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A GENERAL COMPUTATIONAL TECHNIQUE FOR THE FREE VIBRATIOR ANALYSIS OF
RECTANGULAR PLATES WITH CLASSICAL EDGE SUPPORT
BASED ON THE SUPERPOSITION METHOD

by

D.J. Gorman
Department of Mechanical Engineering
University of Ottawa
Ottawa, Canada KIN 6N5

1. INTRODUCTION

One of the most fundamental problems in the history of mechanical
vibration is that of obtaining free vibration frequencies and mode
shapes for thin rectangular plates with combinations of classical,
i.e., simply supported, clamped, or free edge conditions. It is well
known that such plates fall into two distinct categories, or groups,
the first group containing only those plates which have at least one
pair of opposite edges simply supported and the second group containing
all of the remaining plates.

Free vibration analysis of plates of the first group, referred to
hereafter as Group 1, 1s easily conducted in an exact analytical
fashion. LEvy-type solutions are obtained in each case, except the
case with simple support along all edges, and enforcement of the
boundary conditions leads to development of a transcendental equation
for the eigenvalues which can be solved to any desired degree of
accuracy. Eigenvalues for plates with simple support along all edges
are available in closed form.

The obtaining of solutions for plates of the second group above,
referred to hereafter as Group 2, has presented researchers with much
greater difficulty. This is because such problems are not amenable to
solution by means of a simple L&vy-type solution. Warburton was the
first to perform a comprehensive study of these problems employing the
Rayleigh method [1]. He represented the mode shapes by pairs of
appropriate beam eigenfunctions thereby satisfying the boundary
conditions exactly, except in the case of free edges. Later, these
problems were explored further by Leissa who used several beam
functions to represent the mode shapes [2].

At an even later date, the author analyzed .11 of the plates of
Group 2 by means of a superposition method he devz2loped for this
purpose. The method and computed results are to be found in Ref.[3].
It 18 not intended to discuss this latter method in detail here,
however, it 18 pointed out that among its advautages is the fact that
no functions need be selected to represent the mode skapes and all
boundary conditions, free or otherwise, are satisfied to &ny desired




degree of accuracy. It is re-emphasized that beam eigenfunctions when
uged to represent the shape of plate vibration modes as discussed
above, do not completely satisfy plate free edge conditions.

The otject of this paper is to describe a general computational
procedure which allows immediate establishment of accurate eigenvalues
and mode shapes for any rectangular plate of Groups 1 or 2.

Eigenvalues for plates of Group 1 are obtained by solving the
appropriate transcendental equation. Those of Group 2 are solved by
the superposition method. FEach displacement mode 1s normalized so that
its maximum dimensionless displacement is equal to unity. The
dimensionless bending moment is made available throughout the plate for
any angular orientation and it is shown how this infermation is
utilized to obtain the distribution of principal stresses.

2. MATHEMATICAL PROCE™URE

2.1 Plates of Group 1

Little need be said about the frequency and mode shape analysis
for plates of thls group. It is known thact with correct orientation of
the axis the solution can 2lways be written in the form (Fig. 1) [3]

W(E,n,T) = WE,n) sin wr €Y)

where
W(E,M) = Y(n) sin amg (2)

Ya(m) = Ap cosh B.n + Bysinh g n + C sin vy n + Dy cos ypn (3)

2 2
for A = (um)
and
Yp(n) = Ay cosh 8;n + B sinh g;n + C sinh yon + Dy cosh yyn (4)

for }\2 2Z (mm )2

where Bm = ¢ “)\2+(mn) s Ym = ¢ v)\z-(mn)z

2 2
or ¢ '(mw) - X , whichever is real, and m equals the number of half

sine waves running across the plaic in a direction normal to the simply
supported edges. The coefficients Aps By, ete., are adjusted to
satisfy the boundary conditions.




Fig. 1 View of rectangular plate of Group 1 with two opposite edges
clamped and the other two simply supportzd. Choice of
coordinate axis 1s shown as well as angular orientation of
computed bending moment.

A typical plate of Group 1 is shown in Figure 1. This 1is a
plate which has two opposite edges clamped and the other two simply
supported. In this case, as in all cases of Group 1 where the edges
running parallel to the { axis as shown in Figure 1 are identical,
i.e., clamped, free or simply supported, it is advantageous to let the
E axis run along the center of the plate. It is immediately obvious
that all vibration modes of sucn plates will fall into two families,
one family with modes symetric about the £ axis and another family with
modes antisymmetric about this axis. It is best to treat each family
as a separate case of Group 1. For each of these families, as a result
of symmetry or antisymmetry, two of the coefficlents of equations (3),
or (4), can be eliminated immediately by inspection. The analysis is,
thereby, simplified significantly. Of course, if the edges running
parallel to the £ axils do not have identical boundary conditions, it is
better to let the £ axis run aiong the upper edge of the piate (Fig.i).
Regardless of the type of problem, the appropriate transcendental
equation 1s easily written on enforcing the bourdary conditions and
exact solutions for the eigenvalues and mode shapes are computed
following steps as described in Ref. [3]. In the case of a plate with
simple support along all edges, no computation 1s required to obtain
the eigenvalues. Beyond this problem, there is found to be seven
separate cases to be handled in Group 1.

Dimensionless bending moments along the plate edges are
discussed in Ref-[3]- It can be easily shown [4] that for any angular
orientation, a, (see Fig.l), a dimensionless bending moment can be

LU




written as,

2 2
Mpb 2 52 2 3w (5)
= {61 ¢ 2H 40, 2+ 039 2
ap = {0 ¢4 2 o * agen |
where
2 2
6] mcosa+ vsina Gg= sinza + v cosza

63 = (1-v) sin 2a

With the eigenvalue obtained the wode shape and bending moment can be
readily coputed for a rectangular grid of points distributed throughout
the plate. Computation of the principal stresses for this grid of
points will be discussed later.

2.2 Plates of Group 2

All plate vibraticn problems of this group are solved by means
of the superposition method as described in Refs. [3] and [5], although
the selection of building blocks may differ slightly in order to
minimize the computation work required. Again, advangage will be taken
of symmetry where such symmetry exists. Only one case of Group 2 will
be discussed in any detail in order to economize on space.

We consider a rectangular plate with clamped support along all
edges. It will be appreciated that all possible modes of free
vibration for this plate will fall into one of three categories. Modes
which are fully symmetric about a central axis taken through the plate,
modes which are fully antisymmetric about the same axis, and modes
which are symmetric about one axis and antisymmetric about the other.
In view of these observations, we need analyze one quarterof the plate
only, provided the correct boundary conditions are enforced [3].

Fig. 2. Building blocks utilized in anai&zing the fully symmetric
modes of the rectangular plate with all outer edges
clamped.

—
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We choose to discuss, In a minimum of detail, the analysis of
the fully symmetric modes.:. Reference is made to the quarter plate as
shown on the left hand side of Figure 2. Boundary ccnditions which
must be enforced along the axes are denoted as slip shear conditions.
This implies that there 1s no vertical edge reaction along these edges
and that slope, taken normal to the edge 18 everywhere zero. These
conditions are designated by two small circles adjacent to the edges.

In order to solve this problem, we develop solutions for the two
forced vibration plate problems appearing on the right hand side of
Figure 2. The first forced vibration problem, or building block,
involves a plate given simple support along the edge, E=1, and with a
condition of zero lateral displacement enforced along the edge, n=l.
Along this latter edge we enforce a harmonic distributed bending moment
of circular frequency w. 1Its spacial distribution is expanded in
series form as,

2
Mb =

' T m'ng 6
ad | m=1,3,5 By cos L

In view of the boundary conditions enforced along the edges
running parallel to the n axis, it 1s known that a Lé&vy-type solution
for the forced response of this building block can be written as [3],

W) = T Y(n) cos HE 7

where the expression for Y (n) 1s of the form given by Equatioms (3)

and (4). Two of the coefficients In these equations (the second and
third) can be immediately set equal to zero in view of the boundary
conditions enforced along the edge, n=0. The remaining two
coefficlents can be evaluated as a result of the condition of zero
displacement to be enforced along the edge, n=1, as well as the
condition expressed by Equation (6). Following procedures as outlined
in Ref. [3] we obtain,
*
. K cosh B_n €08 Yn
W1 (E,n) 'm=1§3'5 {ellm §Iﬁﬁ—g§— + 013, Ay, } cos 2§5

L ‘. cosh B.n i cosh Yol — .
m=§*+2 w22y, EIEE‘E;‘ + 923, 3135—7;— } cos == (8)

B




i

where B ¢ “ A2+(nw/2)2 s Yp= ¢ ‘Az-(mn/Z)z, or
¢ ‘(mw/Z)z- Az whichever 1s real,

2
and the first summation includes only those terms for which A%!(mnlz)
: =1

811, 3

By + Yn ) cosh Bm/sinh Bm
813,= 2 L

By + Yy ) cos Yp/8in Y
822, — > =L

By - Ym ) cosh Bm/sinh Bm

1
2
By - Ym ) cosh ym/sinh Ym

823,

Groupings for the parameters 811,, etc., are quite different
from those used in Ref. [3]- This constitutes a significant advantage

since computer overflow problems encountered with the earlier
formulations are eliminated here.

It will be obvious that the solution for the second building
block, W2(£,n), can be extracted from that of the first. It is only
necessary to interchange the variables ¢ and n of Eqn. (8) and replace

the aspect ratio by its inverse.

Having obtained the solutions for the two building blocks of

Fig. 2, construction of the eigenvalue matrix can proceed following the
procedure described in Ref. [3 + One expands the slope along the
driven edges of these blocks in cgsine series of the type employed in
Equn..(6). Requiring that the net slope of the superimposed building
blocks must vanish, necessitates that the coefficients of each term in
the above pair of series must equal zero. This gives rise to a set of
2K homogenous linear albegraic equations for the coefficients Eqsete.,

and hence construction of a 2K by 2K eigenvalue matrix, where K equals
the total number of terms employed in each building block solution.
Solutions for the eigenvalues and mode shapes are obtained by following
standard procedures [3]- It 1s also required here to obtain bending
moment distributions throughout the plate, according to Equation 5,
all points in the rectangular grid used for storing displacement dat
Of course, in the cases of Group 2, one must enter the sum of
derivatives taken from each of the superimposed building blocks when
computing the bending moment at a point, according to Eqn. 5.

o
.

It will be appreciated that the other two cases of plate
vibration related to the fully clamped plate can also be solved by
using pairs of building blocks slightly modified from those described




above. The 3ame general analytical procedure is applicable to the
completely free rectangular ' plate provided proper building blocks are
selected. There will be some problems which are completely lacking in
symmetry and some which have only one plane of Symmetry, the cantilever

plate for example. 1In this latter casge one half of the plate, only,
will be analyzed.

It is appropriate at this time to enumerate the ma jor
differences between the aralysis described in Ref. (3) for plates of
Group 2, and the more advanced analysis described here.

(1) It 1is charecteristic of the method of superposition that numerousg
different combinations of building blocks can be employed to analyze
any of the 30 distinct vibrations problems, or cases, which make up
those of Group 2. 1In fact, 30 different computer programs were
developed in order to perform the analysis reported in Ref. [3]. Each
one of the earlier programs generated its own matrix from which the
associated eigenvalues were generated.

In the computationg reported here, a much more judictous
selection of building blocks has been made. Tt ig found, in fact, that
only 20 unique building block solutions are required and that many of
these are easily extracted from others in the s8et. As indicated above,
30 different matriceg had to be generated to obtain the results b
reported in Ref. [3]. These matrices varied in size from 2K by 2K to
4R by 4K, where K equals the number of terms in each series. 1In the
work reported here a new approach 1is taken. One master matrix of 10K
by #7 only, is generated and it 1is found that all of the 30 matrices of
intecest cen be extracted from this one master matrix. It has,

ther. fore, been possible to replace the earlier set of 30 computer
codes by a single one.

(2) Formualtion of the building block gsolutions as shown in Eqn. (8)
rather than as formulated in the earlier publications has contributed
vastly toward eimplifying the computations. It will be seen that the
quantities ezzm, etc., now involve ratios of the hyperbolic functions.

These ratios can be replared by the quantity, unity, for high values of
the arguments. All of the integrations required in expanding the
slopes, etc., along the plate edges are now called through computer
-ubroutines., Again, because of the ratios of the hyperbolic functions
involved (Equn. (8)), 1t 1s possible to arrange the integrals within
the subroutines so that for high values of arpuments o

of argumcnts of the functions,
vverflow or underflow problems are avoided.

(3) A persistent problem that characterized the earlier computations
was the uncovering of falge eigenvalues as well as the genuine
ones 3]. This came about becauge in the analysis of certain problems

solutions for the fourier coefficients with the net displacement of the
combined building blocks equal to zero. 1In such a case, the
displacement represented by one building block was equal and opposite
to that represented by the other. .This left the boundary conditions
satisfied. Fortunately, these false eigenvalues could easily be




predicted before computation began and they were rejected. This
problem has been eliminated by prescribing forced edge rotation rather
than distributed bending moment along the driven edge. 1In fact, one
eliminates the problem of false eigenvalues entirely by a judicious
choice of prescribed edge rotations or bending moments along the driven
edges.

3. COMPUTATION OF PRINCIPAL STRESSES

In order to compute the dimensionless normal stress, aE, at the

various points in the grid, it 1is only necessary to compute the bending
moment as discussed earlier, with the orientation angle a equal to
zero, and extract the value % therefrom. A repitition of these

computations with a equal 7/2 permits establishment of the normal

L .
stress Un

Finally, repeating the computations with 81=62=0, and 63=v-1,

Ofesbhtains she dimensionless twisting moment

!gnb -~ (1-v) ¢ I w 9)
a aLan
from which the dimensionless shear stress Tgn is obtained.

With the normal and shear stresses known at each point, the two
principal stresses lying in the plane of the plate surface, as well as
their orientation are easily obtained. The third principal stress,
normal to the surface is, of course, equal to zero. With the three
principal stresses know for all points in the grid the maximum shear
stress 1s readily obtained.

4. SOME CHARACTERISTICS OF THE DIGITAL COMPUTER CODE ANALDYNE-1

This digital computer code (analytical dynamics-1) has been
developed to form a complete, highly accurate, free vibration analysis
of all plates of Groups 1 and 2 as discussed above. It is easy to

employ in that one need only choose the group and case numbers for
their plate of intareet from a prepared lict and cnter the required
plate properties. One can demand an eigenvalue search with a
prescribed increment between prescribed limits, or, if the eigenvalue
is known, it may be entered and a complete analysis of the mode shape,
bending moment, and stress distribution is carried out. An additional
and important feature of the code 1s its ability to conduct a mode
shape and stress analysis in dimensional form if the maximum
anticipated displacement of the plate, while vibrating in the mode of
interest, 1is prescribed. Highly accurate computation of the fatigue
stress amplitudes are performed and fatigne life can be predicted. At
present, the dimensions are in English units.
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The code generates the master matrix when solving problems of
Group 2. Despite its broad capabilities, its running time 18 very
short and storage requirements are a minimum. Numerous verification
runs have been parformed on a large I.B.M. computer as well as a much
smaller Vax machine.

5. SUMMARY AND CONCLUSIONS

In this paper an analytical procedure has been outlined whereby
a highly accurate free vibration analysis of rectangular plates of any
aspect ratio, and any combination of classical boundary conditions, is
achieved. The most remarkable aspect of this procedure is that it has
permitted the preparation of a single and relatively compact digital
computer code which has the capacity to perform all of the
computations. In addition to computing mode shapes the code also has
the capacity to compute principle stress distributions as well as
maximum shear stress distributions throughout the plate. Th!s latter
aspect 18 of critical importance when fatigue stresses and fatigue life
are under study. Because mode shape solutions are available in
analytical form the differentiation required for stress computatior’
does not present the difficulties characteristic of numerical methods
such as the finite element method. Advances reported here have
permitted development of a compact computer code which, for the first
time, has the capability to provide analytical typesolutions for all of
the classical rectangular plate free vibration problems.

NOMENCLATURE

[
-
o

edge lengths of plate being analyzed

o

3 2
plate flexural rigidity = Eh /(12(1-v )

Young's modulus of plate material

plate thickness

upper subscript limit for terms of first summation
upper subscript limit for terms of series

plate bending moment

plate lateral displacement divided by edge length a
angle of orientation of bending moment

distance along edge divided by edge length a
distance along edge divided by edge length b

time 2

eigenvalue = wa {p/D

Row
*

ZExX R

circular frequency of vibration
mass of plate per unit area

plate aspect ratio = b/a
poisson's ratio of plate material

LE - 2 < I 4 ﬁ;a I3 Q
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MINIMISED INPUT POWER BY LINE FORCE EXCITATION
P. Hammer and B. Petersson

Department of Engineering Acoustics
Lund Institute of Technology

1. INTRODUCTION

It is customary to couple the two subsystems, source and receiver, in a
number of discrete points and the sound and vibration power transmission is
thereby conveniently treated by means of mobility theory. A basic condition
for such an approach is that the point - thereby used in a somewhat extended
meaning - can be regarded as an area of dimensions smallar than a fraction of
the governing wavelength. Consequently, some complications arise in the theo-
retical treatment when an installation is suggested where the coupling is
constituted by Targe Tine footings. Such a coupiing however, can be appropri-
ate e.g. for static reasons or due to strict requirements on alignment.
Hence, it is important to study the alterations in the mobility approach that
are necessary in order to incorporate large contact areas.

The concept of strip mobility has been introduced [1], [2]. To comple-
ment this studies concerning strip-coupled subsystems the aim of the present
work has been to seek the force distribution along a strip attached to an
infinite plate which minimises the power transmission.

The reason for choosing an infinite plate is due to the fact that
common parts of built-up systems are plate-like. For systems found in prac-
tice the dimensions are finite. However, valuable qualitative insight can be
gained by simplifying the analysis by considering the plate as infinite.

2. THEOQRY

The analysis is restricted to comprise small displacements, hence
linear theory is valid, 0n1¥ ginusoidaI motion is considered wherefore the
time-base is chosen to be eJ?, However, throughout this text the time factor
will be omitted.

The infinite pliate is considered to be homogeneous and thin which
implies that the thickness is only a fraction of the governing wavelength.
Rotational inertia and shear deformation will be neglected. Hence, simpie
bending theory for thin pletes is valid.

Internal and radiation losses in the plate will be neglected, as well
as the influence c¢f the local contact phenomena including a possibie portion
of viscous damping at the excited region. Taking into account the external
forces, the governing equation in phasor notation becomes [3],

Ady - k‘x=-g%g(x.y) , (2.1)

where, v is the spatial transverse velocity of the plate, k the bending wave-
number, B® the bending stiffness per unit width, g the normal force per unit
area due to the source that acts normal to the plate i.e, the receiving
structure and A the two-dimensional Laplace operator,
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The solution to equation (2.1) is a combination of two cylindrical
Hankel functions of the second kind [3]. Thus,

yix,y) = jsf alx,y) Yo n(kr) dx dy , (2.2)

where Y, is the input point
cylindrical Hankel functions

(2) (2)
f(kr) = Hy "(kr) = Hy~ (-jkr)

mobility and li(kr) is the combination of the

It must be noted that in the present case the surface on which the
force distribution g(x,y) acts is herein defined as a8 long narrow strip where
the width of the strip is assumed to be only a fraetion of the governing
wavelength and the length of the strip may comprise several wavelengths,
Hence, the force distribution formally may be written as

alx,y) = g(x) - &(y)

Moreover, the s
and the net force
2?2 (x) d (2.3)
= o(x) dx 2
-2/2

and symmetric, i.e.

patial distribution of the force is chosen to be real

F

a(x) = o(-x) (2.4)

A reason for presuming a real, spatial distribution is that such a
distribution may be realised by combining simple, passive components.
Secondly, the symmetry is a condition for no net moment.

2.1 Minimisation of the input power

Consider the configuration sketched in Figure 2.71.

y

a(x)8(y)

Figure 2.1. An infinite plate excited by a 1ine force distribution o(x)8(y).
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The complex input power may be written

Q=1 nfz 7 a(x) 8(y) v¥(x y) dxd (2.5
2 -1/2 -» ) R R A -

By using equation (2.2) one may rewrite equation (2.5) as
Yo /2
e=-2 7

(x) dx( " alxg) M(K(x - xg)) dxg)*. (2.8
2 e o0y 2t xg)) dxg)*. (2.6)

Principally this is the equation underlying the minimisation. For
engineering practice however, the active power transmitted often is of pri-
mary concern, wherefore the real part of equation (2.6) is chosen for the
minimisation.

Thus, with the limitations introduced above, equation (2.6) is deve-
loped to yield

W 0 nfz (x) dx nfz a(xq) Jdn(k(x - xq)) dx (2.7)
7 w2’ -gy2 90 %0 0 0 )

where, W is the real part of Q and Jgy ic the zero order Bessel function.

A more tractable formulation is obtained by setting ¢ = 3% and

n= ZXO/E-
Thereby, a modified force distribution of o(x) may be written as,
o(g) = 2F/8 - p(§) ,

where p(¢) is a dimensionless spatial distribution. Hence, with a change of
integration variables, equation (2.7) becomes

-log g ] K (g -
WS FS [ p(e) de [pln) Jp (52 (& - m)) dn (2.7a)

Introducing another force distribution pn(¢) which has the property of
minimising the active input power, the latter denoted Wy, a variational
technique can be applied. Hence, the problem may be summarised as

W = W it p(§) = pglé)
and (2.8)
W > Wy it p(¢) + pglé)
»
With the constraints in equations (2.3) and (2.4) and the conditions in
equation {2,8) impoced on equatiocn (2.72) one cbtains the infinite system of

integral equations, [4],
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) d . (ke .
A Pole) S0 (20 de =0

1 3
g_ E& = = v .
retey (7 4 (R de=o n=1,2,3... (2.9)

1 2n-1
{ pot&) (& JEL gy dg = 0
F d¢
where J, is the first order Bessel function.

Finally, the choise of po(t) remains. An admissible chcice for a power
series to describe po(e) is

1. § 8m , @ 2r
=4 - ) A
Polé) =5 = L Jmer * by %2 ¢

since it fulfils the constraints stated in equations (2.3) and (2.4). The set
of integral equations (2.9) is solved numerically.

Knowing the force distribution, the strip mobility may be determined.
This quantity is proportional to the power present at the excited region and
may be interpreted as a transition from the cuntinuous case to the
equivalent, single ooint case.

From the definition of the complex strip mobility, [1] and [2],

Yo 1 1 * ke *
Yo 5 —— d n=—(¢ - d 2.10
Q" qe a0 fam® e - )t o (2.10)

where g is an arbitrary spatial discribution.

However, in the present case where go(e) is real and | =1 one may
find that the real part of the strip mobility is

1 1
RelYq] = Yo _{ p(&)de { ptn) J; Shg - m)) an (2.11)

Inserting the power series for pna/é) in equation (2.11) and using the
binomial theorem one may rswrite equation (2.11) in the form,

e 2s 2s 1 n a
Re[Yn] = Y {(-1)5 (ke,<S, 2s 2s-t, 1 _ 2m
Mol = Yo l, (s1)2 W &L G e !

2m 1 t.d 2m 2m
+ Z o { - - - 2 ==+ ]
1 82me )dE ( Vo) (2 1 2 1 1 aZm y ) dyo
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3. NUMERICAL RESULTS

3.1 Force distribution in the case of minimised input power

The force distribution minimising the input power is shown in
Figure 3.1.

2.0 T\ 7 T T 113 T T LECARNRN A\
T 7
1.5 —I- \\\ \ ./' // \.q
23 hli ..\ .\ ~ / /-' \.‘
U A : 7N / .
T oosb A\l 7/ . g )
= at N R il
S T AN RS
CR %1 \ \ \ [T " \_ A "
é 0 - \ \ 'v'. .\/ / / -
2 =pasl \ / / .
3 I NIV I ]
% RO ~ \ .\ /. / -./
e -0.75 N / R
2 1.0 2\ L il
2ot :‘“;7 -
-1.5 =l -
-1.75 + o
-2.0 1 I i { { | 1 1 1
0.5 -0.4 -0.3 -0.2 -0.! 0 0.1 0.2 0.3 0.4 0.5

Non-dimensional length of the strip: x/i

Figure 3.1. The spatial variation of the force distribution minimising the
active power transmitted for some Helmholtz numbers. (--~): k£=3,
(=e=e): k@=4, (eoer): KE=T, (=e+=-+¢): kE=10.

For low Helmholtz number, kf < 1.5, the numerical unstability in order
to solve eq. (2.9) heavily affect the solutions. However, this is with
respect to power transmission of minor interest, since the excited region may
be considered to be point-like.

Increasing the helmholtz number, one may note that maxima ard minima
come closer and closer. The distance between the peaks and trough. is app-
roximately haif a wavelength. Comparing this case with the simpliest discre-
tice case, namely two point forces, where the distance between the forces is
d. The minimum input power would be obtained when d = 2/2, [5]. Finally, the
curves in Figure 3.1 indicate that the spatial distribution is periodic, but
the variation of the amplitude versus ki is irregular.

3.2 Normalised strip mobility

In Figure 3.2 the real part of the normalised strip mobility for the
two, real, excitation conditions - the force distribution giving the minimum
input power and the uniform force distribution - are compared. In addition,
the input power for the case of a cosecant shaped force distribution, [1], is

included. The Tatter distribution resembles that found from half-space
theory, [6].
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Figure 3.2. Normalised strip mobility versus Helmholtz number. ( ): mini-
mising force, (~---): uniform force and (-:~-): cosecant shaped
force.

It is seen from Figure 3.2 that for low Helmholtz numbers the real
parts of the strip mobilities are equal to the ordinary point mobility for
the two force distributions, uniform and cosecant respectively. Naturally,
for k¢ low enough this, also may be found to be valid for the minimising
force distribution. In the region of k& inbetween 1.5 and 4 one may note that
the rea’ part of the normalised strip mobility decreases more for the mini-
mising force distribution than for other cases.

However, as k& increases the difference in real parts between the
different cases diminishes., This trend may also be found valid in the cases
of other force distributions, [7].

4. CONCLUSIONS

It is found from a variational approach that there exists a real-valued
force distribution which, in a certain range of Helmholtz numbers, reduces
the input power in comparison with other ftorce distributions. Furthermore the
input power by strip excitation is significantly less than in the point
excitation case at high Helmholtz numbers. Hence, by a proper design of the
strip inter¥ace (including some transmission elements) between the source and
receiver structures, the power transmission may be minimised, given a net
force.

For high Helmholtz numbers in the strip excitation cases investigated,
the input power tends to be independent of the excitation distribution. The
asymptote is that of an equivalent point excited, infinite beam.
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The constraints on the force distribution, hence, whether it is set to
be complex or real with ragards to its spatial variation, is of importance.
Thus, reformulating the constraints to incorporate a complex distribution of
the force will give a different input power compared with that obtained for a
real-valued force distribution.

Finally, for the special case of a real and positive force distribu-
tion, the minimum is obtained with the distribution derived above, superposed
on a uniform distribution. The magntiude of the uniform part is equal to the
minimum stress of the alternating part. This distribution is realisable
simply by & continuous bed of springs with varying stiffness.
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EXACT SOLUTIONS FOR WAVE PROPAGATION IN
RINGS AND ARCHES ON ELASTIC FOUNDATIONS

Omer A, Fettahlioglu
New York Institute of Technology

1. INTRODUCTION

The purpose of this paper is to present closed-form solutions for tne
characteristics of traveling elastic waves in circularly curved thin rings and
arches on elastic foundations, and then to exhibit the effects of extensional
and shearing deformations and elastic foundations on the frequencies, phase
and group velocities of the propagating waves in rings and arches with various
boundary conditions.

The present treatise which deals with the problem in its general form
has been developed previously in {i) from variational considerations using
Hamilton’s principle to derive the exact equations of motion for thin circu-
larly curved beams and rings, together with consistent boundary, discontinuity
and initial conditions in terms of the radial and tangential midsurface
displacements and the rotation of the normal. The theory accounts for the
effects of extensional, flexural and shearing deformations, and rotatory
inertia, The effects of distributed elastic foundations in the radial, tangen-

tial and rotational directivns are also incorporated into the equations of
motion

The vibration and wave propagation analysis on which the present investi-
gation is based properly begins with the resolution of the foregoing equations
of motion given in {2) into three-uncoupled sixth order homogeneous differen-
tial equations in terms of radial and tangential midsurface displacements, and
the rotation Using the classical form for the traveling wave solution, the
exact equations for the frequency, phase and group velocities are derived
herein for closed rings in terms of flexural, transverse shearing and exten-
sional stiffnesses as well as the three spring constants of the elastic founda-
tions as precisely identifiable parameters. The frequency equation reduces to
that found by Lamb (3) neglecting the effects of extensional and shearing
deformations, and elastic foundations. The governing dispersion relations are
derived and exhibited in terms of short and long wave lengths, cutoff fre-
quencies and standing waves. The effects of extensibility and/or shearing
deformation and elastic foundations are also examined.

‘With the exception of Graff [4), little attention has been given to wave
propagation in rings with or without the effects of extensional and shearing
deformations. Dispersion curves and frequency spectra wherein the effects of
elastic foundations, curvature, extensibility, shearing deformation and rota-
tory inertia on the wave propagation characteristics of rings and arches of
various boundary conditions may be assessed, are not available in the litera-
ture. Moreover, Graff’s frequency and phase velocity equations which neglected
elastic foundations, the shearing deformation and the rotatory inertia do not
reduce to the classical inex*ensional solution This is due to the fact that
the effect of the tangential displacement on the rotation of the normal was
not included in his strain-displacement relation which yields inconsistency in
the resulting equations of motion Furthermnro, Graff’s study is confined to
phase velocity only, thus in fact leaving out the group velecity with which
the energy propagates.
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Exact solutions for the midsurface displacements in the radial and
tangential directions, the rotation and the stress resultants are also derived
for steep arches in terms of six independent constants of integration The fre-
quency spectra for the steep arches with elastic foundations (fixed-fixed,
fixed-hinged and hinged-hinged) are then developed by means of the exact
deformations and stress resultants.

-3 GOVERNING EQUATIONS

A thin circular ring element (Fig. i) that is symmetrical about the plan
of its centroidal axis is considered to be deformed in the plane of its
initial curvature with normals preserved in the process (Bernoulli - Eulepr
hypothesis).

The present treatise properly begins with the steady-state solution of
the deformation equations of motion of the following form given in (1):

a(v’-w)+c(w'+v’-Re’ )-K{Rw : pARY

a(v"-w’)-c(w’+v-Re)-KoRv = pARV (i)

bRav"-)cR(w'+v-Rv)-k3R¢ : pIR$
in which dots and primes denote differentiation with respect to time and
8, respectively, and ¢ is the mass density of the ring. The spring
constants of the elastic foundations Ky , Kp and k3 indicate their

resistances in the radial, tangentjal and rotational directions. The stiffness
constants are defined as

a = EA/R ; b = EI/R3 ; c = fAG/R (2)

where A, I and f are the area, the moment of inertia of the cross section and
the form .factor for shear, respectively. °

The propagation characteristics of rings and arches are developed by
considering the solutions of (1) for the dimensionless vector of deformations
of the form

(8, 7) = Y(6). exp(iwtT) (3)
where,

Y : (WR vR @7 4)

Y= 0V, 9T : Aexp(-irg) (5)

in which A ia the eigenvector whose components are ihe maximum amplitudes of
the deformations. The dimensionless wave number and the phase velocity are

A : Rm ; y = Q%) (6)

in which m is the dimensional wave ndmber; and Qf is related to the
dimensional circular frequency, w as follows:

O = (Zh = (t/T)w : wR(p/E)K M

The term (E/p)% is the bar velocity, The dimensionless time, T
in terms of the dimensional time, t is chosen to be: T=(t/R)(E/p)%

22




3 SOLUTION FOR CLOSED RINGS

The substitution of (3) into the normalized form of (i) and the elimina-
tion of W,V and ¢ successively (considering the operational coefficients
of the wvariables ¥, V and ¢) with the notation of D:d/d8 yields a
system of homogeneous equations whose nontrivial solutifon exist, if and only
if the determinant of its coefficient matrix {s equal to zero.

v(e)
(D6+ay Db+ apDPeazl { W(B) )} = O (8)
$(8)
where, letting 02:0:w2R¥(pA/EI) (9)

ay ¢ 24(Z(2+4X)-Z(S1X+3p)-83/2

dp (m)2<1+aX)oo(z->a-x Jei4dy u-amtz3+z)oéZZ(X-mtz-cm-aa(mm(oa/z »
8y 8oXZ24 8,834 838X
ag = {02)3X- ()2 (14X)-PZiO(142)4 8¢ ((Z)(1+2Z-OXZP )48 1 -1 4CZ{142X) -
PZ350 4 8310(141X)-PZX-1/7) 434 3524 (CZPX-1 )+ 8p 33X (2~ 1 )4
8384 (OZX-1 ) -84 8332
The dimensionless spring constants of the foundations are defined in the form
8 = KyR¥EI ; & : KoRYEI ;483 : K3/EA (10)

The dimensionless quantities Z and X are the measures of extensibility and
shearing deformation, respectively, and are given by the relations

X = afc :E/fG and Z = bsa = I/ARZ {11)
3.1 Frequencies
The subsequent substitution of (5) into (8) gives the frequency equation
B4 By(P+ByBy : O (12)
where,
n - v23.
B - w23
By = -10222 (142X 22 (14X)42ZeX2( 8,224 8,2P4 83 ))
By = AYZ(29X)0 2201 -Z{1-X)) 1424 8, Z(2AXZ 142 )4 8, 2202 (1 4X) 142X 4

831422 ) (14X)4ZX( 81 82248834 8¢ 83)
By = -A2(A2-1)2-8 02 (ACXZ1142)- 5 (AH2Z4 A2 1 )-83(1/Z) (A2-1)2-
8482 Z( ACZN11 )-8 83( 24X )31 d3(1+XA2 )-8 8,837X
The frequency polyromial (12) rewritten {n terms of wave number is:

38-air\apr2-az : 0
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For the special case of inextensibility (Z=0) and 43:0, the frequency
polynomial (12) takes the form

B 2 2(02-1)248,)2485)1/(14)2) (13)

which reduces to the form given by Lamb (3} in the absence of elastic founda-
tions. Cutoff frequencies are obtained at A-O for the three branches of
the frequency spectra as followas:

By2:0 ;  Dp2:(1028y)/2 ;  Os (142)%22 114)

Computer results clearly indicate in Fig.2 and Table { that the elastic
foundation, 4&; has a pronounced effect on the frequencies for wave
numbers less than about 10, that is for long wave lengths; however, this
effect attenuates as the wave number increases beyond 10. It {is also clear
that the effect of extensibility increases significantly as the wave number
increases from about five. The shearing deformation has also a considerable
effect on the fundamental frequency, only for wave numbers greater than about
five.

An enlargement of the frequency of the first mode in the long wavelength
region of Fig 2 (in the absence of elastic foundations) would reveal that the
fundamental frequency increases from zero at A=0 to a maximum of small
magnitude, 0.34 at 1:0.5; then It decreases to become zero at A:{,
Table 1. In the absence of elastic foundation the phase velocity is also zero
at J={ given later by equation {(21).

3.2 VYelocitjes

The roots of the frequency equation (12) give the sclutions of the
propagating waves of the following form for the vector of deformations (3) by
means of {6) and (7):

Y = A expli(yT-8))) (15)

Consequently, (12) is transformed into a cubic in ya or a quadratic
polynomial in )A¢ neglecting d» and 43

Nz )y8-)21127(142X)4Z(14X)+ 1432284 1yt (AZ(24X) 4 N2 11 -Z(1-X) 14 4424
84Z(2)2XZ4 14Z)1¥2 - 2L (02-1)248, (A2XZ4241)) = © (16)

The group velocity, Vg which is the velocity of e¢nergy propagation
is determined from either the slope of the tangent to the frequency dizgram on
the slope of the tangent to the phase velocity diagram by the formula

Vg = 3Q*/3) = yaddy/a) (17)

From the former point of view using (7)

Vg = 3*/3) = C/D ’ (18)

C = ZA%yH(142X)-2v2 (24X) 430 - N2 1y2 (1 -24 XZ4 2X2R 8y }422(2-X2Zdy ))
+Z20144, (1+2))

D = Zafyreyd-2v2 (142%)124X14 )2y [-2y2 (ZeDX ZBXE 41 ) 41 -2(1 -X)

12X2P 81 14y (142) (1428, )
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For the special case of inextensibility (Z:0), (i6) and (i8) reduce to the
forms -

vi€ 2 05 vp2 : 0241)02 and Vg = 0 Vg = 1MV (19)

Analytic solutions for certain limiting and special cases of the preceding
equations are easily obtained as follows:

1) Short wave length limit. For A->w, two horizontal asymptotes
shown in Fig.3 are obtained from {i6) and (i8) associated with the phase and
group velocities
Y : VE,, = i gives Vp = Vg 2 iE/p)“ N bar velocity
y = Vg XK gives vy = vg = (£G/p)% shear velocity

where, Vp and vg are dimensional phase and group velocities, respec-
tively.

2) Long wave length limit. For A-»0, the resulting limits are of the

form
. Y2 = Vg = Z(i+d)(142)1/(142) (1+23;) (20)
3) Standing waves. Substitution of y=0 in (i6) gives the corres-

pording value of the wave number to be determined from the equation:
A4.02(2-%28, 14144 (142) : © (1)

which vyields Azl neglecting the elastic foundation. ¥With the inclusion of
tiie elastic foundation, however, (2i) has no roots. In fact the phase velocity
(45) has a minimum

Ymin & ZUO2-1)248;1/()841) (22)
4% a wave number
A2z 12(d+4)K-2-%28(1/2 (23)

These special cases provide useful checks for the numerical computations of the
various dispersion curves. The group velocity has a jump discontinuity when the
phase velocity is zero at \:i; however, with the inclusion of the elastic
foundation it becomes a continuous function exhibiting-a minimum lower than the
minimum phase velocity, at a wave number greater than two, Fig. 4. Indeed, for
the first mode y(V, when 9dy/3M0 on the short wave length
branch, which is referred to as anomalous dispersion; conversely, Vg<y
when 3y/3)0 on the long wave length branch, for which the normal
dispersion occurs, Fig. 3 and 4. Moreover, for very long waves the first mode
has negative group velocity. This implies that energy is propagated in the
direction opposite to that of traveling waves as also was shown by Lamb {5} and
Crandall (6,7) on straight wires and beams, respectively. The lowest mode phase
and group velocities are asymptotic to the shear velocity, X% for very
large wave numbers; however, the higher phase and group velocities of the second
and third modes are asymptotic to the bar velocity at very large wave numbers.
For the second and third modes the group velocity is always less than the phase
velocity. Table 2 presents exact numerical values of the phase velocities
corresponding to various levels of X and Z effects for numerous wave numbers.
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The present steady-state solution indicates that there are three "criti-
cal® load speeds. These are equal to (i) the speed of propagation in a bar, (2)
the speed of shear waves, and {3) the substantially lower minimm phase velo-
city.

4 SOLUTION FOR ARCHES
The general solution of (8) gives the auxiliary equaticn
rb+airfraprlea; = 0 ' (24)

The roots of this polynomial (24) are functions of Q; and the elimination
of the arbitrary constants from the six boundary conditions (three for each
end) gives the frequency values. The behavior of the roots of (24) is determi-
ned by substituting the value of § calculated from Lamb’s "classical®
inextensional solution ({3); the result is 3 pairs of complex-conjugate roots.
Therefore, the general solution of (8) for steep arches (a > i80) is

¥ = (exp pj0)(Cicosqy0+Cpsing;0)+ (exp ppf)(C3c05qp0+Cysingp0)
+(exp p36)(Cgcosq3b+Cesingz0) (25)

The expressions for V and ¢ are similarly written in terms of constants F

ard H, respectively. The eighteen constants of integration are not all indepen-
dent. The conditions that insure that the equations of motion (i) are identi-
cally satisfied by the substitution of the foregoing deformations (25) yield
after substantial algebra the admissible deformations in terms of six indepen-
dent constants of integratiom: Cj, i:i,...6. The relations which connect

the twelve dependent constanis to the six independent constants are given in
the Appendix. The stress resultants are then obtained from their general
expressions given in (i, 2].

Arches of any boundary conditions can then be analyzed in 2 consistent
manner accounting for the effects of extensional and shearing deformations,
and the elastic foundation in the radial direction The conditions yield six
simultaneous homogeneous algebraic equations in terms of the frequency, the
roots of the auxiliary equation (24) and the six independent constants cf
integration, C; (izi...6). The determinant of the coefficient matrix must
vanish for a nontrivial solution of the boundary equations., In this analysis a
trial frequency is calculated from Lamb’s inextensiocnal formula; thus permit-
ting the explicit solution of the auxiliary equation W¥ith the assumed value
of frequency and the calculated values of the roots of (24)., the determinant
iz selved usiig e “reguta falsi® method (rule of false position).

The effect of the elastic foundation on the fundamental frequency with
respect to the angular span is exhibited in Fig 5 for fixed-fixed, fixed-
hinged and two-hinged arches. The effects of extensibility and transverse
shear are illustrated in Table 3 for the .fixed arch, wherein, an increase in
each of the measures of extensional and shearing deformations causes a de-
crease in frequencies.

The calculations were performed usiong ADA computer program ([6) which is
written in FORTRAN IV. ADA runs presently on VAX 11/780 supermini computer of
New York Institute of Technology utder operating system VMS 4 6 , and is
currently being revized for implementation on IBM-PC compatible hardware,
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T. APPENDIX
The deformations in arches are

V = (exp p16)(Cyc0sqy8+4Cpsingy6)+ (exp pp6)(C3c08q8+Cysing;8)
+ (exp p38)(Cgcosq36+4Cesingzb)

V z (exp p18)(Cy Y +CoYa )+ (exp P26 ) (C3YV3+CyYy)
+ (exp p36)(CsY5+4CqYe)

¢ : (exp py8)(CyY7+4CoYg)+ (exp pp08)(C3Yg+CyY )
+ (exp p36)(CgY 4+Cg¥yp}

The bending moment {i,2) takes the form

M* = -(R/EI)M = (dé"/de)
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M* - (exp py8)(Cy{(QqYp-P1Y7)-Ca(q3Y74pP4Yg)])
+(exp p20)(C3(q2Y10-P2Y9)-Ca(q2Yg+P2Y1q))

+(exp p30)(Cs(q3Yy5-P3Y11)-Ce(q3Yy4+pP3Yy2))

where,

Yy = Dycosqq6+Dys31inqy0 ; Y7 = D7ycosqy0-Dgsing®

Yo, =-Dpcosqq08+Dysing @ H Yg = Dgcosqq0+4Dysing@

Y3 = D3co0sqp0+Dysinqgp0 i Y9 = Dgcosqpy0-Dygsing,@

Yy - -Dygcosqp@+4D3s31nqp8 H Yi0 = Dyoc0sqp0+Dgsingy0

Ygs = Dgcosq3z8+Dgsing30 : Yyq4 = Dgyqcosq30-Dyp8inqze

Yg = -Dgcosq38+Dgsinqze i Yy2 = Dypcosq3zf+Dyysinq3@
Dy=[-pg (Kq? +Kp? )-hy(KyHy 4 -KoHyp)+hqoZ (K Hyp+KoH )]/ (K¢t +Kpt )
Do=[qq(Kq? +Kp? )+hp (KqHyo+KoHy ¢ )+heZ (KqHyq-KoHy2))/ (Kqt +Kpt )
D3:=[-pa (K3t +Ky! )-hg (K3H33-K4H34)+ hgZ (K3H34+KqH33)])/ (K3t 4Kyt )
Dg=[qp(K3? +Kg? )¢hg(K3H34+KyH33)+hgZ (K3H33-K4H34)]/ (K3t 4Kyt )
Dg=(-p3(Kgt +Kg? )-hg (KsHgs-KeHgg)+hoZ (KgHge+ KgHgs)) / (K5t +Kg? )
Dg=(q3 (K5t +Kgt )+he (KgHge+Kglgs )+ hoZ (KgHgs-KgHgg )1/ (Kt +Kgt )
D= (KyHy -KpHyp)/(Kqt 4Kpt ) ; Dg= [KqH p+KoH )/ (Kqt+Kpt )
Dg=[K3H33-KyH34)/(K3' +Kg? ) i Dyq= (K3H3y+KyH33)/ (K3t +Ky! )
Dyy: (KsHs5-KeHsg)/ (Kgt +Kgt ) i Dyp=[KsHgge+KeHgs)/ (Ks! +Kgt )
Ky = 1-hyhg+Zhe2 ; Kp = hghgeZhyhg ; K3 = 1-hphg+Zhg?

Ky = hghgtZhphg ; K5 = 1-hzhgeZhg? ; K¢ = hghg+Zhzhg

Hyg=hypg-hyasthyg:
H3gq=haq: hgpathy3;
hy=X(py2-q42)¢ 1y ;
hg=XZ(py2-q12)¢1p;
ho=2pgqX
hyg=(X+1)qyq ;

h15=(X+1)q3 H

hg:=2p292X ;

hiz:(X+1)p3 H

Hyp:-hyq

14+ hopathyy;
Hss=h3p3-hgq3thyy;
ha=X(Pp2-q22)¢1y ;
hg=XZ(p22-q22)+15;

hg:=2p3q3X i

14:XZ(Q-48)-1
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hyz=(X+1)qp ;

Hse=h3a3+hgp3thys
h3:=X(p32-q32)+1,

he:=XZ(p32-q32)+1;

h,oz(X+1)p1

h14:(X+1)p3
i 1p:X(022-43)-1




Toble |. Effects of Sheartng aond Extenstonal Deformattlons and
Elostte Faundattians on Frequencties of a Free Ring
a Y
X 0.0 3.0 3.0
z 0.0 0.001 0.0 0.001 0.001!
A BI o] 500 4] 500 0 500 4] 500 o] 500
0 0.0 0.0]|]0.0]0.0]0.0]0.010.0|0.0]31.62{38.72
| 0.0 {15.81] 0.0 [14.80] 0.0 |[15.81] 0.0 |14.80j44.69{47.73
2 2.6820.17|2.68 [19.93]12.68 [20.18] 2.66 |19.92|70.68|71.44
3 7.58 |22,53] 7.55 |22.37| 7.58 |22.52] 7.45 {22.34{99.98{100.2
4 114.55/26.12(14.43]25.89{14.55]|26.12{14.10{25.73}130.3}130.%5
8 162.50]|66.30{60.60]64.30|62.50]66.30|55.97]60.02|255 .0 255.0
12 1142.5]144.21133.2|134.8}142.51144.2{115.0}117.0{381.0]381.0
16 1254.5]255.51227.0(227.9{254.5]255.5]183.5{184 . 7{507.0{507.0
32 1023|1023 |718.5]718.7( 1023 | 1023 [488.51489.0| 1013 | 1013
Toble 2. Effects of Shearing ond Extenstlonal Deformatlons and
Elastlc Faundattians on Phase Veloctitles of a Free Ring
7, LL
X z.0 1C.C 3.0
7 0.0001 0.001 0.0001 0.001 0.000! 0.00!
N 61 o] 500 o] 500 4] 500 Q 500 o] 500 Q 500
0.21.009] .214].029] .572].009)] .214| .029| .572(5.098[5.217}5.099|6.178
| 4] 157 4] .468 4] 157 4] L4681 .414]1.,423]1 .414]1 .509
2 L0131 .010) .042 ) »315] .013).100[.0415] .31 1. 117} 1. 019} . 117} . 130
{0 ].096].099].265| .2731.094].096| .217 | .228 |1 .004f1.004}1.004]1.005
20 |.185].185] .406| .408 ] .167 '.|67 .279 ] .281 [1.COI{1.001}1.00I|I.00I
100 ] .481 ) .481 | .564 [ .564 | .300]| .300{ .314 ] .3i5|1.00|1.00)1.00]1.00
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Table 3. Effects of Ext

enstlonal and Shearing Deformatlons gnd
Elastic Foundag

tlons on Frequenclaes of Fixed-Arches
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frequencles of a free ring.
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VIBRATION ANALYSIS OF FINITE UNIFORM STRUCTURES USING THE HARMONIC RESPONSE
FUNCTIONS OF THE INFINITE STRUCTURE

D.J. Mead and Y. Yaman

Department of Aeronautics & Astrcnautics
University of Southampton
Southampton SO9 SNH, England

Summary

The harmonic response of a uniform infinite struciure (e.g. a beam, flat plate, sandwich
plate etc) to a point force or moment can usually be found in closed form by solving the
corresponding wave equation. The motion of the infinite structure can then be easily
understood in terms of the wave motion generated by the source. The harmonic transfer
function so obtained can very easily be incorporated in an analysis to study the forced harmonic
response of a finite structure to a point force when that structure is on multiple supports having
elastic and inertial properties. The method has already been applied by one of the authars to
determine the propagation constants of infinite periodiz structures. This paper shows how the
concepts may be applied to finite uniform structures. As an introductory example Euler-Bernoulli
beams on multiple irregular supports are studied. Harmonic responses are easily found. Both
single-point and multi-point harmonic excitation can be studied wth equal faciliny The forced
response of a single-point-excited infinite periodic beam is also demonstrated, this having
application to railway lines on their flexible sleepers. Damping is easily included ir the system.
An example is also shown of the response of a heavily-damped sandwich plate which is stiffened
at regular intervals and is excited by a line force. The superiority of this method over other
mnethods of analysis described.

