Roughness-Induced Resonance for Molecular Fluorescence Near a Corrugated Metallic Surface

by

P. T. Leung, Young Sik Kim and Thomas F. George

Prepared for Publication

in

Physical Review B

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

July 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Based on a dynamical energy transfer theory for the molecular decay rate near a rough metallic surface, a new resonance structure is predicted which is mediated by the roughness and which is absent in the static image theory. The implication of this new resonance structure to other phenomena, such as electron energy loss spectrum and cross coupling in thin films, is pointed out.

```
FIELD    GROUP    SUB-GROUP

MOLECULAR FLUORESCENCE
DYNAMICAL THEORY
CORRUGATED METALLIC SURFACE
ROUGHNESS-INDUCED RESONANCE

UNCLASSIFIED
```
ROUGHNESS-INDUCED RESONANCE FOR MOLECULAR FLUORESCENCE NEAR A CORRUGATED METALLIC SURFACE

P. T. Leung, Young Sik Kim* and Thomas F. George
Departments of Chemistry and Physics & Astronomy
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

ABSTRACT

Based on a dynamical energy transfer theory for the molecular decay rate near a rough metallic surface, a new resonance structure is predicted which is mediated by the roughness and which is absent in the static image theory. The implication of this new resonance structure to other phenomena, such as electron energy loss spectrum and cross coupling in thin films, is pointed out.

* Also affiliated with: Department of Chemistry
University of Rochester
Rochester, New York 14627

PACS: 33.50D, 68.35.B, 82.65.P
In two previous publications,1,2 we have considered the problem of the decay rates for molecules in the vicinity of a periodically-roughened (sinusoidal grating) metallic surface in the context of both the static image theory (IT)1 and the more accurate dynamical energy transfer theory (ET).2 The same problem for the case of a randomly-roughened surface has also been treated some time earlier in the context of IT.3 The motivation of all this work comes from recent fluorescence experiments4 in which discrepancies were found when compared to the well-established theory for flat surfaces.5 In Ref. 2, we pointed out that the simpler theory (IT) can be very inaccurate for highly-conducting substrates or large molecule-surface distances (d), and we have further established a better theory (ET) for rough surfaces in a perturbative approach. In this brief report, we want to point out that, aside from giving the more accurate results for large d, this dynamical theory2 contains a novel resonance structure (in addition to the well-known surface plasmon for flat surface, i.e., $\omega_{sp} = \omega_{p}^{bulk} / \sqrt{2}$) which is induced by the presence of the surface roughness and which is absent from the cruder theory (IT).1,3 The implications to earlier electron-scattering experiments and the relation to recent fluorescence experiments on a corrugated thin film are discussed.

Let us start by recalling some previous results for a molecular dipole located at a distance d from a sinusoidal grating of amplitude ξ_{0} and period Q and oriented perpendicular to the grating characterized by a complex dielectric function $\epsilon(\omega)$, where ω refers to the emission frequency of the dipole. According to IT, the normalized decay rate (with respect to the free molecule value) for this case is obtained as1
\[
\frac{\gamma_{IT}}{\gamma_0} = 1 + \frac{3}{2k^2} \text{Im} G_{IT}
\]

where \(k \) is the emission wave number and \(G_{IT} \) is given by

\[
G_{IT}(\omega) = \frac{1}{4d^3} \frac{\epsilon-1}{\epsilon+1} + \frac{4\xi_0}{\pi} \frac{\epsilon-1}{(\epsilon+1)^2} \int_0^\infty du \int_0^\infty dv \ (\epsilon fg+h) e^{-(f+g)d}
\]

with the functions \(f, g, h \) given by

\[
f(u,v) = [(u+Q/2)^2 + v^2]^\frac{1}{4}
\]

\[
g(u,v) = [(u-Q/2)^2 + v^2]^\frac{1}{4} \]

\[
h(u,v) = u^2 + v^2 - Q^2/4
\]

On the other hand, the corresponding ratio \(\gamma_{ET}/\gamma_0 \) has been obtained in a similar form as in Eq. (1), with \(G_{ET} \) given by

\[
G_{ET}(\omega) = -k^3 \int_0^\infty du \ R \frac{u}{k_1} \frac{2\ell_1 d}{\ell_1} e^{-\frac{3\ell_1 d}{2k_1}} - ik^3 \xi_0 \frac{\epsilon-1}{k_1 - \epsilon k_2} Q^2 e^{ik_2 d} \int_0^\infty du (1-R) \frac{u^3}{k_1} e^{-\frac{3\ell_1 d}{2}}
\]

where \(R = (\ell_2 - \epsilon \ell_1)/(\ell_2 + \epsilon \ell_1) \), \(\ell_1 = -i(1-u^2)^\frac{1}{4} \), \(\ell_2 = -i(\epsilon - u^2)^\frac{1}{4} \), \(d = kd \), and \(k_1 \) and \(k_2 \) are defined as

\[
k_1 = -i(\epsilon k^2 - Q^2)^\frac{1}{4}
\]
\[(k^2 - Q^2)^i, \quad k^2 > Q^2\]

\[k_2 = \begin{cases}
(k^2 - Q^2)^i, & k^2 > Q^2 \\
i(Q^2 - k^2)^i, & k^2 < Q^2
\end{cases}\]

It is interesting to point out that in spite of the very different mathematical forms as they appear in Eqs. (2) and (4), it has been observed numerically that a comparison between the two for different ranges of \(d\) indeed shows the correct trend that one would expect to be exhibited between a dynamical and a static (nonretarded) theory.\(^2\) Here we want to point out that there is an extra resonance feature which is predicted by Eq. (4) and not by Eq. (2). This feature was overlooked in the previous paper\(^2\) and should have some relevance to certain recent experiments.

