycle 
on the topography of the joint which was, again, related to 
the experimentally measured joint stiffness at zero 
tangential load. 

In the work so far sited, there  has  been  considerable 
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agreement between the experimental results obtained by 
different researchers. This applies to both the general 
pattern of the tangential load-tangential displacement 
relation shown in Fig. 1 and the influence of various 
parameters which affect such relation. However, the 
semi-imperical formulae suggested by various investigators 
[for example see references 12 and 13] for either the 
tangential displacement (or micro-sliding) or the energy 
dissipated per cycle, failed to include and hence quantify 
the influence of various parameters and in particular the 
surface topography. Thus such equations were only of a 
discriptive nature and could not be employed for the 
assessment of the machine behaviour during the design stage. 

3.   THE MICRO-SLIDItJG CHARACTERISTICS 

The author [14] studied the problem with the aim of building 
a mathematical model for the behaviour of the interface. His 
concept was; firstly, since the problem involves contact 
between rough machined surfaces, the stiffness of the 
interface should fce obtained from knowing the surface 
roughness and the material properties. Secondly, since in 
most practical applications the surface area of the interface 
is large compared to the roughness scale, the flatness of the 
mating surfaces cannot be ignored. We went on to consider 
that the statistical distribution of the flatness heights 
over the surface is a full representation of the height 
distribution of spherical roughness peaks which were assumed 
to deform elastically upon contact. It was then possible to 
calculate the true area of contact and the deformation of the 
interface as a result of the application of any load which is 
normal to the interface. Referring back to Mindlin's work on 
the microsliding characteristics within the Kertizian contact 
region, the author [15] concluded the following set of 
formulae which fully describe the microsliding 
characteristics of metallic interfaces which are loaded 
normal to the interface and subjected to a tangential load 
(acting in the plane of the interface) which does not exceed 
the limiting friction force. 

During the first application of a monotonically 
increasing tangential load, the micro-sliding increases along 
the path OA in Fig. 1 according to the relation 

S = -er/o ln(l - T/uN) (1) 

The above expression shows that when the tangential 
force approaches the limiting friction force, the 
displacement tends to infinity which means that gross sliding 
takes place. The above expression could ba expressed in the 
form 

T = UN [1 - EXP(-ÖS/er) ] (2) 

After the initial application of a tangential load, and 
upon its reduction from any  limit T',  the  tangential 
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displacement follows the path AB in Pig.  1,  this path  is 
given by the relation 

S = S' + 20-/Ö ln[l - {(T"-T)/2pN) ] (3) 

T = T' - 2uN [1 - EXP{-b(S'-S)/2a} ] (4) 

If the reduction in the tangential load was stopped at 
any level T" > -T' and then the load was increased, the 
tangential displacement follows the path BA in Fig. 1 and the 
load-displacement relation along that path is given by 

S = Sn + 20-/0 ln[l - {(T-T")/2uN}] (5) 

T = T" - 2uN [1 - EXP{-tf(S-Sn)/2CT} ] (6) 

The next step was to validate that the above set of 
formulae is in quantitative agreement with the experimentally 
measured tangential deformation. This was achieved by using 
equations (1) to (6) to calculate the tangential displacement 
for some of the interfaces for which their tangential 
load-displacement relation has been experimentally measured 
and reported in the literature. Namely, the experimental 
results obtained by Burdekin et al [16] were plotted together 
with our theoretical results as shown in Fig. 2. One can see 
that close agreement between the theory and the experimental 
results has been obtained. Detailed derivation of the theory 
and the method of comparison has been reported by the author 
in r15]. The slight deviation between the theory and the 
experiment was attributed to the accuracy of the transducer 
usod by Burdekin et al [16] in measuring the displacement, as 
we:l as the inaccuracy in determining the value of the 
parameter <r from the values of the CLA measurements needed 
for our equations.  However, the deviation between Burdekin's 

I measurements and our theory did not exceed  39%  in case of 
f curve c (smallest displacement), whilst for the rest of the 

i experimental points shown in Fig. 2, the deviation did not 
exceed 25%. 

4.   MATHEMATICAL EXPRESSION FOR THE ENERGY DISSIPATION 

Turning cut cur attention tc the assessment of the 
energy dissipated per cycle; equations (4) and (6) represent 
the oscillation of the tangential load between the limits T' 
and T" which results in the hysteresis loop responsible for 
the energy dissipation. In order to calculate the area 
enclosed by the loop, we will translate the coordinates as 
shown in Fig. 3 to the point T", S", the new coordinates W, X 
are given by 

W=T-T"    &    X = S - S" 

■. 

We will also define T0 and S0 to be the peak to peak 
amplitudes of the tangential load and the associated 
tangential deformation respectively. Substituting in 
equations (4) and (6) for the new coordinates we obtain 
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Wj = T0 - 2uN [1 - Exp(-8(Se -X)/2CT)] (7) 

Wi = 2uN [1 - Exp(-bx/2<T) ] (8) 

Where the suffixes, d and i are for the decrease and increase 
of loading respectively. The energy dissipated per cycle is 
obtained from 

E =  <T> Wdx =  j Wj dx -  j W( dx 

Substituting with the values of Wj , Wi and performing the 
integration we obtain 

E = 4pN Sp- T0 S0 - 4uN (2CT/Ö) [1 - Exp( -tts„ /2cr) ] (9) 

But from either sets of equations (3,4) or (5,6), the 
relation between the peak to peak force amplitude and the 
resulting peak to peak displacement is given by 

T0 = 2uN [1 - Exp(-ÖS0 /2o-)] (iO) 

OR 

S0 = 20-/8 ln(l - T0 /2uN) (11) 

Substituting from (10) in (9), then 

E = 4uN a/8 [8so/ff- (8so/2cr+ 2) {1 - Exp(-8so/2cr)} ]   (12) 

Or substituting from (11) in (9), then 

E = 4uN 0-/8 [(T0/2jjN - 2) ln( 1 - T0/2uN) - TQ/uN]        (13) 

Either equations (12) or (13) could be used to estimate 
the energy dissipated per cycle, depending on whether we are 
controlling the force amplitude or the displacement 
amplitude. 

The above relations show that the energy dissipated per 
cycle is dependant on the material properties which is 
represented by the parameter 8, the flatness of the 
interface, the friction coefficient and the normal load 
applied to the ioint interface. 

5.   EXPERIMENTAL VERIFICATION 

The machine designer could use either equations (12) or 
(13) in order to predict the damping in joints, provided that 
such relations are experimentally supported. Perhaps the 
most comprehensive set (available in the literature) of 
experimental measurements for the energy dissipation at 
different metallic interfaces are those measured by Rogers 
and Boothroyd [17].  Their experiments were carried out  for 
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nominally flat interfaces subjected to dynamic tangential 
loads in the frequency range 5 to 200 HZ; they reported no 
frequency dependance of the hysteresis loop. Their 
measurements were carried out for steel, cast iron, brass and 
aluminium interfaces. They presented their results in 
dimensionless form, the dimensionless energy loss EK/N*(where 
K was defined as the experimentally measured stiffness of the 
interface at zero tangential displacement) was plotted 
against the dimensionless tangential force T0/2N. 

In order to perform a comparison between our theoretical 
results and Rogers's experiments,  equation  (13)  should  be 
transformed into a compatible none dimensional  form.  The 
theoretical tangential stiffness  is obtained  from  (1)  by 

.' differentiation and setting the tangential displacement S at 
zero, thus 

dT/dS)  = K = pN W/or (14) 
S.o.       * 

Now substituting in equation (13) with the value of the 
tangential stiffness obtained from (14) 

El' /N2= 4(J [(H-2u) ln(l-H/jl) - 2H] (15) 

Where  H = T0 /2N 

Equation (15) relates the dimensionless energy loss to 
the dimensionless tangential force, as obtained from our 
theory, and this was plotted together with the experimental 
results of Rogers and Boothroyd [17] in rig 4. It can be 
seen that our theory is in perfect agreement with the 
experimental results. Furthermore, equations (12), (13) and 
(14) show that the energy loss is independant of the apparent 
area of contact, and this is further confirmed experimentally 
in the work of Rogers and Boothroyd. 

In metallic interfaces subjected to known normal and 
tangential forces, the energy loss per cycle can be predicted 
by knowing the material properties, the friction coefficient 
and the flatness deviation of the interface. In order to 
choose ehe parameters which maximise the energy loss for a 
particular application we should first decide on the 
practical requirement of the structure. In machine tool 
structures it is important to limit the displacements of the 

. iiiLeifcuje Lu a   minimum value.  Tiiua une CdiinoL  leiy  on  Lhe 
fact that the damping of the  interface  will  increase with 

i, increasing amplitude, that is, working with an  H  ratio as 
close as possible to JJ as was suggested by Boothroyd [17]. 
Such an absolute statement according to equation (11) could 
mean allowing for a relatively large dispalcement at the 
interface which is in turn directly opposite to the other 
requirements in machine tool structures. On the other hand 
the requirement of stiffness of the interface implies that 
the flatness deviations should be as small as possible whilst 
the normal load should be as large as possible. An increase 
in the normal load will increase the energy loss as shown by 
both equations (12) and (13).  However, such an  increase  in 
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the normal load should be accompanied by an increase in the 
tangential force amplitude in order to preserve the value of 
the ratio H, which in turn leads us to larger displacement 
amplitudes. 

Confusing as it may seem to be, the solution for the 
problem of optimising the dissipation of energy starts from 
the examination of equation (11) which relates the tangential 
displacement to the ratio H. Substituting for b in equation 
(11) we can rewrite the expression in the form 

S0 = -2uo-/tf ln(l - Q) (16) 

where Q = H/u 

«'= 2(1 - v)/(2 - v) 

= 4G'/E' 

Equation (16) has been used to produce Fig. 5 in which 
the amplitude of the tangential displacement was plotted 
against the product of the friction coefficient and the 
standard deviation of flatness for values of Q ranging from 
0.001 to 0.9. It is beleived that Fig. 5 covers most of' the 
practical applications for the interfaces made of similar 
materials and have poisson's ratio 0.29. From Fig. 5 it is 
easily seen that if we limit the allowable tangential 
displacement of the interface at say 0.003 mm peak tc peak 
then such amplitude will be associated with any value of T0 
/2uN depending on the product of per for the interface. For 
lower values of pa, the value of H approaches p thus the 
energy dissipated per cycle increases ac given by equation 
(13). Reduction of the product per could be achieved by 
lubricating the interface, thus, reducing p ana/or by 
specifying closer tolerences on the flatness deviation of the 
interface. 

6.   CONCLUSIONS 

It ha^ been shown in this paper that an exact assessment 
of the damping of the metallic interface could be carried out 
in terms of the basic data known about the interface. 
Equations (12) and (13) appear to be in perfect agreement 
with the experimentally measured results. It is posssible 
then to predict the joint's frictional damping during the 
design stage, moreover, the tolerances on both roughness and 
flatness of the joint could now be functionally laid down in 
terms of the required stiffness and damping of the joint. 

NOTATION 

E The energy dissipated per cycle. 
E' Effective modulus of elasticity. 
G Modulus of rigidity. 
G' Effective modulus of rigidity. 
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H None dimensional tangential load ipeak value) . 
K Tangential stiffness of the joint. 
N Normal load applied to the joint. 
S Tangential displacement of the interface. 
S' Minimum tangential displacement. 
S" Maximum tangential displacement. 
So Peak to peak tangential displacement amplitude. 
T Tanger.'-ial load applied to the joint. 
T' Minimum tangential load. 
T" Maximum tangential load. 
T0 Peak to peak tangential load amplitude. 
8 Material properties parameter. 

Ö = 2(l-v)/u(2-v)   For similar materials. 
6" = 4G'/JJE'        For different materials, 

v Poisson's ratio. 
p Coefficier  of friction. 
0" RMS flatness of the interface. 
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FIG. 1   TANGENTIAL LOAD DISPLACEMENT RELATION. 
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AND OUR THEORETICALLY CALCULATED DISPLACEMENTS 
USING EQUATIONS (1), (3) AND (5). 
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FRICTION DAMPING D'JE TO INTERFACIAL SLIP 

J„M. Cuschieri 

Center for Acoustics and Vibrations, Department of Ocean Engineering 
Florida Atlantic University 

V.R. Desai* 

WYLE Laboratories, Arlington, Virginia 
( Uork done while at Florida Atlantic University) 

1.   INTRODUCTION 

Damping is the only mechanise! available in vibration control that 
dissipates rather than reflects the vibrational energy. Damping mechanisms, 
especially those associated uith the application of viscoelastic materials 
have been extensively studied. Houever in controlling vibrations of heavy 
structure» such ns machine structures, the use of viscoelastic material 
damping can be limited. 

If the structural damping of a bolted structure is measured and. 
compared to the damping of its components, the former is considerably 
higher. This additional damping is attributed to the presence of the joints 
betueen the structure components. The joints represent regions of contact 
betueen the mating surfaces and energy dissipation can occur when the tuo 
surfaces slide relative to each other.  Energy can also be dissipated due 
to air pumping betueen the adjoining surfaces but this is a completely 
different mechanism which is beyond the scope of this paper. From previous 
studies on friction damping [1,2,3,41 it has be«n found that  interfacial 
slip depends on the coefficient of friction, the applied normal force per 
unit area and the frequency of the excitation. Uith the optimization of 
some of these parameters friction damping can result in very high rates of 
vibrational energy dissipation without the disadvantages that can be 
associated uith viscoelastic damping. 

