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Thermal conductivity and viscosity via phonon-phonon,

phonon-roton and roton-rocon scatterings in thin 4 He films 0 T
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The coefficients of the thermal conductivity (K) and first viscosity

(77) in thin helium films are evaluated explicitly as a function of tempera-

ture via phonon-phonon, phonon-roton and roton-roton scatterings. Above

about 0.8 K, phonon-roton scatterings and five-phonon processes are the

main contributors to both coefficients. Below about 0.8 K both coefficients

increase exponentially with decreasing temperature. At temperatures

below 0.3 K, K ph has a T-5 dependence, while nph shows exponential and T
-'

dependences. In the case of i ph' the former is due to phonon-roton scat-

tering and the latter originates from three phonon processes. The coef-

ficient Kr from roton-roton scattering varies as T"', and the roton part

n 'r of the first viscosity is independent of temperature.
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I. Introduction

I)!

Since the works of Landau and Khalatnikov on kinetic phenomena1
) in

superfluid helium, there has been continuous interest in thermal conductivity

and viscosity for bulk liquid 4He and -He at low momenta and at low tempera-

tures. 2 ) Recentiy Kirkpatrick and Dorfman3 ) obtained transport coefficients

for very low temperatures (naX 2 >> 1) and for moderately low temperatures

(na X 2 << i) on the basis of their kinetic equations for a dilute superfluid,

where n, a and X represent the number density, the s-wave scattering length

and the thermal wave length, respectively.

In the case of thin helium films, the dissipation of superfluid flow and

thermal conductance have been investigated by many authors.
4 ) Ambegaokar

5)
et al. have predicted that the effective thermal conductance in thin helium

films has exponential dependence on temperature for T < T and diverges
c

exponentially for T - T , where T is the thermodynamic Kosterlitz-Thouless
c c

temperature. More recently the depairing
6 ) and the depining 7 ) vortices which

give the power law and the exponential dependence of thermal conductance have

been investigated experimentally by Gasparini et al.,8) who confirmed an

exponential dependence rather than the power law for T < T . However, therec

is much less information about thermal conductivity and viscosity in thin

helium films at low momenta and at very low and moderately low temperatures.

What is more important is that a wrong normal dispersion relation was used

in Landau and Khalatnikov's well-known results, while the correct disper-

sion is anomalous dispersion.9) For this reason and in view of recent

experimental development on helium films, we present in this paper new C.

results on the thermal conductivity and viscosity of superfluid helium films

through the theory of kinetic phenomena 
developed by Landau and Khalatnikov1

) '9 ).

-- l-- '4
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I

We evaluate thermal conductivity and viscosity within three ranges of tem-

peratures: 0.3K T, 0.3 K < T < 0.8 K and T > 0.8 K. in these temperature ,

ranges, scattering depends on the nature of interactions of elementary excita-

tions, i.e., phonon-phonon, phonon-roton and roton-roton interactions. The

scatterings which govern the transport processes and kinetic coefficients of

thermal conductivity and viscosity can be determined by the characteristic

time T of scattering.

In the present paper we shall treat a thin helium film as two-dimensional (2-D)

- less than three atomic layers, namely one statistical layer of 3.6 A -- and neglect :

substrate effects. In the calculations we shall use the 2-D excitation dispersion

relation obtained microscopically:
1 0)

E(p) C c(pI + SI P 2 - 6 2P4 + .. I,~.-

C(p) -6 +-L (P-Po 2, (1.2)

where c0 is the sound velocity, and A, p and Po are the roton parameters. To

evaluate the coefficients of thermal conductivity and viscosity, we shall first

calculate the scattering cross section for the various interactions in Sec.

U. Then we shall evaluate the characteristic times corresponding to the

various scatterings by solving the collision integral, and then obtain ther-

mal conductivity in Sec. M and viscosity in Sec. IV. Finally, we shall give

results and discussion in Sec. V in terms of graphs and tables.

II. Scattering cross sections and differential decay rates

In this section we consider the interactions of elementary excitations

by the second quantization method. To obtain characteristic times corres-

ponding to the three interactions, we first evaluate the scattering cross

-2-l



section or the differential decay rate, which are directly related to the

collision integral. The collision process of phonon-phonon interactions

includes three-phonon process (3PP, P, = P2 + PO, four-phonon process (4PP,

pt + PI ; P3 + p4 ) and five-phonon process (5PP, p1 + pI p3 + p4 + Ps).

The differential cross section and differential decay rate for 3PP in

two dimensions are defined as

dps

du = F I I I > 6(E- E) d  (2.1)
Fc (2irh) 2  ' (2_)

5(E dp 2 dp,
dw < F ( I > (EF - Ei  (21rh)l (2.2) a.

The 3PP consists of two processes: the direct process of emission of a phonon .

p3 by p, = p2 + p3 and the reverse process of absorption of a phonon p3 by p,

+ P3 = p,. The transition amplitude between the initial state II > and the

final state I F > is given by ,.,

<FY II 3 (2Irh) - p Ca( -22 (2S)3P2 P 3 - PP P 3 e.

