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I. Introduction

1)

Since the works of Landau and Khalatnikov on kinetic phenomena in
superfluid helium, there has been continuous interest in thermal conductivity
and viscosity for bulk liquid *He and *He at low momenta and at low tempera-
3)

2
tures, ) Recently Kirkpatrick and Dorfman obtained transport coefficients

for very low temperatures (naA®>> 1) and for moderately low temperatures

TN W

(nad? << 1) on the basis of their kinetic equatioms for a dilute superfluid,
where n, a and )\ represent the number density, the s-wave scattering length
and the thermal wave length, respectively.

In the case of thin helium films, the dissipation of superfluid flow and
thermal conductance have been investigated by many authors.a) Ambegaokar

5)

et al. have predicted that the effective thermal conductance in thin helium

PUPPPY

films has exponential dependence on temperature for T < Tc and diverges
exponentially for T — T;', where Tc is the thermodynamic Kosterlitz-Thouless
temperature. More recently the depairinge) and the depining7) vortices which
give the power law and the exponential dependence of thermal conductance have

8)

been investigated experimentally by Gasparini et al., who confirmed an
exponential dependence rather than the power law for T < Tc' However, there
is much less information about thermal conductivity and viscosity in thin
helium films at low momenta and at very low and moderately low temperatures.
What is more important is that a wrong normal dispersion relation was used

1)

in Landau and Khalatnikov's well-known results,

9)

while the correct disper-
sion is anomalous dispersion. For this reason and in view of recent
experimental development on helium films, we present in this paper new
results on the thermal conductivity and viscosity of superfluid helium films

1),9
through the theory of kinetic phenomena developed by Landau and Khalatnikov.)' )

-1-
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We evaluate thermal conductivity and viscosity within three ranges or tem=- N
peratures: 0.3k < T, 0.3 KL T<0.8Kand T > 0.8 K. In these temperature N
"
ranges, scattering depends on the nature of interactions of elementary excita- ni

h.
; tions, i.e., phonon-phonon, phonon-roton and roton-roton interactions. The s
scatterings which govern the transport processes and kinetic coefficients of -

thermal conductivity and viscosity can be determined by the characteristic ?
" o
4 time T of scattering. o
In the present paper we shall treat a thin helium film as two-dimensional (2-D) ]
b —- less than three atomic layers, namely one statistical layer of 3.6 X -- and neglect iﬁ
;

substrate effects. In the calculations we shall use the 2-D excitation dispersion ‘:

relation obtained microscopically:lo) !

“~

1 !
4 P
; €(p) = c,p[l +81p° -8,p* + ... ], (1.1) -~
o

1 L

€(p) =4 + 52 (P-p,)%, (1.2) 3

.

N

£

P

where c, is the sound velocity, and A, ¢ and P, are the roton parameters. To ?

. o

evaluate the coefficients of thermal conductivity and viscosity, we shall first :

Vi

calculate the scattering cross section for the various interactions in Sec. :-

b

I. Then we shall evaluate the characteristic times corresponding to the ;

k]
various scatterings by solving the collision integral, and then obtain ther- ::z

mal conductivity in Sec. IT and viscosity in Sec. IV. Finpally, we shall give X

¢

results and discussion in Sec. V in terms of graphs and tables. N

-

‘h

e

.2

II. Scattering cross sections and differential decay rates b

¥

In this section we consider the interactions of elementary excitations

1)

by the second quantization method. To obtain characteristic times corres-~

ponding to the three interactions, we first evaluate the scattering cross

-2-
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section or the differential decay rate, which are directly related to the QE
collision integral. The collision process of phonon-phonon interactions u:
n
— — — '*
includes three-phonon process (3PP, p, = p, + p,), four-phonon process (4PP,
ind — - - e — - — — ¢
Pr ¥ P, ¥p; +p,) and five-phonon process (5PP, p, + p, = py;+ p, + pg). a&
The differential cross section and differential decay rate for 3PP in s,
two dimensions are defined as ;;'
ol
o~
e
277 2 d_’E !
%
-~ - NS
_ _Z.T.Y_ _ - 2 - d 1d 1 ” :'J’
dw = | JW<FL D> 5 (Ep - E.) —E'_L(znh)l . (2.2) i.n
Ny
The 3PP consists of two processes: the direct process of emission of a phonon :¢;
Py by p = p, + p; and the reverse process of absorption of a phonon p; by p, AL
- - .
+P; = p. The transition amplitude between the initial state |I > and the 3%
A,“r
final state | F > is given by %y
e
¢
Y
N

3t (2nh)? - > - ~
SELIGIT > =5 2=—=— 5(p, - p, ~p){[2B=}% (p +p,)

]
Shh k

]
(25)*7 o PiPs =Y
3
1ot @ : L ' N
+§—€n:_3(? (%‘)(%p!plpﬂ’i}{n* (n, + 1)(n, +1)}i’ e
0 ° Py P, P, ®
rxg
2 (2.3) :.:;
31 (2nh) - - = c - = D
<F|J(3|1>-_-_2___ 5(pl - p _pa){(_n___Ez_}Li(pl.PJ) =
(25)%? Py Py Py oY

Vi

1 pd 3 g
s 3L S (@) (&g b)) T (n, + D,
0 Py P; Pi

[¢]
o
~
SO LA RS
X I
A At N,

I

(2.4)