The mechanism of friction damping can be qualitatively described as 
follows. The surface of a structure is never perfectly flat but it has tiny 
asperities. When tuo such surfaces are brought in contact and the surfaces 
kept together under pressure, the tips of these asperities touch forming 
small local contact areas. That means the actual contact area is much 
swaller than the araa cf the -urfacc: and thus high local s+resse« or« 
formed at the tips of the asperities. Perhaps the most accepted theory for 
interface friction losses is the one suggested by Ito and Masuko (51. They 
postulated that the exact mechanisms by which energy is dissipated are 
different for low and high interface presstres. At low interface pressure, 
energy is dissipated due to gross or "macro sliding". The level of energy 
dissipation thus increases with increasing interface pressure. Houever, as 
the interface pressure increases a point is reached at which the asperities 
start to get mutually embedded, Above this limiting pressure macro sliding 
stops and only micro slip is allowed. At higher interface pressures energy 
dissipation is due to the cyclic plastic deformation at the contact spots. 
Plastic deformation occurs at the tips of the asperities which increases 
the contact area reducing the tangential stresses at the contact spots with 
a consequent reduction in energy dissipation. The main limitations of this 
theory is that it is based on what Schofiald (61 pointed out to be rather 
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lou Interface pressures compared to the interface pressures in bolted 
structures. Houever the qualitative explanation is still believed to be 
relevant. 

On revieuing past uork in the area of friction damping, the uork has 
generally been United to simple butt Joints and there is significant 
disagreement between the results from the different studies. The divergence 
of the results can to some extent be attributed to the highly different 
experimental setups, especially such critical parameters as  surface finish 
and interface pressures. The coefficients of Friction selected in these 
analysis vary from one study to another uhn-h contribute to the different 
results. Furthermore, in general, the interface pressures that uere 
considered are louer than uhat uould be expected in bolted joints. 

The earliest uork to be found on interface friction damping is the 
uork by Goodman and Klumpp [11. Their uork uaa mainly exploratory, 
comparing theorotlcal results to analytical expressions obtained using 
classical stress theory uith the assumption of coulomb friction at the 
interface, fln important result of this uork uas that the coefficient of 
friction approached a mean value, somewhere betueen the static and dynamic 
coefficients of friction after a feu vibration cycles. The importance of 
the coefficient of friction uas further analyzed in later uork by Goodman 
and Broun [71 and it uas established that increases in the coefficient of 
friction resulted in the lowering of the rate of di-isipaiion of energy, and 
hence louer structural loss factors. This result uas disagreed upon in the 
uork by Ungar and Carbonell (21, uhere it uas shoun that the loss factor is 
Independent of the coefficient of friction. In later uork by Kedrov [81, it 
uas determined that the larger the coefficient of friction the higher is 
the level of energy dissipation snd thus the higher is the structural loos 
factor. In other experimental analyses of friction damping, such as [Z, 3 
and 91 lou interface pressures as compared to those generally present in 
bolted joints have been considered. In the uork by Earles and Williams 131, 
the analysis is performed for systems uith a friction Hamper at one end of 
the structure. This is different from the interface friction losses along 
the entire length of the structure and therefore the application of such 
studies and their contribution to the understanding cf surface friction 
damping mechanisms is rather limited. 

Ulssbrok [101 used a numerical technique to analyze the parameters 
controlling interface friction damping, fl finite element method is 
developed for a long "double leaf" cantilever beam uhich is examined for 
its response to harmonic excitation at the free end. The technique used and 
the capabilities of the numerical finite element model developed gave 
prOrilüirty results. Houever nu fui ther wurk cuulu be found in the open 
literature uhere this technique uas further developed to deal uith complex 
structural shapes and to determine the influence of the various parameters 
on the damping loss factor. 

Although a reasonable amount of uork has' been done in this area of 
structural damping, the results differ significantly uhich precludes the 
optimization of friction damping for a particular application. Furthermore, 
a detailed quantitative analysis that satisfactorily explains this rather 
complex phenomena is lacking. Most of the analyses described above make 
assumptions that many uould disagree uith or have limitations in the scope 
of their application. To start to ansuer some of the questions regarding 
the influence of the various parameters on friction damping, a theoretical 
(numerical) and experimental study has been undertaken based on a double 
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leaf cantilever. Although this study is not complete, only one specimen is 
considered, it's a first in a quantitative explanation of interface 
friction damping. 

Z.   FINITE ELEMENT ANALYSIS 

Thf theoretical approach adopted for this study is a numerical 
analysis using a general purpose finite element (FE) package. This FE 
package has a friction gap element, and the algorithm has a "feedback" 
mechanism such that after the Joint forces at each time increment are 
calculated, if these forces exceed the value required for "no slip" 
condition, the increment is recycled and the forces recalculated, together 
with the frictional forces and the net slip at each friction element. This 
"feedback" mechanism is very similar to the one incorporated in [101. 

The FE model consists of plane stress quadrilateral elements modeling 
the tuo beams. The elements are connected at ten positions by friction gap 
elements. The reason for the selection of the quadrilateral elements is 
that the friction gap element is a rather subtle element, fairly difficult 
to use and without the right combination of elements, the results uere 
unpredictable and/or erroneous. The input mesh is shoun in figure I. The 
thickness of the tuo beams uere taken to be variables that can be changed 
in the input data file to allou analysis of the influence of the relative 
thicknesses of the main beam and the auxiliary beam. 

The plane stress quadrilateral is a 4-node element with tuo degrees of 
freedom (DOF), the displacements in the x and y directions. A uniform 
pressure can be specified on any of the faces of the element (interface 
pressure). The friction gap element la also a 4-node slement. The first and 
last nodes specify the connecting nodes to the tuo interfaces. The second 
node, uhich has one DOF, represents the normal force carried across the 
gap, uhile the third node uith tuo DOF represents the frictional force 
being carried across the gap and the frictional slip. Another input to the 
friction gap element is the gap closure distance. This is the relative 
displacement in the direction of the gap, uhich cannot be exceeded. In the 
study by Ito et al [51, this distance uas determined to be of the order of 
0.1 micrometers. This is the value that uas used in this analysis. 

FE analysis uere performed to determine the influence of the interface 
pressure, the coefficient of friction and different thickness ratios of the 
rain and auxiliary beam. The following conditions uere analyzfd- 

2 
(a) Three different values of interface pressures: 0.1 KN/m , 1.0 

KN/m 9"d ia a KN/B 

(b) Four coefficient of friction values: 0,15, 0.3, 0.45 and 0.6. 
(c) Tuo different values of thickness ratios: 1.0 and .33. Main beam 

thickness uas 9.17 cm and the auxiliary beam thicknesses uere 9.1Z cm 
and 3.17 cm. 

The cantilever uas excited by a harmonic force applied at node 4Z. The 
forcing function lasted two complete cycles at the frequency of excitation, 
after uhich the beam uas allowed to decay freely through three complete 
cycles. The selection of the number ov cycles uas based on some trial and 
error where the objective was to obtain accurate results uith minimum 
conputer run time. The loss factor was calculated from the logarithmic 
decrement. 

A modal analysis uas also carried out and a fundamental frequency of 
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53.8 Hz uas obtained. Thus, in the -tine decay analysts the frequency of the 
harmonic force uas set at 55 Hz. For frequencies higher than the 
fundamental frequency, no slip uas observed and this uas attributed to the 
use of a coarse mesh FE model. The natural frequencies  from the FE modal 
analysis did not agree with the experimentally measured natural frequencies 
for an Identical cantilever (see section 4). Houever, the mode shapes were 
identical and the ratios of the resonant frequencies to the fundamental 
uere also the same. This disagreement is attributed to inaccuracies in the 
calculated natural frequencies. In fact, in the documentation of the FE 
package, it's stated that modal analysis should not be used for structures 
uith friction gap elements. 

3. EXPERIMENTAL ANALYSIS 

For the experimental analysis, (aft up shoun in figure Z), tuo mild 
steel beams uere bolted together uith one end of the main beam clamped 
betueen tuo heavy aluminium blocks, and the other end uas attached to an 
uncoupled electromagnetic shaker. The interface pressure uas changed by 
adjusting the tightening torque of the clamping bolts. Experiments uere 
carried out for different interface pressures, surface roughness and beam 
thickness ratios. The main beam uas 1.01 m long by 7.6 cm wide and the 
auxiliary beam uas 0.91 m long and 7.6 cm ulde. The reason that the 
auxiliary beam uas shorter than the main beam is that the main beam had 
approximately 10 cm of its length clamped. The beams uere attached by 1Z 
evenly spaced bolts, diameter 6 mm. For all experiments, excluding those to 
investigate the effect of the coefficient of friction, the mating surfaces 
of the tuo beams uere ground to uithln 0.00254 cm (1/1000 inch). 

I 

The first tests uere to measure the natural frequencies of the 
combined cantilever beam. Damping loss factor measurements uere then 
performed at the resonant frequencies of the combined system. Because of 
the setup, modes Z to 6 uere selected for the unequal thickness beams setup 
and modes 2 to 8 uere selected for the equal thickness beams setup. The 
damping loss factors uere measured using the decay (logarithmic decrement) 
method. To ensure that a steady state condition uas achieved before any 
measurements uere taken, the beams uere alloued to vibrate for a feu 
minutes. Different amplitudes of excitation uere also investigated. The 
interface pressures, uhich in the results uill be given in terms of bolt 
torques, uere selected such that for the louest bolt torque the tuo beans 
uere just in contact and the highest bolt torque uas the maximum alloued 
for the type of bolts used. 

4.   RESULTS 

4.1.   Experimental Results - Unequal Thickness Beams 

The first set of results is for a thickness ratio of 0.33 (3.2 mm 
thick beam attached to a 9.5 mm thick main beam). The natural frequencies, 
increased uith Increasing bolt torque, approaching those for a single 
cantilever beam of thickness 12.7 mm. 

The results for the measured damping loss factor (figure 3) shou that 
the loss factor decreased uith Increasing bolt torque. Houever the decrease 
in loss factor uith increasing bolt torque levels off, and for high bolt 
torques the loss factor Is Independent of the bolt toroue. This is in 
agreement uith the results by Ito et al [53 uhich shou that for small 
values of the thickness ratio the energy dissipation due to friction is 
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more or less independent of the Interface pressure above none pressure 
level. Another observation (figure 3) is that even at maximum bolt torque 
the measured loss factors were still higher than for bare steel. This 
implies that even at high interface pressures there ore mechanisms by which 
energy can be dissipated [91. From figure 3 it can be observed that while 
for nodes Z to 4 there is no optimum interface pressure for which the loss 
factor reaches a maximum, for modes 5 and 6 an optimum interface pressure 
exists at a bolt torque of approximately 6 kg-cm. This result implies that 
an optimum interface pressure is frequency dependent. 

Comparing the measured loss factors for a particular bolt torque, for 
different frequencies, the general trend is that the loss factor increases 
as a function of frequency. Finally, from all results, there is no 
variation in loss factor with different amplitude of vibration. Thl* is 
contrary to the findings by Beard [9J, but agrees with those found in C41. 

4.I.Z. Exporiftontaj:. Resglta - gp.ua! Thickness qeqms 

The second set of results are for a thickness ratio of unity (both 
beams of thickness 9.5 mn). The natural frequencies also varied with bolt 
torque, and as the bolt torque was increased the natural frequencies 
increased, approaching those for a cantilever beam of thickness 1.9 cm. 
The results for the measured damping loss factor are shown in figure. 4. In 
this case there is a distinct dependence of the loss factor on the 
interface pressure, especially for the lower modes, and in general an 
optimum interface pressure exists. The only exception is mode Z which 
exhibits -J very high loss factor at low interface pressures which was 
attributed to other dissipation phenomena. This result of an optimum 
interface pressure agrees with that found in [11, tZl and 191 which also 
deal with equal thickness beams. 

1 

These results for the equal thickness beams are different from those 
of unequal thickness beans, that is an optimum interface pressure exists 
for all modes. Equal thickness beams will in general execute the same 
spatial motion at a particular frequency, while unequal thickness beams 
because of their different natural frequencies, each beam will try to 
behave in a manner characteristic of its own thickness. However, because of 
the bolts, the motion of each beam is influenced by the motion of the other 
beam. Thus each beam will experience some form of forced motion and the 
influence of the interface pressure will be different from that of the 
equal thickness beams. The resultant motion and the region of slip can 
therefore be quite complex and the existence of an optimum pressure would 
be expected to be frequency dependent. 

niso, in the case of equal thickness beams, the measured loss factor« 
do show some dependency on the vibration amplitude especially at low bolt 
torques (excluding mode 7). For the variation of loss factor with frequency 
at fixed bolt torques, no common trend is observed except for low 
frequencies and loi; bolt torques. 

1 

The influence of the coefficient of friction was investigated by 
changing the surface finish of one of the beam«. This was done by rubbing 
the surface with either a IZ0 Grit sandpaper or with a 60 Grit sandpaper. 
The results for the measured loss factor are shown in figure 5 and it can 
be observed that there is an increase in the damping loss factor with 
increase in surface roughness (coefficient of friction). The measured 
Increase in the losr factor is rather small. Houever, it was not possible 
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to measure  the change   in   the coefficient   of   friction  due  to  the  application 
of  the  sandpaper,   and  therefore no  relationship  can  be  established for  the 
changes   in   loss  factor   uith coefficient   of   friction  except   that   if  one 
increases   the  other  uill   also  Increase. 