C 2a p i) p, p )p } {n, (n + 1)(n +1)} "
3 c0z P P P po P, P2 P,

(2.3) V

< F '1 I j > = 36 2(p -p( - ."

2 (2S) 3 1 2  , P '
+° P, P2 %?

3 1 PI P P3) ( n. p p 3 ) }( n  + )n_ n

Pc P P3

(2.4)

where n is the distribution function of phonons with momentum p. Then the

total decay rate in both processes becomes

I3-
a.1



W o (u+I), ppp n_ (n +1(n 1+ 6 (EF E 2f

P p2  P3
(2.5)

W 2. (U+1)2  p p, p(n. + l)n_ n_ 5 (E - E ) Y (2.6)
R Pnp t P2 P3 F (2ff )

where u is the GrUneisen constant given by (P0 /%)(aco/aP0 ) "

In 4PP the transition matrix elements I I ) are given by N

< F 17C l 1> = < F I4 il > + - < F- EJ >< JI 41 I >
J I - E

(2.7)

where the main contribution is due to the second term, which becomes large

as a result of vanishing denominator. This corresponds to the case where

5, is neglected and the scattering between phonons is collinear. Therfore

we should not discard the 61 -term in Eq. (1.1). Taking account of 6,p,

which is much smaller than unity, and small-angle scattering, we can find the

maximum value for < F I VXI I> . In small-angle scattering all the phonons are

moving in the same direction, and the conservation of momentum and energy

flow hold. Thus the phonons moving in a given direction attain equilibrium

with each other much faster than the phonons in other directions. The differ- L

ential cross section (Eq.(2.1)) for 4PP becomes

do(p, P9 , p ) P I < F iXl I I I _ (2irh)

(2.8)

Under the condition p «< p, we obtain %

do (u+1) 2 p 6p'P 8 {E(p)+E(pl)-E()-E- (p)} dp (2.9)

8 r h3 po- (1 - cosO - 3p1 ) d.)2 I
-4-



As for 4PP above, the direction of momenta of the colliding particles

is not changed in the 5PP case. The transition matrix elements in second-

order perturbation are

S<IIl i >< i(X, III >< IIl' F > (2.10) ,

(E E 1  - E) (1

where some terms contain the vanishing denominators under the conditions of LM

= 0 and collinear scattering. The 5PP has the maximum probability in

small-angle scattering and leads to equilibrium for the phonons moving in a

given direction. Rather than calculating Eq.(2.10) tediously, we make use

if the kinetic coefficient given by Landau and Khalatnikov. The change of

rate per unit time in the phonon numbers is

ph -  j n, n2 n 3 (n4 +1)(n,+1) - (n, +)n n. dw dPddPT(2s'h)6 % :

(2.11)

where dw is the differential decay rate defined by Eq.(2.2), which is pro-

portional to Nph can be expressed in terms of the kinetic coefficient

F as i
ph ,s

S"

- (2.12)
ph ph ph ' I

where Pph is the chemical potential of phonons. The phonon distribution
ph%

function n has small deviation from the equilibrium distribution function n0 .

The distribution function n can be expanded as a function of chemical poten-

tial as follows

n - n( = n ( + 1) (2.13)
k T
B

-5-

d'- - N.
M, . ?,-.. .,...: , , * ,.. ,r.. :. ':.::,: .:". :": ; 2 :.'"'" ." A" " ' " " " . " " " " :



:I

To simplify Eq. (2.11), we replace n1, n=, n3 and n by the equilibrium
S

distribution n m , , n3 and n4, , and instead of n, we substitute Eq.

(2.13) into Eq. (2.11). Then Eq. (2.11) becomes

rph - n10 nmo (nD + I)(n9 +1) dw (2fh) 6  • (2.14)

Since n4o and nso are much smaller than unity, they may be neglected without
S

any disturbance in Eq. (2.14), and the integration of dw is replaced by aver-

age w. Then Eq. (2.14) becomes

1 Jff - dpj dP2dP3  (.5r kBT n, n. n. w 2r) 6 (2.15) 2r'.

Since w and K are proportional to - p and p , respectively, the integral
3

of Eq. (2.15) is proportional to ps. Averaging the momentum of phonon gives

p = aT7  (2.16)ph 0

Here a is constant, which can be determined experimentally by the attenuation

coefficient of ultrasonic waves.

