BN VMO LR LN o MO U O U SO WO M RO YO MO T T FO R W " P T S = M P AN R TP T RPN N ¥ W S R '0 et Bat a® $2P Re® a0 fa® 0 Bat i,¥ 0y dgv. i.b...;'

o el
Volume'| =~ %

PROCEEDINGS: B4

Image Understanding Workshop (X

n"fq,'-? o

%0 0 FILE.copy  RA
l-f) ::,,\
~
o DT &

N —i=ECTE re
?: AUG O 1 1988 ;
o o
- "hD A

. o5

e  TEE A
] 5’1»\’5‘,‘,‘“

Detection

................................ Sa
R T Pt N B pspsey R :-:-:-:-:-:-:-:~E_J Line M
:.:.:.:.:.:.:.:.E:E :.:.:.:.:.:.:.:.Ebb :.:.:.:.:.:.:.:.Et :.:.:.:.:.:.:.:..b: and ] -r'\:
SRR il RSO coinennE frianhiioe continuous '
Rt = I SRR | ' cocesnH fesho i Hl processes £

! [ 1] EEEEEE | HREERE NEENEE :\r
| - - 1.1 | N A W A | | S . - | AN N . S . ::v

——>{T]
>
-

PR e o
P

Maps
of
e e ey physical discontinuities

| L7070 o gTaT e lT A
A, v fod pd e sen o
Sttt e Uniomitad
Sponsored by:

Defense Advanced Research Projects Agency
Information Science and Technology Office / S

o
Py

s e .
v .
PR SR A

l,'

»
»

R LT
ol 4 . P .Al'{ﬁ'l,lﬁl""
K WSV A

DARPA

/,_,\
o
n.

e KR

. ARy
April 1988 Naiis
b
» -
P - L i S S Y SRR L I L IR PR T WO S YV TR S SR ) c e m m et tame st atacacae tacaecas e man N
R iy ': \‘; '..I '.,‘.. )\" [N ~-4:_‘."-\,'f."_~,'.\' .‘-._. \J'._ " \._.\- . .' .._ .!_...\f.‘.\f RN '-"I-'-".."- "-.'-..'-. IR _.\_;...\-..‘ -:... '.".\":\"\"



'(’:‘,D"_v"t',!‘.‘ XS l"|'|a S eV Ga® §2% 0,9 0ot 22% 608 04 1" ¢ dat v dav ot 2" ¢ Gu¥_ ot R ) WL VOV ¥ $1% 40" o o dat da? Ba® Y 6o’ 8a% 0

.
=]

Wl )

<

-
o

! SECURTY CLASMPICATION OF THIS PAGE (Whan Dare Entered) — ‘;
! REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM )
1 ] 2 GOVY ACCUSSION NO] . RECIFIENT'S CATALOG NUMSER | “)
: /
3. TYPE OF REPOAT & PLFIO0 COVERED
& TITLE (ond Dbwrete) ANNUAL TECHNICAL |
d Procigdingst February 1987-April 1988 ,
: Image Understanding Workshop %, PERFORMING ORG. REFORT NUNBER )
i April 1988 N
) ¥ AUTHON(®) . CONTRACT OR GRANT NuMBEN® |
Lee S. Baumann (Editor) N00014-86-C0700 i
d
— — ¥
[3. PERFORMING ORGANIZATION NAME AND ADORESS 0. PROGRAM ELEMENT, PROJECT, T ASK )
% WORK UNIT SERS v
{ SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ARRA UNIT U !
: 1710 Goodridge Drive ARPA Order 5605 ,:‘
McLean, VA 22102 ~ v
e 1. CONTROLLING OFFICE NAME ANO ADORESS 12, REPORT DATE "
¢ Defense Advanced Research Projects Agency April 1988 o
; 1400 Wilson Blvd 13. NUMBER OF PAGES \
A Arlington, VA 22209 1165 (2 Vols.) )
. TE ORI TORING AGENCY NANE & ADORES(I! di(ferant from Cantroliing Office) | 15. SECURITY CLASS. (e! thie repert) N
- UNCLASSIFIED 3y
782, DECLASSIFICATI ON/ DOWNGRADING by
sCHEDULE q
)
y 16. DISTRIQUTION STATEMENT (of thie Report) "
»
B APPROVED FOR PUBLIC RELASE, DISTRIBUTION UNLIMITED :
A
N\
17. OISTRIBUTION STATEMENT (of the abetract entered in Block 20, (! di{terent from Report) 4
v L
. t
[ -
&Q
‘:‘ . 18. SUPPLEMENTARY NOTES ’
l: "
Y N
[
" |’ KEY WORDS (Continue on reverse side i necessary and !dentily by block number) ~)
: ‘Digital Image Processing; Image Understanding; Scene Analysis; .
g Edge Detection; Image Segmentation; CCDArrays; CCD Processors
i \
4 N
20. ASSTRACT (Continue en reverse eide I necessary end !dentify by dlock number) Y
| This document contains the annual progress reports and technical papers
! presented by the research activities in the Image Understanding, sponsored
) by the Information Science & Technology Office, Defense Advanced Research ™
1 Projects Agency. The papers were presented at a workshop conducted on i
- 6~-8 April 1988, in Cambridge, Massachusetts. Also included are copies of
\ invited papers presented at the workshop and additional technical papers Wy
X from the research activities whirh were not presented due to lack of time ,:
N but are germane to this research field. )
]
[}

DO [ox s 1473  tormom or 1 nov s 1s cesaLeTe

<&

UNCLASSIFIED
SECURITY CLASHFICATION OF TWIS PAGE (Wiven Dere Entered)

"J'(-rr.r.— “.‘....'\‘
X N '\.'r'\":\v‘.‘ N AN Ty

NSNSV S A iR AR R N SRty

\..

e, f-.\ -_‘.-‘. .1- _'.‘- L a"- 0 r‘-a

RAX

RSLSES L



Image Understanding Workshop

Proceedings of a Workshop
Held at
Cambridge, Massachusetts

April 6-8, 1988

\Volume |

k20 S il

e

3=
L

Sponsored by:

Defense Advanced Research Projects Agency
information Science and Technology Office

This document contains copies of reports prepared for
the DARPA Image Understanding \Workshop. Included are
results from both the basic and strategic computing
programs within DARPA/ISTO sponsored projects.

T

!
|
{

i
H .
[P S M

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

Advanced Research Projects Agency of the United States Government

The views and conclusions contaned in this document are those of the authors and should not be
interpreted as necesarnly representing the official policies. either expressed or implied. of the Defense

8& .

.
s

Ny
A

P N

’
.
-

e

, 'S - e Ny N YRy w . W (R AR 4 - e - v WMRESTARRTR TR L S IO " 3
3:‘:5.'.‘:\. ,.."!,o 1) ’..o ‘_. ‘5 Y , o l \ \-I'V N "} ‘.-".‘ e :\ Cn NI co e el (\.( i{ .".'5 3

. Ba it LA LM Pt L2

Ca o
Y.



T T R NN

"
Distributed by S
Morgan Kaufmann Publishers, Inc. :ﬁﬁﬁ

2929 Campus Drive

) |

San Mateo, California 94403 k(
[y

%7

~
ISBN 0-934613-68-0 )

Printed in the United states of America

e

« wom = e
PRI N KL

; 4y
-‘j{‘l'-\',‘,”q.

« s v
.
P .

S
- -

LIPS NP PR e I I
" \""-"%' ‘-}'»( f‘f\? ot e,




TABLE OF CONTENTS

AUTHOR INDEX .. .ceccersnossonscronnseosssnssonacnssssonancnss i

. ACKNOWLEDGMENTS .. ttsevcccscasesrsssncsossscsessvssoasascerons y
VOLUME I

SECTION I ~ PROGRAM REVIEWS_BY PRINCIPAL INVESTIGATORS

"MIT Progress in Understanding Images",
T. Poggio and the staff; Massachusetts
Institute of TeChnOlogy :ceecerscnconsssoccsaaces 1

"USC Image Understanding Research:
1987 -~ 88", R. Nevatia; University of
Southern California .....c.cceevcecncsesscnnnncess 13

"Tmage Understanding: Intelligent Systems",
~homas O. Binford; Stanford University .......... 17

! "Image Understanding Research at the
> University of Maryland (December.1986 -

i January 1988)", Azriel Rosenfeld, Larry S.
! Davis, John (Yiannis) Aloimonos:
. University of Maryland .......ceeecencssccsnseaes 29

“CMU Image Understanding Program", Takeo
Kanade; Carnegie-Mellon University ........ce00.. 40

: "Image Understanding Research at SRI
5 International", Martin A. Fischler and
N Robert C. Bolles: SRI International ............. 53

"summary of Image Understanding Research at
the University of Massachusetts', Edward M.
Riseman and Allen R. Hanson; University

of Massachusetts at Amherst ..................... 62
"Progress in Image Understanding at the

D University of Rochester", Christopher M.

- Brown; University of Rochester ............ ceiees 73

Jimage Understanding and Robotics Research
B at Columbia University", John R. Kender,
Peter K. Allen, Terrance E. Boult, Hussein
A.H. Ibrahim; Columbia University ......ccc000.n 78

s

L

A . Al

R O R Y N T T A R e AN A Ta 470 01 At (' 4t phs pia"

R \ = T TR L ML R T e g L R Sl WAl Vol VoA Wl W ) C ™, T T
J‘“ﬁ¢\‘\-\{&;\¢? . {?a-{1’5¢\ ¥ W ‘J‘w\J\M“J“ *a‘;h'”¢\ab:“:‘¢‘-\a\:':\ﬂxa\;'af;\-\ WAL

S

(‘ .f.‘ -

fﬁ’ﬁ‘.'
B
2y

L

*, @K
'I‘-’r’".;l,“ g

5

4

»

5 A
.
» Sow e

Y

o a ey

_,,.
2R ®

®
o G

[

» s »
7 7

3w
t'l)(

Y

70 [

19 2222
- “a

-

ettt el
a s P
W

£ e

doa’l

Ll g

e
faltdl



TABLE OF CONTENTS

SECTION I - PROGRAM REVIEWS BY PRINCIPAL
INVESTIGATORS (CONTINUED)

"Knowledge-Based Vision Technology

Progress at Hughes AI Center", K.E« 0lin,

M.J. Daily, J.G. Harris, K. Reiser;

Hughes Research Laboratories ........ce0ve0000... 88

"Image Understanding Research at GE",
J.L. Mundy; General Electric Corporate
Research and Development ....cscsovcseeescsesaoscss 94

b Y

"Qualitative Reasoning and Modeling for

Robust Target Tracking and Recognition from

a2 Mobile Platform", Bir Bhanu and Durga

Panda; Honeywell Systems & Research Center ...... 96

"Knowledge Based Vision for Terrestrial
Robots", Daryl T. Lawton, Tod S. Levitt,
and Patrice Gelband; Advanced Decision Systems .. 103

SECTION IT - TECHNICAI, REPORTS PRESENTED

“An Integrated Image Understanding

Benchmark: Recognition of a 2 1/2 D "Mobile""

Charles Weems, Edward Riseman, Allen

Hanson; University of Massachusetts, Amherst,

Azriel Rosenfeld; University of Maryland ........ 111

"Some Sample Algorithms for the Image

Understanding Architecture", Charles C. Weems;
University of Massachusetts, Amherst ............ 127
v

"Algorithms and Architectures for Smart
Sensing®, Peter J. Burt; David Sarnoff
Research Center ...ceoceeecsececsscasssnsossssnsses 139

"The Maryland Approach to Image

Understanding”, John (Yiannis) Aloimonos,

Larry S. Davis, Azriel Rosenfeld;

University of Maryland ......ccecveenraese ceesees 154

\1
"An Integrated Approach to Stereo Matching,
surface Reconstruction and Depth
Segmentation Using Consistent Smoothness
Assumptions®, Liang-Hua Chen and Terrence E.
Boult; Columbia University ....cveseieessecenecra. 166