It is not difficult to see from Eq. (2) that the resonance structure implied by IT arises from the condition \(\epsilon(\omega) + 1 = 0\), which in turn leads to the well-known flat surface-plasmon resonance frequency \(\omega_{sp} = \omega_p^{bulk}/\sqrt{2}\). Hence one is led to the conclusion that the surface roughness will not shift the peak in the decay rate spectrum within IT, and this has been observed from previous calculations.\(^1,3\) However, from Eq. (4) one observes two resonance factors -- one from \(R\) and the other form

\[S = k_1 - \epsilon k_2\]

It is well known\(^5\) that the peak implied from \(R\) (which already occurs in the case of a flat surface) is essentially the same as that in IT which occurs at \(\omega = \omega_{sp}\), but the one implied from \(S\) is unique in ET and depends on the value of \(Q\). For \(k << Q\), one can easily show from Eqs. (5) and (6) that
which means that the peaks implied from \(R \) and \(S \) will overlap and be at the same position as that in the flat surface case. For the other extreme where \(k \gg Q \), \(S \) reduces to

\[S = -iQ(e+1) \]

This would imply poles very close to the previous case if we consider noble metals like silver, which have a very small value for the imaginary part of their dielectric functions. However, for \(Q \approx k \), Eq. (6) will induce another resonance peak in the decay rate spectrum, as we shall see below.

In Fig. 1, we show the decay rate spectrum for different roughness parameters \((\zeta_0, Q)\) with \(d \) fixed at 50Å for a Ag-grating. At such a close distance, the two theories \((ET, IT)\) give results very close to each other except in Figs. 1(b) and 1(c) where \(Q \approx k \); here we observe an extra peak induced by \(Q \) whose position depends on the magnitude of \(Q \) and whose magnitude depends \(\zeta_0 \). It is worth noting that this new peak grows as \(\zeta_0 \) increases and may actually overshadow the \(\omega_{sp} \) peak (at -3.6 eV for Ag) for large enough values of \(\zeta_0 \) (although we cannot show a numerical example here since such case will exceed the limit of our present first-order perturbation theory). When this happens, it is possible that one would observe in actual experiments as if the \(\omega_{sp} \) peak is "shifted" due to the presence of the surface roughness.

It is interesting to mention that in a previous analysis, Rahman and Maradudin (RM)\(^6\) applied the image potential theory established by them for rough surfaces to analyze the results reported in an experiment of electron scattering on a Mo-surface carried out some time earlier by Lecante, Ballu and
Newns (LBN), in which a shift in the peak frequency is observed in the energy-loss spectrum. According to the RM analysis, the shift in the LBN experiment cannot be explained by surface roughness as LBN have claimed. However, as in our present analysis of the fluorescence spectrum for the admolecules, such a roughness-induced (or "shifted") peak can only occur in the dynamical theory but not in IT. Hence it is possible that the original speculation by LBN may still be correct if retardation effects are taken into account in the RM analysis.

Another situation where this roughness-induced resonance may play a role is in the recent fluorescence light scattering experiment carried out by Gruhlke, Holland and Hall on a corrugated thin silver film in which the effect of surface-plasmon cross coupling is clearly observed. We believe that the roughness-induced resonance effect pointed out here is a necessary condition for the cross-coupling phenomenon to occur. It would be interesting to generalize the result in Eq. (4) to the corrugated film system and look for such cross-coupling phenomenon.

In summary, we stress that this roughness-induced resonance effect should be general and should occur in phenomena other than fluorescence and for rough surfaces other than a grating, such as one with randomly (Gaussian) distributed roughness. The reasons that the previous analyses did not yield such peak structure are due simply to the fact that either the nonretarded theory (IT) has been applied or the values of Q are too extreme to lie too far away from the emission wave numbers.

This research was supported by the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009, the Office of Naval Research and the National Science Foundation under Grant CHE-8620274. The United States Government is authorized to copy and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
References

Figure Caption

1. Decay rate spectrum for a molecule located at $d = 50\text{Å}$ above a sinusoidal Ag-grating of varying roughness parameters (ξ_0, Q). Curve (a): $\xi_0 = 1\text{Å}, Q = 1 \times 10^{-2}\text{Å}^{-1}$; curve (b): $\xi_0 = 1\text{Å}, Q = 1 \times 10^{-3}\text{Å}^{-1}$; curve (c): $\xi_0 = 10\text{Å}, Q = 1.25 \times 10^{-3}\text{Å}^{-1}$. The solid line represents the results from the dynamical theory (ET) and the dotted line the results from the image theory (IT).
\[
\log_{10}(\frac{\gamma}{\gamma_0})
\]
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 1113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Bernard Doua</th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Civil Engineering Laboratory</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defense Technical Information Center</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DTNSRDC</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. William Tolles</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superintendent</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. David Young</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Weapons Center</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scientific Advisor</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U.S. Army Research Office</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mr. John Boyle</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Naval Ocean Systems Center</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. David L. Nelson</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cookeville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murray
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. Mu-.y
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. W. Kohn
Department of Physics
Princeton University
Princeton, New Jersey 08544

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. J. M. White
Department of Chemistry
University of Maryk
College Park, Maryland 20742

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburg, PA 15260

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton SO9 5NH
UNITED KINGDOM

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. G. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. G.H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125
END DATE 9-88 D TIC