Now we return to the scattering of phonons by rotons. We consider a

roton in the presence of the phonon field. We can treat this roton as a

particle in a moving liquid 4 He. Therefore there appears an additional term

- v. This can be written in symmetric form

(P1 + - - (2.17)
(_ + ),

where P and v are the momentum and velocity operators. The phonon field

-6-



changes the density of the medium, and thus we may expand the roton energy

in terms of the density p' to second order ( p =p - P0 ) as S

i 1 2  i,r = o  - - (P - P0 ) - ' + 2!aP2  { + P- P

+ (2.18)

where X is given by Eq.(1.2). Since the value of most rotons is close to
ro

P0 , we may neglect (P - Po ) and replace P by PO. We may also drop the term

(3f,/aP)p', which is much smaller than (2.17). Then the interaction energy

between phonons and rotons can be expressed as -

V 1 + + 1 lq.' p(2 19
V --i(P.v +v.P) + + p p, '

2 P v v P -2 -
1 ) 2 " (2.19)

A ap

We note that the terms in the second bracket of Eq. (2.19) have magnitude

12)
on the order of 10' to I in 3-D liquid helium

When the roton changes momentum P t: P', it absorbs a ohonon with momen-

tum p and emits a phonon with momentum p'. In these processes we may consi-

der two intermediate processes, i.e., (I) P + p - P = P + p - p' and (II)

P - p' -P' = - p' + p. Since the roton momentum is much larger than that

of the phonon, we may view this interaction as similar to that between heavy

and light particles. The momentum and the energy conservation law in colli-

sion processes can be written as

cp + ,, (P - P) = cp' + . (IP + p 'I - (2.20)

z up p 2 (220

Under the conditions p, p' << P0 and F- cp << 3 1c , Eq. (2.20) becomes

-7- •



p

=1 12 -. .
pp, =Pmpn p'n')}' z m(n-n') (2.21)

2jcP $LA A - -°co ~ m l n -=

where m, n and n' are unit vectors directed along p and respectively.

Therefore energy conservation implies p -5 p'. This means that the light

particles do not change the magnitude of momentum but change its direction.

Taking account of p, p' << Po and P 2- PO, the matrix element (Eq. (2.1)) in

second-order perturbation can be obtained as

= P [(m-n) + (m-n!)] (n.n') + Po (m-n) (m'T)' + A }, (2.22)
IF 2Po Mc

A - + 3 uP - - (2.23)
- O Pc - + P

Substituting Eqs.(2.22) - (2.23) into Eq. (2.1) and performing the inte-

gration over p', we obtain

do = hL2L C [(m.n) + (m.n')] (n.n') + P" (re.n)' (m.n')' + A}2 d .

(2.24)

Averaging Eq. (2.24) over all directions of roton momentum, we finally get

P2 3
z 12

do c { (i + co )ros'iP (U, (3 5 cos4  + 3sin k
8ffhJp2 c2  s + 1 7 _ pc~

+ 30 cos- sinQ + (3 cos 2 k + sin') + A'} d4 , (2.25)
4 Pc

where 1P is the angle between the incident and scattered phonons (see Fig. 1).

We shall now examine roton-roton scattering. Since the character of

interaction between rotons is not known, we may assume the short-range

13) ..potential given by Landau and Khalatnikov and take the roton interaction

to be a delta function potential

-8-
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V V 'S(r- (2.26)

where V is the interaction constant which can be determined experimentally
0 .4.

by viscosity measurements, and r and r are the radius vectors of rotons.

We construct the svmmetrized pairwise plane waves over incoming and outgoing

rotons as

S.(Pr+Pr, P .r, +P, .r)
= -- ?e + e

-. --.-.- ' .'"

"(P. r P''r) I
e + e (2.27)

The differential decay rate from before to after collision is ..- '

dw--I V I 6 (E + E - E'- E')( )' (2.28)
h AF (2rh1 )4 2.8

where the matrix element V is -
AF .

-~, a.
VA V S-  d° r-- d, r,-'"":

AF (P'+P'-P -P )'r d 22),-, ' '

2 V S e dr .(2.29)

O .. ,.

Performing integration over P' in Eq. (2.28), we obtain

I -p I

dw = - fh- V " & (E+ E, - ' + E 2') El E (2.30)

d,

-9- 0



Dividing Eq. (2.30) by the relative velocity of rotons given as P

6,

V = aE 3_E, (2.31)

!N

ap apt

we can obtain the differential scattering cross section. .

D dAs mentioned earlier in the discussion of the scattering of phonons

by rotons, most rotons have the value close to P.. Thus the change of momen-

~turn after collision is very small in comparison with P,. Let us take 6 as ,

an angle between the incident rotons with momenta P and P, eoecolso

and introduce the variable f (Fig. 2). Then the rton momenta after collisionol

'a

can be expressed as-.

P a = PO - f  Cos + f sin (2.32)

ap,,

Here, we have mad e of P P an cs s o.m the conservation

of energy we have

0 m r h u s t P

os : ! f inp - P" ) + 1 (P, - P. (2.33)

x y 2

To obtain the total scattering cross section, we integrate Eq. (2.30)

aatogether with Eqs. (2.31) and (2.32) over the momentum of the scattered

particles to get the total scattering cross section

4,UI V 12

a E 3Ez_,sn or ___(2.34)%

P' P + f cs- I f

P' Pf.o.0. s-- (.2

.. 0apt 2,-2

_10-~

-",-:, -, .'-'-. .''''- . "'To - ' oban-h total scaterin cross - section"-..,-.- we- integrate Eq." (2.30
. .' ,_.together with',Eqs. (2, , .31) and, (232 ove th moenu of the scattered:.
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.4,.