LY

e iy TR T Ve e e P I IR R L Bl e AN T o MRS A T T T T T e Tt e T A e e AT
(o .-'*'.- ._! TR "'n. v ,. \-r o ~. .~~ ,\_\-\\.4 \-r A T A AT T T T T N T

-~
A - R » "

Sam e

PN TS e T
o S e T e
Ol i {

TRV S WY

[ R T
NN

KN
‘I =

BRI

Ay Ay Ay
Pl
A 1 5

- s
'?;'1'('
RN Ay

e’

()
T
-

v
« 1

RN

> i
s, Y

"(:’;0‘ v v
i
« &

v

M

TR

-
)
Y

7
x
.‘.‘II

A{:-f

it
14

[
l'.'
{ ll f

PSRy
et
AN

f&f?l
4

b 2o S 38
e ?;';'.r‘;:.:"} ®
b

B

XAAA
PARAS

B

9 = 0 g

fo by
52

Ve

e

ch

(g o 2

1

-



TABLE OF CONTENTS

SECTION II - TECHNICAL REPORTS PRESENTED (Continued)

"The MIT Vision Machine", T. Poggio,

J. Little, E. Gamble, W. Gillett, D. Geiger,
D. Weinshall, M. Vvillalba, N. Larson,

T. Cass, H. Bulthoff, M. Drumheller,

P. Oppenheimer, W. Yang, and A. Hurlbert;
Massachusetts Institute of Technology ......

MKalman Filter-based Algorithms for
Estimating Depth from Image Sequences"
Larry Matthies, Richard Szeliski, and Takeo

177

S

&-%

_l’,l
. .:.-' ("1’ s

LSt &
-

Kanade; Carnegie-Mellon University .............. 199

_."Multimodal Reconstruction and Segmentation

v

with Markov Random Fields and HCF
Optimization®™, P.B. Chou and C.M. Brown;

University of Rochester ......cceieevevvencacncens

"IU at UI: An Overview and An Example
on Shape From Texture", Narendra Ahuja

and Thomas Huang; University of Illinois ........

?"bhysically Based Modeling for Vision
and Graphics™,” Andrew Witkin, Michael Kass,
Demetri Terzapoulos, Kurt Fleischer;

Schlumberger Palo Alto ReS€ArCh .....csvsnvsesees

"Perception with Feedback", Ruzena Bajcsy:;

University of Pennsylvania ......ceeeevcecesscass

#Qualitative Motion Detection and
Tracking of Targets from a Mobile
Platform®", Bir Bhanu and Wilhelm Burger

Honeywell Systems & Research Center .............

"Qualitative Navigation II", Tod S. Levitt,
Daryl T. Lawton, David M. Chelberg,
Kerry V. Koitzsch, and John W. Dye;

Advanced Decision Systems ......cccc000esuen

Aﬂéooperative Methods for Road Tracking
in Aerial Imagery', David M. McKeown, Jr.
and Jerry L. Denlinger; Carnegie-Mellon

University t..veeietenresesccoseanoscancnnans

214

222

254

279

289

319

327

. :‘-."‘-‘
o

oy \.4"- - \.-.‘- .:.-. X
“

A @

LS
1@

2/

e

<277 @ YA

A

-
s

.‘.. ?_m.x

Y

b

exvie@ .
LA RECTSTS

L,

™,



EP P S R RTINS M R T P P N R R IR I Ty oy ‘gAY e I N W Y RV I R o >

a8, 9. Rkl - S8 S48 Rt 4 AN CaYa'a AT W TNy Wy -¥ .’.J
R

s

,oe

oY

= 2

2 l.'v
s o
n~‘,

S

r

D .:.1-
%

TABLE OF CONTENTS Ny
) ey
N
Page g

SECTION IT - TECHNICAL REPORTS PRESENTED (Continued)

| "PACE - An Environment for Intelligence g
Y Analysis"; N.R. Corby, J.L. Mundy and W
! P.A. Vrobel; General Electric Corporate Ly
. Research and Development; A.J. Hanson, ‘{%4
L.H. Quam, G.B. Smith and T.M. Strat; o
SRI International .....ceveviencsnscncssnsnsneess 342 0

@

"Affine Invariant Matching", Robert Hummel Yoy
and Haim Wolfson:; Courant Institute ............. 351 ] ¢
"Constructing Simple Stable Descriptions ﬁﬁ
A for Image Partioning", Yvan G. Leclerc: ,:“
i SRI Intermational ........icivveieiinneniaennens. 365 e
§ K
#3-D Object Recognition Using Surface el
! Descriptions", T.J. Fan, G. Medioni, o)
K and R. Nevatia; University of Southern T
‘ California .....covveeerrnnnirenensacsennecnseas, 383 Ay
i IS
Yy *Self calibration of Motion and Stereo )

' Vision for Mobile Robot Navigation*,’ o

Rodney A. Brooks, Anita M. Flynn and "

Thomas Marill; Massachusetts Institute

Of Technology sceeotevevsssncsssasarsenossasnnas, 398 Q,

N
"Autonomous Navigation in Cross-~Country tx"

Terrain®, David M. Keirsey, David W. Payton
and J. Kenneth Rosenblatt; Hughes Artificial
Intelligence Center .....eciveerievsnsensrsasssess. 411

P
£

qor

"Integration Effort in Knowledge-Based oy
Vision Techniques for the Autonomous N
Land Vehicle Program", Keith Price and W
Igor Pavlin; University of Southern LSS,
CalifOrnia cuveeeverensececenensonsnssssnanssnens 417 o
‘-):

- "Contour Correspondences in Dynamic Imagery". ey

S.L. Gazit and G. Medioni; University
of Southern California ....c.ieveecncinsencnenses 423

-

N I S NN
\ éﬁﬂﬁuﬁhdbﬂﬂﬁsﬂﬂﬁ,ﬁudzhk

N A AT T LY ATV AL R A e A A e e L
N N A A e e A A e N I TR R DS

"Spatio~temporal Analysis of an Image
Sequence with Occlusion®, Shou-Ling Peng
and Gerard Medioni; University of

Southern California .....vierevevesenncsccsansans

"Natural Representation of Motion in
Space~time", Wolfgang O. Franzen;

University of Southern California ........coeves

Gsle

vt
h e

ay o te
@
A

R A
LALAS
N L

X

L
A

rc
»_ T
[




TABLE OF CONTENTS

SECTION II ~ TECHNICAL REPORTS PRESENTED (Continued)

"Generic Models for Robot Naviqation";'
David J. Kriegman, Thomas 0. Binford,
. Thilaka Sumanaweera; Stanford University ........ 453

! "Mathematical Morphology and the

Morphological Sampling Theorem*,

Robert M. Haralick; University of

5 WaShington ...cvcuieetnnesrnsnesessssnnnosasnanns . 461

"Using Generic Geometric and Physical Models
for Representing Solids", Jean Ponce
and Glenn Healey; Stanford University ........... 488

VOLUME II

; SECTION III - OTHER TECHNICAL REPORTS

"Multiresolution Aerial Image
Interpretation", Teresa M. Silberberg:;
Hughes Artificial Intelligence Center ........... 505

LRy

"pPerceptual Grouping for the Detection

and Description of Structures in Aerial

Images", Rakesh Mohan and Ramakant Nevatia;
University of Southern California .........¢..0.. 512

.s‘.

"Dynamic Model Matching for Target
Recognition From a Mobile Platform",
i Hatem Nasr and Bir Bhanu; Honeywell Systemns

N,

and Research Center ......creeesssvsccssasesnesss 527 0

M \,‘.
4 "TRIPLE: A Multi-Strategy Machine Learning R
. Approach to Target Recognition", Bir Bhanu :3

and John C. Ming; Honeywell Systems and 0

Research Center .....ceceeectenctcesesasnccesansns 537 ®

" -

"Using Flow Field Divergence for &.

! Obstacle Avoidance in Visual Navigation" H:
Randal C. Nelson and John (Yiannis) Aloimonos; oy
University of Maryland ....ccccoveeeerssccsaassss 548 BNy

"An Operational Perception System for

Cross-Country Navigation", Michael J. Daily,

John G. Harris, and Kurt Reiser; Hughes

Artificial Intelligence Center ......ceeveveeesen. 568

'.l

j 3
¥ AT P AT A P P A P N T T A e Ca i T e ¥ Wy g ¥ - LI Iy
3' ’ﬂ'ﬂl\{“{*f‘{~{ f” Ay i' A ',5_~,~ o _\, Wi _\'~&'f$y“('fsf‘

LR IS IR I
R e P )
R A A

-, P



EPIIPUR PR TR YO ™ g% 02¢20n% 0u® Ba¥ da¥ 0a® Sa* fat daviua® Ny ¢ fab gav %, uka% Jat LTS N S Gat gan’ g A\~

&
Pt
o
o
2
W,
Zs._
Gl
®
v: )
"~
vy
TABLE OF CONTENTS ,'_:;
'.'":I'
-
Page 2=
SECTION IJII - OTHER TECHNICAL REPORTS (Continued) - f
.
"overview of the SRI Cartographic Modeling 'H:\
Environment", Andrew J. Hanson and Lynn H. Keve
Quam; SRI INternational ...eeeeeovseseencnsacenen 576 ﬁn#
Ry
"on the Computational Complexity of Linear ;}’
Navigation", John R. Kender and Avraham Leff; “.‘
Columbia University .....coccveeeonn. teesesassae. 583
/I"
"3-D Vision for Outdoor Navigation by an A
Autonomous Vehicle", Martial Hebert and Sl
Takeo Kanade; Carnegie-Mellon University ........ 593 ;ﬁf,
L
"Machine~-Independent Image Processing: Ji»
Performance of Apply on Diverse ®
Architectures", Richard S. Wallace, S
Jon A, Webb and I-Chen Wu; Carnegie-Mellon e
University and Hughes Artificial Lo
Intelligence CENter ......cececcnesnvsonaonss cee. 602 ;nfl
2"
Pl
"Parallel Architectures for Image ,:;
Processing and Vision", V.K. Prasanna- e
Kumar and Dionisios Reisis; University [
of Southern California ............cce0ievevel .. 609 Ty
;J\..
Apn ]
"Parallel Hardware for Constiraint éﬁke
Satisfaction", Michael J. Swain and e
Paul R. Cooper; University of Rochester ......... 620 335t
. aw
"Scan Line Array Processors: Work in Lt
Progress", Allan L. Fisher, Peter T. Highnam X 3
and Todd E. Rockoff; Carnegie-Mellon A
University «iiieeveecaesnsescssosnasesnosncvessanss 625 Nl
v
v*pyramid Algurithms Implementation on -:}'
the Connection Machine", Hussein A.H. Ibrahim; A,
Columbia University .....ccieeecnioacecnnrncnns .. 634 K
"Robust Parallel Computation of 2D ~?»
Model-Based Recognition', Todd Anthony Cass; RO
Massachusetts Institute of Technology ........... 640 ;x}
P
"The Concept of an Effective Viewpoint", o
J.L. Mundy, A.J. Heller and D.W. Thompson:; f:{)c
General Electric Corporation Research & Ry
Development Center .....c.ceveeveievesssnsocsonnns 651 ‘@
oy
*.:,,'l.
.

e
.5 Y

, o
[N




?.‘ .‘ ° AR "‘ ke > - | ». L ,‘ v o - ~ ¥ J- .'A N I .,.. ‘ ‘- ". '.' "’ . " ‘i W/ " - H : H - .. ’ -’-‘ J ’-- .i’-..’ .D