-

where np is the distribution function of phonons with momentum p. Then the

total decay rate in both processes becomes

T2,

S I R

e m e SN
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wD = 35?: (utl)? { ppp,p 0, (n, + D(n  + 1)6(EF EI) (2nh)? ? .‘
p1 Pz P '.:
' (2.5) k
- 'y
! [ d )
! AN | - =P 2.6 £
Wp = e (D' oppp(aLt Dnln, 8 (Ep - Bp) TomyT (2.6) 8
pl pz P; b
(S}
where u is the Griineisen constant given by (0, /c,) (8¢ /30, ).
{
’ In 4PP the transition matrix elementsll) are given by E:
)
"
\J
<FiIH, 1J><JIHLT > o,
<FIKII> = <F X I1>+Z £ ’EJ_E : ’ ".}‘
J I J 3
(2.7) ﬁ‘
1
b where the main contribution is due to the second term, which beccmes large E‘
p
3 ~y
t as a result of vanishing denominator. This corresponds to the case where :»
Ny
8, is neglected and the scattering between phonons is collinear. Therfore ?‘
3
: we should not discard the 8§ -term in Eq. (l.1). Taking account of 5,p2, Y
» >
3 . £,
which is much smaller than unity, and small-angle scattering, we can find the f:
maximum value for < F IX!1> , 1In small-angle scattering all the phonons are S
oy
moving in the same directijon, and the conservation of momentum and energy ;:
[
flow hold. Thus the phonons moving in a given direction attain equilibrium &
with each other much faster than the phonons in other directions. The differ- {'
{ ential cross section (Eq.(2.l1)) for 4PP becomes ;
3 -1 ':
» d W
b AN 2 _etog! _.P-—, =~
do (3, P p:;’) = (_hzcz } I <FIHIT>1 8 (eve e ) Tmh)
(2.8)
y 1)
4 Under the condition p << p, we obtain
; qo = SutD’pipip' 8 {e(p)+e(p)-e(p=e(D} 45 (2.9)
87 h3p2c P (I - cos@ - 35,p,2)?
WSERCR TN CULA TN
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As for 4PP above, the direction of momenta of the colliding particles

is not changed in the SPP case. The transition matrix elements in second~

order perturbation are

A hrrhyl

-

| 5 STIHNE>< il3, 1o >< TIIGIF >

(2.10) \
I - - b ),
| i1 (E Ei)(EI EH) :‘.:
| 2
! -4
| where some terms contain the vanishing denominators under the conditions of &
8, = 0 and collinear scattering. The 5PP has the maximum probability in :\
small-angle scattering and leads to equilibrium for the phonons moving in a /;
¥
ziven direction. Rather than calculating Eq.(2.10) tediously, we make use ¥u
14
. 1 o
»f the kinetic coefficient given by Landau and Khalatnikov. ) The change of :;
rate per unit time in the phonon numbers is Si
.
N, = - ( {nynyny (ng+1) (ng+1) - (o +1)(n;+1)nyng } dw EELQELEEL Fﬂ
ph J 3 ' (2arh)s ¢ ]
(2.11) 1
l""'
o)
where dw is the differential decay rate defined by Eq.(2.2), which is pro- 3

portional to p’. Nph can be expressed in terms of the kinetic coefficient

r
oh as

Ca A o 8l

[N

. - -r u

2.12)
Nph oh (

X 2w

ph’

'

where “ph is the chemical potential of phonons. The phonon distribution -
function n has small deviation from the equilibrium distribution function n,. ‘
The distribution function o can be expanded as a function of chemical poten-

tial as follows

n-ng = omg(n, + 1) B2

........ A -._._ . g PR i Rt gty Ay
E\L LY 4’.(- f._\'.f‘f.f.f.,fnid'd:f...l{ "AJ"J" ":‘.{-. AL h¢{mm.{hfh{ ad e ot £




To simplify Eq. (2.11), we replace n;, n,, n, and n by the equilibrium

distribution ng , nyg , N, and n,, , and instead of n, we substitute Eq.

(2.13) into Eq. (2.11). Then Eq. (2.1l) becomes

1 - =
th = E;f IJJJ Ny Ny Ny (ng + 1)(ng +1) dw 9%§$£§§2L . (2.14)

Since n,, and n,, are much smaller than unity, they may be neglected without
any disturbance in Eq. (2.14), and the integration of dw is replaced by aver-

age w. Then Eq. (2.14) becomes

e

1 - d d* d*

Since w and ﬂ; are proportiomal to ~ p2 and ~ p’“, respectively, the integral

of Eq. (2.15) is proportional to p'. Averaging the momentum of phonon gives

rph = aT . (2.16)

Here a is constant, which can be determined experimentally by the attenuation

coefficient of ultrasonic waves.

Now we return to the scattering of phonons by rotons. We consider a
roton in the presence of the phonon field. We can treat this roton as a

particle in a moving liquid *He. Therefore there appears an additional term

- -

- Pev, This can be written in symmetric form
- -
- % (Pev + VoD ), (2.17)
- , 11)
where P and v are the momentum and velocity operators. The phonon field

-6~
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changes the density of the medium, and thus we may expand the roton energy

in terms of the density ¢' to second order ( o' =p - P,) as
- 3 - 1 5 182 ; 1 2,42
o= I N S LB I LA UL S G S ey ¢ SR JEL P
r K;o MY St u (B =B) 2l 21 3p? (P o)
oo ., (2.18)

where H}o is given by Eq.(l.2). Since the value of most rotons is close to
P, , we may neglect (P - P,) and replace P by P,. We may also drop the term
(A /op)p ', which is much smaller than (2.17). Then the interaction energy

between phonons and rotons can be expressed as

1l 2> -- 1, 3 10 :
V= =2 . . = — _—_P
2(Pv+vP)+2[ Tt (a;) ] ', (2.19)