and the average collision time between rotons becomes

I ~ E4M V I2
E IN 

(2.35)
tr p r h3 sin9 r

where N is number of rotons per unit area given byr

N~ M f k T ] P - /kBT"
N =  k2-' }h 2 e B (2.36)

r 2ir 2

III. Coefficient of thermal conductivity

The equilibrium distribution function n, of excitation satisfies thi

kinetic equation ,%

an an a an a , =J(n), (3.1) •

at a r a ap 3r

with vanishing collision integral. When the equilibrium is disturbed, we

assume that the nonequilibrium distribution function n deviates slightly .

from equilibrium. The small deviation can be determined by the first

derivatives of the velocitiesVn, vs and the thermodynamic variables, since

function can be written as n = no + n, , where n, « n< . Putting n into the

left-hand side in Eq. (3.1), it is sufficient to keep only the differentiation

of n since the derivative of n makes higher derivatives which can be .'

neglected. For the collision integral on the right-hand side we only keep 0

the linear terms in n,. With the help of the continuity equation, entropy

-4i-
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equation and superfluid equation of motion, we can write the kinetic equation

(Eq. (3.1)) as

BT Q ( p- n- S) ) .(j -p ) + L -aT"v

V ) - - 7(p.v) J , (3.2)

n ap ap

where n' - n(n + 1).

When there exists a temperature gradient in superfluid 4 He, there is not

only transport of heat but also an irreversible heat flow which can be

expressed by the coefficient of thermal conduction given as

q K 7 .•(3.3)

Comparison of Eq. (3.3) with Eq. (3.2) for thermal conductivity K gives the

kinetic equation with a temperature gradient,

n' aT ST a (34
kT ax cosO [ p ap- L] J(r, (3.4)
kB n P a

where 0 is the angle between p and VT. The phenomena associated with ther-

mal conduction in bulk liquid 4 He have aspects in common with thermal trans-

port properties of ordinary classical liquids. However, there are specific

features of thermal transport which are connected with the unusual elementary

excitations of liquid 4 He. The left-hand side of Eq. (3.4) is always zero

for a pure phonon gas, and thus the corresponding thermal conductivity vani-

shes.

The thermal conductivity K consists of two parts, i.e., the phonon "ph

and the roton Kr

-12-
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K= K ph +K r (3.5)
I

Let us first consider the roton part. This is determined by the roton-roton

scattering process. As mentioned earlier in Sec. Z, the character of the

roton-roton interaction is not well known, and we thus obtained the average

collision time t under the assumption of the delta function potential.
r

Since we have only to know the temperature dependence on K,' we replace the

I
collision integral by the following: ,0

J(n) n - ri, (3.6)
tr I

Substitution of Eq. (3.6) in Eq. (3.4) yields

n - ST E - ] t .  (3.7)
n -n - k"T7-V T [P Pn r

Substituting Eq. (3.7) into the expression for the energy flow"N

q -- £P)( - n.) 0

P)(- -n (21rh)z (3.8)
ap

and comparing this result with Eq. (3.3), we get

K t n C .(-.ST Lc d (3.9)
r " r P ( 2 7 h ) 2  •.p n Bp

With the help of n' - n and Eq. (1.2), we finally obtain the roton part of

thermal conductivity as

-13-
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i . i , "~ .•  T W V)& 7 r- . . F .. ' , t: :.,.

p

SrA2Nr +3kBT +5 kBT kBT 3 k BT 2 !

Kr(T) = T T 4 k- - k T
2~~n A B NJ

(3.10)

According to the scattering processes in Sec. 1, the collision integral

J(n) becomes

J(n) = J 3 p(n) + J4  (n) + J3 p(n) + Jph.(n). (3.11)

The 4PP do not change the total number of phonons but have a characteristic

temperature T' in a given direction, which is different from the temperature

T in the equilibrium state. The law of energy conservation yields

f J4pp(n) pdp = 0 (3.12)

The total number of phonons traveling in a given direction is changed by

small-angle 3PP and 5PP. Therefore the distribution function, which not only

depends on temperature T' but also the chemical potential a', can be written

as

n = exp [ (a' + pc/kBT') - .(3.13)

Expanding Eq. (3.13) as a function of T' - T, we can express Eq. (3.13) in

terms of equilibrium distribution function

n n - no n0 (n o + 1) { ' T'-T (3.14)

Since the left-hand side of Eq. (3.4) is involved in 0, a' and T'- T

depend naturally on 0. To solve Eq. (3.4) we should take the forms

-14-



L

a= Y cosd , (T' -7)/T : 3 cosd , (3.15)

where a and 0 are constants to be determined bv the kinetic equation. Con-

sidering the conservation of phonon numbers in a given direction and conserva-

tion of energy, the integrations

J 3 4n)Epdp, J4 (n)Epdp j J 5 P(n)E pdp

vanish and Eq.(3.4) becomes

n" 3T ET p dp J (n) + J ,(n) + J (n)lpdp,

co t3 ax Pn ap j h
(3.16)