:5\
e
e
@
Y
4
5
S
iy
o
“n
@
A
»
4
¥
f
TABLE OF CONTENTS o
o
r \
:) i
Page .
SECTION III - OTHER TECHNICAL REPORTS (Continued) _
L 4
Core Knowledge Systems: Storage and :'t:
Retrieval of Inconsistent Information", “
Thomas M. Strat and Grahame B. Smith; 5
SRI International ....ceevveceesvscssssnssnncess. 660 ;-'-“
"IU Software Environments", Christopher C. 1
McConnell and Daryl T. Lawton; Advanced
Decision SYstems ....cieeveeccccssscoances veesee. 666 )
"Using Probabilistic Domain Knowledge to .*:
Reduce the Expected Computational Cost aw
of Matching", Azriel Rosenfeld, Avraham Py
Margalit and Rameshkumar Sitaraman; fu
University of Maryland ...ccceeeeeeessosssecaass. 678 %.r
r
"Object Recognition from a Large Ay
Database Using a Decision Tree", e
Michael Swain; University of Rochester .......... 690 any
A
"Modeling Sensors and Applying Sensor :J‘..;
Model to Automatic Generation of Object :f»h
Recognition Program", Katsushi Ikeuchi ®
and Takeo Kanade; Carnegie~Mellon University .... 697 ;\:
'N‘-
"Rapid Object Recognition From a lLarge s
Model Base Using Prediction Hierarchies" Ao
J. Brian Burns; University of Massachusetts .i
and Leslie J. Kitchen; University of o
Western AuUStralia ..vevecesrsennrseceronneeanassas 711 "
@
"Evaluation of Quantization Error X
in Computer Vision", Behrooz Kamgar-Parsi .
and Behzad Kamgar-Parsi; University of .
Maryland «...ceeneeccresostansooancncasasannanns . 720 o
'<‘,‘-
"Algebraic Reasoning in View Consistency o Y
and Parameterized Model Matching pProblems", -
David A. Cyrluk, Deepak Kapur and Joseph L. o
Mundy; General Electric Corporate Research ':.
and Development Center .......cceoveeeeennarans eee 731 -:.e_
o
"Test Results from SRI's Stereo System" o
Marsha Jo Hannah; SRI International ............. 740 ::.
"Preliminary Design of a Programmed Sk
Picture Logic", David Harwood, Raju o
Prasannappa and Larry Davis; University o
Nf Maryland .....ccceceevanccsstncsssaccesennncas 145 ;,.,-".,v
als
A
@
N
w,
ey
o
.
@
.
P
ENG
e 3 A i L o o0
‘.:_-»:_‘."-.}'.:\.':.-."-.j-',\";\."'\"' AL '-."'\.:,\"'\"\;\.\"'\ \-. -._\‘_\'\"'».."s.':s" AR -.'-."_-_"-':\ -c-." AT

n of



. < " . 9 v e . W W W V. v - - -
WL U LW w ) 20 o PASRE R W R At ATl R St R 0 R Sl A A T O R S T -t o - AL RN,

- .‘~ L)
\.l\..
NN
l'.l\'l
2% en
X
d:f“v
W,
r‘:t
A A
RO
o
o
iy
,‘.-.‘,-,:
TABLE OF CONTENTS af~;,;$.,
v'l-‘. 7,
"!‘(
Page
SECTION IIX - OTHER TECHNICAL REPORTS (Continued) oY
“An Introduction to Generalized Stereo R
Techniques", Lawrence Brill Wolff; .&j\.
Columbia University ..........cevevuevuennnn. ce.. 756 o
+.
“"Stochastic Stereo Matching Over Scale", ;ﬁs
Stephen T. Barnard; SRI International ..... creens 769 ®
IR
"Qualitative VS. Quantitative Depth and ,gﬁa
Shape from Stereo", Daphna Weinshall; w
Massachusetts Institute of Technology ........... 779 h}
20
"The Integration of Information from ¢R$_>
Stereo and Multiple Shape-From-Texture el
Cues", Mark L. Moerdler and Terrance E. ®
Boult; Columbia University ........cevvvveneeenn. 786 ey
d
*
"Structural Correspondence in Stereo B\ {
Vision", Hong Seh Lim and Thomas 0. Binford; i)
Stanford University ....... seseseserenacsnaesan .. 794 ! %
t
"Curved Surface Reconstruction Using Ao
Stereo Correspondence", Hong Seh Lim and . .
Thomas O. Binford; Stanford University .......... 809 NN
':\."'-
"Geometric Camera Calibration Using Systems 'n:&
of Linear Equations", Keith C. Gy emban; )
Martin Marietta Corporation and Charles E. o
Thorpe and Takeo Kanade; Carnegie-Mellon S,
University ..iveiivesrinneenoneeeeaeennnns eeese.. 820 ‘"-;
"Relative Orientation", Berthold K.P. Horn, FQF?E
Massachusetts Institute of Technology ........... 826 ¢x3
l;‘- -
"Image Segmentation and Reflection Analysis '(1}
Through Color", Gudrun J. Klinker, Steven A. }\_‘
Shafer and Takeo Kanade, Carnegie-Mellon RSy
University .oiierirriiiiierernoenonsesccsencncnns 838 P
"A Color Metric for Computer Vision", :iiQﬂ
Glenn Healey and Thomas 0. Binford: .:,}
Stanford University ......iciiiiinernnecneeennnns 854 Sl
R
"Combining Information in Low-Level 1$$\
vision", John (Yiannis) Alocimonos and o

Anup Basu; University of Maryland ............... 862 ".




R At i At VR a w - prg > I W L I W o D prp P .k an . o -
Seatly XX e OO NN O LY LR WO PO O $,010,8'4 UOURTUNLY 4.0 " - Ga ™ o 2* i A et L

.

N Y
N o
3 L)
! NG

.

\ "
v %
¥ -
s "o

.,

.
=3
o
TABLE OF CONTENTS X4
[ N
). i, ]
- Page Lo

. SECTION IITI - OTHER TECHNICAL REPORTS (Continued)

8 ]
"Computation of Motion in Depth L)

5§ Parameters: A First Step in Stereoscopic o
o Motion Interpretation", Poornima g

2 Balasubramanyam and M.A. Snyder; -1
¥, University of Massachusetts .....vevvvetnccaaces. 907 i

P
‘ "Is Correspondence Necessary for the ]

8 Perception of Structure From Motion?" N
% Eiki Ito and John (Yiannis) Aloimonos; iy

‘ University of Maryland ......cvveevaveacnevorees. 921 \
B!

P "Motion From a Segquence of Images", za
! Igor Pavlin: University of Massachusetts ........ 930 e
- "Recognizing Animal Motion", Nigel H. ,
- Goddard; University of Rochester and s
= Hughes Artificial Intelligence Center ............938 o
. LY,
. "Issues in Extracting Motion Parameters §‘
u and Depth From Approximate Translational oyt
%4 Motion", R. Dutta, R. Manmatha, Edward M. I
Riseman, and M.A. Snyder; University of ;
" Massachusetts at Amherst ........cccceenvncncane. 945 2
Y L
24 "A Real Time Hierarchical Model for NS
KA Optic Flow Determination Via N
¥ Spatiotemporal Frequency Channels", M
. Ajit Singh and Peter K. Allen; o~
Columbia University ..ceiveeeniensoccesccrnanenas 961 :'
K 4 "Translating Optical Flow into .'oken ’
F o Matches", Lance R. Williams and Allen R. P

2 Hanson; University of Massachusetts ............. 970 "

. ”

: "structure Recognition by Connectionist <y

y Relaxation: Formal Analysis", Paul Cooper:; Y

' University of Rochester ....ccevevevosccseanesoss 981 N
' "Extracting Generic Shapes Using Egz
W Model-Driven Optimization", Pascal Fua F‘!
* and Andrew J. Hanson; SRI International ......... 994 ﬁ‘g
R, -
9 "Texture Models and Image Measures for f:

Segmentation", Richard Vistnes; b
Stanford University ....ccieeevesecenannroanessss 1005 LN
: "Model Driven Edge Detection", Pascal Fua %:
> and Yvan G. Leclerc; SRI International .......... 1016 o
. \:_..

A \"
e )
A ]
Y :.;
:: |"f"‘
¢ o
o *}“

>
-

~

[}
»

0
L]

"\-‘\ Aol A SERTRLN NN AT
{L ‘}'1:'{':- 1.}1. L.‘{A.}'Jp.".}s."\. 'fu" *t"' ':‘ LA

-

R B R A o S o e e




PRI T ATUN VIR RN G W a0 Y T8 P PO A AP N W 0 W Wi W AL N AT IR N U ¥ . ~ W g W3RN A PO S S Yo

[

v A
€ f,
-
"T:
el
L
Y,
I~ -
A"’. !
II\_‘AH,
S
. \.. A
[ 3
| ﬁ “;
| d
| TABLE OF CONTENTS ,': e
.~ ‘
i\
SECTION IIT -~ OTHER TECHNICAL REPORTS (Continued) =
-.':'\
“"Generalizing Epipolar-Plane Image Analysis o
on the Spatiotemporal Surface", H. Harlyn N
Baker and Robert C. Bolles; SRI International ... 1022 N
_'\.".\
"Building Surfaces of Evolution: e
The Weaving Wall", H. Harlyn Baker; =
SRI International ....eeveevernnercccecscsnssssss 1031 '.
2y
"Generation of Face-Edge-Vertex Models “
Directly from tmages", C.I. Connolly and b !.",
J.R. Stenstrom; General Electric Corporate R Y
Research and Development Center ..........cc.0... 1041 J
) .h'
"Depth From Looming Structure", Lance R. P
Williams and Allen R. Hanson; =
University of Massachusetts .........coceveveu... 1047 ‘-,,;..; :
"on the Recovery of Superellipsoids" d.:::' )
Terrance E. Boult and Ari D. Gross; o
Columbia University ....ccvvcvieniinncioeaencsss 1052 :
i
"Straight Homogeneous Generalized Cylinders: ®
Differential Geometry and Uniqueness Results", N
Jean Ponce; Stanford University ................. 1064 P,
2
"Ribbons, Symmetries, and Skewed AS :}:{_
Symmetries", Jean Ponce, Stanford University .... 1074 W, ]
N
"Symbolic Pixel labeling for .MC
Curvilinear Feature Detection", John @
Canning, J. John Kim, Nathan Netanyahu, Fatg™o\
and Azriel Rosenfeld; University of St
Maryland ...c.esoeeseesssoseosscssessanesassesscss 1080 )
A0,
“Image Segmentation Using Geometric and P‘-
Physical Constraints”, Thilaka S. I
Sumanaweera, Glenn Healey, Byung-Uk Lee, W
Thomas O. Binford and Jean Ponce; _F.*
Stanford University .....cocvvvveniiniennseaiiaee 1091 S
“"Adaptive Smoothing for Feature Extraction" A:I' L
Philippe Saint-Marc and Gerard Medicni; sy
University of Southern California ............... 1100 W
LS
"Recognizing Solid Objects by Alignment" O
Daniel P. Huttenlocher and Shimon Ullman; ‘2_
Massachusetts Institute of Technology «.¢..vocu.0. 1114 A
g
ALY
R
S
)
N
N
L J

ey . . . . . T T e A P e e T RN A
AR CE . SR A S S OO L R SO

.
LN O O g

"



O R R I T IR TAT O ORI RO SO W LN LI R T W Y N R T e R Y T T Y X ™ Y AT R P ™ O UV
r X . R

AN

TABLE OF CONTENTS

!
b
)
J
)
)
)
r
l
!
)

o
Page "b
SECTION III ~ OTHER TECHNICAL REPORTS (Continued) -
gt
"Projective Invariants of Shapes", -:: ]
P Isaac Weiss; University of Maryland ............. 1125 ::}"
“An Optimal Algorithm for the Derivation of :'*-"’
{ Shape from Shadows", Michael Hatzitheodorou yYy!
| and John Kender:; Columbia University ............ 1135 abg'at:
@
"Predicting Material Classes", Glenn Healey KoY
P and Thomas O. Binford, Stanford University ...... 1140 'la:'
W
] "Texture Edge Localization", Richard Vistnes ::‘i‘
Stanford University «viceeersscsencescecaocenasas 1147 gt

"Surface Orientation from Projective

Foreshortening of Isotropic Texture L]
Autocorrelation", Lisa Gottesfeld Brown 'f‘,-
and Haim Shvaytser: Columbia University ......... 1155 p g
Y
“Labeling Polyhedral Images" it
Van=-Duc Nguyen; General Electric Corporate ‘.