We note that the terms in the second bracket of Eq. (2.19) have magnitude

2)

- . . .1
on the order of 107! to Il in 3-D liquid helium “’.
- - .
When the roton changes momentum P t- P', it absorbs a phonon with momen-
tum p and emits a phonon with momentum p'. In these processes we may consi-
— - - - - ->'
der two intermediate processes, i.e., (I) P+ p > P' =P + p - p' and (II)
- - - - - - .
P-p'>P'=P-p'+p. Since the roton momentum is much larger than that
of the phonon, we may view this interaction as similar to that between heavy

and light particles. The momentum and the energy conservation law in colli-

sion processes can be written as

1 1 -
P+ (B =B) =cp' + 5 (1P +p~p'l - P (2.20)

Under the conditions p, p' << P, and € = cp << 3 muc’, Eq. (2.20) becomes

-7-
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1 A ~ ~ Pz A A .:-
p=p' = ——— Pym*(pn - p'n")}* = e {m(n-n")} , (2.21) )

ucp,” 1

>

-~ -~ -~ :
where m, n and n' are unit vectors directed along P,, p and p', respectively. v
”

- 3
Therefore energy conservation implies p = p'. This means that the light '
particles do not change the magnitude of momentum but change its direction. o~
Taking account of p, p' << P, and P = P,, the matrix element (Eq. (2.1)) in :Q
second-order perturbation can be obtained as ;;
.o

P, A A A A A A P A A A A 2 - L

¥ =4io0P ¢ . + en' en') + =L (men)® (men' + A 2,22 W

IF " 7, {[(m*n) + (m*n")] (nen") 2o (@) (men?) , ) %

5

5 -2 - N

P . 0°A 1 [ 0P, ) 3 )

A = — - . 2.¢.3 ",

b Py c \ 357 g\ ap ¢ ) ( ) jt
P
plY

Substituting Eqs.(2.22) - (2.23) into Eq. (2.1) and performing the inte-
)
gration over p', we obtain ~
o

k n

) u

; 2.3 .‘.‘

P A A P N A A P, A A A A 2 2 L
4 = Y -+ on'! on' —Q- . on' + A de, )
do Behip: o {{(men) + (m*n")] (n°n'") + ro (men)” (men’) } :“
(2.24) 1
¢
-

_ Averaging Eq. (2.24) over all directions of roton momentum, we finally get -:

» :

] !

P 2 .3 1 P 2 '.
da = : _[IJ -~ ° — =0, 4 4 -:'
| EEE%FfET t (1 + cosd)cas ¢y + 78 [ Te ) (35 cos ¥ + 3sin ¥ -

4 -

1 ::'

h &

| + 30 cos’y¢ sin’y + % %ﬁé (3 cos*¥ + sin*y) + A’} dv , (2.25) r
"
~

h RS

: where ¥ is the angle between the incident and scattered phonons (see Fig. 1l). XX
N

b "N

i We shall now examine roton-roton scattering. Since the character of s
t

interaction between rotons is not known, we may assume the short-range E

: 3

' potential given by Landau and Khalatnikole) and take the roton interaction 3
m

to be a delta function potential "
)

8- i'
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(2.26)

v o= \73 ,S(r - r1)9

where VO is the interaction constant which can be determined experimentally

— —_—
by viscosity measurements, and r and r, are the radius vectors of rotonms.
We construct the symmetrized pairwise plane waves over incoming and outgoing

rotons as

—-— e

(Bor+?, or,)  Z(BeT, 4P, 1)

%(Pﬂr1+P{°r)k

V(B',P)) = —— /¢ re L . (2.27)
|

The differential decay rate from before to after collision is

an : dB'dp;
—

6(E + El - E' - E;) (2”11)4 ) (2.28)

where the matrix element V‘F is
A

L i’ X - — - —_ - .
v (P,P,) & (r-r, )¥(P\P/)drdr,

—

3
5]
o

(2.29)

CEEEEE) T
} e dr .

Performing integration over 5; in Eq. (2.28), we obtain

8n
dw = —+t v |? dp'
BV UOESE -E o) S

1

(2.30)
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Dividing Eq. (2.30) by the relative velocity of rotons given as

vo | 3E _ 3B (2.31)
) — — ’
! ap ap,
|
K, we can obtain the differential scattering cross section.
i As mentioned earlier in the discussion of the scattering of phonons

by rotons, most rotons have the value close to P,. Thus the change of momen-
tum after collision is very small in comparison with P,. Let us take 6 as

—_ Ed
an angle between the incident rotons with momenta P and P, before ccllision

and introduce the variable f (Fig. 2). Then the roton momenta after collision

can be expressed as

6 6
¥ ' o= + - i -
‘ P P, f_ cos 5 + fy sin 3,
‘ 9 + o (2.32)
' = - - i - .
P, P, fx cos 3 fy sin 5.