J- coso I p LFn J E:pdp = Jph (n)Epdp. (3.17)

From Eqs.(2.5) - (2.6) the collision integral for the 3PP becomes

3 (n) = 2i--. (u + 1)2 p" p n(n -n )-
3 (n) P,0  F I (2n-h) 2

(3.18)

where 6 n is equal to (n - n ) and n represents the equilibrium distribu- 0
p Po P0

tion functions for the phonons with momentum p. Making use of Eqs. (2.12) -

(2.13), the collision integral for the 5PP can be written as

I J5 pP(n)pdp = 2f h'k BT arph* (3.19)

We now evaluate the collision integral in the scattering of phonons by S

rotons. When a phonon with momentum p changes to momentum p' directed at

angle 0' after collision by a roton, the probability per unit length that a

- 5--



particle undergoes collision is N do, where N is the roton distributionr r

given by Eq. (2.36) and du is given by Eq. (2.25). Then the collision

integral J (n) can be written as
ph-,'

ph (n) r [n(p, 0, T) - n(p' , 0 T') ] do. (3.20)

Here, 0 is the angle of the incident phonon with momentum p with respect to

the x-axis. Using Eqs. (3.14) - (3.15) for the difference between distribu-

tions, we obtain

2 3

J (n) = cosO no (n + 1)(a - p) N P
ph-r kB r 8h3pgo.

×[ + (-QA+ 2A1 (3.21)

Substituting Eqs. (3.18) and (3.21) together with Eq. (3.19) and n' no(no

+ 1) in Eqs. (3.16) and (3.17), and performing the momentum integral, we

obtain

3T_(CT 5! (5)

T __ ST 2!'(2)6!(6) = 1 - 4(C -- ) 3![(3)4! (4) =rh r 3

Pn C T()!() ph-r 4! (4) T3P

a (3.22)

r5pP

and

1 aT ST 6!(6) 1 c-0 W(6) (3.23)f X (c n C 5!r(5) r p--r 5! (5) •
n ph-r-.5

Here 3P" 7SPT and 7 phrare the characteristic times (see the Appendix),

-16-



which characterize each collision processes, given by

PO' (k T)3  %p6!- (6)) B 1

ph-r(T) 3! (3) 8h3 p2 C4  Nr 4 32 c + Ac

(3.24)

1 6!'(6) 2ffh2C2a T(
r 5 PP(T) 3!I (3)4! (3) kB (3.25

,..

and

2!(2)(6) (u+l) B 4T4 (3.26)
3(T)43PP 4!(4) 8ifh'pc4

Solving Eqs. (3.22) and (3.23) for a and 0, we obtain

0.186 __1.+ 1 Tnx c -
ph-- 5FP r 3 PP

i1%T STC

A a (C -I (3.27)

1.372 _1 T STZph-, + 0.186 + I5 + - Pn

7 ph-t- 7' 5 3PP

1 aT (C - ST(3.28)= - - ),
Tax -n

where we introduced A and B for simplification. Substitution of Eqs. (3.27)

and (3.28) in Eq. (3.14) yields

n- = - no (n + l)cos0 (A - B PC- LT (C S (3.29)

n

and the energy flux (Eq. (3.8)) for the phonon-roton process can be evaluated

-17-
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v:'4

as

F- CIP

q 7- F (- n c os -- -- S 2 "p

q n OO(27rh)
2

4BT'C S [3.290A - 7.212B (3.30)
n 

%

Comparison of Eq. (3.30) with Eq. (3.3) gives the coefficient of thermal

conduction:

1.803k " 2.310

K. T) = 2 C -- (C +
P,-l P- ph-r 0.186 + 1

(3.31)

We note that the coefficient of the thermal conduction in bulk liquid helium

is given by

K(T) = 2 x I03 1 + T 3 1 e /k -T
T~ pC2

C!

1 + 0.75 r phr/r
84 --1- 8' T > 0.9 K

Sph-i 5FP

7.8 T < 0.9 K (3.32)

-
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IV. Viscosity

In this section we investigate the first viscosity through similar

calculations to those used above for the thermal conductivity. Equation

(3.4) vanishes for the case of a pure phonon gas, and thus the corresponding

coefficient K (T) becomes zero. However, the kinetic equation

+ v.n= J(n)at (4.1)

does not vanish for the pure phonon gas near zero temperature. Therefore, f

we should consider the contribution of the pure phonon gas to viscosity. I

Let us consider the macroscopic motion of liquid helium (which does not

depend explicitly on time) with velocity U and the gradient of U directed

along the x-axis. Then Eq. (4.1) becomes

vVn = V - x = J(n). (4.2)

The equilibrium distribution function of roton in liquid helium with velocity

U can be expressed by

(P-P0 )+ P ].n= exp[ B 2k kBT  (4.3)
B. BT

where we used Eq. (1.2). Substituting n -5 no and the roton velocity v - (P

- Po)/p in Eq. (4.2), we get

PO (P-PO) U
nO gkBT - cos0 sin6 = J, (n), (4.4)

where 0 is the angle between the roton momentum P and the x-axis. The colli-

-19-
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sion integral can be replaced by Eq. (3.6) to give

(P-P0 )P Pu
no -, t( - P PkB no, cosO sinO 22

tr k BT ax (4.5)

Substituting Eq. (4.5) into the following stress tensor of 2-D liquid helium .