4.Z.     Finite Eleiient  Reoults 

The results fron the  finite element  analysis  for  the first  node of 
vibration  are  shoun  in   Tables  I  and   II.   The  "»"   indicates  that   that 
particular  set  up did not   successfully  complete due  to either excessive 
,^onputation  tine or non   convergence.   Fron  the  results   it   can  be  observed 
that  for both cases the   loss factor  decreased uith  increasing  interface 
pressure,   as   in the experimental results   for the  lou order nodes.   Also,     as 
in the for  experimental   results,   the  variation of   loss  factor uith the 
coefficient  of  friction   is rather snail.   Houever there  is  no general   trend 
for the variation of  loss   factor uith  coefficient  of  friction. 

5. CONCLUSION 

Fron  the results obtained thus  far   in this study,   although not 
conplete,   the follouing  conclusions  can be nade.   First,   the interface 
pressure affects the loss   factor only  for high order   nodes,   and an optimum 
interface pressure uas  found for equal   thickness structures,   uhereas for 
the unequal   thickness structures this  uas observed only at  high 
frequencies.   Second,   for   a given interface pressure the damping  loss factor 
is not  highly dependent   on frequency  except for the higher  order nodes. 
Third,   increases  in the  coefficient  of   friction uill   only  slightly affect 
the loss  factor uith no general direction  In the expected changes  in loss 
factor.   Finally,   uith regards to the  thickness ratio,   the main difference 
uas  in the existence of   an optinun  interface pressure. 

As a final  comment,   there are tuo other phenomena associated uith 
friction damping uhich uoulc need to be addressed before this damping 
mechanism can be implemented in practice,   (a) As the surfaces rub against 
each other  the asperities   slouly uear   off,  resulting  in the removal  of 
naterial   fron the structure surface.   This phenomena  is uhat   is generally 
knoun as  "fretting corrosion"  and can result   in serious  structural  damage. 
If the structure is exposed to a corrosive environment,   the damage due to 
fretting corrosion can be   significantly  accelerated and can quickly lead to 
nechanical   failure.  Fretting corrosion can to sone extent  be reduced by 
special  surface treatments such as shot-peenlng,   nitriding and other 
surface hardening techniques,   (b)  To allou for  the   interfacial  slip the 
bolt stiffness  is reduced   leading to  an overall  reduction of  the structure 
stiffness.   Houever this  can be compensated for  in the design. 
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TABLE I 

Loss Factor Results From Finite Element Analysis 
For Beams With Thickness Ratio 0.33 

Pressure Coefficient of Friction 
KN/m .15      .30      .45      .60 

0. 1 0.009      *      0.016    0.010 
1.0 0.009    0.013    0.008    0.014 

10.0 0.004    0.008    0.00Z    0.001 

TABLE, II_ 

Loss Factor Results From Finite Element Analysis 
For Beams Uith Thickness Ratio 1.0 

Pressure Coefficient of Friction 
KN/m .15      .30      .45      .60 

0.1 
1.0 

10.0 

* 0.013 0.015 * 
0.035 0.010 0.009 0.014 
0.00Z 0.008 0.001 0.004 
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Figure 4. Measured damping loss factor as a function of bolt 
torque for different frequency modes, (thickness ratio 
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1. INTRODUCTION 

I 

A conventional vibroimpact damper *.s essentially a rigid 
weight which moves freely between collisions with an excessively 
vibrating primary system. Attenuation of the primary system's 
motion will occur possibly by elasto-plastic contact deformations 
and certainly by momentum transfer if the collisions are repeated 
and movements just before each collision are in opposite 
directions. This behaviour is ensured, at least over a limited 
range of frequencies, by selecting an appropriate clearance 
between the damper and the primary system. Indeed, the basic 
principle and limited frequency range of applicability are quite 
similar to those observed for the better known tuned vibration 
neutralizer. However, Masri [1] has shown theoretically that a 
rigid impact damper's performance is superior, for a given 
weight, to that of the vibration neutralizer. On the othei hand, 
speed discontinuities at a collision make the rigid damper more 
difficult to analyze. In addition, its collisions produce 
detrimentally high contact stresses and noise levels. Well 
documented [2] design charts largely overcome the first objection 
ao that the rigid impact damper's relative unpopularity is 
presumably due to the latter disadvantages. 

The concept of a resilient rather than a rigid impact 
damper was introduced several years ago[3]. Resilience was 
derived from a flexible plastic bag which contained 2mm diameter 
spherical lead shot to maximize the weight to volume ratio. 
Indeed, the term "bean bag" was coined because of the obvious 
similarities with a pouffe. Not only was the bean bag much more 
successful than the rigid damper in delaying the chatter of 
boring bars but its operation was significantly quieter. This 
result is no different from that of the classical noise control 
strategy of reducing the peak contact force at the cost of 
elongating the contact duration (so that the overall impulse 
remains approximately constant). 

Although clearly superior in practice, the dynamic effect 
of a bean bag will be shown to be difficult, yet not impossible, 
to predict. Additional difficulties arise because a bean bag has 
collision properties which are not constant like those of the 
rigid impact damper. Experiments to measure these important 
changes will be described. Then three models of the bean bag will 
be postulated. Comparisons of the predictions with the 
experimental data *7ill isolate the important dynamic features of 
the bean bag. 
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2.   MEASUREMENT OF DYNAMIC BEHAVIOUR 

An examination of a bean bag's impact behaviour by 
suspending it as a simple pendulum to ensure collisions with a 
stationary wall is tempting because the motion of bean bag 
need only be considered. Measurement requirements s mplified 
even further if a conventional coefficient of restitution 
approach is taken. Then the bean bag's speed just before and 
after a single collision has merely to be observed. These two 
values can be calculated straightforwardly by using the bean 
bag's horizontal distance from the wall at its release position 
and the greatest such distance after the collision. The wall, of 
course, 3hould be fixed and have the same geometry and material 
properties as the primary system. However, a closer examination 

i of the collision would demand at least a cursory inspection of 
the history of the contact force because this force describes the 
interplay of the two colliding objects. Furth( .'more, the contact 
force will be the sole parameter of the collision which 
influences the subsequent motion. 

A special primary system was constructed to avoid 
unnecessary geometric and material inconsistencies between the 
bean bag acting as a pendulum or as an impact damper. One side of 
this primary system consisted exclusively of a Bruel and Kjaer 
impedance head. The other side was a screw adjusted block having 
one flat steel face to closely match the contact surface of the 
impedance head. Both sides were fixed to a fairly substantial 
steel base such that an intermediary (adjustable) space was left 
for the bean bag. The bean bag was supported from a sturdy frame 
by using two long threads to ensure an essentially horizontal, 
frictionless motion. The impedance head could be removed and 
fixed to a large steel block for the otherwise identical pendulum 
set-up. Results from the pendulum and the in-situ impact damping 
tests are presented in Figure 1 for various relative approach 
speeds just before a collision, vrei-. Setups for the in-situ and 
the pendulum measurements are illustrated schematically in Figure 

\ 4(a) and 4(b), respectively. 

I The vrei- and the corresponding relative speed immediately 
after the collision,  vrei+, cannot be found in-situ by using the 

| simple horizontal distance measurements of ihe pendulum tests. 
Both vrei- and vrei+ had then to be determined indirectly by 
utilizing availible non-contact displacement transducers. 
Consequently, more than the single collision of each pendulum 
test had to be permitted to achieve a steady state oonrH-Mnn in 
ui-der to reasonably approximate the speeds. Of course, the 
situation of major interest is when the external force, Fosinwt 
in the schematic of Figure 4(a), coincides with the fundamental 
natural frequency of the primary system. The steady displacement 
of the primary system has a constant amplitude and, despite the 
collisions,  a single frequency corresponding to w.  Hence,  the 

j primary system's steady state speed is virtually w times its 
■ displacement.  The corresponding calculation of the bean bag's 

speed is somewhat more involved because its displacement could 
not be measured absolutely without interference but could be only 
observed relative to the primary system. Details of this 
calculation and the experimental procedure are given next. 

« 
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The primary system's displacement, xi+, was measured by 
employing a Wayne Kerr capacitive displacement transducer. A 
typical history of xi from a completely at rest initial state is 
proportional to that presented in Figure 2(a). Arrows in this 
figure indicate the start of the steady state phase during which 
the slope of the envelope is invariably horizontal. The figure 
also suggests that the steady state condition can be quite easily 
discerned visually. The bean bag's displacement, x2, was found 
relative to xi by using the non-contacting optical system 
detailed in reference 3. Instants of, and times between, 
collisions were observed visually from the contact force history 
obtained from the impedance head and, after amplification, 
displayed on a storage oscilloscope. By knowing the instants of 
collisions, as well as the steady state xi and (x2-xi), it was 
possible to determire the total movement of the bean bag between 
consecutive collisions, d. Now the speed of the bean bag is 
almost constant between these collisions because the small 
clearances normally used afford little opportunity for 
appreciable decelerations. Hence, the bean bag's absolute speed 
can be computed simply by dividing d by the corresponding time 
interval between consecutive collisions. The relative speed just 
before and after a collision may be found straightforwardly from 
the separate absolute speeds. Different approach speeds were 
obtained by simply changing the external force's amplitude, Fo. 

Representative steady state syeeds were checked by using 
expensive high-speed photography and agreement was within 5%. 
Remaining parameters like the maximum force, Fc, and the 
duration, Tc, of a collision were measured directly from records 
of the contact force history and, hence, should be as least as 
accurate. 

Figure 1 shows chat the bean bag generally gives larger Fc, 
with consistently smaller Tc, for a particular vrei- when it acts 
as an impact damper rather than as a pendulum. However, the 
initially different vrei t/vrei- converge with increasing vrei-. 
These trends are consistent with the intuitive idea that the bean 
bag becomes stiffer with repeated contacts and at greater vrei- 
or, from Figure 1(d), higher excitation levels. The question 
remains, however, as to how precisely this phonomenon needs to be 
modelled to reasonably forecast its consequences on the primary 
system. 

3.   MODELLING 

The classical approach [2] cf describing a collision would 
be to assume the bean bag as rigid and to use a coefficient of 
restitution, e, and the conservation of linear momentum. However, 
only a purely plastic, e^O collision can produce a finite contact 
duration like that noted experimentally. A more sophisticated 
(and recently mere popular) equivalent linearization procedure 
could be employed to relax the rigidity constraint and produce 
collisions with finite contact durations. Both approaches will be 

+ A small letter will invariably indicate a time-varying quantity 
whose amplitude j.3 given by the corresponding capitol letter. 
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examined and shown to be seriously deficient. Then a semi- 
empirical procedure which, unlike the previous models, does not 
assume or directly evaluate the bean bag's deformation behaviour 
will be reviewed. It will be shown to be capable of giving more 
accurate predictions of the displacement reductions of the 
primary system. 

The overall strategy used to derive and solve the equations 
of motion is similar to that adopted in the classical approach. 
Classically, the contacts and the impact damper's "free flights" 
are distinguished to more easily define the (rigid) damper's 
abrupt change in direction caused by a collision. A damper, 
whether rigid or flexible, has no effect when it is in free 
flight so that the equations and their solution are then the same 
regardless. Indeed, the primary system then corresponds to a 
simple linear oscillator and the frictionless damper merely moves 
at a constant speed. Hence, both the motion of the primary system 
and the damper can be easily found analytically [2] if the 
conditions at the start of the free flight are known. 

A collision happens when the relative distance between the 
primary system and the damper becomes zero. What happens 
subsequently depends upon the nature of the impact damper and, in 
turn, upon the realism of the simplifying assumptions associated 
with the different models. For example if perfectly plastic 
collisions are assumed, the idealized impact damper will adhere 
to the primary mass after a contact until its inertial force 
reverses direction to oppose that of the primary system's 
velocity. The linearization procedure, on the other hand, leads 
to a viscously damped oscillator representation of the impact 
damper whose spring force diminishes to zero at the breaking of 
contact In the semi-empirical procedure, a simplification of the 
experimentally determined contact force history is stipulated, 
like any given external force, on the primary system immediately 
after a contact is established. Detachment is imposed after the 
corresponding experimentally measured contact period. Hence, both 
the pendulum and the in-situ impact damper data presented in 
Figure 1 was employed. The simplest reasonable piecewise linear 
history which satisfied the contact force's greatest experimental 
value, Fc, and duration, Tc, for a given relative approach speed, 
vrei-, was used to represent its temporal variation. 

During a collision, the adhering plastic damper 
idealization simply increases somewhat the mass of the primary 
system. As a consequence, the single degrop-nf-freedom 
rcprcaentaliun of the non-contacting primary system is still 
appropriate but it will have a slightly higher natural period 
than before. Moreover, the analytical solution during the 
collision will be identical in form to that in the free flight. 
Of course, a particular contact solution is determined by the 
need to match conditions at the juxtaposition of the contact and 
just previous free flight. The displacement of the primary system 
is always continuous but the then discontinuous speeds must be 
found from linear momentum conservation and the definition of e. 
Imposition of the displacement constraint and the speed results 
leads to the solution during the subsequent contact period. The 
next free flight  solution can be  found straightforwardly by 
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imposing, at its start, the displacements and speeds at the end 
of the contact. Hence, the complete response history can be 
developed in a piecewise fashion. The equivalent linearization 
and semi-empirical approaches only differ somewhat from that 

. described because speeds are no longer discontinuous at the 
collision of a resilient damper. Imposition of the displacement 
and speed continuities at the start of a collision in these 
models supplies the conditions needed to determine that contact's 
solution again. (It should be noted, however, that the primary 
system's mass is now always the same whether or not contacts are 
happening.) Solutions were computed most conveniently by using 
complex modal superposition for the linearization procedure and 
numerical integration of the convolution integral in the semi- 
empirical approach. 