- .
Here, we have made use of P = P =P, and | fl < p,. From the conservation

of energy we have

= L-p +% (P, - B)t. (2.33)

2 . 2
e f cos + £ sin 5

N ®

To obtain the total scattering cross section, we integrate Eq. (2.30)

X together with Eqs. (2.31) and (2.32) over the momentum of the scattered h
| ""
) particles to get the total scattering cross section N

Py
.

y alv 12 o3
or L
v a = s (2.34) “,
3 'a—.E,' —"‘aE |hssin9
' 3% 9P,
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and the average collision time between rotons becomes .z
ol
Gul vy | 2 B
1 dE  DE or :
= T 9= = N T mo N (2.35) ™~
r ) P, sin 4 :
where N is number of rotons per unit area given by -
~
k. Ty = N
N = RN eA/kBT ) >
r \ 2 ;) W2 . (2.36) >
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oT. Coefficient of thermal conductivity o
\
ht
The equilibrium distribution function n, of excitation satisfies th-» %F
al
-
~
kinetic equation ﬁ:
NP
N
I:’
3 X ) K gl
a_n.+—_;-.—-’ _.—_n.o—: = J(n)’ (3.1) !_
r at or dp ap or W
pS
~
e
. : . N
with vanishing collision integral. When the equilibrium is disturbed, we Py
N
assume that the nonequilibrium distribution function n deviates slightly g:
I
from equilibrium. The small deviation can be determined by the first ;?:
N
- - N
derivatives of the velocities v Vg and the thermodynamic variables, since 3{J
function can be written as n = n, + n,, where n, << n,. Putting n into the Y
KOs
left-hand side in Eq. (3.1), it is sufficient to keep only the differentiation i(J
of n, since the derivative of n, makes higher derivatives which can be ::‘
. ®
neglected. For the collision integral on the right-hand side we only keep
)
N
the linear terms in n,, With the help of the continuity equation, entropy g
k
’
"o
1 3
v. !
@
-11- s
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(Eq. (3.1)) as

Lo 2
T dp ap

[y}

E
equation and superfluid equation of motion, we can write the kinetic equation
= = - 1 0T >
Ve(j = +i= (=0 + 3= S)E = =—= T~
) VoG mev) g Gre ) 17 v
»

where n' = - n(n + 1).

When there exists a temperature gradient in superfluid 4He, there is not

only transport of heat but also an irreversible heat flow which can be

expressed by the coefficient of thermal conduction given as

—q’ = - Kg'r. (3-3)

Comparison of Eq. (3.3) with Eq. (3.2) for thermal conductivity k gives the

kinetic equation with a temperature gradient,

n' 3T ST _0€
kBTz 7% cosﬂ[pﬁ:-t—p—] = J(n), (3.4)

where 6 is the angle between ; and §T. The phenomena associated with ther-
mal conduction in bulk liquid *He have aspects in common with thermal trans-
port properties of ordinary classical liquids. However, there are specific
features of thermal transport which are connected with the unusual elementary
excitations of liquid “He. The left-hand side of Eq. (3.4) is always zero
for a pure phonon gas, and thus the corresponding thermal conductivity vani-
shes.

The thermal conductivity x consists of two parts, i.e., the phonon Kph

and the roton Kr:

LA NSRS W A A AW R
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K =K +K (3.3)

Let us first consider the roton part. This is determined by the roton-roton
scattering process. As mentioned earlier in Sec. I, the character of the
roton-roton interaction is not well known, and we thus obtained the average
collision time tr under the assumption of the delta function potential.
Since we have only to know the temperature dependence on K_» we replace the

collision integral by the following:

J(n) — - “__:__“L . (3.6)

Br

Substitution of Eq. (3.6) in Eq. (3.4) yields

' - ae
n-n°=-q‘:TT'v>'r-[Pﬂ-e-a-§]tr. (3.7
n

Substituting Eq. (3.7) into the expression for the energy flow

T - (& 3 db 3.8
q = J _5 —-(P) (n = no) (Zﬂh) ( )

Q

and comparing this result with Eq. (3.3), we get

f e ST dp
K =t STg n' ¢ o(P.-_. - ) -——E—z- . (3.9)
r r ZREP J 8P pn aP (2nh)
With the help of n' = - n and Eq. (1.2), we finally obtain the roton part of

thermal conductivity as

-13-
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According to the scattering processes in Sec. I, the collision integral

J(n) becomes
J(@) = Jynp(n) + Jypp(®) + Jgoo(n) + T oper® e (3.11)

The 4PP do not change the total number of phonons but have a characteristic
temperature T' in a given direction, which is different from the temperature

T in the equilibrium state., The law of energy conservation vields

J J4PP(n) pdp = 0 ., (3.12)

The total number of phonons traveling in a given direction is changed by
small-angle 3PP and 5PP. Therefore the distribution function, which not only
depends on temperature T' but also the chemical potential a', can be written

as
n=exp|(@'+ pc/kBT’) - 1], (3.13)

Expanding Eq. (3.13) as a function of T' - T, we can express Eq. (3.13) in

terms of equilibrium distribution function

5n=n-no=-n°(no+1){a'——I£-T—':l}. (3.14)

kBT T

Since the left-hand side of Eq. (3.4) is involved in 8, a' and T'- T

depend naturally on 8. To solve Eq. (3.4) we should take the forms

~14=
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a' = a cost

) (T' = T)/T =¥ cosb , (3.15)

where @ and 8 are constants to be determined bv the kinetic equation. Con-

sidering the conservation of phonon numbers in a given direction and conserva-

x
[
x
., %
-

< l' 5

tion of energy, the integrations

SaN s
o

oy

rLLC Y

¢
|
J J3Pén)€pdp, f JAPP(n)Epdp, J Jspp(n)Epdp

»
5‘?(}?'

I’

vanish and Eq.(3.4) becomes

‘n’(

B2

“on! 0T ST o€ | [
| — — — - " cevmam =
I cos 3 {p < 3 ! pdp j[ J3Pp(n) + JSPP(n) + J -#n)]pdp,

Eﬁf.