1. INTRODUCTION

In a previous study [1], Mead analysed the wave pronagation in periodic uniform beams
and plates. The systems were infinite in extent and had harmonic pnased arrays of forces and
moments imposed upon them by the supports at regu’ar intervals. The concept of an 'Infinite
system point receptance function’ was used. This function gives the response of the infinite
uniform structure to just one harmonic force or moinent and is easy to calculate.

The method of [1] has subsequently been applied to the study of free wave propagation
in a uniform three-layered sandwich plate anid has been found to yield satisfactory results. The
forced response of the three-layered plate when forced in one of its bays by a harmonic force or
moment has aiso been studied. It was found that the total response due to each of the supports
and external forces can conveniently be analysed by considering their appropriate individual
infinite system point receptance functions.

These results encouraged further analyses of muitibay finite structures using these
functions. The conventional methods of analysis, such as finite structrue receptance approaches,
can be very long and often tedious. The analysis gets further complicated if one wants to include
both inertial and elastic properties of the supports (e.g. stiffeners on the plate). The purpose of
the current study is therefore to develop this easy-to-apply and accurate analystical method.

In finite uniform structures, each external excitation sends out waves in both directions as
in the case of infinite structures and these outgoing waves are reflected from the ends. The
magnitudes of the refiected waves and the magnitudes of any intermediate reactions which may
exist constitute the unknowns. They can be found by satisfying the relevant boundary conditions
of the total structure at each end and at each intermediate support and forming these boundary
conditions into a matrix equation for the unknowns. These equations enable one to analyse
different external loading conditions with great ease.

This paper basically illustrates the method by applying it to the simple cases of uniform
Euler-Bernoulli beams having various support conditions. Damping was introduced through the
complex flexural rigidity, in the form of EI (1 +in). Some results obtained from these beams are
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presented together with some results from the more complicated case of sandwich plates
supported on stiffeners.

2. THEORY

Consider the infinite beam of Figure 1(3). When a harmonic force Feiwt acts on the beam
at x =0 the transverse motion to the right or left of the force can be expressed in the form;

N .
-k x wwt
wix,t) = Z ae e ("
n=1
iwt wix,t
A Foe 1\ ( )
<IN 8(x,t)
. R — —— 00 (3)
X:0 X / )
iwt wix,1
M h
\Yer T AN et
~00 e g 3 o0 (b)
o — 1/
Figure 1. Diagram of Forcing, Response and Sign Convent.ons
(a) Infinite Beam with a Harmonic Force
(b) Infinite Beam with a Harmonic Moment.

The k,'s are the wave numbers of the N free ‘waves which can travel in the positive
direction in the beam. A purely real wave number implies a decaying motion, whereas a purely
imaginary one defines a propagating motion with constant amplitude. N depends on the
number of degrees of freedom of the cross-section of the beam. For an Euler-Bernoulli beam
N =2, the freedoms being transverse motion and rotation. In this case ky =k and k; = ik, where
k= (pw/EDt. In the case of three layered uniform sandwich plate N = 3 at low frequencies.

Figure 1(b) shows an infinite uniform beam subjected to a harmonic moment. In this case
the transverse motion to the right of the moment can be writter: as,

L
n=1

2 .
-k twe
wix,t) = Mo D bne "xe (2)

Similar expressions can be written for the rotations 8 = dw/dx as follows:

2 —k xiwt (3)
B(H=F, z gle "Ie

n=1

2 —k x iwt . (4)
0GH=M D de "e

n=1

Expressions for the coefficients a,, b,, ¢,y dn can easily be found by consit 2ring the
relevant equilibrium conditions at the point of application of the force or momer.:. For a
uniform Euler-Bernoulli beam they are determined as [1]
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a = -V4EIR3 as = ial

by = -1/4EIk2 bo = -by
et = 14EIk? ez = -¢y (5)
dy = V4Elk ds = idy

In all the subsequent work, it will be asumed that all the forces and displacements are
harmonic, so the eiwt term will usually be omitted.

2.1 The Forced Response of a Finite Beam

When a finite structure is harmonically forced at a point, the wave motion generated by
the applied force propagates outwards to the ends where the waves are reflected. In the case of
uniform beams, one propagating and one near-field wave are reflected from each end and these
travel back to the other end of the beam. Total motion in the beam is therefore the sum of the
motion generated by the applied force as if it was acting on an infinite beam plus the motion due
to the four reflected waves. Figure 2 illustrates this total wave system for an Euler-Bernoulli
beam.

Fo

i
L

-

NS

—

Figure 2. The Generated and Reflected Waves of a Finite Uniform Beam Under the
Influence of a Single Applied Force

Within the context of the current study the reflected waves will be called 'free waves’
whereas the motion generated by the applied forces will be referred to as 'forced wave'. Hence
by considering the Figures 1 and 2 it can be seen that the forced wave responses are given by the
relevant infinite system point receptance functions of equations (1) to (4). On the other hand the
free wave response of the culer-Bernoulli beam is given by,

4 k x ()
w(x) = EAue" (6)

n=1
where the A,'s are the coefficients yet to be determined from the boundary conditions. As

an introductory example assume that the two extreme ends are simply-supported. By satisfying
the appropriate boundary conditions the following equations can be obtained.

4 2 —Er
wio) =0 : S_ A il E ae n0-yg
n=1 n=1
4 2
" . -k x
wo)=0: > kA +F > kae "°=0
n‘:l nn 0"=l nn
" 4 k L 2 ~k tL~x))
wi)=0: > KA e" +F D kae " U=
n=1 n=1
4 2
k L ~k (L-x)
wil)=0: > Ae" +F > ae " =0 @)
n=l n=1
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where '*' indicates 92/dx2

These simultaneous equations can be put into a matrix form and the resultant equation
for the 4 unknown A,'s becomes:

=, - o 2 =
T T -k x
0
1 1 1 1 A, F D ae
n=1
2
-k x
L A, F D kae "°
n=1
2 kL 2 —kL 2 ikl 2 —ihl 2 2 -k (L—xol
k% k' -k —k‘e A3 Foiknane n
n=1
2
Rl —kL kL — (kL -k tL-x)
€ e 3 e i F E ae al %
L _l L - - n=1 )

(8)

2.2 The Response of a Finite Beam to Multiple Forces

Consider the beam of Figure 2 and assume that another force with a magnitude of F
acts at x;. If the ends are simply-supported, the matrix equation can be shown to be:

~ ) e — - —
2 2
-k x -k x
= ] A 1
1 ] 1 1 Al Fa ae B +Fl pon ane L
n=1 nw=l
2 . 2 .
2 2 2 2 N 12 n0 2 "l
ok —k —k A, F o> Kae "P+F D k’ae
n=1 n=1
RN A ¥ 1 A Y3 A 2 g ktl-xy) 2 g —klL-x)
¢ e —k% e
3 Fﬂ 2. knane +Fl Z knane
st a1
A M L > A L XA %. -k Lz
4 F 2 ae +F, 2 ace
L ~ L a=1 n=l
-l -
. 9

Again, as in the previous section, the terms relating to the known external forces appear
on the right hand side and those relating to the free (reflected) response are contained within
the matrix on the left-hand side. One can easily and conveniently incorporate any number of
external forces and/or any combination of external ioadings. Notice that the left hand side of
Equation (9) is identical to that of Equation (8).
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Once the unknown A,'s are found the total response ‘w' at any point x,. can be
determined as:

4 2 2
k z —k Iz —x({ -k Ix ~x[ (10)
— nr nr nr 1
wix) = Z Ane +F, Z ae + B Z ae
n=1 =1

n=1
2.3 The Response of Finite Multi-Supported Beam

2.3.1 The Beam on Simple Supports

Now consider a six bay finite uniform beam on simple supports. Figure 3 represents the
model. The intermediate supports supply unknown transverse forces each of which generates its
own ‘forced wave field' identical in form to the forced waves of the external forces, but
porportional to the unknown reaction force. There are still four ‘free waves' reflected back from
the extreme ends. Hence the total number of unknowns are the magnitudes of four 'free waves'
plus the magnitudes of the reactions R at the intermediate supports. This requires further
equations which are found by satisfying the boundary conditions at each intermediate support
location.

Consider the condition at the support x = x. The displacement at this point due to all
the intermediate support reactions R x p (p = 1, 5), the external force Fo and the waves reflected
from the ends is,

4 3
k x -k (x,~x,) —k (x,—x,) —k (x,—x
_ a*2 at%2™ n'f2™ %2 S 3%
w(xz)— E Ane -4-11’.1:l E ae +Rx2 E a.e +R:3 ace
n=1 n=1 n=1 n=1
2 2 2
-k (x,-x -k (x,-x_) —k (X ~x
n5am%) I S5ra) | 'S0~ (11)
+Rx4 E ae +R:5 Elane +I'0 E ae
n=1 n= n=1

Similar expressions can be writtan down for the other intermediate supports. !f these
supports do not deflect, the corresponding vertical displacements should be set to zero. This
yields 5 equations. Another 4 can be written down to express zero displacement and curvature at
the beam ends. Altogether we now have 9 equations for the 9 unknowns (5 R x p's and 4 A,'s)
and they are found by numerical solution of the equation.

X0 4\ FO
X 5 4 b
"4‘4 X3
X4
X5
L
Figure 3. 6 Bay Uniform Beam on Simple Supports

The response at any point z, on the beam is now found from,
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2.3.2 The Finite Beam on Transversely Elastic Supports

Now suppose the support at x; is elastic, requiring a transverse force of s; to produce unit
w (x;). The reaction force R, is given by R; = -s;w(xj). Using Equation (11) for w (x;) one then finds
the modified boundary condition for support x, (a(ter some rearrangement) to be,

4 5 2 2
-k x -x./ ~k (x.-x) 1
Ay ] Rm N =
S Ae +ZR Zane +RJ 2.a.ze +s
n=1 m=1 n=1 n=1 i
m#j
2 -kn/zo-xj / (13)
= —Fo z ae
n=1i

Five such equations exist for five elastic intermediate supports and four other equations
exist which represent the boundary conditions at the extreme ends of the beam (as before). If
those ends are elastically supported, the corresponding equations must be modifi -d to allow for
the support flexibility. The nine equations in all are easily solved for the unknown A,'s and
R x p's, allowing the response w(x,) to be calculated.

3. COMPUTED RESULTS AND DISCUSSION

In order to verify the validity of the method, it was first applied to some simple cases
where results from previous investigations are available. The above equations have been
programmed for computer and have been studied for a number of cases. In the case of uniform
Euler-Bernoulli beams the following non-dimensional parameters have been used.

ND Frequency Q: wXL2 (p/EN'/2

ND Receptance: o ( —}1)
FAxi3

d

3
ND Transverse Stiffness K: ( {I:_ )
t\ EI

where £ - Young's modulus [N/m2], [ = Second moment of Area of the bean seclion
[m3], XL = Bay Length [m], p = mass per unit length [kg/m], @ = Angular Frequency [rad/s], s; =
Translational Stiffness [N/m].

3.1 Finite Beam on Simple Supports

A six bay uniform beam having equal bays was considered. The intermediate supports
were taken as simple ones, whereas the outer edge conditions were in turn made i) Simply-
Supported, ii) Clamped-Clamped, iii} Free-Free. Verylow damping (n = 0.000001) was assigned
to *he beams, and the frequency response curves were generated by using equation (12).
Resonance frequencies were very precisely located by an iterative procedure. Figure 4 shows the
frequency response curves (i.e. receptances vs frequency). The resonance frequencies obtained
from these are compared in Table 1 with the natural frequencies of the beams quoted in [2]. It
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can be seen that on the wiole the agreement reached is impeccable, with a maximum difference
0f0.2%.

Simply-Supported Clamped-Clamped Free-Free
Nat. Freq Ref. 2 Present Ref. 2 Present Ref.2  Present
Work Work Work
1 9.87 9.87 10.63 10.63 2.36 2.36
2 10.63 10.63 12.65 12.65 2.38 2.38
3 12.65 12.65 15.42 15.42 10.69 10.69
4 15.42 15.42 18.47 18.47 12.73 12.73
5 18.43 18.47 21.18 21.17 15.42 15.42
6 21.18 21.17 22.37 22.37 18.36 18.36

Table 1. Comparison of Uniform 8eam Natural Frequencies (Q's)
The modes of vibration of the beam with free ends have been computed from equation
(12) for two particular frequencies and these are presented in Figure 5. As can he seen they
represent the fundamental symmetric and antisymmetric modes.

32 Infinite B2am on Periodic Transversely Flexible Supports

Space has not permitted the presentation of the theory for this beam, so this must be the
subject of a future publication. However, a combination of this approach already outlined,
together with the use of phased-array receptance functions [1] has permitted the caiculation of
the response. :n an infinite beam to a single point force acting at x from the left-hand end of the
excited bay (Bay length = XL). Figure 6 shows the ND response at the loading point, for
different values of x. This particular problem can be applied to railway line vibration theory, thn
line being "upported on periodic flexible sieepers.

Figure 6 shows that at low frequencies the response increases as the loading point moves
towards the centre of the bay. At higher frequencies, the response may be highest when the
load acts elsewhere. As the beam is now periodic, the peak responses occur in the characteeristic
‘frequency pass-bands’, with much lower responses in the intermediate 'attenuation bands'.

33 Finite Three-Layered Sandwich Plate on Periodic Stiffeners

A uniform sandwich plate having two ecr:al face plates has next been considered. A
sinusoidal line force excitation was assumed to a:t in the middle of the second bay. The plate
rested on simple supports along the length whereas across the width the stiffeners having elastic
and inertial properties provided the constraints. The coupling between the tranverse and
torsional motions of the stiffener was included in the analysis. Damping B was introduced
through the complex core shear modulus, in the form of Ge = Ge (1 +if). The plate consisted of
6 equal bays each with alength of XL = 0.17 [m] and an aspect ratio of 2 The thicknesses of face
plates and core were taken as h=0.87 [mm] and hc = 1.1 [mm] respectively. The responses of
heavily and lightly damped six-bay plate are shown in Figure 7.

As the structure is periodic, resonances are bunched together in the bands indicated by
the lightly damped curve. With heavy damping the resonance peaks merge together to form,
low humps in the same bands. Using the current method of analysis, the computational effort
required to calculate the response and corresponding modes is less when the damping is heavy
than when it is light, even though the modes are heavily complex. This is because fewer
frequency points are required to define the response curve for the heavily damped structure.
Scarcely any extra effort would be required to calculate the responses and modes if extra
harmonic forces or distributed pressures acted on the plate.
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4.

CONCLUSIONS

It has been demonstrated that the use of infinite system point receptance functions

greatly simplifies the vibrational analysis of uniform beam structures. Those functions depend
cnly on one set of wave numpers and a corresponding set of coefficients. They are very easily
obtained for the structures considered in this paper.

Using these functions a simple and analytically exact method has been presented for the

determination of the response of uniform multi-span beams and plates which are under point
and line excitations respectively. The method is very easily developed to determine the response
due to distributed loadings which have simple analytical forms. The superiority of the proposed
method over the other traditional methods lies in the fact that any number and any combination
of the possible loading conditions can easily be deait with. Furthermore the bays need not to be
equal and elastic and inertial characteristics of the supports can conveniently be included.

5.
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RANDOMLY DISORDERED PERIGDIC
STRUCTURES

G. J. Kissel
Jet Propulsion Laboratory
Calif rnia Institute of Technology

1 INTRODUCTION

Spatially periodic systems occur in many engineering and physical contexts. Here we
consider periodic structures in one linear dimension, like the skin-stringer panels ¢l an
airplane or a periodic truss structure to be deployed in space. Dynamically, periodic
structures are characterized by mode shapes which are themselves periodic (see Figure
1), or equivalently, from a traveling wave perspective, by frequency bands which
alternately pass and stop traveling waves. This is the familiar passband/stopband
property characteristic of all periodic systems.

Because of manufacturing and assembly defects no structure will be perfectly pe-
riodic. The disorder in periodicity is assumed to be distributed among all the bays
of the structure and not sprinkled in a few. Disordered periodic structures have been
examined in (1], [2] and [3]. The paper [1] considered a beam on up to six randomly

spaced supports and numerically averaged frequency response functions when the

beam was nnder paint loading and convected lcading. In [2] wave propagation was

investigated for a section of beam on supports with spacing deterministically disor-
dered between supports. The disordered segment was inserted between two perfectly
periodic segments. Unfortunately, there was not a clear description of the underlying
physics for the ubserved results in any of the above papers.

Probably the most successful paradigm used to study the effects of disorder in
periodic systems i the localization paradigm. Hodges in [3] was the iirs to identify
the analogy between the localization phenomenon studied tor the past .0 yeaxs in solid
state physics and the same effect manifesting itself in diserdered perindic structures
of interest to the engineer. Philip Anderson [4] was the first pers.n to explain the
localization phenomenon; this was in the context of electron propagation in disordered
crystals. He was later awarded the Nobel Prize for Physics in 1977 in part for his
work on localization. The appellation “localization” specifically refers to the fact that
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mode shapes are now spatizlly localized in disordered periodic systems (see Figure 2).
Equivalently, from a traveling wave perspective, waves are attennated in all frequency

bands, even in what had been the passbands of the correspond’~ ¢ perfectly periodic
system.

Once we have decided to rely on the localization paradigm to study the dynamic
effects of disorder in periodic structures, we still have a surprising array of methods
from wliich to begin our analysis. We might, for example, choose to study, numerically
and analytically, the localized mode shapes of the disordered system. This has not
proven to be a particularly fruitful approach. More success has come from using a
traveling wave perspective. But even at this juncture there are several perspectives
to take. Hodges used a heuristic wave approach in [3] to study localization effects
in a beam on randomly spaced supports. His approach is not easily adaptable to
other disordered structures and did not even give localization effects as a function
of frequency. Anderson et al [5] used an approach based on the scattering matrix of
each bay of the disordered system. This methodology can be cumbersome and again
has not given localization effects as a function of frequency. Apparently the most
successful approach to localization studies utilizes the transfer matriz formalism. Here
each bay of the disordered periodic system is modeled via a random transfer matrix,
and, as a result, the entire disordered periodic structure is modeled via a product of
random transfer matrices. This in turn allows us to appeal to theories on products
of random matrices from which we can infer asymptotically (as the number of bays
becomes very large) the transmission properties of the disordered system. In addition,
analytical equations are available from which frequency dependent localization effects
can be readily calculated. Such an approach has been used successfully in [6], [7] and
[8]. It is the purpose of this paper to describe the dynamic effects of disorder in
normally perfectly periodic structures using the localization paradigm along with the
transfer matrix formalism and theories on products of random matrices.’

2 PREVIEW

in the remaining sections, afier discussing the modeling of disordered periodic struc-
tures with transfer matrices, we will first consider the problem of localization in dis-
ordered periodic systems carrying a single pair of waves. We will use the theorem of
Furstenberg on products of random niatrices to show that waves decay exponentially
in a disordered system. We will then state a formula to approximate localization ef-
fects as a function of frequency and demonstrate this approximation in Section 5 on a
Bernoulli-Euler beam on simple supports with random lengths between supports. In
Section 6 we will examine the localization phenomenon in disordered periodic struc-
tures carrying a multiplicity of wave types at a given frequency. Here we make use of
the theorem of Oseledets on products of random matrices to derive a localization fac-
tor as a function of the transmission properties of the disordered multiwave system.
Concluding remarks are made in the final section.
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3 MODELING OF PERIODIC AND DISORDERED PERIODIC STRUCTURES

Each bay of a periodic structure can be modeled with a transfer matrix, T, which
relates a state vector, in physical coordinates, of one cross-section to the state vector
of the succeeding cross-section

X =Tx;
Because each bay is identical, the state vector after n bays is simply related to the
state vector at the beginning

X, = T"X,

When a periodic structure is disordered it can no longer be modeled with T", but
can be modeled with a product of random transfer matrices

n
HTj:Tn"'Tl
=1

Here we assume that the transfer matrix is a functicn of a random variable, a.
So T = T(a). Because the disorder is distributed among all the bays, the random
variables are indepeudent and identically distributed.

We want to concentrate on the effects disorder has on propagating waves. Because
strong wave attenuation already occurs in the stopbands, our focus is on the effects
of disorder at the frequencies in the passbands of the normally perfectly periodic
structure, which is where propagating waves exist. Our wave analysis is possible if
we transform each transfer matrix into a wave transfer matrix, W;. This is done
by using the average transfer matrix’s eigenvector transformation, X, which makes a
transformation from physical coordinates to wave coordinates. For the time being we
look at a single disordered segment in the middle of a perfectly periodic structure.
The perfectly periodic structure corresponds to the mean of the disordered segment.
We have

W, =X"'T;X

by
W= | i ]
L Y J
So waves traveling along the perfectly periodic structure are either transmitted or
reflected by the disordered segment j. Here t; is the transmission coefficient, r;
is the reflection coefficient and # is complex conjugate. Physically |¢;|* represents
the ratio of transmitted energy to incident energy and |r;|* represents the ratio of
reflected energy to incident energy for this disordered segment. Because we include
no damping in our models, energy conservation implies that |¢;]* + |r;|* = 1. (Note
that in the passbands of the perfectly periodic structure t; = e™** and r; = 0 for all
7, where 2 = —1 and & is the wave number.) So the wave transfer matrix for the n
disordered bays, again with a perfectly periodic structure on either side, is

where

1 _p
Wn---Wx=[_’};, _1:"} (1)
oo




where 1, is the transmission coefficient and p, is the reflection coefficient. Here |‘r,,|2
is the ratio of transmitied energy to incident energy for the n bay disordered system.

4 CALCULATION OF LOCALIZATION EFFECTS VIA FURSTENBERG’S
THEOREM

While it is difficult for us to make a rigorous statement about the transmission prop-
erties of a disordered periodic system with a finite number of bays, we are able to
come to some rigorous conclusions wheu the number of bavs becomes very large. We

come to these conclusions by appealing to a theorem of Furstenberg [9,10] on products
of random matrices. His theorem says that

1
lim ;1n||W,.---W1|| =+, wpl

n—00

where 4 > 0, and w.p. 1 means the result holds with probability one.

The physical interpretation of this limiting behavior can be seen by taking any
matrix norm of the randor . matrix product in Equati... (1) and by performing the
indicated limiting operation. Doing this we find

.1
v=— lim ;1n|r,,| w.p. 1 (2)

which tells us that
|7l ~ (e7™)?

the transmitted energy decays exponentially with the number of bays. This is the
localization effect manifesting itself from a wave perspective. Here v is called the
localization factor. This result holds for any level of disorder and even though no
damping is present in our model. Note here that we are not taking an ensemble
average in Equation (2). The result holds asymptotically. Variables that behave in
this way are called self-averaging. It has been argued elsewhere [11] that the degree
of spatial localization of the mode shapes is governed by an envelope of the form e~",

Clearly we do not want to take the above limits in order to find the localization
factor 4. Fortunately we can use further results of Furstenberg to derive an approx-
imation to v to first order in the variance of the random variable of the disordered
periodic structure. Here we state that approximation; the motivated reader can con-
sult (7} and (8] for the details of the derivation. Letting a be the random variable, 0%
its variance and ﬁ the (1,1) term in the random wave transfer matrix we find

1,8 ||
1= 300 G e + olel) ®)

Note that the second partial derivative is evaluated at < a >, the mean value of a.
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O CALCULATION OF LOCALIZATION EFFECTS FOR A BEAM ON SIMPLE
SUPPORTS

With Equation (3) we can now calculate localization effects as a furction of frequency
in the passbands of what is normally a periodic structure. To illustrate these calcula-
tions we examine a Bernoulli-Euler beam on simple supports (see Figure 3) where the
distance between supports is randomized. Here we take the random variable to be a
nondimensional length, 2:—> = i, where it is randomized +.1% from its average value
of 1. The necessary calculations are quite involved and the interested reader should
consult [8] for details. Here it will suffice to present the results graphically. In Figure
4 we plot log,o(7) versus a nondimensional frequency & = w\/gl, for the first eight
passbands of the periodic system. Localization would add a small amount of extra
attenuation to the huge amount already existing in the stopbands. The results are
confirmed with a Monte Carlo simulation which involved averaging — In |{t(a)| over
an ensemble of 1001 realizations. Note that we did not have to take a product of
random matrices to get good Monte Carlo results. From Figure 4 we see that the
localization factor is most pronounced at the edges of the passbands, near the stop-
bands, while it is diminished in the middle of the passbands. Clearly, the locdlization
factor is a strongly varying function of frequency and contrary to the result of [3],
the localization effects do not become constant at high frequency.

The attenuation caused by the disorder is unlike that of dissipation. Here io-
calization prevents the wave from traveling along the structure, unlike the case for
a perfectly periodic system, where the wave would travel without attenuation. Lo-
calization tends to confine the wave near its point of origin, where it is eventually
dissipated by the damping that exists in all real structures. The implication of these
results is that experimental measuremen'~ made on a beam of supposedly evenly sep-
arated supports could be most susceptible to the inevitable disorder that exists at
frequencies near the stopbands.

6 LOCALIZATION IN MULTIWAVFE DISORNERED PERIODIC STRUATURES

Most real structures do not carry a single pair of waves, but carry a multiplicity
of wave types at a given frequency. This implies that their transfer matrices are
of dimension 2d x 2d with d > 1. This higher dimensionality greatly complicates
the analysis of the localization phenomenon. Multiwave localization has received no
attention in the engineering literature and only recently have researchers looked at
the corresponding problem in solid state physics. Our goal in this section is to provide
the multiwave analog to our single wave result of Equation (2) showing explicitly how
the transmission properties are disrupted.

Again, we model our disordered periodic system via a product of random transfer
matrices, and we will rely on a theory for products of random matrices to guide our
work. We use the theorem of Oseledets [12,10] on products of random matrices. In
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addition, we will make two assumptions about our wave transfer matrices, W. First
we assume that W is symplectic. A matrix is symplectic if

WIIW =J

0 I
An important property of symplectic matrices is that their eigenvalues occur in recip-
rocal pairs, A and § Note that we take a matrix transpose in the above even though

W is a complex matrix. The symplecticity of W is a consequence of its corresponding
scattoring and impedance matrices being symmetric.

where

We also assume that W is an element of the special unitary group SU(d, d). The
word special means that the matrix has determinant equal to one. A matrix W is an

element of SU(d,d) if
wWIAW = A

I 0O
This group theoretic property follows from the corresponding scattering matrix being

unitary, which in turn follows from our assuming no dissipation in the system and
excluding any evanescent waves that exist simultaneously with the traveling waves.

where

The wave transfer matrix for the n bay disordered periodic structure is

—1n % —1=

W W= —m“pn}
s l__Tn Pn Tn

where 7, is the transmission matrix and p, is the reflection matrix. The special form

of the wave transfer matrix above is a consequence of it being both symplectic and
an element of SU(d, d).

The theorem of Oseledets says
Jim (W, -+ W) (W, .- Wy)]5s =B w.p. 1

where B is a random matrix, whose eigenvalues are nonrandom. The 2d eigenvalues
of B are e™,:-- €%, e~ %,... 7" where 7, > -+ > 4 > 0. The ;s are known as
Lyapunov exponents of the random matrix product.

The eigenvalues physically represent d pairs of waves traveling in both directions.
The theorem of Furstenberg allows us to calculate 7y;, the uppermost Lyapunov expo-
nent. However, in this multiwave case with 74 < 71, 44 represents the wave with the
least amount of decay and so it carries energy along the s‘ructure farther than any
other wave. Thus, the dth Lyapunov exponent, 74, is the anantity of interect when
calculating multiwave localization effects.

The derivation of 44 as a function of the transmission matrix takes a number of
pages, so the interested reader is directed to [8] for the details. The derivation depends

50




heavily on the fact that the wave transfer matrices ar. symplectic and elements of
SU(d,d). We find K

.1
~a == - lim = In|fnijlmes w.p. 1
n—+00 n

This tells us that the wave which propagates the farthest is governed by the element of
the transmission matrix, 7,,, with the maximum absolute value, which makes perfect
sense. Our result corrects the work of a few solid state physicists, including Anderson
[13], who have studied multiwave localization.

An analytical approximation for 74, analogous to Equation (3), is at least theo-
retically possible {8,10]. The actual derivation of the approximation is left as a future
research topic.

7 CONCLUSION

In this paper we have explored the effects disruption in periodicity has on the trans-
mission properties of normally perfectly periodic structures. Disorder is known to
spatially locelize mode shapes and attenuate traveling waves in all frequency bands.
This “localization” in disordered periodic systems was first discovered in solid state
physics, and we have chosen to exploit the analogy between localization occuring in
disordered crystals and conductors and the corresponding effect manifesting itself in
disordered periodic structures.

We modeled our disordered periodic structures via a product of random wave
transfer matrices, then, appealing to appropriate theorems on products of random
matrices, explicitly showed the disruption of wave transmission. For structures car-
rying a single pair of waves {those mcdeled with 2 X 2 transfer matrices) we also
presented an analytizal approximation for calculating the intensity of the localization
effect. This approximation was applied to a beam on unevenly spaced supports. The
results showed that the localization effects are most pronounced at frequencies at the
edges of the passbands (near the stopbands).

We also examined tte localization phenomenon in disordered periodic systems car-
rying a multiplicity of wave types at a given frequency (those modeled with transfer
matrices of dimension 2d X 2d with d > 1). A new result was presented - the multi-
wave localization factor as a function of the transmission properties of the disordered
system.
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Figure 1: Mode of a perfectly periodic structure.

Figure 2: Mode of a disordered periodic structure.

p,EI =0 >
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Figure 3: Bernoulli-Euler beam on simple supports.
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FREE VIBRATION OF RING STIFFENED CYLINDRICAL SHELLS
7 J. Wei and M. Petyt

Institute of Sound and Vibration Research
University of Southampton

1. INTRODUCTION

Cylindrical shells reinforced with rings, stringers, or both, have
been widely used in structural design by many industries. Various methods
have been developed for analysing the free vibration of such structures.
These methods can be divided into two main types: those where the
properties of the stiffeners are averaged over the surface of the shell and
those that consider the frtiffeners to be discrete. The first of these two
approaches is only applicable if there are a large number of closely and
equally spaced, identical stiffeners. A comprehensive survey of these
methods can be found in reference [1] by Rosen and Singer.

This paper is cooncerned with the analysis of ring stiffened
cylindrical shells where the stiffening rings are considered to be
discrete. One of the more popular methods of analysing discretely
stiffened shells is the Rayleigh-Ritz method. Egle and Sewall [2] and Egle
and Soder {3] have used this method to analyse orthogonally stiffened
cylindrical shells. However, Fgle and Soder observe that using the
solutions for the unstiffened shell as the assumed displacement functions
produces “erratic or, at least, unusual” convergence. In the present paper
this approach is re—examined and applied to ring stiffened cylindrical
shells. A modification is proposed which overcomes the difficulties with
the convergence. Indeed. accurate frequencies are produced using far fewer
temms than in reference {3]. It is also shown that the proposed method is
an extension of the method of Galletly [4] who used a one-~term solution
which accounted for the inter-ring deformation.

2. THEORETICAL ANALYSIS

The structure to be analysed is a uniform cylindrical shell of length
L, radius R and thickness h, having freely supported ends. It is stiffened
by means of thin-walled, open-gection rings which are identical and equally
spaced. The strain energy of the shell is derived using Flugge‘'s theory
and tnat ot the rings by Vlasov's thin-walled beam theory. Full details
may be found in reference {5].

The circumferential modal displacements of a ring stiffened cylinder
are either symmetric or anti-symmetric about a diameter of a cross-section.
In order to illustrate the method, only the symmetric modes are considered.
In this case the assumed displacements are:

u=£umcos-—£—“cosneainnt
v=2=L vy sm-—i—sin ne sin at (1)
w=§wmsin—£—¢osnesinnt
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where u, v and w are the axial, Circumferential ana radial dGisplacement

components of the shell middle surface. x is the axial coordinate and m
the half-wave number in the axial direction. € 1= the circumferential

coordinate and n the Circumferential wave number. Q is the circular
frequency ana t denctes time.

solution for the
are substituted into the
strain amd kinetic energy expressions for the rings there is coupling
between the axial assumeq functions.

The coupling terms are functions of
the following quantities:
cicj:fm'ar.mm'hnm‘ (2a)
Ci 84 = § cos l—"{—"‘ sin,!-':'nm (2b)
By st;a=£91nE-‘-L'—T!ksmu-hnm (2c)

in which xx is the x-coorainate of the xth ring and the surmation is taken

over the rnumber of rings. 2,3 = 2,2,3 ...etc. and my, my are the
corresponding axial half-wave nmbers.

It 18 difficult to oltain explicit expressione for the values of the

summations in (2), except wvhen the rings are equally spaced. In thig case,

let Ny, represent the total number of bays between rings and between rings
and the shell ends, then it can be shown that

f?htl if Imy ~ my| = 2pN), or Imy + my] = 2qN (3a)

Nptl if imy - my| = 2pMy, and |my + myl = 2qM (3b)
cj_Cj =

0 if Imj - my! 18 oaa (3c)

£1 otherwise (3a)

5 if img - myi = 2pmy, (4a)
8184 = —? if lm1+mj| = 2qNp (4b)

o if imy ~ my| = 2pMy, ana img + my| = 2qN,

or otherwisge (4c)
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(o] if |my -~ myl is even (5a)
8in !!’jb’_’
if imy - my| 18 oad (5b)
cor 3 - con B

vhere p and q are any integer or zero. The positive sign in Eq. (3) stands
for the cases with rings on both ends of the shell (Np = Ny — 1, where Np
is the number of the rings) while the negativs sign is8 for the cases where
there are no rings on both ends of the shell (Np = Ny + 1).

The coupling between even and odd axial terms is caused by ci84 (see
Eq. (5b)), where even or odd terms mean the terms having even or odd axial
half wave-number. However, the elements associated with cjs4 in both mass
and stiffness matrices of the ring mainly contain the products of products
of inertia of the ring cross-section, the coordinates of the shear centre
and the ratio of the eccentricity to the radius of the attachment point.
These quantities are usually small compared with others. Thus, the
coupling due to these elements may be less important and neglig._uole. This
is especially true if the ring cross--section has one symmetric axis passing
through the attachment point. This kind of coupling may be called
secondary coupling. Another secondary coupling is due to cjc4 shown in Eq.
(34). It causes the coupling between even or odd modes, and becomes
relatively small if the number of the rings increases. It is interesting
to notice that if only one end of the shell has a ring, this coupling will
vanish.

However, 1f these two kinds of secondary coupling are neglected, the
coupling relations between the axlal terms are simple.

For a given m, if m < Np, the coupling exists only between the terms
having

mg =m M, = 2Np - M, My = 2Ny + M, My = 4Np - M, ... (6a)
with
cycy = gb t ]
[ o0 i€ Imy - mg| = 2pNp
8L -
2585
l— gb if Imj + my| = 2gNp
Ifm = Np, the coupling exists only between
m, =Ny, m; = 3Ny, Wy = 5Ny, ..l (6b)
Ifm =0, then
m, =0, m = 2Ny, My = 4Ny, ...7s (6c)

Por the latter two cases,

€3¢y = Nptl
'13,1 =0 .
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It is only necessary to solve an eigenvalue problem which is formed by
retaining only the terms which are coupled tc one another. The resulting
generalised eigenvalue problem has been solved by first reducing it to a
standard eigenvalue problem. This eigenvalue problem was then solved using
a combined Householder/QL algorithn.

3. APPLICATIONS

Initially, calculations were carried out neglecting the secondary
coupling terms. Thus, for a given m < N, only the coupling terms
indicated by equations (6) were retaired.

3.1 cComparison with an exact solution

The present method is first applied to the shell analysed by Porsberg
[61. only the example which assumes that the rings are attached to the
shell along a 1line im considered. It is a four-bay shell which is
stiffened by three rings. The material properties and geometrical data are
given in column 2 of Table 1. The natural frequencies for symmetric,
external and internal rings are given in Table 2.

The agreement between the two methods is good. For an eccentricity,
he = 0, the present method predicts frequencies which are very close to the
exact solution, the maximum difference being 0.4% for n = 4, m = 3. The
ones predicted by the present method are greater than those predicted by
Forsherg except for lc# values of m. For hc = t 4.572 mm, the predictead
frequencies are also generally greater than the exact ones (except for two
modes in each case), the maximum difference being 2.3% for n = 4, m = 1,

Table 3 shows the convergence of the n = 2, m = 1 mode with increasing
number of terms. Nine terms have been used for the results in Table 2.

3.2 Comparison with the finite element method

Al-Najafi and Warburton {7] have used axi-symmetric shell finite
elements to analyse a six-bay shell stiffened by five external rings. The
rings have rectangular cross—sections. Three different Jepths have been
considered. The geometric and material properties are given in column B of
Table 1. They compare their predicted frequencies with experimentally
measured ones. The frequencies obtained with the present method (rows
marked (b)) are compared with both these sets in Table 4. It can be seen
that the present method produces frequencies which are lower than those
predicted by the finite element method. The differences are greatest for
the largest ring depth and the larger values of i and n, For example. when
d=25.4mn n= 4 and m = 6, the Adifference is 10%. All but one of the
predicted frequencies are greater than the measured frequencies.

3.3 Comparison with the conventional Rayleigh—-Ritz method

Egle and Soder "3] have used the Rayleigh-Ritz method to calculate the
natural frequencies of a 1l2-bay cylindrical shell stiffened by 13 rings
having rectangular cross-sections. The geometrical and material projerties
are given in column C of Table 1. They used symmetry about x = L/2 to
uncouple the odd and even axial modes. Their calculations were carried out
using 19 odd terms. Frequencies have been calculated using both 3 and 9
texrms in the present method. They are compared with the results of Egle
and Soder in Table 5. The 3 term snlution produces frequencies which are
lower than reference [3] for low values of n and similar frequencies for
high values of n. The 9 term solution produces frequencies which are lower
than those of reference [3] for all values of n. The modes coxresponding
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to hign values of n are dominated by inter-ring motion. The present
analysis used the same shell ara.iysis as reference [3], but a more accurate
ring analysis.

Using equation (Ga), it is not Aifficult to explain what Egle and
Soder called "tha erratic or unusual convergence”. PFor m = 1, the first 9
coupled terms are those having m = 1, 23, 25, 47, 49, 71, 73, 95 and 97.
‘The terms between -~ ~nd 23, 25 and 47, and 49 and 71 coniribute little to

the convergence and ., @ a false impression until the next coupled term is
included.

The advantage of the present method is obvious. %0 include the effect
of the ninth coupled term in the conventional Rayleigh-Ritz method
requires, for this example, the golution of an eigenproblem of order 147,
whilst the present method generates one of order 27.

3.4 The effect of the secondary coupling due to c;Cy

If the ring-stiffeners have a rectangular cross—section, the secondary
coupling due to ci8y (equation (5b)) does not exist, Therefore, such
stiffeners can be used to investigate the effect of secondary coupling due

to ciCy (equation (3d)). This causes coupling between even or odd temms
only.

Forsberg’'s shell was analysed using 35 terms which included secondary
coupling AQue to cjcCy. It was also analysed without this secondary
coupling., In this case, only 18 terms are coupled. The difference between
the two sets of frequencies was less than 1%.

warburton’s shell was analysed using 27 terms with secondarv coupling
and 9 terms without the coupling. The results are indicated by rows (c)
and (b) respectively in Table 4. In the case of the stiffeners with uepths
of 6.35 mm and 17.78 mm the differences are less than 0.5%., But for 4 =
25.4 mme, the differences are quite large for some values of n ana m. Fcr
example, wich n = 2 and m = 5, the difference is 10%. In this case, the
mode of vibration 1isg dominated by the rings. The neglect of secondary
coupling can be considered to be the same as applying some restraint in the
rings. When the vibration of the shell is dominated by the rings, it is
more sensitive to such restraints. Studies which investigate the effect of

the secondarv coupling c134 for thin-walled open-section rings are given in
reference {5].

4. INTER-RING MOTION

Inter-ring wotion has Dbeen shown to Dbe important Dby many
investigators. espacially when the shell is vibrating in the frequency
vagion in whici: its dynamic behaviour is dominated by the shell between the
rings, Galletly has "ised an additicnal cosine term 5. i.is8 one tem
displacement function to account for its 2ffect [4]. Wa’. and Bu (8] argued
‘that the inter-ring displacement patter) may have thr shape of a slightly
modified half-sine wave in their example. Al-Najufi and warburton (7]
discussed that in practice the ring usually is not stiff enough to provide
a clamped end condition for the shell between the rings and that the
inter-ring dAisplac ament nay be between the azbove two forms, but the latter

is more lixely, the case. Thus, it is hard to use one term to describe
inter-ring motion.

Unnsidering the displacesent function used in the present method, for
a given m < N, the radial component of displacement is
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w=cosne[w sin— + W sinM+' 01( +m)1rx+”.]
m,n myNn L myn

v = = -W
Letting hmzn —Nm!n =0 ’
1] = ~W = -W } .00 .. 8tC,
m,n mgn an

Equation (7) becaines

w=cosne[w + L

KNpmx X
m,n [2.e]:] 1 ] sin (8)

¥n T

k=2,4,6...

The first two terms in equation (8) are those used by Galletly, which
is a special combination of the first three terms in the present method.
This gives some understanding of how inter-ring motion can be expressgsd in
the present method. The coupling relations combine the terms which are
important for inter-ring motion in a given axial mode m. In this sense,
the present metbod can be considered as an extension of Galletly's method.

Table 6 shows a comparison between the natural frequencies of
wWarburton's shell calculated using Galletly's method and also the presrt a1t
method with 3 coupled terms only. Compared with Table 4, it can be seen
that Galletly's method becomes unsuitable as the rings become stiffer and
also as m and n increase, which is towards the region dominated by the
inter-ring motion. The present method with three terms provides more
flexibility for inter-ring motion than Galletly's rethod. Therefore,
better results are obtained which are also bettesr than the FEM results in
the region dominated by the inter-ring motion. It should also be notea
that Galletly's method is not suitable for calculating the frequencies when
o > Np.

5. CONCLUSIONS

The free vibration of cylindrical shells with equally spaced
ring—stiffeners and freely-supported end conditions have Dbeen analysed
using the Rayleigh-Ritz method. The coupling relationships produced by the
stifferers are discussed and a method of selecting the terms in the assumed
series presented. The results obtained are compared with those obtained by
other methods found in the literature. It is shown that the proposed
method is an extension of Galletly's method which allows for inter-ring
mot.ion.
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Table 1.

Data for numerical examples.

| A ‘ B ] c
Material properties
E Young's modulus; x 10° Nm™% | 72.4 204.1 | 206.9
p Mass density; kg m™3 2713 7033 7822
v Poisson's ratio; 0.32 0.29 0.3
Shell data = mm
L TLength 411.5 457,2 609.6
R Radius 77.57 108.0 152.4
h Thickness 1.524 3.861 0.381
Ring data = mm
Np Number of bays 4 6 12
Ny Number of rings 3 5 13
b wiath 5.08 6.35 3.05
6.35
a Depth 4.572 17.78 9.55
25.4
A = Forsberg's shell [6]
B = Warburton's shell [7]
C = Egle and Soder's shell [3]

Table 2. Comparison with Forsberg's exact solution [6].
Symmetric ring External ring Internal ring
Tig = 0.0 mm e = 4.572 mm he = 4.572 mm
"m | Forsberqg | Present Forsberg | Present FPorsberg | Present
1 788 787 854 858 999 999
2 2219 2220 2280 2274 2254 2272
3 3796 3798 391% 3899 3710 3745
1 1155 1149 1392 1424 2087 2090
2 1661 1659 1840 1862 2397 2407
2 2017 2617 2806 2817 3073 3092
1 1988 1979 2187 2237 3lel 3127
2 2132 2132 2296 2338 3085 3071
3 2535 2545 2644 2679 3vls 3049
* DIresent results are calculated with 9 terms.
Table 3. Convergence of sclution.
1 3 5 9 13 N
n m
FORSEezy || (Pressnc term | terms terms terms terms terms
2 1 854 External 958 897 872 858 855 854
2 1 999 Internal 1107 1050 1019 999 995 993
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Table 4. “omparison with PEM.
Onit = Hz
a mm ] n [m l 1 I 2 | 3 | 4 ] 5 l 6
a 834 | 2317 3767 4895 | 5715 -
21> 832 2302 3734 | 4853 5673 6404
a 809 2132 3421 - - -
6.35
a 2908 3014 3303 3795 4417 4903
5 b 2904 3011 3298 3780 4382 4837
a 2882 2985 3260 3741 | 4314 -
a | 1031 2257 3605 4701 | 5512 6038
2 | b} 1031 2245 3574 | 4655 | 5453 5798
qa 996 1615 4265 - = -
17.78
a 4596 4558 4596 4710 4850 4927
5 1 b | 4551 4512 4534 | 4632 4746 4799
a = 4518 4585 = 4780 =
a | 1223 2279 3528 4509 5105 5209
2 b 1222 2265 3480 | 4388 4836 4492
[ 1222 2263 3447 4171 4383 4415
a 1187 2082 3074 4285 = -
25.4
{ a | 4006 3983 4113 4357 4610 | 4651
b 3963 3902 3975 4141 4285 4200
i c | 3905 3864 3960 4052 4300 4299
qa 3881 3811 3883 = = 4126
i a = FEM's results from [7]
1 ‘b = present results using 9 terms (without cicj)
¢ = calculated with 27 odd or even terms (including €1C4)
d = experimental resultz from [7]

] Table 5. Comparison with Egle and Soder's results.

m=1 l External ring —l Symmetric ring
{ n I a | b | c ! a | b | c
2 462 459 491 454 453
4 1298 1171 1085 1226 1157 1155
6 2277 2187 1997 2556 2514 2464
10 2695 2682 2501 2995 2998 2842
14 2507 2507 2373 2601 2605 2476

3
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a = Egle and Soder's result calculated with 37 o4Ad texrms [3]
present results with 3 terms
present results with 9 terms




Table 6. Comparison with Galletly's method (Warburton‘'s shell).