Dynamic properties of the primary system are detailed in 
reference 4. The primary system was driven by an external force 
of 0.045N at the fundamental natural frequency of 19.85 Hz. Its 
mass was invariably 35.7 times that of the bean bag. The bean 
bag's linear oscillator model had a (variable) viscou3 damping 
ratio of -ln(vrel +/vrel -)/n after a collision to preserve the 
ratio of vrei+/vrei- for that collision [5]. The corresponding 
stiffness was written in the form ko(vrei-)2/3 to ensure that the 
experimental Fc variation in Figure 1(a) was satisfied. The 
constant ko was found iteratively for a particular collision as 
the value which gave the experimentally observed Fc. 

4.   RESULTS 

Experimental data is compared in Figure 2 and 3 with 
predictions from the impact damper models. The displacement 
history of the primary system interacting with the bean bag, xi, 
is presented after division by the analogous peak value without 
the bag, XO. Of course, a value of |xi/X0| less than one implies 
that the bean bag is attenuating the primary system's original 
displacement. Figure 2 indicates this to be the case. It also 
gives an overview of both the initial transient as well as the 
primary system's ultimate steady state behaviour after the 
arrows. Column (ii) and (iii) in this figure, on the other hand, 
present an expansion of just one period of the the steady state 
xi/XO with the corresponding contact force history, fc/Fo. (Fo is 
merely the amplitude of the external force.) The one extra 
computed history was derived by using the semi-empirical model 
and a contact force idealized from the pendulum rather than the 
in-situ measurements. Typical contact force measurements are 
presented in column (iii) alongside t.beir respective 
idealizations in column (ii). It can be seen, by comparing (iiie) 
and (iiif), that the contact force measured in-situ is larger, 
more peaked and irregular than that observed in the pendulum 
tests. Hence, one more line is needed in the representation of 
(iia) relative to (iib). Although both these idealizations are 
somewhat arbitrary, they each appear to reasonably reflect the 
overall trends of the individual contact forces. Indeed, they 
preserve the different Fc and Tc noted in the in-situ and 
pendulum measurements for identical vrei-. Of course, the Fc and 
Tc for a particular computation will alter to reflect the 
experimantal variations in Figure 1 when vrei- changes during the 
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transient phase. 

Figure 2 shows, not surprisingly, that more accurate 
predictions of xi /XO are generally produced when contact force 
histories become more precise. Clearly, the idealized use of the 
actual contact force rather than one generated by the pendulum in 
the semi-empirical model leads to a more realistic prediction. It 
is also more accurate than either the rigid or equivalent 
oscillator models of the bean bag. Indeed, a comparison of (iic) 
and (iid) with (iiie) in Figure 2 indicates that the last two 
models yield markedly different contact forces from the actual 
one. However, the plastic model better preserves the quite sharp 
rise-fall and the impulse of the experimental in-situ contact 
force so that, of the two models, it gives a superior xi/XO. On 
the other hand, the impulse is less exact than that in the semi- 
empirical model with the pendulum data and yet the plastic model 
still provides a more accurate xi/XO. Consequently, the rise and 
fall of the contact force history seems to influence the primary 
system more than its net impulse. 

Figure 3 extends the best experimentally correlating case 
of case (iia) in Figure 2 to comparable situations which involve 
a simple change in d. Again, d is the distance travelled by the 
bean bag between two consecutive collisions in the steady state 
phase. The results of the semi-empirical model presented in (iia) 
of Figure 2 coincide with point A in Figure 3(a). The ordinate 
XI/XO in Figure 3(a) is simply the magnitude of the ratio xi/XO 
in the steady state as illustrated in Figure 3(c) and 3(e). These 
last figures, and their steady state counterparts in Figure 3(b) 
and 3(d), correspond to point B in Figure 3(a). It can be seen 
from Figure 3(a) that the agreement between the experimental Jata 
and the semi-empirical model is noticeably worse at point B 
compared with point A. This discrepancy is a product of the 
deterioration in the representation of the contact force at point 
B by an invariant form. Indeed, in comparison with case (iiie) of 
Figure 2, the force history in Figure 3(d), shows a much sharper 
drop after its peak which is not idealized well in Figure 3(b). 
Another point of interest is that the smaller clearance at point 
B produces a lower experimental Fc in Figure 3(d) which leads to 
a greater transient period in Figure 3(e) relative to case (ia) 
of Figure 2. These observations support the contention that 
reduced contact forces take longer to compact the lead shot in 
the bean bag which can noticeably adjust the final character of 
the contact force. This adjustment alters quite appreciably the 
primary system's response which, in turn, will presumably modify 
the contact force. Thus, there appears to be a feedback mechanism 
which cannot be truely represented by an inv*i-i»bly constant 
r»a i^aw^t t nod«xling of the bean bag. 

5. DISCUSSION AND CONCLUSIONS 

The deformation of the bean bag created by a collision has 
been shewn to be so important that it is tempting to speculate on 
its fundamental mechanics. The very first collision of the bean 
bag, of course, must generate a rounded contact force history 
like that observed in the pendulum test. Subsequent collisions 
must transpose this history towards the peaked character noted in 
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the in-situ steady state measurements. It has been seen 
theoretically that such a peakiness is reminiscent of a rigid 
impact damper. Consequently, it seems that the bean bag does not 
recover completely from previous collisions so that the lead shot 
is increasingly compacted and the bean bag eventually becomes 
more rigid (or stiffer) in time. Furthermore, the compaction of 
the shot at a given collision can be expected to decrease 
progressively as the deformation of the bean bag increases. 
Hence, a hardening rather than the linear spring of the 
linearization procedure is more appropriate at a collision. The 
flexibility of the plastic bag ensures some recovery of the shot 
after its initial compaction. This recovery will be fairly quick 
at first (with a corresponding drop in the magnitude of the 
contact force) as the shot fills the void created at the 
collision interface by the compaction process. Then there will be 
a greater resistance to further movement of the shot so that the 
contact force's magnitude will decrease more slowly. All these 
four deformation stages, particularly the sudden rise and fail of 
the contact force, have been shown to be significant. Hence, they 
must be represented more realistically than afforded by the 
simplest theoretical models. Furthermore, it is important to use 
data from in-situ re her than pendulum tests. 
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ANALYSIS OF COILS OF WIRE ROPE ARRANGED FOR PASSIVE DAMPING 

M. A. Cutchins, J. E. Cochran, Jr., K. Kumar 
N. G. Fitz-Coy and M. L. Tinker 

Aerospace Engineering Department 
Auburn University, AL 36849-5338 

1.   INTRODUCTION 

Space activities have revitalized the importance of damping 
investigations. There has been a significant increase in the number of 
papers on the topic in the literature and a number of research 
investigations have been initiated. Long of interest to many, damping is 
receiving increased attention due to a variety of actual and potential 
applications; among them:  large space structures, space structures with 
stringent pointing requirements, computer controlled flexible structures, 
flexible manufacturing systems, composite materials, swept-forward wings, 
SDI structural dynamics, and others. 

One means of providing isolation or passive damping [1,2] is to 
arrange coils of wi.-e rope in such a manner that portions of the coils are 
attached to one part of a structure, while other portions of the coils are 
attached to another part of the structure or the base.  In between, the 
wire rope is free to respond and, as relative deflections take place, 
relatively high damping occurs.  This phenomenon is not well understood, 
but is thought to be associated with interfacial slip of the various 
strands which make up the wire rope. 

The primary interest of this investigation centers on vibration 
dampers constructed with multiple loops of wire rope.  Such wire rope 
devices have been known to have good damping and isolation characteristics 
for some time, but have not been analyzed to a thorough enough degree to 
be yet used in space applications [3,4].  This lack of analysis is at 
least partly due to the difficulty in modeling the dynamics of wire rope. 
Due to the complex geometry and interaction of multi-strand wire rope, 
this modeling process is difficult (even when the rope is not coiled). 

Wire rope is, from the basic point of view, simply several strands of 
wire twisted, or wound, together.  Some types are commonly called "cable" 
and are used in many practical ways with which the reader is familiar. A 
less obvious, but equally important, use of wire rope is in shock and 
vibration isolation devices [3,5]. The structure of multi-strand wire 
rope provides many interfaces at which a portion of the relative motion of 
strands of wire is converted by friction into heat, thereby dissipating 
vibrational energy [6].  Furthermore, the rigidity of wire rope structures 
can be tailored to provide support ;nd restoring forces. Stiffness and 
damping are adjusted by varying wire diameter, the number of strands, 
preten8ioning and the arrangenent of lengths of the wire rope.  Commonly, 
helical coils of ropes are fixed in clamps (see Fig. 1) to form individual 
shock and/or vibration isolators. The isolators are used to support and 
isolate communications equipment in vehicles which are subjected to large 
magnitude, short-term accelerations; I.e., "shocks."  In addition to 
absorbing shock, the internal, or system, damping [3] of the wire rope 
devices provides vibrational isolation over wide ranges of frequencies and 
amplitudes. 
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The damping characteristics of devices such as have been described 
are not well understood from the theoretical standpoint.  Apparently, the 
design of individual isolators is accomplished by experimentation by 
engineers with considerable experience in applications of these devices 
[3,4]. Realistic mathematical models of wire rope isolators would be 
useful in the design process and perhaps would allcw the achie* ~ment of 
the confidence levels in isolator characteristics needed for more applica- 
tions, especially those in space, in which damping rates and dynamic 
response must be very accurately known to prevent resonance and control 
interaction problems.  It is understood, though yet unconfirmed, that a 
French satellite is planned to contain some type of wire rope device. 

2.   LITERATURE DISCUSSION 

2.1 Dynamic 

Rogers [7] and others have shown that the use of passive damping 
devices plus active damping schemes results in a reduced number of active 
control components and reduced energy and power requirements.  A combina- 
tion of the two types of damping, as opposed to one type alone, can lead 
to more robust and reliable systems and less expensive systems.  These 
attributes are especially desirable for in-space damping applications. 

The most significant paper found in the literature which relates to 
wire rope damping is that by Pivovarov and Vinogradov [8].  Their study, 
however, was limited to excitation of straight wire rope which suspended a 
mass in pendulum fashion.  Experimental hysteresis loops (shapes only) are 
given and several single nonlinear differential equations are solved (as 
we have done, to be discussed later) in an attempt to simulate the 
phenomena. LeKuch and Silverman [9] discuss wire rope damping in a 
designer notebook setting—a guide to Isolator selection, and Kerley [1] 
just mentions wire rope "complex cable arrangements" as one type of 
passive damping device. 

Perhaps the best recent source which summarizes damping 
considerations is the new book by Nashif, Jones, aad Henderson [10], 
although again, no mention of wire rope damping is made therein.  Their 
emphasis is on single degree of freedom hysteretic; i.e., k(l+in), 
damping. To date our studies have leaned towards Coulomb damping being 
more typical than hysteretic for wire rope dampers. 

2.2 Static 

One cannot discuss wire rope research without recognition of the 
long standing and exemplary work of Costello, [11] being just one example 
of a survey nature.  Velinsky [12], one of Costello's former students, has 
made significant contributions.  Kumar [13,14] has detarmined a number of 
closed-form solutions which hold promise for dynamic applications in the 
current study. Works by a number of other investigators are referenced in 
[11] and [14]- 

It is useful here to refer to two figures from [13] and Cutchins, et_ 
al. [15].  Figure 2 shows a typical arrangement of a wire rope cross 
section and a view of a segment which is typical of the types of rope used 
in wire rope isolators.  Note especially the lay angle, a, and the typical 
six-wires-around-a-core arrangement.  The symbol, mj, is used to denote 
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each strand (1*1,2,...). The use of a fibrous core assumption greatly 
simplifies the analyses, t t they are dtill quit? complicated. 

Figure 3 is typical of the kind of results documented by Kumar and 
Cochran [13} for special static loading cases. In this illustration, g=0 
refers to a straight cable segment subjected to extension and twist with 
ends which are constrained against rotation (twist1». The M-0 case refers 
to a similar straight cable segment which has and« trte to rotate. Note 
the excellent agreement between previously published numerical results by 
Costello and Phillips [16] and the closed form results referred to above. 

3.   PRELIMINARY MODELS 

3.1  Dynamic 

For a particular candidate wire rope isolator, made for NASA and 
shown In Fig. 4, both experimental and analytical studies have been 
performed to determine the frequency response characteristics.  Its 
averag'. stiffness is approximately 173 N/cm. 

The vJtw of the isolator shown in Fig. 4(a) is a side view.  Note 
that the a axis Is sn a.'is of symmetry. Figure 4(b) is an isometric 
view of one set of the *'re rope loops for this candidate isolator pnly. 
Various arrangements (number of loopc, size of rope, different types of 
rope, etc») are possible, some more optimum than others. 

One application of such an isolator—actually, three-paired sets of 
isolators—might be as in Fig. 5.  Shown are top and side views of a 
rotating device.  The use of the three pairs of isolators at RQ, R^ and R2 
would serve to isolate undesirable vibrations. 

One of the major intents of this research has been to explore the 
why and how of damping of this specific isolator and relate experimentally 
obtained data to analytical results of simple models. One simple experi- 
mental arrangement, consisted of exciting the base in the z direction. A 
plot of the experimental data for the motion of the isolator base and 
center of mass appears with analycical curves discussed later. 