Research and Development Center .....cseveeeeee.. 1160 h hy




Ahuja, N.
Allen, P.
Aloimonos, J.

Bajcsy, R.

Baker, H.H.
Balasubramanyam, P.
Barnard, S.T.

Basu, A.

Bhanu, B.

Binford, T.O.

Bolles, R.C.
Boult, T.E.
Brooks, R.A.
Brown, C.M.
Brown, L.G.
Bulthoff, H.
Burger, W.
Burns, J.B.
Burt, P.J.
Canning, J.
Cass, T.A.
Chelberg, D.M.
Chen, L.H.
Chou, P.B.
Connolly, C.I.
Cooper, P.R.
Corby, N.R.
Cyrluk, D.A.
Daily, M.J.
Davis, L.S.
Denlinger, J.L.
Drumheller, M.
butta, R.

Dye, J.W.

Fan, T.J.
Fischler, M.A.
Fisher, A.L.
Fleischer, K.
Flynn, A.M.
Franzen, W.O.
Fua, P.
Gamble, E.
Gazit, S.L.
Geiger, D.
Gillett, W.
Gelband, P.
Goddard, N.H.
Gremban, K.D.

T g " " P % T N‘\-'-'\\,{\r'-
O‘QJ.L\, ‘( R l. ‘. ” " 2 l. .t. * '-‘(

W W W TR WU O AR b

A A
AN
@
Sy
p
R “J
;-‘.; !
AUTHOR INDEX ol
o
222 :'tr
78, 961 A%
29, 154, 548, 7
862, 921 SN
279 N
1022, 1031 Sy
907 ®
769 ety
862 “:ﬁﬁ
96, 289, 527, 537 A
17, 453, 794, 809, ,?ﬂh
854, 1091, 1140 ot
53, 1022 )
78, 166, 786, 1052 .
398 @
73, 214 -;‘uf
1155 A
177 B, qa
289 ey
711 ety
139 N\
1080 LRt L
177, 640 i,:“
319 '
166 ;h;:
214 ot
It
1041 v“'u A
620, 981 AT
342 A
731 S
88, 586 ..
29, 154, 745 {5
LY.
327 %
177 LY |~ ‘
945 N
319 NN
383 ¥
53
625 ‘Q“I :
(
254 ~'m
398 s
443 ity "(
994, 1016 )
177 SN
423 L
177 .
177
103 $ﬁ§
938 ")
. .-
820 e
WO
L] ]
- -
®
"
3
r"N {} .'
’*f ]
S
1 L
®
."_-'::\n
PO
A T A B S T i e e e T



e e ),

- oo a

Gross, A.D.
Hannah, M.J.
Hanson, A.R.
Hanson, A.J.
Haralick, R.M.
Harris, J.G.
Harwood, D.
Hatzitheodorou, M.
Healey, G.
Heller, A.J.
Hebert, M.
Highnam, P.T.
Horn, B.K.P.
Huang, T.
Hummel, R.
Hurlbert, A.
Huttenlocher, D.P.
Ibrahim, H.A.H.
Ikeuchi, K.

Ito, E.
Kamgar-Parsi, B.
Kamgar-Parsi, B.
Kanade, T.

Kapur, D.
Kass, M
Keirsey, D.M.
Kender, J.R.
Kim, J.J.
Kitchen, L.J.
Klinker, G.J.
Koitzsch, K.V.
Kriegman, D.J.
Larson, N.
Lawton, D.T.
Leclerc, Y.G.
Lee, B.U.
Leff, A.
Levitt, T.S.
Lim, H.S.
Little, J.
Manmatha, R.
Margalit, A.
Marill, T.
Matthies, L.
McConnell, C.C.
McKeown, Jr., D.M.
Medioni, G.
Ming, J.C.
Moerdler, M.L.
Mohan, R.

AUTHOR INDEX (Continued)

62, 111,

342,

488, 854,

40, 199,

78,

103,

383, 423,

ii

1052

740

970, 1047
576, 994
461

88, 568
745

1135

1091, 1140

651
593

625

826

222

351

177

1114

78, 634
697

921

720

720

593, 697,
820, 838
731

254

411

583, 1135
1080

711

838

319

453

177

319, 666
365, 1016
1091

583

103, 319
794, 809
177

945

678

398

199

666

327

433, 1100

AN

‘.(

T

L]
4
L

@

+

%

A %

'y,

g

Ao

u\;‘m--\'.'\ \-\.(,'v"&
1 090,090,107 . Fe. V.

f

,,--yn’y - -f.’f”-." LIS} Ay TR LYY P W™ B
Y A% RV A% W " .'{5 & X O.'Il...t‘..'l. Y ‘- ~ '... R \ .' .'-'\n".- --. ‘-



¢ u® g tgel gt

—

".\'-
(sf o ln

gt 0 jal Pat

"

AN

o el goe a0 Gt GV dav 0,0 Wt PP TR Y (% ot dat BaF Sus pat hav @ gab gee

AUTHOR INDEX (Continued)

Mundy, J.L. 94, 342, 651, 731
Nasr, H. 527
Nelson, R.C. 548
Netanyahu, N. 1080
Nevatia, R. 13, 383, 512
Nguyen, V.D. 1160
olin, K.E. 88
Oppenheimer, P. 177
Panda, D. 96
Pavlin, I. 417, 930
Payton, D.W. 411
Peng, S.L. 433
Poggio, T. 1, 177
Ponce, J. 488, 1064, 1074, 1091
Prasanna-Kumar, V.K. 609
Prasannappa, R. 745
Price, K. 417
Quam, L.H. 342, 576
Relser, K. 88, 568
Reisis, D. 609
Riseman, E.M. 62, 111, 945
Rockoff, T.E. 625
Rosenblatt, J.K. 411
Rosenfeld, A. 29, 111, 154, 678
Rosenfeld, A. 1080
Saint-Marc, P. 1100
Shafer, S.A. 838
Shvaytser, H. 1155
Silberberg, T.M. 505
singh, A. 961
Sitaraman, R. 678
Smith, G.B. 342, 660
Snyder, M.A. 907, 945
Stenstrom, J.R. 1041
Strat, T.M. 342, 660
Sumanaweera, T.S. 453, 1091
Swain, M.J. 620, 690
Szeliski, R. 199
Terzopoulos, D. 254
Thompson, D.W. 651
Thorpe, C.E. 820
Ullman, S. 1114
villalba, M. 177
vistnes, R. 1005, 1147
Vrobel, P.A. 342
Wallace, R.S. 602
Webb, J.A. 602
Weems, C.C. 111, 127
Weinshall, D. 177, 779
Weiss, I. 1225
williams, L.R. 970, 1047

. v nn

A et

." L Y '~, {‘
£ ., A X




U O L L AT LG Y G ¥/ Sl VAt 100" $% 0 6 RS ‘gt kb ot ta* g? " -' e T 47040900 0ad Tat Sal 8ot Sat <eb egl

AN ity AV

"
.
]
]

4 AUTHOR INDEX (Continued) b

Witkin, A. 254 Qo
Wolff, L.B. 756
Wolfson H. 351
1 Wu, I.C. 602
p Yang, W. 177

S

Z WA

- e

- e g

- - - - .)
' A A P TN P PR R N T 1 T My ] I I AT % T T TR \.'\ - --;_,\\\ TS A "J‘F_“"_."}'I"-“n‘ l
NN -{' B AN SR Y v "".'f WA J s AN f',\""'.‘ WA o Yol Tt M N A

Bal g A



sy 4wty

¥

<a8,% a0 gy

Acknowledgments

This workshop was organized at the direction of Ltc. Robert
L. Simpson, Program Manager for Machine Intelligence in the
Information Science and Technology Office of the Defense
Advanced Research Projects Agency (DARFA). The main theme of
the 1988 workshop, the 18th in this DARPA sponsored series of
meetings on Image Understanding and Computer Vision, |is
"parallel Architectures and Algorithms." Sessions are planned
to cover new vision techniques in prototype vision systems for
manufacturing, navigation, cartography, and photointerpre-
tation. As usual the main objectives of the workshop are to
review the latest research results in the DARPA IU research
progam, help keep the government research community aware of
evolving technology and most importantly to exchange ideas,
needs and trends in computer vision research. Dr. Tomaso
Poggio of the Artificial 1Intelligence Laboratory at the
Massachusetts Institute of Technology coordinated the technical
program for this workshop.

As part of the agenda principal investigator’s reports and
technical papers are scheduled to be presented from MIT,
University of Southern California, Stanford University,
University of Maryland, Carnegie-Mellon University, SRI
International, University of Massachusetts, Rochester
University, Columbia University, Hughes Research Laboratory,
General Electric Research and Development Center, Advanced
Decision Systems, and Honeywell Systems and Research Center.
In addition, invited papers are planned for presentation from
the University of Illinois, NYU - Courant Institute, University
of Washington, University of Pennsylvania, David Sarnoff
Research Center, and Schlumber Palo Alto Research Center.

As is the normal practice for these workshops all technical
reports submitted by participating organizations are published
in this comprehensive proceedings available for distribution to
the attendees, including both those presented at the workshop
and those for which lack of time precluded presentation.

The figure appearing on the cover was prepared by Dr. J.
Little of the MIT AI Laboratory and represents a block diagram
of the integration stage of the MIT Vision Machine. For
details see "The Vision Machine", authored by Dr. T. Poggio,
et. al., in these proceedings. The cover layout was prepared
by Mr. Tom Dickerson of the Science Applications International
Corporation (SAIC) graphic arts staff. Appreciation is also
extended to Ms. Bethany Moss of SAIC for her work in compiling
the papers into this proceedings and handling the mailings
associated with the 1988 I. U. Workshop.

0 A IR Ca Ay
e e P

5

L% R X

5 e
L 4 . -

(o

SN
A

o o <,

Sl

pnoo ol Tt

-

oS

e k

2@

e

)

“J‘I‘{:
e e

.,.
e

l..gif??ﬁf

A
22
l. ,_‘

> / ‘l{é: -

[be foe ]




oS

Nl B W R N,

-

>,

SECTION 1

L, K
A A

PROGRAM REVIEWS BY

PRINCIPAL INVESTIGATORS

¥ LSS T

> r s 8
Aot

S 2

B8 N T b Py SIS TT T BTN AL
:}. < (‘ A ' o Wha ¥ A% W,




Y e (a® Vi ath u T e e N A R AR Y T

Al

&

5a 4P B

" v -

RN
A8 N .i

.
O Wi

MIT PROGRESS
IN UNDERSTANDING IMAGES

T. Poggio and the staff

The Artificial Intelligence Laboratory
Massachusetts Institute of Technology

ABSTRACT

Our work in the puot year has concentrated on three
main projects, each one representing a complementary
aspect of a complete vision system. The first project
- a parallel Vision Machine - has the goal of develop-
ing a system for integrating early vision modules and
computing a robust description of the discontinuities of
the surfaces and of their physical properties. Additional
goals of the project are the refinement of early vision al-
gorithms and their implementation on a massively par-
allel architecture such as the Connection Machine Sys-
tem. The second project concerns visual recognition: we
have developed several schemes for model based recogni-
tion and implemented them. Finally, we have continued
our work in autonomous navigation. Around these main
themes, additional work, at the theoretical and imple-
mentation level, has been done in motion analysis, nav-
igation, photogrammetry, visual routines and learning.