Ox P v (n - nt, d (4.6)Oxy Py Vx (n n)(2rh)2 '

and performing the integral over the momentum space, we arrive at the expres-

sion

axy tr8 rx" (4.7)

Comparing Eq. (4.7) with the general expression of viscosity

a au (4.8)

xy - r8x

we obtain the coefficient of viscosity for the roton part as

= p-_ t N (4.9)
r 8M r r

The equilibrium distribution function of the phonon gas is

n0 --( exp kB U*p 1 (4.10) .
Let us assume the distribution function to deviate slightly from no, i.e.,

n -n + 8n, which satisfies Eq. (4.1). Substituting Eq. (4.10) into Eq. I
-20-



(4.2) we get

o +U cosO sin 0  = J(n) .
nk,3 (n x (4.11)

Solving Eq. (4.11) we can obtain the phonon part of the viscosity. It is

necessary to consider J(n) in the various collision processes. Then the

collision integral J(n) in Eq. (4.11) can be replaced by Eq. (3.10). Through
I

the same processes that we argued in Sec. 1, we obtain the following two

equations:

n, (n,+) cp U= cosO sinp j j 3 (n) + Jpn
kBno +) T 3x cos sinP p5p

+ J' (n) ]pdp, (4.12) t
ph-r

= J'phu (n) E(p)pdp. (4.13) i
OU'

n, (no+I) k T 3x cosO sinO £(p)pdp Jpp .1no kB T 8 x

B

We can express the distribution function by Eq. (3.14), except that now the

dependence of a' and (T' - T)/T on the angle 0 is given by "'

a' a cosO sinO , (T' - T)/T = P cosO sin6 . (4.14)

instead of Eq. (3.15). 
'

) ad J ()

In Eq. (4.12) the collision integrals J (n) and J (n) are given by 5PP

-ZU
Eqs. (3.18) and (3.19) respectively. Using Eqs. (3.15) - (3.20), we obtain %

"%,

the collision integral Jh (n): 'U
ph- 1

-21-



J'h(n)= cosd sind N C C0n0 cr+ (a

P 1 3 Pa 3 P
X P, 1- 3 ( -C + - A( . ) + 2A2 I (4.15)

Here, we note that Eq. (4.15) is slightly different from Eq. (3.21), because

Eq. (4.14) contains an extra sin0 term. With the use of similar calculations

for Eqs. (3.16) - (3.26), we obtain a, and r' as
ph

a8.071 1 U= A' a U (4.16)S 0. 186 + 1 + I x ax (.6

ph-r P 3P

r
(3 = '-i' + 1.372___ u4phr +. 186 37~ J OU B' (4.17)

L_____+hr 50.186 1 a axI-

ph-r 5PP 3PP

and

kI T

, 6! (6) PO 2B 1 5 Po +  3 22
ph-r- 3'r(3) 8h3P2C4  Nr 2 +3 A' p.C .

(4.18)

where Eq. (4.18) is not equal to Eq. (3.24). Substitution of Eqs. (4.16) -

(4. 17) in Eq. (3.14) yields

an - no(no + 1) (A' - B' ) L u (4.19)
kBT 3x

Combining Eq. (4.19) with Eq. (4.16) and integrating over momentum space

gives

C kBT )3

xy T6-h[ 3.290A' - 7.212 B' (4.20)

Comparing Eq. (4.20) with Eq. (4.8), we get the phonon part of the coefficient

-22- -.



of the first viscosity:

7.212(kiT)3  2.B 2.310 (4 2 )'
(T)= 4-(

ph 161rhZC2  ph-r 0.186 + I + (2
ph-r 5PP 3FP

14)

From the theory and experiments of attenuation of ultrasonic sound waves,

we can confirm that at near-zero temperature the contribution of 3PP to the

viscosity plays a main role, and 4PP establish only the equilibrium of energy.

Therefore, we consider the 3PP contribution separately from other contribu-

tions. The kinetic equation for 3PP in Eq. (4.11) becomes

no (o + I) cT 9 - cosO sinO = J (n).

kBT 3x 3PP (4.22)

Since the distribution function of phonons depends on the chemical poten- .

tial a, Eqs. (3.14) - (3.15) become f

n= n - = - n1(n + 1) a '

a' = a cosO sin 8 . (4.23)

With a similar calculation for Eqs. (3.16) - (3.26), we obtain the stress

tensor

[ 2!" (2) I 6! (6) B T3 au (4.24)
°xY 3!4 1 (3) (4) 1 rp -

From comparison of Eq. (4.24) with Eq. (4.8) we obtain the phonon part of the

coefficient 17ph near zero temperature as

-23-
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7ph(T) =2.645 k 3 T3 7 (4.25)ph 72 = h2 C2 kBT 3 P

We note that the coefficient of the first viscosity in bulk liquid helium is

given by

31/kBTI + 0.75 '. /rp
eA- 1 pn-r ph T > 0.9 K

ph-r ph

A/kBT A/kBT -,

7ph(T) = 3.5 x 10 -9 T-  e (I + 2.15 x 10-' T' e B

T < 0.9 K

(4.26)

V. Results and discussion

In the previous sections we have evaluated ttie scattering cross sections

and characteristic times for various interactions of the elementary excitations.