4 m l n [m ] 1 ] 2 T 3 I A rs ] 6
a 84 2303 3736 4858 5685 6405
2
b 833 | 2303 | 373% 4856 5677 | 6404
| 1
6,35
a 2998 | 3114 3413 3913 4559 4839
5
b | 2981 | 3082 | 3360 3831 | a416 4237
a | 1050 | 2257 | 3597 | 4706 5550 | 5973
2
b 1045 2252 3587 4682 5502 5872
17.78 i
a 4829 4951 5223 5665 6251 4800
5
b | 4748 | 4678 | 4654 | 4699 | 4766 | 4800
a | 1257 | 2298 | 3562 4638 5462 | 5232
2
h 1247 2289 3522 4525 5182 4767
25.4
a | 4245 | 4367 | 4712 4271 5956 | 4314
42
b 4143 4066 4116 4260 4382 4247
a = calculated by using Galletly‘'s method [4]
b = calculated by using the present method with 3 terms

64




SENSITIVITY ANALYSIS AND DYNAMIC BEHAVIOKS
OF ROTATING PRETWISTED TAPERED BLADE

T.N. Shiau and C.C. Pan

Institute of Aeronautics and Astronautics
National Cheng Kung University
Taiwan

1. INTRODUCTION

Turbomachine blade failures are normally attributed to fatigue which usu-
ally occurs when the blade vibrates at or near resonant conditions. Hence, the major
goals of modorn engine blade designs are to minimize the noise and vibration, to as-
sure structural integrity, and to increase the overall performance of engine system. To
achieve these goals, many factors that influence the dynamic motion of a rotating blade
must be taken into account. For examples, the parameters of cross section asymme-
try, pretwist angle, taper, rotation, disc radius, setting angie, the acceleration of rotor
center, interblade coupling, elastic support stiffness, shrouding, and aerodynamic forces
can significantly affect the motion of the blades. In addition, turbomachine blades will
experiance instabilities caused by the gyroscopic motion. This precessional motion is
often encountered in cases such as flight through severe atmospheric turbulence, taxing
over rough runways, and turn maneuvers. Practically, it has been found impossible to
determine the blade characteristics fully with taking account of all the parameters.

The vibration analysis of nonrotating pretwisted tapered blade has been studied
by Carnegie and Thomas (1], and Rao [2]. A parametric study of vibration of rotating
pretwisted and tapered plate was investigated by Sreenivasamurthy and Ramamurti [3!
using finite element approach. The effect of two types of precessional velocity on the
dynamic behavior of rotating uniform straight blades was studied: (1) the constant
angular velocity case, Sisto (4], (2) the harmonic time dependent angular velocity ‘case,
Sisto (5]. The effect of Coriolis acceleration was also investigated by Sisto [6] using
perturbation method. Shiau and Tong (7] studied these two types of precessional velocity
on the dynamic behavior of rotating tapered blade case uring both a perturbation
method and Floquet theory.

Tn the present paper, the eflect of both constant and harmonic precessional angular
velocity on the dynamic stability and response of a pretwisted tapered blade is studied
using both a perturbation method and Floquet theory. In most cases, the rotor spinning
speed is very high so that the blade can be assumed to be cantilevered at the hub and
beam theory is applied to analyze the motion of high aspect ratio blade. The forshort-
ening effect of Vigneron (8], is considered for the displacement along the longitudinal
direction. of the blade. ‘

2. FORMULATION OF EQUATION OF MOTION

The rotating blade system considered in the present study is shown in Figure (la~

1c) and simplified with the following assumptions: the rotor disc is very rigid, the spin

speed of rotor is fixed, the magnitude of precessional velocity is very small compared
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to the rotor spin speed but its direction is fixed, the acceleration of rotor center and
the aerodynamic forces are neglected. To derive the systern governing equation, two
reference frames are used. The XYZ:F (xyz:R) triad is a fixed (rotation) reference with
the X and x axes being colinear and coincident with undeformed rotor centerline. R
is defined relative to F by a single rotaticn wt about X with w denoting the spinning
speed of the rotor. The total angular velocity of the blade can be expressed as

@ =w1i + Qfcos(1 + r)8 + cos(1 ~ r)6)/27
+ Qlsin(1 + r)8 + sin(1 ~ r)8)/2k (1)
where r = ~w*/w is a nondimensional frequency and 1 and w* are the magnitude
and frequency of precessional velocity, respectively, r is a nondimensional frequency. In
addition, § = v — wt is a nondimensional time and ~ is the angle between precessional
axis and Y axis. For the convenience, the local frame 7, &, z is utilized for ihe calcula-

tion of velocity (F') and strain / ,;) at any point of the blade. The total kinetic energy
(T) and potential energy (V) can be expressed as

T=%J/:+L//A o P\ dE de, v=%/:+L //AE(eu)zd,,dgdz 2)

where E is the Young’s modulus and R and L are the radius of disc and the length
of the blade. The expressions of velocity 7 and strain ¢,;) in equation (2) are written
as
F={(wcos @ + Ncos by sinB)(z + . + nuf’ — €u') — Q€ + u)sin b, } &,

+{u +n0sinf, — (wsinf — Qcos by cos f)(z + S +nuf’ — £u')} &

+ {Sz +nuf’ - &4 + (weos f ~ Ncos by cosB)(€ +u) ~n{weos B

+ Qcosf) sinf)} €, (3)

€2z =E(uf’? —u") + n(up"” + §'u') (4)

where v and S, are the displacements of the center of cross-section in £ and =z
direction respertively The parameter 7 is the angle of £-axis and z-axis at z = 2.
ihe derivatives (') and () aredefined as £ and,$ respectively. Let a be the taper
constant and x be the pretwist. One can express the width of blade {#) and pretwist
angle (4) at any cross-section as

-

b=br(l —a(z—R)/L|, B=pr+r(z—R)/L (5)

where a = (bgp — br)/bg and x = ft — Ar. The subscripts R and T rzpresent the
position of blade root and tip..

Using the assumed mode method, which is of the form:

u(zt) = TE)[1 ~ cos m(z - R)/2L] (6)
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where %(t) is the displacement of blade tip, and the Largrangian approach, the nonlinear
equation governing the blade tip motion is derived for the harmonic precessional case.
It can be expressed as

d4*%w
Eg—;ﬁ + [ao + €%a1 + €q1 cos8; + €2g3 cos 26, T
) ) - B L, d*T_ du
- €[3sinf; - sm02]q3u2 + q4[—u3 + 27? ¥TE] + 2% (E)Z]

= ¢’ Fy 8inf) cosf) + ¢F3 sinf; + €Fy sin6; (7)

where  cosf; = [cos(1 + r)6 + cos(l —r)8}/2
sinf, = [sin(1 + r)8 + sin(1 —r)6}/2
sinf; = [(1 + r)sin(l +r)8 + (1 — r)sin(1l - r)8}/2
0520y ={—1+0.5cos2(i +r)0 +0.5cos2(1 —r)f + cos 20 + cos 2r8]/2 (8)

and the parameters ag, ay, q1, 92, g3, and q4 are functions of taper constant, pretwist,
and blade geometry. The forcing terms in the R. H. S of equation (7) are due to the
contributions of gyroscopic effect. The gyroscopic facior ¢ is defined as the ratio of
magnitude of preceszional motion to the rotor spin speed, i.e. ¢ = /w << 1. The
parameter ag represent the nondimensional frequency without the gyroscopic effect.
The parameters a; and ¢, imply the centrifugal effect. The par. meters ¢q; and q are
the linear and nonlinear term due to the Coriolis effect respectively. The term of ¢4
represent the high order effect of displacement which can be neglected for high aspect
ratio blade compared to other terms. The equation (7) can be reduced to the form :

d*u
¥ril + (@0 + €%a1 + €q1 cos 6) + €2q2 cos 20| T ~ ¢[3sin8; ~ sin f2]gs4’

= ¢*Fysinf) cos, + eF, sinf, + €F3 sin 6, (9)

The solution of the lineatized nonlinear differential equation system, described by
equation (9) is assumed of the form:

T=uL +eu (10)
where uy satisfies the egation
d*u 0
= 202 +agug =0 (11
which has the solution:
ugp = Ag cos /ag 6 + By, sin \/ag 6 (12)

And u satisfies the following equation by neglecting the (eu)? term:

du
L k(o) = 1(6) (13)




-

where the coefficient & and forciug term f are both time dependent periodic functions
ie. k(8 +T)=k(6), f(6 +T)= f(9), and there are of the forms:

k(6) = |aa + €2ay + eqy cosfy + e2qy cos 20, — 2¢(3sin 8, —sinb) qzur]  (14)

f(8) = (3sinf, - sinﬁg)q;;u% — (€a;y + qq cosf) + eqy cos28;) uy,

+ e?F, sinf, cos, + eFysinfd, + eF3sin 8, (15)

3. STABILITY ANALYSIS

The instability of linearized differential equation system, described by the Mathieu
type equation (13) with time dependent coefficients is investigated using a perturbation
method and also the Floquet transition matrix method. The analysis procedures for the
pretwisted tapered blade case using the perturbation method are very similar to those
used in Sisto {6] for the uniform straight blade case. For the Floquet transition matrix
method, one can convert equation (13) into first order differential equation system by
setting

nh=y y2= % (16)
The result is given by
{#} + (D(8) {v} = {G(6)} (17)
where ()= 5, {0} = fonuab (G0} = 0.7, (D0 = [0 3] -

[D(8-+T)] =[D(6)], ¢t isthe transpose of a matrix, and T is the period of the system.

The stability of the linearized system, equation (17), is governed by the homoge-
neous part:

{9} + (D(8) {v} = {0} (18)

Based on Magnus and Winkler (5|, Bogolinbor and Mitropolsky [10], and Peters and
Hohenemser [11], the instability region can be determined by the condition

|Ak] >1  unstable (19)

where Ak, k = 1,2, are the eigenvalues of Floquet transition matrix [Q(T)] which
satisfies

{v(1)} = [Q(T)]{y(0)} (20)
The Floquet transiticn matrix (FTM) is of the form:
[Q(T)] = [{sV} {s*}] (21)

where {y(})} and {y(®} are the solutions of equation (18) at § = T with initial
conditions y1(0) = 1, y2(0) = 0 and y,(0) = 0, y2(0) = 1, respectively.
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4. RESPONSE ANALYSIS

The steady state periodic response of the linearized time varying system, equation
{17}, ean be obtained by directly solving the gyroscopically induced vibratory system.
For most cases, it is very time-consuming to obtain the steady state periodic response
for any arbitrary initial condition.

In this paper a technique shown by Peters and Hohenemser [11] and Shiau [12]
based on the Floquet theory, is presented to find the initial conditions for steady state

periodic response by integrating over sne period. The solution of equation (17) is taken
to be of the form: '

{v} = {yn} + {vp} (22)

where {yp} satisfies equation (18). The periodic response {y} of equation (17) can be
written as

(0)} = [Q(6) {4(0)} + [QO)] / Qe - (G ar (23) -

where [Q(f)] satisfies the equation
Q)] + [D(O)][Q(6)] = 0 (29
with the initial conditions [Q(0)] = I. From the periodicity condition, i.e. {y(T)} =

{y(0)}, one can find the initial condition {y(0)} for the periodic response from equation
(23), and it is of the form:

WO} = [1- 1@ ™ @ / @) {G(0)}do (25)

where T is the period of the response and [Q(T')] is the FTM calculated in the stability
analysis. To calculate the initial condition, one can defining the above integral as follow

m)= [ l00) Go)as (20)
The differentiation of last equation yields

9(6)} = [Q(O)] ™' {G(6)} (27)

with the initial condition {v(0)} = {0}.

To obtain the Floquet transition matrix (Q(T)] and the vector {v(T)}, one can
integrate equations (24) and (27) over the interval zero to T with corresponding initial
values, simultaneously. By substituting [Q(T)] and {v(T)} into equation (25), the
initial conditions for the periodic response is obtained. Therefore, the periodic response
can be established by integrating one more cycle. Note that the total response of the
balde tip motion is the sum of the response u; and the response of gyroscopic effect u.
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5. EXAMPLES AND RESULTS

Using the perturbation method introduced by Sisto (6], the stability transition
curves are obtained for the constant precessional velocity case and the harmonic preces-

. sional velocity case. For the constant precessional velocity case, r = 0, the emanating

points (do,€) are (3,0), (§,0), and (1,0) and the corresponding stability transitios
curves are expressed as equation (28)-(30) -espectively.

1 9

ao=§if‘I3\/A%+B%‘fz (a‘ i 10‘71* quLVA%'*'B%) (28)
1 € q’

=7+ e [~e - 15 (116132 ~8442) ]
1 € q q

ao= 7 - sa+e [~a+ T+ 2 (1164] - 84B?%) | (29)

Go=1+¢qs (2B = \/B2 + 42) ~ &2 [a,+%(A2L+BZ)] (30)

Similarly for the harmonic precessional case, r = 1, the emanating points (ao,¢) are
{8-,0) (1,0) and (4,0) and the corresponding stability transition curves are expressed
as equation (31-33), respectively.

4 1 9 q2
= - {—= A2 32 = _
0=3 e 2q1 \/ + s a1 + 160q1 4

4+ Tz-gq:,BL \/AZ + B2) (31)

3 ¢ 1
ag=1—-2eq —¢ + 0 _ 2, (2142 — 29B
0 ;0 [t e st 120‘ )]

1 q2 1 )
a0 =1-~eq ~ + 2o =2 (2942 —21B% 32
) 20 € ot pr - e 120< L) 32)

a0=4+e[—-qz (B + /A2 + B2)] - (a1 + m(AZWLBL)] (33)

Two parameter values chosen by Sisto [6] are used for the stability analysis and
they are L = 25.4cm, % = 1.384. The effects of pretwist angle on the stability of blade
tip motion are shown in Figures 2 and 3 for the constant precessional case with the
emanating points (ag,¢) = (3,0) and (%,0) respectively. Similary for the harmonic
precessional case, the effeci of pretwist angle on the blade tip motion are shown in Fig-
ures 4 and 5 with Sg = 30° and 45°, and the emanating point {ag,¢) = (9, 0) and (1,0)
respectively. The steady state periodic response exists only for certain parameter val-
ues. Figure 6 shows the effect of initial conditions on the periodic response. The effect
of pretwist angle on the periodic response is shown in Figure 7.

6. CONCLUSIONS

The sensitivity of pretwist angle on the dynamic stability and response of a rotating
tapered biade under the gyroscopic effect induced by precession of the rotor spin axis
is investigated. It can be concluded that the instability region will decrease with the
increasing of pretwist for the constant precessional case and also for the harmonic pre-

cessional case. The increase of pretwist angle will result in small amplitude of response
for the pretwisted tapered blade motion.
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Fig. 1 The configuration of rotating blade system (la) Rotor

blade system (1b) Top view of blade at any cross
section (lc) Side view
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DIRECT SUPERFOSITION OF WILSON TRIAL FUNCTIONS BY
COMPUTERIZED SYMBOLIC ALGEBRA

»
Isaac Elishakoff , Charlies D. Hettemaf and Edward L. Wilson**

SUMMARY

The method of direct superposition of trial vectors,
proposed by Wilson, 1is elucidated for the forced vibration
analysis of systems. possessing damping, by the computerized
symbolic algebra. The essence of the method is using a specific
set of trial functions (Wilson +trial functions) derived in a
special manner from the appropriate static solution, rather than
pertforming a mode superposition analysis by the exact
eigenvectors of the system. Immediate advantage of the method is
that the static solution, to which a dynamic solution should tend
for the vanishing excitation frequency, is obtained
automatically, by using a single vector, whereas within the exact
eigenvectors, an infinite number of eigenvectors are involved to
obtain a static solution. A specific example 1s numericaily
evaluated and it is clearly demonstrated that the superposition
of the Wiison trial functions yields extremely accurate results
with fewer vectors than using the conventional set of © trial
functions, utilized within the Rayleigh-Ritz method.

1. INTRODUCTION

Usually the analysis of the forced vibration of the damped
system is preceded by the free vibration study, naaely by the
evaluation of the natural frecuencies and the mode shapes. Then
mode superportion analysis .s performed, where the given
(excitation) and sought (respuise) functions are expanded 1in
terms of the mode shapes of the undamped structure. As 1s well
recognized, the numerical deteriination of the exact natural
frequencies and mode shapes can :equire a large numerical effort.
The usefulness of the prior know..edge of tre natural frequencies
lies in that one can forecast tre possible resonant conditions,
since in the vicinity of natural frequencies the magnification
ratios assume considerable values. Modal superposition
techniques may require however large amounts of modes to be taken
into account to accurately predict the structural response. For
cxample, LL 15 well recognized that to capture the static load
effects, especially for concentrated lcais, a considerable amount
of eigeiivectors can be required [1,2]. Wilson et al. [3.4]
proposed a new method which overcomes the above predicament which
may arise with using the exact eigenvectors. The use of the
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Haifa 32000, Israel.

Graduate Student, Department of Mechanical Engineering, Navai
Postgraduate School, Monterey, CA 93943, U.S.A.
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alternative set of orthogonal vectors, which are not eigenvectors
of the system, provides accurate solution at a reduced
computational cost. The main idea of Wilson's method is as
follows. The equations of motion of the system (written in terms
of finite elements! read

MU + CU + KU = £(s)r(t) (1)

where M.C and K are the mass, damping and stiffness matrices
respectively. The vector f(s) represents the spatial
distribution of the loading for fixed t, whereas r(t) is a
temporary distribution for fixed s. The first ,Ritz vector is
found from the solution of the static problem Kul= f(s).

We perform then the normalization with respect to the mass
matrix:

u, = u;/lu ]Mu (2)

T
so that ul Mul = 1.

The subsequent vectors are generated from the following
recurrence relationship

*

Kui =3 Mui_1 . 3= 2hash N (3)

where N is a number of terms taken into consideration. The
vectors are orthogonalized at each step by the use of the
procedure

i-1
L = Tau (4)
u, = u, - c.u. , C. = u,. Mu,
i $7 2 Uy oeymugmy

j=1

The vectors are then normalized, in perfect analogy with Eq. (3):
u; =u / Ju. Mui (5)

As a result the set of functions uy is orthonormal u.TMu1 = é

i ij
where 6ij is Krorecker's delta.

The vectors sc generated are used for the solution of the
forced vibration problem. Such a procedure autcmatically
captures the static response problem, since the first vector is
derived from the static solution. We will use the Wilson trial
functions for the forced vibration problem of the cantilever
beam, previously treated by Leissa and Young ([5] within the
extended Ritz-Galerkin method for the forced damped vibration
(one may also consult with the related papers by Leissa [6,7] and
discussion by Warburton {8] of Ref. 6).
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2. BASIC EQUATIONS

Consider a beam of 1length L subjected to a distributed
transverse load q, sinuscidally varying in time

ai{x,t) = q(x)exp(ifit) (6)

where Q is an excitation frequency and x is an axial coordinate.
The kinetic and strain energies are, respectively

L L

T=3 [ eatswovr®ax , 1 =% [ E1(dw/ax’)Pax (7)
o o
. . . . _ .
Leissa and Young {5] generalize the functional Tmax Vmax used in

free undamped vibrations by minimizing the following functional

Lnax = Tmax ~ Pmax’ = “Ymax ~ Ynax’ sy

where D is a dissipation functional and W is the work done by the
force: )

5 L
D= (1/2) [ cw(du/ot)dx ; W = [ wq(x,t)dx (9)
o o

Further, to apply the Ritz method, assume that the vibratory
motion w(x,t) may be expressed as
M
Wwix,t) = W exp(iQt) = z ¢y ¥y (x)exp(iar) (10)
j=1

where wj(x) are the trial functions which satisfy at least the
geometric boundary conditions and Cj are the complex coefficieznts

R D

CJ = Cj - 1Cj where and CjR is a vector component of the

response in phase of the exciting force and C L is the response
component which lays the exciting force by 90 degrees; 1in Eq.
(15) j denotes the number of terms retained in the series. In
Eg. (13) the index "max'" implies maximum value (in time) of the
functional, so that

L L

- el 2 - P2k et 272
Toox = (720 [ paWSdx , v = (1/2) [ E1(d%w/cx®)“dx
° ° (11)
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L
y 2
Pray = (10/2)0j cWodx , V.= oj qwWdx (12)

The Ritz method regquires Lmay to attain minimum so that

aLmax/oLj =0, (3 =1,2,...,N) (13)
where N is the number of terms taken into account. This vyields

in N linear simultaneous equations for Cj or 2N equations for CjR
and Ci‘.

fFor the trial functions, in Ref. 5, the functions

NEIE x? (3 = 2,3,...,N) (14)

were used. With numerical results reported for 2, 4 and 7 term
approximations. In addition an exact solution of the problem
wasreported. Here following Rafs. [3]-[4] we will use the Wilson

trial functions, in complete analogy with Ritz vectors described
in the Introduction.

&' GENERATION OF WILSON TRIAL FUNCTIONS

The static solution for the cantilever is readily obtainable

» x Ly’ Iy
WX) =(q/Z4ETIu (%) , uy(x) = x* - 4x"L + exL® (15)

where, for the similaritvy yith the matrix notation in the
Introduction, we denote by u_.the unorthoncrmal set of Wilson

x®
trial functions, whereas by uj the orthogonalized set; and by u.

the orthonormal set. The analogue of the normalization equation
is

» L A
- 2, o
u,(x) = ul(x)/of PA(u) ) dz (16)
and results in
._‘__m,f—l 4 4 3 .22
ul(x) = {3 /2726 )(1/9?AE‘)(1/L (X -4XTL+6XTLT) (17)

The first approximation of the natural frequency squared is
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L

of = [ uEl(a*u/ax*)dx = 12.461538 (18)
[o]

which is 0.80% higher than the "exact" natural

frequency
1.8741041943% EI/pAL® = 12.3623642 E1/paL% [5].

For generation of further trial functions the computerized
symbolic algebraic code REDUCE [9] was used. For applications of
computerized symbolic a2lgebra in various engineering problems one
may ccnsult the book by Pavelle [10]; applied mechanics
applications are given in Refs. 11-13. In our circumstances, the
Eq. (5) for subsequent trial functions is reglaced by

a4, . * 4
EI d'u,/dx” = PAU; (19)

supplemented by boundary conditions (22).

*
Once ui is found, the orthonormalization procedure is
performed with the following algorithm

Algorithm Comments
FOR 1: = 2: N DO
FOR J: = 1: (I-1) DO
<<CA: = INT(RO*A*U(J)*USTAR(1), X);
C(J): = SUB (X~L,CA) - SUB (X=0,CA>>; Finding cj (Eq. 7)
i-1
UD: = J: =1: (I-1) SuM C(Iy*U(J); Finding z cjuj
j=1
UDSTAR(I): = USTAR(I) -~ UD Evaluation of Eq. (&)
Ua- = TNT(RO‘A‘{UDSTAR(I)"z), O Calculation of
Ubl: = SUB(X-L,UA) - SUB(X=0,UA); the denominator
Eq. (8)
Uily: = UDSTAR(1)/(UD1**(1/2); Obtaining the new
trail function
Eq. (8)

The so construct=d three subsequent trial functions are
listed as follows, with ¥ = x/L:
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w51 = (1/78R01) 2 (-30.61273645 -72.8225900F -47.6885789F %

9.82764375F% - 2.807898212° + 0.33509872768¢°) (20)

+

u () = (1/YBAL1)£% (115.8769233 - 524.670645¢ + 698.9829412¢ 2
+ 753.370 1876F% + 861.56799638° - 208.2233227¢°
+ 13.947 48035¢% - 2.535905519¢° + 0.2113284500210) (21)
u (&) = (1/YBAL1)g? (-291.61499 + 2052.590181% - 4317.37213122

+12586.1589 9% - 19350.20111F° + 11405.15083£°
- 3707.9871 212°% - 2038.397555¢° + 425.6576594¢1C
+ 14.054461 348Y% - 1.87392818212 + 0.117120511261%) (22)

Interestingly, using one term Rayleigh or Galerkin methods
for the fundamental vibration frequency vields

2 = 4 4
w] = oj u; EI(d u,/dx " )dx . i = 1,2,...,N. (23)
Now we turn to the forced vibration problen. Instzad of

arbitrary trial functions in Eg. (15), we resort to the Wilson
trial functions, uj(x); so that Eq. (15) is replaced by

N
wix,t) = E Cjuj (oexp(iat: (24)
j=1

Tt is instructive tc re csults obtained for one aind tLwou
term approximations. It is appropriate to quote here Leissa [8])
¥ the author is especially excited about the capabilities of
using the method with only one or two trial functions on many
problems to cbtain adequate results by means of ordinary hand
calculator". We will demonstrate that this is even '"more true”
using the computerized symbolic algebra, allowing us to obtain
explicit expression for the response characteristics.

4. ONE TERM APPROXIMATION

In this case w(x,t) = Clul(x).

80




-

The Equation dLmax/dC1= 0 reais

[130(pAL%0? - i0%) - 1620EI] c, = - 9YT30 YAAL qL (25)
so that
R 2 YT301(~11.70 + 145.8)QVvPAL]
1 169(a®+p%) - 42120 + 26244
(26)
ol -11.7Y130%Q5
€, = )
169(0%+3°%) - 42120 + 26244
where
o= eaL‘a? f = ca® @ = aL® (27)
EL , BT BT ,

The response of the beam at the cross-section Xx may be
obtained by adding the in-phase and out-of-phase <omponents and
combining them vectorially [5]. This implies that

Wwix,t) = W(x)expli(f-y)] 128)

where W(x) is the amplitude of the response

- - R Z T ,
W(x) = I(cl) + (G Ty ) (29)

This amplitude is nondimensiona&ized with respect to the tip's
stacic displacement wst(L) = gL /8EI. Additionally, the damping
Cc is expressed in terms of the critical damping corresponding to
tne tirst natural {trequency cCr 1= ZpAwl and is taken as
c/ccr=6.For the nondimensicnal tip displacement amplitude

response W(L)/Wst(L) we obtain the following analytical formula

R:ﬁ(L)/wst(L)=(1.01610y“+ 4.064436726%- 2.048521p%+ 1.032477)/

(% + 82%6% - 4.032089r% + 164%6% - 16.128355p%56%
+ 6.0966537% + 8.1288712%6% - 4.0970420% + 1 032477) (30)
where ¥y = n/wi is tne excitation-frequency-to-first-natural
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frequency ratio. For the damping coefficient, used by Leissa and
Young [5), € = 0.01, we obtain a simple formula

Q(L)/Wst(L) = 1.016109/(74 = 2.01564572 + 1.0166109) (31)

The numerical values listed in the table clearly demonstrate that
this formula compares very well with the two term approximation
used in Ref. 5. As is seen, computerized symbclic algebra allows
one to obtain explicit analytical expressions.

S. MULTITERM APPROXIMATION AND DISCUSSION

Under new circumstances

- e 2 2

Imax = (Q /A)(C1 + Cz)

V. =6.230769C%-7.015022C. C, +254 . 286826C>) (E1/pALY)

max =’ T 7 172 X 2

D = (ic/zpeal)(c? + ¢?) (32)
max 1 2

Woay = (0.789352 C. - 0.444353 cz)qvf7pA|

Equations (19) read

cl(pAL“n‘-iQL“—lz.461538E1)+cz7.015022E1 = - 0.789352/L%YEAT?
(33)

c17.015022E1+c2(pAL“Qz-inL“-soe.573656E1)=0.444353L“VSKE1

The nondimensional tip-displacement amplitude response becomes

R = W(L)/W_, = M/N

st
where

2 8

M

+2.583230p2%6% 5632779519410 332021, 88%

- 450.622356p56%+5311 .677892r%413.777220;26%-001 . 24473 05%

4

0.215269p1

+ 29477.70047°6%-214428 . 6689y %+32023 . 95550, 46%-832577 . 5833y % 6%

6%-5036923. 79472 +2866475 . 526

(34)

+ 3279621.379°+11474129. 2437
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16

N =y +16y1462

-168.587556 1%+ 9671 96%-2023. 050668y 1 262
+10822.74905p 242569 106% 8092 202673, 1Y 4

+100134.5241106%-320282. 794831 %+256,,868-10789. 60356, 85

8

8

+281584.23813°88%-2451272.69)85%4 4042714 . 615

654427555491 . 347 °5%

2

+216840. 5066¢°6°-4680566 . 041y

/
-13178642 . 260°+45071956 . 75,4 6% 48147688 . 89" 6

2.2

+18323638.19y4+22945342.77y‘6 -11744558.43?2+2866475.528 (35)

For the damping ratic & = 0.01, utilized in Ref. 7 we arrive at

12 10

R =(0.215269y  "-56.3275367 +5311.63283}'8-21é425.7212}'b

+3279538.112?4—5935776.381y2+2866475.528)/(?16

12

-168.585956y 14
6

+10822.5675712-320272. 78150 O ava2469 . 4855 -13175886 . 764

+18318823.Seya—117é2263.89yz+2866475.528) (30)

Results of the two-term, as well as four term approximations are
listed in the table, along with the numerical values reported by
Leissa and Young [S5]. The last column 1is associated with the
exact solution, derived and evaluated in Ref. 5. This exact
solution turns out to be practically coincident with the
gseven-term approximation using conventional Ritz methcd [5].
Comparison of the present one-, two- and four-term approximations
with the exact solution, demonstrates that wutilizing Wilson's
trial function method allows to converge to the exact solution
much faster, than by applying the conventional Ritz method.

6. CONCLUS1ON

By utilizing computerized symbolic algebra it is demonstrated
that application of the trial functions, generated from the
apprupclate static solution, represents an improved approximation
for the response of structures, possessing damping. It turns out
to be a far superior procedure than the conventional Rayleigh-
Ritz method, since it yields extremely accurate results faster.
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s g N=1 N=2 N 4
1 Present Ref. (5] Present Ref. [5] Present
0.0 1.00000 1.00000 1.00000 1.00000 1.00000
0.5 1.32969 1.33134 1.33758 1.33759 1.33759
0.9 5.06955 5.06759 5.29609 5.29609 5.29622
0.99 29.44850 28.65560 36.08840 36.08700 36.09010
1.0 46.77830 45.88600 50.66940 50.66970 50.67030
1.01 42.83020 44 ,49840 35.57050 35.57440 35.57130
1.1 4.96141 5.04832 4.81290 4.83250 4.81315
1.5 0.81139 0.82658 0.82457 0.82473 0.82472
2.0 0.33e088 V.34731 0.35254 0.35276 0.35276
6.267 0.02634 0.03837 0.31930 1.27647 3.71133
17.547 0.00328 0.00001 0.00124 0.02056 0.42110
N =4 N =7 Exact
Ref. [5] Present Ref. (5] Ref. (5]
1.00000 1.00000 1.00000 1.20000
1.33759 1.33759 1.33759 *.33759
5.29609 5.29622 5.29622 5.29622
36.08700 36.09010 36.08960 36.08960
50.66970 50.67030 50.66940 50.66940
35.57440 35.57130 35.57130 35.57150
4.83250 4.81315 4.81315 4.81315
0.82473 0.02472 0.82472 0.824772
0.3527e6 0.35276 0.35276 0.35276
1.27647  3.71133 4.48085 4. 48085
0.02056 0.42110 0.83682 0.93829
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PROBLEMS OF STRUCTURAL DYNAMICS SOLVED
BY CHINES E REMAINDER ALGORITHM

{~Chen Chang

Associate Professor, Department of Mathematics
College of Stuten Island, City University of New York, USA

1. INTRODUCTION

Because there is no Chinese alphabet, ancient Chine'e mathematicians could not
express their ideas by formulas. As a result, the style of Chinese mathematics is
very different from {ts Western counterpart. In recent years hooks have been
written in the English language concerning Chinese mathematics before and during the
13th century [1,2,3). These works, however, are limited to issues of historical and
philosophical interest without technical application for modern times. After the
13th century, the Chinese made no prrogress in their type of mathematics beyond the
promotion of the abacus to their neighboring countries., With the advance of modern
computers, however, the abecus has become obsolvte in the eyes of Westerners as well
Chinese, and it has come to appear that Chinese mathematics has been dead for 700
years and that there is little prospect for its revival. Nonetheless, fron studying
the biographies of ancient Chinese mathematicians and from conducting the ressarch
for two short papers [4,5] on Chinese mathematics, the author has come to believe

that the situation may not be entirely hopeless. This conclusion is based on the
following observations: :

(i) In the year 1970, a young Russian mathematician, Y.B. Matiyasevic solved
one of 23 important unsolved problems suggested by the great German mathematician
D. Hilbert. This solution indicated that the Chinese algorithm is still useful.

(i) In recent years the textbooks on design and analysis of computer
algorithms [6] have been teaching the Chinese remainder algorithm.

(i) In Chiness mathematics, the emphasis is on algorithms rather than on
proofs, and while the abacus served as device to store numbers, the tabulated
diagrams (the Chinese type of mathematics) served as flow diagrams for processing.
Now, the abacus has been replaced by personal computers since computing and graphing
can be carried out without formula translation. Therefore, the Chinese type of
mathematics may be found useful for modern computer applications.

(iv) The tabular form of Chinese algorithm can produce decimal numbers to any
degree of accuracy [7] and can produce the values of special functions,

{vi The modular representation of huge integers by sets of relative prime
numbers can avoid long and tedious computation of multiplication and division
operations.

In this paper, the attempt is mace to solve some typical vibration problems of
continuous structures by using ancient Chinese algorithm techniques. Since Chinese
mathematics has fallen behind 700 hundred years, this present scheme should be
viewed as only a beginning effort and as being very primitive. Nonetheless, its
nurpose is to stimulate the interest of engineers so that they might be able to
ievelop an entirely different type of mathematics—a mathematics without formulas.

2. FOUR DIFFERENT METHUDS OF STRUCTURAL ANALYSIS

That most modern engineering analysis requires higher mathematics does not mean
.;at simple numerical computations have no use for solving practical problems. In
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the year 1932, for example, Professor H, Cross propcsed a procedure known as the
method of Moment Distribution [8) (Mathod I of the four approaches considered in
this section). Although this method was not developed in a rigerous mathematical
way, it was very effective for solving practical problems. This method hes come tu
be known by structural engineers all over the world and hes maintained its
Popularity for over a quarter of a century. Before 1932, most structural
computations had to be carried out by the method of virtual work, which required at
least o working knowledge of integratios. Mathematically speaking, Cross's
procedure is a method of successive approximation (9], The beauty of this method is
that its cperation is_based on a set of well-defined structural terms such as the
fixed end moment, M AB » the stiffness fa~torKazg, the carry-over factor from A
to B, P4g, and the distribution factor fag at the end A of member AB. The well-

known example of Professor Croas is shown by Fig. 1, and its detailed explanation
can be found in References s and 9.

F_~Hin
Y ”’ p
A [ag) Pas_[Tzle 2335
— 1491+
.4
AB P
r# B i3
- 3
Py 4 RIEII S
I SR B |
heie[7a7 FRER TG
1y 3 3 He +1 :‘Hd
b o —_— Ay
® 6
;.:.-
S [ I
eovde
A #E "a

Fig. 1. Professor Crosa's well-known example of continuous frame.

In 1937 T.Y. Lin proposed a technique called the direct method of moment
distribution [10), Although his method is well-accepted by some of the Chinese
writers [11), mogt Acerican weiters have been 1nclined to use the v-value method of
L.E. Grinter (12].

By making use of the idea of Professor T.Y. Lin, the author was able to raduce
& complicated structural system to a simpler network and to emphasize distribution
factors M4 instead of stiffness factors Kag inth process of analysis (13,141,
The reason for this shift in emphasis is that momen. distribution depends on the
"relative" magnitude of the stiffness factors, i.e. KA} . Methematically speaking,
the distribution factors 75  serve as a "weight" of distribution. An example of

this is shown in Fig. 2, and a detailed explanation can be found in References 13
and 14,

In eastern Europe and East Germany, making use of continued fraction (15},
Dr. Kloucek developed a method known as distribution of deformation (Method I1),
Although one of his papers was published in the United States in 1951 [16), it
received little attention from American structural engineers and writers,
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Fig. 2, Simplified rigic frame analysis with distribution factors,

From 1960 to 1980 most structural analysis work was done by large computer
programs, and as a result, slope deflection equations and the matrix method
(Method III) took the place of the method of moment of distribution. Only in recent
years because of the us: of the method of recurrence formula on personal computers
(Method IV), has the irvestigation of the relation between the four methods come
once again to writers' sttention.

The main formule of the Kloueek's method is expressed if expressed.in the
terminology of H. Croes's method is

6 M
™ :BZK1[1’Za1-n] S e e e —ee e =(2.1)
where §, is the angular deformation at joint 1

S_MFfis the sum of fixed moment ut joint 1.

a2
231_,1:

423
1-—_—

L
1-ect

e e cae (242)

© Ao it 2

cij=cji=‘l/2 is the carry-over factor from end i to end j of member ij.

rii is the distribution factor at the end i of the member fJo If itis
expressed in terms of slope-deflection formulation, then

F
M
01'—22_1___ ...... -----_--_(2.4)
20 LX) B
ad 1 n
1 -31 o 0 - - 0
0 -a, 1 ~a, o] = - o)
Ba= | _ - T T s = = 2.9
0 0 - - 0 0 -an_' 1
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It can be shown that the determinants Bp satisfy the recurrence formula

2
Bn * Bn-l- (.n-l) Bn-z ...'.....!(2.6)

ne=1l, 2. 3 ey opses

3., TWODIFFERENTMATHEMATICALMODELS FORSTUDYING VIBRATION OF
RIGID FRAME STRUCTURES

There are commonly two different mathes atical models used in the dynamic
analysis of rigid frame structures. One of these is the contiruous system model and
the other is the discrete system model, i.e. the mass-spring model. In 1853, the
author wae studying the buckling strength of structures [17] under Dr, E.F. Masur
(18] ana discovered the similarity between the stability analysis and the vibration
analysis of rigid frames from a paper by Prof. T.C. Looney [19]. This however, was
only a roughly formulated idea which crystallized later on, in reading the
authoritative book of Prof. Bishop {20] and the brilliant paper (which then became a
book) of Dr. Marguerre {21,22], both in 1960,

In 1962, by making use of characteristic functions, the author formulated the
slope-deflection equations for structural dynamics and simplified them by taking
advantage of the basic idea of moment and direct moment distribution method, for
example, the stiffness factor

2E1 coshisinA-sinhicos EIn, F
K= 22 A (51 - corhlsina )" JL-(?Z—'-LI)..... (3.1)

and the carry-over factor

A sinhZ\ - sin 8 .
pa coshrsi nx-sxﬁﬁcosﬁ' Fs' ................. (3.2)

wher 2
e )\4 I w"p [
Etl

w= natural frequency

}= mass/unit iength of the structural member
L= length of the member |= moment inertia of the member
E= Young's modulus

pz = cax cmhx .
Fg = cos)\ sinh)\ - sin)\ cosh) .
Fg = sin”)‘ -sinh )\ .
are the characteristic functions used by Professor Bishop in his tables of

flexural vibration of beams {20],

Since all problems have to be solved by the trial and error process, this
method is not very practical in comparison with the matrix method used by iarge
computer programs. In 1982, when hand-held calculators became widely used by
students, the author decided to let engineers know of his long suffering endeavor
(23,24}, An example is given in Fig. 3 and for detailed explenation, please see
References 23 and 24.

90




Exazple, Pind the first natural frequency of the frame shown in Fig. 3.

¥

0.8E| T

S L

- b 08L
AI 1 B EIl 0.8“51 -Eg l
T oes | & YY"
0.8E!
DA ﬁl (e -1 ‘5§§:L__ £=6.84 EEEEE
Lk % 3

Fig, 3. A simple model of dynamic analysis of rigid frame,

Solution: By using an estimated value )\ o of member BE and the equation

ne (T VEED

we obtain all the values of )‘1. (i=1,2,3) at B, i=1 to 4

carry

Jeint B Joint E -Qver

i [Member K r Member K r facptor

] BE 3.820 0.69810.220 EB 3.820}(0.69810.106(6.84

|2 BC 3.05610.47410.149 EF 3.05610.47410.072
3 BA 3.36211.99710.631 EG 3.362 3.433 0.367
3 ED ]3.0563.014{0.455
Y 13.169]1.000 Y |6.619|1.000

Table 1. Calculation of Dynamic Disteibution Factaes

*After trying a few values of ABE.' = Aop *A*3.82 A o= 2.362 and
ABC"3.056

Efroy €3). pzrasr“'l -(6.84)%(0.22)(0.106) =-0.091

Theoretically, the contimed fraction approach yields a very elegant formula

for calculating the fundamental frequency of a continuous structure, according to
equation (2.4)

O LN (3.4)

Whenn « %, we have

1 - P,pPea®as®sa® ©

&8 one nay see from the given example, where P'sand 's are functions of frequency.
To the discrete model (mass~spring model) of rigid frames, this approech also

can easily be applied. To illustrate this, we will take the example from a well-
known book of advanced engineering mathematics of A.C. Bajpai (25].
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The characteristic equation for the frame is shown by Fig. 4. M3

»er b 14

= SIS S S e s Fig. 4. A threestory
rigid frame
If we express Eq. (3.5) in terms of continued fraction, we
have By(w) =0

2
. and 2. ®- WM,
3 * Ky, by * K;i* Kju i i

In the dynamics of robot menipulator we have a similar equation {26]. For
example; in studying the trajectory of manipulator, the spline segment equation

takes the form: 1] [p/] = [a]

%, 2eg® gD ty 0 0 o ]
0
[m] .| © tg 2(t,* tg) — 0
O -— - C —— —
0 o g Shet 20%h2* thasd tn-ZJ

[a] = acceleration matrix,[F']=ccordinate matrix of points

Therefare, the determinant of the matrix {m) can also be treated as .
All this, however, is not surprising because many more general cases in the
theory of oscillations can be treated by the method of continued fraction. One of

the well-known examples is an alternative to Routh-Hurwitz criterion given by Prof.
H.5. Wall [27,28]. We shall present a sinplified version of his case for the

practical use,
Consider £ =, )\n"; Xn-l’az N 2 veeeses *a_ = 0 (3.8)

a8 the characteristic equation
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and let
xn-s’ 00000 (3'9)

gONmay \"heay \Po3ey,

£
then g( \ ; can be expressed as the expansion algorithm of a
special case of J-function as follows:

E i . blxo 1+ ) cecrmcnawes (3:10)

= 1

bzx »

b3x * ?4__

-
.
-

a, .
e biz a;-l + if n=5. then we have: a * a, a® a,
2" 227P1%30 @3%a3By(ay-biag), agtagm(b by )ag, and agna,
The theorem is ; "All roots of Eq.(3.8) will have negative

real parts if and only if all b, >0 We will not prove the -
theorem but work out the condition for n=4,

£{)\) = )‘4 *a )‘3 + a2x2¢a3x*a4'0
The result i;x b>0 (i=) ;o g) vhere b, *1/a,, bztzaié(alaz-%)
b3=(ala2-c3) /al(alazaB-aB-ala4) and b4=(a1a2a3_-a3-a1a4)/a4.-
4. FROM CONTINUED FRACTION BACK TO ANCIENT CHINESE ALGORITHM

Continued fraction without analytic theories and deep theory of convergence
(29,30] is a low level mathematics of the kind that used to be taught in high school
algebra courses 30 years ago [31], For the past 30 years practiical engineers have
no longer been interested in this topic.  Since it is so useful in discrete
mathematics, however, we can now make use of it once more to enhance our
understanding of Chinese algoeithm,

In a large history chart of mathematicians from the 10th to the 19th centuries
prepared by IRM [32], the only Chinse mathematician represented weas Chin chiu-shao.
In studying Chin's process of Te<yen Chiu-i~shu (method of finding unity), I find

that his tabulated form of mathematics is nothing but a flow-diagram of continued
fraction,

In solving the problem of Shang-yuan-chi-nien, Chin suggested a mathematical
form of drill to obtain an answer for the following question:

What is the value of "a" such that a(79)=1 (mod 325)

Sclution: <4 s ], c, * q, k 0 1 2 3 4

4 1 3

8
r. =9 =3-2§.-4
17 U 'kﬂ79|9 712 1
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Just like the old master of kung-fu, what an old master of ancient Chinese

mathematics like Chin did, wes to offer a ¢

type of mathematics

Eorml Trivial case-Fibonacei numbers (pi.qi

oem of drill for his followers. Mak
use of his form, the following three examples are

Western mathematics of continued fraction in the f

given as illustrations for putting
Famework of the encient Chinese

'1) ci.ci-l’ci"z

iJol1y32laTaTsTs > 8 1 91 10
Ci{rv]1]2]3]s|s]3 21| 34! 55| 89
AR EREERERERE

1 1 1 1 1

Eorm 2

5 .in-—zk ifi=1  (med 3) k=0,1,2,3,..,,...
i

1 othervise
€1 "Ry, t e

1-2 ’ co 1' c-].. 0
el Lt 2 [ 5 T4 T5 T | 8 9 [0 [ ny
CilitJa]a [17 111 128 239/ 1084 | 1323 2407 [ 6137 | ases
Di 1 8 1 1 6 1 1 4 1 \ 2 | 1
6137
e =2 ¢+ 8344 2.71828183
Eorm 3
a, 5y "By *By_ *aB,
e » B, "0,B,%0
bo+ a, If we use % ®Arctan x
b+
by + —— a3 X ®* 1 as an example
b3+ 0.. ai .(21-1)2. i'O.l.Z....
+?.; by = 1, by=2
i all are ktnown, then
ilo 1] 2 3| 4 5 6 9
St 2 2 2] 2 2 2 2
6 30 210 1890 20790
Bi 'i 1 i 31131108 943 10393 13513s| 2,027,025
of 11} [9] I|os 133 8508 naaasj
ivij 1 9 125| 49 81 121 144 169

By "B, *aB ,*1+0x}
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B, *bB, * a3, = 2(2) ¢ (1)) =3
B, " b,B, *+ a,B, * 2(3) *+ 9(1) = 15
3 " b8, * ajB, *2018) ¢ 25(3) =35+ 75 = 103 etc.

a,, B
u.o qil--&%*-&.i, Tr q » Z J
i*l J'l Js-l
if-1]o0 1 2 31 a s 6 7
a; .| 1] 1 9 |25 | 49 | 81 | 121 169
By = w2 3 |15 |105 | 945 |10,395{135,135(2,027,025
1 5 yi 9 1y 13 15
a | 1|-3[-2|-%|-5|-F|-B.| -©B| -7
1 1 1 1 1 1 Al
By 1 "3 S|°7| 9 |-11| I 5
6
o, =3-42,.,1_1 .
4 MCtlnx" J-Zalpi 1 3"5 7’ R EEE R 15

. CONCLUSION

With the wide use of microcomputers, more and more calculations are performed
on computers directly. In order to reduce the work of formula trarslation, effort
is made to carry out the vibration enaiysis of structures by recurrence formulas

which are hused on the theory of continued fraction and the tabulated form of
ancient Chinese algorithm,
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VIBRATIONS OF PLATES WITH CONCENTRATED MASSES
AND PLATES WITH POINT SUPPORTS

E. Hinton and B.S. Al Janabi
Dept. of Civil Engineering, University College of Swansea

Summary

This paper deals with vibrations of square plates carrying concentrated masses. To
analyse these problems, a nine noded, quadrilateral Mindlin plate element is adopted.
The effects of the ratio of the concentrated mass to the plate mass and the postion of the
concentrated mass on the vibrational characteristics of the square plates is discussed.
Skew plates resting on point supports are also considered

1. INTRODUCTION

Recently, Huang and Hinton {1] developed a new nine noded Mindlin plate bending ele-
ment which provides superior performance when compared with earlier elements — i.e.
no locking or mechanisms, patch test satisfaction and good convergence characteristics.

In the present paper the new element is used to study the vibrational characteristics of
square plates carrying concentrated masses and skew plates resting on point supports.
Comparisons are provided with solutions from a comprehensive set of studies carried
out using a spline element method based on thin plate theory [2].

2. VIBRATIONS OF SQUARE PLATES CARRYING CONCENTRATED MASSES

General comments

The studies in this section all involve square plates with side length a, thickness &,
density p, flexural rigidity D, added mass intensity M and mass location £ = z/a,n =
y/a — note that the origin of the z,y coordinate system coincides with the bottom left
hand corner of the plate.

All finite element solutions are obtained using a 10 x 10 mesh of 9-node, Huang/Hinton,
Mindlin plate elements. A lumped mass representation is adopted using a 3 x 3 Lobatto
rule to evaluate the matrix — since the sampling points coincide with the nodal points
a diagonal matrix results.

The eigenvalues are extracted using the subspace iteration algorithm with Sturm se-
quence check described by Bathe and Wilson [3]. The finite element program used in
the studies is listed and documented by Hinton [4].

To simulate thin plate behaviour, a thickness/span ratio A/a = 0.01 is adopted through-
out these studies.

