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COMPARISON WITH OBLIQUE SOUNDER DATA OF HIGH-LATITUDE HF PROPAGATION®
PREDICTIONS FROM "RADAR C" AND "AMBCOM" COMPUTER PROGRAMS

Nikhil Dave’
Ocean and Atmospheric Sciences Division
Naval Ocean Systems Center
San Diego, CA 92152-5000

ABSTRACT

A study is done using two HF propagation prediction programs - "RADAR C"
and “AMBCOM” - to determine how well they predict median values of oblique
sounder data of maximum observed frequencies (MOF) at high latitudes. The
main differences between RADAR C and AMBCOM are the inclusion in the latter of
high-latitude ionosphere and auroral absorption models, as well as a more
sophisticated and accurate rav-tracing scheme. The data used for comparison
are taken from Reference {1] for the Winnipeg-Resolute Bay path in the yczr
1959 (also discussed by Petrie and Warren {2!) and from Folkestad [3] for cthe
Andoya-Ft. Monmouth and Andoya-College paths in 1964. The data for the
Winnipeg-Resolute Bay corresponds to high sunspot number, while the others
correspond to low sunspot number. Hence, this study provides information on
the performance of the two programs for various high-latitude paths at both
high and low sunspot number.

AMBCOM was found to give generally better agreement with the above data
than did RADAR C. Comparison of details of model predictions from the two com-
puter programs for the above data-base is used to form an understanding of
this improvement in prediction capability.

INTRGDUCTION

This paper begins with a summary of the differences betwcen the hasic
ionospheric models and raytracing assumptions made in constructing the RADAR C
and AMBCOM programs. User options selected frr this study are discussed in
Section 2. In Section 3, compariscn of predictions from the two programs with
available oblique sounder data is presented with appropriate explanation. In
Section 4, the comparisons with data are discussed in terms of what they
reveal about the significances of the differences between the two programs,
and conclusions are formed regarding the apparent reasons for improved predic-
tive capability of AMBCOM over RADAR C. In the final section, suggestions for
directions in future work towards improving HF propagation prediction in high-
latitude regions are made.

SECTION 1 - SOME BASIC ASSUMPTIONS USED IN THE DEVELOPMENT OF RADAR C
AND AMBCOM COMPUTER PROGRAMS

The developmental histories of RADAR C and AMBCOM are different, and this
fact accounts for some of the differences between the two programs. RADAR C
was developed to predict performance of over-the-horizon radars (Headrick, et.
al. (4], Lucas, et. al. (5]). Thus, RADAR C has only a coverage option, not a
point-to-point or "homing" option. The propagation model is based on virtual
geomecry and is essentially the same as that of ITS -78 (Barghausen, et. al.
[61) and IONCAP (Teters, et. al., [7]). AMBCOM was derived from the NUCOM
program developed at SRI Incernational (under the sponsorship of the Defense
Atomic Support Agency, DASA, and its successor, the Defense Nuclear Agency,
DNA). The purpose of NUCOM is to predict the effects of a nuclear disturbance
on {onospheric communication channels (Nielson, et. al. (8]), and as a part of
this objective, AMBCOM was developed to predict HF propagation in an undis-
turbed, or ambient, ionosphere. The raytracing scheme in NUCOM/AMBCOM was
developed specifically to permit the treatment of a non-horizontally
stratified ionosphere in the direction of propagation (i.e., it includes
modelling of longitudinal, but not transverse, tilts, so that propagation is

along the great circle path). AMBCOM has both coverage and point-to-point op-
tions.
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Table 1., extracted from an AMBCOM user’'s manual prepared by SRI
International [9], highlights some important differences between the two
programs. Evidently, the two programs differ in several features relevant to
prediction of MUF's, as discussed below.

