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I. INTRODUCTION.

Many initial-boundary value problems for time-dependent partial differential equa-

tions involve fine-scale structures that develop, propagate, decay, and/or disappear as the

. solution evolves. Some examples are shock waves in compressible flows, boundary and

shear layers in viscous flows, and reaction zones in combustion processes. The numerical

- solution of these problems is usually difficult because the nature, location, and duration of

the structures are often not known in advance. Thus, conventional numerical approaches

* that calculate solutions on a prescribed (typically uniform) mesh often fail to adequately

resolve the fine-scale phenomena, have excessive computational costs, or produce incorrect

results. Adaptive procedures that evolve with the solution offer a robust, reliable, and

efficient alternative. Such techniques have been the subject of a great deal of recent atten-

tion (cf. Babuska et al. [7, 9])* and are generally capable of introducing finer meshes in

regions where greater resolution is needed [1, 2, 3, 6, 8, 10, 15, 16], moving meshes in

order to follow isolated dynamic phenomena [1, 2, 5, 21, 23, 24, 25, 30], or changing the

order of methods in specific regions of the problem domain [18, 221. The utility of such

adaptive techniques is greatly enhanced when they are capable of providing an estimate of

* the accuracy of the computed solution. Local error estimates are often used as refinement

indicators and to produce solutions that satisfy either local or global accuracy

. specifications [1, 2, 3, 6, 8, 10, 15, 161. Successful error estimates have been obtained

* References are listed at thc end of this report.

0,
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using h-refinement [6, 15, 16], where the difference between solutions on different meshes

is used to estimate the error, and p-refinement [1, 2, 3, 8, 16, 22] where the differences

between methods of different orders are used to estimate the error.

We discuss an adaptive procedure that combines mesh movement and local

refinement for m-dimensional vector systems of partial differential equations having the

form

ut + f(x,y,t,u,u ,uy) = [D(x,y,t,u)ux] x + [D2(x,y,t,u)uy ]y

* fort >0, (xy) e Q, (la)

with initial conditions

u(x,y,O)=u°(xy), for(xy)e Q (lb)

and appropriate well-posed boundary conditions on the boundary aD of a rectangular

region 0.

We suppose that a numerical method is available for calculating approximate solu-

tions and error indicators of Eq. (1) at each node of a moving mesh of quadrilateral cells.
0

Any appropriate numerical method is applicable and the error indicator can either be an

estimate of the local discretization error or another function (e.g., an estimate of the solu-

tion gradient or curvature) that is large where additional resolution is needed and small

where less resolution is desired. Our adaptive algorithm consists of three main parts: (a)

movement of a coarse base mesh, (b) local refinement of the base mesh in regions where

resolution is inadequate, and (c) creation and regeneration of the base mesh when it

~~ N- -,s. zv
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becomes overly distorted. Our experience (cf. Section II) and that of others [25] indicates

that mesh motion can substantially reduce errors for a very modest computational cost.

Mesh motion alone, however, cannot produce a solution that will satisfy a prescribed error

tolerance in all situations. For this reason, we have combined mesh motion with local

mesh refinement, and recursively solve local problems in regions where error tolerances

are not satisfied. The local solution scheme successively reduces the domain size and,

thus, further reduces the cost of the computation. Some problems, e.g., those with severe

material deformations, can result in tangling and distortion of the moving base mesh.

Therefore, we have created a procedure that automatically generates a new base mesh

whenever the old one is unsuitable.

The adaptive procedures described in this report combine our earlier work on mesh

moving techniques [5] and local refinement procedures [6]. The inclusion of a static mesh

"',5 regeneration scheme adds greater reliability and efficiency to these methods. The three

components of our adaptive algorithm are described in Section II; however, frequent refer-

ences are made to our previous investigations [5, 6]. A computer code based on the adap-

tive algorithm of Section II has been combined with a MacCormack finite difference

~ scheme and an error indicator based on Richardson extrapolation. It has been used to

solve a sequence of hyperbolic problems (i.e., problems having the form of Eq. (1) with

D= D2  0) and our findings on three examples, where we have attempted to appraise

the relative costs and benefits of the mesh moving and local refinement portions of our
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adaptive algorithm, are reported in Section III. We have also compared solutions obtained

by adaptive techniques to those obtained using stationary uniform meshes. In all three

examples, solutions obtained by adaptive techniques cost less than solutions obtained on

stationary uniform meshes having approximately the same accuracy. The mesh moving

technique added approximately ten percent to the computational time of the adaptive algo-

rithm and greatly improved the results. Most of the computational time was devoted to

, calculating the solution and error indicators, and not to the overhead induced by the

0 refinement procedure. Although we are greatly encouraged by our results, our adaptive

procedures are far from complete. Some possible improvements and future considerations

are discussed in Section IV.

II. ALGORITHM DESCRIPTION.

A top-level description of our adaptive procedure is presented in Figure 1 in a

pseudo-PASCAL language. This procedure is called adaptive PDE_solver and it

integrates a system of partial differential equations from time tinit to tfinal and attempts
., p'.-

to keep the local error indicators below a tolerance of tol. The base level time step At is

• initially specified, but may be changed, as needed, during the integration.