101




Simply supported and clamped cquare plates

The vibrations of square, thin plates carrying a concentrated inass are considered. Table
1 shows the first five natural frequency parameters, {); = w;a?(ph/D)'/? of square plates
with various boundary conditions, and each carrying a concentrated mass at its centre
(ve. at € =n =0.5). The mass ratio, u = M/pha® varies from 0.0 to 1.G.

For the simply supported and clamped plates comparsions are provided with results
obtained by Mizusawa [2) using the spline element method. Excellent agreement be-
tween the spline and finite element solutions is obtained. For the simply supported,
square plate with mess ratio 4 = 0.25, further comparsions are provided with Mindlin
plate solutions obtained by Nicholson and Bergman (5] using Green's functions. Again,
excellent correlation with the results from the finite element solution is observed.

For modes with nodal liner (i.e. contours of zero amplitude) passing through the location
of the added concentrated mass, the resulting frequency parameter is independent of
the mass ratio.

Square plate simply supported on two parallel edges
and free on the rematning edges

A similar study is also undertaken for a square plate with two oppusite edges simply
supported and the remaining edges free. Thus, Table 2 shows the first five natural
frequency parameters of square plates carrying a central concentrated masses with mass
ratios varying from 0.0 to 1.0. Excellent agreement with the results from the spline
element solutions presented by Mizusawa [2] is obtained.

Influence of location of concentrated mass

Table 3 shows the influence of the location of the concentrated mass on the frequency
parameters of the plate considered in the previous section. A mass ratio of 4 = 0.5 is
assumed. The last column of the table provides the frequency parameters for the case
wherz no concentrated mass is added. The greatest effects on the frequencies occurs
when the added mass is positioned at the midpoint of a free edge. Again, comparisons
with the spline element solutions of Misuzawa [2] are excellent.

Soquare cariilever plale

Table 4 shows the effect of varying the. mass ratio on the first five frequency parameters
of a cantilevered square plate carrying a concentrated mass at the acute corner of the free
edge (i.e. at £ = 1.0,9 = 1.0). Excellent correlation between the frequency parameters

obtained usiig the spline and finite element solutions is again observed.
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Table 1 Natural frequency parameter {); of square plates
carrying central mass with simple supperts (SSSS)
and clamped supports (CCCC): finite and
spline element methods

simple supports clamped supports

mass modes fin. el. spline el. fin. el. spline el.
ratio goln.  soln. soln. soln.

00 1 1974 1974 3598  35.99

2 4935 4935 7340  73.39

3 4035 4936 7340  73.39

4 7895 7896 108.20 108.20

5 9875 98.70 13170 131.60

025 1 13.73 1374  21.87  21.92
18.78* — = =

2 4935 49.35 7340  73.39
49.95 — = =

3 4035 4935 7340  73.39
49.35 — = =

4 6499 6564 8952  90.70
65.01 — — —

5 7895 7896  108.20 108.20
78.96 — = =

050 1 1107 1109 1696  17.02

2 49.35 4935 73.40  73.39

3 4935 49.35 7340  73.39

4 5060 6032 8452  85.78

5 7895 78.96  108.20 108.20

1.00 1 8475 8492 1263  12.69

2 4935 49.35 7340  73.39

3 4935 4935 7340  73.39

4 5636 5708 8172 8298

5 7895 7896  108.20 108.20

* Results obtained by Nicholson and Bergman [5)

3. VIBRATIONS OF PLATES WITH POINT SUPPORTS
General comments

The studies presented in this section all involve skew plates with side length a, skew
angle ¢ (N.B. ¢ = 0° represents a square plate), thickness h, denisty p and flexural
rigidity D.
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Table 2 The effect of the mass ratio u = M/pha? on the first
five frequency parameters Q); of 2 square plate with two
opposite edges simply supported and the other two edges free:
finite and spline element solutions

W =
modes 0.0 0.25 0.50 1.00

1 9.630 7.905 6.815 5.514
8.681* 7.909 6.820 5.5%0

2 16.12 16.12 16.12 16.12
16.18 16.18 16.18 16.18

3 36.68 2859 36.00 24.08
86.78 2568 26.11 24.21

4 38.92 38.92 38.92 38.92
88.95 $8.95 88.95 88.95

5 46.69 46.69 46.69 46.65
46.74 46.74 46.74 46.74

* Results given by Mizusawa /2]

Table 3 Influence of location (&,7) of the concentrated mass M on
frequency parameters {}; of square plate with two
opposite edges simply supported and two edges free:
finite and spline element solutions

§n = no added
modes  0.5,1.0 0.5,0.75 0.25,1.0 0.25,0.75 0.25,0.5 mass

1 5.224 6.506 6.357 7.587 7.810 =
5.282% 6.510 6.564 7.590 7.814 9.631
2 11.99  14.17 11.95 14.38 16.12 —
12.00 14.18 11.96  14.89 16.18 16.i8
3 27.58 36.22 23.36 28.39 23.54 —

21.66  36.27  28.40  £8.44 29.62  96.78
4 3892 3892 37.84 36.74 CT A -

98.95 $8.95 8787  $6.18 $7.81  $8.95
5 4669 4669 4235  43.51 4669 —

46.7% 467 4239  43.56 6.7 46.74

* Results obtained by Misuzawa [2]
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Table 4 The effect of the mass ratio #=M/pha® on the first
five frequency parameters {}; of a square cantilevered plate:
finite and spline element solutions

/3 =
modes 0.0 025 0.50 1.00
1 3471 2299 1799 1.345
3.467 2.£97 1.798 5.580
2 8498 5961 5.657 5.492
8.462 5946 5645 5481
3 21.27 1696 16.45 16.17
£1.19 16.94 16.42 16.15
4 27.18 21.87 21.83 21.81
2718 2£1.79 21.75 21.7%
5 3091 29.41 29.39 29.37
30.77 29.5% £9.91 £9.80

* Results given by Mizusawa [2]

As with the previous study, all finite element solutions are obtained using a 10 x 10
mesh of 9 node Huang /Hinton, Mindlin plate elements using a lumped mass matrix. To

simulate thin plate behaviour a thickness /span ratio of A /a = 0.01 is adopted throughout
these studies.

Plates with point supports

A series of point supported skew plates are analysed for skew angles ¢ = 0°,15°,30°, 45°
and 60°. In all cases the lowest five frequency parameters ), = w;a®(ph/D)*/? are
evaluated. The following plates are considered:

(a) corner supported plates, see Figure 1,
(b) plates supported at mid-side points, see Figure 2, and

(c) plates supported at

et

coracr and mid-side poinis, see Figure 3.

The frequency parameters 0, for plates (a), (b) and (c) are listed in Tables 5,6and 7
respectively. In all cases excellent correlation is obtained with the results presented by
Mizusawa and Kajita (6] who used the spline element method.

4. CONCLUSIONS

The Huang/Hinton, Mindlin plate element has been used 40 study various square plates
carrying concentrated masses and also skew plates on point supports. The results are
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in excellent agreement with results obtained by Misuzawa (2], [6] using a spline element

method.

Table 5 First five frequency parameters {); for skew plates
with corner supports: finite and spline element solutions

s =
modes  0° 15° 30°  45°  60°
1 7.103 7.573 9.089 1020 9.424

7.111* 7.588 9.104 10.20 9.45%

2 1574 1315 11.39 1179 14.63

1577 18.17 11.40 11.82 14.66

3 1574 19.54 2263 27.73 36.20

15.77 19.59 £2.65 27.76 $6.29

4 1950 2028 2511 29.73 39.22

19.60 20.29 2518 £9.78 $9.52

5 3834 33.90 3025 3322 30.88

98.48 $9.97 30.29 99.54 99.94

* Results given by Mizusawa and Kajita (2]

Table 6 First five frequency parameters {); for skew plates
with supports at mid-side points: finite and spline element solutions

modes

¢

00

15°

30°

45°

600

1

2

1345
1947
17.81
17.91
18.75
13.84
18.75
18.84
26.87
26.96

12.17
12.19
18.53
18.62
19.31
19.40
20.09
20.28
28.27
28.38

10.58
10.59
19.28
19.87
19.52
19.59
22.84
25.02
35.48
35.51

9.449
9.458
19.17
19.21
21.85
21.97
23.84
25.99
48.02

48.49

8.718
8.718
18.58
18.61
24.02
24.12
28.67
28.87
47.50
47.79

* Results given by Mizusawa and Kajita [2]
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Table 7 First five frequency parameters ; for skew plates
with supports at corners and mid-side points:
finite and spline element solutions

¢ =
modes 0° 15° 30° 45°  60°
1 17.81 18.23 19.87 2430 35.31
17.91* 18.32 19.9f £4.87 85.41
2 34.82 36.45 41.84 42.81 39.51
34.99 86.71 42.21 42.88 $9.57
3 3482 37.18 42.67 47.71 5254
84.99 8788 4296 48.18 529§
4 38.34 39.33 44.80 51.22 57.77
38.48 89.48 44.98 51.98 58.46
5 59.91 56.64 48.85 61.09 80.82
60.27 56.91 49.10 61.39 81.24

* Results given by Mizusawa and Kajita [2)
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Figure 3 Mode shapes for plate supported at corners and mid-sides
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FREE VIBRATION OF AN ORTHOGONALLY-STIFFENED FLAT PLATZ
By D J Mead, D C Zhu & N S Bardell

Department of Aeronautics & Astronautics, University of Southampton,
Hlghtield, Southampton, SO9 5NH, England.

SUMMARY

A flat plate, reinforced by a regular orthogonal array of uniform beams, is
analysed using techniques developed for studying wave propagation in two-
dimensional periodic structures. A "plane-wave" type of motion is considered
which may be characterised by different propagation phase constants in the x-
and y-directions, The Hierarchical Finite Element Mcthod is used to set up the
governing equations of free wave motion, and these are then solved as an
eigenvalue problem for the frequencies at which particular waves will propagate.

1. INTRODUCTION

Reinforced flat plates are used extensively in aerospace and marine structures
where both vibration-induced fatigue and excessive noise radiation can cause
serious problems. The scant attention paid to the dynamic analyses of such
structures in the past is ciearly in need of rectification.

The specific problem of a flat plate resting on equi-spaced elastic beams is
addressed in this paper. The Hierarchical Finite Element Method is used to
formulate the problem and also to improve the accuracy and economy of the
computational processes. The frequencies at which waves will propagate with
specified phase constants are sought from a matrix eigenvalue problem which
contains the mass and stiffness matrices of the periodic element. The
frequencies of attenuating waves have not been obtained.

2, THE MATHEMATICAL MODEL

2.1 Outline of the Method

The plate itself is assumed to be isotropiec, homogenous, elastic and of uniform
thickness. The stiffeners are assumed to be uniform beams possessing both
flexural and torsional stiffness and inertia. In fiexure, they are assumed to
satisfy the Euler-Bernoulli equations of motion. Damping has not been included
in this work, but its effect is easily incorporated via the Correspondence
Principie and the ecmplex elastic modulus.

The mathematicai analysis combines the periodic structural approach of Mead[1]
with the Hierarchical Finite Element Method. The basic periodic eiement of the
structure {3 rectangular plate with a beain along adjacent edges) is itself
considered as just three finite elements. In the x-direction, the plate and the x-
wise beam are allowed to deflect in the conventional four cubiec polynomial
modes of the standard finite element approach. The Hierarchical Finite Element
method allows these finite structural elements to deform in additional preseribed
modes. The displacements of these additional modes are represented by the
"interior coordinates" of Mead's generalised theory of periodic structure analysis.
Similar modes of deflection are assigned to the plate and beam in the y-
direction. When these modes are vsed, mass and stiffness matrices can be
formed for the whole periodic element and these are then used to set up
equations which govern so-called "plane" wave motion through the whole periodic
structure. These are solved to yield the frequency at which waves of known
wave-numbers will propagate. Much the same approach was adopted by
Abdel-Rahman and Petyt who used conventional Pinite Elements to soive a
similar problem [2]. Examples are included which verify the work of Mead and
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Parthan{3] and demonstrate the power of the Hierarchical Finite Element Method
in dealing with the dynamic analysis of periodic structures.

2.2 Formulation of the Problem

Consider an infinite flat plate resting on an orthogonal beam grillage as shown in
Figure 1. The beams are pitched at equal intervals, a, in the x-direction and b in
the y-direction.

Figure 2 illustrates a typical periodic element or bay of this structure and Figure
3 shows its idealisation for compatibility with the Hierarchical Finite Element
Method. Each bay is modelled with interior and boundary degrees of freedom and
Is coupled to its neighbours on all sides and corners. qp, Fy denote the internal
displacement coordinates and internal forces of the bay, q;, Fy, ag, Fr, ap» Fp
and gp, Fq denote the left, right, bottom and top side displacement coordinates
and side forces of the bay: qL.p F1B 9rBs Frp AL Fi1r dr FR denote the
left bottom, right bottom, letlt' top, anﬁ right top corner displacement
coordinates and corner forces of the bay. The linear equations of motion of the
undamped bay are then given by

(K] - o’ [M)){q} = {F} (1)

[K] and [M] are the stiffness and mass matrices for the bay, and {q} and {F} are
the coordinates and generalised force vectors given by
9} =95 97 Yoy Upp 91 92 95 97 9,1 o
and - T
th = [F[BFLTFRTFRBFLFRFBFTFIJ

It is convenient to partition the [K] and [M] matrices according to the corner,
left, right, bottom, top and internal displacement coordinates hence

- - - . SR SN 2 A e

Kipin Kisir Kispr Kippg Kinp Kiar Kisp Kinr Kisy
KLT,LB KLTL’I' KLT,RT KLT,RB ....... etc
Keris Kerir Kerrr Kerrs
Keprz Kipir Krpar Kregs
K1= Ky 1p K.
KR,LB e ;t".i{.R
KBLB KE.B
Kris Ker
K1z it Ky

A similar expression can be written for [M].

For free wavemotion, no external forces act on the bay apart from those on its

boundaries from adjacent bays.

immediate neighbours.

Hence {F} = 0. The forces on the bay's
boundaries are those which transmit the wave motion from that bay to its

This wavemotion is chs-acterised by the relationships

between the edge displacement coordinates and their corresponding generalised
forces in one bay to the corresponding coordinates and forces in adjacent bays.

The left, right, top and bottom coordinates are related through
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B B (3 a, b)
{qgl =¢ "la;} and {q.}=e” {g,} ’
and the left, right, top an% bottom corner coordinates through
B B B tR (4 a, b)
{apgt=¢ a5}, a7t =¢ Mg g} and {qpt=e®  Yig ) ;
The forces along the left, right, top and bottom edges are related through
B 3 5 b
Fh=—cF) and F)=—c'F,) S
and the left, right, top and bottom corner foreces through
B B B_tR (6 a, b)
{Fpgh=—e *(F g} (F }=—e (F o} and Fp=e® 7iF .} i

By substituting equations (3a-6b) into equation (1) and setting {Fli} = 0, the

condensed matrix equation of wave propagation through the strueture is given by
U8
. —_— 9
(K Go,,u )] - QM G, )) =0 M
B
9
KLB,w KLB,L KIB,B KLBJ
where [K'(uy, py)]= Sogn | By Bpp Ky
Ks,ua Kp, Kgp Kg;
K K, K, K
IL I {
and ILB L B fl
Kigig= B B, BotE
wa+K[BLTe +KwRBe +Kum7,e
-1 B_-B B
y x Yy x
+KLT,we +KLT,LT+KLT,RBe +KLT,RTe
-B, = = +p)
Kppipe "t Kppir® +Koppp t Kpppre
=(u +p) -B -B
L x y
+Kpr 1ne Kprpre ~+Kpppae "+ Kpppr
Kizind= B B B_—B -u
LBL z =y T Ty, x
KIB.L+KUB,Re +KLT,L8 +KLT,Re *'KRB,LC
= +p) -p
y ¥
+KRB.R+KR1'.L2 +KRT,Re
) B B -p
LBB y =Ty x
KLB,B+Kw,Te +KLT,Be +KL1',1'+KRB.Be
B =R —(p_+p) -p
y X X y x
+Kppre” "+ Kppge + Kerge
K = -B -B —(p_+p)
8,1 y z a2y
Kw'l-i-Ku,_,e +KRB,IB +Kn1’,1e
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Kis= KL,LB+Kl‘u.e“’+KL'RBep“‘+KL‘R,I.e“"‘Iblly
t+ Kp, z.a.l:’-.“x + Klz.u"“y-llx +Kppst Ktz.tz'r'elly

K= KLL+KLREHI+KR,Le—pz+KR,R

Kin= Ry + Ky g6 +Kppe oKy e *

Kyr= K, + KRJe_"‘

a2 ™ Kp s ™ KB,LTepy 3 KB,RBe+ By KB‘RTG“;*",
+ KT_we_uy + K’I‘,L’I‘ + KT_RBep’_py + KT’RTepI

Kp1 = Ky +Ky ot K, PRy A =Yy

Kpp= Ky g+ KB‘Te"’ +Kp e P+ Ky,

Kp1= Ky, +Ky e

Kria= K st K Lrepy + KI,RBepI + K pre A

Kips K+ K ge”

Kia= K g+ K, ‘:epy

K},I = K]J

The ejements of the condensed M' matrix have the same form as the c¢lements of
the K matrix, but w%th %he K replaced by M. Q is a non-dimensional frequency
factor given by Q%=w%“a*(m/D) where m=ph. The above formulation is a
completely general result for a two-dimensional periodic structure.

The condition described above is satisfied if a so-called "plane wave" of
frequency w propagates across the reinforced plate at an angle 0 to the x-axis.
Each rectangular element then vibrates in the same complex mode w (x, y) e7Jot,
but there is a phase difference of ¢, between adjacent elements in the x-
direction and of ¢, between adjacent elements in the y-direction. These
quantities are related through

tan® = (¢ /¢ )(a/b) (8

2.3 Energy Expressions for the Periodie Element

Use wili be made of the standard expressions for the energies of a flat plate and
beam expressed in terms of non-dimensional coordinates &, n which are related to
the x- and y-coordinates by x/a=(£+1)/2 and y/b=(n+1)/2. (See Figure 2). The
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total energy expressions are

U = bD/2a® [4 JH [“ [(a’w/as,’)2+

la)z (a’ma:{")2 + —q'-‘-'—z (a’w/aa2) (a’.»m"')

-1 4-1 (bl (bla)

B ) a2 [ (Pt

8(GNa® 1 9 32(ED. (1 2
§— [ (a’w/agdq) dt + 2 ] (a“w/asﬁdq) dt,
Db® -1 D -1

3
8 (EI)_va 8 (GJ)y a

+

I ' <sz/6f,dr1>2 dn

-1

1 2
Py I (sz/anz) dn +
-1

32(EM). @ (1 \2
— [ (azw/aqzaf,) dq] &)
Dyt -1

1 1 2 A 1 2
T = phabi2 [* [ [ (aw/at) dndt + $ — j (aw/a:) dt
MdS hb |

ZIpt 1 2 A n 2
+— J (azw/aqat) dE+4—= I (aw/at) dn
hb® -1 ha |

21 1 2
2 [ (o]
ha® -1

2.4 The Hierarchical Finite Element Method

The Hierarchical Finite Element Method adopts the reverse procedure to the
ordinary Finite Element Method in that it keeps the size of the element constant,
but allows an increased number of polynomial functions to deseribe its
displacement mode. (The Hierarchical mode order p is related to the highest
order polynomial with order p-1 used to describe a displacement mode of the
structure). This is particularly well suited to the kind of problem deseribed in
this paper. The asecending hierarehy of tunctions used in this work are derived
from Legendre orthogonal polynomials, and are given by

r2 n
-1) 2r—2n-T)!
f©= z ( .(’ n="1) gr=n-1 - 1)
VT 2w r=2a-D

where r!f = o(r-2) (r-4). . . (2 0r 1), O1! = (-1t = 1, and r/2 denotes its own integer
part only. These hierarchical modes have zero displacement and rotation at
each end, and hence only contribute tc the internal displacement field of the
finite element., Table 1 presents the first ten out-of-piane hierarchical shape
functions calculated from Equation 11. The tirst four of these are standard
Hermite cubic functions which are independent of Equation 11. Then, the plate
displacement is given by the product of both x- and y-modes as

P P
wEm= Y 2 @100 @2

rmlg=l
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This double series (in non-dimensional form) is firstly substituted into the strain
and kinetic energy expressions (c:uations 8 and 10) for the complete element.
The resuiting expressions are then used in Lagrange's equations of motion to yield
the stiffness and mass matrices ior the periodic element. Referring to Equations
1 and 12, it can be seen that if p is chosen to be 10, then the (K] and [M] matrices
are each of order 100 x 100.

All of the non-vanishing integral products within (K] and [M] and relatec to the
higher order modes can easily be calculated by ucing the following unified and
explicit integral formula(4]

+1 ¢ G
] )
I WACTCE S v r>4 (13)
n @r+n—1=s5s-t—2k)

k=0

where G is the integration coefficient shown in Table 2, and s and t are the
-differential orders of the funection

This method yields exact fractional answers, and thus keeps the numerical error
to an absolute minirium, which is very important when high order modes are
used. In genera., the size of matrix which has finally to be used in the e erﬁvalu
problem is conveniently reduced in size, i.e2 for [K] %nd [M] of order p“xp?, [K]
and [M] of Equation 7 are of order (p-2)* x (p-2)“. This is a result of the
condensation process mentioned in Section 2.2.

2.5 The Eigenvalue Problem

By supplying the propagation constants p, and p,, Equation (7) may be solved as
an eigenvalue problem to determine Q¢“. xResult are presented in this paper for
the case when p, and p, are purely imaginary, i.e. p,=je,, and p =jay. This
ensures that ex[K'] anx (M'] matrices in Equation 7 are HermitYan and the
eigenvalues (Q“) will always he real.

3. THE COMPUTED PHASE CONSTANT SURF: "ES

3.1 Flat Plate Stiffened by an Orthogonal Array of Line Simple Supports

Figures 4, 5 and 6 show th- frequency plotted against £, for periodically
simply-supported plates with support-spacing aspect ratios (4/b) of 1.0, 0.5 and
0.25 respectively. The lines which are drawn correspond to {ex=0 or o and ¢,) or
(e, anl £,=0 or r) and constitute the boundaries of "phase-constant surfaced" of
the form "first presented by Mead and Parthan[3]. The upper and lower bounding
frequencies of these surfaces define the pass bands of the structure - i.e. the
frequency bands in which "plane" wave motion can freely propagate. The upper
and lower bounding frequencies of a particular phase constant surface also
correspond lu iliie naturai frequencies of a single periodic element with all its
edges clamped and simply-supported respectively.

With a hierarchical mode order of 8, the bounding frequencies of the first band
agree to within $% with the resuits of Leissa[5). Very close agreement is also
observed for the bounding frequencies of some of the subsequent bands.

The phase constant surfaces of Figures 4 to 6 bave been generated by usi~~
hierarchical modes up to the order 8, the highest of which is a seventh order
polynos:ial funetion with four maxima. The phas : constaint surfaces so obtained
can therefore only include those surfeces whcse upper and lower bounding
vrequencies correspond to the natural frequencie: of a single periodic element
v’brating with m and/or n<4. The inclusion of hieiarchical modes of still high.r
onler would permit more accurate computation of surfaces, corresponding to the
higher order natural modes of the single element.
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3.2 Flat Plate Stiffened by an Orthogonal Beam Grillage

The simple supports are now replaced by a general beam grillage having non-
dimensional flexural and torsional stiffnesses characterised by

KTx=EI/bD,KTy=EIa3/Db‘ and CRx=GJa2/DbaandCRy=GJalDb2

respectively. The effects of torsional and transverse inertia can be included by
assigning specific values to the beam non-dimen glonal areas x/hb and A, /ha and
to the non-dimensional torsional inertias I, /hb* and 1 1t is assuthed that
the beam neutral axes coincide with the n? utral surfag% of the plate so that in-
plane wave motion of the plate itself is not coupled to the beam flexura! motion.

Twe examples are now considered, and the structural properties of each are
summarised in Table 3. The first case (structure "A") is a plate on ideal massless
stiffeners. The second case (structure "B") represents the more realistic example
of a section of flat aireraft skin, stiffened in the x-direction by integrally-
machined flangeless stringers and stiffened in the y-direction by l-section
frames. Flexural and torsional inertia effects are fully ineluded, but the coupled
in-plane motions of the plate which would result are neglected.

Figure 7 shows the phase constant surfaces for configuration "A". The first
phase constant surface now dips to zero at £,=£,=0. The severity of the dip on
the faces £,=0 and £,=0 is determined solely by e beam flexural stiffness in the
y- and x-directions fespectively. If either of these stiffnesses were increased,
the gradient of the dip would ‘ncrease, until as KT _ and KT v it would become
vertically discontinuous. When £y=€,=0 and Q=0, t )i‘le whole structure moves as a
rigid body, with every bay in phas with its neighbour. This corresponds to a
motion of infinite wavelength and zero frequency existing in the beams. As the
frequency increases slightly, waves with non-zero values ¢, and/or €, can exist.
The motion of the structure is dominated in this region by tte flexuxyal stiffness
of the beams together with the mass of the beams and pla:e. Such wave motion
of course, can propagate from zero frequency as shown by Heckl[6].

The curves on the face ¢ «=1 and £.=u are straighter than tiose obtained for the
piate on line simple- supports. (Figure 4). This is due to t1e torsional restraint
introduced by the stiffeners, which raises the torsionally-dependent bounding
frequencies.

The higher surfaces (Figure 7) are affected in a manne" similar to the first
surface. That the higher surfaces appear to pass throi.gh one another is of
interest, though the full significance of this is not underitood at present. The
frequency stop/pass-band behaviour of the structure is preserved, although in this
particular case it commences with a pass band. Heckl [f; showed this to be the
case for periodic beam grillages, and it is clearly also true for periodically
stiffened plates.

The phase constant surfaces for configuration "B" are shown in Figure 8. These
are seen to be rather complicated! Muliiple intersections of each surface now
occur, and no frequency attentuation bands are in evidence. Free wavemotion
can propagate at any frequency, and there are no stop bands for this structure
which can be used to control the vibration levels. The high value of the frame
flexural stiffness, KT,, is seen to cause a very steep dip in the first phase
constant surface on tle face £ =0, whereas the lesser value of KT, causes the
curve on the face cy-O to vary in a far gentler manner.

4. THE NATURAL FREQUENCIES OF A PFINITE ORTHOGONALLY-
STIFFENED PLATE

Mead and Parthan [3] showed that the natural frequencies of a finite plate with
Ny bays in the x-direction and Ny bays in the y-direction occur at frequencies at
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which
e=mwN & e = nn/Ny if the extreme edges are clamped

and 2 =(m+1)n/1v &e= (n+1)n/N if the extreme edges are simply-supported.
(=0, ) 2, 3. » . Nov1 ghd 0=0, 1, 2,3, . . . Ny -1).
Given one of the pﬁase constant surfaces be¥ween two bounding frequencies, all
of the natural frequencies of the finite plate structure in that frequency range
can be found from the intersections on that surface of the planes g=m/N and
=n/N,. These frequencies can be found in practice by assigmng the a
ues Xf £y and £ Eyr and then by computing the corresponding frequencies from
Equation 7.

This has been done for the first phase constant surface ¢f Structure "A" in
Section 3.2. A finite structure of ten bays in both the x-y-directions was
considered. The construction grid to locate these frequencies is shown in Figure
9, and the natural frequencies so obtained are tabulated in Table 4. If all the
extreme edges are clamped, the last column and bottom row should be
disregarded. If all the extreme edges are simply-supported, the first column and
top row should be disregarded.

This method of finding the natural frequencies is a computational generalisation
for two dimensional structures of Sen Gupta's geometrical construetion [7].

5. CONCLUSIONS

A mathematical model has been developed to represent the most general case of
a flat plate stiffened by an orthogonal array of beams. The pass/stop band
nature of this type of pericdiec structure has been observed from the stacks of
phase constant surfaces. These also assist in explaining certain dynamie
features. The first surface has been used in one case to determine the natural
frequencies of a finite periodic 100 bay plate with particular boundary
conditions. The dynamic behaviour of the stiffened plate at low frequencies
bears a marked resemblance to that of a periodic beam grillage.
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The non-venishing integration coefficient G
5, t 2,2 ool 1,1 0,2 0,1 0,0 otherwise
n 0 «1 {0 +2i0 +2(+1 +3|0 +2 +4 0
G ! 2 +2 4 -21-4 2i+6 +2(12 -8 21 ¢]
TABLE 3
Detaiis of the paramaters characterising structures "A” and "B" and the corr ding figure b
Structure | Figure ab KT, I(T' CR, (L8 A thb Afha l_lh b? Imlhn‘
A 7 10 | 8000 | 4000 | 40 20 00 0.0 00 00
B 8 40 | 1250 (2870007 260 | 270 | o066 | 142 | 0.006 | 0001
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TABLE 4
Natural frequencies £ In the first propagation band for struciure "A™.
Plate aspect ratio a/b = 1.0: KT, » 800.0, KT = 4000, CR, =4.0,CR =20
[ 0 n/10 2n/10 InN0 4An/10 S0 6n/10 n/10 4n/10 9n/10 n
0 00 2 10.90 2206 3016 322 s 3446 3452 3453 3452
w10 394 483 11.54 22.23 30.19 3320 3413 ua 3446 3446 34 46
210 15.02 15.24 17.98 24.717 30.69 319 3401 3448 3429 3428 3427
a0 2N 27 36 27.98 29 B2 3202 3333 3386 3402 3403 Jaut 33499
a0 3257 32.56 3260 28 3319 3353 33.70 3374 3370 3367 3365
St/10 3385 3383 3376 3368 3362 3358 3352 3345 3336 3330 33128
610 3406 3403 3393 3379 33.63 33.46 3330 335 3303 3295 2292
w0 3398 3394 3384 3368 3348 33126 3306 3287 nn3 3263 32 60
8110 3385 338 33.70 3383 333 3308 32.85 3265 3249 3239 3235
90 3374 3370 3359 314 3319 3295 nn 3250 3234 22 3219
" in 3367 3355 3337 3.5 nn 3267 3245 3228 3218 3214
] L r
b
- direchion of
1 4 wavematon
b — -~ beams
| |
b =
y=h
I | =
; I e
. | |
D S e
a8 a a a a
Flgure 1 The two-dimensional perfodic structure. Flgure 2 Diagram showing the periodic element -
a flat plate with a beam along two adjacent edges.
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Plgure 3a Figure 3b
Idesilsation of a two-dimensional perlodic flat plate as an  Tne displacement coordinates and forces acting on a single bay
assembly of bays jolned togetner on all sides and corners. of the periodic structure.
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Faculdade de Ciéncias e Tecnologia da Universidade de Coimbra
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C.A. Mota Scares
Centro de Meclnica e Materiais da Universidade
Técnica de Lisboa (CEMUL), Instituto Superior Técnico
Av. Rovisco Pais, 1096 LISBOA CODEX, PORTUGAL

ABSTRACT

In this paper is developed the theory of design sensitivity-analysis
of structures subjected to dynamic and stability constraints, based on mixed
finite element models. The theory is applied to the sensitivity and analysis
of natural frequencies and critical stresses of plates. The results are
compared with analytical and finite differences solutions. The advantages and
disadvantagens of the mixed elements in sensitivity analysis of plates are
discussed with reference to applications.

1, INTRODUCTION

Sensitivity analysis of structures is the most important stage in the
optimal structural design of structures [ 1]. The combination of sensitivity
analysis, an adequate choice of objective function and constraints, with the
correct selection of design variables and optimization algorithms are the
basic requirements for the efficient optimal structural design.

In this paper, the theory of the design sensitivity analysis of
structures subjected to dynamic and stability constraints, based on mixed
finite element models, is developed. The sensitivity analysis of beams based
on mixcd formulation has been presented cecently [2]. The Llheury is now
applied to the sensitivity of natural frequencies and critical stresses of
plates due to thickness variation. The models are based on an isoparametric
quadratic mixed finite element with eight nodes and thirty two degrees of
freedom presented by Mota Soares et al. { 3].

In finite element dynamic and stability analysis of plate: structures,
mixed models offer some advantages over displacement models. The mixed models
calcrlate the displacements and moments with the same degree of accuracy snd
the reduction of degrees of freedom of the eigenproblem is an exact
operation. In sensilivity analysis of plates the advantages and disadvantages
of the mixed elements are discussed with reference to application and the
results are compared with analytical and finite difference solutions.

*Sponsored by Instituto Nacional de Investigacdo Cientifica (INIC).
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2. MIXED ELEMENTS IN PLATES

Mixed elements are based on the Reissner's variational prineciple. Using
the nomenclature defined in Fig. 1 the Reissner functional for plates is 4

= - U* +0lda - m m s r -
VR IA[mier'i+sj(rJ+w'j) U* +nlda II‘ (m. r +m r +snw)d

y nnn ns s
-7 [mrm {r,) - rn) #mo (rs - rs) +s (w - w)] dr (1)
X
X
w3 2]
/ X,
L_-ng T, 2

"1

Figure 1. Notation

where A is the domain, that is, the area of the midsurface of plate, I‘t is the
boundary with known forces, Iy is the boundary with prescribed displacements
and the superscript bar indicates the prescribed forces and displacements in
the boundary. U* is the complementary energy per unit area and  is the

potential of external forces. For a plate of thickness h subjected to lateral
and axial loads we have

[+] w w

= h )
n--!A (pw-t-2 a3 ¥ g ’J.,dA (2)

where oij are the stress components and p is the lateral distr ibuted load.

In finite element analysis it is necessary to use a discretised form of
the Reissner's functional. Assuming that there 1is continuity of variables
between elements and that the boundary conditions are satisfied, then by
integrating by parts the first term of equation (1) we obtain:

& - T
Ve ;3 fAe [rj(sj mij,i) *ey W, U* 4+ nlda (3)

where Ae is the area of element e. Assuming that
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then equation (3) becomes

= - 1]
vR g fAe (sj w'J. U* + Q) ga (5)

In the theory of moderatly thick orthotropic plates,

the complementary
energy per unit area is

1 T 1, ¢
* e = -
U* = 5N Cn+ 58 Ds (6)
where
n = {n m m ]
11 22 12
T
STals, sl
12
c = ;3 1/E1 - \’12/512 0
- V127E, VE, B
0 0 1/G12
6
D= 1/G13 0 ]
0 l/G23
:T:z:sﬁ P E2. v12' G12, Gl3 and 623 are the elastic properties of orthotropic

Representing displacement and moment fields by

w=N q, (7)

n

[}
e
3

L (8)

where q, and mg are the displacement and moment degrees of freedom of the

element and N and L are the shape function matrices (see Appendix) the slope
and shear force fields are expressed by

[aw/ax1 ’“a/ax1 N:'
r= = q_ = N*g (9)
dw/ax _a/ax2 N € e
a/ax1 0 a/ax2
8 = n=1L*m, (10)
0 8/8x2 8/8x1

Introducing equations (2) and {6) in the functional (3) we obtain, in
material form

(11)

125




"

Using equations (7) to (10) in the Reissner's functional (11) we obtain

1 T T T 1 T
Vg = § (-3m G oo +m H 9 = 9, fy - 59, 5, 9,) (12)
where
G =/ (LTcLeue’pue an Flexibility matrix
e
He = {A L*T N®* dA Flexibility/stiffness matrix
e
S =7 (h N“‘r Z N*) dA Geometric matrix
e Ag
el ) N‘r p da Element force vector
e Ae

The kinetic energy of a plate in a discretized form is

2 3 2 2 2 2
1 aw h 3w I w
el o "{h ! = l:(ac axl) i 2) }dA 61.8)

where p and t are the density and time, respectively. Applying equations (7)
and (9) this equation can be written as

1% oL o
U= g 5 Yo Mg 8y )
where
i ok 3 T .
Me = {A plh N° N + (h7/12) N*" N*] dA Mass matrix
e

and &e is the velocity vector.
The stationary condition of the Reissner's functional (12) without

lateral load p leads to an equation at element level that, after assembling
in the usual way, gives the global equation for the stability of plates

-G H m 0 0 m o]
- . (15)
H o q 0 1S q 0

where A is the instability coefficient.

Apnlying Hamilton's principle and constructing the glcbal equaticns, we
obtain for the dynamic of plates without inplane loads the following equatiocn
-G H m 0 o] m o]
. - (16)
T -
H 0 q 0 M q f
where § is the acceleration vector. Considering that
-1
m=G Hq (17)
these equations can be transformed to
Kgq-2Sq=0 (18)
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K=H G H (20)

is the stiffness matrix of the system. It should be noticed that the reduction
of degrees of freedom (equations (15)-(16) to (18)-(19) is an exact operation
and that the moments are calculated (equation (17)) by a matrix transformation
of the displacements.

For free harmonic vibrations, equation {19, becomes

Ka-= w2 Mq (21)

where w are the natural frequencies of the system.
3. SENSITIVITY ANALYSIS IN FREE VIBRATIONS AND STABILITY OF PLATE STRUCTURES

The equilibrium/compatibility equation for free and harmonic vibration
(21) can be represented by the eigenproblem

Kq-pMq=0 (22}
where u represents the square of natural frequency of the plate. Considering

an eigenvalue

2
u, = uk(qk, b) = 7 (23)
where b is the vector of design variables and qk is the eigenvector which is
normalized

T

= 4
q Mgq =1 (24)
the sensitivity of the eigenvalue due to the variation of the design variatle
b; is obtained deriving equation (22) and using equation (24)

duy T 3K M

s Zwa?t (e = = o 25

;- % 9 " Mk by % (as)
Using equation (20) and the symmetry of G the sensitivity can be written

as

duy T ,.T 3(-G) T 9H M

-d—b—i_qk(E TE-FZE E—ukb—b—;)qk (26)

where

E=GlH

In the case where the design variables are thickness of the plate, tne
previous equation can be simplified
due T T 3(-G) aM
B "% B oap;  E 7 Reapp) % (27)

Using equation (23) we have for free and harmonic vibration the following
equation

e 1 T, T3(-G) 2
@®; - 5;; q (E 7b; E-ow 757 9 (28)
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By analogy, sensitivity of the eigenvalue in the stability problem is

dx T ,.T 3(-G) s

4. APPLICATIONS

The mixed formulation derived in this paper is applied to the design
sensitivity analysis of natural frequencies and critical stresses of a simple
supported plate due to thickness variation. The plate, represented by Fig.2,
is discretized into nine mixed quadratic elements and the model has sixteen
displacements and ninety-two moment degrees of freedom.

jr FEsETTT R S T a=11.20m
: ; b =1.00m
! o < e ! h=0.0lm
: i Ey=Ep=2.00x101! Nm-2
! E vip= 0.30

ol 4 2 & G12=G) 3=Gp3=8.077x1010 Nm=2
: H p = 7.80x103 Kg m~3
| a
t 1 2 3 |
[} [}

I — AR S 4

L £ o
! o

Figure 2. Simple supported rectangular plate with discretization used

First, we consider the thickness as the single design variable. For this
case, the results for the sensitivity of the lowest six natural frequencies
are presented in Table 1. The results for the seusilivity of the critical
stress in x) direction are presented in Table 2. For comparison we present
the exact values obtained by derivation of the analytical expression of the
natural frequencies [5] and critical stress [6] of a simple supported
rectangular plate. Tables 1 and 2 also present the errors of the mixed model
for the natural frequencies, critical stress and their sensitivity due to
thickness change.

As a second example, we consider the thickness of each element as a
design variable. In this case, there are nine design varidbles that can be reduce
to four considering the symmetry. The results for the sensitivity of the first
natural frequency due to the element thickness are presented in Table 3. For
comparison, the same table has the results obtained by Rayleigh-Ritz and
finite difference solutions. Table 4 shows the results for the sensitivity
of the critical stress in X-direction due to the element thickness variation
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Table 1 - Natural frequencies and its sensitivities due to the thickness
variation of a simple supported rectangular plate: comparison of
the mixed model with analytical results.

Mode shape Natuzi;dfgeq?ency Sensitivity to thickness
- half waves €&
in x; and x
. 1 2 Mixed model Mixed model
directions. Exact values (% Error) Exact values (% Error)
1 -1 256.26 258.83 25626.16 25866.76
(1.00%) (0.94%)
2 -1 571.34 587.36 57133.72 58649.53
(2.80%) (2.65%)
1 -2 709.97 727.13 70997.05 72588.11
(2.42%) (2.24%)
2 -2 1025.05 1086.24 102504.62 108320.04
(5.97%) (5.67%)
3 -1 1096.46 1135.47 109646.34 113215.73
(3.56%) (3.26%)
1 -3 1466.15 1495.54 146615.22 149024.99
(2.00%) (1.64%)

Table 2 - Critical stress in X1 direction and its sensitivity due to
tickness variation of a simple supported rectangular plate
comparison of the mixed model with analytical results.

Critical stress Sensitivity to thickness
(x E7 Nm~2) {x E10)
Mixed model Mixed model
Exact values (% Error) Exact values (% Error)
7.473 7.611 1,496 1.522
{1,84%) (1.74%)

and, for comparison, it contains a finite difference solution.

The finite difference are obtainad by finite element analysis of two
slightly perturbed designs of the structure. The difference in the value of
the natural frequency or critical stress divided by the total design
perturbation Ah is the approximate derivative. Tables 3 and 4 also show the
error of the proposed model relatively to the alternative results.

The results obtained in this paper show that sensitivity analysis of the
stability and dynamical behaviour can be accurately and etficiently calculated
with the mixed element model developed. The errors in natural frequencies or
critical stresses and in the respective sensitivities due to the thickness
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Table 3 — Sensitivity of the first three natural frequency due to the
thickness variation of each element of a simple supported
rectangular plate discretized with nine elements: comparism
of the mixed mode) with Rayleigh-Ritz and finite difference

results.
Design variabid Sensitivity to thickness
Natural
(thickness of| frequency . .
element...) numnber... Mied Fodel Rayleigh-Ritz Ft:;ti 3;i§?§i:§f

(% Error) (% Error)

1 3432.2 3371.5 3432.4

(1.80%) (0.00%)

1 2 5912.8 - 5913.4
{0.01%)

3 §741.5 - 6742.0

(C.00%)

1 1860.0 1855.0 1860.3

(0.27%) {0.01%)

2 2 6166.5 - 6167.0
(0.00%)

3 13899.6 - 13899.0

(0.00%)

1 1845.1 1855.0 1845.3

(0.54%) (0.01%)

4 2 9070.4 - 9070.3
(0.00%)

3 5776.9 - 5777.8

(0.02%)

1 4727.6 4720.0 4727.5

(0.16%) (C.00%)

5 2 4524.6 - 4525.8
(0.03%)

3 6296 - 6270.9

(0.03%)

Table 4 ~ Sensitivity of the critical stress due to the tickness variation
of each element of a simple supported rectangular plate discretized

with nine elements: comparison of the mixed model with

difference results.

finite

Design variable: Sensitivity to thickness
(:2;;22is?”%f Finite Difference Mixed model
- (ah = % 0.01xh) (% Error)
1 . 16076 . 16074
(0.01%)
2 . 19171 . 19169
(0.01%)
4 -.02135 ~,02140
(0.26%)
5 . 54130 . 53798
(0.62%)
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are of the same order shows that an adequate discretization for critical
stresses or natural freguencies is an acceptable model for their sensitivities.
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APPENDIX ISOFARAMETRIC MIXED QUADRATIC ELEMENT FOR PLATES

The mixed element used is an isoparametric quadratic element based on
moderatly thich ortotropic plate theory. The element has 8 nodes and 32
degrees of freedom, and it is represented in Fig. 3. The nodal degrees of
freedom are the transverse displacement and the three moments.

e node
hi nodal thickness
X1j, X2; nodal coordinate

g,n curvilinear local coordinates

Figure 3. Isoparametric quadratic element.
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Tne geometric, displacement and moment fields for mixed elements are
represented by

x N x

e
h=N he
(30)
w =N a,
n=Lm
e

where x , he, q_ and m_ are the coordinates, thickness, displacement degree
of freegom and moment “degress of freedom of the element andi N and L are the
shape function matrices.

N=[N N, N, ... N_]
il =12, =3 8 (31)
L=[L1L2L3...L8]
with
N, 0 0
i
L. ={ O N, 0 (32)
i i
0 0 N,
1
The shape functions can be represented by:
1
= E = 3
N =@ (1 +E°)(l +no) QO & ) 1) (33)
for the nodes 1, 3, 5 and 7,
ik 2 )
iy s 4
N, 5 (1 E)(l+n°) (34)
for the nodes 4 and 8,
il 2
Ny=5(1+g) (1-nd) (35)
for the nodes 2 and 6.
In these expressions we have
&~ = &8
o] 1 (35)
R, = mn

where Ei and ni are the local coordinates of the node i.

The element matrices are calculated substituting equations (30-36) into
equations (12} and (13). All the matrices are integrated numerically using
3x3 Gaussian mesh.
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ABSTRACT

The method of integrated displacement parameters is applied to the
study of pretwisted straight beams. With the use of curvilinear coordina-
tes, the formulation leads to a basic theory inlighting the couplings
between torsion, longitudinal extension and warping. A new finite element
of pretwisted beam is daduced allowing for the numerical computation of
eigenfrequencies and modes.

1. INTRODUCT ION

As pointed out by LEISSA and JACOB [1] , the vibrations of naturally
pretwisted beams have received considerable attention because this one
dimensional formulation represents a first approximation of turbomachinery
blade analysis.

The static case of Torsion and Extension of pretwisted beams has been
widely investigated by means of the "helical fibers" concept or in recent
works by means of curvilinear coordinates formulations. In [2] ROSEN shows
that the initial twist increases the torsional stiffness of such beams sub-
jected to uniform torsion and warping. Considering the influence of axial
loading on the torsion of slender beams, HODGES [3] concludes that they
untwist. A more general linear theory including non uniform warping has
been developped by KRENK in [4] . It leads to the same conclusions especial-

F g = P T e o ] ) S [y s ]
iy in the siudy of the coupling between torcicn and extension,

In the dynamical case, the three dimensional analysis [1] of vibra-
tions of twisted parallelepipeds shows clearly that natural frequencies
and modes are split in two sets which are uncoupled from each other ; the
flapwise, edgewise and symmetric chordwise bendings are coupled in one
class, whereas the torsion, the longitudinal extension and the antisymme-
tric chordwise bending are coupled together forming another class . Thus,
the aim of the present work is to set up a simple preliminary tool for the
prediction of the coupled Torsion-Extension natural oscillations of pret-
wisted straight beams, independantly from the bending vibrations.

It has been shown [ 5] that an accurate formulation of the torsiomal
vibrations of beams should involve the non uniformity of torsion and war-
ping of the cross sections. This is done here through a new warping par-
meter @D defined by means of the SAINT VENANT warping function of the
associated prismatic beam with the same cross section shape. The leading
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features of the paper are obtained through the use of integral parameters
defined over the cross section, associated with the corresponding genera-
1ized beam forces. In the general case seven parameters are defined for

the study of beams vibrations but here, due to the uncoupling with bendings,
only three are necessary if the secondary effects of warping are neglected.
The numerical investigations will be conducted further by means of a new
beam finite element with three degrees of freedom a*t each node.

2. BASIC THEORY

The beam under conmsideration is of constant doubly symmetric cross-
section, the center G of which lies on the X? axis. A schematic of the
coordinate systems is shown in Fig ], The fixed referemce frame is
OX]X5X3. Y and Z with unit vectors Y, Z, are the principal axis of the
cross section. The beam is uniformly twisted along the center line the
rate of twist X being a constant. We denote by x the longitudinal coor-
dinate describing the position of G, and by X(x) the pretwist angle. Thus
we have

X'(x) =X M

where the prime represents the derivative with respect to x.