1. Introduction

This report reviews the main results of our work
in Image Understanding during the past year. We will
first outline our main projects in vision and then sketch
a few of the other smaller projects. The first project
is focused on the problem of integrating different early
vision algorithms to produce a cartoon-like description
of the discontinuities in the surfaces and their physi-
cal properties. The second major effort is in the areas
of model-based recognition. It involves the use of both
2D and 3D data and models. These two projects are
related. We plan to use the output of the integration
siage as input to the recognition algorithms. The third
project we will describe has a different ultimate goal:
autonomous navigation. Finally, we will discuss some
of the other studies that are somewhat less directly re-
iated to the three main projects.
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2. The Vision Machine and Parallel Inte-
gration

The Vision Machine is a computer system that at-
tempts to integrate several visual cues to achieve high
performance in unstructured environments for the tasks
of recognition and navigation. It is also a test-bed for
our progress in the theory of early vision algorithms,
their parallel implementation, and their integration.
The Vision Machine consists of a movable two-camera
Eye-Head system - the input device — and a 16K Con-
nection Machine — our main computational engine. We
have developed and implemented several parallel early
vision algorithms computing edge detection, stereo, mo-
tion, texture and color in close to real time. The in-
tegration stage is based on coupled Markov Random
Field models, and attempts to derive a map of the sur-
face discontinuities in the scene, with a partial labeling
of the intensity edges in terms of their physical origin.
Thus the project has several complementary goals: it
attempts to develop a theory of visual integration and
to test it in an unstructured environment; it aims to
refine and implement robust early vision algorithms in
a massively parallel architecture; and it tries to build
a full vision system. A rather detailed description of
the present state of the project and its initial promising
results is given in another paper in these Proceedings.

3. Object Recognition

In earlier reports, we have described several ap-
proaches to the problem of object recognition. Our work
has proceeded along a number of fronts.

3.1. Recognition from Matched Dimensionalities

Earlier reports described the work of Grimson and
Lozano-Pérez on the recognition of occluded objects
from noisy sensory data under the condition of matched
dimensionality. Specifically, if the objects to be recog-
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nized and localized are laminar and lie on a flat surface,
or if the objects are volumetric but lie in stable config-
urations on a flat surface, then the sensory data need
only be two-dimensional (e.g. a single image); if the ob-
jects to be recognized and localized are volumetric and
lie in arbitrary positions, then the sensory data must
be three dimensional (e.g. stereo or motion data, laser
range data). The original technique (called RAF) was
designed to recognize polyhedral objects from simple
measurements of the position and surface orientation of
small patches of surface. The technique searches for con-
sistent matchings between the faces of the object models
and the sensory measurements, using constraints on the
relative shape of pairs of model faces and pairs of mea-
surements to reduce the search.

In the past year we have considered a number of
problems in recognition associated with this approach.
First, we have completed several extensions of the sys-
tem to deal with different classes of objects. We have
extended the two dimensional system to recognize ob-
jects composed of circular or straight boundary seg-
ments. To extract such segments from edge descrip-
tions of the image, we transform the edge pixels into
an arclength-orientation space, and then use standard
split-and-merge techniques to extract the straight seg-
ments in this transformed representation. From these
segments, we can derive information about the position
and orientation of straight segments in the original edge
description, and about the center, radius and angular
extent of circular arcs in the original edge description.
Recognition uses an extended version of the constrained
search method of RAF, with simple pairwise constraints
about the relative shape of circular segments as well
as linear ones. In three dimensions, we have consid-
ered extensions to deal with simple curved surfaces, in
particular, objects that can be locally approximated by
cylinders and cones. In this case, we process three di-
mensional sensory data, such as can be obtained from
laser striping systems, to deduce rulings on the surface
of an object. From the rulings, the characteristics of the
axes of the cylinders or cones can be derived. These are
then matched, using the RAF formalism, to identify the
pose of these 3D objects.

We have also completed an extension of the sys-
tem to deal with some classes of parameterized objects.
The first set of extensions includes the recognition of
objects that can scale in size, the recognition of objects
that are composed of rigid subparts connected through
rotational degrees of freedom (e.g. a pair of scissors) and
the recognition of objects that can undergo a stretching
deformation along one axis. In each case, one can de-
rive expressions for the geometric relationship between
two edges as a function of the free parameters of the
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class of objects. For these kinds of parameterization,
the RAF system can be extended by modifying the tree
search process to pass along the range of feasible values
for the free parameters as the tree of interpretations is
explored. In an alternate approach, Gil Ettinger has
developed and tested a system for recognizing objects
that are composed of rigid subparts that can scale, ro-
tate and translate relative to one another in composing
an object. The system uses a hierarchical representa-
tion of objects, based on the Curvature Primal Sketch
of Brady and coworkers {Asada and Brady, 1984]. The
matching process between a model and processed sen-
sory data uses a variation of the constraints of the RAF
system. By considering objects as being composed of
subparts, Ettinger has developed a method that allows
for efficient and correct indexing into an automatically
generated model library, so that his system can deal
with a variety of objects at one time. In addition, the
use of scale and object hierarchies allows the system to
deal easily with objects that scale in size.

In a different vein, we have considered some theo-
retical implications of the constrained search approach
to recognition. Using a combinatorial analysis, we have
established some bounds on the expected performance
of an RAF style of system, both in terms of the num-
ber of interpretations, and in terms of the amount of
search required. We have shown that in the case of data
known to come from a single object, the expected num-
ber of interpretations (barring symmetries of the object)
asymptotically approaches 1 as the number of sensory
data points is increased, where the convergence occurs
for as few as three data points. We have also shown that
in this case, the expected amount of search involves ex-
plicitly considering ms nodes of the tree, where m is
the number of faces in the object model and s is the
number of sensory data points. When we allow for data
from multiple objects, so that some of the data points
are spurious, the results are less strong. We have shown
that the expected number of interpretations is bounded
by

2°4+ms+[1+k)°

where k is a constant that depends on the size of the
object and on the amount of error in the sensory mea-
surements, and where ¢ is the number of sensory data
points that are actually on the object of interest, out
of the s total data points. Since any subset of a fea-
sible interpretation is also a feasible interpretation, the
2¢ term represents the power set of the correct interpre-
tation, and this bound implies that in general the only
interpretation of length ¢ will be the correct one. The
amount of search generally required to find this inter-
pretation is given roughly by (a more precise but more
complicated expression actually holds)
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m2"+m (2),

which implies that an exponential amount of search is
needed, although the 2¢ term is considerably reduced
from the general case of (m+1)*®, which holds for uncon-
strained search. As part of this theoretical analysis, we
have also considered the effect of using a Hough trans-
form to presort subspaces of the search space to explore.
We liave shown that the Hough transform reduces the
search needed by reducing the parameters m and s in
the above expression. We have also shown that noise
characteristics of the Hough transform, in the presence
of noisy data and non-infinitesimal hash buckets, can
lead to a significant probability that the Hough buck-
ets with the largest scores may not correspond to the
correct interpretation, and that the expected number of
spurious pairs hashed into the correct Hough bucket is
non-trivial. This implies that one should not, in general,
rely on the Hough transform to fully solve the recog-
nition problem, but rather that one should use it as a
preprocessor, selecting out small subspaces within which
the RAF method can be applied effectively.

Much of our earlier work with the RAF recogni-
tion system dealt with robotics environments and the
recogunition of industrial parts. Recently, we have be-
gun a pilot study of applying the technique to a very
different domain, underwater localization. Specifically,
we have considered the problem of determining the loca-
tion of an autonomous underwater vehicle by matching
sensory data obtained by the vehicle against bathymet-
ric or other maps of the environment. Sensor modalities
include active methods such as sonar, and passive meth-
ods such as pressure readings and doppler data from
passing ships. We have conducted some early simulation
experiments using RAF, together with strategies for ac-
quiring sensory data to solve this localization problem,
with excellent results.

One of the difficulties witk the RAF approach to
recognition is that it does not deal with the issue of
segmentation of the data in a reasonable way. In part,
this is reflected in the theoretical analysis, in which the
amount of search increases dramatically when spurious
data is allowed. While the Hough transform can help
reduce this problem, it is model driven, and hence po-
tentially very expensive when applied to large libraries
of objects. As an alternative to this, David Jacobs has
directly addressed the issue of grouping in an image.
Jacobs has derived measures for determining the prov-
ability that a set of edge fragments in an image is likely
to have come from a single object. These measures con-
sider simple measurements such as the separation of
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groups of edges, and the relative alignment of groups
of edges. The recognition system, since it does not
directly consider the object model, may occasionally
be incorrect. However, tests of the system on a vari-
ety of images of two-dimensional and three-dimensional
scenes shows a remarkable and dramatic reduction in
the search required to recognize objects from a library,
and also is quite effective at identifying groups of edges
coming from a single object. The effect of this group-
ing mechanism is particularly apparent when applied to
libraries of objects, since the parameters computed by
the grouping scheme can be used to do effective indexing
into a library.

A separate issue for recognition algorithms con-
cerns the possibility of using paralle! architectures, such
as the Connection Machine, to obtain significant perfor-
mance improvements. Todd Cass has completed the de-
velopment and implementation of a parallel recognition
scheme for two dimensional scenes. The system uses
a careful Hough transform method, followed by a sam-
pling scheme in the parameter space to find instances
of an object and its pose. Typical performance of the
method involves the correct identsication and localiza-
tion of heavily occluded objects, in scenes in which a
large number of other parts are present, in under five
seconds, using a 16K processor configuration of the Con-
nection Machine.

3.2. Recognition Under Projection

All of the previous work has been restricted to
the domain of matched dimensionality. Another prob-
lem concerns the recognition of solid objects undergo-
ing six degrees of positional freedom from a single two-
dimensional image. In the last Proceedings, we reported
on an approach by Dan Huttenlocher and Shimon Ull-
man for addressing this problem.

Huttenlocher and Ullman have shown that a corre-
spondence between three points on a rigid solid object
and three points in a two-dimensional image is sufficient
to align the object with the image. The method as-
sumes a “weak perspective” viewing model, where true
perspective is approximated by orthographic projection
plus a scale factor. The alignment transformation speci-
fies the three-dimensional rotation, the two-dimensional
translation, and the scale facior that bring an object
model into correspondence with an image. Huttenlocher
and Ullman have proved that this transformation ex-
ists, and is unique up to a reflection, for any noncolin-
ear triple of corresponding model and image points. A
closed form solution is given for computing the align-
ment from a triple of points, two oriented points, or
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three edge fragments.

To demonstrate the use of alignment in recogni-
tion, Huttenlocher and Ullman have implemented a sys-
tem for recognizing solid objects with arbitrary three-
dimensional position and orientation from a single two-
dimensional view. The recognizer solves for potential
alignments of a model and an image using features that
define either two or three points. Every three-point fea-
ture and each pair of two-point features specify a pos-
sible alignment. Each of these potential positions and
orientations is verified by projecting the model into the
image, and counting the number of model features that
lie near similar image features. This recognition algo-
rithm has & worst case running time of O(m?3i?) for m
model features and : image features, since cvery pair
of model and image features may specify an alignment,
and there are m features to check for each alignment.
The method is discussed in more detail elsewhere in
these Proceedings.

4. A Mobile Robot

4.1. Integrating Motion and Stereo for Naviga-
tion

Rodney Brooks, Anita Flynn and Thomas Mar-
ill have been looking into the problem of building self
calibrating vision systems for autonomous vehicle nav-
igation. Field conditions for autonomous vehicles may
be very dynamic, involving rough terrain and powerful
blast events occurring intermittently. A vision system
for such a system would either have to be massive and
extremely strong structurally to avoid misalignment, or
it would have to be rapidly self calibrating. The ex-
periments Brooks et. al. have done have demonstrated
a system that is capable of self recalibration in a few
tens of frame times [Brooks, Flynn and Marill, these
Proceedings)|.