The rectangular domain Q2 is initially discretized into a coarse moving spatial grid of

* M x N quadrilateral cells. An initial base mesh is generated from this mesh by increasing

the values of M and N, as necessary, and moving the mesh so that it is concentrated in

O'A
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procedure adaptivePDEsolver(tinit, At, if inal, tol: real; M, N: integer);

begin
Generate an initial base mesh;
t := init;

while t < tfinal do
. begin

Move the base mesh for the time step t to t + At;
localrefine(O, t, At, tol);

.- t := 1 + At;
Select an approprir .e At;
if base mesh is too distorted then regenerate a base mesh

end
end { adaptivePDEsolver };

Figure 1. Pseudo-PASCAL description of an adaptive procedure to solve the
partial differential system in Eq. (1) from t = tinit to tfinal to within a toler-
ance of tol.

regions where error indicators are large (cf. Section 11.3). The base mesh is moved for

;- ... each base time step At (cf. Arney and Flaherty [5] and Section I.) and the partial

differential system in Eq. (1) is solved on this mesh for a base time step. This is followed

by a recursive local mesh refinement in regions where error indicators are larger than tol.

The local refinement procedure local-refine was described in Amey and Flaherty [6] and

its major features are summarized in Section 11.2. The integration for each base-mesh

time step is concluded by the selection of a new value of At for the subsequent time step
.'0 -
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and the generation of new base mesh (cf. Section 11.3), if necessary.

The mesh moving, local refinement, and mesh regeneration algorithms are uncoupled

from each other as well as from the procedures used to solve the partial differential system

and calculate local error indicators. This reduces computational costs and provides a great

deal of flexibility. Thus, individual modules can easily be replaced, omitted, or combined

with other software.

ILl. Mesh Moving Algorithm- Mesh moving strategies should produce a smooth mesh

where the sizes of neighboring computational cells vary slowly and cell angles differ only

by modest amounts from right angles. It is, of course, essential for the nodes of the mesh

to remain within Q and for cells not to overlap. Meshes that violate these conditions can

produce large discretization errors that overwhelm the positive effects of mesh moving.

Our mesh moving procedure is based on an intuitive approach rather than more analytic

error equidistribution (cf., e.g., Coyle et al. [19] or Dwyer [23]) and variational approaches

(cf. Rrackbill and Saltzman [17]). The essential idea is to move the mesh so that it may

follow isolated nonuniformities, such as wave fronts, shock layers, and reactien zones.

This generally reduces dispersive errors and allows the use of larger time steps while

maintaining accuracy and stability.

At each base time, we scan the M x N base mesh of quadrilateral cells and locate

-- "significant error nodes" as those having error indicators greater than twice the mean nodal

error indicator and also greater than ten percent of tol. This empirical strategy avoids

0N
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having the mesh respond to fluctuations when error indicators are too small, but is sensi-

tive enough to avoid missing dynamic phenomena associated with large error indicators.

If there are no significant error nodes, computation proceeds on a stationary mesh. The

1, nearest neighbor clustering algorithm of Berger and Oliger [15] is then used to gather the

J significant error nodes into clusters. In this iterative algorithm, a cluster is first defined to'-
consist of one arbitrary significant error node. Other significant error nodes are added to

the cluster if they are within a specified minimum intercluster distance from the nearest

node in the cluster. We take the minimum intercluster distance to be the length of a cell

diagonal. New clusters are established for nodes that do not belong to any existing clus-

ter. Clusters are united when a node is determined to belong to more than one of them.

Upon completion of the algorithm, (a) nodes in different clusters will be separated by at

least the minirnam intercluster distance, and (b) no node in a cluster with more than one

node will be further than the minimum intercluster distance from its nearest neighbor in

the cluster.

. Following Berger and Oliger [15], we generate near minimum area rectangles that

contain each cluster. The principal axes of each rectangle are the major and minor axes of

0 an enclosed ellipse having the same first and second moments as the nodes in the cluster.

Thus, if (xi ,yi) are the coordinates of a node and (xm ,Yin) are the mean coordinates of all

nodes in the cluster, then the axes of the rectangle are in the directions of the eigenvectors

of the symmetric (2 x 2) matrix

... ...
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where t -iym) ( - y2) (2)

where the summations range over all nodes in the cluster.

For many problems, there may be too small a percentage of significant error nodes

within a cluster. In order to reduce this inefficiency and provide some alignment with,

e.g., curved wave fronts, the rectangles are checked for efficiency by determining the per-

centage of significant error nodes in each rectangle. If a fifty-percent efficiency is not

* achieved, the rectangle is iteratively bisected in the direction of its major axis until all

clusters have at least a fifty-percent efficiency.

We determine node movement from the velocity of propagation, the orientation, and

the size of error clusters. We assume that nodes in the same cluster have related solution

characteristics, so that we can determine individual node movement from the propagation

of the center of the error cluster. Each cluster moves according to the differential equa-

tion

m'4 + = 0, (3)

* where rm (t)= [Xn (t),Ym (t)]T is the position of the center of an error cluster and

-) := d( )/dt. The choice of the parameter X can be critical in certain situations. If ? is

selected too large, the system in Eq. (3) will be stiff and computationally expensive. On

.-- the other hand, if X is too small, the mesh can oscillate from time step-to-time step.

Coyle et al. [191 and Adjerid and Flaherty [21 suggested some adaptive procedures for

0.
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choosing X; however, we found no appreciable differences in results or computation times

when X varied significantly. The examples of Section III were calculated with X = 1.