(3.16) oy

P,

dT . ST de ( W

g—[p=—-~c=— Je& = epdp. 3.17
cosf = Ippn ® 3p } epdp J Jph (n)epdp ( ) :o‘
N

n'
| &
From Eqs.(2.5) - (2.6) the collision integral for the 3PP becomes N

= TCa 2 {. - ) - ——-Ed - -
J}‘)P(n) - T m (u+ 1) ) PiP:P 6“(1'19‘0 np:o)b (EF v«[) (2rh)? ? \

(3.18) Ta
where én is equal to (n - n_ ) and n_  represents the equilibrium distribu- ®
[} [}

tion functions for the phonons with momentum p. Making use of Eqs. (2.12) -

(2.13), the collision integral for the S5PP can be written as A

Ny
= 2nh’ ' .19 >

We now evaluate the collision integral in the scattering of phonons by

ad tad
rotons. When a phonon with momentum p changes to momentum p' directed at \

angle 6' after collision by a roton, the probability per unit length that a ;xf

-15-
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particle undergoes collision is Nrda, where Nr is the roton distribution
given by Eq. (2.36) and do is given by Eg. (2.25). Then the collision

integral Jph-én) can be written as
- NG j [n(p, 6, T) = n(p', ', T') ] do. (3.20)

-
Here, 6 is the angle of the incident phonon with momentum p with respect to

the x-axis. Using Egqs. (3.14) - (3.15) for the difference between distribu-

tions, we obtain

P02 P3
r 8h3plc,

c
T) N

= -+ - p
Jph-r(n) cosf ny (ng 1) (a g8

kg

2
32

P,

x[é+ (595)2+;96A+2A2].

R Pt

Substituting Eqs. (3.18) and (3.21) together with Eq. (3.19) and n' = = n, (n,

+ 1) in Eqs. (3.16) and (3.17), and performing the momentum integral, we

Ny
I
’
™
Ea®:
»

obtain

aT (. _ ST

X p C
n

218 (2) 615 (6) g 38GY e

= a - TFE LN
(LK (&) 7 @) T o

)

(3.22)

ST , 615(6) _ 1 618 (6)

) = [a - B ] .
P S SEGY TT T ST (5)

(c -

(3.23)

Here T3pp TSPP and fph_rare the characteristic times (see the Appendix),

-16=-
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which characterize each collision processes, given by o,
.l
1 615 (6) Po (gD’ 1.9 P2 P 2 s
NG I wee L lit3: (E%° * ( i% YA+ 2471, f'
ph-r N
(3.24) o
.\
1 61¢ (6) ahicta =
= , (3.25) o
ToepD 3B QAR () T Ky -
z.
and y
)
N
(ut1)? k. * \'
1 21 (2)6% (6) B ¥
D - — T. (3.26) )
3pp 41 () 8rh’pc 3
]
Solving Eqs. (3.22) and (3.23) for « and B, we obtain ~
e
8.071 19T ST *
o = 19T . _ ST
0,186 T T | Tax ‘" 5¢ v
T tr *tT n y
ph-r S5eP  3FP )
It
1aT ':E
ST '
AT €9 @21
)
5= (- 1.372 19T _ ST o
ph-r  0.186 + 1 + - 1 T dx pnC :iﬁ
ph-r ' 5ep 3PP )
‘-x
A"
12T ST o
-BT‘?(C_B—C)’ (3.28) "
.
Gl

where we introduced A and B for simplification. Substitution of Egs. (3.27)

and (3.28) in Eq. (3.14) yields

d
T . ST

PC
n

n~-n =-n(n + l)coséd (A - B —= %

“g

(3.29)

and the energy flux (Eq. (3.8)) for the phonon-roton process can be evaluated
~17-
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[ ae d
@ T [ Speinn ) cost Gy
KT AT
B __ 3Ty - 7.212B ] — . (3.30) 5
TThTC (¢ ) [3.2904 ) 3% 5
n o
.*-"_
| )
Comparison of Eq. (3.30) with Eq. (3.3) gives the coefficient of thermal f(
conduction: iy
1.803K3 T - )
DNC ) i N 7 S R 22—
pn' TRIcE o L phr 086 L1

(3.31)

We note that the coefficient of the thermal conduction in bulk liquid helium

is given by
Ak T
I 3 1 -3/2 B _ _ST
o =2 x10 g+ 1% P (1o 25 )
n
1 +0.75 1 /T
(84 57 P*/"T' PP r>0.9K
i ph+  SFP
x j
7.8 , T<0.9K (3.32)
-18-
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IV. Viscosity

In this section we investigate the first viscosity through similar
calculations to those used above for the thermal conductivity. Equation
(3.4) vanishes for the case of a pure phonon gas, and thus the corresponding

coefficient k (T) becomes zero. However, the kinetic equation

"

E? + veVn = J(n) 4.1)

does not vanish for the pure phonon gas near zero temperature. Therefore,
we should consider the contribution of the pure phonon gas to viscosity.
Let us consider the macroscopic motion of liquid helium (which does not
- -
depend explicitly on time) with velocity U and the gradient of U directed

along the x-axis. Then Eq. (4.1) becomes

24
I~y

n

xg; = J(n)- (4.2)

-
veVn =v

The equilibrium distribution function of roton in liquid helium with velocity

U can be expressed by

A (P-Po )2 E.-ﬁ
no = exp [ - - + ] ] (4. 3)
kBT ZHkBT kBT

where we used Eq. (l.2). Substituting n = n, and the roton velocity v = (p

- P,)/u in Eq. (4.2), we get

P,y 3
B (B-Fp) =2 cosf sinf = J, (n), (4.4)