Two models which wore thought to have characteristics appropriate to 
modeling at least the unlaxial (z-direction) response of the isolator of 
Fig. 4 are shown in Figs. 6 and 7. The base excitation equations of 
motion for these cwo models are, for the Coulomb damper model 

Mz + K(z-u) + sgn(z-ü) F - 0 (1) 

and for the elastically connected Coulomb damper model 

Mz + K(N-t-l)(z~u) - 0     (No sliding in damper)        (2) 

Mz + K(z-u) + sgn(z-ü)F =0   (NK - F ; damper sliding)  (3) 

where z is the coordinate describing the response of the mass, Ff is a 
Coulomb friction force which always opposes the motion, and u is the base 
excitation. An undamped spring damper model, of course, would be governed 
by only the first two terms of equation (1). 
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Equation (1) has been solved using the Advanced Continuous 
Simulation Language (ACSl,) [17] on a PC in preparation for solving more 
Involved model equations, especially as ncrlineariti'JS are considered.  A 
listing of the program to solve equation (1) with variable friction force 
is shown In Table X. As a first approximation, it was assumed that the 
friction force was constant for all frequencies. Using a constant 
friction force of 10.0 N, the mass disolacement response for most of the 
frequency range was not in good agreement with experiment.  *iese resultF 
led to the investigation of frequency dependence of the friction force Ff. 
It has been found that for low frequencies the analytical mass response is 
not as sensitive to changes in the friction force Ff as it is at higher 
frequencies.  Using the values of Ff shown in Fig. 8 the frequency 
response shown in Fig. 9 was obtained, still using equation (1).  This 
response is in much better agreement with experiment than the model which 
assumes no frequency dependence of the friction force. 

Typical analytical hysteresis loops, generated by the ACSL model 
with variable friction force, are shown In Fig. 10 for frequencies of 40 
and 100 Hz.  The areas of theie loops, of course, re?-«?sent the damping at 
their respective frequencies. 

The insensitivity of the Couiomb-damped model to changes in Ff at 
low frequencies suggests that the isolator might be even better modeled as 
an elastically connected Coulomb damper system.  Problems with the 
acceleration response of the variable friction force model, which in 
contrast to the displacement does not agree very well with experiment, 
suggests the same.  Equations (2) and (3), therefore, are currently being 
investigated using an ACSL simulation.  Initial results indicate that the 
model is too lightly damped with Coulomb friction alone, and that another 
damping mechanism, probably viscous, needs to be incorporated into 
equations (2) and (3). 

3.2  Static and Dynamic 

Our primary success in this area has been with straight wire rope 
segments sub/lected to two loads, axial snd tcrsional. Extension u more 
involved cases is in progress.  A brief summary of closed form solutions 
obtained to date [13,14,18] follows.  The expressions relating the applied 
tensile force, F, and the applied torsional moment, M, with axial strain e 
and torsional strain g have been derived in the following convenient 
linear form: 

F - Fe e + Fe 

M = ME e + Mß ß 

(4) 

(5) 

where 

F = F/(AE) 

M - M/UER.3) 

A ■ meta'tic area of cross-section; £(mjRi2) 
i 

E - modulus of rigidity of the cable material 
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and the expressions for the force and moment derivatives, i.e., Fe, Fg, 
Me and Mg have been evaluated separately in two different situations: 

Case 1:  Single strand cable with fibrous core, wrapped around by an 
arbitrary number of helical wires for which the expressions for 
Fe, Fg, ME, Mg can be written as follows: 

F£ ■ a sin a 

Fg - [b-(l/4)(l- )sinl+a cos2a sin2w/m]sin2a cos a 

M. (r/R) cos a[a-(l/4) sin2a sin2ir/m (l->'f cos22a)] 

Mg - (r/R) sin a[b cos2a + (l/4)(l+c) sln^a sin
2a] 

a = l-(l+v) cos2a -(l+v)(co82ii/m-v) cos^a 

b ■ 1 + (co82ir/m-v) cos2a + (l-2v) cos^a 

c « vf cos 2a + (1+v) cos2ot sin2a 

vf ■ v/(l+v) where v is Poisson's ratio 

R,r,a " radius, helix radius and helix angle of helical 
wires, respectively 

m = nuuiber of helical wires 

Case 2:  Single strand cable with metallic core and an arbitrary number 
of layers for which the results are: 

F - [[m^2 sin ^(sin c^-v cos2^)]/^^2] 

V  I[m
i

R
i
2(ri/R)sln2ai  cos «iJ/H^V1 

M    - llnji^ coso1{(r1/R1)(8in2ai - v cos2^)  -(l/4)(R1/r1)}] 

Mo  = lln^ sin ^{(r^/R^2  eos2^ + (1/4)(1+Vf sin1*^  cos  2^)}] 

where   K±  ■ radius of the helical wires in the i":h layer 

R - cable radius. R = R./R 

mi ■ number of helical wires in the ith layer 

and other symbols are as defined in Case 1. 

We have successfully demonstrated the usefulness nf  the analytical 
results by applying these to study some important static as well as 

lamic extensional and torsional stiffness characteristics of wire ropes. 
t.  example, if one considerr a vertically hanging cable of length l 
clamped at the upper end and carrying a weight, W, at its free end, the 
differential equations governing the cable extension and twist 
oscillations can be written as 
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(6) 

Here, the I is the torsional moment of inertia of the tip mass. Also, the 
cable weight is neglected. The expression for the natural frequencies of 
coupled oscillations can now be written as 

u2 - -r-^8- [AF /W + R* M/I ± {(AF /W - R^M /I)2 + 4rR3 F M /(WI)}*'*]  (7) 

4.   ADVANCED DYNAMIC MODELS 

4.1 Fundamental NASTRAN Models 

In order to explore the phenomena of wire rope damping, several 
NASTRAN models have been developed. Fig. 11 shows a schematic of these 
models and some of their features. The "one-loop" model is shown in Fig. 
12, a NASTRAN-generated view.  It is being used for comparison with an 
experimental one-loop arrangement, a loop which can be loaded perpendicu- 
lar to its plane with realistic constraints on eacl. boundary of the minor 
axis. 

The "one-loop" model can also be placed into a "three-loop" arrange- 
ment with the loops shown in Fig. 13; one loop loaded out of plane as 
previously described, one loaded in-plane in extension, and one loaded 
in-plane in a "roll" deformation. The center block to which the force is 
applied also has to be guided along a minimum friction axial constraint, 
and has to prevent rotation of the wire rope boundaries at A, B and C. 

Returning to Fig. 11, another fundamental model is the "two-strand" 
model.  It and the "seven-strand" model (to be described in the next 
section) share many of the same features. 

Details of the "two-strand" model are shown in Fig. 14.  This model 
consists of a maiden strand around which a single strand is wound, each 
subdivided Into 276 elements and requiring 1932 grid points for 
definition. The hexagonal cross section of each strand consists of six 
triangular segments composed of "pie-shaped" NASTRAN PENTA elements like 
that shown in Fig- 14.  Strands art*  rnnnprt-*»H hv Qrnlar el-aStiC elements 
(springs), which have been incorporated to model the normal forces acting 
on each strand (see Section B-B of Figure 14). 

4.2 Advanced NASTRAN Models 

Similar to the "two-strand" model, a "seven-strard" model has been 
developed. A cross section is shown in Fig. 15. Note the springs 
between all strands. While space does not permit a thorough discussion 
of the results from this model here, its use is two-fold. First, 
complete normal mode analysis yields the mode shape vectors, £..   typical 

(though very involved) mode shape plots, and the contact forces normal to 
the strands, fjj. Secondly, equation (8) for the jth vibrational mode has 
been derived [ 15] using a L agrange a pproach 

I 
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M, q. + d. q. + K.q. + KT q » Q (8) 
j  J   J  J   j J  -gj "   cj 

where Mj, dj, and Kj are the generalized mass, damping coefficient and 
stiffness coeT  lent, respectively, for the jth vibrational mode. 
K  i« the '    * of the gravitation stiffness matrix K , and Q is 
-g. -g      c. 

the jth element of the generalized Coulomb damping vector ^ . 

Unit tangent and binormal vectors are used to derive expressions for 
the normal forces (normal to each strand). 

One means for solving problems with the most arbitrarily shaped wire 
rope is to use a NASTRAN model to generate the mode shapes $ and normal 
forces.  If the friction forces can then be related to the normal forces 
and some realistic assumption made concerning the viscous damping present, 
the <j>'s output from NASTRAN can be used to find the rest of the terms in 
equation (8), which then can be solved for the response, q. 

5. CONCLUSIONS 

Some inroads have been made into solving the very complex problems 
asso-'.iatad with wire rope damping as found in typical isolator coil 
arrangements. The various models described in this paper are illustra- 
tive of a range of investigation that varies from fairly simple models to 
those which are extremely complicated.  Perhaps the major conclusion is 
that the latter models are not as useful as one might expect without the 
insight into the physical phenomena provided by the simpler models. 
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Figure 2. Typical wire rope 
geometry and loading. 
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Figure 3. Plots comparing the analytical 
and numerical values of 
effective modulus of rigidity 
of wire rope for the Figure 5. Typical application of 
practical range of a- wire rope isolators. 
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Figure 6.   Coulomb damper model. 

(a)  Side view 

(b) Isometric of one set 
of wire rope coils. 

Figure 4. Candidate isolator. 
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Figure 7.     Elastically  connected 

Coulomb damper model. 
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Figure 8. Variation of friction 
force in isolator. 
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Table  I. Typical ACSL  program with variable  friction  force  and  variable 
base motion. 

PROGRAM  CFMVF1 
CONSTANT   WT=.1359 
CONSTANT  TDEL=0.0 
CONSTANT   TSTP=2.0 
CONSTANT   OMEGA=4O.0 
TABLE  FF,   1,   14   ... 

G=386.4 
PI=3.1416 
Z0=0.0 

SL0PE=97.7 
PHASE=0.0 
ZDO=0.0 

/ 10.0,        20.0,        40.0, 
75.0,        80.0,      100.0, 

160.0,      180.0,      200.0, 
'   0.75,        0.85, 1.25, 

0.10,        2.25,        1.45, 
0.007,      0.OO7,      0.004, 

TABLE  FU.    1,   14   ... 
/ 10.0,        20.0,        40.0. 
, 75.0, 80.0,      100.0, 

160.0,      180.0,      200.0, 
, 0.302,      0.170,      O.OS4, 

0.028,      0.034,      0.024, 
0.008,      0.OO6,      0.OO4. 

INITIAL 
W   =   2.»PI«0MEGA 

END   S"OF   INITIAL- 
DYNAMIC 

CINTERVAL  CINT=0.002 
TERMT   (T   .GT.   TSTP) 

DERIVATIVE 
U   =   FU(OMEGA) 

«H}RK(TDEL,W,PHASE > 
ZDD = -G/WT«(SLOPE*(Z-U> ... 
* FF(0MEGA)»SIGN(1.0,ZD-UD>) 
ZD = INTEG(ZDD.ZDO) 
UD = DERIVT(0.O,U) 
Z = INTEG(ZD,ZO) 

END S"OF DERIVATIVE" 
END S"OF DYNAMIC" 
END «"OF PROGRAM" 

60.0, 
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250.0 
0.15, 
0.50, 

0.004 

60.0, 
120.0, 
250.0 
0.051. 
0.016, 
).0025 
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0.005 

70.0 
140.0 

0.033 
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Loop Ouf-of-plone 

Loaded Loop 

Slider on Linear 
^ ^.f   Bearing 

Roll" Loop 

Figure 13.  3-loop arrangement. 
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1. INTRODUCTION. 

Linear Quadratic Gaussian (LQG) [1,11] techniques provide a system- 
atic way of designing well conditioned linear state feedback controllers 
which are optimal with respect to a quadratic performance index 

J = E [x'Qx + u'Ru] CD 

for given noise statistics, (W^.l^), where W^ is the plant noise intensity 
matrix and W2 is the measurement noise intensity matrix. The structure of Q 
is related to the required performances of the output, while R is related to 
the cost of the control. The relative magnitudes of Q and R are adjusted to 
obtain the desired compromise between performance and control requirements. 
LQG techniques are well suited for low order systems. Their application to 
active damping of vibration requires the truncation of the system model to 
the most significant inodes. The uncontrolled modes are simply ignored in the 
controller design, although many of them are known with reasonable accuracy. 
It is well known that the uncontrolled dynamics may become unstable as a 
result of their interaction with the control system (spillover instability 

[2])- 

The most straightforward way of alleviating spillover is to increa- 
se the passive damping of the residual modes. The same effect can be achiev- 
ed by supplementing the modal control with direct velocity feedback with 
colocated sensors and actuators [5]. Alternative techniques have also been 
suggested. 

Balas [3] proposed that a feedthrough component be added to the 
control, that restitutes the original stability margin to a selected number 
of residual modes. Sesak et al. [17] proposed the MESS (Model Error Sensi- 
tivity Suppression) method which desensitizes the control system to a given 
set of neglected modes. Gupta [9] introduced the concept of frequency depen- 
dent weighting matrices which increase the penalty for the high frequency 
components of the control- This reflects the fac; that input in the frequen- 
cy range where the model is poor, is undesirable. Non-linear modifications 
of the control in the vicinity of the equilibrium have also been suggested 
[15], to make the composite system (regulator, observer, and residual modes) 
bentfit from the inherent stability properties of the open loop system. 