We solve Eq. (3) for each base time step and each cluster using an explicit numerical

method. The center of an error cluster is moved a distance Arm = r,,.(t+At) - rm(t) at

the base time t. Let Ar., and Ar, denote the projections of Arm onto the major and

minor axes of the rectangular cluster. We use the one-dimensional piecewise linear func-

tion

Ar,'. Ar (3/2 +xi /wi) if -3wi /2 :5 xi :5 -wi /2

".*.:Arm, if -w i /2 < xi < wi /2

i Ar,,.(3/2-xi/wi), if wi/2 5 xi x 3wi/2 ' 1, 2, (4)

0 0, otherwise

to move the nodes of the mesh along the two principal axial directions of the error clus-

ters. The cluster referred to in Eq. (4) has dimensions wlxwZ and (x 1,x 2) are local

Cartesian coordinates of a node in the principal directions of the cluster relative to its

• center. For i = 1, nodes in the range of the cluster (-3w 1/2 < x 1 - 3w 1/2,

-w 2/2 < x 2 < w 2/2) are moved a distance d 1 n&. This situation is shown in Figure 2.

* In order to maintain smooth mesh motion throughout the domain, nodes outside the

range of a cluster move in a distance

0
di,osid= di i,,,[l - (2z/D)1, i = 1, 2, (5)

-.. .* **--..** .
> ;- .,-,. 3 , ... ,, ....-.... ... , ... .-.... q.. .:.-, ,.....:..........,. ...- ., .. .. ,..-,.. .• ..... ... ,,.... .,..,
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domain Q
".

,node

c It u s.t.e.

II

Figure 2. A rectangular wIxw 2 error cluster. Nodes within the range of the

cluster, 3w Xw 2, are moved a distance d 1i,u in the x1 principal direction ac-

cording to Eq. (4). Nodes outside the range of the cluster are moved a distance

d 1,oeasida in the xI direction according to Eq. (5). The distance z is the shortest

distance to the range of the cluster.

where z is the shortest distance to the range of the cluster (cf. Figure 2) and D is the

t*p diagonal of Q. For each cluster, the mesh is moved in the direction of the major axis

i. (i = 1) using Eqs. (4) and (5). This is followed by a similar procedure in the direction of
to ."

S.,.

:04-
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the minor axis (i = 2). The distances alinside and dioji are reduced near U in order

to prevent nodes from leaving 02. In particular, we recalculate dij as d [min (1, b/c)],

i = 1, 2, j = inside, outside, where b is the distance of the node to the boundary and c is

twice the length of a cell diagonal on a uniform mesh having the same number of cells as

the moving mesh. Nodes on domain boundaries, except comer nodes, which are not

moved, are restrained to move along the boundary. Finally, the mesh moving algorithm is

not restricted to the functions given by Eqs. (4) and (5), and several other choices are pos-

sible.

11.2. Local Refinement Algorithm. As shown in Figure 1, the local refinement procedure

is invoked after the base mesh has been moved for a base time step. Our refinement stra-

.., tegy consists of first calculating a preliminary solution on the base mesh for a base time

step. An error indicator is used to locate regions where greater resolution is needed.

Finer grids are adaptively created in these high-error regions by locally bisecting the time

-.. step and the sides of the quadrilateral cells of the base grid and the solution and error indi-
*m4

-'" cators are computed on the finer grids. The refinement scheme is recursive; thus, fine

subgrids may be refined by adaptively creating even finer subgrids. This relationship leads

0 naturally to a tree-data structure. Information regarding the geometry, solution, and error

indicators of the base grid is stored as the root node or level 0 of the tree. Subgrids of the

base grid are offsprings of the root node and are stored as level I of the tree. The struc-

ture continues, with a grid at level I having a parent coarser grid at level I - 1 and any

1*4'*

- . -a"
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finer offspring grids at level 1 + 1. Grids at level 1 of the tree are given an arbitrary ord-

ering and we denote them as Gjj, j = 1, 2, ..., N1 , where N is the number of grids at

level 1. Our refinement procedures permit grids at the same level of a two-dimensional

problem to intersect and overlap; however offspring grids must be properly nested within

the boundaries of their parent grid. A one-dimensional grid with its appropriate a'ee struc-
=U.

ture for a base time step is shown in Figure 3.

A top-level pseudo-PASCAL description of a recursive local refinement algorithm

* that solves systems of the form in Eq. (1) on the tree of grids described above is presented
4-.

in Figure 4. The procedure local refine integrates partial differential equations on the

grids Gt,j, j = 1, 2, ... , N1 , at level I of the tree from time tinit to tinit + At and attempts

.- to satisfy a prescribed local error tolerance tol. For each grid at level 1, a solution and

..

,. error indicators are calculated at time tinit + At. Additional finer grids are introduced in

regions where the error indicators exceed the prescribed tolerance tol and the differential

system is solved again on the finer grids using two time steps of duration At/2 and a toler-

ance of tol/2. Observe that the solution, error indicators, and refined subgrids are calcu-

lated for all grids at level I before calculating any solutions at level I + 1. Implicit in

localrefine are the assumptions that a solution can be computed on any grid and that

refinement terminates. If either of these assumptions are violated, the procedure ter-

minates in failure.

Our technique for introducing finer subgrids consists of four steps: (a) an initial scan

. . .. . , .. ......... ....... A
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X 6' al a's

€-.'4Figure 3. Coarse and refined grids (top) and their tree representation (bottom)
S". for a one-dimensional example.