TABLE 1 - SUMMARY OF SIGNIFICANT MODEL DIFFERENCES BETWEEN AMBCOM AND RADAR €

MODELS RADAR C AMBCOM

JOMOSPHERE GEMERATION

Deck (for coeffictents *ESSARED® SESSABLUE®, WITH HIGH-LATITUDE
¢ ! MODIFICATIONS (Hatfield [10])

Hedian sodels YES YES - including avrora) jonosphere
Spatial lnpnsennnan 4 samples 41 samples
Real-data tnput lonograms at § parabolfic parsmeters at up to

4 locations 41 locations

Y Y ST N T T — T

PROPAGATION MODEL

Raytracing me<-:g Martyn's theores Semianalytic raytrace
T41ts, horizontal gradients NO YES
Topside reflections N YES
Radar propagation YES YES
Point-to-point propagation L YES

(1) Determination of ionospheric parameters is done using the so-called ESSA
"blue deck" coefficients in AMBCOM with high-latitude modifications introduced
by SRI International (Hatfield {10]). RADAR C uses the unmodified ESSA "red
deck” coefficients.

(2) AMBCOM chooses up to 41 control points (depending on path length) to
determine local ionospheric parameters such as critical frequencies, whereas
RADAR C has a maximum of 4 control points available for the user to input.

(3) AMBCOM models the ionosphere with three parabolic layers of electron den-
sity as a function of height, and uses a semi-analytic, two-dimensional
raytracing scheme based on a method due to Kift and Fooks (Nielson [111). The
physical bases of this scheme are the geometric optics solution to the wave
equation and Fermat’s principle of minimum phase (Kelso [12]). RADAR C uses
vertical ionograms computed from a similar ionospheric model as AMBCOM, and
converts to oblique propagation using Martyn’'s theorem (Davies, [13]). The
scheme used in AMBCOM permits consideration of continuous ionospheric
gradients along the direction of propagation, whereas the RADAR C scheme as-
sumes horizontal stratification of the ionosphere at each reflection point.

An added difference, not explicitly noted in Table 1, is the fact that
A AMBCOM is better capable than RADAR C of considering composite modes involving
reflections from the E, Fl, and F2 layers, including topside reflections off
of the lower layers (M-modes), as well as chordal or perigee modes (i.e., rays
which do not intersect the earth between layer reflections), as possible modes
of propagation. This improved capability of AMBCOM is due to its more ac-
curate raytrace method, (e. g., in AMBCOM it is not assumed that the angle of
incidence to a layer equals the angle of reflection). Although RADAR C i=s
also capable of considering composite modes, the assumption of horizontal
stratification prevents the consideration of tilts and chordal modes by this
program, as a result of which the majority of modes found by RADAR C turn out

2 g 04

to be simple modes (all reflections being off of the same layer). In summary,
the treatment of modes in AMBCOM is closer to physical reality than that in
RADAR C.

It should be noted here that neither of the programs is designed ex-

pressly for predi-zting maximum usable frequency (MUF) for a given model .
ionosphere,; so that the program output has to be interpreted to estimate a '
MUF. For this study, since RADAR C does not have a point-to-pcint option, its

output for a given condition is scanned [or the maximum frequency whose ground ~
ramg . ([or some takeoff angle) bracket the receiver, this being interpreted :k
as the MUF. 1In interpreting AMBCOM output, the point-to-point option is )
chosen, and it is assumed that all modes which reach the ground within 100 &
kilometers ground distance of the receiver, or all chordal modes which reach |
less than 90 kilometers height above the receiver are detectable modes. The :3
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ranges in these acceptance criteria are somewhat broader than normally used /

(20 km height being a more common limit for chordal modes, for example), but

are believed to be representative of the range of distances from which modes

can be detected, considering the accuracy of the ionospheric model and

raytracing scheme, and broadening of the beam. The results of this study,

Judged by examining the output, are noc highly sensitive to the choice of the L e,

above numbers. . [

2

SECTION 2 - USER OPTIONS TAKEN IN PERFORMING THE STUDY

Some of the user options available in the two programs are of relevance
to this study, hence are discussed below:

(1) Four control points are used in this set of RADAR C runs, approximately
uniformly spaced on the great circle path between transmitter and receiver.

(2) Sporadic E modes are not considered in this study (IOPES = 0 in AMBCOM,
MAXMOD = 1 in RADAR C).

(3) 12 month running averages of monthly median. sunspot number are used. Monthly median values
of magnetic index KP are used in AMBCOM. (RADAR C does not use K ).