The idea is to use one self calibrating vision pro-
cess (forward motion vision) to calibrate another (stereo
vision) without resorting to any external units of mea-
surement. Both are calibrated to a velocity dependent
coordinate system which is natural to the task of obsta-
cle avoidance. The resulting vision system is continually
self calibrating, making it tolerant of normal mechan-
ical drift. But better than that, it is also tolerant of
severe and sudden misalignments. After a few seconds
it adapts to its grossly altered sensor alignments.

The algorithms require no pre-knowledge of camera
focal lengths, fine orientation, or stereo baseline sepa-
ration. With such quick calibration and adaptation the
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sensors can be mounted on cheap steerable systems. We
can trade cheap computation for deficiencies which arise
from avoiding expensive mechanical solutions to sensor
steering problems.

The foundations of these algorithms, in a world of
perfect measurement, are quite elementary. The contri-
bution of this work is to make them noise tolerant while
remaining simple computationally. Both the algorithms
and the calibration procedure are easy to implement
and have shallow computational depth, making them
(1) run at reasonable speed on moderate uni-processors,
(2) appear practical to run continuously, maintaining an
up-to-the-second calibration on a mobile robot, and (3)

appear to be good candidates for massively parallel im-
plementations.

So far the experiments performed have used im-
ages sequences collected from a mobile platform at 7.5
stereo pairs per second followed by offline analysis. The
next task is to integrate processing on board the robot.
The design goal is onboard processing at a rate of 10
stereo pairs per second. Next we will take the output
of the vision system and use it as input to the naviga-
tion algorithms previously demonstrated on our mobile
platforms [Brooks -6).

5. Topics in Early and High-Level Vision
5.1. Direct Motion Vision

Berthold Horn is continuing to study the recovery
of rigid body motion and surface shape directly from
first derivatives of image brightness (these methods ap-
pear to be of great importance in “short-range” motion,
while feature-based methods are more appropriate in
“long-range” motion).

Several special cases have been solved, and progress
has been made in suppressing problems discovered in
derivative estimation caused by under-sampling in both
image space and time. A very robust method has been
developed for the case of pure rotation, and conclusions
have been reached about which of several methods for
the case of pure translation works best (this is a method
that minimizes the integral of estimated depth squared
over the image region). Sensitivity analysis shows the
need for a wide field of view and the futility of at-
tempts to recover full three dimensional motion from
small patches. This implies, for example, that meth-
ods based on second partial derivatives of optical flow,
while formally correct, lead to ill-posed problems, and
are thus not useful in the presence of noise.

With John Harris at Hughes' Artificial Intelligence
Center, we are working on an application of this di-
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rect approach to range image sequences. In this case, a
clean least-squares solution is possible without ambigu-
ities. The method leads to a set of linear equations in
the six parameters of motion. The coefficients of these
equations are integrals over the image region of prod-
ucts of first derivatives of range with respect to image
coordinates and time (range rate). The new method
will be tested on data generated by the ERIM scanner.

5.2, Combining Long-Range and Short-Range
Motion Measurements

In order to design a flexible and robust motion
measurement system, it may be necessary to integrate
the fast computation of image velocities with a longer
range tracking of localizable image features. The short-
range velocity-based system would serve to detect sud-
den movements, locate object boundaries defined Ly
motion discontinuities, and provide for the rough es-
timate of the 3-D layout of the scene. This short-range
system could also facilitate camera tracking by provid-
ing a rough indication of the direction and speed of
movement of image features. The long-range tracking
system would provide a more accurate measurement of
the motion of image features over a longer time period,
for the purpose of recovering the detailed 3-D shape of
objects.

Michael Drumbheller and Ellen Hildreth are cur-
rently exploring one method by which short-range mo-
tion measurements can influence the motion correspon-
dence process. In Ullman’s minimal mapping scheme for
motion correspondence {Ullman, 1979], the probability
that a given feature at one moment corresponds to a
particular feature at a later time depends in part on the
distance traveled between frames. Ullman also assum :d
that the probability of particular 2-D displacements ‘ ve-
locities) would decrease monotonically with size (spe.d),
and would be uniformly distributed with respect to di-
rection. The short-range velocity measurements can be
used to modify these probability distributions in such
a way that greater weight is given to velocities within
a neighborhood of the estimated direction and speed
of movement. We have implemented Ullman’s minimal
mapping scheme and have begun testing of the algo-
rithm with natural images of rotating objects, with and
without making use of short-range velocity information.
Computer simulations show that the combination of ve-
locity measures with motion correspondence leads to
better performance at motion measurement than either
strategy on its own.
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5.3. Using Time-to-Collision Estimates

Some visual tasks, such as high-performance nav-
igation (negotiating through narrow channels, landing
aircraft, walking a tightrope) require an accurate model
of the 3-D structure and motion of object surfaces, while
others may require only a fast analysis of qualitative or
partial information about the movement of objects in
the environment. Examples of the latter type of task
include the detection of looming motion, which might
indicate an object about to collide with the observer, or
the detection of sudden global rotations or translations
of the visual field that might indicate an unexpected
observer motion that must be counteracted to maintain
balance. Such tasks require fast, simple, robust routines
for detecting motion discontinuities, rough 3-D shape
and motion, which might provide input into reflexive
mechanisms that control motor behavior underlying ob-
stacle avoidance, postural control, or locomotion. This
section addresses work by Hildreth on the use of par-
tial information about the “time-to-collision” with an
approaching surface for performing certain visual tasks.

A number of behavioral studies suggest that biolog-
ical vision systems use estimates of the time-to-collision
with an approaching surface, in the contro} of visually-
guided motor behavior [for a review, see Regan, Kauf-
man and Lincoln, 1986]. For restricted classes of mo-
tion, an approximation of time-to-collision can be com-
puted from simple measures on the changing image. If
we let r denote the size of an object in the image (as-
suming perspective projection), and 7 denote the rate
of change of image size over time, then the time-to-
collision with an object is given approximately by the
ratio 3. Through theoretical analyses and computer
simulations, Hildreth has examined the validity of this
simple approximation to time-to-collision, and the use
of this measure for two visual tasks: (1) the recovery
of the 3-D trajectory of moving objects from their 2-D
projection onto the image, and (2) a simple navigation
task, in which the observer must move toward a moving
target while avoiding moving obstacles in the environ-
ment.

¥

In theory, the approximation & only holds for ob-
Jects that are oriented parallel to the image projec-
tion surface and undergoing pure translation toward the
viewer. If, for example, an object of length R at a dis-
tance Z from the observer is slanted with an angle o
from the orientation parallel to the projection surface,
and is moving directly toward the observer, then the

actual time-to-collision T, is given by the following ex-

pression
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T Z \#/ 472 - R*sin’o)’

Clearly, if Z is large compared to R, or if ¢ is small,
then T, can be approximated by £. Other expressions
can be obtained for the cases where the object is not
translating directly toward the observer, or where the
object is rotating as it moves. These relationships can
easily be derivea for the case of spherical projection as

well.

Approximations to time-to-collision, which may be
obtained straightforwardly from the changing image,
can be combined with measures of the projected ve-
locities of image features to derive the 3-D heading of
objects in space. This 3-D heading at each moment in
time can then be used to reconstruct the 3-D trajectory
of a moving object, if one assumes an initial depth for
the object (the trajectory scales in depth by this initial
guess). Hildreth has designed a model for performing
this recovery of 3-D motion, and has implemented and
begun to test this model in a computer vision system.
Perceptual studies are also being conducted to test the
validity of this model for the human visual system.

Knowledge of 3-D heading, derived from rough
time-to-collision estimates, can also be used in simple
navigacion tasks. Information about the 3-D heading
of an object being tracked can be used to compute a
desired heading for the observer in order to intercept
the target. Similarly, information about the 3-D head-
ing of obstacles can define a range of observer head-
ings that would avoid them, and the time-to-collision
estimate itself determines whether the observer should
bother trying to avoid a particular obstacle. Hildreth
is developing a simple simulation system that performs
this navigation task in an artificial environment, using
time-to-collision estimates to derive the 3-D trajectories
of objects in the environment. In the future, we plan to
test this model on natural imagery.

5.4. Using Recognition for Mobile Robot Local-
ization

Long-term autonomy for mobile robots presents
problems which are different from those encountered
with the more limited mission-level autonomy of typ-
ical mobile robot systems. David Braunegg is research-
ing the problem of building and maintaining a world
mode! representation to support the navigation of long-
term autonomous mobile robots. This research is in-
vestigating the use of stereo vision to obtain enough
information about the world to enable path-planning
and navigation-planning to be performed. Analysis of
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the requirements on a representation which can support
long-term autonomy has led to the design of a two-level
world model which is currently being implemented. In
a related part of this research, Braunegg is developing a
method for recognizing world locations based on stereo
data.

5.5. Photogrammetry

A new method for the classic photogrammetric
problem of relative orientation that arises in work on
binocular stereo and motion vision has been derived by
Berthold Horn [1987]. While iterative in nature, like
other existing solutions, it does not require a good ini-
tial guess, and is able to select the correct solution from
among several that minimize the departure from satis-
faction of the coplanarity constraint equations. The new
method can be implemented using unit quaternions (Eu-
ler parameters) to represent rotation, and was inspired
by the closed form solution of the absolute orientation
problem recently discovered.

We have also continued to study so-called “critical
surfaces” that lead to difficulties in recovering the rel-
ative orientation. These arise in motion vision as well
with a somewhat different interpretation.

5.6. Regularization and Optimal Filtering

Classic optimal filtering methods yield linear shift
invariant filters (convolutional operators) that best re-
cove:  signal in the least-squares sense. The filter de-
sign 1> based on the correlation functions or, equiva-
lently, power spectra of signal and noise. As originally
discussed by Tikhonov and others, regularization meth-
ods recently applied widely in machine vision can be in-
terpreted in terms of such filters [see for instance Bert-
ero et al., 1986; Geiger and Poggio, 1987]. Horn has
considered the idea of “reverse engineering” an opti-
mal filter given a particular regularization term, that
is, to discover what ratio of signal power spectrum to
noise power spectrum leads to an optimal filter like the
one obtained using a specific regularization term. This
problem is related to the choice of the optimal regular-
ization parameter A discussed in our report in the last
Proceedings [see also Geiger and Poggio, 1987).

As already indicated by Tikhonov (and by the
Bayesian interpretation of regularization), the selection
of the regularization stabilizer can be done by a system-
atic procedure provided that some of the statistics of the
signal and the noise are known. Finally, simple regular-
ization terms (such as the integral of the square of the
nth derivative) lead only to a small subset of all possible
convolutional operators. The optimal filter approach is
not restricted in this way.
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5.7. Surface Discontinuities from Stereo

Richard Wildes has been studying the recovery of
three-dimensional surface discontinuities from a binoc-
ular disparity map. The initial investigation has re-
stricted consideration to planar surfaces. The approach
is based on an analysis of the differential imaging prop-
erties of textured surface patches in the neighborhood
of a discontinuity. The formal results have been used to
motivate methods which variously use horizontal, verti-
cal and orientational disparities to recover surface dis-
continuities in three- space up to a relief transforma-
tion. Three empirical studies of these methods have
been carried out. First, numerical studies of these meth-
ods show that the use of vertical disparities results in
a system of equations which is unstable in the face of
slight perturbations to the input data. Methods which
make use of only horizontal and orientational disparities
remain stable in the face of such noise perturbations.
Second, psychophysical studies suggest that human ob-
servers do not make use of vertical disparities in this
task. Third, an implementation which makes use of hor-
izontal and orientational disparities has been developed
(vertical disparities were not exploited due to the results
of the numerical and psychophysical studies). The im-
plementation has been tested with synthetic data, and
has yielded positive results.