• . of each level 1 grid to locate "untolerable-error" nodes as those where the error indicator

i,.'.'.'exceeds the prescribed tolerance tol, (b) clustering any untolerable nodes into rectangular

€......,regions, (c) buffering the clustered regions in order to reduce problems associated with

i ° -t

7 wrmr"



- 14-

4

1%

61 procedure localrefine( 1: integer; tinit, At, tol: real );

begin
for j := 1 to N [I] do

begin
Integrate the partial differential system from tinit to tinit + At

on grid G [l,j ];
Calculate error indicators at tinit + At at all nodes of grid
G [U j;

if any error indicators > tol then introduce level I + 1 subgrids
of G [1,j]

*°. end (for};

if any error indicators > tol then
begin

local_refine(l + 1, tinit, At/2, tol/2);
local_refine(l + 1, tnit + At/2, At/2, tol/2)

end
end I localrefine };

Figure 4. Pseudo-PASCAL description of a recursive local refinement pro-
cedure to find a solution of the partial differential system in Eq. (1) on all grids

at level ! of the tree.

prescribing initial and boundary conditions at coarse/fine grid interfaces, and (d) cellularly

refining the level I meshes and time step within the buffered clusters. Of course, if there

are no untolerable-error nodes, the solution is acceptable and further refinement is

unnecessary.

001p

.4..
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The same clustering algorithm of Berger and Oliger [15] that was used to move the

base mesh is also used to group untolerable-error nodes for refinement. Each rectangular

error cluster is enlarged by increasing its major and minor axes by twice the size of the

average cell edge within the cluster. The region between the enlarged and original error

clusters provides a buffer so that artificial internal boundary conditions (that are discussed

below) will be prescribed at low-error nodes as far as possible and fine-grid errors will not

propagate through the buffer in a time step.

. Refined subgrids are created by bisecting the time step and edges of each cell of the

parent mesh that intersects the buffered rectangular error clusters. Coarse mesh motion is

maintained on the refined grids so that after two time steps of size At/2, cells of the

refined grids will be properly nested within those of their parent grid. Additional details

of the refinement algorithm and data structures are presented in Amey and Flaherty [6].

Artificial initial and boundary data must be determined from solutions on other grids

in order to calculate the solution and error indicators on refined subgrids. Furthermore,
S

solutions on finer grids are used to replace those on coarser grids at common nodal loca-

tions.

Initial data for a subgrid are calculated directly from the initial function uo(xy) at

t 0. For t > 0, initial data are obtained by interpolation using the solution at the same

time on the finest available mesh. In order to provide data for this interpolation, we save

all solution values on previous subgrids until they are no longer needed due to

0X 0
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advancement in time of an acceptable solution. Bilinear functions using the solution

values at the four vertices of the finest existing cell are used to obtain the solution at the

nodes of cells of the refined mesh. Further analysis is needed regarding the effects on

accuracy and stability and the proper order of this interpolation. Bieterman, Flaherty, and

Moore [16] give an example where the fine-scale structure of a solution was lost by inter-

polation from too coarse a mesh.

In a similar manner, boundary data for refined meshes are calculated directly from

Jhe prescribed boundary conditions on portions of subgrids that intersect M. Dirichlet

boundary data are prescribed on the edges of subgrids that are in the interior of a by

interpolating the solution from coarser meshes. Bilinear functions using the solution

values at the four vertices of the adjacent face of the finest existing space-time cell are

used to obtain solution values for the nodes of refined cells.

Acceptable fine-mesh solutions are used to replace solutions at the nodes of coarser

grids that lie within the untolerable-error portions of clusters. Solutions at low-error nodes

in the buffer zones of clusters are not replaced in order to avoid possible contamination of

accurate solutions. When fine grids overlap each other in an untolerable-error region, the

average value of the solutions at common fine-grid nodes is used to replace the appropri-

ate coarse grid solution. Boundary effects do not propagate through a sufficiently large

buffer and, thus, have no effect on the solution within the untolerable-error region of a

cluster when an explicit numerical scheme is used for the integration. Greater care is

°.
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needed when implicit integration methods are used, since artificial boundary conditions

can affect the accuracy, convergence, and stability of the solution at all nodes in the clus-

ter regardless of the size of the buffer.

Stability and conservation of, e.g., fluxes at interfaces between coarse and fine

meshes must be investigated further, particularly in two dimensions. For one-dimensional

problems, Berger and Oliger [15] showed that linear interpolation of solutions from a

coarse to a fine mesh produced no instabilities in the the Lax-Wendroff scheme. Berger

* [14] also discussed conservation at mesh interfaces and proposed explicit enforcement of

conserved quantities at coarse/fine mesh boundaries. Rai [291 presented some finite

difference schemes that maintained conservation at grid interfaces for two-dimensional

compressible flow problems.

11.3. Initial Mesh Construction and Regeneration. The efficiency of our adaptive mesh

moving and refinement strategies is dependent on our ability to generate a suitable initial

mesh and to regenerate a new base mesh should it become severely distorted at later

times. The proper base mesh can reduce the need for refinement and, thus, increase

efficiency.

The two essential elements of a mesh generation or regeneration procedure are the

determination of the number of nodes and their optimal location. A base mesh having too

few nodes will result in excessive refinement while one having too many nodes will

reduce efficiency. Many mesh generation procedures have been developed (cf., e.g.,

I:,,- '''''"'.- .-.- . .... ''",... ¢ ''.. - ,.. . .. ..... '' ., ..- ''. - .,...,-.. ,":'' ":L...,-%"''"m"2' ' ,9
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Thompson [31] or Brackbill and Saltzman [17]); however, the best one to use in conjunc-

tion with an adaptive procedure is still far from being established. Our current approach

to mesh generation is to use the error indicators computed by a trial solution to determine

an initial mesh that approximately equidistributes the error indicators.