(4) In order to minimize the amount of computing time without a great sacrifice in accuracy,
only integer values of frequencies in the range of 1 - 30 MHz are input for study in these
programs. Thus the predicted maximum usable frequencies may have up to 0.5 MHz systematic bias
on the low side, since the actual MUF would be less than the lowest (inceger) frequency for
which no propagation is predicted by the raytrace scheme, but possibly higher than the highest

found ted.
?23 I%ﬁ? "ﬁfg qiagﬂ' calculation option in AMBCOM is chosen (HIRAY(I) = 0.6), permitting iden-

tification of possible high-angle rays on a given path.

(6) In AMBCOM, take-off angles from O to 45 degrees are considered, with one degree increments
between angles.

A map showing the paths studied is given in Figure 1, and a summary of geographical. tem-
poral, and solar parameters pertaining to the data is given in Table 2. We note that this
study includes a short path for which most of the modes should be l-hop, and two intermediate
length paths for which composite mode propagation can be important. The short path data is a:
high sunspot number, while the longer path data is at low sunspot number. One of the longer
paths can be considered a trans-auroral path while the other can be considered a trans-polar
path (Folkestad [3]).

KA i)

FIGURE ! - WORLD POLAR PROJECTION SHOWING
GREAT CIRCLE COURSES OF PATHS STUDIED
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, g
PATH| YEAR| ENDPOINT | GREAT CIRCLE|APPROX. Za
D LAT (N+) | DISTANCE MO. MED i
LONG (W+) | (KM) SUNSPOT "y

_ NIMBER

A | 1959]+49.5,#97.1] 2799 5
+74.7,494.9 140 1
B | 1964|+69.1,-15.4] 5853 10-20 e,
+40.3.474.1 o
C | 1964]+69.1,-15.4 5060 " 03

+64.9,+148. ®

o
ta
g‘w
W/
o
Section 3 - RESULTS OF THE STUDY ? 3
¢
In Figures 2a-12b are presented the MUF predictions deduced from the two programs for each A%
path-month studied, along with an identification (below the universal time, or UT, axis) of
che mode which determines the MUF, and its corresponding total path loss in dB, for every two N E
hours of UT. The results for the two programs are arranged side-by-side, the figure numbered e,
with "a" corresponding to RADAR C predictions, and that numbered with "b" corresponding to :‘.p
AMBCOM predictions. The notation for modes used is explained in Davies (13). A minus sign in- g
dicates a perigee ray, and a "v" indicates topside reflection. Thus, "E -F2" indicates a 2-hop ;-'\-:
perigee ray which reflects off of the E layer, intersects the earth, then reflects off of the N
F2 layer, reaching the receive site at an altitude of not more than 100 km (c.f. Section 1). A
Likewise, "F2 vF1 F2" indicates a mode which reflects off of the F2 layer, then off of the top- ®
side of the Fl layer, then again off the F2 layer. An "H" refers to a high-angle mode. :,'5
1,7}
SECTION & - DISCUSSION ,*':
N
The major features of the comparisons can be summarized as follows: ::-_
%
(1) For the Winnipeg-Resolute Bay path (Figures 2-4), both programs show the l-hop F2 mode as T

the principal mode of propagation. Both programs predict the large observed diurnal variation

in the winter seaso at high sunspot number, although AMBCOM has a bias on the high side for
the diurnal peak.
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FICURE 2b- AMBCOM PREDICTION FOR
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FIGURE 4b- AMBCOM PREDICTION FOR
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(2) For the Andoya-Ft. Mommouth path (Figures 5-8), AMBCOM predicts closer to the data than
RADAR C, the latter having in general a low bias for the MUF. The modes found by AMBCOM for
the MUF in this case involve several cases of composite modes, perigee modes, and high rays.

(3) On the Andoya-College path (Figures 9-12), AMBCOM shows a significant improvement in MUF
prediction over RADAR C (which is generally 5-10 MHz too low), with composite and perigee modes
playing an important part. There are several cases in which 2- and 3-hop modes involving a
combination of E and F2 layer reflections, as well as perigee modes, determine the MUF.
Althougnh AMBCOM is a =ignificant improvement over RADAR C in this case, there is room for more
! improvement, as AMBCOM is still biased on the low side of observed median MUF's.

(4) As a by-product of the fact that AMBCOM generally finds higher MUF values (which are closer
to the observed values) than RADAR C, AMBCOM also shows lower path losses for these higher fre-
quencies, so that the required power on certain paths may be significantly lower than tha:z
predicted by RADAR C.