5.8. Implications of Visual Routines for Early
Vision

Visual perception has at times been viewed as the
problem of describing “what is where” in the scene. It
may be more productive to regard vision as an ongo-
ing selective readout of meaningful spatial entities and
their relrvant properties and relations, in a sequence
governed by the immediate goals of the observer. This
view respects the fact that most scenes are too complex
for a single complete description - one satisfying every
possible momentary requirement of the observer - to be
feasible.

Shimon Ullman [Ullman 84] proposed a framework
to support this more pragmatic statement of the vision
problem. In his framework, cpatial entities and rela-
tions are extracted by the goal-directed application of
visual routines - sequences of elemental spatial opera-
tions drawn from a small fixed set - to local representa-
tions of the scene that have been computed bottom-up
and in a spatially uniform manner. The basic opera-
tions from which visual routines are assembled - such
as boundary tracing, region coloring, location marking,
shifts of processing focus, and indexing of salient loca-

tions - constitute an “instruction set” for spatial anal-
ysis. The capacity for combining these operations in
novel ways makes it possible to extract an open-ended
set of abstract spatial entities, properties, and relations.
Sharing of the machinery implementing these operations
provides an essential computational efficiency. Visual
routines are a satisfying account of the interface be-
tween low-level vision (the essentially bottom-up com-
putation of local scene properties) and high-level vision
(the recognition of meaningful spatial entities and the
establishment of useful spatial relations): high-level pro-
cesses like object recognition and spatial reasoning con-
trol scene analysis by selectively applying basic opera-
tions to the local representations of the scene. In Ma-
honey’s [1987] detailed investigations of this idea, some
important consequences for the organization of low-level
vision have emerged which are discussed in the following
paragraphs.

Image Chunking. At the outset, Ullman observed
that the critical reliance on the basic operations im-
plies that the implementation of these operations must
be highly efficient. Thus a number of workers have ex-
plored efficient schemes for tracing, coloring, and index-
ing. Their results converge on the idea that low-level
vision should generate a variety of representations, each
specialized to support an efficient implementation of a
particular basic operation; specialized representation is
the key to the required efficiency. Specifically, it has
been shown that tracing, coloring, and indexing oper-
ations can be made very time efficient, in the context
of a simple, local model of parallel computation, by the
introduction of specialized representations whose prim-
itive elements are extended regions of the image, not
points. Tracing and coloring, for example, become effi-
cient for the simple reason that there are very few ele-
ments to be operated in comparison to the number of
pixels. The process of subdividing the image in paral-
lel into regions which may each be treated as a unit is
referred to as image chunking.

Local Boundary Integration. Scene objects are de-
fined primarily by discontinuities in image properties at
their boundaries. Thus boundaries play a crucial role in
the extraction of meaningful figures by visual routines;
image chunking for tracing, coloring, and indexing is
applied to a representation of the scene boundaries. Be-
cause of the complexity of real scenes, however, no single
property can generally be expected to provide complete
boundary information. Thus it is critical that partial
boundary information provided by different properties
somehow interact to generate a unified boundary repre-

sentation to which chunking processes may be applied.
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Local Boundary Selection/Suppression. The per-
formance of chunk-based basic operations (e.g., tracing,
coloring, etc.) has proven, in general, to depend on the
geometric complexity, rather than the size, of the input.
That is, the simpler the geometry of the input, the eas-
ier it is to build larger image chunks, and the larger the
chunks, the fewer steps involved in performing some op-
eration on the input. One important implication of this
result for low-level vision processing prior to the com-
putation of image chunks is that a local, parallel basis
for singling out or emphasizing relevant boundaries, or
suppressing irrelevant ones, would improve the perfor-
mance of the basic operations and, consequently, facili-
tate the extraction of meaningful figures. For example,
one might apply the chunking processes selectively to
discontinuities in depth, color, or texture, or to inten-
sity boundaries at a particular scale. The notions of
selection and suppression are not, as they seem at first,
contradictory with that of integration. There are a va-
riety of possibilities for reconciling them, the simplest
being that selection/suppression should strictly precede
integration.

Local Boundary Abstraction. The second implica-
tion of the fact that input geometry determines the ef-
fectiveness of image chunking is that a local, parallel ba-
sis for suppressing irrelevant detail and noise in the (se-
lected) boundaries also would improve the performance
of the basic operations. Examples of noise that could
be eliminated by local computations include short spu-
rious line segments and small spurious gaps in continu-
ous curves. High-frequency information in a boundary
often constitutes irrelevant detail for certain purposes,
such as determining connectivity, enclosure, or overall
shape. Blurring, however, is not the only, or always the
best, technique for eliminating irrelevant detail while
preserving the useful information. Boundary abstrac-
tion is the problem of generating a representation of the
scene boundaries which consists of an array of boundary
tokens, each expressing only the information about the
boundary at a particular location that is salient from
the point of view of image chunking (and ultimately for
extracting a scene entity for a given task by tracing, col-
oring, etc.) The requirements on the boundary tokens,
then, are determined quite specifically by the chunking
process to be supported. In the case of tracing, for ex-
ample, the key information items are orientation and
position; one problem. then, is to explore the range of
possibilities for determining the local boundary orienta-
tion at a specified scale in a way that allows for thick
or textured lines or edges (since chunking processes are
specialized to basic operations, it may turn out that sev-
eral abstract boundary representations, each specialized
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to support a particular chunking process, should be de-
fined). The introduction of abstract boundary tokens
is reminiscent of Marr’s proposal [1982] for the primal
sketch, in which abstract place tokens were defined for
the benefit of explicit grouping processes, rather than
relying exclusively on the grouping implicit in low spa-
tial frequency representations. The difference is that
the grouping is accomplished by the goal-directed appli-
cation of an appropriate sequence of basic operations,
not by Marr’s spatially uniform, bottom-up, recursive
grouping processes, for reasons mentioned earlier [see
Ullman, 1984 for a thorough discussion).

5.9. The Full Primal Sketch

In order to support processes such as recognition
under general conditions, it is important to extract as
much relevant information about the shape of an ob-
Jject as possible. Eric Saund has been developing a new
method for deriving a Full Primal Sketch from an im-
age. Rather than using numerical smoothing methods,
such as region smoothing using isotropic operators (such
as the Gaussian), non-isotropic operators (such as Ga-
bor filters), or contour smoothing techniques, Saund has
developed a method for symbolically grouping simple
tokens across scales. This symbolic scale space repre-
sentation has proved very useful for preserving sym-
bolic tokens capturing relevant information at different
scales. By using techniques for dimensionality reduction
to extract relevant parameters, Saund has been able to
derive schemes for building more complex symbolic to-
kens, representing higher order shape attributes, such
as corners, bars and blobs, from more primitive tokens.
The representations computed in this manner seem to
have several advantages over other more numerically
based schemes, such as Brady’s Smooth Local Symme-
tries [Brady and Asada, 1983], or Blum's Medial Axis
Transform [Blum, 1967]. The method is being applied
to the recognition of shapes from large libraries, and
early results appear very promising.

5.10. Issues in Learning

The problem of estimating an input-output map-
ping from examples has taken on a new interest re-
cently because of the peculiar excitement surrounding
so-called neural nets and backpropagation algorithms
that “learn”. Tomaso Poggio has considered the prob-
lem of learning smooth mappings from the point of view
of classical approximation and estimation theories, in-
cluding polynomial and spline based estimators.

The problem of learning a mapping between an in-
put and an output space is essentially equivalent to the
problem of synthesizing an associative memory that re-
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trieves the appropriate output when presented with the
input and gerneralizes when presented with new inputs.
It is also equivalent to the problem of estimating the
system that transforms inputs into outputs given a set
of examples of input-output pairs. A classical frame-
work for this problem is approzimation theory. Related
methods are system identification technigues (Volterra,
Wiener, etc.), used when it is possible to choose the in-
put set, and system estimation techniques, used when
the input-output pairs are given.

Approximation theory deals with the problem of
approximating or interpolating a continuous function
f(X) by an approximating function F(W, X) having a
fixed number of parameters W (X and W are real vec-
tors X = z1,22,...,Zq and W = w;,w,,...,w,,). Fora
particular choice of F, the problem is then to find the
set of parameters W that provides the best possible ap-
proximation of f. This is the learning step. Needless
to say, it is very important to choose an approximat-
ing function F that is as compatible as possible with f.
There would be little point in trying to learn an approx-
imation if the chosen approximation function F(W, X)
could give only a very poor representation of f(X), even
with optimal parameter values.

We have suggested that one may usefully consider
the problem of learning, as discussed by connectionists,
as a problem of approximation, in particular of Ayper-
surface reconstruction [Poggio, 1988]. Interesting con-
nections with splines, regularization and Bayesian ap-
proaches can be immediately established.

5.10.1 Learning an Input-Output Mapping as
Hypersurface Reconstruction

From the point of view of learning as continu-
ous approximation — clearly only one of the several
facets of learning ~ we can draw an equivalence with
a standard approximation problem, surface reconstruc-
tion from sparse data points. Learning simply means
collecting the ezemples, i.e., the input coordinates z;, y;
and the corresponding output values at those locations
(the height of the surface) d;. This builds a look-up
table. Generalization means estimating d in locations
z,y where there are no examples, i.e. no data. This re-
quires interpolating or, more generally, approximating
the surface between the data points. Interpolation is
the limit of approximation when there is no noise in the
data. This example, given for a surface, i.e., the graph
in R? x R, corresponding to the mapping from R? to R,
can be immediately extended to mappings from R" to
R™ (and graphs in R™ x R™).
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5.10.2 Learning and Generalization

Of course any reconstruction (or approximation)
problem of this type is ill-posed in the sense that the
information in the data is not sufficient to reconstruct
uniquely the mapping in regions where data are not
available. In addition, the data are usually noisy. A
priori assumptions are needed about the mapping. Gen-
eralization is not possible if the mapping is completely
random or local. For instance, knowing examples of the
mapping represented by a telephone directory (people’s
names onto telephone numbers) does not help in esti-
mating the telephone number corresponding to a new
name. Generalization is based on the fact that the world
in which we live is usually ~ at the appropriate level
of description — redundant. In particular, it may be
smooth: small changes in the inputs determine a corre-
spondingly small change in the output (it may be nec-
essary in some cases to accept piecewise smoothness).
This is the most general constraint that makes possible
approximation, and thus this very simple form of gen-
eralization. Other a priori constraints may be known
before approximating a mapping, for instance that the
mapping is linear [see Hurlbert and Poggio, 1987], or
has a positive range, or a limited domain, or is invari-
ant to some group of transformations. Smoothness of
a function corresponds to the function being not fully
local: the value at one point depends on other values
nearby. This means that the input coordinates must
have been chosen appropriately. The problem of choos-
ing the appropriate input coordinates — the dimensions
- is the key problem in learning,

Consider again the point of smoothness as the basis
for generalization. It is possible to formulate this aspect
of the learning problem in the framework of Bayesian es-
timation, using the MRF machinery. The prior distri-
bution expresses smoothness, that is, the possibility of
generalizing. If the observation model represents Gaus-
sian noise, the resulting MAP solution corresponds to
generalized splines, since it correspond to standard reg-
ularization techniques [Poggio et.al., 1985]. The prior
probability distribution may, however, also represent a
more specific a priori knowledge than just smoothness.
Piecewise constancy, for instance, could be used for clas-
sification tasks (clustering is equivalent to the class of
mappings that enforce the rule “nearby inputs produce
Positivity, convexity, and local be-
haviors of various types may be captured by an appro-
priate prior distribution. In addition, coupled MRFs
allow even more flexibility in the underlying general-
1zation conditions in terms of piccewise smoothneas by

nearby outputs”).
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using the line process [see Geman and Geman, 1984;
Marroquin et.al., 1987).