#kBT

where 8 is the angle between the roton momentum P and the x-axis. The colli-
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L sion integral can be replaced by Eq. (3.6) to give '
3 ‘
t n - n, . T n, cosd sinf % (4.5)
" 1
Substituting Eq. (4.5) into the following stress temsor of 2~D liquid helium o
b ]
b i
D - .
, dp (4.6) %
Oxy = J Py Vx (n - n;) ) (Zﬂh)z ’ '
| K
) '
b vy
: and performing the integral over the momentum space, we arrive at the expres- ‘
3 N
'_ sion ¢
4
. )
ag = - EQ.Z_ T _a_l'l :
Xy t. 8 “roax 4.7) .
) « X
' Comparing Eq. (4.7) with the general expression of viscosity A
' N,
[ 4
A 9
i aU -
3 - 9U .
A ny nr ax Y (4.8)
] ;
we obtain the coefficient of viscosity for the roton part as o
‘ By (4.9) R
" = t N . . -
; nx_‘ 8u r r o
The equilibrium distribution function of the phonon gas is
;. - ﬁ -
. n, = [ exp (SE__P.) -1]7' . (4.10)
! kBT
)
b Let us assume the distribution function to deviate slightly from n,, i.e., ’
! . .
) n = n, +8n, which satisfies Eq. (4.1). Substituting Eg. (4,10) into Eq. .
! »
X =20~
I’,.._ e e e e s i S T o S SR RN AR T A T o,
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(4.2) we get

[+%)

m (np + 1) kiff % cosf sind = J(n). (4.11)

Solving Eq. (4.l1) we can obtain the phonon part of the viscosity. It is
necessary to consider J(n) in the various collision processes. Then the
collision integral J(n) in Eq. (4.11) can be replaced by Eq. (3.10). Through
the same processes that we argued in Sec. II, we obtain the following two

equations:

»

" ou ' = | + J.o(n)
j Ny (g +1) ii% %;-cos@ sinf pdp = } [J3Pp(n) 5pp

+ J' (n) lpdp, (4.12)

ph-r
(
[ _ 0 .
J ng (ng +1) ix%‘%% cosf sinf €(p)pdp = J Jph’#n) e(p)pdp (4.13)
B

We can express the distribution function by Eq. (3.14), except that now the
dependence of a' and (T' - T)/T on the angle 6 is given by
@' = a cosf sinb , (T' - T)/T =B cosf sinf . (4.14)
instead of Eq. (3.15).
In Eq. (4.12) the collision integrals J3pp(n) and Jspp(n) are given by
Eqs. (3.18) and (3.1Y) respectively. Using Egs. (3.15) - (3.20), we obtain
the collision integral

J;h (n):

<21~

X ;x'j S0 A P T T FS W S\ ?ﬁ'aﬁr‘55

e e Ll o P T T N e N A AR

.‘v

5. LA A0 0 et

S

¥

-/.
e

by “l,-fh- h"!;l,”‘;‘;‘, !,5- L

ﬁ-‘*.ﬁ .-l l’

‘% J-}"‘

s

AW N
<

o

w ARl A Pt ok 2™ &
7, ;g;?f{}' SO

AR A, >
Y ALY



for Egqs. (3.16) - (3

Eq. (4.14) contains an extra sinf term.

' = rncd s . cp
Jéhq}n) = cosd sind N Cyny (ne+ 1) (@ - = )
B
i’ 1.5 p 3 P
—2_ r (- 4+ = ( fa y? 2 9. 242 4
8hdp: (2 [2+32 (#C) +4A( uc)'*..A ]l . (4,15)

Here, we note that Eq. (4.15) is slightly different from Eq. (3.21), because

.26), we obtaina, f and 7'7' as

With the use of similar calculations

ph
8.071 l 3y U
a — =A'— § (4.16)
[ 02186 + - 1. - 1 1 0x ox
ph-r " 5PPp "3pp

g = !r—f' + 1.372 a_U.— B' ou (4.17) o
L Tehr T 0186 _ 1 L | 9x X ’ ' g
T! T T D
ph-r "SPP 3PP
d gy
an )
o
P, K T? <
- 6 (6) ° "B 1 5 (Poy* _ 3 (B 2 &
Toher - 3n () we Vel iyl +o (), ”
(4.18) .
where Eq. (4.18) is not equal to Eq. (3.24). Substitution of Egs. (4.16) - i
(6. 17) in Eq. (3.14) vyields :y
-
L’
>,

8n=-.n°(n°+1) (AI_B!_‘%_)%E. (10.19)

Combining Eq. (4.19) with Eq. (4.16) and integrating over momentum space

gives

kT ,

C 3
%y ™ = Temmr | =~} [ 3.2908" - 7.212 B' ] - (4.20)

Comparing Eq. (4.20) with Eq. (4.8), we get the phonon part of the coefficient
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of the first viscosity:

3
" - 7'212(kBT) . 2,310
oh l6mrh? C? . Ppher 07.-186 + - 1, - 1 .
ph-r SFP 3FP

(4.20)

From the theory and experiments of attenuation of ultrasonic sound waves,
we can confirm that at near-zero temperature the contributiom of 3PP to the
viscosity plays a main role, and 4PP establish only the equilibrium of energy.
Therefore, we consider the 3PP contribution separately from other contribu-
tions. The kinetic equation for 3PP in Eq. (4.11) becomes

oU . _
n, (ny + 1) ﬁi%- Ix cosfd sinfd = J3pp(n)‘ (4.22)

Since the distribution function of phonons depends on rhe chemical poten-

tial a, Eqs. (3.14) - (3.15) become

Sn=n-mn =-m(np +1)a'

a' = « cosf sinb. (4.23)

With a similar calculation for Eqs. (3.16) - (3.26), we obtain the stress

tensor

T
s =L 218(2) 1%6k(6) B .