Low order controllers insuring the stability of the full order 
system have been investigated by Kwakernaak and Sivan [11] and applied to 
flutter control by Mukhopadhyay et al. [13] and Newsom and Mukhopadhyay [14]. 
This method can be used to control a limited set of modes while keeping the 
others barely stable. Finally, Ridgely and Banda [16] suggested that spillo- 
ver stability could be achieved by the Loop Transfer Recovery (LTR) technique 
by designing a regulator which satisfies a robustness test and making the 
controller "recover" the loop transfer matrix of the regulator assuming the 
noise enters the plant at the input. 
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There are certain restrictions and limitations on all the above 

methods. 

This paper considers the stabilization of the neglected dynamics of 
the higher modes of vibration. It aims at designing modal controllers with 
improved spillover stability properties. It is based on the premise that the 

structural dynamicist will be able to predict more vibration modes than would 
be practical to include in the design of the controller. The proposed method 
calls for designing the observer so as to improve spillover stability with 
minimum loss in performance. It is based on optimizing the noise statistics 
used in the design of the Kalman-Bucy Filter (KBF). 

2. STABILITY ROBUSTNESS TESTS. 

In this section, we analyse what are the modes which are potential- 
ly critical from the point of view of spillover. To do that, we consider a 
stability robustness test based on singular values [7]. Let ^m(u)) be an 
upper bound to the maximum singular value of the multiplicative uncertainty 
at the plant output (Fig. 1) : 

a  [ L(w) ] <4(") (2) 

When ^mC") »1, the closed loop system is guaranteed to be stable in pre- 
sence of uncertainty if the maximum singular value of the loop transfer ma- 
trix satisfies : 

^[GK]<7mW- (3) 

It is a sufficient, but not necessary condition for stability. Alternative 
tests exist (e.g. [10,12]) ; they are all conservative because they do not 
take into account the structure of the uncertainty. They are based on a 
worst case which is not necessarily allowed by the structure of th ; system. 

A typical plot of a  [ GK ] and  . ■ ■- is shown in Fig. 2. The 

magnitude of the troughs in the uncertainty curve is governed by the damping 
ratio of the uncontrolled modes. Due to the low structural damping expected 
in large space structures and the relatively Blow decay rate of a { GK ] at 
high frequency, robustness test (3) cannot in general be satisfied by the 
uncontrolled modes in the transition region just outside the bandwidth of the 
controller (unless there is a gap in the natural frequencies of the structu- 
re). The modes which are in that transition region are candidates for desta- 
bilization and must be considered caretuiiy. Amongst ehe uucuuLiullcu iuodes, 
we distinguish : 

- the marginal residual modes which do no satisfy the robustness test or have 
only a small margin ; 

- the control-system-robust-residual modes (called robust modes hereafter) 
which satisfy the stability robustness test and are guaranteed to be sta- 
ble. 

Only the controlled and the marginal residual modes will have to be consider- 
ed in the remaining of th .s study ; the latter will be called residual modes. 

Note that an upper bound to the maximum singular value of the mul- 
tiplicative uncertainty L(CJ) can be obtained from that of the additive uncer- 
tainty AG(u>) as follows : 

G(w) [ I + L(w) ] - G(a>) + AG(üj) 

L(ui) = G-1(w) AG(d) 
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It follows that 

a  [  L j^^G"1) tf(4G) 

ä(AG) 
o- [ L ]<• "(G) 

(4) 

where ff stands for the minimum singular value. The spectral developments of 
G(w) and AG(to) are readily obtained, in terms of the controlled and uncon- 
trolled modes, respectively. 

3. OBSERVER DESIGN. 

The noise environment is defined by the noise intensity matrices W^ 
and W2- Often we do not know W]^ and W2 accurately, and, even if we do, it 
may be advantageous to use different noise matrices in the design of the 
observer. Let V^ and V2 be, respectively, the plant noise and measurement 
noise intensity matrices used in the design of the Kalman-Bucy Filter (KBF). 
When Vi and V2 are different from W^ and W2, the resulting KBF is no longer 
optimum with respect to the given noise environment, (W^V^)- However, typi- 
cally the performance index (equation (1)) is not overly sensitive to the 
choice of (V^,V-) for a wide range of values, i.e., the optimum is rather 
flat. Therefore, it is reasonable to select V^ and V2 so as to suppress 
spillovei instability, as long as the performance of the KBF is not overly 
compromised. 

In a previous study [6], the Influence of the structure of the 
plant noise intensity matrix of the KBF on the stability margin of the resi- 
dual modes was demonstrated. An optimization procedure was developed which 
used information on the residual modes to minimize spillover (i.e. , maximize 
the stability margin) of known residual modes. This procedure selected the 
optimum plant noise Intensity matrix to maximize the stability margin of the 
residual modes and properly place the observer poles. The optimization pro- 
cedure demonstrated that it only required a small number of design variables 
in order to prod-:e excellent results. 

That study incorporated the performance implicitly by imposing a 
maximum stability margin on the observer (a minimum stability margin can also 
be enforced on the observer by means of Anderson and Moore's a shift proce- 
Uuie [I])- It ui~i.ei.eu uu way LO include L'ne actual noise staLisLics, 
(Wj,W2), in the design, even if they are known with some accuracy. This 
paper is expanding the optimization procedure to include an explicit measure 
of the performance, and to incorporate the actual plant and measurement noise 
statistics of the system. 

4. OBSERVER PERFORMANCE. 

The performance index of the stochastic linear quadratic regulator 
(LQR) in equation (1) can be evaluated from the solution of a n x n Lyapou- 
nov equation. When the LQR is implemented on the reconstructed state from an 
observer, there is an aiditional penalty resulting from the imperfect know- 
ledge of the state. The new value of the performance index, J, can be evalu- 
ated by solving a 2n x 2n Lyapsunov equation. The following ratio can be 
taken as a measure of h->w well the observer works 
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F        . J;JL9R ^o (5) 
performance     JLQR 

J and JLQR are evaluated with the actual noise statistics (W^.V^), and 
not those, (V^,V2), taken in the design of KBF, so that ^performance rePre~ 
sents the performance deterioration for the actual noise statistics, or at 
least those believed to be the closest. 

5. OPTIMIZATION OF NOISE INTENSITY MATRICES. 

The observer is obtained as the KBF whose plant noise intensity 
matrix, V^, is the solution of the following optimization problem 

Find V] , 6  such that 

min F - (* - t)i + fi¥      , (6) v     + '   performance 

subject to the constraint 

ReCAi) < b (7) 

The two terms in the objective function (6) represent the spillover and per- 
formance contributions, respectively. The parameter n i3 used to weight the 
objectives of spillover stability and performance, t is the minimum stabili- 
ty margin that one wishes to achieve, and the final value of A is the actual 
stability margin. The sign (+) indicates that (a)+ = max(a,0), therefore, 
the spillover part does not contribute to the objective function if the real 
parts of all the poles are smaller than t- In that case, the design is based 
on performance only. 

In the above procedure, the measurement noise intensity matrix, V2, 
can be taken either according to the MESS method [17], *-.o minimize the 
observation spillover, or simply equal to W2, the actual noise. 

Note that if t is set to a large value so that the spillover part 
does not contribute to the objective function, and if V2 - ^2> tnen t^e opti- 
mal solution will correspond to Vj^ ■ Wj, the actual plant noise intensity 
matrix. This means that the optimum observer will be the KBF corresponding 
to (W^,W2> which minimizes J in equation (5). The same conclusion holds for 
fi being extremely large to cause the performance term to be dominant in equa- 
tion (6) and the spillover term to be negligible. 

in tnls formulation, the number of design variables is equal to 
n^ + 1, but can be reduced by making assumptions about the structure of V^. 
For example, 

V]_ = diag(v2) (8) 

Vx = aa' (9) 

Vl  - HH' (10) 

where H is an n by m arbitrary matrix. The foregoing choices lead, respecti- 

vely, to n + 1, n + 1, and nm + 1 design variables. For MIMO systems, this 
number can be further reduced by assuming that the noise enters at the input: 

Vl - Bc V B* (11) 

where B is the input matrix of the controlled modes and V is a square 
matrix assuming one of the forms (8) to (10). 
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1 ^ 6. BEAM EXAMPLE. 

The beam example used by Balas [2] to demonstrate spillover Is used 
to demonstrate the proposed method. The beam is controlled by one fctuator 
located at the 1/6 position and a displacement sensor located at the 5/6 
position. The state variables in the problem are the modal amplitudes and 
modal velocities. The first three modes are controlled by a LQR baaed on the 
reconstructed state obtained by a KBF, whila the fourth mode acts as the 
known residual mode. The regulator is the same as in [2] and [6]. It Is 

I assumed that the actual noise statistics are Wy  ■ I and W2 ■ 0.02. 

The NEWSUMT-A programme [8] was used for optimization and the L-A-S 
programme [4] for control calculations. 

The results for the observer design based on optimizing the matrix 
V^ assumed of the form (8) or (9) are given in Fig. 3. The figure shows, for 
various values of the weighting parameter <i in equation (6), the values of 
the stability margin A and the performance index J. The initial values for 
V^ were respectively : 

Vi - I  and  Vj - aa'  with a' = (1  1  1  1  1  1) 

Tracing was used when decreasing // (i.e., the optimum V^ for one value of 11 
was used as initial solution for the next value of /<)• 

Although the KBF corresponding to the actual noise statistics leads 
to a stable residual mode in this case, it can be seen that, by decreasing 11, 
a substantial improvement of its stability can be obtained without a great 
performance deterioration. 

Fig. 4 shows the evolution <f the closed loop poles for the diagon- 
al case. 

7. SUGGESTED DESIGN PROCEDURE. 

(1) Once the controlled modes have been selected, design a LQR to achieve a 
reasonable compromise between performance and control requirements, and a 
KBF with the best available noise statistics. 

(2) Apply a robustness test as indicated in Section 2, where the uncertainty 
curve includes all the um-ouLiulled modes and corresponds to a reasonable 
value of the structural damping (this can be done easily using equatiou 
(4) and the spectral developments of G and AG in terms of the modes). 

(3) Identify the uncontrolled modes which either fail the robustness test or 
have a small margin. These modes (residuals) are candidates for spillo- 
ver destabilization.  If there are none, the design is completed. 

(4) Apply the foregoing optimization procedure to the design of an observer 
which stabilizes the modes identified at step 3 with respect to spillo- 
ver. 

■. 

(5) Apply the robustness test to the new controller to check that it is sa- 
tisfied by all the robust modes of the original controller. If it is, 
the design is completed, if it is not, go back to step 4 with the new set 
of residual modes. 
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8. CONCLUDING REMARKS. 

(a) The foregoing procedure alms at designing controllers with improved spil- 
lover stability properties. It is not guaranteed to produce a stable 
design, but if it does not, the final value of & gives the minimum values 
of structural damping required to stabilize the system. 

(b) The elements of the observer gain matrix Kc can be substituted to the 
elements of Vj as design variables in the optimization problem of Section 
5. The resulting observer is no longer a KBF, but the procedure does not 
require multiple solutions of the Riccati equation within the optimiza- 
tion process (only Lyapounov equations must be solved in this case). 
This alternative approach is currently being pursued. 
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VIBRATION FROBLEMS IN COALMINE HAULING SYSTEMS 

R. U h r i g 

i 

University of the Armed Forces of the Federal Republic of 
Germany in Munich, W. Heisenberg-Weg 39, 8091 Neubiberg,FRG 

1. INTRODUCTION 

Vertical hauling of coal has been practised since last 
century by hauling systems consisting mainly of one or two 
cages or buckets* and one or more hoisting ropes. Since the 
end of last century a lower rope is added to the upper one 
for weight compensation. This shape of hauling system is 
known as "Köpe-System" [1] and is used today all over the 
world (s. Fig. 1). 

To reduce transversal movements of the bucket during 
hauling it is equipped with front- and rear-wheels, which are 
elastically connected with the bucket following a vertical 
track. Because of irregularities of this track transversal 
vibrations are induced into the hauling system especially 

since the hauling speed was 
raised remarkably during the 
last twenty years. 

J] sheave 

upper rope Ö empty bucket 

lower rope 

filled 
bucket 

;AW^// 

Fig. 1 Hauling system 
System "Köpe" 

Additional vibrations are 
induced into the system when the 
hoisting rope is passed over the 
sheave. Bending waves travel 
along the rope with kinetic ef- 
fects given to the whole system. 

Both phenomena described 
here are the source of kinetic 
stresses causing fatigue damage 
in the strand wires of the rope. 
The result is a reduction of its 
tensile strength and at the end 
of its lifetime complete destruc- 
tion of the rope can be observed. 

Because, until now, no save 
prediction of the lifetime of the 
hoisting rope is possible, inten- 
sive observation of the rope du- 
ring its lifetime is necessary. 
Therefore theoretical and experi- 
mental research has been done du- 
ring the last years to obtain a 
better basis for lifetime predic- 
tions. 

491 



Contributions can be divided into those which consider 
the hoisting rope alone under static or kinetic forces (s. for 
example [2]) and those which analyse the kinetic behaviour of 
the bucket alone moving along a track with irregularities. 
Contributions which consider both, the hoisting rope, the 
bucket and the lower rope as a complete hauling system are 
rarely to be found in literature (s. for example [3]). 

> 

Fig. 2 Bucket with 
eiastically connec- 

ted wheels 

The present contribution will deve- 
lop a refined model to describe the trans- 
versal motion of the complete system by 
introducing time varying length of the 
upper and lower rope and additional ben- 
ding stiffness of it. The model includes 
the bucket as a rigid body with rotary 
inertia (Fig. 2). 