To begin, we create a uniform M xN rectangular mesh using prescribed values of M

-. and N that reflect the coarsest mesh that should be used to calculate a solution. We solve

the system in Eq. (1) for a base time step At on the uniform stationary base mesh and

O compute the solution and error indicators. Local mesh refinement is performed as

described in Section 11.2 until the prescribed tolerance is attained. We use this solution to

determine the number of nodes K in a new base mesh as

K =MN + (3/4)K,, (6a)

where K is the number of nodes introduced at level I and n is the total number of levels

- ..-. in the tree. Having computed K, we calculate the dimensions of a new M x)N mesh as

M=4K--M/N ,V =4-K-NIM. (6b)

* The bars have been omitted on M and N in the algorithms displayed in Figures 1 and 4

and in all further discussions.

* Node placement for the new base mesh is accomplished by locating all nodes of the

original base mesh having error indicators that are greater than twice the mean error indi-

0'.
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cator. These nodes are then grouped into rectangular clusters using the clustering algo-

rithm of Section I.1. A uniform base mesh is generated when there are no nodes having

error indicators that are greater than twice the mean error indicator.

Nodes are moved towards the center of the nearest error cluster unless they are

within a two-cell diagonal range of two or more error clusters. In the former case, a node

is moved four-tenths of its distance to the center of the nearest cluster unless this distance

is greater than 12.5 times the average cell diagonal, in which case it is moved five times

the average cell diagonal. Nodes that are within a two-cell diagonal range of two or more

clusters are moved by four-tenths of a weighted average of the distances to centers of the

involved clusters, Nodes on D remain on a. Nodes near the boundary move a reduced

distance in order to prevent the formation of large elements. When an error cluster inter-

sects opposite boundaries of Q, nodes are not moved in the direction of the major axis of

the cluster. This construction generates a base mesh that depends on the solution of the

partial differential system as well as its initial condition.

The base mesh can become severely distorted for some problems (cf. Amey and

Flaherty [5]) and we would like a capability for generating a new base mesh whenever

4 this happens. Since the new mesh is created at a specific time, rather than by mesh

motion, we refer to this process as static mesh regeneration. Our static mesh regeneration

4 procedure consists of three steps: (a) determining that there is a need for a new base mesh,

'

(b) creating the new base mesh, and (c) interpolating the solution from the old to the new
-7

,

I

I -
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base mesh.

A mesh is regenerated when any interior angle of a cell is less than 50 or greater

than 130 degrees, the aspect ratio of any cell is greater than 15, or the mesh ratio of adja-

cent cells exceeds 5 or is less than 1/5. In the present context, the aspect ratio is defined

as the average length divided by the average width of a cell and the mesh ratios are

defined as the ratio of the lengths and widths of adjacent cell sides.

.'..; A new base mesh, having the same number of nodes as the old one, is generated

using the procedure described above for creating an initial base mesh. The error clusters

* for the existing mesh are used to generate the new base mesh, so that new clusters do not

have to be computed. This process appears to reduce angle deviations from ninety

degrees, control aspect ratios, and mollify adjacent mesh ratios.

Once a new base mesh has been constructed, the solution on the old one is interpo-

lated to the new one by using bilinear interpolation with respect to the cells of the old

. base mesh. The order and nature of the interpolation needs further investigation and we

are studying methods that conserve, e.g., fluxes (cf. Berger [14] or Rai [29]).

*"' Ill. COMPUTATIONAL EXAMPLES.

. .In order to demonstrate the capabilities of the adaptive procedure described in Sec-

tion II, we applied it to three hyperbolic systems. We used a two-step MacCormack finite

difference method (cf. Arney and Flaherty [5], Hindman [26], or MacCormack [27]) to

4%
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integrate the partial differential equations and Richardson's extrapolation (cf. Arney [4] or

Berger and Oliger [151) to indicate local errors. Base mesh geometry Vvas prescribed as

indicated in each example. If the base mesh time step failed to satisfy the Courant,

Friedrichs, Lewy theorem, it was automatically reduced to the maximum allowed by the

Courant condition (cf. Arney [4] and Arney and Flaherty [6]). This procedure should also

satisfy the Courant condition on all subgrids when the characteristic speeds vary slowly.

5,. Numerical results obtained on uniform stationary grids are compared with those

obtained by adaptive strategies that use (a) mesh moving only, (b) local refinement only,

and (c) the combination of mesh moving and refinement discussed in Section I. The

examples are designed to determine the relative cost, accuracy, and efficiency of our adap-

tive algorithm and each of its components. Accuracy is appraised by computing the

*difference e between the exact and numerical solutions of a problem in either the max-

imum or L1 norms, i.e., by computing either

SIle(',,t)l. =max max I ej (xi yi,t) I, (7a);e,-, 15i SK l__j !,n

or

AM

* Ile(',') 1 = , Iej I dxdy, (7b)
ta j=1

respectively. Here, K is the number of nodes in the mesh at time t and P is a piecewise

0 constant interpolation operator with respect to the cells of the base mesh that, on each cell,

has the average value of the errors at the vertices of the cell. We use either the total CPU

- .,.*
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time or the maximum number of nodes used in a base time step as measures of the corn-

putational complexity of a procedure. All calculations were performed in double precision

arithmetic on an IBM 3081/1) computer at the Rensselaer Polytechnic Institute.

Solutions are displayed by drawing either level lines or wire-frame perspective rendi-

tions. Meshes are displayed by showing the complete two-dimensional spatial discretiza-

tion at specified times with finer subgrids overlaying coarser ones. This portrayal does not

show the reduced time steps that are used for the subgrid calculations. The broken-line

* rectangles in the figures indicate the error cluster(s) that are used to move the base mesh.