(4.24)

From comparison of Eq. (4.24) with Eq. (4.8) we obtain the phonon part of the

coefficient nph near zero temperature as

14)
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2.h45

= =7 33
nph(T) = n;hzcz RBT (4-25)

Typp

We note that the coefficient of the first viscosity in bulk liquid helium is

given by

. &/kBT{I + 0.5 T T

3.75 x 107°T % e e */"T’ ﬂ}, T>0.9 K :

ph-r ph
! o, AkgT 3k, T - ;
(D =g 3.5 x 107" T % e (1 + 2.15 x 107 T e )y
t
\ T < 0.9 K
(4.26)

V. Results and discussion

In the previous sections we have evaluated tne scattering cross sections
and characteristic times for various interactions of the elementary excitations.
Using these results we have obtained the coefficients of thermal conduction
‘f and first viscosity. To investigate the temperature variation of the coeffici-

= ents kK (T) and n(T), we adopt the parameters which are determined from the

d 15)

specific heat data of Bretz et al. The parameters are listed in Table I.

With this choice we obtained ¢ = 84,06 m/s, which is smaller than the value

16)

157 m/s of Hipélito and Lobo, but is very close to the experimental value

17)

of (76 = 2) m/s of Wushburn et al. The parameters u, A and a in Egs. (2.9),

(2.23) and (2.16) for two dimensions are assumed to be 1.8,18) )

0.425 and
1.0 x 103 used by previous workers for the bulk case, '
The coefficient of the thermal conduction is given by Egqs. (3.10) and ’
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(3.31). We can confirm easily that Eq. (3.4) vanishes by comsidering only a

pure phonon gas because of the peculiar excitation of liquid helium. There-
fore, the thermal conduction depends on the interactions between excitationms,
and it is necessary to take into account the phonon~roton and roton-roton
interactions.

The roton part KP(T) of the thermal conductivity is proportional to the
average collision time ter When 8 = 0, t. is zero, and for small-angle scat-
terihg tr becomes very small. Since Eq. (5.10) is involved in the unknown
interaction potential constant Vor and we have only to know the magnitude of
the temperature dependence for «_, there is no problem as to whether we take

L

maximum tr or not. Taking 6 = 7/2 and the numerical parameters in Table I,

xr(T) can be expressed as

_ 0,191 x 107% | | 1
Kr(T) = _‘VO_I.T!— {f + 0,221T + 0.728 + 4,743 (¥+ 0.362)
_ s
Z6.']':].2 ) T-gae T

. (5.1)

J L+ 28,023 +
A - T
3 1 + 4632.89 T°" = T

Ve
—

LI

Figure 3 illustrates Kr as a function of temperature. The coefficient in-
. -1
creases slowly as temperature decreases and is proportional to T .
The characteristic times which determine the coefficient x h(T) are given

-A/kgT
by Eqs. (3.24) - (3.26). t~! has the temperature dependence of T?e B*,

pb-r
which is one power lower than T”’e-A/kBT in bulk liquid helium. This is due to dimen-
sionality, where T;¥p has the temperature variation of T®, which is a lower

power than that of three dimensions. The inverse of T3pp is proportional to

T*, which originates from the anomalous excitation spectrum. Figure 4 is the

temperature variation of characteristic times. TSPP

is comparable with

=25~
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K ¢
’
gyt
Il
¢
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T;h near about 0.8 K, and thus we can conclude that above 0.8 K the 5PP and 2
the scattering of phonons by rotons will mainly contribute to the thermal .::‘
-"
conduction. Since S5PP appear in the inelastic collision process in the tem-
perature range of roton-roton collisions, we should not take into account this
¢
contribution to nph(T) below 0.8 K, and should consider only the phonon-roton :_:
2
collision process. Therefore, in accordance with the regions of temperature, ::.
s
we can express Eq. (3.31) as v
3
5.
\
I m2 T
1.803kBT (c‘ ST) . [ 13.419 + 5.376 Tph-?‘/ Spp 1‘ ]
“onT = —mro pher T+ 5.3767 . [Tone . ]
L.
T > 0.8K (5.2) j:.-
)
and 4]
1.8031K0 T o
B 2 ST ]
T — - —— T /]
xph(T) Thic (c > ) pher ‘
n 1
b
4.2 :-
= 2.36 x 1074 ng JT"¥eT , T < 0.8K. (5.3) \"‘
P 2,
o,
o7
b))
. e
Since the temperature-dependent term within the parenthesis of Eq. (5.3) is )
) )
much smaller than unity for temperatures below about 0.3 K, it can be neglected. ::
\l
Then we have :'.':-
“9
L.
-7 - 5.4 r
k_p(T) = 1.093 x 10 Tt T < 0.3K. (5.4) 2
p .
In Fig. 5 the coefficient x (T) is plotted as a function of temperature "
*.
based on Eqs. (5.2) - (5.4). As temperature decreases ( < 0.8 K), Egs. (5.3) S
>
plays a dominant role and gives the exponential increase. At yet lower tempera- }
. t
H ]
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tures (below about 0.3 K), Eq. (5.4) takes part in the thermal conducti- :J
vity, and K N increases rapidly and diverges as temperature tends to zero. :*
P
’
. ~
Comparison of Eq. (5.3) with Eq. (3.32) reveals that the second term in ;,
A/kgT £
Eq. (3.32) has the same factor T"*e ' "B", This is due to the fact that
8¢
T;; and the thermodynamic functions are one power lower in temperature than ::
>
those of three dimensions, and thus their ratios have the same temperature- iﬂ
"-‘
dependent factor. ;-
For viscosity we may give similar arguements as those for thermal con- g
b
, Y.
ductivity. However, the main difference from thermal conduction is that the ﬁ
Y
o
kinetic equation (Eq. (4.1)) does not vanish for a pure phonon gas near zero i
temperature. Therefore, we have treated separately the contribution for the y?
N
pure phonon gas to viscosity (Eq. (4.25)). sz
™
. : e
Substitution of Eq. (2.35) in Eq. (4.9) and the choice of 8 =n/2 gives ’
W
the roton part of the first viscosity as N
‘\_‘
E:'
h3P 2 -\