-’
a
MO
L]
Z G
¢
3
|
|

Fig. 1 ~ Pretwisted Beam

. The cruss section occupies the domain D with boundary D and the
position vectors_of an g;bitrary point in D before and after deformation
are denoted by OMo and OM with

- -
GM=yY+2z2 [3)
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The displacement vector Uy of the point initially at Mo is deduced
in the form of

= B =
U, = OM - OMo (3)
Mo

In the undefozyed staie, at each point Mo a local cartesian frame
with units vectors J, is associated. It is deduced by translation from GXYZ.
The displacement vector Uy is then written in its component forms

T. 7, 1 jvely U, X+u T+u Z (%)
Mo ui i or altenatively Mo ux uy Uz

p - — — . .
because the unit vectors Ji and X Y Z are identical.
Let us now define the tangential vectors T. by
- [ - -
dMo=¢t dx+t dy+ t dz 5)
b v z
where x y z form a set of non orthogonal curvilinear coordinates. By use of
the FRENET differential formulas and recalling that in the local cartesian
system we write d Mo
- — )
d Mo=J, dXi 6)

—
we are led to the following expression for d Uy,

1
u'y X D(u,) Uy ups, dXI
Ll
T - "t
d bMo u'y + X D(uz) u2,y Uy, y dX2 (@3]
1
| u'y + X D(u3) u3,y Ugs, ] dX3

where Dis the differential operator D = z2(),, - yO,_ and O, (), are
the partial derivatives with respect to y and z. # y z
Comparison of the infinitesimal elements of length d§& and d§ before and
after deformation i

2 - - 2 - —
ds - OMo . OMo d5s " = OM . OM (8)
leads to Green's strain tensor e i in the Lagrangian description
as? -dasl -2, ax, o, (9
0 ii i i

)

The next step in the formulation is the definition of the displacement
paramerors.

3. DISPLACEMENT PARAMETERS

In order to set up a one dimensional theory, the displacement parame-
ters are defined by means of weighted integration of Uy  over the cross
section. Thus, we obtain in the GXYZ system, the genera?ized displacement
vector V of the cross section

(
- 1 —
Vix,t) =§]D U, S (10)
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and the generalized rotation vector 9

6(xt)-—/ GMoxU ds (1

The I are the polar and transverse quadratic moments of the cross
sectlon and § the area of the cross section. In GXYZ the components of v
and © are denoted by (u, v, w) and (9 , 9 , 8 )

In order to provide a good beam approximate theory, the non uniform
torsion and the non uniform warping should be taken into account. This will
be done by introducing a new displacement parameter defined through the
SAINT-VENANT warping function @ (y,z) deduced from the classical homoge-
neous torsion problem of the uniform beam with the same cross section
shape.

Thus, the warping parameter ® 1is defined by the weighted integral

g T, .Xas 12
® (x,t) = ¢ (y,2) . Uy - X d8 (12)
I¢ =f ﬂz dS is the quadratic warping moment of the cross section.

D

From the aforementioned definitions there follows that the displace-
ment field can be written in the form of the "functional developement"

u =u-yuz+zey+ﬂ'®+l‘(x

)
[~
)

v—zex+ﬂy (13)

u =w+ 8 +1
Y P z

4, TECHNICAL FORMULATION
The technical beam formulation is done through two hypotheses.

Hl - The lateral surface of the beam being free of any forces, we
suppose that the stresses 0’22, U733 and Q3 are negiigible compared to Oy,
Oy2 and T);. Therefore Uy = U33 = U337 =0

H2 - The complementary warping vector Tis neglected

It has been shown in 6] that taking T into account leads to couplings
between shearing forces and torsionin the case of a uniform straight beam ;
8o it can be expected that in the case of a pretwisted beam bending, tor-
sion and longitudinal extension should be coupled. In order to avoid too
complicated a study, we shall suppose that T=0. In consequence, the cross
section remains undeformed in its own plane.

Making use of Hl and H2 we deduce from (4), (9) and (13) the following
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expressions for infinitesimal strains Eij in the cartesian system.

1
R r = ' =
B TU * 2" - X)) -y, + X6)-X ®o@+ e @
N ) - = ¥ L
2 Bxy v ez X w z ex @Q’,y -
— l 1
2e =u +ey+xv+yex+®¢,z
e = P = P =0
Yy zZ yz

with the subscripts 1, 2, 3 replaced by a "beam notation" x, y, z.

It is now necessary to turn to the internal forces in the beam acting
through each cross section. They are defined in the same way as the displa-
cement parameters by means of generalized weighted integrals of stresses over
the domain D of the cross section. Then the three generalized forces of
interest are the axial force N, the twisting moment M and the bimoment B

N(x,t) =} T,y 45 3 M(x,0) =/ (yTxz = 20y,)dS 5 B =/ go, ds  (15)
D D D

For an isotropic elastic body with YOUNG's modulus E and shear modu-
lus G, making use of the stress strains relatioms in (15) leads to the fol-
lowing force - deformation relations

| N=ESu +Ex (I -0 @
O - 6I6y) = 6(I_ - 1! - @) (16)
|B=EIQ,®'

J is the SAINT VENANT constant of uniform torsiou and I_ the polar
moment of inertia of the cross section. In view of (16) it is“clear that
the three beam forces are coupled through the warping parameter QD and
the rate of twist X . As pointed out by LEISSA and JACOB J1] , the other
bending and shear forces are uncoupled from torsion, warping and longitu-

dinal extension. It is seen that the second relation (16) connects the non-
uniform torsion moment

= - '
Mnuf M GJex)

to the rate of twist 9; not necessarily linked with () as it would be in
+h T o

e homogenévus Loursion of the beam.

5. EQUATIONS OF MOTION

They are derived by use of the principle of virtual workwith a virtual
displacement field analogous to (13) in which 1 is set to zero.

Among the seven equations of motion which are deduced, we shall retain
a set of three because they are coupled together and uncoupled from the
bendings and shear forces set. Thus, the dynamical behaviour of pretwisted
beams is governed by
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N' = psii

M' = g I 6y (17

B' -xIx’JN+(M-cJe')-Ex2K H =pI @
3 x 2 Bly

The last equation is the dynamical equation of bimoment and it tradu-
ces in term of beam forces the coupling between the bimoment B, the non
uniform torsion moment My,¢ and the axial force N. This equation can be
compared to equation (24), of I7] and it can be seen that for non rotating
beams (17.c) and (24), are strictly identical if we suppose that the kine-
matical comstraint Oy = @D links the two parameters. In (17.b) a coeffi-
cient Ky appears ; it depends on the cross section shape and is calculated
by means of @ (y,z) as follows :

I, - »?
Ky =Jy - 3
5 (18)
and J2 = L D(@) dS

In the case of a rectangular section h x b » & (y,z) is known and Ja
can be calculated. For a thin walled rectangular section beam we have the
following approximations

3 3 5 5
. _ bh> b bR bh
S=bxhy Lvqr b Iy 5 Jy~gs 5 Ky 180 (19)

The Fig. 2 shows the evolution of the ratio J '.J/JZex of the two

values of Jp evaluated respectively by (19) and by %Pe exact function
g(Ysz)-

J
1€¥> Ratio JZTW
2ex i
2 ]
—4—4+—4-nh
Jotw b
1.5 JZex -

JZTW Thin walled beam theory

ey
]

9 Exact value
ex

-
o

1 5 10 15
2
Fig. 2 - Ratio N for a rectangular section
2ex .
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In view of Fig. 2 we can conclude that JaTy is always overestimated
and when h/b = 5 the error is about 20 Z ; this value of h/b seems to be a
limit for a correct evaluation of Ky which is the leading coefficient in
the prediction of the Torsion-Extension coupling. Having developed a beam
theory for the analysis of pretwisted straight beams described by three
displacement parameters, let us now turn to the Finite Element Formulation
(F.E.F.).

6. FINITE ELEMENT FORMULATION (F.E.F.)

The twe node finite element of the pretwisted beam is depicted
Fig. 3. At each end point Gj and G; the nodal displacements vectors
qi(i=1,2) are defined

0y (0 = [u; (0 8 () B @ |

Fig. 3 - Finite Element of Pretwisted Beam

An approximate displacement field Ue(x,t) is deduced in the form of
U (x,t) = A (x) . q(t) (20)
3 T
with q(t) = | q(t) q,(t)]
) The interpolation matrix A_(x) is obtained by the resolution of the
static equilibrium system deduced from (17), associated with the relations
(16). The static and kinematic admissibility of the displacement field

Ue(x,t) thus derived insures the improvement of the formulation and con-
sequently a large finite element discretization will not be necessary. The
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internal beam forces are the aforementioned axial force N, Torsion moment
M and generalized bimoment B,

The setting up of the F.E.F. involves previous formulations of techni
cal expressions for the potential and kinetic energies and this will be
examined now.

If we consider an infinitesimal beam length dx and accounting for the
technical hypotheses Hl and H2, the elementary strain energy W'(x,t) reduces
to the integral over the cross section

' = l
W' (x,t) 21) ( G e_* Zcrxy exy + 2 Crxz exz)ds @n
The constitutive stress - strains relations holding for an isotropic

homogeneous material together with the expressions (14) defining the strains,
lead to the following form of W'
Wt =t esu? v2x@-n @u +1, @2+ @21, 4.
? 2 x 2 2
l f l2_ o ' 5 2
.+ z6[re -2 -ne! @ + 1 -n@®°]

The integration of (22) over the whole beam element of length 1 and
the use of (20)allow for the derivation of the element strain energy
We(t) by means of the modal vector qe(t)

(22)

1 T
we(t) "7 9% Ke e 23)

where K, is the element stiffness matzix, terms of which are detailed in
Appendix 1.

The derivation of the element mass matrix M, is deduced from the

kinetic energy T, of the element. The elementary kinetic energy T'(x,t)
defined by

. - . .
T'(x,t) 3 //; 4 UMo . UMo ds (24)

is evaluated by means of (13) in the form of :
) —ll .2 o) 2
T'(x,t) =5 R[S U +1 0+ 1, @ | (25)

where the dot denotes the derivative with respect to time and § is the mass
per unit volume.

Perfurming the integrativin ot (25) over the whole element by means of
(20) leads to the element kinetic energy T, (t)

LI c .
Te(t) "7 9% Me 9e (26)
where M: is the so called consistent mass matrix of the element ; due to

its complexity the terms of M are not detailed herein but can be found
in [9] .

However, in finite element analysis, the lumped mass matrix can give
good results in the estimation of natural frequencies of beams, and for
that reason we have defined the following diagonal matrix Mg

d . 1 1 1 1 1 1

a = =1 1 = - = -
M, d1ag[ 351 Ll 3Il 551 g1 zlglj 27
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If the terms of Md are obviously inderendant of the rate of pretwist
X M consistently accounts for and leads to a full symmetric matrix. In
order to evaluate the consistency of the theory and accuracy of the F.E.F.,
several pretwisted beams have been experimented and the numerical eigen-
frequencies computed were compared to those of the experiments.

7. CANTILEVER BEAM

For the experimental purpose a pretwisted slender beam of thick rec—
tangular cross section was machined and welded at one end on a thick flange.
The numerical investigations were conducted by a discretization of the beam
into twenty elements allowing for an accurate computation of the natural
frequencies. The relative error between calculated and experimentally deter-
mined eigenfrequencies is shown Fig. 4

» Pretwisted beam Mc. ,MdA 20

x> Error .
YA » Dynam. Torsion Refl81 M@ ,MdA ele
5 = Z ments
J’b » SAINT VENANT ©
4 » Longitudinal =«
Z h
S H‘ A
| 1111
| 2 |
I \ A R
h = 30mm b = 20mm 1 H l ® i A| )
1 = 737mm ll H ﬁﬁl g' ' o Mode N
= 3 5 6
8 -1 | A 4
-8 4 L T (o] L T
I = 6.5 10 m Té
S e
T e 6 M o
I(b = 2.426 10"12 m6 T = Torsion
J2 = 2.147 10‘12 m6 L = Longitudinal

Fig. 4 - Cantilever Beam (F.K.FK.)

The influence of pretwist on computed natural torsional oscillations
of the beam has been evaluated through the comparison of the aforementioned
results and those deduced from the SAINT VENANT theory of uniform torsion
and from a F.E.F. of dynamical torsion of straight uniform beams [8] .

The error values resulting from each of the thvee approaches are
plotted Fig. 4 where it is seen that they are of the same order of magni-
tude. Thus, it can be concluded that due to the thick cross section and the
slenderness of the beam, the moderate rate of pretwist provides no change
in the prediction of torsional frequencies. The relative bad results obtai-
ned for the first two modes are certainly a consequence of an imperfect en-
castre root fixing. In the other hand it can be shown, in view of (12) and
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(13), that the greatest influence of pretwist is obtained for thin cross
sections because the coefficients (Ix-J) X and Ko. x2 which are the leading
terms of the couplings between Torsion, Extension and Warping have the lar-
gest relative values.

S0 a thin rectangular steel strip was tested in the case of free-free
ends conditions.

8. FREE-FREE RECTANGULAR THIN WALLED BEAM

The beam selected for this investigation was a flat strip of steel
initially pretwisted on a lathe. A linear rate X = 13,65 rad/m was produ-
ced over the central part (0.202 m) of a beam that was originally 0.4 m
long. As shown in Fig. 5 a rather good accuracy of the predicted eigenfre-
quencies is obtained for the five torsional mode. In this study the beam
is discretized into ten elements. Any information about the values of the
natural frequencies can be deduced either from the SAINT VENANT theory or
from F.E.F. of dynamical torsiom [8] .

The lumped mass matrix leads to greater errors than those obtained by
use of tihe consistent mass matrix., The mean values between the two results
seem to be good approximations of the eigenfrequencies.

> Error % SAINT VENANT

@ @ l

25 |

Dynam1ca1 Torsion - Ref [8] 30

i
P

! 1 =
5 | ' \ X = 13.65 rad{m
Jg = 7.853 10713 b
4 | Lumped Mass Matrix A E = 20 68 10"~ Pa
3 b A | ! \ | v = . 283 o
2 | (8 ? é n= 7800 kg/m
1. .
| Torsion mode

o 1 i . % i D N°

-1 | 1 2 3 40 5

-§ 2] Consistent Mass Matrix .

Fig. 5 - Pretwisted Thin Walled beam (F.E.F)
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9. CONCLUSION

The present study of the dynamical behaviour of turbomachinery blades
which can be modeled by pretwisted beams, shows the necessity to zccount
for the non uniformity of torsion and warping of the cross section. This
was achieved here by the definition of weighted ‘displacement parameters
including a warping parameter varving independantly of the twist angle.
The coupling between torsion, longitudinal extension, warping and uncou-
pling with bending and shear forces allow for the statement of a theory of

pretwisted beams by means of three displacement parameters and three genera-
lized associated beam forces.

The study deduced from the 3-dimensional elasticity using curvilinear
coordinates leads to the definition of new cross section coafficients the
influence of which is shown to be essential for the accurate prediction of
the dynamical behaviour of the beams. The new finite element defined here
allows for the computation of eigenfrequencies of pretwisted beams with a
straight center line. The numerical results obtained by use of the F.E.F.
show the accuracy of the present formulation.

Obviously, in the case of beams for which the center line is not a
straight line, all the beam forces are geometrically and structurally cou-

pled and a new approach must be developped for which the use of integral
parameters seems to be well suited.
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APPENDIY |

STIFFNESS MATRIX Ke FOR A PRELVISTED BEAM

We denote by a, Z , 1 the coefficients

o % 1 . T CJ .y s
8= - T i E 1anI s b=, 3
x I TR ) (I_-J)
¢TI y x
X
and by A the following expression :
C I-J I 2 I -J
A=—-—- , [2(cosh2—1)- L3 ZsinhZ]'Px £ 1{2(cosh2 -1)- DZsinhZ]
ZE I I-J
X X Z8
Thus, the terms Kij of Ke are found in the form of :
A GE | Ix-J 3 .
K”=~z-[2 Ix (coshZ- 1) - 2(1 +1) sth]
A (IX'J)
Kl?_ =G T X[Z(cosh Z -1) - Zsinh Z]
= -
[&Kl3 £ x BIy (cosh 2- 1)
Kig ==K 3 Kig ==Ky 5 Kyg =K,
Ix_J G Ix 2 Ix
Dx,, =~ - ‘ [EI£JZShmZ_'X = 2(coshZ- 1) - D Zsinh? ]
Z
= - = Z— : = - . = = H =
Bryy = -c T Igleosh 2= 1) 5 Ky, = - Ky 5 Kyg = = Kyp 5 Kyg = Kyg
A 2 IX-J v Z vz Z G IX—J IX T
K33 =E I¢ [x 3 (sinh £ - PZ coshZ ) + T Ix (sinh Z - IX_J Z coshZ )J
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A COMPLEX VIBRATION ANALYSIS OF A THREE SHAFT GEARED
COMPRESSOR SET MOUNTED ON A STEEL ENTABLATURE

S.S. Gupta

GEC Engineering Research Centre
Whetstone, Leicester, UK

SYNOPSIS :

Analytical and Computer Techniques developed for the prediction of
the whirling response of multi-flexible-shafts in a response-prone
entablature have been applied to the prediction of the dynamic unbalance
vibration level for a three-shaft, geared compressor set mounted on steel
foundations which have natural frequencies well within the machine's
running range. Such foundations are generally referred to as being
'lTow-tuned' and have raised some concern as to the validity of
representing machines as flexible shafts supported to earth. It was
necessary to include in this analysis the hydrodynamic bearing behaviour,
gyroscopic couples, shaft and structural damping and other standard
features relevant to whirling analysis. The shafts which had axisymmetric
rigid discs can be assumed to be torsionally infinitely stiff and
interconnected at constant drive speed. In the low-tuned system, the
bearing was considered as being built-in, and forming an integral part of
a multi-degree-of-freedom vibration system as well as being the means of
location of the rotating vibration system. The vibration of points on the
shaft must affect, via the bearings, the motion of points over the
foundation. Whilst there are many papers and reports related to the
whirling response and stability of shafts, none deal with the general case
of a rotating shaft mounted via three or more flexible bearings in a
heavy, flexible structure. The purpose of the paper is to establish a
mathematical approach capable of dealing with the above dynamic system,
without the use of over simplifying assumptions, and without damaging
either its generality or realism. The approach, as it is based upon matrix
algebra, should benefit directly from the ready availability of stiffness
matrices which can be output from present day computer structural analysis
programs at the same time as the stresses, strains and displacements of
static load cases. The results of a complex analysis of the system are
presented on the basis of vibration levels over the rotors and the
structure caused by unbalances placed on each rotor in turn. The
calculations were made by using MELDA 'The Mechanical Engineering

Laboratory Dynamic Analysis' Suite of Computer Programs. The calculated
vibration levels wera shoun te be acc

1. INTRODUCTION

1.1 Machinery

The ;ower drive was a GEC 4-pole 2IMW induction motor running at
1492 RPM, integral with a deep underslung cooler. The unit was mounted in
a rectangular box-section frame for ease of on-site installation. The
bearings were of oil-lubricated tilting-pad design. Drive was taken off
both ends of the rotor by means of MAAG gear couplings to two MAAG
gearboxes. Both gearboxes were of the step-up type. The first gearbox was
GN90, with a ratio of 1:6.686, driving the high pressure compressor via a-
Bendix type diaphragm coupling and layshaft assembly. The second gearbox
was GN70 with a ratio of 1:4,135 driving the low-pressure compressor
through a similar coupling arrangement. The compressors were of GHH
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manufacture and each incorporated a power recovery turbine mounted on the
extreme outer end of its rotor. The casings of the turbines rested on
separate stools. The turbines were of partial admission design, therefore
there was a varyiing lateral thrust on the outer bearing of each compressor
according to the degree of power recovery. All bearings in the compressors
were of tilting pad design. The effect of the varying lateral force on the
outer bearings was to change their stiffness and damping characteristics,
which in turn affected the response-to-unbalance characteristics of the
whole set.

1.2 Foundation

The machinery was mounted on a fabricated box type steel foundation
of GHH design via various fabricated stools which were integral with it.
An isoparametric exploded view is shown in Fig. 1. The 'Table top' of the
foundation was supported on ten special columns each of which consisted of
three coaxial square-section columns to form a Tonger and more flexible
route for axial Toads without giving rise to undue sway flexibility. This
was done by Jjoining the top of the outer tube to the top of the
intermediate tube, and the bottom of the intermediate tube to the bottom
of the innermost tube. The table top was supported on the top of the
innermost tube and the base of the outer tube was fixed to the foundation
slab., The top of outer tube was linked directly to the table top by simple
flat springs which allowed up and down motion of the innermost tube
relative to the outermost tube, but no Tateral relative motion.

1.3 Other Components

The two most important items in this category were the coolers,
referred to as cooler I and II, each hung by two brackets from the
underside of the table top. The coolers were served by a system of water
pipes and air ducts which added to a fairly extensive network of similar
items on the underside of the foundation. The Tube-0il1 system consisted of
a tank and pumps which were supported on a platform, in turn supported by
the foundation four end columns, but very close to the ground. The oil

coolers and filters were situated on the tahle top, at the HP compressor
end,

2. OUTLINE OF METHOD OF ANALYSIS

The program (MELDA) was developed at GEC Engineering Research Centre
to specifically solve the complex whirling problems associated with the
rotating and non-rotating parts of an overall structure, the imnortant
tactor being the dynamic inter-play of spinning shafts with a
resonance-prone steel structure. Expressions are obtained in matrix form
for the kinetic energy, potential energy and energy dissipation of the
rotating and non-rotating structures. For the non-rotating structure,
enerqgy expressions are in terms of displacements referred to a fixed set
of axes. The energy expressions for the rotating system are, when
necessary, initially in terms of displacements referred to a set of axes
Tocated within the shaft. These energy expressions are then transformed
into the stationary set of coordinates by the known ceometric relationship
between the two set: of axes. As each type of energy expression is
formed, it 1is then substituted in the relative term, or terms of
Lagrange's equation of motion, ie.
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to give a series of equations which ara then summed at the end of the

analysis to form the final equations of motion of the system under
consideration,

The ¢il film system is, in general, non-conservative; hence to avoid
involvement with complex energy functions, it 1is incorporated in the
analysis as generalised forces Qi of Lagrange's equation. These forces are
assumed linear functions of the relative displacements and velocities of
the journal and housing, and after suitable transformation, they are
assembled on the LHS of the final equation of motion,

The program calculates the steady-state response to unbalance at
every speed specified. Unbalance may be distributed along, and at any
point around the axis of the shaft. The response of the shatt is expressed
in terms of the ellipses of motion of the freedom datum-points and the
amplitude and phase of the projection of the orbits onto the x and y
planes. The motion of the bearing housings is described in the same
manner. dJournal run-outs relative to their bearing housings are also
described in terms of ellipses. The response of the structure, other than
at the bearings, is expressed in terms of amplitude and phase of the
normal mode coordinates (eigenvectors) used to describe the motion.

The purpose of the calculations was to predict the pattern of
response of the three shaft-lines and the associated machinery and
foundation structure due to unbalances placed on each of the three rotors
in turn. A range of speeds around operating speed (1492 RPM at the drive
motor, 9974 RPM at the HP compressor) was considered. The method is
described in ref. [1]. It treats the system as being made up of three
components: rotor; rotor support sub-structure; journal bearing lubricant
film stiffness and damping characteristics., These are treated by a program
suite MELDA of which the main components are shown in Fig. 2.

The program searches the data produced at each speed and finds the
maximum shaft run-out and the degree-of-freedom on the shaft at which it
occurs and the maximum structural deflection and the degree-of-freedom at
which it occurs.

3. IDEALISATION
3.1 Rotor

ine rotors were idealised as an assemblage cof finite elements of the
beam type, with shear distortion effects dincluded. The size of the
elements was chosen to give a close description of their elastic
properties. The inertial and elastic properties of the rotors as
represented by the finite elements models were reduced by a condensation
process ref. [2] to a coarser mesh, which still has an adequate
description of the dynamic distortion. The choice of elements and
degrees-of-freedom for the three shaft-lines is shown in Fig. 4 to 6. The
total number of nodes in the shaft system was 313, with 264 beam elements
and 66 dynamic degrees of freedom in each plane.

3.2 Sub-structure

Each of the seven sub-structures shown in Fig. 3 was idealised as an
assemblage of finite elements of the type plate, shell, beam etc. The
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finite element 1idealisation is shown in Figs. 7 to 11. The Tink
degrees-of-freedom were selected to Tink each sub-structure to its
adjo'ning substructure and to describe its dynamic properties. A total of
3307 finite elements were deployed amongst the seven sub-structures using
7415 nodes, to give a total of 31,166 structural degrees-of-freedom
(structural analysis stage). Seventy-four common Tink freedoms were
required to join the sub-structures together. After 1linking the
sub-structures together and eliminating the unwanted 1ink freedoms there
remained 180 degrees-of-freedom to defing the dynamic motion,

4, STATIC REDUCTION

A process of condensation [2] was used to produce a stiffness matrix
relating load and displacement at the selected points. Two types of
freedom, dynamic and link, were considered in this analysis.

The 1ink freedoms defined the motior at the interface between a sub
structure and the sub-structure tc which it was to be attached. The
sub-structure to which it was to be attached had a similar matching set.
Once all sub-structure stiffness and inertia matrices had been Tinked
together by the MERGE program, the interface freedoms were not required as
dynamic freedoms and were eliminated Teaving only the dynamic freedom,

5. JOURNAL BEARING COEFFICIENT

The calculation of bearing characteristics was carried out using the
MELBA (MEL Bearing Analysis) ref. [7] program suite. Assuming Tinear
behaviour about the steady running condition, the bearing oil film
stiffness and damping properties can be expressed by a pair of 2 X 2
matrices:

Fy =[K11 kip| [x . \‘011 Dy | FX]

Fy [k KzzJ i 1021 Daa | |V
5.1 Pivoted Pad Compressor Bearings

(2)

IRl

There are four bearings of this type: two in the high pressure and
two in the low pressure compressor. £Each bearing has five
centrally-pivoted 60° pads. Two clearances are specified for each bearing:
the pivoted clearance C,j, and the pad clearance C. The radial pivot
clearance is the clearance at each pivot when the journal is central in

; ; ; i :
the lbeaisiing. Thel padiicleananse §is he differsnge)lbetisen the [nad"f madills

of curvature and the radius of the journal.

5.2 Motor Bearings

These were partial arc bearings, the diameter, D = 280mm, length,
L = 200mm, radial clearance, € = 0.24mm and the inlets are 8mm deep and
have side lands 17mm wide. The circumferential length guiterways is 70mm
which implies an arc of 151°. The bearings were centrally loaded.

5.3  Gearbox Bearings

Only the wheel bearings were considered. The geometry of the arc was
specified by MAAG as being from -45° to €0° and from 135° to 240° from
bottom dead centre. The direction of the Toad is relative to bottom dead
centre in the direction of rotation of the journal.
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6. METHOD OF BEARING ANALYSIS
6.1 Pivoted Pad Bearings

Under steady ioads the o0il force on each pad was taken to act
through the pivot, Each pad was therefore treated as a partial arc bearing
with a specified load direction, It was assumed that the leading edge
temperatures were the same for alil the pads. These temperatures were
calcuiated by assuming no external load on the bearing and 100% carry over
of hot 0il from one pad to the next., Th2 analysis was performed using the
MELBA multi-arc journal bearing program which considered a single pad with
automatic heat balance facility. A series of load cases were run and film
thickness at the pivot was calculated at each load. A small FORTRAN
program was used to determine the journal position, power loss, oil flow,
and maximum temperature for a given load.

6.2 Motor and Gearbox Bearings

The MELBA multi-arc Jjournal bearing program was again used to
analyse the bearing. The program provides a combined solution of the
energy and Reynold's equation and carries out balances to allow for mixing
in the inlet wash away.

7. UNBALANCE MOMEMT

7.1  Rotor Qut-of-Balance Values and Standards as for Assessment of
Predicted Response

The amount of out-of-balance applied to each shaft and its location
was decided using ISO 1940 ("Balance quality of rotating rigid bodies")
[4], and draft IS0 proposal (ISO/DP5343, “Criteria for evaluating flexible
rotor unbalance") [5]. It was not possible to say prior to the start of
the calculations what could be classed (in terms of the above standards)
as "rigid bodies" and which could be classed as "flexible rotors". A
policy was therefore adopted of choosing an unbalance distribution which
met the residual unbalance requirements of both cases.

The unbalance moment is controlled by paragraphs 3.3 and 3.4 of IS0
1940. Ciearly all three rotors must be classified as the "two correction
plane type". The unbalance could be appiied as a simple unbalance at the
centre of gravity of each rotor, or as two anti-phase unbalances at the
rotor balancing phases. To reduce the number of computing cases it was
decided to combine the two effects (lateral forcing and pitching) by
applying the whole of the unbalance at a point. The Tateral shaking forces
and pitching moments would be produced by off-setting the bearing mid-span
in this way.

Table 1 - Structural Vibration Limits, Microns 0-PK

Unbalance Good Satisfactory Just Satisfactory Unsatisfactory
Locations

Motor 0-25.5 25.5-63.0 63.0-160.0 >160

LP Compressor 0-6.0 6.0-15.0 15.0-38.0 >38

HP Compressor 0-3.95 3.95-9.5 9.5-23.0 >23
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International Standard 1502372 has been considered but unfortunately
it did not state explicitly what could be considered as "Good",
"Satisfactory", etc.

8. RESULTS AND DISCUSSION

Two forms of results are represented in this paper. Firstly, a graph
of maximum shaft run out vs. rotor speed, showing the locations of peak
responses and, secondly deflected shapes at the instant of maximum shaft
radial run-out at the peaks.

8.1 Unbalance on the L.P. Compressor Rotor

The amplitude vs. speed curves are given in Fig., 12 for the full
power and zero recovery cases. Comparison of the two show negligible
differences due to power recovery. A lower resonance occurs at 3800 RPM
(a1l speeds are referred to the HP rotor shaft speed), well below the
operating speed. The shaft shape - or 'snapshots' - for this speed are
plotted in Fig. 15 where it can be seen that the mode is a fundamental
bending of the L.P. rotor with all significant activity confined to it
with very close investications in the speed range near the peak. These
show that the orbit is very nearly circular and that very rapid phase
changes occur. The level of power recovery introduces sufficient
differences in phase angle to affect the 'snapshot' when these are taken
at the same speed. The 12000 RPM resonance does not represent any
significant danger to its design. The structural vibration Tevels peak at
2.6 microns 0-PK at 12100 RPM. This is well within the "good" standard of
Table 1.

8.2 Unbalance on the H.P. Compressor Rotor

The resonance characteristics of the H.P. and L.P. rotor are very
similar, The maximum amplitude vs. speed cusves and mode shape are plotted
in Figs. 13 and 16 for the full power and zero power recovery cases. It
can be seen that the results are virtually identical. The peak rotor
vibration levels reach 40 microns 0-PK at 11760 RPM. The peak bearing
run-out at this speed is 3.60 microns at the drive-end, which is 5 percent
of the pivot clearance - a very acceptable case.

8.3 Unbalance on the Motor Rotor

A no power recovery run was carried out for the motor unbalance

case, The rotor amnlitude vs, csneed curve i¢ nrogantad in E1n 14, The

uuuuu wope b spee. R -R =R R

significant peak is 7 microns at 23000 RPM - well within the "Good" band
of Table 1 and at over twice the operating speed. The mode shape at this
speed, Fig. 17, shows it to be more in the nature of a fundamental
free-free flexural vibration rather than simply supported (the deflections
at the bearings are anti-phase relative to the motor centre). This case
was repeated by assuming that the rigid and flexible structure,
symmetrised bearing stiffness and damping cross-terms were divided by 100,
an increase in response level of 30 microns was found as shown in Fig. 14
The peaks are at 9000 and 16000 RPM., The mode shapes at these peaks have
been plotted as shown in Fig., 17. The conclusion of these runs are that
the main source of damping was due to the non-symmetric nature of the
bearing stiffness coefficients and due to the coupling of the motor rotor
to the gearbox shaft via the structure.
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9. CONCLUSIONS

The response levels for both the rotors and the support structure -
which includes items such as the coolers and the machine casings - appear
to be very acceptable, certainly the structural vibration levels are well
within the Timits Taid down in VDI 2056. There is a slight doubt, however,
that both the LP and HP compressor rotors may have second-flexural
critical speeds slightly below the operating speed plus 20 percent bound.
The results of the motor unbalance case have shown that motor bearing
characteristics which lead to very high levels of damping and that the
dynamic coupling of the motor rotor to the gears shaft via the support
structure also has a significant, ind similarly beneficial damping effect.
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TRANSIENT DYNAMICS OF ROTATING FLEXIBLE BODIES
WITH BASE MOTION EXCITATIONS
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ABSTRACT

A method for modeling transient dynamics of rotating flexible components is presented.
Such dynamic models are of practical importance for both design and control of several
engineering applications. Examples are flexible links of high-speed mechanisms, manipulator
arms, airplane propellers, and flexible appendages of opmnmg spacecrafts. Thls method is
based on a nonlinear formulation of the Lagrangian form in conjunction with the finite
element technique. A mixed set of generalized .coordina..c that accounts for inertia coupling
between reference motions and local elastic deformations is employed. Component mode
substitution techniques are used for generating a finite set of selected modal coordinates. The
formnlavion accounts for component mode changes due to the effect of rcference rotational
speed of the elastic component. Base motion excitations, including impulsive forces, are taken
into consideration. Numerical results are presented for a beam with its midpoint fixed to a
rotatine base which is subjected to sinusoidal pulse excitation.

1. INTRODUCTION

The dynamic behavior of rotating flexible components is an important part of the
dynamic analysis of interconnected multibody systems. Examples of such mechanical systems
are turbomachines, propellers, high-speed flexible mechanisms, and space stations.

In this analysis, the ccuiiguration space of the flexible component is modcled by a mixed
set of reference and local elastic generalized coordinates, (1] The finite element method is
employed to generate a tet of elastic coordinates that represents degrees of freedom of a
aelected set of disrrete poinic in the structure. Utilization of such nodal coordinates results in
a large dimensionality that often causes numerical ifficuities. An alternative representation
suggests the use of a truncated set of modal coordinates, {2]. A modal transformation is,
therefore required to perform a transformation from the rodal space to the mod  space. The
precision of this translormation depends on the accuracy of the estimated modal
cliaiacberistics o] b elasiic component.

Muodal vubstitution techniques were employed by previous investigators {3-5], in modeling
rotating flexible components. These methods, however, have relied upon modal character-tics
of a non-rotating structure undergoing free vibrational motion. Rotating flexible components
are known to experience centrifugally induced tensile forces that tend to increase the effective
torsional and flexural stiffness. A few investigators [6-10] nave conducted stvdies to estimate
such rotational stiffening effects. The results reported in (11] show that the centrifugally
induced stiffiness has greater influence on lower modes, which are significant to the dynamic
response of such xystems. Therefore, a proper set of elastic modsl coordinates must account

for mods. changes iduced by the centrifugal force field.

In this paper, s computer-based dynamic analysis scheme is developed. A detailed two
din-ensional analysis based on & nonlinear Lagrangian formulation is performed. The finite
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element is used to generate modal characteristics that account for the effect of rotation.
Modal truncation techniques are applied in order to obtain a reduced order model. The
rotating flexible components are treated as members of a multibody system. Base excitations
are permitted by the dynamic model. The dynamic behevior of a rotating flexible body is
then examined under the influence of basc motion excitations that give rise to primary shock
loading conditions at different phase angles.

2. DESCRIPTION OF ELASTODYNAMIC MODEL

In this forinulation a general flexible body i is coi.sidered. The body is deforming
elastically while executing a general reference motion.

2.1 Generalized Coordinates and Velocities

The configuration of thc elastic body can be described by defining the global position of
an arbitrary point in the body. For this purpose three sets of axss are introduced as shown in
figur= 1; the inertial frame XYZ, the body reference frame z‘y‘z‘ and the element coordinate
frame 2%y 2, The global position of an arbitrary point p* in element ij can be expressed as

r;'f=r,+R (6‘)R‘J(ﬂu )N" R"(ﬂ”)c" (1)

where R is a coordinate transformation matrix, R”(8)=diag[R"(87),1,R"(87),1] 15 a block
diagonal matrix, N¥ is the shape function of the assumed displaccment field of element ij,
and ¢ is a vector of nodal coordinates defined with respect to an intermediate system of
axes; located at the body origin and parallel to element axes. The rotation A% defines the
orieni,a.tion of element axes with rcspect to the body reference frame, and ©° defines the

orientation of the body reference with respect to the initial frame. Equation (1) can simply
be written as .

rifmri 4 RS (0 )N ¢f (@)
where ¢ is the vector of nodal coordinates of the Hexible body i, and N is a modified shape
function that accounts for a coordinate transformation irom the elemeat coordinates to the

body-fixed frame, as well as a Boolean matrix transformation.

The generalized velocity expression can be obtained by differentiating equation (2) with
respect to time. This will result in

=[1 , DY ,R"i\'f""]q"' (3)

where the term R'NV ¢ i given by D6, and D¥(6%,c} 18 a function of the reference
rotational coordinates of body i and the elastic coordinates of element ij. The generalized
coordinate vector ¢' is given by

T

2.2 The Constrainted Lagrangian Equation

Mechanical systems, in general, can be represented by a collection of bulky rigid as well
as flexible structural components, that are interconnected by typical mechanical joints; e.g.
universal, prismatic, revolute, etc. The kinerniatics of suck joints can be expressed in terms of
a set of nonlinear algebraic equations of the form

C(q 1 )‘0 5)

[y
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Fig.1 Generalized Coordinates of Flexible Body i

Z

Fig.2 Nodal Coordinates of Element j
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T . . . .
{ ¢ g% .. q™" } s the generalized coordinate vector of a mechanical system

with Nb bodies. A virtural displacement &g of the system generalized

coordinates, that is
consistent with the constraints, can be written as

[g—ﬂ Sq=Jog=0 (6)

where J is the Jacobian matrix of the constraints equation. The Lsgrangian form of the
equation of motion is given by

MG 4K g 4 I A= Gy QF (7)

where X is the vector of Lagrange multipliers, M is the mass matrix, and K" is the stiffness
atrix of body i. The vector Q% represents externally applied forces, and Q& represents force

expressions that are functions of quadratic velocity terms, which account for Coriolis,

gyroscopic and centripetal contributions.

The vector Qf represents externally applied forces, and Q% represents force expressions that

are functions of quadratic velocity terms, which account for Coriolis, gyroscopic and
centripetal contributions. :

3. TWO-DIMENSIONAL ANALYSIS

In this analysis, flexible bodies are assumed to be represented by straight beam elements.

There are no restrictions, however, made on the type of element which can be used to
generate the coeflicient matrices of equation (7).

3.1 Inertia Properties of Flexible Bodies

Utilizing the velocit; expression of equation (3), the kinetic energy of the flexible body i
can be writter as

J=e'

T B ©
sl 7

where a’ is the number of elements in the finite element mesh of body i, s is the mass

density, and v" is the volume of element ij. The general form of Lagrange’s equation of
motion is given by

. \T . \T . \T
d (o o' I [o' ¥ . g
‘“{39" } {39‘ }+{69' }+ o

where U* is the strain energy stored in body i. Performing the differentiation of the first two
terms of equatior (9), one can write

. \T Y i
dier b Jari [\ i 10
-u{a,r'} {89‘} Mg -Ql (10)

where the mass matrix M' is given by

m'l
Symmetric
M= e-"'s.'TRgT e‘rm,‘e‘ ] (11)
sTRiT §7ei m}
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and Q¢ is defined as

6”Risi ¢! —26' Rbs' '
Q&= _2é|'él'rm:'c|'_é|'rsu'él' ) (12)
é"m,"c"—2é‘.§"rc'
The matrix R} is the derivative of R’ with respect to ®, and m‘/ is the inertia

prope.tleﬁ associated with translational reference coordinate. Exprwslons for m{, § and §°
are given in the appendix.

3.2 Stiffness Properties of Rotating Flexible Bodies

The third term in the left side of equation (9) can be expressed as

0 i
T
i Y Symmetric
{ﬂ}: o o 8 [=Kigi (13)
aq'
0o o K X

where Kj is the elastic stiffness matrix defined with respect to the lccal elastic coordinates in
order to satisfly the uniqueness of the assumed displacement field. If the local coordinate
vector of point p*, with respect to element axes, is given by

b= .

where deformations are confined to the plane of rotation as shown in figure 2, and the elastic
body is assumed to rotate about 2 fixed axis in the space. Neglecting shear deformations, the
strain energy expression is given by {12],

o2 o 82V
3 ETAY { L ¥ 57
ZL { T ok {a

J-l

b Eiad (20 (20 Gy g (19)

'J

The first two integrals of equation (15) represent linear strain energy, while the third
term is a contribution of the nonlinear component of the strain. Therefore the stiffness matrix
in equation (13) can be defined as

K;=K¢'+K,'. (16)

where KU represents the lineai clastic oiiffuess of body i The mairix A is found by
performing the third integral of equation (15), where the term EYAY { 8u" /82" } accounts
for axial stress resulting from the centrifugal force fild. Expression for stiffness matrices K

and K; are included in the appendix.

3.3 Reduced Order Model

The dynamic relation expressed by equation (9), is written in terms of reference
coordinates and elastic nodal coordinates of fexible body 1. This type of representation often
results in large dimensionality which gives rise to numerical solution problems. In order to
reduce the dimension of the dynami: model, a transformation from the nodal space to the

163




modal space may be invoked. Considering the expressions given by equtations (11)-(13), one
can describe the free vibrational niotion, associated with equation (8), in the form

; ] : 17
mie' + [KiaKi-6"m{ etmo v

where the flexible body deformations are confined to the plane of rotation. Solving the
generalized eigenvalue problem associated with equation (17), the modal transformation can
be established in the form

. 8
o mle’ (1 )

where T is the modal matrix representing a selected finite set of mode shapes, and of is the
corresponding set of modal coordinates. The truncated set of modal coordinates is selected to
include all modes that are significant to the elastic response of the fexible component, [2].

The equation of motion of the fiexible body i can be written in the modal form as
M+ 4T amQis Q5 (19)
T
where &' = { ri",8,a’" } is the generalized coordinate vector in the modal form, and the

bar (—), refers to a transformed. modal form. The composite equation of motion for a
multibody system can be assembled in the form

Mi+ld+T 3=0p+Q5 (20)

T
where d= { d'7,d%",...,d™" } is the generalized coordinate vector of the whole system.

4. NUMERICAL RESULTS AND CONCLUSIONS

Numerical resulis are obtained for a rotating beam configuration defined in figure 3. The
beam is 2 meter long with its midpoint fixed to a hub rotating at 2400 rpm. The beam is
made of Aluminum alloy 2014 T6 with modulus of elasticity 73 Gpa. The cross-sectional area
is 0.16X0.02m rectangular shape. The beam is modeled by 8 finite beam elements of equal
lengths. Modal characteristics of the rotating beam are generated using the numerical scheme
developed in [11], and compared with modal frequencies of the non-rotating beam. This
comparison is presented in table 1, which shows the stiffening eflect of the beam rotation.

Base motion excitation is modeled by a modified sinusoidal pulse of duration .04 times
the time period of the fourth frequency of the beam. The pulse delivers a force of maximum
peak amplitude 100 times the total weight of the beam system. The lateral deflection of the
tip point ( node 1 ) of the beam is monitered at different beam excitations. A nondimensional
parameter ¥ represents the deflection at node 1 divided by the length of the element. Figure
4 displays the response of the tin paint using the 15t {our ravdes of the beam. This figure
shows the effect of using the centrifugally stiffened mode shapes on the beam dynamic
response. Figure 5 represents the effect of the nature of the primary impulsive force on the
excitation of higher modes. It is noteworthy to mention that when the pulse is applied at
©=180°, the primary generated impulsive force will be purely transversal and therefore the
flexural deflection of the beam will approach its maximum amplitude. Figure 6 shows the
same behavior for the beam with centrifugally stifened mode shapes when excited at two
different orientations; ©=45° and 6=180°. As anticipated, a pulse applied at ©=90° will
produce an axial impulsive force that has minimal contribution to the flexural deflection of

the beam ( figure 7).

The numerical results presented in this paper emphasize two important observations.
The first is concerned with the significance of using the actual modes of a rotating beam to
the evaluation of its dynamic response. The second conclusion is related to the nature of the
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primary generated impulsive force. As depicted from figures 6 and 7, the direction of the
primary impulsive force is relevant to the type of modes that are significant to this excitation.
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‘ APPENDIX

The inertia and stiffness coeflicient matrices of the flexible body i can he established using the

A standard finite element sequential assemhly procedure as applied to the following element matrices:
% . \ s e )
q mifm [ o9 N7 N 4y (A1)
.
7 P
S’-j.op’ NY dv' (A2)
( S m [ MWD NI wd TmRY R (A3)
o
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K- [a‘fﬁ"" ] E7 GY NY 4o (A4)
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where R} is the derivative of R' with respert to 8, and G¥is a differential operator relating strains to
displaceraents, [12). -

The stiffness matrix X}/ cap be derived from the strain energy gmerated by the centrifugal force
field. This portion of strain energy can be expressed as

1 5 | 0w” :
U'V- ? f.'l"" -a—:ru—r ")" (A.S)

where the axial stress o/ is generated by the centrifugal force. One can express the centrifugal force
associated with a differential element located at point p* of the finite element j, as

Fim [ 4967 4 (A5)

where the integration in equation (A.6) is carried out over the span between point p” and the
free end of the beam. A" is the cross sectional area of element j.

Table ). Bending Frequencies of a Beam Fixed at its Midpeint

friu_efm' (rad/s) | Non-rctating Beam Beam rotating at 251 rad/s
P Te | Bed i
ot D | Bl =
Thisd 3’:{; g';f;! 5320:;)5]2“28
Routrth $ill:|ee ?f onsdt'inzs &; ld. 2
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Sith  JTPe g7z 13 7213

>

Fig.3 Base Excitation of a Rotating Beam
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Fig.4 Deflection of the Tip Point; Free Vibrationa) Modes,
S centrifugally stiffened modes

~_—-
ie

BEAM ROTATION ( rad )

Fig.5 Response of Tip Point using Free Vibrational Modes;
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Fig.7 Response of Tip Point using Centrifugally Stiffened Modes;

- - - = without pulse eXeitation; e with pulse excitation at ©=00°
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1. INTRODUCTION

This paper is concernad with a theoretical and numerical investigation of the
propagation of stress waves induced by surface impact on a laminated plate of finite
depth and infinite lateral extent. Attention is focussed on the problem of an impulsive
line load acting on the upper surface of the plate and generating plane wave disturbances
travelling in the laminate along the direction normal (o the line load. The plate is
constructed of an arrangement of layers (or plies) of fibre-reinforced material in-which
the reiniorcement of each layer is a family of paralel fibres lying in the plane of the
laysr. The plies are assembled in a periodically repeating configuration of N unit cells,
the configuration being defined in terms of the angles between the fibre direction in each
ply and some specified reference direction. For the present we have concerned ourselves
with a simple 0/90 configuration. Here the unit cell consists of two inner layers, each
of thickness h, with the fibres running along the reference direction, and bounded above
and below by a layer of thickness h of the same material with fibre direction orthogonal
to the reference direction. This choice of unit cell is made purely for simplicity and the
techniques that we use are applicable to any configuration of the unit cell.

We model the fibre reinforced material as a homogeneous continuum of
transversely isotropic elastic material with the axis of transverse isotropy along the fibre
direction. 'This means that we look at waves whose wavelengths are an order of
magnitude greater than the fibre diameter and inter—fibre spacing so that on the scale of
the wavelength the continuum theory might be expected to be valid. Typical of the
materials we have in miud is the ICI product PEEK, formed of carbon fibres embedded
in a thermoplastic resin, for which typical dimensions are h = 125 um with the fibre
diameter and inter—fibre spacing of the order of 6 um. Thus we are thinking in terms
of wavelengths of the order of 1/2 o 1/3 the ply thickness or grea‘er for which the
non—dimensional wave nuiaber Al - 2xiiA (where A is the wavelength) varies from zero
at infinite wavelength to a value of approximately 18 at A = h/3. For smaller
wavelengths, of the order of h/10 or less, the continuum model will break down due to
diffraction and scattering by the individual fibres.