40 40
30 30
20 2 -
. ;‘g\ Bl ] foex g /*‘-N Pitiiatia E‘
» } 1
MHz A\ A e &/ —n
10 y' ‘Wf 'y ¢ _%
o / %
P o
® .
5 D—
4—4 —08s. MED. MUH L3 —oBs. MED MU
O PRED. MED. HU O PRED MED MU
ur go of 04 06 UB 10 12 14 1618 20 22 24 UT o 02 04 06 0B 10 12 14 16 18 2D 22 24
MopE 10-282 | 2k2 | () |2r2 | 22 | 2e MODE 1.0, 2e4ESe | 2e°2e |2p2 | | 2t 22
- 282 f2F2 252 [ 2F2 | 2 2F2 N ¥2.F2 F2 3E -2E - 2FZH B F2 -E
i <28 3F2 zrz |
10ss-DB 184 | 196 200 | 168- | 182 | 277  LOSS - DB 163 194 lws xJ; 169
" 187 .209 188 190 186 186 194 " 173 158 m 172
FIGURE 5a - RADAR C PREDICTION FOR FIGURE Sb - AMBCOM PREDICTION FOR
ANDOYA-FT. MONMOUTH PATH, JANUARY 1964 ANDOYA-FT, MCRMOUTH PATH, JANUARY, 1964
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L 1 [ 1 1 1 1 .-
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FICURE 6a- RADAR C PREDICTINN FOR FICURE 6b- AMBCOM PREDICTION FOR
ANDOYA-FT. MONMOUTH PATH, MARCH, 1964 ANDOYA-FT. MONMOUTH PATH, MARCH, 1964
352

.
»
K
“u

N S S A N A N I -
f LR Ny My Se NN ey
‘ . e e A At



PR TR T TS U S SOOI LTS S B

OO 7O R TOROOC R YOO ORI RO R L

49 - 40
30 30
M Wacetd 3 &i% N el Y
zo'w ".-: d L0 “e Lﬁ’ f . [ L4"?‘ glf'i -
W g’; T 7 s BV B F R
i p :\ : ’.WJ—S“ v 8 M .
o A
; 00 S
|- f ovs. HED.MUE —}~ 4 —o08s. HLD.HUE
Q PRED MED MU Q PRED. HEV. MUK
L1 1 1. l 1 [ .1
LT 0V 02 04 06 08 10 12 14 16 18 20 22 24 UT UU 02 04 U6 U8B 10 12 14 16 1B 2Q 22 24
HDDi 1.D.2F2 | 2F2 4F2 | 2F1 2e l 2F1 MODE 1.D. 2E 3E 2E 2E 2 ) E T | 4
2F2 | 3F2 | 2F2 3 y " E2 F2 -F2 2B ~E F2 F2 -2E
2FL | 2E | 2F2 " T e F2H
» -I"'ZH
10SS - DR 2551 182 | 231 | 195 | 202 | 179 - 6 178 1771 124 ) 157 1 158
» 176 207 221 210 197 261 Loss, - DB ! 7176 180 181 59 167 178

FIGURE 7a = RADAR C PREDICTION FOR

ANDOYA-FT. MONMOUTH PATH, MAY, 1964 FIGURE 7b - AMBCOM PREDICTION FOR

ANDOYA-FT. MONMOUTH PATH, MAY, 1964

& A 40 y
30 b . . B 4%
e A * EiRa /
20 Gl ’L)‘i K f@y_;} )‘.i;l ;‘W» l:!i; R 20 !"’-‘)'. 3}.’1_ )2.% K fﬁrm/‘,}- Fm@ B
il B £ i a2d W o M B TR WS ] a SN T (R b
S BN el I B i s O )2
HEEVEVO | T R\l 72
% 2 : A D BT
MHzloc~E () A MHz 25
a5 T () 10 L)
o )]
5 -
p— 5
——|- +— obs. n£p M - L —-0BS. MED MUH
O PRED MED MU O PRED MED MUF
it [ 4 L L 1 1
UT 00 02 04 06 08 19 12 14 16 18 20
22 24 uT 00 02 04 06 08 10 12 14 16 18 20 22 24
MOEE 1.D.2F2 l 2F2 | 4F2 ? 2Ft | 2e | 28t | MODE 1.D. E E F2 2£3F2 2E 3E 3E | aE 3E
282 | 3F2 | 272 42 | 4E 2E " -F! -F2 | -F2 -E FIH | F2H
" -4E vE
LOSS- DB 2 l " | |-%2
- DB 263 | 200 l ) | 268 | 199 | 210 s <pp 199 | 154 | 185 | 179 | 173 ] 156
" 168 196 231 242 256 180 Loss, = D 159 179 180 179 18 173