Example 1. Consider the linear initial-boundary value problem that was proposed as

a test problem by McRae et al. [281:

ut - yu. + xuY =0, t >0, (x,y) e , (8a)

""0", '_if (x-1/2)2 + 1.5y 2 > 1/16"."~ ~ X ,y ,O)=ui-.y-." "- 16((x-1/2)2 + 1.5y 2), otherwise,

-- ,(x'y) e 92 DO) f, (8b)

and

u (x,y,t) = 0, t > 0, (x,y) e M.Q, (8c)

. where :=(x,y) I -1.2 < x, y < 1.2).

The exact solution of Eq. (8) is an elliptical cone that rotates about the origin in the

*" counterclockwise direction with period 2t. It can be written in the form

-- " - ++il 
"

l~llll . . -.I .i'llll l ll l l | l
i

... . . .
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U,. X V O0, ifC<O (aUC, ifC >0,

%,..-: where

" C 1 - 16[(xcost + ysint - 1/2)2 + 1.5(ycost -xsint)2]. (9b)

Five adaptive and uniform mesh solutions of Eq. (8) were calculated for 0 < t : 3.2

and our findings are summarized in Table 1. Solutions 3 and 4, with refinement, were cal-

culated using an error tolerance of 0.0002 and a maximum of two levels of refinement.

.. The tolerance and maximum level of refinement were selected so that the high-error region

* under the cone would maintain approximately the same mesh spacing as the uniform mesh

used to obtain Solution 5. The grids that were used to obtain Solution 4 are shown in

Figure 5 at t = 0.56, 1.68, 2.24, and 3.2. A new base mesh was introduced at t = 2.82.

The meshes that were used to obtain Solutions 2, 3, and 4 at t= 3.2 are shown in Figure
M

6. Finally, surface and contour plots of Solutions 1, 2, and 3 and of Solutions 4 and 5 at

t= 3.2 are shown in Figures 7 and 8, respectively.

* Solution I bears no resemblance to the exact solution and demonstrates the devastat-

ing effects of large dissipative ani dispersive errors. Solution 2, with mesh moving only,

provides a dramatic improvement in the results for approximately one-half the cost of

using both mesh motion and refinement. Solution 5 took more than three-times longer to

calculate than Solution 4 for approximately the same accuracy; thus, demonstrating the

efficiency of the refinement process. The subgrids for the refined Solutions 3 and 4 are

concentrated in the region of the cone and are aligned with its principal axes as it rotates.

0I
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Ref. Strategy Base Base Time le 11, le IL. (seTi)
No. Strategy Mesh Step _e. P(sec.)m

i~i  Stationary1 14 x 14 0.056 0.2560 0.78 46

uniform mesh

2 Moving mesh 32 x 32 0.026 0.0301 0.20 458

3 Stationary mesh 14 x 14 0.056 0.0832 0.48 852
with refinement

4 Moving mesh 14x 14 0.056 0.0249 0.18 904
_ with refinement

',-,.Stationary'., 5 56 x 56 0.014 0.0759 0.48 2647
y'I. uniform mesh

Table 1. Errors at t = 3.2 and computational costs for five solutions of Example
1.

Dissipative and dispersive errors cause a "wake" of spurious oscilatory information to fol-

low the moving cone (cf. Figures 7 and 8). Some mesh refinement is performed in the

wake region and this greatly reduces the magnitude of the oscillations.

Example 2. Consider the uncoupled linear initial-boundary value problem

u 1 +u 1 =0, uZ -u 2 =0, t>0, (x,y)e 6 , (10a)

U (xYO {1 - 16((x-1/2)2 + 1.5y 2), if (x-1/2)2 + 1.5y 2 < 1/16
u1(x'y'O) = otherwise,

-I - 16((x+1/2)2 + 1.5y 2), if (x+1/2)2 + 1.5y 2 < 1/16
.": u (x ,y 0)=

U2(X ;O0, otherwise,

* (x,y) e (lOc)

.1. :

,. , * .* . • . .. .".".. .••.••., - -,'*. ,...,. ., .- _ . ,-*- .' ¢_ ', ' " , '. - " -1- '
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u1(x,y,t) = u2(x,y,t) = 0, t > 0, (x,y) e af2, (10d)

and Q {(xy) I -I <x < 1, --0.6 y < 0.6).

The solution of this problem consists of two moving cones that collide and pass

through each other. We selected it in order to determine how the various adaptive stra-

tegies could cope with interacting phenomena.

>1- One uniform mesh and three adaptive solutions of Eq. (10) were calculated for

0 < t 5 1.2 and our findings are summarized in Table 2. The solutions involving

. refinement were computed with a tolerance of 0.0038. All solutions were designed to

have approximately the same accuracy. The grids that were used to obtain Solution 4 are

shown in Figure 9 at t = 0, 0.23, 0.46, 0.92, and 1.2.

The results of Table 2 demonstrate the efficiency of the mesh moving strategy on this

example. Solution 2 with mesh moving was slightly more accurate than Solution 1

obtained on a uniform mesh, and it required less than one-half of the computation time.