Using these results we have obtained the coefficients of thermal conduction

and first viscosity. To investigate the temperature variation of the coeffici-

ents K (T) and n (T), we adopt the parameters which are determined from the

specific heat data of Bretz et al. 15  The parameters are listed in Table I.

With this choice we obtained c = 84.06 m/s, which is smaller than the value

157 m/s of Hip6lito and Lobo,1 6 ) but is very close to the experimental value

17)
of (76 ± 2) m/s of Wushburn et al. The parameters u, A and a in Eqs. (2.9),

Ir (2.23) and (2.16) for two dimensions are assumed to be 1.8,18) 0.4259) and

1.0 x Cp13) used by previous workers for the bulk case.

The coefficient of the thermal conduction is given by Eqs. (3.10) and

-24-
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(3.31). We can confirm easily that Eq. (3.4) vanishes by considering only a
(

pure phonon gas because of the peculiar excitation of liquid helium. There-

fore, the thermal conduction depends on the interactions between excitations,

and it is necessary to take into account the phonon-roton and roton-roton

interactions.

The roton part K (T) of the thermal conductivity is proportional to the

average collision time t . When 0 = 0, t is zero, and for small-angle scat-
r r S

tering t becomes very small. Since Eq. (5.10) is involved in the unknown
r

interaction potential constant V and we have only to know the magnitude of
or

the temperature dependence for ,t~rthere is no problem as to whether we take

maximum t or not. Taking 0 -f/2 and the numerical parameters in Table I,
r

K (T) can be expressed as
r

0.191 X 10-" 1
(T) + 0.221T + 0.728 + 4. 743 (- + 0.362)

or "

4.12

1 + 28.02(i + 4- T e
2 T (5.1)

1 + 4632.89 T "  T

Figure 3 illustrates K as a function of temperature. The coefficient in- ]
r

creases slowly as temperature decreases and is proportional to T -'.

The characteristic times which determine the coefficient h(T) are given

by Eqs. (3.24) - (3.26). r - has the temperature dependence of T
1 eA/kBT,

ph-r

which is one power lower than T9 eA/kBT in bulk liquid helium. This is due to dimen

sionality, where r- has the temperature variation of T6, which is a lower

51PP

power than that of three dimensions. The inverse of r 3pp is proportional to

T4, which originates from the anomalous excitation spectrum. Figure 4 is the NI

temperature variation of characteristic times. r 51PP is comparable with
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near about 0.8 K, and thus we can conclude that 
above 0.8 K the 5PP and %

ph

the scattering of phonons by rotons will mainly contribute to the thermal

conduction. Since 5PP appear in the inelastic collision process in the tem-

perature range of roton-roton collisions, we should not take into account this

contribution to K ph(T) below 0.8 K, and should consider only the phonon-roton

collision process. Therefore, in accordance with the regions of temperature,

we can express Eq. (3.31) as

1.803k3 T2 _ 13.419 + 5.376

(T ) = B C ST Ph t' + 5.376 T / PP

ph2 C2 C Pn ph-r7 5PP

T > 0.8K (5.2)

and

1.803kT3 T
Kph(T) B _ ST ph- r

n

ST4.3
-n2.36 x 10T (i -C, TM 2 e - T < 0.8K. (5.3) 'P

n

'P

Since the temperature-dependent term within the parenthesis of Eq. (5.3) is

much smaller than unity for temperatures below about 0.3 K, it can be neglected.

Then we have *.
',.

K (T) 1.093 x 10- T-  T< 0.3K. (5.4)ph(T '

In Fig. 5 the coefficient K (T) is plotted as a function of temperature

based on Eqs. (5.2) - (5.4). As temperature decreases ( < 0.8 K), Eqs. (5.3)

plays a dominant role and gives the exponential increase. At yet lower tempera-
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tures (below about 0.3 K), Eq. (5.4) takes part in the thermal conducti-

vity, and K increases rapidly and diverges as temperature tends to zero.

Comparison of Eq. (5.3) with Eq. (3.32) reveals that the second term in

Eq. (3.32) has the same factor T-' e /kBT . This is due to the fact that

phand the thermodynamic functions are one power lower in temperature than

those of three dimensions, and thus their ratios have the same temperature- .

dependent factor. -

For viscosity we may give similar arguements as those for thermal con-

ductivity. However, the main difference from thermal conduction is that the

kinetic equation (Eq. (4.1)) does not vanish for a pure phonon gas near zero

temperature. Therefore, we have treated separately the contribution for the

pure phonon gas to viscosity (Eq. (4.25)).