There is a considerable simplification in the mathematics to be gained by treating
the composite as inextensible in the direcl.on of trausverse isotropy. This is an
idealization of the fact that the extensional modulus of the continuum along the fibre
direction can be of the order of 100 times that in the cross fitre direction.
Mathematically, the effect of the idealization is to reduce the order of the differential
equations and this leads to solutions involving fewer parameters. A consequence of this
reduction in the order of the equations, however, is that it is no longer possible to
satisfy all the interface continuity conditions between the plies. This leads to a singular
perturbation problem, in which it is necessary to allow the tangential component of
traction along the fibre direction to s discontinuous azross the interface, with a
consequent singularity in the stress component along the fibres, a.soclated with a finite
load carried by the surface layer of fibres. This singular perturbation probiem has been
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examined in detail for static problems by Everstine and Plpkin {1] and for dynamic
problems by Green {2}, Green and Milosavljevié [3] and Baylis and Green [4],[5]. In
particular, Baylis and Green [4],{5], dealing with a four ply laminate, derive an
expression relating the singularity along the fibre direction to the discontinulty in shear
stress. They present detailed comparisons of the stresses in the inextensi’ s laminate
with those in a strongly anisotropic but not inextensible material. These comparisons
show that the inextensible theory provides an acceptable approximation to the stress
variation through the laminate except in the very long wavelength region and the
dispersion curves for the two material models are also shown to be in good agreement,
again with the exception of the very long wavelength limit. As with singular
perturbation problems generally, the shear stress discontinuities are to be interpreted in
terms of very narrow bands (boundary layers) adjacent to the interfaces, through which
there exist high stress gradients, giving large changes in stress across the bands. The
associated singular stresses along the boundary fibres are to be interpreted as high stress
levels in the boundary layers, which contribute finite loads in the fibre directions when
integrated through the boundary layers. It is with these interpretations in mind, that we
adopt the idealization of inextensibility to give a mathematically simpie model of our
fibre reinforced material.

We make no assumptions about the variation of displacements and stresses through
the laminate, such as is done in engineering theories of plates and shells, Our method
is to solve exactly the system of governing equations appropriate to each layer, matching
the solutions across the interfaces and satisfying the appropriate boundary conditions at
the upper and lower surfaces of the laminate. This analytical solution is carried out in
the paper by Green and Baylis [6] which appears in these proceedings. The method of
solution involves taking Laplace transforms in time and Fourier transforms in the in-plane
spatial coordinates, of the governing equations of the model, and yields the exact solution
for the variation of the transforms with depth throughout the laminate. The approxi-
mations arise only in the numerical methods for inverting the transforms. The solutions
for the displacements at the upper and lower surfaces are reproduced in Section 2. In
this Section we also present the transforms of the in-plane displacement and the stress
components both at the bounding surfaces and in the interior of the laminate.

The problem of inverting the transforms is considered in Section 3. There we
show that it is necessary to solve the dispersion equation (relating frequency to
wavelength) for plane waves travelling in the plate under traction free boundary
conditions at the upper and lower surfaces. Inversion also requires that we evaluate the
residue of the inversion integral along each branch of the dispersion equation and we

must perform an integration along each branch and a summation over all branches to
obtain the solution.

The numerical solution of the dispersion equation and the subseguent numerical
integration cver the brauchies of the dispersion curves is outlined in Section 4. It is
here that the approximations come into play, since the solutions are necessarily limited to
a finite number of branches and the integrations over each branch must be limited to a
finite range of values of the wave number, k. We have chosen as an upper value
k = 20, corresponding to wavelength of the order of 1/3 the ply thickness but 6 times
the fibre diameter and inter-fibre spacing, which we estimate as being the limit at which
the continuum model would be valid. We show that restricting the integral to a finite
range of values ¢¢ k gives rise to the phenomenon of "windowing" and we apply the
technique due to Hamming {7] in an attempt to reduce this effect.

Graphs which show the variation of displacements and stresses, at the upper and
lower surfaces, as functions of position at various times are presented in Section 5.

24 TRANSFORM SOLUTIONS

We choose a Cartesian coordinate system of axes with the x, -axis normal to the
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plane of the layers, the x,-axis parallel o the fibve directions in the two outer leyers of
the unit ceil and the x,-ax parsllel to the fibre directions in the two inner layers of
the unit cell. We designate the layers with the fibre direction parallel to x, as

material / and the layers witb fibre directions parallel to x, as material 2 and denote
stress and displacement components in the layers witt the corresponding suffix. The line
load which produces the disturbance is assumed te act on the upper surface of the plate,
along a live making an angle (2/2 ~ ) with the x -axis giving rise to waves travelling
in the plane at an angle —y with tho x,-axis. The displaccweeat components
ui{x,,x,,x,.t), (i=1,2,3), and stress components tij('xvxz,xa,t), (i,j= 1,2,3) in each layer
of the lamiszte then become functions uj(x,,x.t) and tij(x,,x,t) of x,,t and

X = X, sin y + x, cos v, only. The s'ress components are related (o the displacement
components through the stress-strain relaticas apprepriate to each iayer, and these
relations are given in detail by Baylis and Greun [4]. These involve the density p, and
squared wave speeds Ch c2. c? derived frou: the eirstic constasis of the continuum
(Green [2]), and employ the abbreviations ¢ = cos y and s = sin y. The stress
components and displacersent components must satisfy the equations of motion in each
layer, together with continuity conditions at the interfaces be.ween layers, traction free
conditions on the bottom surface of the plate and the specitied loading conditions on the
uppe- surface.

In orCer w solve the problem, it is cenvenient to work with the quantities
U,V,W,’L‘ij, which ave obtained from the di.placement components u,,u,,u, and the
stress components tj respectively by taking Laplace transforms with respect to time t and
Fourier transforms with respect to tbe variable x. Thus, U,V,W, and Tj; are functions
of the coordinate x, norraal to the plane of the plate only, but they also invoive the
Laplace transform parameter § and the Fourier transform parameter k. The equations of
motion and stress—strain relations in each layer then reduce to a system of ordinary
differential equations and algebraic relations to determine the transformed displacements
and stresses within the layer as functions of x, and the interface continuity conditions
become a system of algebraic equations rclating the transformed quantities between one
layer and the next. The solution of these equations using the propagator method is
given in detail by Green and Baylis [6]. Here we quote their results for the
transformed normal displacement components at the surfaces and derive expressions for
the other transformed quantities, both at the surface and in the interior of the laminate.
For a line load P(t) acting normal to the surface of an n—cell laminate (overall depth
4nh), the transfo..ned normal displacement U(0) at the lower surface and U(P) at the
upper surface are given by

(0) - __P(8) _my,(k,8) 5.
L( ) m~|2(k,5) : U(n) m'IZ(kvs) P(S) (l)

where f"(§) is the Laplace transform of P(t) and m,,(k8§), m,,(k3§) are known functions
of the transform parameters k,§, the number n, layer thickness h and elastic properties
of ilie cumposite material. ‘I'he elements mpg (r,s=1,2) are expressed in terms of the
components pj; and gij (i,j=1,..4) of the propagator matrices in matcrials [ and 2
respectively. L‘or a tangential line load Q(t) on the upper surface, acting in the
direction parallel to the x,-axis, the corresponding displacement components are given by

0) - Q) _onga(k,8) oo
L n,,(k,s) ~’ LB n”(k—,_é_) G 2)

Here Q(8) is the Laplace transform of Q(t), and n,, and n,, are related to m,,, m,,

and the elements pij(k,ﬁ) of the propagator matrix defined by Green and Baylis [6], by
the equations

Pz.m Pa,M
“12""2}2{“;‘2 “22"“22"‘1‘2,'1';'2 : 3
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Equation (1) gives the transform of the normal componsnt of displacement at the
upver surface due to the spe:ified norraal line load. From the propagator solution it is
possible to obtain expressions for the transform of the tangential displaccment V(’;') at
the upper surface and the transformed components of stress. These are given by

U(n)

v$“) o Paaly ~ - pgP(S) , (Paa * O)
Pag
. 2~%y 2 n
i . pe{(t - 3] By + 1ks [1 - &) v )} ,
1 1
4)
8 2 ocZikev?®™ T D pelikey®
2
8D - = pe2[%[Be) + 21ksvi™] - U5, -20m) )
il
In equation (4) the component 'I(Lna) relates to the limiting value . approaching the

surface fromn within the material and ttis stress component jumyp., discontinuously to zero
on crossing the surface. The Dirac delt= function term in the expression for T(Q gives
the singularity in the reaction stress along the fibres in the surface, which is required in
order to balance the shear stress discontinuity. (In the argument of the delta function,
the origin of coordinates has been taken to be in the middle surface of the 2n ply
laminate.) Reasults appropriate to the lower surface of the laminate may be derived from
equations (4) on replacing U(Tll) by U(?), V(Tll) by \/‘(9) and suppressing all the terms
involving B(§).

It is possible to derive the displacement and stress transforms at any value of x,
throughout the laminatc. As an illustration of the application of these methods we
calculate the transforms of both displacements and stresses at the interface between the
top layer of material / and the remainder of the laminate. Writing T = T, ,/pc2?, the
propagator solution gives T, aud U, at the interface as

= - S12M22} pyg
T, [522 ™, ] P(s) ,
(5)
e - S11M22}) PBys
U, [32, . ] P(s) ,
where s;; (i,j=1,2) are known functions of the parameterc, Then the interface coatinuity
conditionis give T, = T,, U, = U,, together with V, = V. = 0 and W, = W, = 0.
The tangential components of traction in material I at the intcrface are then given by
) L PO PELY
T]z = -pC, [P Y P ]- (P22 2 0)
22
(6)
Tf;; - pcglk':’d‘ o
and the corresponding components in material 2 are
sz) - p':-;’lksu1 .
]
2 2 T,- U
{2 o pe? [&a_x_x_. ], (1ag # O
R PP

The discontinuities in these traction components across the interface are balanced by
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singularities at the interface along the fibre direction in each material and combining
these with the results derived from the transformed stress strain relations gives the
in-plane stress components in the two materials. The results are

- 2c? oA 701) o),
R L L A N L R Litewtia Ty
2 '
(8)
2 2 () _1(2) N N
Tgi) - - E'C'CLEZ T, - [1‘-2%1-2—]6()(*), T;;) =0, ng) - pc:[] - _“_z]T]'

c2
1

where the argument of the & function is x* = x—(2n-1)h, corresponding to the origin at
the middle surface of the laminate. Results similar to those detailed in equations (5) -
(8) may be obtained at any other interface of the laminat: whilst at any interior point

in any layer it is also possible to determine the non-zero in-plane displacement (V, or
W,). In the next section we consider the problem of inveiting these transforms to give
the required solutions.

3. TRANSFORM INVEFSION

The techniques developed in Section Z yield the transforms of the displacerments
and stresses throughout the laminate as known functions of the transform pararmeters k
and § at any value of x,. In order to determine the displacements and stresses as
functions of the coordinate x = x, cos 4 + x, siu 4, normal to the line load and of
the time t, it is necessary to invert these transforms. Typical of the quantities to be
considered js the transform of the normal displacement at the upper surface due to a
normal line load, which is given by equation (1) in the form

- _om,,(k,8) = .,
U(n) = E\-‘Lm P(8)

Letting u,(2nh,x,t) denote the normal displacement on the upper surface x, = 2nh,
due to a line load which consists of a univ delta function in time P(t) = (1), for which
P($) = 1, the displacement uP(x,t) corresponding to the transform (1) associated with any
P(t) is then given as the convolution of P(t) with u,(2nh,x,t) in the form

t
wix,t) = jo u, (2Znh,x,7)P(t-1) dr. (9)

Accordingly we restrict attention to inverting the transform (1) with —P-(’s‘) = 1, for which
the formal solution is

eSt eikx g5 dk . (10)

1 jm I7+iw m, (K, $)
i -0

uy(2nh,x,t) = z—pr y-io M 2(K,8)

The integral with respect to § may be evaluated in terms of the residues of the
integrand at the zeros of the function m, ,(k,8) in the left half plane. The equation

m];(kyiw) -0 (1)

is the dispersion equation for plane wave propagation in *he laminate, corresponding to
.-ves travelling in the direction of the normal to the line load under traction free
conditions at th: two surfaces of the plate, This equation has an infinite number of
pairs of ruots, w = twj(k) (j=1,2,...), each pair corresponding to forward and backward
travelling waves associaied with one branch of the dispersion curve. In terms of these
solutions, equation (10) becomes
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(k,8)

u,(2nh,x,t) = %; I _dk '21 {%ﬁf;73§‘ ol (kx-15t (12)
J-

g = tiwj(k)_

Both m, ,(k,§) and m, (k) are even functions of § and equation (12) may be written as

. o o0
u (2nh,x,t) = = 3 [ Rj(k) sin ekt elkx dk (13)
=1 e
where
2(k,8)
Ry(k) = (G223
J [dm,,/ds ]g - +iw (k)
(14)
L _[m (k,§)]
LA I NS
It may also be shown that Rj(k) is an even function of k and equation (13) may be
further simplified to give
g s
u,(2nh,x,t) = - b IO Rj(k) sin wj(k)t cos kx dk 3 (15)
j=1

Equation (4) contains an expression for v(8) which is valid provided p,, # 0 and
which therefore has the same singularities as U(P)J for the case P(§) = 1. It may be
shown that p,,/p,, is an odd function of k and we may therefore express the tangential
displacement v,(2nh,x,t) associated with a unit delta function normal line load as

v,(2nh,x,t) = - 2 jgl [0 hj(R{()sIn wj(k)t sin kx dk |, (16)

where h;(k) is the value of the ratio p,./p,, evaluated at § = iwj(k).

The formulae for the transforms of the stress components in equation (4) involve terms
of the form ikU(nl) and ikV(‘;‘) and these when inverted give du‘(2nh,x,t)/dx and
dv,(2nh x,t)/dx respectively.

Equations (5) give the transformed normal displacement and normal component of
traction at the interface between the top surface layer of material / and the rest of the
laminate. These have the same singularities as the expression (1) and their inverses yield

u,[(2n-1)h,x,t] = —12Fl- b Jm s”(k)RJ-(k) sin wj(k)t cos kx dk,
= an

¢, [@n-Dhx,t] - - % j§1 ]0 s, (KR (K) sln wj(k)t sin kx dk,

where we have used the fact that s,,(k) is an even function of k and s, ,(k) an odd
function of k. Equations (6), (7) and (8) then yield the remaining stress componznts on
the two sides of the interface in a similar fashion, the resulting integrals being of the
forms given in equatious (17) but with different factors multiplying Rj(k).

All the results derived in this section relate to the problem of the normal line load

acting on the upper surface of the laminate. Results for the effect of the tangential line
load may be obtained in a completely analogous way by starting with the solutions given
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in equations (2) rather than using the solutions (1). Referring to equations (3), it may
be seen that the zeros of the element n,,, which determine the singularities of the
transforms, occur at the zeros of m,, and possibly at the zeros of p,,. A detailed
examination of the product p,,m,, shows, however, that this does not vanish at the
zeros of p,, and therefore the singularities of these transforms occur on the same
dispersion ctv  as for the normal line load problem. Thus all the inversion integrals
associater .0+ ¢ tangential line load problem involve the residues Ri(k) multiplied by
some ap;..p.dte factor. Hence for both the normal and tangential line loads the
problem of inverting the transforms reduces to evaluating an infinite sum of infinite
integrals of the form

sin kx} dk (18)

@ 00

& [o £300Ry0) stn oyt S0 40
where fi(k) is some factor arising from a function of k and § which is evaluated on the
branch § = iwj(k) of the dispersion curve.

The expression (18) consists of a sum of integrals, one along each branch of the
dispersion curve. In general both the integration and summation have to be carried out
numerically and we must therefore limit the range of integration to some finite interval
(0,k) and restrict the su.amation to a finite number of branches j=1,...,P of the
dispersion curve. We then have to construct a computer programme to solve the
d’spersion equation

mp(k,iwj) = 0 (19)

numerically in order to obtain values of w;j(k) along each of the P branches for values of
k taken at M intervals Ak = k/M from k=D to k=k. It is also necessary to evaluate the
residues Rj(k) at each of these values of k for each of thc branches j=1,2,...P.

4, NUMERICAL METHODS

To carry out the numerical evaluation we choose the values for the material
parameters that were previously employed by Green & Baylis [4} and which are derived
from measurements carried out by Markham [8] on a carbon fibre/epoxy resin
composite. For the inextensitle model, these become c?/c? = 4.297 and
c%/cz2 = 2.301. We must also specify the number N, o% unit cells forming the laminate
and the results reported here relate to the simplest case of N=1 although the computer
programmes have been written to cope with the general case of any specified number N
of unit cclls. In order to obtain the dispersion equation (19) and the expression for the
residues given in equation (14). we have made nee of the algebraic manipulation
programme REDUCE. The outputs from the RECUCE programme consist of a
subroutine to evaluate m, ,(k,8) and a subroutine for R(k,§) = m,,/(dm, ,/dS) from which
to calculate the residues Ri(k) and these subroutines are incorporated into the computer
programme which solves the dispersion equation.

The computer programme to produce the soiutions wj(k) to the dispersion equation
m,z(k,§j(k)) = 0, where §;(k) = iw;(k), is based on the notion of fixing k, and then,
starting from w = 0, marching up {he w-axis evaluating m,, at each step until the
required number of zeros of m,, have been determined. A zero is indicated by a
change of sign of m,, at two consecutive values of w, and by reducing the step length,
this zero can be determined to any given degree of accuracy.

Clearly, this method is open to error in that two changes of sign which occur
within the same step iength will be missed and a change of sign indicates the presence
of an odd number of zeros, not necessarily just onc. These two possibilities did in fact
give rise td> problems since adjacent harmonics do, on occasion, run very closely
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together. In theory, the answer is simple - the step length has to be chosen sufficiently
smalll However, since a substantial number of harmonics are required, covering a very
large set of values of k, the programme would then become excessively expensive in
computer time.

A refinement introduced to save running time is to estimate a value of w;(k) and
then proceed to a fine search for a zero in its locality. The programme is initialized by
using the value for wi(C), derived by solving the disperslon equation at k = 0
analytically, It is then possible to use the history of the jth harmonic to estimate the
location of the j™ root under inspection. For each new value kiy; of k the root
corresponding to the fundamental mode, i = 1, is the first to be located and this is
estimated by w = w,(kj) — ¢, where ¢ = 55k, and ¢k is the step length in k. This
allows for the possibility of the dispersion curve having a negative gradient. The step
length h,(kj;1) in w is then taken as the minimum of 0.1¢ and 0.1{w,(k;) - w,(k;)}.
Thus, if the previous history indicates that the fundamental mode and first harmonic are
very close at k;, the step length at kj4; is chosen as a tenth of the gap at kj.
Otherwise, experience indicates that an increment of /10 is sufficiently small.

For each of the remaining roots, ‘*’j(kiﬂ) for j > 1, the first estimate is based
not only on the history of that particular harmonic, but also on the roots already located
at kj41 and is given by

W -~ max(u‘j(kl) - ¢, “’j-l(ki+1) + 0.1 hj-l(ki+1))‘ (20)

That is, if the roct of wj(ki) is sufficiently far above the previous root at k4,
‘*’j-l(kiﬂ)- a substantial amount of computer time can be saved by stepping the first

;stimate of wj(ki+1) over this gap. The step length for locating this root is determined
Y

: ki) - :(k vi_1(k
hj(kj+1) = min {6/10 AT L %3 wilky) @l 1)131 1(kg) }. (21)

This allows for the possibility of the j® harmonic at k; being very close to either the
(j+1)h harmonic or the (j-1)% harmonic.

Once the step length h; and a first estimate w for wj(ki+: ) have been established
the procedure for locating thé root wi(kj4) is as follows: “given kj4q and w, m,, can
be evaluated. w is then increased by the step length h; and m,, recalculated with this
new value of w. We continuc to increase w by the step length until a change of sign
of m,, is observed. The step length is then reduced by a factor of 10, and the process
is repeated using the last value of w before the change of sign occurred as a new
estimate of the root. Once a change of sign has been re-established, the step length is
reduced by 2 further factor of teo and ihe compiete procedurc repeated, with termination
occurring when wj(k) has been determined to the giver degree of accuracy.

Having obtained the solutions of the dispersion equation and the associated residues,
we are now in a position to perform the numerical integrations and summation involved
in inverting the traasforms through expressions of the form (18). To do this, we restrict
the range of summation from j = 1 to P and the interval of integration from k = 0 to
k and rewrite the expression (18) in the approximate form

Pk 3
cos kx cos kx
jgl IO fj(k)Rj(k) sin wJ(k)t {sin kx} dk = IO H(k,t) {sin kx} dk , (22)
where
P
H(k,t) = 3 Fi(0Rj(K) sin aj(k)t. (23)
j=1
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Of the two approximations involved in equation (22), the effect of restricting the
summation to a finite number of roots {P) cannot be evaluated without some estimate of
the contributions arising from the residues of the excluded branches and in general such
an estimate is not available. The effect of restricting the integral to a ftinite range is to
produce a function F(x,t) which is defined in terms of the actual signal F(x,t) by

sin l:(x—y)

f‘(x,t) - Igjw F(y,t) X-¥)

dy, (24)

The function f*‘(t) defined in equation (24) is the convolution of the true signal F(x,t)
with the function (sin kx)/x and exhibits the phenomenon of "windowing". This
phenomenon produces a spurious oscillation of wavelength 2x/k and in order to reduce
the effect of the osciilation we have made use of the Hamming window function s(k)
defined by

s(k) = « + (1-0) cos [lelj , (25)

where o is some parameter satisfying O < o < 1. The procedure is to replace the
integrand over the finite range (0,k) by the product of the integrand with s(k) to give a
new approximation Fy(x,t) given by

Fy(x,t) = o F(x,t) + Qiﬁ)- {f‘(x— %,t) + F(x + %,t)} . ' (26)

The convolution terms in the braces are each half a waveiength out of phase with the
convolution F(x,t) and this serves to dampen out the oscillation. In evaluating our
numerical results we have used the value o = 0.54 recommended by Hamming [7]. Note
that both F(x t) and FH(x t) tend to tne true signal as k 5 ©. There is one further
approximation required in order to perform the integration and this consists of replacing
the integral by a finite sum of terms. This has been done using the trapezium rule,
with interval length k/M and it can be shown that this procedure is equivalent to
replacing the convolution integral F(x, t) defined by equation (24) by the cc.volution
F(x,t) defined by

1 ) sin f((x-y)cos ;ﬁ (x-y)
F(x,t) =55 |  F(y,t) x dy . 27)
Moo sin % (x-y)
M

The calculated result is then the Hamming function of this convolution and is given by
& = (1 a) T
Fu(x,t) = oF(x,t) + [Fes - o)+ Foos Do} (28)
K

The convolution F(x,t) tends to I:"(x,t) in the limit as M increases to infinity, but for
finite values of M the fuuction defined by equation (27) is periodic in x with wavelength
47xM/k and the numerical _integration proceaure is thercfore limited to values of x
satisfying 0 € x < 4xMUk.

In performing the numerical integration we havz chosen as unit of length the half
thickness h of each ply and as unit of time the quantity h/c,. For a given value of v,
the dispersion equation has been solved for eighteen modes (P=18) with values of kh
rangmg from zero to 20 (k'20/h) in steps of 0.002, corresponding to M = 10,000. This
gives rise to 180,000 values of wi(k) and an equal number of values of the residues R;(k)
which form the data matrix for ghe numerical inversions. The procedure for this is to
specify a value of t and to form the sums H(k,t) appropriate to the particular
displacement or stress being evaluated. Each sum H(k,t) is multiplied by the
corresponding value of the Hamming factor s(k) and the product is stored. Using the
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trapezium rule, the integral is then evaluted for a range of values of x from x = 0 to
x = c,t in steps of Az = 2x/k.

s. RESULTS

In this section we present a set of curves showing the variation of displacements
and stresses at the outer surfaces of the plate as functions of the propagation distance x
at various times. These results are derived by numerical integration along the dispersion
curves and are presented here for propagation at the angle 4y = 609 only. Calculation
of each of these latter sets of results involves the use of 360,000 stored values for each
angie of propagation y and results for other angles of propagation will appear elsewhere.

The plots dispiay the variation of displacements and stresses as functions of
distance from the impact point at different values of the reduced time T = c,t/h.
Figures 1a and 1b show the norma! displacement u, at the upner and lower surfaces
respectively.

UPPER SURFACE DISPLACEMENT ) T LOWER SURFACE DOISPLACEMENT

/\kg A x “ xn ’ 10 T n n —n A
] .: P 2, 2 -, 5 20 :WA,__II x_ L N )
o

A . . - 30 N — .
/—'\/\/\J"\r

EESoyr v ALEE M\,W T

Figure la Figure 1b

Each shows the variation with disiauce at times 1 = 10, 20, 30, 40, 50. Figures 2a and
2b show the upper and lower normal surface displacements at considerably larger times,
namely T = 100, 200 and 50C. The graphs indicate that the normal displacements on
the upper and lower surfaces are nearly the same, which implies that the disturbance is
mainly flexural. This is not surprising since we are considering an impact on the upper
surface, which induces a mainly bending deformation of the plate.

The first arrivals shown in the figures occur at a disturbance of approximately
32-’1' . This corresponds to a wave speed of -§c1 and is identical with the speed of shear
waves in the outer material. This result is consistent with the ghost velocity
phenomenon discussed in [6]. Figures 3 - 6 inclusive, display the normal displacement
u,, tangential displacement u,, the discontinuous shear traction t,, along the fibre
direction and the in-plane shear stress component t,, respectively, all at time T = 40.
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Each figure presents results at both the upper and lower surfaces, derived from using the
transforms given in equation (4) at the upper surface and their equivalents at the lower
surface. It may be seen from equations (4) that the in-plane stress components t,, and
t,, have terms in the transforms which involve kV(’f) and these terms may be evaluated
directly from the stress term t,, by an appropriate scaling. The normal displacements,
shown in Figure 3 are obtained by inverting the transform given by equation (1) using
the

3}  UPPER SURFACE y-DISPLACEMENT 3] LOWER SURFACE y-0ISPLACEMENT
3 2
' h i '

2 i, 13, ) n'hl.l\n ) - -] 18, LEN
. i | -t
! g
- -zf
!
- -3
-4 -
. -
Figure 3

Hamming window. The results show little trace of a spurious oscillation and the
windowing appears to be successful. The discontinuans tangential aress §,, showa i
Figure 5 is in effect derived from this displacement by differentiation with respect to x.
This serves to roughen the numerical resuits and there is now some indication of a
superimposed oscillation. The tangential displacement u, is obtained by inverting the
first expression in equation (4) which involves multiplying the normal displacement
transform by the factor p,./p,, The results shown in Figure 4 exhibit a considerable
windowing effect, despite the use of the Hamming technique and this is further
accentuated in Figure 6 since the in-plane tangential stress is essentiaily the x derivative
of the tangentia! displacement.

On comparison of the results obtained on the upper surface with the corresponding
results on the lower surface, we find that the disturbance on the upper surface travels
approximately two units further than on the lower surface. This is a consequence of the
fact that the effect of the impact has to travel through the plate thickness before it can
affect the lower surface.
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1. INTRODUCTION

The transmission of impact stress waves in plates and laminates is controlled by the
dispersion curves for the propagation of plane harmonic waves subject to traction free
conditions on the faces. There exists an infinite number of these dispersion curves,
which relate phase wvelocity to wavelength, ccrresponding to the harmonics of the
dispersion equation. Each of these harmonics will in general contribute to the transient
motion but for a single nlate the bulk of the disturbance is normally associated with the
fundameatal mode and the first two or three harmonics, see e.g. Jones [1]. Tkis
corresponds to a speed of propagation of the front which is considerably less than the
speed of longitudinal waves in an infinite medium whereas it is known that the first
arrivals travel with this speed. In order to obtain this result it is necessary tc takc into
account the behaviour of the higher harmonics. The dispersion curves for high
harmonics in a sirgle plate of isotropic elastic material exhibit a series of plateaux and
step regions (see Redwood [2]) with the phase velocity along the plateaux being slightly
above the velocity of longitudinal waves but slowly decreasing with wavelengtin. This
corresponds to a group velocity slighly below that of longitudinal waves. The cumulative
cffect of a large number of high harmonics can therefore produce an extended range of
values of wavelengths travelling with this group velocity and it is these which give rise to
the precurs~ signal.

In this paper we are concerned with the transmission of impact stress waves in a
fibre-reinforced laminated plate. The plate is made up of 4n plies, each of depth h,
with the reinforcement in each ply consisting of a family of parallel fibres lying in the
glane) of [the) gl ilihe) elics (ool fammaesedl in] saing Al Siepiibae
pairs being orthogonal to each other, forming a symmetric lay up of n unit cells, each
having a (09/90°/90°/0°) configuration. We assume each ply to be of the same material
and model the mechanical behaviour as that of a homogeneous transversely elastic
continuum which is inextensible in the direction of transverse isotropy. This direction is
taken to coincide with the fibre dirsction in each ply and the idealization of
inextensibility is a mathematical convenience which is intended to reflect the property
that the extensional modulus of the cormaposite along the fibre direction can be up tc 100
or more times that in the cross—fibre direction. A discussion of the implications and
possible range of validity of both the continuum assumption 2nd the idealization of
inextensibility is contained in the paper by Baylis and Green [3] which is included in
these proceedings.

Alpaeinme in nltornntn
QIVSUNLCOS LN QAeTnate

We consider in particular a line load impact acting on the upper surface of the
plate ip such a way as to generate a plane wave disturbance travelling in the laminate
with wave fronts parallel to the line load and orthogonal to the plane of the plies. In
Section 2 we introduce a double transform of the displacement and stress components in
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cach of the plies and show that the equations of motion and stress—strain relations then
yield a system of ordinary differential equations for the varintion of these transformed
quantities with depth in the laminate, These equations are solved in each layer using
the propagator matrix method of Gilbert and Backus [4] and the solutions in adjacent
plies are related to each other through the boundary conditions. This allows the
transformed quantities at any point in the plate to be completely determined in terms of
the transform of the iinpact load on the upper surface.

The procedure for inverting the transforms is outlined in Section 3 where it is
shown that this entails solving the dispersion equation (relating frequency to wavenumber),
associated with the propagation of plane harmonic waves in the laminate under traction
free conditions at the surfaces. The complete inversion involves evaluating an infinite
integral along each branch of this dispersion curve and summing the result over all the
branches, which are infinite in number. In practice both the range of integration and
the number of modes are finite and a discussion of the effects of the former is
contained in paper [3]. Here we are concerned with the effect of the number of
harmonics over which summation takes place and in particular with the contributions of
the high harmonics to the disturbance. With this in mind, we include in Section 3 the
results of the stationary phase approximation to the inversion integrals. These bring out
the significance of the group velocity and its turning points in determining the
disturbance at large times.

Finally, Section 4 contains plots of the dispersion curves and their associated group
velocity curves, for propagation at an angle of 60° to the fibre direction in the outer
material of a laminate consisting of a single unit cell. The higher harmonic dispersion
curves exhibit plateau and step regions, similar to those of an isotropic plate,
corresponding to relatively flat maxima of the group velocity curves. We also show plots
of the upper surface displacenients as functions of position at a given time, calculated
using the first two modes, the first ten modes and the first eighteen modes of the
dispersion curves. These bring out the contributions of the nigher harmonics to the early
arrivals and display the phenomenon of channelling of the disturbance within the core in
the short wavelength/high frequency limit.

2. GOVERNING EQUATIONS AND PROPAGATOR SOLUTIONS

We consider a laminated plate composed of layers of the idealized fibre reinforced
material which is inextensible in the fibre direction, the fibres being in the plane of the
layers and with the fibre directions in adjacent layers being orthogonal to each other.
We choose a Cartesian Coordinate system of axes with origin in the middle surface of
one of the layers and with Ox, parallel to the fibre direction in that layer. Letting
Ox, be parallel to the fibre direction in the adjacent layers then the normal to the
laminate coincides with the x —avic  We chall be concerned with plane waves generstcd
by a line load acting on the upper surface of the laminate along a line making an angle
(x/2—vy) with the x,-axis. The resulting disturbance will generate a displacement vector
u(x,.X,,x5,t) of the form

(X, ,X,5,X5, 1) = ulx,,x,t) , (1
where

X = X, €OS ¥ + %, siny , (2)
which corresponds to a plane wave whose normal lies in the x,x, plane at an angle -y
to the x,-axis, The components tij (x,,X,,X,,t) of stress in each layer of the laminate
will likewise reduce to functions t;; (x ,X,t) and these are given in terms of the strain
components via the constitutive equatlons appropriate to each layer (see for example

Baylis & Green [5]). Before proceeding further it is convenient to take the Laplace
Transform in time and Fourier Transforin with respect to the space variable x of both
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the displacement components uj(x,,x,t) and the stress components tij(x,,x,t). Thus we
define displacement transforms U,V,W by

(-] © A

C(x,,k,8) = I_m IO u,(x,,x,t)e'Ste'lkx dt dx ,

V(x,,k,8) = Im J’:uz(x,,x,t)e'gte'lkx dt dx , 3
-

-] -] ~
W(x,,k,8) = I_w IO ua(x,,x,t)e'ste'lkx dt dx,

and stress transforms Tij(x,,k,ﬁ) by

L

-] ~ N
Tyj(x,,k,8) = j_w jo tyj(x,,x,0)e SteTkx gt ax 4)

In a general elastic material the transforms of the constitutive equations and the
stress equations of motion then yield a system of six first order ordinary differential
equations for U,V,W,T ,T,,.T,,, as functions of x,, together with three equations to
determine the remaining stress transforms T,,7T,5T,, in terms of these six quantities.
For the idealized inextensible material, however, the displacement transform in the fibre
direction is identically zero and the reaction stress associated with the inextensibility
constraint is not determined by the constitutive equations Lut is obtained frcm one of the
stress equations of motion. Thus the equations reduce to four first order ordinary
differeniial equations together with relations to determine the remaining stress
transforms. Using the subscript 1 to denote the iayers for which the fibre direction is
parallel to the x ,-axis, the appropriate equations may be derived irom those given in
Baylis & Green [5]. The differential equations then have the form

2 2

dU c 2c
—_—1 = o =
ax, c% ity [1 == ]iks /o

1 1

dX‘ 1 i1 A
(5)
A2.2 2 2
il -——-J—('_kfc)m—lks Silg
dx, c
2
2 2 2 2 a2 2
dsS c kc’c, + 8 f 2c.1-
@y apee2lr - €2 3 Yo oo
ax (i [ c17J 3 '317_—] v et c_f‘Jl1 ’
here T, - Lii E d i
were1-pc: , S'-Ffl;f' c=cosy and s = siny .
The inextensibility constraint becomes
W, =0, (6)

and the stress transforms are given by
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2 2
T,, = p(c,z-2c:) %& T, + iksp4c§[1 - %}]V1 .
1 1

Ty = pcgikc v, , Ty, = pcgikc u, , (7)

2 2
Tys = -p S332 (T, + 21ks V,)
1

In equations (5) and (7), p is the density of the continuum and c?,c2,c? are squared

wave speeds derived from the elastic constants of the continuum (Green [6]).

The solution of the differential equations (4) may be written in terms of the
propagator matrix P(x,-X,) in the form

!(x';) = E(X,—x,)!(x,) ’ (8)

where X, is some fixed value of x, within the layer and x, is an* other value in the

same layer, Y(x,) is the vector (T,(xy), S,(x,), U (x,), V.(x,))! where T denotes the
transpose, and the compcnents of the 4 x 4 matrix P are given in Table 1.

3

ass, P,S;  2ids,
o, +(1-a)C, -p—l—"f(l‘a)T ‘m*(l-ﬂ)l‘pzsz 2as(c,-C,)
plsl csS, zazszsz
(1-a) -t —p-z— (]."1!)(!l 'Hsz - ZGB(Cl-Cz) 2(.1.-t’l)plsl -m‘
B(h) =
S, 8§ pP,S, asS
(1-a)[P1 L (1-a) X 11 ™2
- =5 {—32— p—z} e (c,-c,) (&Clﬂ'(l-a)cz ‘l-G)T —Pz

(l~a) (l«a)[
5 (¢,-C,) {

s _p,S ass p,S,
2= “} -——=-(1ariE (1), ac,

{ Py

Py 8?2

TABLE 1 Elements of the propagator matrix P(h).

Th ey vt mad P
he ‘terms AUPLSSTIng

the wairix are defined by s = sany, ¢ = cosy

S, = sioh plkh, C, = cosh plkh, §, = sinh pzkh, C, = cosh pzkh.

2.2
(c2s2tcicr-v2) (cisz+cicz-v2) .. 82 2c,s
2 2 - vez - a=1-
p? e CYIL NSRS M ;
=it c} E P2 el x2 (vi-c3c?)

Using subscript 2

to denote the transformed quantities within a layer of material
with the fibre direction

parallel to the x,-axis, the constraint condition gives
vV, =0, ¢)]
and the equations equivalent to (5) involve U,, W,, T, and R, where R,
Letting Z(x,) denote the vector (T,,R,U, W
by

=T, 4/pcs
,)' the solution of these equations is given
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Z(x,) = Q(Xr*')z(*') (10)

where R, is some fixed value of x, within the layer and X, is any other value in the

same layer. The components of the 4 x 4 propagator matrix Q may be derived from
those of P by the substitutions given in Table 2.

S, * s ¢, *C S * 8, €, =
TABLE 2 Transformation taking elements Pij into qij'
The terrs appearing in the table are defined by
) (cfcz#»cfs’-v’) S (cleitcisy?) - 2cic?
Wi g ——— Pleviei
c? ez (v -ejs?)
§, = sinh q,kh, ¢, = cosh q,kh, Sz = sinh q,kh, €, = cosh q,kh.

Equations (8) and (10) yield the solution of the governing equations in individual
layers of material with fibres parallel o the x,-axis and the X ,—axis respectively, In
order to obtain the solution in a multi-layered laminate it is necessary to satisfy the
appropriate conditions at the upper and lower surfaces as well as continuity conditions at
the interfaces. In general, the conditions at the interface between two dissimilar elastic
materials which are bonded together requires continuity of all three displzcement
Components and the three components of traction across the interface. In terms of the
transformed quantities these continuity conditions are

U, = P v, = Voo W, = Vo, T, =T, 5, =58, Ry =R, . (11)

For the idealized inextensible material, however, it has been shown by Baylis and Green
[5] that there exists the possibility of a discontinuity in the tangential component of

this allows a discontinuity in S, in material 2 at any interface or free boundary in these
materials. Thus at an interface between materials / and 2 conditions (11) reduce to

Ui=U, T, =T,, Vv, =0, w, =0, (12)

the last two conditions being a consequence of the inevtensibility constraints applicd 0
the dispiacement continuity conditions,

We take as our unit cell, a layer of thickness 2h of material / sandwiched between
two layers each of thickness h of material 2 and we assume that this cell is embedded
in a repeating pattern. Imposing the interface constraint condition V. = 0 at the upper
and lower surface of material / allows us to express all the displacement and stress
transforms inside that material in terms of the components of the vector X =(T U)-r at
some fixed surface X, = constant. Since the unit cell is embedded in a repeating
pattern we can regard each of the outer layers of the unit cell as one half of a layer of
thickness 2h of material 2 sandwiched on each side by material /. Then the constraint
conditions W, = 0 which must be satisfied at the interfaces again allows us to express
the transforms within material 2 in terms of the vector X at some ‘ed value of X, in
material 2. Combining these then leads to a relation between the value X(B) at the
lower surface of the unit cell and the value X(A) a¢ the upper surface in the form

XA - p x(B) (13)
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where the components dpg (r,s= 1,2) of the 2 x 2 matrix D are expressed in terms of
the components of the propagators P(h) and Q(h) for layers of depth h of materials /
and 2 respectively. Applying equation (13) to a sequence of (n-1) unit cells then gives

x(n-3) - p(n-1) x($)

- ()“‘"1-)“;"1)[) x(H) - xlxz(x?'z-)\?'z)x(&)

(X,-Xz)

, (14)

where we have used the Cayley-Hamilton theorem to express D1 in terms of D, !
and the eigenvalues N\ , A, of D. Equation (14) refers to a set of (n-1) unit cells
assumed to te embedded in a repeating pattern so that the constraint conditions arising
from inextensibility is operative on every layer of thickness 2h of both material I and
ma’erial 2. In order to consider wave motion in a laminate of finite depth 4nh, it is
necessary to encase the (n—1) unit cells In two half cells, each consisting of an inner
layer of material 2 and an outer layer of material 7. Then each of the layers of
material 2 is still constrained by the inextensibility condition imposed by the outer layer
of material I and the expressions previcusly derived for the transmission through

material 2 may again be employed in these layers. Each of the outer layers (of
thickness h) of material I at the top and bottom of the complete plate must be treated
separately. Each is subject to the constraint V, = 0 at the interface with material 2
and it will be assumed that the tangential component of traction S, vanishes at the outer
surface. These two conditions allow the transforms within these layers to be expressed
in terms of the vectors X, as before, though the expressions differ from those relevant to
material I when it is embedded in a unit cell. (Details of the relations are given in the
paper by Green and Baylis [7].) Applying these gives for the overall laminate

x(M « y x(0) (15)

where )5(0) and )5(“) denote the value of X at the bottom surface and the top surface
respectively and M is the overall transmission matrix for the laminate.

If the upper surface of the laminate is subjected to a time dependent normal line
load of the form

t,,(X2,X4,t) = P(t) A(x, cos y + x, sin 4) = P(t) 5(x)

where 3(x) is the Dirac delta function, and the lower surface of the laminate is traction
free, then

) (16)

P(3)
)~((n) = [ ]

x(0) = [

u(m u(®) ]

where B(8) is the Laplace transfo.m cf P(t). Substituting from (16) into (15) then gives
the displacement transform U(?) at the bottom surface in terms of the stress transform
P(§) as

0y _ __P(3)
US ) m—)' ) Qan

and the displacement transform U(D) at the upper surface is given by

m,,(k,$) 5, .
u(m - Eff?if?T Bee) . (18)

Equations (17) and (18) relate to the normal line load acting on the upper surface
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of the plate. We may examine the case of a tangential line load in a similar fashion.
Because of the inextensibility constraint in the x,—direction at the upper surface the
component t,, of the tangential stress in the xj-direction induces a singularity in the
stress compo ient t,, at the surface but transmits no disturbance into the material. It is
only the tangential compouent t,, in the x,-direction that produces a wave motion in
the underlying laminate. To obtain the solution to this problem we proceed as above
save that the conditions imposed on each of the outer layers of material / are that

V, = 0 at the interface of the layer with material 2 and that T, = 0 at the outer
boundary. Writing X = (§ U)T we can then express 1((“) at the upper surface of the
laminate in terms of 2((0) at the lower surface in the form

X(0) - N X(0), (19)

where the elements of the matrix N are known functions of the elements of P(h) and

Q(h).
For a tangential line load with component t,, given by
t,,(x,,%5.t) = Q(t) 8(x, cos ¥ + x, sin y) = Q(t) 5(x)

acting on the upper surface of the plate and with the lower surface traction free,
equation (19) gives

(20)

u(m) = P22k, $)AG)
1 n,,(k,s)

where Q(8) is the Lapiace transform of Q(t) and U(Q), U({‘) are the transforms of th.
normal displacements on the lower and upper surfaces respectively. The components n,,
and n,, of the matrix N :nay be expressed in terms of the components of M and the
propagator P(h) in the form

Paol; o 3zl 2
n'IZ-- p|2 ) n22-m22 -pp|2 * (21>

Combining equations (20) linearly with (17) and (18) gives the solution for an arbitrary
line load on the upper surface of the plate.

3. INVERSION OF TRANSFORMS

The propagator method developed in Section 2 yields expressions for the
transformed displacement and stress components at any position in the laminate ard it is
necessary to invert these transforms in order to recover the solutions. As an example of
the inversion procedure we consider the normal component of displacement u,(2nh,x,t) at
the upper surface x, = 2nk as a function of x and t due to a line load P(t) = 5(t).
The transform is then given by equation (18) with P = 1 and the formal solution is

1 ® I m (K,8) gr 1kx ae
u,(2nh,x,t) - Z;Ti- I_w C_lm Eﬁm-)- e e ds dk . (22)

The integral with respect to § may be evaluated in terms of the residues of the
integrand at the zeros of the function m, ,(k,§) in the left half plane. The equation

m,,(k,lw) =0
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is the dispersion equation for plane wave propagation in the laminate, corresponding to
waves travelling in the directlon of the normal to the line load under traction free
conditions at the two surfaces of the plate. This equation has an infinite number of
pars of roots, W= :ui(k) (j=1,2,...), each pair corresponding to forward and backward
travelling waves associated with one branch of the dispersion curve. In terms of these
solutions, equation (22) may be written in the form

1 e 1 (kx i(k
uy (2nh,x,t) = 3= jgl [_w Ry (k) [e (kx-wjt) (.X+wjt)] T 23)

where Ri(k) is the residue of m,,/m,, at § = iwi(k). The terms on the right hand side
of equation (23) involve integration along each branch of the dispersion curve and a
summation over all the branches. A detailed account of the approximate numerical.
evaluation of this expression is contained in [3]. Here we give a brief derivation of the
asymptotic solution at large times, using the method of stationary phase.

Writing the Integrals which appear in equation (23) in the form

[: Ry (k) s (BORE) p j: Ry (K) ol 20 Il
where

85 = (@j(k) - k x/t),

the rapid oscillation produced by the exponential term for small changes in k (and
therefore Oj) at large values of t produces cancellation of the integrands, except for
those values of k for which d#i/dk is zero. The major contribution to the integral then

comes at those values kg of k for which 8 is stationary and which are given by solving
the equation

Cylkg) = x/t , (24)

where Cj(k) = dwi/dk is the group velocity on the jtb branch of the dispersion curves.
For a specified value of t, equation (24) determines one or more values of k, at any
given value of x and the contribution from the integral at that value of x and t is then
given approximately by

[ 251 ]5 R} (kg) ei(kgx-wj(kg)t)’

d2
t ger
8

provided di’wj/dk2 # 0. At the stationary points of the group velocity,
JdCiidk = dZwijdk? = ¢, this result breaks down and the approximation must be carried
to ‘higher order, giving the result

i(kzx-wj(kz)t)

2«[—3%-—]% Ry(kg) e AL(v), (25)

t 3K
g

where Ai(v) is the Airy function and

dk?

vr= (% = Cj(kg)t][2/t d_sfi]%
8
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Thus the stationary phase approximation at ordinary polnts of thc group velocity curve
shows that the long time solution decays as t~% whereas at maxima and minima of the
group velocity the decay gues more slowly as t™' /3, These maxima and minlma are the
points corresponding to the wave fronts and it is these wave front solutions, given by
equation (25), which dominate at large times. A detailed discussion of these phenomena
for a single plate of isotropic elastic material is given in the paper by Jomes [1].

4. RESULTS

The results we present in this section are in the form of graphs and fall into
three sets, The first set consists of the dispersion curves, relating the scaled frequency
wh/c, to the non-dimensional wave number kh for values of the angle of propagation y
= 90° and v = 60° The disperslon curves together with their associated residues
provide the fundamental information required to invert the transforms, but we have seen
in Section 3 that the long time solution is governed by the group velocity curves and in
particular that the wave fronts are related to the maxima and minima of the group
velocity. Our second set of results displays a selection of group velocity at y = 609,
Finally, we show the variation of the normal componert of displacement at the upper
surface as a function of x at time t = 40h/c,, calculated {or v = 60°, using the 2
fundamental modes, the first 10 modes and the first 18 modes of the dispersion curves.