We shall find the solution of 
this problem in three steps. 

2. KINETIC BEHAVICUR OF THE HOISTING ROPE 

The equations of transverse mo- 
tion of the rope under constant tensile 
force H are: 

w V 

ÜJ 

M 

V 
- . 

0 

0 

0 

-^2 

*K 

0 

1 

0 

0 

w 0 

$ 0 

M 
+ 

0 

j V - p 

(1) 

It is: 
w = - w 

ip = 1 t|i 
the transversal displacement, 

the rotation of a cross section, 

M = M 1^/EI bending moment, 
_     3 
V = V 1 /El transverse shearing forcF., 

1 is the length and 

El is the bending stiffness of the rope, 

p = p 1 /El time dependant external force. 

The parameters are with u the mass per unit length and 
the tensile force H: 

y     (2) 

x£ = H 12/EI , Xg = u 14/EI 

The meanings of the operators v and 8 are: 

)/d(x/l) ,   d  = d(. 
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It should be noticed that shear deformation and rotary 
inertia of the rope is neglected. No internal and external 
damping is considered. 

From equations (1) we obtain by elimination technique 
the equation of motion (* £ d(...)/dt): 

-VVV7   .2 -VV , . 4 - 
(3) 

Exact solutions of equations (1) or (3) can be found on- 
ly if the parameters are constant, i.e. if the length of the 
rope is constant. But this is not given in our case. 

We therefore change from the rope with continuously dis- 
tributed mass to a lumped system having 
concentrated bodJes an massless elastic 
elements (s. Fig. 3). 

The equations of motion in matrix 
notation then are: 

t/itu + tCtu -  t. (4) 

Fig. 3 Lumped 
system 

cu is the vector of displacements and 
rotations of the discrete bodies at 
time t, 

A is the matrix of inertias at time t 
which is a diagonal matrix here, 

fcC is the matrix of force-influence 
coefficients, normally called glo- 
bal stiffness matrix at time t, 

r is the inhomogeneous part. 

The upper boundary conditions arc 
described by: 

w(0,t) = 0, iM0,t) = 0, ^V = 1/R  (5) 

with R being the radius of the sheave. 

The conditions at the lower boun- 
dary can be described by time dependant 
displacements: 

w(n+l,t) = wn+1(t), *(n+l,t) = g,n+1(t) 

wn+]It) and *n+1(t) can be harmonic or randomly distributed 
functions. 

(6; 

493 



The boundary conditions (5) and (6) yield a right-hand- 
side of equation (4) in the form: 

'/+11 + y, (i/R) (7-, 
LVI 

The matrix CQ and the vector c are; 

0 0 
0 0 
0 0 
0 0 

'12 

"CB = 

D2 
0 
0 
0 

(8) 

■j= - EI[3/2-Xj[/40]/l3, s2= EI[l/2~x£/40]/l". 

The solution of equation (4) is found by numerical inte- 
gration using Wilson-G-method (s. [8] ). ?vt the end of time- 
step At we obtain the displacements, velocities and accelera- 
tions of the lumped system which is kept constant during At. 

Before starting the next time step the equations of motion 
at time t+At have to be rearranged considering the reduced length 
of the rope and the changement of the right-hand-side of equa- 
tion (4). 

Results will be presented during the conference as compu- 
ter—videos for three characteristical examples: 

a) The hoisting rope is excited by w ,(t), ^n+l'1"' on^• 
b) Bending of the rope at the upper boundary is considered on- 

ly, 
c) Both influences are considered. 

The S^- is <* submatrix of the order 2*2 of the 

stiffness matrix S which can be approximated by the elastic 
stiffness matrix 

SE " B 

12 6 1 

4 1' 

symmetric 

12 

6 1 

12 

-61 

2 I2 

6 1 

4 1S 

(9) 

B = EI/13, and the geometric matrix considering the influence 
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of the tensile force H on the element-stiffness: 

H S„  = H 

.(0) ,(0) 

,(0) 

- A (0) 

,(0) 

Symmetrie 
.(0) 

- B 
(0) 

,(0) 

,(0) 

,(0) 

(10) 

A(0) = 6/(5 1), B(0) 1/10, C(0) = 2 1/15. 

From equations (9) and (10) the global stiffness matrix C is 
built up under consideration of the principles of the matrix 
displacement method. 

3. KINETIC BEHAVIOUR OF THE BUCKET MOVING ALONG A TRACK 

The bucket with equal front and rear wheels with equal 
stiffnesses c„ moving along a track with irregularities is 

shown in Fig. 4. The lengths used in the equations of motion 
can be taken from Fig. 3. In matrix notation we obtain: 

AF   Up'     +Cp   uF   =   CT   uT +QF    PF (11) 

■f 

a Ff 

.jirif 
vTf 

Fig. 4 Bucket 
with displacements 
and forces 

It is: 

L*F j T   I w, 

r „ i 

' rf 

r J 

The matrices are: 

m„ 

Tf 

Tr 

"F J 

> (12) 
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CF '  CF 

2    (b - a) 

(b - a)  (a2+ b2) 

QF = 

0 

i*  1 

1 

b J 

1 

b* 

(13) 

w„, -Ji-, are the displacement and rotation of the bucket, wTf ,wTj_ 

are the front and rear irregularities of the track and 

Ff,Ff,F ,F are the front and rear external forces and moments 

(s. Fig.3). m„, KL are the mass and rotary inertia of the bucket. 

The solution of equation (11) can be found by numerical inte- 
gration using Wilson-G-Method.The irregularities of the track are 
assumed to be linearly varying during a time step At. 

Results will be presented as computer-videos for the follo- 
wing characteristic situations: 

a) A special coalmine bucket filled with coal will move along 
a track with different hoisting speeds v finding one short 
irregularity, 

b) The track has randomly distributed irregularities 

In both cases external forces are set to zero. 

4. KINETIC BEHAVIOUR OF THE COMPLETE HAULING SYSTEM 

Using the matrix displacement method developed in Chapter 
2 and 3 a computer simulation of the complete hauling system can 
be done. 

The vector of displacements at time t is a combination of 
the vectors of displacements of the upper rope, the lower rope 
and of the bucket: 

t"T = { fcuT   uT 

up    F 
t T  , 
ulo } (14) 

(  means transposition of the vector.) 

The matrix of inertia at time t is found from the subma- 
trices of the upper and lower rope and the bucket: 

up 
(15) 

lo 
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In the same manner the global stiffness matrix is built 
up: 

i i 

C = 

Ft ! 

!_e5d—1 
I    F  I 
i__r.tr--: 

l   lo I 

(16) 

The submatrices used here are overlapped in the described manner. 

The equations of motion of the complete system at time t 
will become similiar to equation (4) by using the notations 
(14) to (16), And the right-hand side of equation (4) will be 
written as: 

tcict  UTC+ So (1/R) (17) 

where the index c means: matrix or vector of the complete system. 

After having found the solution at time t+At a rearrange- 
ment has to be done. The reduction in length of the upper rope 
and the enlargement of the length of the lower rope have to 
be considered. 

Three characteristic examples of a coalmine hauling system 
will be presented at the conference: 

a) The bucket moves at different hauling speeds and the system 
is excited by rope bending only. 

b) Excitation is introduced by track irregularities only, 

c) Both effects are considered. 

5. CONCLUSION 

Contribution demonstrates the influences of rope bending 
and track irregularities on the kinetic behaviour of a coalmine 
hauling system. It may be considered as the basis for further 
analysis of the influence of kinetic stresses on the lifetime 
of the hoisting rope. 
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ALTERING   THE   VIBRATIONAL   BEHAVIOUR   OF   AN   T.C.   ENGINE 

AS   A  PRELIMINARY   STEP   FOR   NOISE   REDUCTION 

D'Ambrogio A.   Sestieri P.   Salvini 

Dipartimento di Meccanica e Aeranen'tica 
If/iiversita' di Roma  "la Sapienza" 

Via Eudossiana 18 - 00184 Roma 

1. INTRODUCTION 

Control of noise radiated by T.C. engines is nowadays an imperative 
request made to the automotive industry. 

The problem would require a global design devoted to this goal since 
its preliminary stage, but this is not usually permitted because the 
thermodynamic and kinematic parameters as well as the main architecture of 
the engine and its operating conditions are considered unchangeable 
characteristics. Therefore the possibility of action for the acoustician 
is quite limited and a reduction of few decibels is usually considered a 
successful result. 

The main noise sources in a I.C. engine are the combustion process 
and the mechanica' sources: piston slap, which is efficient at low speeds, 
bearing impacts and injection pump (for Diesel engines), important at high 
speeds. None of these sources can be modified, as shown in [1], to give 
more than a 5 dBA reduction in the sound radiated, without strongly 
hindering the operational efficiency of the engine. 

On the other hand the sound radiated by any vibrating surface is 
highly dependent on the velocity and the radiation efficiency of the 
surface itself. Therefore, in order to achieve the goal of noise control 
without acting directly either on tiie combustion or mechanical noise 
sources, one may devote his strength towards the possibility of modifying 
the noise transmission paths through the engine structure, by altering, in 
some way, their vibrational behaviour. In other words, once the noise 
radii ed by the engine surfaces has been computed or measured in running 
conditions by means of special techniques such as strip tease, 
multi-coherence or near field methods, the object of the study transfers 
from the acoustic field to the transmission paths of vibrational energy. 
Such paths concern vibration transmission from the combustion chamber to 
the engine block and oil pan (through other elements of the engine) or the 
vibrations generated by mechanical, components. 

Starting from this point, the way in which one may change the 
vibrational behaviour of the engine is limited to a structural 
modification of the elements composing the transmission path. Considering 
that such elements are not amenable to complex modifications, for the 
reasons previously discussed, the means to bring about the vibration 
control can be reasonably obtained through local variations of mass, 
stiffness and/or damping, lumped on a limited number of positions of the 
path. The use of local lumped modifications is not of academic interest 
here, because it is one of the few ways to get beneficial results without 
actually changing the main architecture of the system, especially if these 
modifications involve only the static elements of the path such as the 
engine block, engine head or oil pan. 
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2. ABOUT STRUCTURAL MODIFICATIONS 

The vibrational behaviour of an engine transmission path can not be 
easily computed theoretically and it is preferable to determine 
experimentally its frequency response function (FRF). This is usually 
obtained by measuring a FRF matrix which correlates excitation and 
response in a number of positions. 

Most of the structural modification programs, which start from 
measured FHF, require the identification of modal and/or physical 
parameters. The identification of physical parameters of continuous 
structures is a hardly ill conditioned problem, while this is not the case 
for modal parameters. However, as shown by several authors [2,3,4], the 
approach derived from modal identification often causes negative effects 
on structural modifications: source of errors on the modification values 
and modal synthesis are the truncated modes, modal scaling, estimate of 
rigid body modes, etc. Moreover modal identification is usually performed 
through a curve fitting procedure whose efficiency depends on the accuracy 
of measurements and the characteristics of the tested system. Complex 
structures often present close modes and high modal densities which 
usually make the identification of modal parameters inefficient or almost 
impossible. 

Unfortunately this is the situation for the kind of elements we are 
considering. Therefore structural modification is often severely limited 
by modal identification: surely this is what happens for the engine. 

To avoid the pitfalls of modal identification, a method has been 
developed to modify the vibrating response of the engine in some way 
previously established, without requiring the knowledge of modal 
parameters. Raw - yet obviously accurate - frequency response data are 
only necessary. Because of the unneeding of modal identification, the 
only major trouble which the method presents is the necessity of measuring 
the whole FRF matrix, whilst one row or column iß usually sufficient with 
other modification approaches. 

On the other hand the method performs an optimization procedure, 
i.e. it minimizes an objective function subjected to some constraints in 
order to get the best solution as wished by the designer (or acoustician) 
within established limits of cost and technological convenience. 

3. MATHEMATICAL BACKGROUND 

As said, the method establishes the optimal modification to achieve 
c desired result. The «foal of the structural modification may be 
explicated in different ways. 

First we can minimize the difference, in a frequency band of 
interest, between a desired FRF and the one derived from the modified 
system, with technological constraints which define the range of variation 
for the physical parameters. In the developed procedure these parameters 
are a combination of mass, stiffness and damping, lumped on a number of 
points where the FRF was previously determined. This approach leads to a 
highly non-linear optimization problem, which can be simplified by 
expanding the modulus of the modified FRF into a power series. However it 
requires a mathematical constraint to provide f> convergency condition for 
the power series expansion, giving rise to ar iterative solution of the 
optimization problem [5]. 

Alternatively  [6], W£ may express the objective function as a 
weighted sum of the squared physical parameters  (decision variables), 
involved in the structural modification.  Tn this way wo make the marginal 

k cost of a single modification proportional to the modification itseJf. The 
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main requirement o" the optimization problem is here imposed by means of 
the constraint; i.e. at a specified number of frequencies (eventually 
encompassing the frequency band of interest), we demand that the modulus 
of one or more elements of the FRF matrix lie within a lower and an upper- 
bound. Explicitly, the problem is formulated as follows. Find: 

subjected,  at a specified 
constraints: 

! HUL I  < 

min Si Wi -Xiz (3.1) 

number of frequencies  (and FRFs),  to the 

Hij( ^B(x)) Huu (3.2) 

and to other possible technological constraints. Here it is: 

x 
Wi 

|HUL|, |H1JU 
Hi J ( AB) 

the vector of decision variables; 
possible weight accounting for design requirements; 
lower and upper bounds for the expected FRF element; 
modified FRF, which is an element, of the modified matrix: 

H = ( I + Ho A B) -l Ho (3.3) 

Ho is the original FRF and ^B the matrix of structural lumped 
modifications, whose elements depend on the kind of modifications 
permitted. Expression (3.3) can be equally used to determine the new FRF 
as a result of the optimization process, or the differential or' finite 
difference sensitivities of I Hi j I with respect. to a single 
modification [6], 

Both formulations presented avoid the knowledge of modes, but. the 
second one, involving a cost objective function, seems more efficient 
since it does not require least, square regression to determine the 
physical modifications, and is finally numerically faster. Therefore this 
is the formulation used to change the vibrational behaviour of the engine. 