Substitution of Eq. (2.35) in Eq. (4.9) and the choice of 0 rf/2 gives

the roton part of the first viscosity 
as 

IN

r(T) 3 O 2 (5.5)

r 3 Z212 V
or

which is independent of temperature. Since Eq. (4.3) decreases exponentially

with temperature and the mean free path of roton increases at about same rate,

the viscosity becomes independent of temperature. V

At temperatures about above 0.8 K, the main contribution is due to

5PP and the phonon-roton collision process, and thus Eq. (4.21) becomes

r13.419 + 5.376 ph/rp
(T) =7.212 (kBT)3  p-rr P ,

ph i6fh B ph-r L I + 5.376 r'p

T > 0.8K . (5.6)

IL
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At temperatures below 0.8 K, we consider only the phonon-roton collision

process and thus have

h ( 2.645 (k T)3ph(T irh2" q kBT 7 phr

4.12

= 2.17 x 103D T"2 e , (5.7)

For temperatures below about 0.3 K, we have another temperature dependence

given by Eq. (4.25):

I

-( = 5.92 x 10 T-'. (5.8)

Figure 6 illustrates the coefficient n (T) of the first viscosity as a
ph

function of temperature based on Eq. (5.8). At temperatures below about 0.8
.4.

K, 1p increases exponentially as temperature decreases. However, as

temperature approaches absolute zero, the roton density becomes zero, and thus

the contribution from the roton-phonon scattering to viscosity vanishes so

that the main contribution comes from the 3PP. Therefore, the temperature
depedene ischaged romT " A/kBT -i

dependence is changed from T e to T The coefficient increases

slowly, and near zero temperature it increases very rapidly and finally

diverges.

In conclusion, we remark that the behavior of the coefficients of the

thermal conductivity and first viscosity are very much like that of the bulk

case. At below 0.3 K, the contribution to the coefficient of first viscosity

is due to the 3PP, which is shown to have a T dependence.
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Appendix

Since the calculations for Eqs. (3.24)- (3.26) are very similar, we shall

derive only Eq. (3.24). The collision integral (Eq. (3.20)) can be expressed

as

i"(n NC f (n' no) (n n) do. -

ph (n) Nr - o•(A.1)

SL

Making use of Eq. (3.14), Eq. (A.1) becomes

Jph (n) = N C n (n. + )u (cos0' - cos ) do.
ph-r r (A.2)

In Fig. 1 the relation between angles is given by

cosO' - cosO = cosO[ cos 4 - 1 + tanO sinP ] (A.3)

Substituting Eqs. (2.25)and (A.3) in (A.2) and performing the integration over

',we get

Jph. (n) N C cos0 P( C )n(nokB + ) P0 C 3

x + (P ) + Po-A + 2A=I (A.4)

4 32 AC 11c

The collision integral may be written as .1

jpn-r n-no (A.5)
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To obtain the temperature dependence ofr 7 T), we calculate the followingph-r

integral:

= j Jphr(n) t pdp/ n pdp

-p- r p p (A.6)

Performing the integrations over momentum space, we have

I CP 2 kTBa ,2 ocPo r
Jph.(n) Epdp = cos r C' k T pCj G(-- 6!(6), (A.7) 0 %r kT 8h p2C mm'

kT
0 n 3! (3)C (- , (A.8)

where G represents the bracket of the right-hand side in Eq. (A.4), and then

Eq. (A.6) becomes

6! (6) PkBT
S=cos0 N 0 6! (6 P0  G. (A.9)r (3) 8h3p2 C2

Substitution of Eqs. (A.5) and Eq. (3.14) in Eq. (A.6) and integration over

momentum space gives Eq. (A.b) as

= cos6 /rh(T). (A.10)

Comparing Eqs. (A.10) and (A.9), we obtain the characteristic time T (T):
ph-r

6)= r 1 9 p 12 PA 2  (A.11)ph-r(T )  3! (3) 8h'p 2 C4  4 + 3 + + 2A'

In the case of the first phonon viscosity, we should replace Eq. (A.4) by

Eq. (4.15). Through the same calculation we get

-31- I
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I
N p0 2 .3 T3  P 2  3AT)_l =6! (6) NrP ~ 3PTA
h' 2B 1 ( o- + 7 + 2A' (A.12)

ph-r 3! (3) 8h'p2C4 2 32 ' 4 --c

-.,
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Table I. Theoretical parameters
F

P (A-2 ) A/%(K) qO C(m/s)

2.79 x 10- ' 4.12 1.02 0.75 mie 164.4

-

A.N

I'-
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Figure captions

Fig. i. Relation between incident and scattered phonons in two-dimensions.

Fig. 2. Roton-roton scattering process in two-dimensions.

.JW

Fig. 3. Temperature variation of the roton part of K(T). V

Fig. 4. Temperature variation of the various characteristic times.

Fig. 5. The coefficient K(T) of thermal conduction as a function of -

I.

temperatures.

Ib

Fig. 6. The coefficient n(T) of first viscosity vs temperature.
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