D = 3Ty oT (5.5)
or
which is independent of temperature. Since Eq. (4.3) decreases exponentially
with temperature and the mean free path of roton increases at about same rate,
the viscosity becomes independent of temperature.
At temperatures about above 0.8 K, the main contribution is due to

SPP and the phonon-roton collision process, and thus Eq. (4.21) becomes

+ 5.376 7' /1

o1y = 1212 s (13.419 + 5.3 TonrlTsep] Y
oh l6mh?C3 "B phr | 1 +5.376 7 JTspp ;.':\
»

L)

T > 0.8K . (5.6) :

g
w0

L]

.

)
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At temperatures below 0.8 K, we consider only the phomon-roton collision :'
.
process and thus have o
t
%
2.645 3 ' [t

—_ T

Ton'D = T (8T Toar )

52

= 2,17 x 107 77 o & | (5.7) &

)

\
For temperatures below about 0.3 K, we have another temperature dependence a
given by Eq. (4.23): $
h

)
n (T) = 5.92 x 107" 7', (5.8) <

ph o
2t

A
G

Yy

Figure 6 illustrates the coefficient nph(T) of the first viscosity as a ;

;'(
function of temperature based on Eq. (5.8). At temperatures below about 0.8 R
K, ”ph increases exponentially as temperature decreases. However, as N
temperature approaches absolute zero, the roton density becomes zero, and thus ~
the contribution from the roton-phonon scattering to viscosity vanishes so &
hY:
that the main contribution comes from the 3PP. Therefore, the temperature N
oy A/kgT -1 ) . ~3

dependence is changed from T ° e to T The coefficient increases =

slowly, and near zero temperature it increases very rapidly and finally
diverges.

In conclusion, we remark that the behavior of the coefficients of the
thermal conductivity and first viscosity are very much like that of the bulk
case. At below 0.3 K, the contribution to the coefficient of first viscosity

is due to the 3PP, which is shown to have a T_l dependence.
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Appendix

Since the calculations for Eqs. (3.24) — (3.26) are very similar, we shall

derive only Eq. (3.24). The collision integral (Eq. (3.20)) can be expressed

as

Jph-r(n) = NrC J[(n' ~-m) - (n=-n) ] do.

(A.1)
Making use of Eq. (3.14), Eq. (A.l) becomes
Jphqﬂn) = NrC j n (n, + 1)8 ﬁi% (cosf' - cosf) do. (A.2)
In Fig. 1 the relation between angles is given by
cos®' - cosf = cos8{ cos ¥ - 1 + tanf sine ] (A.3)

Substituting Egs.(2.25)and (A.3) in (A.2) and performing the integration over

Y, we get
Jph-r(n) = NrC cos¥ (-ﬁ—%)no(no + 1) ﬁ%—%
x[%+%(£ﬂa) +I;f—cA + 28] . (A.4)
The collision integral may be written as
J_ (n) = - ——Do__ (A.5)

ph-r Tph (p) °
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To obtain the temperature dependence of 7 . ;T), we calculate the following
ph-

integral:

s I
= | - P9y :
£ ) Jona™ spde/| T2 < pdp (A.6)

Performing the integrations over momentum space, we have

f 2 kT
| _ 2 c ¥ B
J Jph-;n) €pdp = cos# Nr c ('ﬁ ﬁzf) 8h3ng’ G( C ) 618 (6), (A7)
o k T 3
9Ny - ;B
) aE e PdP = = 3'§ (3)(: k——c } , (A.B)

where G represents the bracket of the right-hand side in Eq. (A.4), and then

Eq. (A.6) becomes

24133
6! (6) Po kﬁT
31 (3) BRI C G. (A.9)

£ = cosf N §
r

Substitution of Eqs. (A.5) and Eq. (3.14) in Eq. (A.6) and integration over

momentum space gives Eq. (A.b6) as

£ = B cosf /TphwﬁT)' (A.10)

Comparing Eqs. (A.10) and (A.9), we obtain the characteristic time Tph-}T):
N P il T
- 618 (6) ° gt i1 2
T ! T = r | 9 P, PoA 2 ’ (A.ll)
prrlD) = 3 ghipics | 4 T 32 (;"C-} tuc TM

In the case of the first phonon viscosity, we should replace Eq. (A.4) by

Eq. (4.15). Through the same calculation we get
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Table I. Theoretical parameters

p(ATY) A i () % (A7

)

C(m/s)

2.79 x 107? 4,12 1.02

0.75 mHe

l64.4
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Fig.

Fig,

Fig.

Fig,

Fig.

Fig.
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Figure captions

Relation between incident and scattered phonons in two-dimensions,

Roton-roton scattering process in two-dimensioans.

Temperature variation of the roton part of k (T).

Temperature variation of the various characteristic times.

The coefficient x (T) of thermal conduction as a function of

temperatures.

The coefficient n(T) of first viscosity vs temperature.
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