Solution 3 with refinement on a stationary mesh shows only a modest improvement over

Solution 1; however, the combination of mesh moving and refinement computed in Solu-

tion 4 again shows a significant gain in efficiency. We suspect that the high accuracy

achieved by mesh moving on this example is due to the reduction in dispersive errors that

results when the mesh follows the cones with approximately the correct velocity.
S

Example 3. Consider the Euler equations for a perfect inviscid compressible fluid

0-N

------------------------------------------
-. °4
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ut + fX(u) + gy(u) = 0, (a)

where

u ]2[+p PUV

SP, f(u) puv , g(u) = 2+p  (llb,c,d)

e u(e+p)] [v(e+p)

Here, u and v are the velocity components of the fluid in the x and y directions, p is the

fluid density, e is the total energy of the fluid per unit volume, and p is the fluid pressure.

For an ideal gas

p = (y- 1)[e - p(u2 +v 2)/2], (1 le)

,. where y is the ratio of the specific heat at constant pressure to that at constant volume.

We solve a problem where a Mach 10 shock in air (y = 1.4) moves down a channel

containing a, wedge with a half-angle of thirty degrees. This problem was used by Wood-

ward and Collela [32] to compare several finite difference schemes on uniform grids.

Like them, we orient a rectangular computational domain, -0.3 < x _<3.4, 0 : y _<1, so

0
that the top edge of the wedge is on the bottom of the domain in the interval y = 0,

. 1/6 < x < 3.4. Thus, in the computational domain it appears like a Mach 10 shock is

* impinging on a flat plate at an angle of sixty degrees. The initial conditions that are

.' appropriate for this situation are

01

.p = 8.0, p = 116.5, e - 563.5, u =4.12543, v =-4.125,

if y < 'F(x-1/6), (12a)

and
0 %
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.-.-. Figure 7. Surface and contour plots for Solutions 1, 2, and 3 (top to bottom) at

-'.t =3.2 of Example 1.
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p=1.4, p =1.0, e=2.5, u=O, v=O,

if y > 3(x-1/6). (12b)

Along the left boundary (x = -0.3) and the bottom boundary to the left of the wedge

(y = 0, -0.3 < x < 1/6), we prescribe Dirichlet boundary conditions according to Eq. (12);

along the top boundary (y = 1), values are prescribed that describe the exact motion of an

undisturbed Mach 10 shock; along the right boundary (x = 3.4), all normal derivatives are

set to zero; and along the wedge (y = 0, 1/6 ! x 5 3.4), reflecting boundary conditions are

0 used.

The solution of this problem is a complete self-similar structure called a double-Mach

reflection that was described in Ben-Dor and Glass (12, 13]. Two reflected Mach shocks

form with their associated Mach stems and contact discontinuities. The geometry of these

structures is very fine and is primarily confined to a small region that moves along the

wedge with the incident shock. One of the two contact discontinuities is so weak that it is

usually not noticed in computations.

The MacCormack finite difference scheme needs artificial viscosity to "capture"

shocks without excessive oscillations. We used a model developed by Davis [20] which is

total variation diminishing in one-space dimension.

Five solutions of this problem were calculated for 0 < t 5 1.9 as indicated in Table

3. Refinement was restricted to a maximum of two levels and a tolerance of 0.6 in the

maximum norm was prescribed. A pointwise error indicator based on the assumption of

e-
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Ref. Base CPU Time
No. Sttegy Mesh lie f1I lie L (sec.)

1 Stationaryuniform mesh 64x 34 0.066 0.26 710

2 Moving mesh 44x20 0.056 0.18 340

3 Stationary mesh 44x20 0.055 0.23 719
with refinement

4 Moving mesh 44x20 0.039 0.16 609
with refinement 4 0 009 01

Table 2. Errors at t = 1.2 and computational costs for four solutions of Example
2.

a.-; smooth solutions, like the present one, is not appropriate for problems having discontinui-

ties. Without restricting the maximum level of refinement, we could refine indefinitely in

the vicinity of a discontinuity.

Solutions 2 through 5 were intended to be of comparable accuracy and we shall

attempt to appraise the computational cost of each adaptive strategy. The maximum

number of nodes that was introduced in any base time step and the total CPU time are

* presented as measures of computational complexity in Table 3. Contours of the density at

t= 0.19 are shown for all five solutions in Figure 10 and the grids that were generated for

Solution 4 at t = 0.038, 0.076, 0.114, 0.152, and 0.19 are shown in Figure 11.

As in the previous two examples, the mesh moving strategy of Solution 2 does a

0
k'N V-.
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Figure 9. Grids created for Solution 4 of Example 2 at t =0, 0.23, 0.46, 0.92,

and 1.2 (top to bottom).
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Ref. StrategyBase Max. No. CPU Time
No. Mesh Nodes (sec.)

1 Stationary 63x29 1827 2130
_____1 uniform mesh 63_29 12723

2 Moving mesh 63 x 29 1827 2220

Stationary mesh
3 with refinement 29x 11 2782 3254

4 ,Movimes 29 x 11 3540 3725Moigmesh

_ with refinement
Stationary5 uniforalmesh 120 x 40 4800 6861

. uniform mesh

Table 3. Maximum number of nodes in any base time step and computational
" costs for five solutions of Example 3.

great deal to improve the results of the static Solution 1 for approximately a five-percent

increase in computational cost. Comparing the top two contours oi Figure 10, we see that

the resolution of the incident and reflected shocks is much finer with Solution 2 than with

* Solution 1. Additional detail of the structures in the Mach stem region and of the contact

S .S... discontinuities is present in Solution 2, but not in the nonadaptive Solution 1. Finally,

Solutions I and 5 display more oscillatory behavior behind the incident shock near the

upper boundary. This is undoubtedly due to our maintaining a discontinuity where the

shock intersects the upper boundary.