4. VIBRATION ANALYSTS OF THE ENGINE 

The engine examined is a small 2-cylinder, air cooled, gasoline 
engine, largely used in Italy and having limited performances (about 22 Kw 
at 5500 r.p.m). 

4.1. Preliminary analysis 

The noise radiated by the engine was measured in a reverberant room 
in one-third octave band from 100 to 10000 Hz, and a detailed analysis was 
performed to estimate the amount of power radiated by the individual 
surfaces [7], The engine was divided into 6 surfaces and the sound power 
radiated by each surface was measure 1 independently by a "near field" 
technique [8]. The strongest noise source was estimated to be the right 
side of the blort. Having identified the surface dominating the noise 
emission, the paths of vibration to this surface were studied on the 
non-running engine to determine possible means of reducing the surface 
vibrations and the overall radiated noise. Since the cylinder pressure is 
usually considered as one of the dominant internal noise sources, we 
focused the vibration analysis on the transmission paths from the head of 
the piston to the right, block side surface. As known, these vibrations 
propagate through two principal paths: a direct one and a kinematic one. 
The kinematic path corresponds to the piston-connecting rod, crankshaft 
and engine block. The direct path is through the cylinder head and the 
engine block. For both paths we considered the block as the most 
responsible element of acoustic emission, as it resuHs from previous 
analysis carried out on the same engine. 

501 



^ 

For the study of the kinematic path we estimated its behaviour from 
the experimental knowledge of the FRF of the individual components, 
connected in series, by means of a simple method derived from building 
block analysis and used in [9]. In the method only forces are accounted 
for, but not moments. This is a reasonable statement for the kind of 
connections considered. 

The first aim of this analysis was to identify the path component on 
which to perform structural modifications as those previously described 
(lumped masses and stiffnesses), in order to reduce the vibration 
transmission. Logical considerations show that the engine block is the 
most appropriate element to modify, since it is the sole element designed 
with merely static criteria. This practical indication is supported by 
observation of fig.I, which compares the FRF of the individual components 
of the kinematic transmission path with the FRF of the assembled 
components. It focuses that the engine block FRF is quite similar to the 
FRF of the whole path, whilst this is not the case for the other two 
components (piston-connecting rod and crankshaft). Therefore we can argue 
that the vibrati^nal behaviour is largely controlled by the engine block, 
from now on identified as the component on which to act to reduce the 
whole response of the kinematic path to exciting vibrations. Very similar- 
considerations might be done for the direct path. 

4.2  Structural modification research 

As a consequence of the previous considerations, a more detailed 
study of the block was developed. 12 points were considered on it, and the 
FRF matrix was experimentally determined between these points (fig. 2). 
These were also the points on which to locate the lumped modifications. 
Among them, only positions 1 and 12 (corresponding to the journal 
bearings) were considered not amenable to modifleetions. (We recall that 
the permitted modifications were only local addition of masses and/or 
introduction of springs between points of the block and an external fixed 
position). 

In order to reduce the computation burden of the optimization 
algorithm and avoid the analysis of points having a poor effect on the 
considered FRF, a sensitivity analysis with respect to both masses and 
stiffnesses was performed on the 10 points of the block. Some results are 
presented in fig. 3. This figure presents a rapidly variable trend of 
differential sensitivities vs. frequency, showing that, in the frequency 
band under consideration, single modifications of mass and stiffness alter 
the FRF modulus in a quite complex way. However we can sort out 
modifications which do have some effect on the FRF modulus from the ones 
having almost no effect at all. This task could be performed by means of 

1 a looking inspection, but i! se>.iua muic appropriate ta  consider,  as 2 
> significant quantity, the RMS value of the sensitivity in the band of 

interest, which gives a global idea of the effectiveness of a specified 
modification (Table 1). It can be observed that only points 3,4,7,8,9,10 
present a significant sensitivity either to mass or stiffness variations. 

The FRF to change was Hs-i, with the input on the journal - 1 - and 
the response on the zone of the block most seriously vibrating - 8 -. At 
this point the optimization problem can be formulated as follows. Find: 

min   S   (xi )z 

Xi are the decision variables, corresponding to mass and/or stiffness 
variations, SM is the index set of permitted modifications, with 
constraints: 

xi > 0 i 6 SM 

i 
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I Hs-i (AB(x)) |  <  | HB-IU | 

in the frequency bend of interest. 

The frequency bands of interest here considered were two, in order to 
estimate in which frequency band modifications of mass or stiffness were 
more convenient: the first one encompassed the range between 900 und 2000 
Hz, the second one 2<>00 r 3700 Hz. 

In the following,  results 
stiffness are presented. 

concerning modifications of mass and 

4.2.1 Mass modification 

In the lower frequency band, mass modifications are quite effective 
to reduce IHg-il. Fig. 4 compares the original FRF with results obtained 
by synthesis of the modified system, for different values of the upper 
bound constraint. When decreasing this value, the reduction of the 
modulus improves to the detriment of the cost, of modifications, as shown 
by the value of the objective function (see Table 2). In the higher- 
bandwidth results are still better (fig. 5). This can be reasonably 
explained considering that the high frequency range is mass controlled. 

4.2.2 Stiffness modification 

This kind of modification does not give a significant FRF reduction 
in any of the examined frequency bands, although the amount of stiffness 
introduced is quite large. In the higher bandwidth, stiffness 
modification gives still more negligible results. 

4.2.3 Mass and stiffness modification 

In this case too, the solution shows that masses play the major role 
in both bandwidths considered. However the modi Tied FRF reaches, 
obviously, a lower amplitude. 

4.2.4 Mass modification of two FRF elements 

The response at a point of the block is controlled by the FRFs 
between the two block bearings and this point. In fig. 6 the results 
obtained by synthesis on the FRF Ha -12 (between the other journal bearing 
and the same poin* 8 on the block), bv modification of He : only is shown. 
A very satisfactory reduction is achieved also on the second FRF. However, 
since the problem of considering more constraints (relative to two or more 
FRFs) does not require any additional hard computation (matrix inversion), 
we considered together the reduction of both moduli Hu-12 and Ha 1. 
Figures 7 and 8 illustrate the improvement obtained. A comparison between 
figures 6 and 8 shows that a negligible improvement is obtained on He-ii< 
when considering the two paths H0-1 and Ha-i* (fig. 8) instead of Ha-i 
only (fig. 6). This can be explained by asserting that, the severe limits 
imposed to the most effective transmission path give modifications that 
immediately satisfy the constraints on the second path. In fact the single 
mass modifications are quite similar in both cases. 

4.3  Experimental verificat[on 

In order to check the computed results, 
as determined from the mass optimization with 
equal to 0.4 kg-1,  was experimentally tested. 

the modified engine block, 
upper modulus constraint 
The prescribed values were 
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obtained by means of lead masses bolted on the established positions of 
the block. Of course these masses do not respond exactly to the scheme of 
lumped masses used in the computation of /^B(x). The real masses have 
rotational inertia and present some amount of elasticity, especially with 
respect, to their connection to the block: these effects, not. considered in 
the computation, can change the system response in an unexpected way. 
However the agreement between the computed modified system and the 
experimental one is quite satisfactory (fig. 9), validating the 
effectiveness of the method and encouraging to proceed with further 
developments. 

In fig. 10 the reduction on the direct transmission path by 
modification of the kinematic path only is shown. A good result, is 
achieved also for this path, confirming the correctness of choosing a 
modification of the engine block. 

Finally, in fig. 11, the modified kinematic transmission path, 
obtained by synthesis, is presented in one-third octave band, on the whole 
range of frequency, to give an idea of the overall vibration reduction. 

It is worthwile to point out th"t the block, within the level of 
excitation considered, presents a linear behaviour, and, consequently, the 
elements of the FRF matrix are almost symmetric, as proved by preliminary 
tests. Therefore, in our computations, we used indifferently the symmetric 
elements, as derived from the most convenient tests carried out on the 
structure. This could explain some of the small differences observed 
between the experimental and numerical tests. 

CONCLUSIONS 

i 

A method to change the vibrutional behaviour of an engine is here 
presented. If the combustion and/or mechanical forces are determined or 
measured and the radiation efficiency is known, the method can be 
successfully used to control the noise. The method finds an optimal 
structural solution in a permitted class of modifications, restricted to 
lumped variations of mass, stiffness and damping. Since the engine is a 
very complex system, its behaviour is experimentally determined. Starting 
from these measured data, a modification is performed on a specific 
component of the vibrutional energy paths. In fact the engine presents 
the advantageous circumstance that the most radiating part of the system 
(the engine block) is also the most suitable element on which to perform 
modifications, either because it is a static element or because it is 
large enough to allow for several interventions. 

On the other I and, the engine presents a high modal density which 
makes a mndnl iHr»n ifleation difficult to work. Consequently modal 
synthesis processes, sensitivity analysis, or, in a word, structural 
modification, arc very difficult to fulfill with techniques using modes of 
vibration. On the contrary, modal problems do not affect the optimization 
procedure, because the method uses only experimental raw data. It applies 
as well either to shifts of resonance values or to a reduction of the 
vibration amplitude in a frequency bandwidth. The computed results are 
quite satisfactory and the experimental tests carried out on the modified 
system agree very well with the results derived by synthesis of the 
modified model. 
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Table 1. RMS sensitivity values in the frequency range 900 i  2000 Hz 

i 

i 2          3          4        5 6           7           8          9         10 II 

8|Ha-i |/8im [I/kg2] .047 2.094 3.031   .040 .890 4.052 8.760 2.320 3.645 .310 

8|Hn-iz |/8mi [I/kg*] .046 2.193  1.134  .033 .175  1.648 3.563 0.917  1.517 . 101 

6|Hs -l |/8ki [m/kg'N]-108 .037 2.703 2.547  .045 .738 3.376 7.377 1.932 3.018 .239 

fi|Hn   12 |/8ki [m/kg-N]-10B .331 2.603 1.030  .035 .205  1.386 3.253 0.738 1.301 .109 

Table 2.  Cost function and modification values relative to different upper bound 
constraints. 

Upper bound 
[1/kg] 

Cost  function Mass 3 
[kg] 

Mass 4 
[kg] 

Mass 7 
[kg] 

Mass 8 
[kg] 

Mass 9 
[kg] 

Mass   10 
[kg] 

.2 1.263 .274 .199 .620 .147 .252 .823 

.3 0.747 .215 .162 .506 .J50 .114 .620 

.35 0.339 0 .140 .328 .157 .143 .409 

.4 0.274 0 .106 .290 . 162 .136 .365 
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— KINEMATIC PATH 

ENCINE BLOCK FRF(I-6 ) 

- CRANKSHAFT FRF 

PISTON CONNECT. ROD FRF 

1600      2400      3200 

FREQUENCY CHzl 
FREQUENCY CHzl 

Fig. 1. Kinematic path:  FRF of whole  Fig. 3. Sensitivities of iHe-j I to mass 
path and individual components.        modifications on point 6 and 7. 

left side right  side 

Fig. 2. Measurement points on the engine block. 
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24M 2Mt 1W 124* 

FREQUENCY [Hz] 
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Fig. 4. Original and modified FRFs for Fig. 5. Original and modified FRF in the 
different values of the upper        frequency band 2400 -:• 3800 Hz. 
bound constraint. 

f.   • « 

ORIGINAL FRFtS-12) 

nODIFIED FRF(8-12) 

(CONSTRAINTS  ON  FRFd-8)) 

136« I «4« 
FREQUENCV  CHz3 

192« 22H 
liM 1311 1141 

FREQUENCY CHzD 

Fig.   6.   Original   and modified   IFe-18 |       Fig.   7.   Original  and modified   | Ho - i j   for 
for cons'raints  imposed to constraints     imposed      to      both 
|<i»  J !    ■-■'■:■ |Ha  i |  and   |He-igf. 
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test     1MI     18« 
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192«     22M 

ENGINE BLOCK FRF(1-8) 
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  nOOIFIEO 

(ntnsuRET) 
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1 l_ I     T3 *L_ SC-, 
1JH IM« 

FREQUENCY CHi3 

Fig.   8.   Original  and    modified     |Ha-i2|     Fig.   9.   Comparison between computed and 
for constraints  imposed to both measured modified FRF. 
IHB- I I   and   |Hn   izl. 

ORIGINAL DIRECT PATH 

MODIFIED DIRECT PATH 

1120      22BB 
!.(> 1 1 ' L 

ORIGINAL KINEMATIC PATH 

MODIFIED KINEMATIC PATH 

i   i   i 1 1 

FREQUENCY   CHz3 FREQUENCY   CHz3 

Fig. 10. Original and modified direct Fig. 11. Original and modified kinematic 
transmission   path  as  a transmission  path (one-third 
by product of the  changes octave band), 
imposed to the kinematic path. 
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