The laminate with which we are dealing consists of an arrangement of 4 plies
which is symmetric about the middle surface. It may be shown that, in consequence,
the dispersion equation factorizes into two distinct equations, one associated with the
symmetric (longitudinal) motion of the plate and the other with the antisymmetric
(flexvral) motion. The dispersion curves for the fundamental modes of thcse two
equations have been examined in detail by Baylis [8] and Baylis and Green [5],[9].
They show that the limiting velocity of short waves (large kh) propagating at angle vy is
either the velocity of Rayleigh type surface waves at angle + in the outer material or of
shear waves at angle vy in the inner material according as to whether +y is less than or
greater than some critical vaiue v, which, for the parameters employed here, is 46.3°.
The limiting short wavelength velocity of all the other harmonics is either the velocity of
shear waves at angle v in the outer material or the velocity of shear waves at an angle
7y in_the inner material, according as to whether v is less than or greater than 45°.
These are the speeds v,, = (c2c2+c§sz)5 in the inner raaterial (material ) and
v = (cis%c 2¢2)} in the outér maierial (material 2) at which p, =0 and q, = 0
respectively. e can also associate with each material a dilatational wave speed
V4= (c2252+c23c2)5 and v,y = (c2c2+c§sz)5 at which p, = 0 and q, = 0, respectively.
For va.ues of ¥y < 459 we have that v 4 < v,4 but v, > v,  with the inequalities
reversed for y > 459. (Note that v,y > v,  and v,4 » v, for all 4.) On any branch
of a dispersion curve at points where the phase velocity v = w/k is greater than the
supremum (v, 4,V,4) all of p,, p,, q,. q, are pure .maginary and the solutions
correspond to progressive waves in all regions. As the phase velccity drops below the
supremum (v, Vv.,) eitter p, or q, becomes real and the associated dilatational wave
motion is evanescent. Continued reduction in v makes both p, and q, real,
curresponding to evanescent dilatational disturbances in both materials and as v decreases
further with increasing k the supremum (v, v,,) is reach=d making either p, or q,
real and the motion subequently involves a progressing shear wave in one material with
all the other waves being evanescent.

Figure 1 shows a total of 26 branches (13 each of the symmetrlc and
antisymmetric modes) of the dispersion curves for propagation at the angle v = 900, All
modes except the fundamentsl mode of the antisymmetric motion exhibit a cut—off
frequency In the long wavelength limit kh -» 0. A striking feature of tue graph is the
existence of the two clear ghost lines brought about by the osculation of the branches.
(These are particularly clear when the graph is viewed at almost grazing incidence).
These ghost lines have slopes wk = ¢, and wk = ¢,, which correspond to v = v 4
and v = v, 4 = v, respectively at ¥ = 90° As the dispersion curves approach the first
ghost line from the left they exhibit the plateau and step phenomenon described by
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4 Redwood [2]. Along the plateaux the curves are almost parallel to the ghost line, with
the phase velocity and group velocity virtually constant at the value given by the slope
of the ghnst line. On the steps the phase velocity exhibits a small but sudder. drop,
with an associated drop In the group velocity, either ending up on the next plateau, if
still to the left of the ghost line, or passing through and moving rapidly towards the
second ghost line, where the phenomenon is repeated. On crossing the second ghost line
the dispersion curves are virtually parallel, with the slope wk = c,, as they tend to the
limiting velocity v,, of shear waves in the inner material as kh -» «. Figure 2 contains
two sets of dispersion curves, set (a) corresponding to symmetric modes and set (b) to
antisymmetric modes at angle 60°. As in Figure 1, all the branches except the
fundamental antisymmetric mode (curves (b)), exhibit a cut-off frequency in the long
wavelength limit kh » 0. The curves again display the ghost lines through not to such a
marked extent as in Figure 1 since the number of curves is now either 9 or 10 in each
Yigure. Despite this, it is still possible to identify three ghost lines in Figure 2 as
Jpposed to two in Figure 1 slnce at v = 90 two of the 4 speeds v,q , V,q , V
become equal.

15 0 Vas

feos Figure 3a

b - Figure 3b

Figures 3 shows graphs of the group velocity Cg, against kh. These have hLeen
obtained by numerical differentiation of the dispersion curves, using a central difierence
formula. Figure 3a shows the first five harmonics of the symmetric modes at 4 = 600
and Figure 3b gives the first five harmonics of the antisymmetric mode for the same
angle At this angle of propagation we have v,q4 = 3.06, v,4 = 2.62, v,, = 2.20 and

v,; = 1Rl Narne of our curves appreaches the valuc of Vid whivhi is nul suipiising

since it may be seen from Figure 2 that the first ghost line is associated with harmonics
of order greater than five. There is one of the five curves of Figure 3a which has a
maximum at Cg; = 2.4, this being the highest of the five harmonics which may be seen
from 2a to have a plateau close to the second ghost line. Both Figures 3a and 3b
possess harmomics with maxima close to C, = 2.20, corresponding to the third ghost line
associated with this angle of propagation. ~We have remarked in Section 3 that the local
b maxima and minima of the group velocity curves correspond to the wavefronts, which are
expected to dominate the disturbance at large times. The higher harmonics shown in
Figure 3 exhibit long flat maxima at the ghost velocities, which do not appear in the
fundamental modes. It is pointed out by Jones [1] for an isotropic plate, that the
residues associated with the higher harmonics are small compared with those arising from
i the lowest modes and our numerical results show this to be the case here also.
Nevertheless, the total contribution arising from the succession of plateau regions
assoclated with these high harmonics at the ghost velocities, will give rise to precursor
waves which are not exhiblted by the solution from the fundamental mode alone nor
from approximate plate theories designed to reproduce the fundamental mode.
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dispersion curves of both the symmetric and antisymmetric motion at t = 40h/c,, as a
function of x. These are shown in Figure 42 where the curve intersecting x = 0 at 5
value below -2 corresponds to the antisymmetric (bending) disturbance. The contribution
to the compounent of normal displacement at the upper surface due to these two modes

normal 'displacemem calculated using the first § modes of both the symmetric and
anti-symmetric dispersion equations. Figure 4b shows the disturbance having travelleq to
x = 30h corresponding t0 v ~ 2.44, which is close to the maximum group wvelocity to be
seen in Figure 2. The curve shown in Figure 4c is calculated using 18 harmonics and
shows a disturbance having travelled 2 distance of the order of x = 36h, corresponding
to v = 2.93, which is close to the speed of longitudinal waves in the Inner material. A
feature of this curve wi ich is not to be seen in either of the others is the oscillation

(particularly evident between x = 30h and x = 40h), witich arises due to the “windowing®
effect associated with cutting off the nwmericai nte,

gration at k = 20. It is evident from
Figures 2a and 2b that cach of the first five harmonics of the symmetric and

antisymmetric motion have crossed the last ghost velocity curve before k = 20, The
motion corresponding 1o these branches is therefore confined to a shear disturbance In
the core at the cut-off value k = 20, so that no "windowing" is evident. For the
higher harmonics, which are included in Figure 4c, this is not the case and these would

make contributions to the upper surface displacement for values of k beyond the cut-off
at k = 20, and hence give rise to the "windowing” effect.
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RESPONSE OF LAMINATED PLATES TO NON-STATIONARY RANDOM EXCITATION
by
Gabriel Cederhaum!, Liviu Librescu? and Isaac Elishakoff?3

1. ABSTRACT

The response of composite laminated plates subjected to non-stationary random excitation is
determined. First-order shear deformation theory is used for the analysis of symmetric cross-ply
and antisymmetric angle-ply plates, considered in this study. The time-dependent component of the
forcing function is taken as a product of a well-defined, slowly varying envelope function, and a
noise function, assumed to be white or narrow-band excitation.

2. INTRODUCTION

Some very important and practical dynamic loads are being treated as non-stationary random
processes. Among these are earthquake ground motion, wind gusts, the launch phase of missile
flight and pyrotechnic firing,

A recent concept for modelling the non-stationary process is Priestley’s evolutionary spectra [1],
in which it is defined in terms of a stationary process, whose intensity and frequency composition
varying deterministically with time. However, the mathematical treatment becomes much easier by
assuming uniform modulation of the frequency composition and a deterministic function for the
time-dependent description of the intensity. Such a description was given by Shinozuka {2], and is
more justified where the excitation is of a very short time interval.

The response of single and multi-degree of freedom systems to non- statlonary random excitation
is treated in [3-6], and [7-12], respectively, and that of continuous structures in [13-14]). The case
of composite laminated plates under stationary random loads was studied in {15-17] and by the
authors of this paper in {18-19). To the best of our knowledge, the present treatment of the non-
stationary counterpart of the above is the first of its kind.

The mean-square transveise displacement i8 obtained herein for symmetric cross-ply and
antisymmetric angle-ply, simply-supported, rectangular plates, modelled within the first order shear
deformation theory {20-21]. The deterministic function is taken in step, pulse or exponentially
decaying terms. The stationary -andom process is either an ideal white noise or a correlated noise -
narrow-band. Some approximate sclutions are also presented and discussed.

3. GENERAL CASE
Using the modal analysis technique, the equation of motion for the generalized coordinates,
Tmn(t), in a decoupled form was obtained as [18-19]

Tonn (D) + %mnomn T + Wi, T(O) = T:;lf; Fmn() 1)

where Ji,,, stands for the generalized mass (norm), and
a
Fyn(t) = J‘n'l.n X,y ) Wmp (X,y,)dydx = P P(1) © (2)

For homogeneous initial conditions, the solution for Ty (t) is
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t
Pmn

Tmn(t) = mm—n Iohmn (t - ‘I)P(tlntl 3)
where
wdo = Wmn |1 - €mn 5 Bmn(t - ) = €xp [-Emnomn(t - ] sin ug (¢ - )] . @

The solution function for the transverse displacement is then

t

W(x,y,t) Z wmn(x’y) m '[o(exﬂ'fmnwmn(t = t;)] Siﬂ [wdmn (t = t;)]P(tl))dtl . (5)

The non-statnonary random excitation is presented as [2]
P(t) = g(G(t) (6)

where g(t) is a deterministic slowly-varying function, and G(t) is a stationary random process with
zero mean and autocorrelation function R(t, - t,).
The mean-square transverse displacement at any time instant, t, is then

Pmn P,
BVt st = ) ) Wy Wpglpyy) o R
mn pg S0 v

tet
X J. J (ex‘)['fmnwmn (t = tx)}Si“["’dmn (t - tl)lg(tl)
0J0
x expl-£pquinq(t - t)lsinlug. (¢ - t8E) R(t, - t))dtdt =Ry . (1)
Since the natural frequencies of the laminated plates were found to be well separated (see Table

1), and in the case of light damping, only the autocorrelation terms need be taken into account,
which enables us to write Eq (7) in the form

Ry = Z W
mn mn[ fmn]

X exp[-fmn Wmn (t - t,)] sin [wdmn (t - t,)18(t)R(L, - t,))dtdt, = °=V(t) ! 8)

tat
J J Expi-émn@ma(t - t,)] sin !wdmn {t - t,)18(t,)
0J0

4. CROSS-PLY LAMINATES

In the following examples we will consider a rectangular cross-ply laminate (0°,90,909,09), in
which each layer is made of graphite-carbon (Material 1) with the following elastic constants [22}
E, = 25.1 MSI E, = 4.8 MSI
Gy; = 12 MSI G, = 0.47 MSI v, = 031

and the chear corraction factar k is taken to he 5/6.

4.1 WHITE NOISE EXCITATION MODULATED BY A UNIT STEP FUNCTION

For this case
1 t>0
gt) = U(t) = ; R(ty - t,) = R(r) = 21S5(r) . ©
0 t<0
Equation (8) is then written as
(xpy) ("
Ry =215, ) — o DR Fon ¥t I (exPl-2€mnuimn(t - ty)in"lwg . (¢ t)Ddt, , (19
m,n Jmn mnl fmn] 0

and for the case where the plate is driven by a point load, applied at its centre (x = a/2; y = b/2),
the mean-square transverse displacement at the driven point is
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Ry = 21§, Z

m,n Jmn mn[ fmn
Integration leads to

ey

3 3
m,n Jmnzfmﬂ [l - *mn}"mn

t
f lexp{ 2¢mn Wmn(t - ty)] sin [wd = t,)]]dt, . (n

{1 - exp{-2mn@mnt]

3 2
W,
x (1 + ‘ma¥mn . og_ th+2 T gintug 1) (12)
(dd mn @ mn
mn dmn
and setting e = {mn , £q. (12) becomes
o fmn

e Y

{! - exp[-2{mn@mntK] + € ppsin [2wg,, 1)
m,n Jmnzfmﬂ[ £mn] mn

PR
+ Zemnsm’[wdmn ). ' 13)
In our case {yp << 1 from which e, << 1 too, and Eq. (13) can be written as

Ry = 78, S_‘ ) {1 - exp[- Zemnwdm 1)} 14
m o mn2£mnwd

which is correct within an ordel of e. A comparison of these two results is shown in Figure 1.

4.2 WHITE NOISE EXCITATION MODULATED BY A RECTANGULAR STEP FUNCTION
For a rectangular step function of duration t,

g(t) = U@t) - Ut - ty) . (15)

Equation (15) enables us to describe the response of the system as a superposition of two step loads

8(t)

1 g,(t)
0 to t
-1 84(t)
For t < t,, the mean-square response is as in 4.1, For t > t, the response is written as
W(t) = Wy(t) + W,(t) (16)

where W,(t}, and W,(** are the result of g,(t) and g(t), respectively. The mean-square is then
EfW(t,)W(t,)] = E[(W,(t,) + W,(5)IW,(t,) + W,(t,)]

. = ELW()W,(6)] + EIWS(E)W(t)] + EIW,(6)W,(t)] + EIW, ()W (t,)] (17)
and fort, = t, - t

EW? (1)) = EfWA(0] + EIW(0] + 2E[W,(OW,(0)]. (18)
If W’l(t) = Z(t) then w,(t) = - Z(t - to) and

E{W ()] = E[Z2 ()] + EIZ(t - tp)] - 2E[ZO)L - 1)) (19)

From Eq. (8) it can be seen that (for a point load as in 4.1)
t

wmnpmn(xlyl) i
E[Z()Zt - t,)] = - 248, Z ——————” (expl-Emnwmn(t - t)] sinfwg__ (t - t,)]
m,n Jmn mn[ £mn] tad

x explémnWmn(t = to - t,)] sin (W (- o - t)B(t, - t))dtyde,
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3

rtto

--25, ) - 1 T ] ©*PZmnomn(t - t - t)]
3 3 § 0
m,n Jmn""mn [l E €an
X sin [wd ( - t)]dt, . (20)
Companson of the abow- with Eq. (ll), Eq (19) can be rewntten as
E[w’ "] = E(Z} ()] + E{Z (t - t,)} - 2E[Z*(t - t)] = EZ* (1) - EZ(e - to)] @n
and using the solution in Eq. (14)
{1 - exp[-Zcmnwdmn t)} O<t<t,
Ry = 7§, Z ) X
m,n ngEmn“'mn

(exp[-ZEmnwdmn t](exp[2£mnwdmn ] - 1)) t>t, (22)

The obtained results are shown in Figure 2. This problem was solved in {4] for a single degree
of freedom system - SDF,

43 WHITE NOISE EXCITATION MODULATED BY EXPONENTIALLY DECAYING
FUNCTIONS

For this case
&(t) = glexp(-at) - exp(-pt)jU(t) 23)
where a < § are nonnegative constants, sufficiently small to keep g(t) slowly-varying, and g is a
normahzatxon constant, determined from the condition

sttxp Ig(t) =
where sup denotes the least upper bound. Equation (23) is frequently used in earthquake response

{2} and in gust analysis {23},
For the same load as in 4.1 Eq. (11) now reads

t
-2(t- -2a -2 -
Ry = 275, > J t-t,) g’ [e tz +e & - 2e (ash)ty ]dt

m,n Jnn mn(l - mn)

1 -2at -2t
") ) M@ )
-

2

m,n mn “mn
+ Y (e-2 B e-2t ) - 5 i — (e-(a+ﬁ)t . e'Zt)] (24)
and
-at, to
= 1/(e -e )ito=Un g - tn a)/(£ - ). (25)

The results fo1 a = Ol B = 0.5 are displaved in Figure 3

A special case of Eq, (23) is for a = 0, so that
8(t) = g[1 - exp(-ptyIU(Y). (26)
For t — oo, [1 - e=p(-Bt)) — 1,50 g = 1, and Eq. (24) now reads

Ry = 275, Z -

_—
m,n mn mn(l - &mn)
_ 2t _ 2t Lo
T A R ey LR P @
The results for B = 0.5 are shown in Figure 4

(1 -e2t)
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44 NARROW BAND EXCITATION MODULATED BY A UNIT STEP FUNCTION

For this case
1 t>0
g(t) = U(t) = (28)
0 t<0
and G(t) is noise correlated as an exponentially decaying harmonic function, for which
OO
Ry~ 1) = ) R exp [-oma(t; - 1)) cosfmn(l - 1], 29)
m,n

where ., is the center frequency of the exponentially decaying harmonic function.
Defining o, in the form

ann = ¢émn Mmn » (30)
then if eynp is sufficiently small, the center frequency of the excitation band lies in the
neighbourhood of the dainped ratural frequency of the mn-th mode. This can be formulated
through the relation

Amn * nmn/wdmn = 1.0 + enn B (€)))
where § ~ 1.0 .
Equation (8) for this case reads

Ry =~ Z
m,n Jmn mn [l - fmn
x expl~-émn@mn(t - t,)] sm[wdmn(t = t,)] exp{~émp p0mplt, - tilcos[Omn(t, - t,)]}dtdt, .(32)
We next define the following parameters
B fmn%mnti (= 12)

tet
] J J (exP{’fmnwmn(t it t;|)] Sin[wdmn (t - t1)]

Tmn = émn%mn!

R R
Kmn = 0 . 4 s 2 Jz 4 (33)
A gt = [l = ‘fmn] {mnImn?mn
to obtain
T mn ¢mn
Ry =~ 2. Kmnexpf- ann]J J (exp{rzml_l 1mn]
m,n
X exp{-/\mnlr,mn 1mn” Frn )drlmn "imn (34)
where
Fmn = °°5{ﬂ(fzmn “Timn N+ °°S{k1(’zmn T, )
- cos kz(cos{klrzmn - ﬁrlmm] + cosfk Migm ~ ﬁr,mm )]
- sin kz(cos{klr,mn Br lmm] + sinfk Minm ~ ﬁrzmm )}
and
2+ emnf 2%mn
k, = ramen il k, = e
mn mn

Extending the solution of this problem for an SDF system, presented in [5), by implying
Riemarn’s lemma, {24], Fp,, in Eq. (34) may be written as
Fmn = cos[ﬂ(Tme " "imm

by which Eq. (34) is written as

Y (1 - ) expl-2np]
Ryw= ) K =
d Z mn(A9’+(l+#)’+ £+ -l
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2 expf~(1 + I‘)'Imn]

g i e (8 + 1-4®) cosprpy + 2u8 sinng, D) . (35)

The stationary level of Eq. (36) is obtained by setting t — oo (nn, — co):

Rwam_ltp K . 36
W ﬂ’+(l+‘l)2 n{: mn (36)

For =0 Omp = ‘;dmn ), Eq. (35) now reads

E TR ey Teud-p ° 67

expf-2: 2expf-(1 + p)n
RW=ZKmn(ll i p[ﬂmn]_ pi-( I‘)mn]
m,n
and with 4 = 1, L"Hospital’s rule yields
RW = > Kan 4 (1= 1 + 2nmn enpf-20my ] 8)
m,n
Results, normalized to the stationary level, are shown in Figure 5, for y = 0.1 and B=0,1and

5. REMARKS
Remark 1. Consider the solution of Eq. (32) for the case where the center frequency of the
excitation band coincide with the damped natural frequency of the mn-th mode, i.e., wdmn = nn

(solved in [13-14]). Each term of the correlation function (29) may be rewritten, dropping the
subscripts, as

R=Redcostr a>0 0s0 (39)
and its spectrum function, obtained via the Wiener-K hintchine relationship, is
Ra W +a s oy
S= 22 40)
L [ w' + 2P - )+ @+ )y (
or
s = Ra 20° + o - Ra 2 4 o @1)
T lats20te? - 20t . o' + 220 4+ 0t T |4 s ot ]
Since a << 0 (ep << 1)
2 [ 1
S= Re ?ﬂz%a_z_ g&-—z=2L’ (42)
T af@n® + o) T 2a o

which does not depend on 1, so the system is actually excited by a white noise of the above
intensity, so that there is no overshooting of the stationary level,

Remark 2.  Although the stationary level is reached at t — oo, it can be seen from Eq. (35) that the
stationary level i¢ also reached (for the same U) 48 wyp increases. Since the natural frequencies are
far apart and Kmn includes @mp in the denominator, it is Jjustified, for this problem, te take into

consideration the first mode only.
Remark 3. Considering a rectangular step functi’on for g(t), in the same manner as in Eq. ()19), and
within the assumptions of [5]), it is seen that E[Z (t)] is again as per Eq. (35), and so is E[Z"(t - t,)]
with np, e — "mn - omm ), where "°mn = {mn%mnte ty being the ending moment of the pulse,
The last term E[Z(t)Z(t - t)] turns out, in integration, to be

n

1 l+u 1-u °mn

Ry = K E E

v :; “‘“(Z[ﬂﬂ(nm’ ﬂ’+(1-n)’]e
,n
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—

ﬂ’+l-u’

: foos Bry e ™
B - 0-ws +a -y mn

o
2u8 . mn
B ra-m1p ey " Pomn® )

. £+ -4
Y T e

(I + Wnmg +ng

-(1 + “)’lmn + ﬂomn

+ cosBlomn - ng - Je ]

(U + Wmn +m

) w8
B+ (- I8 + (1= ) O Pmn e

' -(1 + wnmn + Tomn
+ sinf(nyp - Tomn

~2mn + 7,
+ l+p e mn

@3
2 L 2
B+ (i -p)

When t — oo, the total mean-square should tend to zero, so that Eq. (43) is at first glance
incorrect, since its time-independent components apparently depend on N and thus do not cancel
out their counterparts in the two preceeding terms (the trivial solution No = 0 is irrelevant).

However, it can be shown that within the same order of accuracy, ¢, these terms do not actually
depend on 5,. Setting

A = 1+up a l-4 ]
B+(emt B+(-p

B I - uz + Bz

T 342 21512 2

[B7+ (0 +p)Y8 + (1 - p]
=3 zuﬂz 2. 34
B+ 0+ U8 + (- p))

the time-independent terms of Eq. (43) can be written, for each mn, as

n Hn . un
Ae ° + B cos (Brgle ® 4+ Csin (Bn)e . (45)

Expending the trigonometric and the exponential terms in their Taylor series, namely
2 3
o
e =1l+n,+ 2L+ T" + ..
“2”2 “3”3
W ° °
e 1+pn,+ 7t TF ot
g'nt At

cos B =1 - 2!° + T"-
: gn, B
sin 250 = B, - T 5 (46)

But the terms in which 1, is at the powers of two or more, ¢ is also at the power of two or

more, respectively, so they can be dropped within the order of accuracy, ¢, and it remained only to
verify that

qo[A+uB+ﬂC]=00rA+uB+ﬁC=0,
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which is in fact the case. The conclusion is that since these terms do not depend on n,, we may set
7, = 0 and obtain the asymptotic result (mean-square tends to 0). Yet, right after t;, the mean-
square has negative values which are not of the order of ¢ (see Figure 6). This yields the final
conclusion that Riemann’s lemma is inapplicable in the case of a rectangular pulse. However, from
the engineering point of view, since overshooting occurs before t,, in order to calculate its amount,
one can use this approximation for a rectangular pulse too.

6. ANGLE-PLY LAMINATES
An antisymmetric angle-ply iaminated plate, made of the same material (Material 1) is
considered next,

By erranging the layers in the sequence (30v,-30°,309,-309), and by considering the excitation as
in 4.4, we obtain the results shown in Figure 7. It can be seen that the response is similar to that in
Figure 4.5 for g = 0.1 and 8 = 5.

The level of overshooting are also investigated, for the same loading case and for different
values of the angle §. Two cases are considered: 1) a plate of two layers (4,-6) and 2) a plate of four
layers (6,-6,6,-6). It can be seen from Figure 8 that the plate given superior performance with four
layers at # = 15° Addition of another even number of layers may improve the performance to some
extent, as it was shown in other context in [25].

7. SUMMARY AND CONCLUSION

The response of simply-supported rectangular plates to non-stationary random excitation is
presented. It was found that no overshooting occurs in the case of shaped white noise, while
overshooting up to 2.2 times above the stationary level was obtaired in the cae of shaped narrow-
band excitation, for both the cross-ply and angle-ply variants. in the latter. improved performance
was found at § = 15° with four layers or more.

Table 1
NATURAL FREQUENCIES OF CROSS-PLY LAMINATE
(0°, 90°, 90°, 0 A = B = 50H

M N Natural Frequencies (rad/sec)
1 1 4859.0675
1 3 20788.342
1 5 53872.430
1 7 100584.30
3 1 33884.710
3 3 42018.487
3 5 67897.037
3 7 110903.77
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NONLINEAR VIBRATIONS OF ANTISYMMETRIC ANGLE~PLY
LAMINATES USING A SIMPLE HIGHER-ORDER THEORY

S.P. Lim
K.H. Lee
N.R. Senthilnathan

Departmeat of Mechanical and Production Engineering
National University of Singapore

1. INTRODUCTION

It was shown in reference [1]} that a simple nonlinear shear
deformation theory of plates can be obcained from a recently proposed
higher-order theory [2] of plates by making the assumption that the
inplane rotation tensor does not vary through the thickness. The theory
was shown to have one variable less thar the Reissner-Mindlin theories and
accounted for a parabolic variation of the transverse shear stresses with
zero values at the free surfaces. Numerical results for the nonlinea~
periods obtained from the present theory for thick rectangular isotropic
and transversely 1isotropic plates were found [3] to be in good agreement
with those from Reissner-Mindlin theory. It is the purpose of the present
study to extend the simple nonlinear shear deformation theory presented in
reference to the nonlinear vibretion of laminated plates. The solution
method developed by Chandra and Basavaraju [4] for the nonlinear vibration
of thin laminates is adopted here for the nonlinear vibration of simply-
supported thick antisymmetric angle-ply (45°/-45°) laminates. Nonlinear
frequencies from the present theory are compared with those from the
Reissner-Mindlin theory [5].

2. EQUATIONS OF MOTION

The nonlinear governing equations of the present theory[6] for the
free vibration of unsymmetric angle-ply laminates in terms of the
transverse displacements and stress function can be written (neglecting
inplane rotary inertia) as

e + (4% 4 A7 *
2% 0t (ZA1g% Bgelbooot AL o
* * | b * ¥ . b
- (2By4 - Bm)“'xxxy - (g - Bsz)“’u,y
4 * x | g 4 * ¥ g 2

;:2— (?'E26 F'61)“’xxxy ;h_Z (2E16 F'61)“’xyyy Yy T Yrxx"ryy ()
phw'+ Llwb+ L2w8+ Ly = F(w,9) (2)
ohi'+ LowP + Lo®+ Loy = F(w,$) (3)

2 3 S5

where
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S

¥,

w’
yy'’xx

F(w,p) = w’xx \pyy

- 2w , +
y ’xywxy

W = wb + ws, P and h are mass density and thickness of the plate (4)
respectively.

The unstarred elastic constants Aij’ Bij’ Eij’ Dij’ Fij and Hij are

defined in the same way as in reference [2] while the starred quantities
are related to the unstarred quantities in the following way.

- *
[Aij*} = [Aij] : ’ [Bij* Ei_']*] SN {Aij][Bij Ei ]

*® *.
Dy, P Dij Fij By [Bij Eij]
* *
Fij Hij Fij Hij Eij (5)

In equations (2) and (3) ¥ is the Airy stress function which is related to
the inplane stress resultants by the following relationes

N = w,yy, Ny =¥, , and ny - w,xy (6)

3. BOUNDARY CONDITIONS

Let a and b be the lengths of the ed
along the x and y axes. The transverse bound
supported plate are given by

ges of the rectangular plate
ary conditions for the simply~-
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wb - ws = w? = w? = 0 at x =0, a

b
wb - - w’yy = w?yy =0 at y =0, b )

The inplane boundary conditions corresponding to the movable edges (zero
average normal and tangential boundary forces) are given by

a a
é (""xx)y-o,b dx = 0 (f) (""xy)y-o,b dx = 0 (8)

The inplane boundary conditions corresponding to the immovable edges (zero
average shear force and zero tangential dispiacement) are given by

v =0 at x = 0, a
o

u =0 at y =0, b

a
é (w’xy)y=0,b dx = 0 (9)

where u, and v, are the inplane displacements at the midplane.

4, APPROXIMATE SOLUTION

A cae-~tern Galer:!n approximation will be applied to solve the
ccupled uonlinear governing equatious (1), (2) and (3). Present method is
an cxtension of the solution method prepased by Chandra and Raju [4] for
the norlinear analysis of clamped unsymme.ric lamjuures with movable and
immovable edges. The notation, however, are tiv we given in referrica [7].
The displacement functions that satify the tramsvevse boundas; condi.ions
are assumed us

b b TX T
w = hy (t)(sin T sin gx)
s

W o= hcg(t)(sin gz-sin %1) (10)

Uaing equations (10) in the equations of motion (1,2,3) and following the
procedure outlined ir reference [4] it can be obtained that

2o, 2,0, 2 8 2 -
CHtw Lt @y ) =0

213




2 b 2

L+ wig + wy &+ (o + xo) t3 =0 (11)

However since 7 = zb+ zs equations (l1) can be reduvced to one equation in
terms of 7 given by

£ 502; & (o2 1) 23 =0 (12)

where

2
"
4 * 2 % * 4 Hg
g = [3d)) + AT, + 2 ) N, + ]

3
4 4 * 2 * * 4k
wi = {5-[3f11 + (g, + A 0] + 3 fion 1L

2 4 * 2 * * 4 * 7
wy =7 {3—-[31111 + DR, + 2hg0) + N hy, ) + g}

2 ay2 8 16 2 8 16
+ 7 (%J [(Ass- ;§-D55 )+ A (A= =5 Dyt Bl

+ —F —
hl’ 55 hz 44 h[’

4k S T * &
To " TwwT v vy (Ve ey - 0V e, e a))

3
L . * o * *
26 ~ %1) T 5 (Ze)g = e))
E* E* E* E* ) h3 ( * * * * )
(E1ge 26° “61° “62 €16* ©26° %61° %62
5
* * * E.h

* 1 * * & *
(Fyp FrpoFap Feg) = 5 (110 £190 o0 £g()

7
* E;h * * * *

5 ()5 Byps By, be)

* *

*
- 13)
(Hy)s Hyps Hypy Hee) (

The starred quantities and other constants are defined in the same way as
in reference [7]. s 0 for the movable edge condition.
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5. NUMERICAL RESULTS AND DISCUSSION

Equation (12) is the well-known Duffing's equation whose solution
methods are standard [7].

The nondimensionalised frequency (:)o/wo) - amplitude (w,/h) response

of two-layered antisymmetric angle-ply (45°/-45°) laminates are shown in
figures 1 and 2 for movable and immovable edges respectively. The
corresponding results from a Reissner-Mindlin theory (5] for movable edges
are also included in figure 1. It is observed that the present results for
movable edges agree well with those from reference [5] for w/h < 1. The
large differences in the two values at w/h > 1 could be due to the
differences in the way the 'movable' edge condition ig treated in the two
references. Inplane conditions along the edges are satisfied in an average
sense in the present analysis, whereas, they are satisfied in absolute
terms in refereace [5].

6. CONCLUSIONS

A simple higher-order shear-deformation theory of plates developed
before by the authors is used to study the nonlinear vibration of simply-
Supported, thick antisymmetric angle~-ply (45°/=-45°) laminates. The
simplicity of the governing equations allow a direct extension of the
solution methods developed before for thin plates to shear-~deformable
places. The nonlinear frequencies from the present theory agree well with
those from a Reissner-Mindlin type theory.
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ON TRANSIENT RESPONSE OF LAMINATED COMPOSITE ~LATES
BASED ON A HIGHER-ORDER THEORY

Mallikarjuna and T. Kant

Department of Civil Engineering
Indian Institute of Technology
Powai, Bombay 400 076, INDIA

1. INTRODUCTION

The transient analyses of lamirated plates of finite dimensions have
not received adequate consideration in the literature. The following brief
review of previous research on transient response of elastic plates provides
a backgrounc for the present paper.

For the dynamic behaviour of laminated plates, Mindlin's theory for
homogenecus isotropic plates has been extended to laminated plates by Yang
et al.[ 1 Jand by Whitney and Pagano [2]. Moon [[3], using Mindlin theory
investigated the response of infinite laminated plates subjected to trans-
verse impact loads at the centre of the plate. Chow [4 Jemployed the Laplace
transform technigue to study the dynamic response of orthotropic laminated
plates. Wang et al.[ 5 Japplied the method of characteristics to investigate
the dynamic response of unsymmetrical orthotropic laminated plates. Sun et
al. [6-87) employed the classical method of separation of variables combined
with the Mindlin-Goodman [9 7] procedure for treating time—dependent boundary
conditions and/or dynamic external loadings on plates under cylindrical bend-
ing. Reddy [10,11] presented closed form solution and finite element results
for linear transient analysis of layered composite plates. All of these
investigations are based on either the classical (Kirchhoff) plate theory or
the first order shear deformable (Mindlin/Reissner) theory.

A higher -order shear deformation theory developed by one o1’ the pre-
sent authors (127 is employed here to investigate the transient response of
isotropic and layered anisotropic composite plates. The finite element ideal-
ization is adopted and the quadratic nine noded Lagrangian isoparametric
plate element is used together with selective integration. Expli:it time
marching scheme is adopted for integration of the dynamic equilib:ium equa-
tion and a diagonal 'lumped' mass matrix is employed with a speciil procedure.
Wumerical results are pressntad and comparsed with rooulis from obaer suucies.
A review of the literature indicates that no previous finite-element analyses
of higher-order theory for transient response of plates are available.

2. THEORY

The present higher-order shear deformation theory is based on the dis-
placement model

*
u{x,ysz,t) uo(x,y,t)-+zex(x,y,t)-+zzuo(x,y,t)-+zse:(x,y,t)

vix,ys2,t)

v_( t 8 (x,y,t)‘+zzv*(x t)-+z3e*(x t)
XYy Y+2 v ol¥e¥Ys yl¥e¥e




W(X'Y,Z't) = wo(x,'{;t) (1)

where t is the time, Uy vy and w, are the inplane and transverse displace-
ments of a peint (x,y) on the mid-plane respectively and 6 <’ QY are the rota-
tiona of normals to mz.d-plane about v and x axes respectively. The para-
meters uo, Vo’ Sx, SY are the corresponding higher-order deformation terms

in the Taylor's series expansion and are also defined at mid-plane.

The strains associated with the displacements in (1) are,

* * * *
du 36 du a8 v 36 v 36
_ _0© X 2 0.3 'x ., _ 0O 2 o, 3
sx—-&-+z-§;—+z -5——+Z - E = Y+Z -F[x-f-z W‘FZ -&-1!
by 30 u v 8" 6"
ez=07Y (T" -5-)+z(3-—-+-rx)+z(-5—-+-r—)+z(-5—+7x)
ow ow

- Yo L3 2,00%y . _ () * 3,..*
YYZ = 6Y+TY_+Z(2V°) +2 (3ey) : sz = 6x+-5-x—+z(2u°) +z (3ey) (2)

The stress-strain relations for the L lamina of the laminate co-
ordirates (x,y,z) are written in a compact form as

g =Q¢ ' (3a)

T _ T
where g = I:cx'cy"rxy"ryz'rzx] € = [e ,eY:nylYYz:sz]

~

_Q_i- ¢ i, 3 =1,2,3
and Q = J : (3b)
[o] g-lm l,m = 415

Integration of (3a) through the plate thickness gives the plate constitutive

relations. The following eighteen stress-resultants for the n-layered lami-
nate are thus obtained:

- h - =

x NY ny ~ g L+l cx ,cy ' ‘rxy o

N* N* N* ) L=1 h 220 zzc zz'r “
L.x’ v %y | L K x'2 %y xYJ
M My I 1

M n 4l 20 ;2o 2t

- I el R S

M* M* M* L=1 h 30 z3 31
%"y xy ] L 7% 0T Ty

! 2 o MLa "
(Qx’sx’Q ) = ‘Zl hr{ T,,(1,2,2%)dz; (QY’ Y’Q ) = LZI hf Tyz(l’z’z )dz
L

(4)

where N ,N ,ny, M e sses etc. are the higher-order stress resultants as
defined in (4) above.
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After integration, this can be written in the matrix form as

] -
E [(93% 3% 948 948,75
* *
S0l ) %5% Q3% Qs | | S |
4 L=1 8i35% Q4% | | &
* *
N | SYMMETRICAL 938, | |k
- (Gl ety Q¥
2 ] ; 3
w7 L£1 Cnatly Qnelly . (5)
g | 3
3 SYMMETRICAL gnlﬂs
. . _ T * k% T
in which, ¢ = [Fxo'syo'exyéJ / xo’eyo’sxy$]

*
% [}
T LA n A )
k = [kx, ks kxy] Vo —[kx, ks kxy]
T *
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In all the above relations, n is*the number of layers and

* *-?T
xzo’eyzo'¢x'¢yj

8y = %’ (hpyy =B v i = 1:2,3,4,5,6.7 (6)

33 FINITE ELEMENT DISCRETISATION

Whatever is the approximate discretisation scheme in space, the dyna-
mic problem (in the absence of damping) invariably gives rise to a set of
ordinary differential equations of the form

5 ey —
= \ ) —

U

(e) + x {t) (7)

in

in which the dots denote differentiation in time, t, 2 is the nodal displace-

ment vector, M is the mass matrix and B(t) is the vector of forces which
varies with tIme, t.

In ° finite element theory, the continuum displacement vector within
the element is discretised such that

NN
alxyyet) = } N (x,y) Ei(t) (8)

1=]
in which the term Ni(x,y) is the shape function associated with node i,
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NN is the number of nodes in the element. The elements of the stiffness
matrix can readily be computed using the standard relation,

= +l +1 T
Ky= { { B DByl J| gk am (9)

vhere B is the strain-displacement matrix
J is the Jacobian matrix.

The mass matrix ¥ in (7) is given by

4= | Nina (10)
Area
vhere N = [N/ Npr wen .o S ]
’_Il 0]
5
L
and m= 12
I
s
I
1™ g
h
(11112113114) = E fLﬂ (1, 22: 24: 26) o® gz
L=l h

in which (11’12) and (13,14) are normal inertia, rotary inertia and higher-

order inertias respectively, pL is the material density of the Lth layer,

As already mentioned, the integration in time of (7) is

performed using
the explicit central difference scheme which is given by

2n+1 = fj—l [(At)2 (-k En +‘En) B fjgn-l*'?ﬂ E'n-‘, (11)

where suffices n-1, n, n+l stand for three successive time intervals and
At is the time step length. If M ig diagonal,

the computation at every time
step is trivial, Unfortunately Fhis is not usually the case and further
approximation has been made to bring about the diagonalization using a special
lumping procedure (see ref. [13]).

The estimate of th

e critical time step length of the transient solution
of Mindlin plates given

by Tsul and Tong [14] is used with minor moaj fication
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in the present study. The critical time step length is thus given as

5 (1-\)2) EzR 1/2
At = Ax{ ] (12)
2

+0.83 (1-v) { 1#1.5 (ax/h)?}

where R = El/Ez’ 8x is the smallest distance between finite element node
points, v is the Poisson's ratio.

5. NUMERICAL EXAMPLES AND DISCUSSION

In all of the numerical examples presented hecein, zero initial condi-
tions were assumed. All of the computations were carried in single precision
on CYBER 180/840 Computer. Due to biaxial symmetry of the problems discuss-
ed, only one quadrant of the plate was analysed except for angle-ply plates
which are analysed by discretising full plates with 4 x4 mesh.

The following two sets of data and boundary conditions were used:

Square plate, a=b=25cm, h=5cnm, 9 =10 N/cm2

4

DATA 1
p = 8x10'6N-sec2/cm r v

0.25, E, = 2.1 x10%/ca?

Plate with a=v2 and b =1, h = 0.2, p=1,g=1
DATA 2

v = 0.3, 82 = 1.0 (non-dimensional)

BOUNDARY CONDITIONS:

¥* *
x=0,a; v =v =w =0 =8 =0
; o o o
Simply supported plate: e Y Z
y=0/b; u=u=w=86 =9 =0
[e] (o] [e] X X
0 Y v 6. =0 =0"=8" =0
X =U0a; U =V =y =y =y = = = = =
Clamped plate : ° o o L i
Yy = O,b; uO--vc--uc-vc-wc-ex -ey-ex-ey =0

When an orthotropic or layered composite plate was analysed, the ratio of

El to E2 was taken to be 25, and G12 = G23 = G13 = 0.5 E2.

In order to investigate the numerical convergence and accuracy of the
Lransient benaviour of the element, a simply-supported, generally orthotropic
(0°/90°/0°/90°) plate with suddenly applied uniform pulse loading was analysed
using DATA 1. Table 1 shows centre deflection and normal stress for differ-
ent meshes and time steps. From this table it is found that the safe estimate

of the critical time step length given by (12) is valid for transient analysis
of fibre reinforced composite thick plates.

The second example is taken from Reismann and Lee [15]/ who presented
an analytical solution to the problem (see Fig. 1). ‘he problem consists
of a simply-supported rectangular plate subjected to a uniform pulse loading
on a square (8ide =0.2pb) area at the centre of the plate. The present finite
element solution for the centre deflection is in excellent agreement with the
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thick plate solution. Since the bending moment in the present study was
calculated at the Gauss points, it is not expected to match exactly with
that at the centre of the plate.

Table 2 presents centre deflection, centre normal stress, corner in-
plane shear stress, and transverse shear stress at the midside for two layer
cross-ply, simply-supported square plate (DATA 1), subjected to suddenly
applied sinusoidal loading. The present solutions with the closed form solu-
tions (Mindlin's theory) [ 10 ] are compared. It is found that the Mindlin's
theory predicts slightly lower values of period and stresses. Tb show the
effect of the coupling between the 1np1ane displacements (u Y ,uolv ) and

bending displacements (w , © leyle ,e ), and boundacy conditlons on the

centre transverse deflection and stresses, a two-layer, angle-ply (45 /-45 )
plate (DATA 1) subjected to suddenly applied uniform pulse loading, was ana-
lysed for two different boundary conditions: simply supported and clamped.
The results are shown in Fig. 2. It is seen that the coupling has a notice-
able influence on the response of the plate.

The last example is concerned with transient response of a four-layer
(300/450/900/0°), clamped square plate (DATA 1) under impulsive loading:
q=qgo8(t-ty)s t, = 10 u-sec, B(t) denotes the heavy side step function.
Fig. 3 shows plots of the centre deflection and normal stress with respect
to time. Since no damping or internal friction is included in the present
model the soluvions do not decay with time.

6. CONCLUSIONS

Numerical results of the linear dynamic analysis of isotropic, ortho-
tropic, and layered composite plates are presented. The present higher-order
shear deformable theory does not reguire the usual shear correction coeffi-
cients generally associated with the Mindlin-Reissner type of theories. The
present finite element results agree very well with the exact solutions avail-
able in the literature for isotropic plates. New results are presented and
compared wherever possible for the transient response of composite plates.
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Centre deflection Normal stress Inplane shear stress Transverse shear stress
u’I‘_i.smeec ) W, X 103 . 9 Txy Tz
Presant CEs Present CFs Present CFs Present CFs
20 0.0468 0.0365 38.95 28.48 2.527 1.611 2.190 3.450
40 0.1660 0.1472 125.5 113.6 10.41 8.506 5.730 6.699
60 0.35136 0.2922 239.8 227.2 19.26 16,47 l12.00 14.04
80 0.4290 0.4116 324.0 319.1 26.96 23.85 15.89 17.34
100 0.4697 0.4604 357.2 357.8 29.11 26.27 18.40 20.13
120 0.4174 0.4173 315.2 323.1 26.13 24.12 16.19 17.09
140 0.2945 0.3010 224.9 233.0 18.21 17.05 12.21 12.89
Lou 0.1477 0.1562 112.7 119.6 9.079 8.848 6.327 6,501
180 0.0354 0.0414 28.48 30.40 2.016 2.029 2.155 2.264
200 0.0013 0.0013 3.324 0.742 0.159 0.248 0.548 0.937
226
- . — - = -

Table 1. Convergentce of centre deflection and stress for d.fferent time steps, (DATA 1)

4 layer ({0°/90°/0%/90%) squsre plate

Wo X 103 at = 0,25 u-sec At = 0.5 u-sec At = 0,74 u=-zecC
Time
wsec o BOP 2x2 3x3 4x4 2x2 3x3 axa 2x2
v 0.23878 0.23878 0.23911 0.23880 0.23875 0.23867
40
0 193.157 189,934 189.071 193,230 189.929 193.033
v, 0.47768 0.47692 0.47685 0.47767 0.47690 0.47768
80
0 391.481 385.588 387.391 391.078 385.182 W 390.592
=
vy 0.23701 0.23371 0.23185 0.23698 0.23361 2 0.23738
120 =]
o 196.270 190.045 186.166 196.282 190.340 197.333
g -0.00092 -0.00371 -0.00113 -0.00091 -0.00566 -0.00094
160
0 -2.0816 =11.367 -2.863 -1,32508 -11.389 -1.1805
w 0.24325 0.24566 0.24328 0.24573 0.24261
200 O
0 0 193.219 195,437 193,123 195,001 192.712

Table 2. Comparison of transverse deflection and stresses obtained
with Mindlin plate closed form solution 10 for two layer cross-ply (0°/90°)
square plate (DATA 1) under suddenly applied sinusoidal load

in the present study
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FREE VIBRATION AND BUCKLING OF CROSS-PLY
LAMINATED SHEAR-DEFORMABLE SHALLOW SHELL-TYPE PANELS

by

L. Lihrescu, A. A. Khdeir, and D. Frederick
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061 USA

1. INTRODUCTION

A tremendous interest in the analysis of laminated composite plate
and shell-like structures has emerged in recent years. This interest is
due to the advent and increased use of high modulus, high strength, low
weight composite materials in *he various fields of moderr. technolegy. It
i{s further fueled by the fact cdat the classical theory (based on Love-
Kirchhoff (LK) assumptions) fails to predict accurately the static and
dynamic response, when the structures in question are rather thick and/or
when they exhibit high anisotropy ratios.

In such cases more refined theories are needed. They are to
incorporate the effects of transverse shear deformation, transverse normal
stress as well as othar higher order effects. Pertinent analyses devoted
to the substantiation of single layered or laminated composite shell
theories are presented in the literature, e.g., in [l] in which the reader
could also find extensive pertinent references.

The goal of this paper is two fold: 1i) to develop a simple shear-
deformable theory for doubly-curved shallow cross—ply composite shells and
ii) to apply a powerful solution technique, based on the state-space
concept to evaluate the (static and dynamic) response orf wsuch shells for a
variety of boundary conditions.

The theory developed in this paper is aimed at preserving all the
advantages of the first order transverse shear deformation theory (FSDT),
both with regard to the number of involved unknowns and the order of the
associated governing equations. However, in contrast to FSDT the present
theory is based on: 1) an accurate representation of transverse shear
stress components across the shell thickness (thus eliminating the need
for a shear correction factor), and ii) the elimination of the
contradictory assumption igxolving the simultaneous consideration of zero
transverse normal stress o~ and zero transverse normal strain e;y.
Furthermore, the results obtained will be compared with their counterparts
obtained wit.!'n the tramewor: of koul and classical theory (CST), for
which their response chara:teristics will be determined by the same state-
space technique.

2. PRELIMINARIES

Let us consider the case of a shallow composite panel constituted of
a finite number, N, of homogeneous layers. We will consider that the
material of each constituent layer is linearly elasti~ and anisotropic and
that all layers are perfectly bonded.

All points in the 3D space of the comgosite shell are referred to a

‘at of curvilinear orthogonal coordinates g , while the reference surface
%) 0 of the composite shell defined by x” = 0, is selected as the mid-
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surface of the laninnt!, 80 that the external boundary surfaces of the
panel are defined by x” = t h/2 where h denotes the total uniform
thickness of the laminated shell.