The use of refinement on a stationary mesh again does rot give the dramatic

improvement obtained by mesh moving (cf. the second and third contours of Figure 10).
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Figure 10. Contours of the density at t = 0.19 for Solutions 1 to 5 (top to bot-
tom) of Example 3.
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Initally the fine meshes were following the incident and reflected shock structures and

better results were obtained; however, by t = 0.19 refinement is being performed over

much of the domain and two levels of refinement are not sufficient for adequate resolution

(cf. Arney and Flaherty [6]). The combination of mesh motion and refinement depicted by

- Solution 4 in Figure 10 provides a marked improvement in resolution. The sequence of

meshes shown in Figure 11 shows that the coarse mesh is able to follow the differing

dynamic structures and that refinement is only performed in the vicinity of discontinuities.

* Initially, only one rectangular cluster is needed to follow the incident shock (cf. Arney

and Flaherty [5]). As time progresses, two clusters are created in order to follow the

incident and reflected shocks (cf. the upper three meshes of Figure 11). A third cluster is

, created as time increases further in order to follow the evolving activity in the region of

the Mach stem (cf. the lower two meshes of Figure 11).

Severe distortion of the mesh in the reflected shock region caused a static mesh

regeneration to occur for Solution 4 at t = 0.162. The base meshes before and after the

static regeneration are shown in Figure 12. Thus, Solution 4 demonstrates all of the capa-

bilities of our adaptive procedure. The results presented in Table 3 and Figure 10 also

show that Solution 4 provided greater resolution than the uniform mesh Solution 5 for

approximately one-half of the cost. Solution 4 also shows many of the same characteris-

* tics as the solution computed by Woodward and Collela [32] using MacCormack's method

on a 240x 120 uniform grid. We were unable to compute a solution on such a fine meshNmes
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due to virtual memory limitations on our computer, however, we estimate that it would

have used 14,400 nodes and 40,000 CPU seconds.

.. , _t t I I

r I f I

7 -r

I I T I

* Figure 12. Base grids before (top) and after (bottom) the static mesh regenera-
- tion that was performed for Solution 4 of Example 3 at t= 0.162.

4- The results presented for this problem demonstrate the power and efficiency of our

adaptive techniques; however, we would have preferred to allow more than two levels of

refinement and a finer base mesh. These calculations would have produced better resolu-

tion of the discontinuities and other fine-scale structures that further demonstrate the
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computational advantages of adaptive methods relative to uniform mesh techniques. As

noted, restrictions of our computing environment prevented us from doing this in a reason-

able manner. We hope to perform these calculations in the future using a larger comput-

ing system.

IV. DISCUSSION OF RESULTS AND CONCLUSIONS.

.". We have described an adaptive procedure for solving systems of time-dependent par-

tial differential equations in two-space dimensions that combines existing mesh moving [5]

and local refinement [6] techniques. The algorithm also contains procedures for initial

mesh generation and static mesh regeneration. It can be used with a wide variety of finite

difference or finite element schemes and error indicators.

We obtained computational results for hyperbolic systems of conservation laws by

using our adaptive methods with a MacCormack finite difference scheme and using

Richardson's extrapolation to furnish local error indicators. Our computational results on

three examples indicate that mesh moving can significantly reduce errors for approxi-

mately a ten-percent increase in cost relative to computations performed on stationary uni-

* form meshes. The use of local refinement without mesh moving provided increased

efficiency relative to uniform-mesh calculations, although not as dramatic as those found

using mesh moving. The combination of mesh moving and local refinement provided reli-

able results while costing significantly less than stationary-mesh calculations. Thus, the

0•
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overhead associated with the dynamic data structures is less than the time to calculate a

comparable solution on a uniform mesh.

The results of Section Ell and others (cf. Arney and Flaherty [5, 6]) indicate that our

mesh moving procedures perform better alone than with refinement. This is because the.'

S

projection of fine-mesh solutions onto coarser meshes reduces the errors at base mesh

nodes, and mesh motion based on controlling small or zero local discretization errors

either fails or results in no movement. Erratic mesh motion can also occur with some

'. techniques when movement indicators are small. This topic is discussed in Coyle et al.

[19] and a possible remedy for one-dimensional problems is suggested in Adjerid and

Flaherty [2]. Further experimentation and analysis are being performed in order to deter-

mine the best way to combine mesh moving and refinement.

There are several other ways to improve the efficiency, reliability, and robustness of

A ,our adaptive methods. The present Richardson's extrapolation-based error indicator is

expensive and we are seeking ways of replacing it by techniques using p-refinement.

Such methods have been shown [1, 2, 3, 8, 10, 16, 22] to have an excellent cost perfor-

mance ratio when used in conjunction with finite element methods. An appropriate error

indicator or estimator can be used to control a differential refinement algorithm, where

different refinement factors (i.e., other than binary) are used in different high-error clus-

, ters. If the error indicator is capable of providing separate estimates of the spatial and

temporal errors, as the present one does, then different refinement factors can also be used

0,;
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~in space and time. We also hope to demonstrate the flexibility of our refinement pro-

e. cedure by using it with a finite difference or finite element scheme for parabolic problems.

'.

< The greater reliability and efficiency of adaptive techniques will be most beneficial in

~three dimensions. These techniques must be able to take advantage of the latest advances

k. in vector and parallel computing hardware. The tree is a highly parallel structure and we
.! have been developing solution procedures that exploit this in a variety of parallel comput-

b-

.. ing evrnments.

p.
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