FIGURE 8b- AMBCOM PREDICTION EFOR

ANDOYA-FT. MONMOUTH PATH, JULY, 1964

FIGURE B8a - RADAR C PREDICTION FOR
ANDOYA-FT. MONMOUTH PATH, JULY, 1964

For added insight, a comparison of the calculated values of E- and F2-layer critical fre-
quencies and heights of the layer maxima for the two programs on the aAndoya-College path at ©
hour intervals is plotted im Figure 13. (E-layer maximum height is a constant 130 km in RADAR 7
aed 115 km in AMBCOM). This figure shows that the ionospheric parameters on the andoya-Colleg:
pach differ for the most par=: by only a few percent between The two programs so that one <av
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conclude zhat the radical improvement in MUF predic:iion of AMBCOM over RADAR C for this path is ':'..r

not due mainly to the values of ionospheric parameters used. Rather, based on the types of :\"'
modes found to constitute the MUF in AMBCOM, it is to be concluded that the more accurate, and =
physically more realistic raytracing in AMBCOM, combined with many more control points than -
used in RADAR C, are the main causes for the significant {mprovement in MUF prediction in »
AMBCOM compared to RADAR C. These capabilities (c.f. the discussion, item (3) of Section 1) -

allow for the consideration of tilts and composite and perigee modes, which is not possible in o~
"

FIGURE 10a- RADAR C PREDICTION FOR

ANDOYA-COLLEGE

PATH,
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of the importancz of

horizontal gradients in electron density in the ionosphere even at mid-latitudes.

A similar comparison of ionospheric parameters for the two programs for the tranms-auroval

path (Andoya-Ft. Monmouth) is shown in Figure 1é4.
in addition to the effects of improved raytracing.

this path,

modelling (especially for the E-laver cricical frequency). are also significant

improved prediczabilizy
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This figure supports the ccnclusion that fov
differences in ionosphwric
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i SECTION 5 - CONCLUSIONS AND LINES FOR FURTHER RESEARCH
Y :
N AMBCOM in general performs better as a MUF prediccor chan RADAR C on the hig‘l-lat“t'd e
Y paths studied, the latter having a significant low bias for MUF on the trans-polar and =zrans \
| : auroral paths studied, although AMBCOM has somewhat of a high bias on the Winnipeg-Resolute Bay ‘
™ path. Based on the discussion in Section 4. the improved performance of AMBCOM over RADAR C, A
at least on the trans-polar path between Andoya and College is primarily due to its more physi-
cally realistic raytracing scheme. On this path, composite and perigee modes often determine
": the MUF. Further improvement for the prediction of this high-latitude path and for the andova- K
:, Fu. Monmouth path is, however, needed. :
..} For future research, a more complete test of AMBCOM is desirable, using a larger database
' with a wide wvariety of path-months. This will identify possible improvements which can be made
-' to ithie ravirace scheme of AMBCOM. Since this study shows that accurate raytracing i{s importan:
o on the hxg}~ latitudes paths studied, it is reasonable to hvpothesize that incorporation of a !
three-dimensional ray-tracing routine (e.g., Jones [13!) into AMBCOM in place of the presen: -
v one will reveal other, higher frequency modes of propagation not propagating on great circle '
' paths, leading to further improvement in predictive capacicty. The present version of AMRIOM 3
) does not include non-great circle (NGC) propaga“ion. as was noted in Section 1. We note the
y discussion by Hunsucker and Bates [16] of the importance of NGC modes in high-latitude
e ) . - . - PR . .,
X propagation, and the fact that this may also be of significance at lower latitudes.
Obserwvationally, since few ionosondes have been operated in polar regions, it is to be ex-
pe:_ed that a program of vertical incidence ionospheric critical frequency measurements in the
" polar region will improve our capaclty to model HF propagation in this important region of the D
>, world.
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