3. BASIC ASSUMPTIONS AND GEOMETRICAL RELATIONS

In order to reduce the 3D problem to an equivalent 2D one we shall
use the equations connecting the covariant derivatives of space tensors
with their surface counterparts. Such relationships, useful in the
forthcoming developments, are:

V= = Ve
Tars ~ “a(TvIB X bvBTS) s Tans uuTv,3
- v— —
Tate =~ T3,0 F %6T3 3 Tyy3 = T3 3 M

Here, partial differentiation is denoted by a comma
(A a= 3/9xy, while ( )1y and ( )|, stand for the covariant
differentiations with respect to the space and surface metrics,
respectively, while the shifted components are identified by an upper
bar. In the above relationships (as well as in the following
developments) the Einsteinisn summation convention applies to repeated
indices where Latin indices range from 1 to 3 while the Greek indices
range from 1 to 2. The conditions of shallowness cf a shell, are
discussed e.g. in [1]. Let Z denote the amount of deviation of the shell
reference surface from a plane II (measured normal to the plane). This
quantity is assumed to be small when compared with a maximum length of an
edge of the shell or with a minimum radius of curvature of the RS. For
this case assuming properly that

max2 <L 1 (2)
N

gives rise to the result that the metric tensors associated with the
system of coordinates on ¢ and with its projection on the plane I are the
ssme and in addition that the curvature tensor of the reference surface
behaves as a constant in the differentiation operation.

These are important conclusions allowing one to infer that if the
projected coordinate curves on II constitute a Cartesian orthogonal net,
then the original ones on 0 are to be, on the basis of (2), also a
Cartesian orthogonal net. Due to the equivalence of the two metrics, we
may also conclude that the surface covariant differentiations may be done
with respect to the plane N and thus it is possible to change the order of
the covariant differentiations (sinca the Riomann-Christcffcl tcnsor
agsoclated with the plane vanishes).

For the shallow shell theory (SST) we may appropriately consider
that

a,. 0 _ 3 o
Mg (= 6] - x b‘;) * 6 3)
where ug referred to as the shell tensor plays the role of a shifter in

the gpace of normal coordinates ([1l]). From (3) we may also conclude that
in this case

1/2

w = lugl = (g/a} il (4)
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where g z det(gij) and a = det(agg). Here 6: and bz denote the Kronecker

delta and the mixed curvature tensor, respectively, while 5
denote the metric tensors of the space and surface ¢, respec

g and a,g
ively.

It is worth mentioning that the equations which will bte obtained in
this framework are not only applicable to the theory of shells which are
geometrically shallow, but also to other kinds of shells (i.e., to closed
cylindrical shells or in general to ones of zero Gaussian curvature),
whose state of stress and strain exhibit a high degree of variability. 1In
this connection it should be noted that the well-known Donnell-Mushtari
Vlasov shell-theory corresponds entirely to such an approximate theovry
(see e.g. [1]).

4, DISPLACEMENT REPRESENTATION AND STRAIN MEASURES

In order to model the theory of laminated shells there are, roughly
speaking, two main approaches: 1) to start with some statical assumptions
concerning, e.g., the variation of transverse shear stresses across the
laminate thickness or i1) to start with a certaln representation of the
displacement field through the entire laminate (or through each layer
separately, by preserving however its continuity between the contiguous

layers). Although the first approach was used in several papers the
second one appears more promising.

While the stress field exhibits jumps, the displacement field is to
be assumed continuous through the laminare thickness. That is why, in the
following, the latter option will be adopted. In this sense, cvhe shifted
displacements will be represented as:

_ (V] €3] (2) 3 _ 0)
Va(xw,x3;t) = Va + x3 Va + (x3)2 Va + (x3)3 Va g V3(xw,x3;t) = V3 (5)
where

@ @

Vi = Vi (x ;t)-

The form of the representation given in Eq. (5) has as a goal the

egact fulfillment of tangential static conditions on the boundary surfaces
x” =+ h/2, i.e., of

a3, h/2 a a3 _3.h/2 a
[0 o = Proy 2 [0 %7145 = ey (6)

a3
where 0~ are the transverse shearing components of the stress
— a n
teisoi 011, waile p q and p 1 denote the tangential load and load couple
£v£1 gs&r

components, respect y (me ed per unit area of the reference
surface).

The constitutive equation employed is the one associated with an
elastic anisotropic body

al _ ,na3w3
o 2E e3 )
where e,3 denote the transverse shear components of the strain tensor eij
expressible in terms of the displacement components as
Zeij = vilj + lei (8)
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In the case of crogs—ply laminated shells, (the axes of orthotropy
coinclding in each point with the geometrical ones), employment in (6) of
(7) and (8) yields:

2 . (3) (0) (1) (0)
Ll a K> a4 4 a < Y
A TR POFams s Yy wZ CHRPTFana * V3, Y, + b V) ©

In (7) and (9) Eijmn and Fy T denote the tensors of elastic moduli and of
elastic compliances, reSpecgively: while the plus sign in the brackets <>
signifies that the respective quantity affected by this sign belongs to
the top layer. 1In the remaining developments, the affiliation of a
quantity to a certain layer k will be identified by including the letter k

in the brackets <>, (e.g., Egsguﬁ. By virtue of (9), upon fulfilling the

static tangential conditions (6), the total number of alne unknown
(0) (m) -
funct!lons, (i.e., V,and Va, m = 0,3) may be reduced to five
© i
(i.e., V3, V,and V), {.e., to the same unknowns as in the case of
FSDT. ¢ -

In the following, for purposes uf simplification, we shall consider
that pao) = pa1 = 0. By virtue of (5), (9) and (8), the expressions for
the noévanishgng components of the strain tensor are obtained and given in

[1]. It is shown in [1] that when
+b° vy (10)
a p

and when the terms of order x3/R are neglected with respect to unity, the
strain measures reduce to the ones associated with CST of shallow

shells, 1In the rage of FSDT, the displacement field across the laminate
thickness is represented as

(0) 1) (0
® 148 03 3 3
Va(x JX jT) = Vu + x Va s V3(xw,x st) = V3 (11)

while the associated strain measures are obtained and defined in [1j.

5. CONSTITUTIVR ROMATTONS

The 30 cenatitutive equations associated with an elastic anisgotropic
body may be expressed ag

o aB33
aB _ g oBwe E 33, a3 2Ea3m3e

? we " A L3I 5O

03" (12)

Here
E0833E33wp

g0Bw _ aBup _
B E 23333

whete 64 18 a tracer identifying the contribution of 033 in the constitu-
tive equations (and later in the governing equationsg).
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In order to express 033 in terms of the basic unk
the third 3D equation of motion, in which the covariant

differentiation is to be converted into surface differentiation,
conversion yields:

nowns, we will yge
space

3 (13)

where the dots denote time derivatives ang p denotes the mass density,
Integration of (13) over the segment [0,x”) and consideration of the

assumptions pertinant to SST yields 1tsa§xpreg§10n displayed in [1}. Ehe

expressions for the stress resultants L » L and stress couples L%
are expressed as L & &
h h
N <k> N <k>
aB aB aB 3,,.3 . _a3 = a3 , 3
{L(O), L(l)} k£1 fh Iy (1,x)dx” Loy 21 fh Oeeydx” (14)
<k-1> <k-1>

the displacements, where h(k) and h<k—l> denote the dist

reference surface to the top and bottem surfaces of the kth

laye _,
respectively,
They may be expressed as
()} ® 9 (€9)] ()]
aB 1 _oBuwp aBuwp 4 aBuwp
== - + I~ s
Lo 3 F Vit Yolw e V3) + (6 3p2 I wiot Vol
4 ano(O) apw 4 aBpw o) (L Y(O)
“—2-1 V3 ‘GA(J —‘ZL 3 +V, +b V,)
3h ywp 3h s WP wip w Ylp
© (0 (0) (0)
~ aBup B aB33
GAX ( Vm]p + Vplw 2bmp V3) + GAGBA V3
L“B ) l.GGBwD((S) . (8) o (3))
(1”72 wlg olw wp 3
o D@ . )
+ %_(Haswp ] 42 Sasnp (v ]3+ v , - 42 g®Bup V3 _ 6A(Kanp
3h W plw 3h »Wp
0 1) (0) 0)
4 aBup Y aBwp
—_———— + -
" R ) v3’wo vw,p+ b, VYlo) 8,Y ( lep (15)
() ) )
. aB33
+ Vp'w wap V3) + SAGBQ V3
D (0
a3 a3ud 4 _a3y3 ( Y
L(O) M hz P )( VuJ + V3’w + bw VY).
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Here Fanp"'Yanp denote the various rigidity quantities defined im (1],

while the tracer 6 identifies the contribution brought by the inertia
terms in 0”7, As it may be seen, the constitutive equations (15) exhibit
a coupling between the stretching and bending identified by the presence
(1) (V)]
in LmB of the bending quantities (i.e., and V,) and in LS
(0) 2(0) 3 (1)

33
and L(O) of stretching quantities (i.e., of Va)' This physical coupling

(occuring in the constitutive equations) becomes immaterial when the
laminated composite 1s considered to be a symmetric layup.

6. THE GOVERNING EQUATIONS

The. governing equations expressed in terms of the displacement
quantitiesz cre obtalned by replacing the stress-resultants and stress-
couples (also expressed in terms of displacements) in the equations of
motion of a shell element.

The macroscopic equations of motion (in number equal with the number
of unknowns) are obtained adequately by taking the moments of order zero
and one of the 3D elastokinetic equations (see e.g. [1]).

The equations of motion are:

uB . uB a3 3 _ 3 _

Ligyla * Ploy /ooy = @ 5 bugk © "oy la TPy “Sy =0 a8
af 83
Iy le = Moy * Py Gy 7O

Here the stress resultants and stress couples are to be considered in the
sense of (14) while p(o) and p(l), according to the previous convention

are to be considered as zero quantities. Also, f(O)’ f(O) and f(l) denote
the inertia terms given by

. © 60 ) ©

foy =y By Tt Ry YWET S Tg) T gy Y an
. (0) M G
f(l) = (m(z) V. + m(3) VA + m(s) Vk)a

where LTEN (1 = 1,5) denote the reduced mass terms defined by

i i 1 1
Colts k§1 Peie> (i ™ Beg-1) @5

m

For computational purposes, we consider the case of a shallow panel whose
reference surface projects on II as a rectangle.

We will refer the points of ¢ to a system of coordinates coinciding
with the lines of curvature, these being assumed parallel to the axes of
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orthotropy of individual 1
edges. In such a coordina
between contravariant

ayers and to the projection on I of the panel
te system (in which framework the distinction
» covariant and mixed tensors is immaterial and

tion reduces to partial differentiation), the
governing equations may be compactly expressed as:

Lijvj + F3 =0 (1, 1,5 (19)

where the displacement and the force vectors are:

T () (0) (0) (L (1)
[vj] = [vl = V1 s Yy E V2 s V, E V3 » Yy E Vl » Vs = V2]
T 3
[Fj] [0, O, 0, o, P(O) ] (20)

while the operators Lij are presented in [1].

7. FIRST ORDER TRANSVERSE SHEAR D

EFORMATION AND CLASSICAL THEORIES OF
SHALLOW COMPOSITE SHELLS

In order to compare the numerical results with the ones derived

within the framework of FSDT and CST, several results pertaining to these

theories will be recorded here. Consistent with the assumptious implied
by FSDT, the associated congtitutive equations are:

)] N () (1)
o _aBwp aBup . 108 _ ~oBuwp adwp
L(o) = F et € ey s L(l) G ep T H €0 1)
1) (0 (0
a3 _ 2 _a3w3 s Y
L(O) = K(w)E Vw + \3’m + bw VY)

where K%l) and K%Z) denote the ghear correction factors.

As in the previous case,
displacements may be obtained 1
case of the rectangular project

the governing equations in terms of
n a straightforward mamwner. In the special

ion of the panel contour on [, the
governing equations may be formally represented as in Eqs. (19). The
operators Lij associated with this case are displayed un [1]. For C8T,
the constitutive equations may be expressed as

(9 4o (1) (0 M
L% poabup e 4 gYBue e L% o goBup e+ grBuo’ (22)
() wp wo (1 wy wp *

N

where the strain measures are defined in [1].
CST, the transverse chear

(in the sense that they in

Within the framework of
stress resultants have a static character only
tervene in the equation of motion only and not
in the comstitutive equations). Elimination of L?g)
equations of motion in an appropiate form ag:

af B aB aB 3 3 8

= ; + +pl.. - - =
o la T )+ Paglioy * Lty [ag + Py Ty " fays =0 @
wherefrom the governing equations in terms of the displacements may easily

be obtained. For the cage of doubly-curved panels of rectangular
projection on I, they may be expressed as

in (16)2’3 yields the
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Lijvj + ii =0 (1,1 = 1,3) (24)

where
T o O
Vil" = [V, ¥, V4] (25)
[F 1T = 10, 0, pPg,]

while the operators Lij are displayed in [1].

8. SOLUTION PROCEDURE

A generalized Lévy type solution considered in conjunction with the
state space concept 1s used in order to analyze the free-vibration and
buckling problems of composite shallow panels exhibiting a rectangular
(Zl x 22) projection on the plane I.

The edges Xy = 0, % are considered inveriably simply supported,
while the remaining nnes (x1 = % 21/2) may have arbitrary combinations of
edge conditions. We will follow Levy's procedure, and will represent the
unknown quantities so as to satisfy identically the boundary conditions

© © D L,
(BC) at Xy = 0, 22 (i.e. V3 = V1 = V1 = L(O) = L(l) = 0 for HSDT and

(O ()} 22 29
FSDT and V3 = V1 = L(O) = L(l) = 0 for CST). For the free vibration

q
problem we are to drop the load term pko) in the governing equations (19),

(24), and represent the displacenent quantities as:

@

Vl(xl,xz;t) Um(tl)sin ay X,

(0)

V2 (xl,xz;t) Vm(xl)cos uy%y

(0) ju t
V3(x1,x2;t) = Wm(xl)sin 2, %, e © (26)
) \

Vl(xl,xz;t) Xm(xl)sin o, x,

(6)]

Vz(xl,xz;t) Ym(xl)cos 8, %,

vwhere j = /:T, o, = mrr/!,2 and 0 denotes the elgenfrequency associated

with the mth elgenmode. The representation (26) is available both for
® (0 (0)

FSDT and HSDT. For CST, in which framework only Vl’ V2 and V3

intervene, their representation given by (26)1 2 3 holds valid as well,

For the static compressive buckling problem, the’Inertia terms are to be

dropped from the governing equations and in addition pgo) is to be given
by
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()] 0)
Peoy » 7 T V3,1 T Ta2 V3,22 @n

where Ty; and Tyy denote the compressive uniform loads acting on the panel
edges. The representation (26) of the displacement quantities subsists in
this case, too, where however, due to the non-oscillatory character of the
problem, wp -+ 0. Substitution of (26) into Eqs. (19) and their FSDT
counterparts results in five differential equations in the x;-coordinate,
which may be presented, for both HSDT and FSDT in a similar way as:

2 = &z (28)

where the matrix A is defined in [1] for both HSDT (and FSDT) as a 10 x 10
matrix and for ST as a 8 » 8 matrix.

A formal solution to the equation (28) is given by

Axy
2(x)) =e 'K (29)

Here K is a constant column vector associated with the boundary conditions
T Ax

while e L is defined in [1]. Substitution of (29) into the boundary

conditions associated with the remaining two opposite edges x = t Q /2

results In a homogeneous system of equations given by:

My Ry =0, (30)

where (1,j = 1,10 for HSDT and FSDT) and (i,3 = 1,8 for CST). The
condition of nontriviality applied to (30) yields the determinantal
equation

My | =0 (31)

wherefrom, the eigenfrequencies or the buckling loads (associated with the
considered BC at x; = t 11/2) may be determined.

9. NUMERICAL RESULTS AND CONCLUSIONS

A number of cases allowing one to obtain the trend of variation of

eigenfrequencies aud of buckling loads with the variation of geometrical
parameters and/ar tha houndary condfticns have beon cons TAmmnd te 11

.
SCCn CONSAGITCL an L+ ] 1L

was assumed that the thickness and the material for all the laminae are

the same, having the following characteristics. For the eigenvibration
analysis:

Gyq = 0.2 Eqs V12 = v13 = 0.25; v23 = 0.49,
while for the buckling analysis:

Gy = 0.5 Ey, v12 - V13 = 0.25; V23 = 0.49
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The numerical results displayed in [1] allow one to infer the following.
a) In the case of non-thin panels or in the case of panels whose materials
exhibit high orthotropy ratios, the effect of transverse shear deformation
is always to be incorporated into the analysis. This is equivalent to
saying that in these cases CST fails to predict adequately the panel
response characteristics (in the sense that both the eigenfrequencies and
the buckling loads are overpredicted, b) The fundamental frequencies
obtained as per HSDT and FSDT, appear underpredicted within FSDT when an
antisymmetric laminate is considered and overpredicted when an symmetric
laminate 1is analyzed (throughout the present numerical analyses
K%l) = K%Z) = 5/6). ¢) The buckling loads predicted by FSDT are more
conservative when compared with their HSDT counterparts. The same
conclusion emerges within every considered lamination scheme (1.e.
symmetric or antigymmetric). d) The buckling loads experienced by the
symmetrical laminates are higher than the ones arising in an antisymmetric
laminate. In addition as it may be inferred this increase in the buckling
loads is much higher within CPT than within FSDT and HSDT. For other
numerical results and conclusions concerning this problem as well as for
the effects of various edge conditions the reader 1is referred to the
following Tables as well as to {1]. The boundary conditions on the edges
=+ %, /2 are simply supported-simply supported (SS), simply supported-
clamped %SC), clamped-clamped (CC), free—free (FF), free-simply supported
(FS), and free-clamped (FC).
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Tabie 1: Nondimensionalized fundamental frequencies (o : {ul /) 7oTE ) of cross-ply
spherical panels for various boundary conditions, (lllzz . l t /h * 10).
Lamipation thl Theory S8 SC cc FF ) FC
. HSDT 9.292 11.057 14,157 £.811 6.130 6.533
0°/90° 1] FSOT 9.247 11.004 14.081 5.787 6.105 6.511
st 9.903 12.465 1£,820 6.162  6.510 6.971
HSDT B.966 15.681 12.772 5.790 6.116 6.557
20 FSDT a.5e2 10.640 12.713 5.768  6.093 6.535
CsT 9.488 12.165 15.822 6.132 6.493 7.002
HSDT 8.944 10,662 12.673 5.796  6.121 6.566
plate £S0T 8.900 10.612 12.622 5.774 6.100 6.544
csr 9.566 12.14% 15.771 6.136  4.500 7.014
3 HSOT 12.200 14,084 17.387 3.894 4,403 6.116
0" /90" /0" 5 FSOT 12,394 14,499 17.959 3.891 4,397 6.163
csT 15.290  22.64D 32.785 4.009  4.562 6.861
HSOT 11.973 13.832 15.848 3.797 4,329 6.097
20 FSOT 12.178 14.264 16.487 3.794 4.32% 6.146
csT 15.116  22.562 32.136 3.909 4.490 6.863
9SOT 11.958 13,815 15.739 3.790 4.324 6.095
plate 2711 12.163 14.248 16.383 3.768 4.320 6.144
cst 15.104 22,557 32.093 3.902  4.485 6.6863
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Table 2 MNondimensiona)ized fundamental frequencies (o . (ulf/h) /p?!z) of cross-ply
cylindrical panels for various bounddry conditioms,"(R; « «,"R, « R, 'l/'z -1,
1./h = 10).

1

Lamination R/n1

0 /90

0- /90" /0"

Teble 3: Mondimensionalized critical buckling loads (T
cross-ply spherical panels for various bounda

Lamination

0-/90°

0°'/90" /0

Table 4:

Lamination

0 /30°

07/90" /0"

H

20

plate

5

20

plate

R/l1

3

20

plate

5

20

plate

Noncimensionalized critical buckling loacs (
cross-ply cylindrical panels for various bou

Theory

HSOT
FSOT
st

HS01
FSO1
csT

H50T
£S01
csT

HSOT
F501
csT

HS0T
1501
st

HSOT
FSDT
CsT

Theory

HSLT
FSOT
(st

HSDT
FSOT
CsT

HSOT
FSOT
CsT

HS07
FSO*
csT

HSOT
[
css

HS0T
FSoT
st

934
894
560

944
900
. 566

Owo®E WwE®m

12,009
12,212
15.136

11.961
12. 166
15,106

11,958
12,163
15.104

SS

12.431
12.214
13.877

11.610
11.406
13.018

11.558
12.337

13.154
13.072
18.726

12.844
12.773
18.402

12.824
12,753
18.380

(ﬂ‘ -, Rz = R, '{‘2 =1, ll/h

?/ll

5

20

plate

20

plate

Theory

1307
S0
ST

HSOT
FSGT
CsT

H$0T
£ 50T
Cst1

HS0T
F50T
(%14

HSOT
FSOT
csT

HSOT
FsoT
21

EN

11, b8y
11.532
13.187

11,549
11.359
12.972

11,585
11,353
12.957

12.831
12.759
18.394

12.824
12,753
18. 381

12,824
12,753
18. 300

5C

10.685
10.647
12.154

10.656
10.609
12.136

10.662
10.612
12.145

13.854
14,284
22.560

13.817
14.250
22,457

13,815
14,248
22.557

SC

17,985
17.685
22.341

16.812
16.526
21.193

16.720
16.437
21.116

15.209
16,157
29.888

14.624
14,589
29.527

14,585
14,551
29.503

= 10}

SC

b9/
16,688
21,388

16.73G
16,453
21.134

16.720
16.437
21.116

14,593
14.557
29.506

14.586
14.551
29.503

14,985

14.551
29.503
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4

12.705
12.663
15.747

12.672
12.623
15.757

12.673
12.622
15.771

15.768
16.408
32.062

15,741
16.385
32.091

15.739
16.383
32.093

cc

22,176
21.511
32.632

20.935
20,131
31.333

20.859
20.067
31.280

18.522
ig.427
40.100

16.789
16.799
39.274

16.649
16.662
39.219

T, . Ta/En3, 1, = 0) of
nggry cgﬁé‘t1gns, 1 )e

cc

20,790
20,026
31.298

20.841
20,057
31.281

20.859
20,087
31,280

16.657
16.669
38,223

16.649
16.662
39.219

16,649
16.662
39.219

tf

5.740
5.716
6.096

5.786
5.763
6.128

5.796
§.774
6.136

3.776
3.773
3.894

3.749
3.787
3.902

3.790
3.788
3.902

. ‘2 3
4 conkittants fu, M,

FF

§.003
4,936
5.562

4.916
4.852
§.432

4.916
4,851
5.425

2.045
2.044
2.139

1.932
1,933
2.020

1.925
1.925
2,012

FE

.878
.81l
.425

LY S

4,909
4.844
5.425

4.916
4.851
§.425

1.918
1.917
2.012

1.924
1.925
2.012

1.92%
1.925
2.012

Fs FC
6.054  6.547
6.030  6.524
6.444 7.014
6.110 6.557
6.087 6.515
6.489 7.008
6.123 6.566
6.100 6.244
6. 500 7.014
4.306 6.127
4.301 6.176
4,412 6.901
4.323 6.097
4.318  6.146
4.484 6.866
4.324 6.095
4.320 6.144
4,485 6.863
= 0) of

=1, t/h = 10).
fs FC
5.520 6.290
5.447 6.216
6.132 7.028
5.424 6.240
5.35§ 6.170
6.010 6.972
5,421 6.237
5.35] 6.166
6.003 6.968
2.582 5.563
2.579 5.574
2.724 6.972
2.479 5.490
2.478 5,502
2.618 6.931
2.472 5.485
2.471 5,497
2.611 6.928
Fs fC
5.381 6.267
5310 6.191
6.001 7.051
5.410  6.233
5.304  6.162
6.002  6.974
5.421 6.237
5.351 6.166
6.003 6.968
2.464 5,553
2.462 5.564
2.609 7.018
2.472 5,490
2.470 5.501
2.611 5913
2.472 5,485
2.471 .97
2.611 6.928




ON THE FREE VIBRATIONS OF LAMINATED CONICAL SHELLS
OF VARIABLE THICKNESS

N.Sankaranarayanan, K.Chandrusekaran and G.Ramaiyan
Anna University,Madras, India.

1. INTRODUCTION

Conical shells of constant and variable thickness find
widespread applications as structural elements in missiles, nose-cones
and off-shore structures. Because of their better specific and
directional properties,laminated constructions of these elements are
increasingly preferred. Recently the use of such structural elements
as dynamic absorbers, in controlling machinery vibrations, has been
suggested {[1]. The study of their free vibrational characteristics
for evaluating their dynamical behaviour is important. A simple and
straight fcrward procedure, based on the Rayleigh-Ritz technique, for
the free vibrational analysis of laminated conical shells of variable
thickness, has been given by the authors [2,3]. The present paper
deals with the experimental determination of the natural frequencies
and the corresponding mode-shapes of two models and their comparison
with the theoretical values.

2. OUTLINE OF THE THEORY

The detailed theoretical formulation and the solution procedure
have been given in reference [>]}. Love's theory, as extended to the
analysis of laminated thin shells, forms the basis of the formulation.
A general lamination sequence, with layers of specially orthotropic
materials, 1is cconsidered. A linear variation in thickness, with the
thickness increasing proportional to the meridicnal distance from +he
vertex, 1s assumed. To facilitate easy computations a transformation
of the meridional coordinate is effected as given by,

y = (x - x])/(xz—xi) g o=y=1 (1)

A separable solution for the displacements is assumed as,

uiy,8,t) = ¢ly) cos nb eiwt

v(y,8,t) = vly) sin ne 't

w(y,8,t) = W(y) cos nd eiLDt (2
where, u,v and w are the displacements at point on the reference
surface along the three coordinate axes, as shown in Figure 1. A

standard Rayleigh-Ritz procedure is adopted for the formulation of the
free vibration problem using assumed displacement functions which
completely satisfy the geometric boundary conditions. The
displacements are assumed in the following f .1 :

M M M
Uly) = 3 a, £li,y); V(y) =2 b, gli,y) and W(y) = Y c, pli,y) (3)
izp 1 izo 1 i-0 1
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FIGURE 1 GEOMETRY OF SHELL

In  equation (3) a,, bi and c, are undetermineq constants. The
functions f, 9 and p,” satis ying different geometric boundary
conditions are given explicitly, in Table 1. On minimising the total
potential with respect to the undeterminegd constants, a generalisegd
algebraic eigenvalue problem results. A simultaneous iteration
technique is useg to obtain the dominant eigenvalues and eigenvectors
and hence the natuyral frequencies and mode shapes.

TABLE 1

DISPLACEMENT FUNCTIONS

e

End conditiong Geometric Boundary Assumed displacement
Small End - conditions functions
e ERd e fumctions
Small End Large Eng fli,y) pli,y)
y=20 y =1 gli,y)
Fixed-Fixed U=290 Uu=9
V=2 v 0 N p
W= o W= 0 U-yiy™h g2 i%2
aw/dy = ¢ aw/dy = o
Hinged-Hinged U=90 U=9 43 (41
=g V=g (1-y)y*™! (1-y)y*
W=290 W=
Fixed-Free U=29
v=290 ; ;
W c . y1+1 y1+2
aw/dy = ¢
Free-Fixed U=9
Ll i 2 i
== W=090 (1-y)y (1-y) %y
0

o
=
o
3

v
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3. EXPERIMENTAL INVESTIGATIONS

Inorder to check the validity of the analysis vprocedure,
experiments were carried out on two shell models. A sweep test, using
an electro-dynamic exciter and other related instrumentation, was
conducted on the first model. A modal analysis test, using a FFT
analyser and an instrumented hammer, was carried out on the other
model. These two tests are described below.

3.1 Sweep Test
3.1.1 Fabrication Of The Model

A conical shell model, made of aluminium, was fabricated at the
workshop, out of a plate cut out to the required development and then
rolled to shape. The two edges were welded together by TIG welding,
to form the meridicnal seam. A thick end flange was welded on to the
smaller end of the shell, for the purposes of machining and mounting.
The shell was then mounted on a specially designed turning fixture and
machined to provide the required variation in thickness.

3.1.2 Experimental Procedure

The test model was mounted, with its axis horizontal, using
fixtures. Two very heavy and sturdy channels provided the support for
a thick plate on which the flanged end of the shell was rigidly
bolted. The entire set-up was then mounted on an isolation bed, to
eliminate external influences. The schematic diagram of the entire
test set-up is shown in Figure 2a. The photograph of the same 1is
also provided. The electrodynamic exciter was located at a point very
near the free end of the shell. An audio-frequency oscillator was
used tc vary the frequency of the excitation. The response was picked
up usiny a piezo-electric accelerometer. The signal from the
accelerometer, amplified by a charge amplifier, after passing through
a bani-pass filter, was fed to one of the traces of a dual-trace
oscillcscope. The test procedure consisted of varying the frequency
of excitation and observing the response to locate the natural
frequencies. Several test ruvns were made to eliminate spurious
frequencies and to provide reproducible results. After the natural
frequencies were identified, at each of these frequencies, the pick-up
was mounted at several grid points marked on the surface cf the shell,
to identify the mode shapes. By observing the variation of the signal
alony  the wmerldians and along tne clrcumrerance at several points  on
the meridians, the modal parameters fur the particular frequercy were
determined.

3.1.3 Experiment On The Laminated Model

The aluminium shell model, used in the previous test, was laid
up on the inner surface, with a composite consisting of chopped strand
glass mat reinforcement and a polyester resin matrix. A number of
layers were laid to provide the required tlickness. The laminated
shell was once again mounted on the turning fixture on a lathe and
machined to give the required variation in thickness. Simultaneously,
a geperate plate was laid up of the same composite, from which
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standard specimen were cut out in differenct directions, for tensile
tests. These were tested in an UTM, to determine the Young's modulus
for the composite. By standard immersion tests, the density of the
composite was also determined. The values of the elastic modulus
determined from the various specimen varied only marginally,
indicating that the behaviour resembled that of an isotropic
material. The avarage of all these values was taken as the modulus of
the composite. The material properties are specified in Table 2. The
sweep test on the laminated model was then conducted in the same
manner as described earlier.

TABLE 2

MATERIAL PROPERTIES OF THE EXPERIMENTAL SHELL LAYERS

Material Density Young's Young's Shear Poison's
modulus modulus modulus Ratio
E E
f XX 00 € bt

x104N.52/m4 x1010 N/m2 x1010 N/m2 x1010 N/m'2

Aluminium 0.2793 6.750 6.750 2.5960 0.30

GFRP 0.1380 0.416 0.416 0.1664 0...25

3.2, Modal Analysis Using FFT Analyser

3.2.1. Experimental model

One difficulty, encountered in the previous test, was that the
shell possessed a high stiffness and consequently the natural
frequencies were considerably higher. This resulted in difficulties
of identifying the mode shapes corresponding +to higher meridional
modes and for higher circumferantial wave numbers. Hence it was
decided to go in for another model, much thinner than the previous
one, so that more frequencies could be identified. The second model
was rapricated in the same manner as the first one. However, because
of the difficulties encountered in machining the model to provide the
variation in thickness, it was not possible to considerably reduce the
thickness. This resulted in the same difficultues faced with respect
to the higher wmodes. To enhance the credibility, however, it was
decided to go in for a modal analysis test this time.

3.2.2. Test procedure
A schematic diagram of the test set-up is shown in Figure 2b. A

photograph of the same is also provided. The heart of the set-up is
the FFT analyser interfaced to a micro-computer. A modal analysis
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software provides the results of the analysis. This software consists
of four segments, viz., the set-up step, the mode identification step,
the print step and the display step. In the first step, the
parameters that describe the particular test, 1like the number of
transfer functions, the transducer sensitivities, the storage
locations, the block size, etc., are specified to provide a
caliberation in engineering units. After measurements are made, in
the second step, the modal parameters are identifiecd. The last two
steps are for providing the results of these measurements by way of
natural frequencies, the mode-shapes, the damping ratios, etc.
Animated displays of mode-shapes are also possible.

For the purpose of the test, 48 grid points on the shell were
marked, to serve as points of excitation. The excitation was provided
by an instrumented hammer. Impulses were given at all the 48 points,
by striking with the hammer. The response was picked up by an
accelerometer from a selected fixed point and fed to the FFT analyser.
To ensure reasonable statistical accuracy, 10 recordings were taken
for each point of excitation. For all frequencies below 2000 Hz, the
natural frequencies and the corresponding mode-shapes were obtained.

PHOTOGRAPHS SHOWING THE TEST SETUP, SWEEP TEST (LEFT)
AND MODAL ANALYSIS (RIGHT)

4. RESULTS AND DISCUSSIONS
4.1 Results of the Sweep test

Figure 3 shows the comparison between the theoretically evaluated
natural frequencies for the first meridional mode, for the homogeneous
shell, and the experimentally determined ones. A similar comparison
is provided for the laminated model in Figure 4. In both these
figures, the crend is the same. For lower values of the
circumferantial wave number, viz., n=1 and n=2, there is
considerable diZference between the two frequencies. For the higher
values of n, these two move closer to each other. The very low
values of the measured frequencies, corresponding to n=1 and n=2 ,
could be due to the reason that these are the inextensional ones.
Seide [4] has reported that for lower circumferantial wave numbers,
the condition of restraint on. circumferantial and meridional
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displacements of the edges significantly affects the frequencies. The
frequency of a shell with zero circumferantial shear force is
considerably lower than that for a shell with zero circumferantial
displacement. Arnold and Warburton [5] have also commented on this
aspect, in the case of cylindrical shells. For cylindrical shells
with circumferantially restrained edges, the energy associated with
stretching of the middle surface is predominant, for low values of n.
But the edge condition of zero circumferantial shear force inhibits
the building up of a membrane stretching force and the vibration mode
tends to be predominantly inextensional. This acccurnt.: for the lower

frequencies. For larger values of 'a' , bending p- ‘inates, and
edge effects die out, resulting in higher frequencic: ce it is to
be concluded that, in the present case, there mig.. .e been some

circumferantial slipping of the edge at the support, and only partial
restraint was provided.  Similar experiences have been reported by
Weingarten and Gelman [6]}, Chandrasekaran and Ramamurti {7]and by
Wilkins et al. [8}. ‘fThe difficulties in identifying the mode-shapes
for higher frequencies have also been experienced by Seide [4].
Considering all these aspects, it is observed that satisfactory
comparison between theory and experiment has been obtained.

4.2 Results of the modal analysis test

Table 3 provides the comparison between theoretical and
experimental results for the second model. The modal parameters were
obtained from the displayed mode-shapes. Figure 5 shows the
comparison by way of a graph. Once again, it is observed that for
lower values of n, the measured frequencies are much lower than the
predicted ones. For higher values of n, the comparison is better.
Similar arguments as made earlier, could be advanced regarding the
results. On the whole, there is reasonable agreement between the
results. One more point to be noted is the versatality and the ease
of the modal analysis procedure compared to the sweep test procedure.
. The vast difference between the two methods has to be experienced to
be understood.

TABLE 3.

COMPARISON OF EXPERIMENTAL AND THEORETICAL FREQUENCIES
MODAL ANALYSIS.

Theoretical Experimental Damping
m n Frequencies Frequencies factor
Hz Hz (Experimental)
1 1 841 = ==
1 2 429 457.5 0.4453
1 3 525 545.8 1.3800
1 4 903 838.4 1.4386
i 5 1419 1252.3 1.8809
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FUTURE TRENDS IN MODAL ANALYSIS

Bob Rost, Ph.D. Dave Brown, Ph.D.

Department of Mechanical and Industrial Engineering
University Of Cincinnati
Cincinnati, Ohio 45221

1. ABSTRACT

Since 1980, the technical developments in the area of modal analysis has been accelerating.
This period of development has been characterized by the influx of new researchers and international
interest in the area. It has been the emergences of multiple-input/multiple-output measurement
techniques and parameter identification methods based on the redundant information between
multiple rows/columns of the frequency response function matrix. Much of the work has been driven
by the need for better computer models to predict hardware changes for improved design. The
development of improved meesurement and data analysis equipment has triggered many of the newer
developments. This paper will examine some of the current and future development trends in the
area of modal analysis.

2. INTRODUCTION

Over the past ten years, there has been a significant increase in the technology associated with
modal analysis. {1-5] These developments have been primarily in the areas of parameter
identification. The majority of this effort has been documented in the proceeding of the
International Modal Analysis Conference (IMAC). These developments have triggered more recent
efforts in the measurement and signal processing areas. New techniques for measuring frequency
response functions for multiple-inputs and multiple-outputs have been developed. Also, new
algorithms to compute the "best" frequency response function in the presence of noise on both the
input and the output have been written.

In this paper, work in progress at the University of Cincinnati and other research institutions
as weii @ future trends that are just starting to be investizated will be discussed for the following
areas:

o Measurement and Signal Processing
« Parameter Estimation
« Modeling

« Non-linearities
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In the measurement and parameter estimations areas, the problem areas are broken into the
following sub categorics:

» Trouble Shooting
« Finite Element Verification and Perturbation
« Modal Model Generation

A brief review of the current technology and future trends will be given for each category with
a more detailed discussion of those technologies currently under development at the University of
Cincinnati.

3. HISTORY

Modal testing during the mid 1960’s was based upon sine testing methods. [6,7] Forced
normal mode testing with multiple transducers for the affluent users and roving transducers for the
ordinary user was the most common experimental method to determine the structures damped
natural frequency, damping, and mode shapes. During this period of time, the transducer and signal
conditioning for a single channel was between 1500 and 3000 dollars wlich liniited the multiple
transducer testing to large companies and/or government agencies. It was not uncommon for a large
scale modal test to require months of data collection and data reduction.

Tracking filters and Co-Quad Analyzers were a step improvement in the technology for the
roving transducer testing but mode shapes were measured by roving a transducer over the test object
one eigenvalue (natural frequency) at time to determine quadrature mode shapes. Testing was very
slow and quadrature mode shapes were insufficient to separate closely coupled modes. In general,

the forced normal mode or force appropriation methods which could separate the closely coupled
modes were not practical with roving transducers.

In, the late sixties and early severities frequency response parameter estimation methods were
developed to separate closel” coupled modes for the roving transducer testing methods. These
methods required hundreds of frequency response functions to be estimated which was not practical
to with swept sine testing methods. With the advent of the Fourier analyzers systems which were
developed in the late sixties and perfected during the early seventies it became practical to measure
many more degrees of freedom and therefore improve the system parameters estimated from a modal

test. The Fourier analyzer also reduced the time required to make the necessary measurements to a
much more reasonable time frame.

During, the mid seventies the primary developments were single-input parameter estimation,
hrnndbnnd prad

and cxcitation and signai processing tor these broadband methods. [8,9,10] For example:

o Parameter Estimation Techniques
i. Single Degree of Freedom
ii. Circle Fits
iii. Least Squares Complex Exponential .
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« Excitation Techniques

i. Impact Testing

a. Impact Hammers

b. Force Windows

¢. Exponential Windows
ii. Random

a. Pure

b. Pseudo

¢. Periodic

d. Transient or Burst
iil. Chirps

a. Fast Sweeps

b. Periodic

These methods, coupled with animated displays, were adequate for general trouble-shooting
and were used with success during the mid-seventies.

During the late seventies, greater emphasis was placed upon Finite Element Model
Verification and Modal Modeling. Initially. it was relt that single input testing techniques and
parameter estimation would separate closely coupled modes and could be used for these applications.
As single input methods were perfected, it became evident that for regions of high modal density and
coupling. these methods were inadequate.

Because of these limitations, it became obvious that multiple measurements (multiple-
inputs/multiple-outputs) should be used to estimate global modal parameters. This technology
guarantees consistent estimates of frequency and damping for measurements that are acquired
simultaneously. [1-S] Therefore, in the late seventies, modal testing reached the same point that it
had reached in the mid sixties with normal mode testing, measuring possibly hundreds of channels
simultaneously.

Fortunately, in the late seventies and the early eighties with advances in electronics and
computer technology, it was practical to consider developing a system with a low cost per channel,
making it possible to make hundreds of simultaneous measurements. The problem was to initiate
commercial development of such a system. It was chicken and egg problem, a commercial vendor
had to be guaranteed of a sufficient market and the market could not be developed until the cost per
channel was low enough.

In order to convince vendors, it was necessary to develnp the other parts of a modal testing
system, the signal processing and the parameter estimation. Mulli-upui roadband testing methods
were developed ir the late seventies and the early eighties. During the eighties a large number of
multi-input paran:eter estimation algorithms were developed. It was the development of the time
domain polyreference algorithm which triggered the parameter estimation developments. Currently,
there are a large number of time, frequency and spatial domain methods which can be used to
estimate modal parameters for multiple-input frequency response functions. In fact, most of the
methods can be unified and derived from a common origin. {4] A much better understanding of the
linear parameter estimation problem now exists.

During the mid-eighties, prototype transducer systems were developed to demonstrate the
feasibility of producing low cost per channel measuring systems.[11] These system were designed so
that the calibration, cabling and connectivity could be automated.
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4. FUTURE TRENDS IN MODAL ANALYSIS

In this section a short description of future trends will be developed according to the
categories and sub categories given in the introduction.

4.1 Measurement and Signal Processing

» Transducers and Signal Conditioning

The current trend in transducer design for modal analysis has been to build small light
weight but sensitive transducers. These transducers, in gen~ral, have built-in electronics either
charge or voltage with the resulting low output impedance. [he low output impedance means
unshielded and inexpensive cabling can often be used. The noise floor in the newer built-in
electronics has iznproved drastically in the last several years making the newer transducers
competitive against the transducers with external charge amplifiers.

The cost has dropped from the $1500 - $3000 per channel price range of the 1960's to
$120 - $400 for the transducer/signal conditioning today.

The cost of the filtering and digital signal processing has also been dropping drastically
in the last several years with the development of new integrated circuits for both analog and
digital filtering. The top of the line systems which includes high sampling rates and processing
speed, anti-aliasing in the 100 db per octave range and build-in zoom per channel cost in the
$2000-3000 per channel range. In the future for the high channel count systems, the sampling

rate and signal processing can be compromised to reduce the cost. This will be covered in
more detail later in the paper.

The types of data acquisition depends upon the application, therefore a brief summary
of the trends for the primary modal applications are giver: below:

« Trouble Shooting

With the exception of the aerospace industry, trouble shooting vibration and
acoustic problems has historically been the primary application of modal analysis.
These modal analysis applications are characterized by quick look capability on
operating system very often located in the field. The success of trouble shooting has
played a significant role in expanding the field of modal analysis,

« Number of Channels

in the tronbie shooting area, the emphasis on data acquisition hardware
will be on portability and flexibility. The system will be 2 to 8 high cost channels
in 2 small package. Several special signal conditioning channels will also be
inclnded for tachometer signals, since operating data is important in the trouble
shooting applications.

« Transducers and Signal Conditioning

The transducers in the trouble shooting area will be a conventional
transducers (accelerometers, load cells, microphones, strain gages, etc) that will
operate in a variety of environmental conditions. The frequency range,
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sensitivity, and size will be depend upon the application.

Signal Processing

A full array of signal processing tools will be available including Fast
Fourier Transforms, statistical functions, window functions for many types of
data, octave band analysis, waterfal! displays,etc.

Testing Configuration

Very often, the operating configuration is tested in the trouble shooting
applications. Of course, laboratory test are performed and the testing
configuration can be free-free, fixed or a simulated operating constraint.
Therefore, research in the area of correlating results from lab modal tests and
operating tests is an ongoing and important area. Completing this step would be
a major improvement in the entire modal analysis area. It would allow for a
much better understanding of the entire problem.

Excitation

For trouble shooting applications, impact testing or operating inputs is
often used. In these cases, a quick look at natural frequencies and sometimes
reduced mode shapes is obtained. For laboratory testing, electro-mechanicai or
hydraulic exciters are used with random or some other broadband excitation
method.

In the future, improved testing methods with operating inputs are likely
to be deseloped. This may include the application of known inputs on rota’ing
components to compute operating frequency response functions.

4.2 Finite Element Verification and Perturbation

In the finite element verification area, it is important that the modal analysis perform an
excellent job of extracting the modal parameters. Therefore, finite element verification requires the
righest levels of teclinology both from a measurement standpoint and data analysis. Therefore, the
most advanced parameter estimation algorithms will be used and these algorithms will require the
most consistent measurements. Therefore, simultaneous measurements should be made if possible.

In general, poorer quality simultaneous measurements are better than excellent independent
measurements.

o Number of Channels

Large numbers of simultanecus response channels (256-1024) with a number of
simultaneous input channels is very important for this application. This obvious will depend
upon the size of the test article but for aircraft, spacecraft, automobiles, machine touls, etc. the
channels count should be high in order to make the best possible measurements.

» Transducers and Signal Conditioning

In order measure hundreds of channels of data, the channel cost has to be low.
Therefore, the frequency range and environmental package can be compromised. The
accelerometers are generally very low mass but very high sensitivity. They should be
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permanently mounted to the test object so that retests will be as consistent as possible.

For large measurement arrays, automatic calibration and transducer identification
(point number, direction, serial number, etc.) methods will be developed to handle the cabling
and connectivity problems.

Optical techniques will be developed to supplement and/or replace conventional
accelerometers especially for very small or very large structures. With optical measurements
spatial domain parameter estimation will worx well.

Signal Processing

Presently, signal processing for hundreds of simultaneous broadband channels would
be prohibitively expensive for most users. One soiution will be to use sine testing, this will be
the least expensive solution. Currently, at the University of Cincinnati the development of a
spatial sine testing system is high priority. This systcm promises to be very inexpensive per
channel and has a number of advantages from a data signal processing standpoint and also
from a data analysis standpoint. {29-31]

The second method and one that is currently used will be to multiplex banks of
transducers into a multi-channel front end. This has the disadvantage that data is not taken
completely simultaneous which is desirable, However, this can be minimized if the all the
transducers are premounted on the structure to minimize frequency shifts.

In the more distant future broadband systems capable of sampling hundreds of
channels will be developed at reasonable cost.

Testing Configurations

For finite element modeling, the current testing procedures is to test the structure
cither in a free-free or a fixed configuration The free-free testing configuration is in general
the easiest configuration for laboratory modal testing. Unfortunately, it doesn’t allow

measurement of many of the constraint modes which can be very important in many modeling
circumstances.

In the fetare, mass loaded or perturbed configurations may be tested. A number of
perturbed configurations ircluding the free-free and fixed cases raay used to confirm a single
finitv element model. This becomes possible if all the transducers are premounted, in this

case the amount of time to test a given configuration is determined primarily by the data
acquisition time.

Exciwation

Almost all finite element verification tests are conducted in a laboratory test. For this
testing, electro-mechanical or hydraulic exciter systems are used. Historicaily, this has been
primarily with broadband excitation signal but may inchide moure sine testing in the near
future. For very large structures initial conditions or operating inputs may be used.

4.3 Modal Model Generation

In the future, there wili be a greater use of modal models generated directly from test data.
For this case, even more stringent requirements are placed upon the modal testing procedures.

However, the comments which were applied to the finite element verificution are applicable to this
case.
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4.4 Parameter Estimation

Currently, there is a great deal literature in the multi-input parameter estimation ares. Most
of this literature can be found in the proceedings of the International Modal Analysis Conference
(IMAC). It was the development of the time domain polyreference algorithm in the early 1980s
which has trigger much of the recent development. The polyreference method changed the major
concepts on parameter estimation from curve fitting to linear system anaiysis.

The linear system analysis has unified many of the existing techniques.

A list of the most popular currert techniques are given below:

Time Domain
« Complex Exponential
« ITD (Ibrahim Time Domain)
« Polyreference
+« ERA

» Direct farameter Estimation

« Frequency Domain
» Orthogcaal Polynomial z
« Polyreference

o Direct Parameter Estimation

« Spatial Domain
o Littie-MAC
o Multi-MAC

» Complex Mode [ndgicator Function (CMIF)

A summaiy of the characteristics of the above techniques 1s given in Table 1.
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One of the newer concepts in parameter estimation is the concept of a characteristic
space.[29-31] This space is defined as a volume (three-dimensional frequency response or unit
impulse matrix) with the three axis corresponding to two spatial and one temporal. The two spatial
axis corresponds to the input locations and output locations, and the temporal axis is either time or
frequency. This concept coupled with linear system analysis allows the derivation from a common
origin of most of the methods listed above.

The future trends in the parameter estimation area appears to be more of the same. Using
perhaps more spatial and perturbated configuration information in the estimation process
Perturbated configuration information refers to the process of testing, a system in a number of
constrained testing configurations (from frer-free, mass loaded to fixed) and using all of this
information in the estimation process.

Future parameter estimation procedure will make better use of the finite element models as
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