5.10.3. Splines, Regularization and Learning

Consider the inverse problem of finding the hyper-
surface values 2, given sparse data d. Standard regu-
larization suggests a variational problem by writing a
cost functional consisting of two terms. The first term
measures the distance between the data and the desired
solution z; the second term measures the cost associated
with a functional of the solution || Pz||? that embeds the
a priori information on z. Let us consider as a simple
choice P = V,; thus, the problem is reduced to finding
the hypersurface z that minimizes

llzi = dill® + Al Vnzlf?

where i is a collective index representing the points in
feature space where data are available and A, the regu-
larization parameter, controls the compromise between
the degree of smoothness of the solution and its close-
ness to the data. Therefore A is directly related to
the degree of generalization that is enforced. Higher
smoothness is enforced in terms of minimization of

llz: — dill? + M VA Vaz]l”.

The corresponding Euler-Lagrange equations are,
respectively,

AWV2z=d

and

AVZV2V2, = d,

where V2 is is the obvious n-dimensional extension of
the usual V2 operator.

Tomaso Poggio and Woodward Yang are presently
studying the possibility of using analog networks to
compute n-dimensional spline approximations. This
is especially attractive for multidimensional splines.
We have previously shown that standard regularization
(SR) can be implemented using analog networks of re-
sistors and batteries. SR is equivalent to generalized

splines, and therefore generalized splines can be com-
puted with the same type of analog networks used for
2-D surface reconstruction, but with higher connectiv-
ity.
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USC Image Understanding
Research: 1987-88!
R. Nevatia
Principal Investigator

Institute for Robotics and Intelligent Systems
University of Southern California
Los Angeles, CA 90089-0273

ABSTRACT

This paper summarizes the USC Image Understanding re-
search projects and provides references to more detailed
projects and provides references to more detailed papers.
Our work has focussed on the topics of: mapping from aerial
images, robotics vision, motion analysis for ALV, some gen-
eral techniques and parallel processing.

1 Introduction

This paper summarizes our research projects during the
past year., These proceedings contain eight other papers
from our group that describe our research in more detail
(1,2,3,4,5,6,7,8]. Those topics that are covered in detail in
other papers are covered only very briefly in this overview.

Our research activity has focussed on the following major
topics:
e Mapping from Aerial Images
o Robotics Vision

¢ Motion Detection for Auionomous Land Vehicle {ALV),
and

e Parallel Processing

In the following we summarize our research in these areas
and provide references that contain more detail.

2 Mapping From Aerial Images

Our g al here is to produce high-quality symbolic maps of
comple x, cultural scenes from aerial image data. For some-

1This research was supported, in part, by the Defense Advanced
Research Projects Agency contracts DACAT76-85-C-0009 and F33615-
87-C-1474, order No 3119 and monitored by the U.S. Army Engineer
Topographic Laboratories and Air Force Wright Aeronautical Labora-
tories respectively.
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time, we have been working with domain of large commer-
cial airport complexes. Such scenes have a variety of fea-
tures such as the transportation network (runways, taxi-
ways and roads), buildings (terminals, hangars, etc.) and
mobile objects (airplanes, trucks, cars, etc.). Our aim is to
produce descriptions of the individual objects in the scene
as well as an integrated description of the entire scene in-
cluding the functional relationships between the parts.

Previously we have reported on our work on extraction of
runways [9]. Our technique consists of hypothesizing run-
ways by using linear segrnents, forming anti-parallels from
them and then grouping the anti-parallels on the basis of
continuity and collinearity. The verification of the hypothe-
ses comes from detecting expected markings on the run-
ways. We have applied these techniques to a variety of
airport scenes with success. In recent work, we have fur-
ther enhanced our verification technique. In earlier work,
all processing was performed at one resolution. This reso-
lution is not adequate to detect all markings on the runway,
on the other hand it is very expensive and unnecessary to
process the entire image at the highest available resolution.
For the task of verification of specific features, however, we
can focus on just selected parts of the image and resegment
it at the needed high resolution. Thus, we have a case of the
results of higher level symbolic processing guiding the low-
level segmentation on a second pass. We have found this
technique to be highly effective in detecting subtle marks
on the runway surfaces that increase our confidence in the
detection of the runways.

Detected runways are also used to guide the detection of
taxiways which tend to be adjacent to each other. Verifi-
cation of taxiways can be by examining their relationships
to the runways. This work is in progress at this time.

In another project, funded in part by the Defense Map-
ping Agency (DMA), we have been developing methods for
detection and description of complex building structures.
We have achieved what we believe is a major success in
this effort and we are able to handle buildings with wings
of different heights. The shapes are restricted to being com-
positions of rectangles, however. The key to the method is a
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technique for perceptual grouping of low-level features into
meaningful high-level structures. This method is described
in detail in a paper in these proceedings [1]. We expect
that this technique can be generalized to work for a broad
classes of objects, in aerial scenes and in other domains,
and is a major focus of our current research.

We are now investigating the systems aspects of the map-
ping problem. We have modules to detect significant sur-
face structures and significant 3-D structures. We are study-
ing how these descriptions can aid each other in improv-
ing the confidence of detected structures, in detecting less
prominent features and how they should be combined to
give high-level, functional integrated descriptions.

3 Robotics Vision

Our concentration here is on description of 3-D shape and
recognition of objects based on shape. We are developing
methods for both surface and volume descriptions. Both
methods rely on same underlying philosophical concepts -
that complex shapes need to be described by decomposi-
tion into “simpler” parts and that the inter-relations of the
parts are a significant aspect of the shape description. The
decomposition can be carried out successively to the de-
scribed level of detail. We call such descriptions structured,
heirarchical descriptions.

For surfaces, we believe that appropriate places for seg-
mentation are at the occluding (or jump) boundaries, slope
discontinuities (folds) and “ridges”. These features can, in
turn, be computed from the curvature properties of sur-
faces and correspond to points or lines where the curvature
is a local extremum or goes through a zero-crossing. Actual
computation of these properties is made difficult due to the
presence of noise in digital range data.

Our techniques for computing such descriptions have been
presented previously [10,11].

In recent work, we have developed techniques for match-
ing descriptions derived from two scenes. The two descrip-
tions can be from different views of the same scene or one
description can be from a complex scene and the other from
a set of model descriptions of the objects known to the sys-
tem. The former is needed for model-building, the latter for
object recognition. We have tested our system on complex
scenes of highly complex objects such as a car, a telephone,
a chair and a table and obtained very satisfactory matching
results. We believe that this system is a major advance over
previous system in its ability to handle complex shaped ob-
jects. This method, with experimental results, is described
in detail in another paper in these proceedings 2].
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In a separate project, we are investigating the computa-
tion of volume descriptions, in terms of generalized cones,
given only sparse and imperfect 3-D data of the scene. Pre-
viously, we have presented techniques that work on the class
of objects known as linear, straight, homogeneous general-
ized cylinders (LSHGCs) [12,13]. Our current focus is on
handling more general objects. We believe that the key is
in finding the appropriate symmetry axes for the objects.
However, in presence of surface markings and with frag-
mented boundaries, we also get fragmented and extraneous
axes at the first level of analysis. The challenge is to con-
nect the fragments in a meaningful by using geometrical
relations between them. We are achieving some success in
this effort but much remains to be done. We hope to report
on this work in the near future.

4 Motion Detection and Analysis

We have a number of ongoing efforts in detection and anal-
ysis of moving objects, primarily in the context of support-
ing the DARPA Autonomous Land Vehicle (ALV) project,
though the techniques are of much broader utility. This
effort is being supported by our “Knowledge-based Vision
Techniques” contract as part of the DARPA strategic com-
puting program.

Of the many alternative approaches to motion analysis,
we have chosen the long range or feature point methods.
This approach involves extracting a set of reliable features
in a sequence of images (lines, corners, contours, regions,
etc.), finding the corresponding features in the sequence
(i.e. by a series of image to image matching operations),
and finally the computation of three-dimensional motion
estimates based on the series of correspondences. We have
addressed each of the problems separately and have begun
to combine them into a coherent system.

In previous work, we have described a method for us-
ing more than two frames to robustly allow 3-D motion
parameters [14]. In recent work, we have focussed on the
following:

1. Establishing Correspondences between features in two
images - Primitives we choose to match are super-
segments which represent connected linear approx-
imations of edge points. These supersegments are
matched on the basis of similarity of shape and smooth-
ness of displacement. We have obtained good results
on real data; details are given in A paper in these
proceedings [3].

2. System Integration - we have started integration of
various modules in a system. This system is describe
separately in [4]. Much of the work is still in designing
the system architecture but we are already beginning
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to get some experimental results.

3. Spatio-Temporal analysis - We have developed a method
to analyze a sequence of image frames taken close
apart in time, forming a spatio-temporal volume. The
assumption that the frames are close allows us to put
a bound on the amount of displacements for each
point. Using a local process around each edge point
(cutting slices at various angles along the time dimen-
sions), we show how to compute the normal velocity
(in the direction normal to the edge). As opposed to
the study presented by Bolles et al [15], in which the
whole volume is acquired then processed, we are able
to process the sequence after very few frames, typi-
cally 5. We also explicitly model occlusion and dis-
occlusion, which permits us to segment contours and
robustly compute the true velocity field. We show
results on both synthetic and real image sequences.
This work is described in [5].

4. A new representation - W. Franzen in our group has
suggested a new mathematical representation that
simplifies the representation of a large class of mo-
tions. His representation is a generalization of the
commonly used homogeneous representation commonly
used to describe rigid transformations. However, ho-
mogeneous transformations are not constant for mov-
ing objects. Franzen suggests an augmentation of the
transformation that he calls a chronogeneous trans-
formation that is constant for a class of motions. It
seems that this representation is highly general and
should be useful for a variety of tasks including graph-
ics animation, robot trajectory planning and motion
analysis. For structure from motion problems, the
formulation of problems becomes much easier and
hence they should be easier to solve. The work on
using this representation is only in its preliminary
stages. The representation and the current status are
described in [6].

5 DParallel Processing

As vision systems start becoming more practical, we need
to be concerned with the speed of execution. It is clear
that the needed speed can only be obtained by the use of
highly parallel machines. The use of parallel machines for
the lower levels (the iconic levels) of processing is rather
straight-forward, but not so for the higher levels. Tech-
niques of our group rely heavily on the extraction and use
of symbolic descriptions and such techniques are much more
difficult to parallelize. We are studying parallel implemen-
tations of such algorithms. Details of some of our work are
given in [7]; following provides a brief summary.

Three parallel architectures have been investigated in the
past year. These are the Meshes with Broadcast Buses, the
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Mesh of Meshes, and Reconfigurable VLSI Arrays. The
Mesh with Broadcast Buses can be looked upon as an en-
hanced mesh to support sparse communication between
processors. We have studied asymptotic performance im-
provements in using such arrays. The Mesh of Meshes is a
general purpose VLSI based architecture which can provide
linear speed up for a large number of image problems over
a wide range of input size. An important feature of this
organization is that the number of processors (which tends
to be more expensive compared to memory) can be var-
ied, and the speed up remains proportional to the number
of processors. A related organization is the Mesh of Trees
(MOT), which apparently has not been well studied in the
context of image processing and vision. We have shown
that poly log solutions to image problems can be obtained
on the MOT . In fact, for most image computations the
MOT can support divide and conquer more efficiently than
the Pyramid, leading to superior performance on the MOT
compared to the Pyramid. The Reconfigurable Mesh is a
universal array which can simulate the mesh, MOT, and
Pyramid computers. It has a compact VLSI layout (O(n?)
for an n X n array) and the reconfiguration feature can lead
to a variety of interconnection patterns among the PEs.

We have identified certain sparse data movement oper-
ations which are essential to efficient parallel solutions to
many image problems. We have developed efficient tech-
niques to implement these operations on the above orga-
nizations. Using these techniques, asymptotically superior
solution times have been obtained to problems related to
extracting geometric features of images. Using this, we
have been able to show that an enhanced mesh is compa-
rable to a pyramid of corresponding size. We have derived
an optimal integer sorting algorithms and optimal sorting
algorithms on the Mesh of Meshes. Using these results,
optimal parallel solutions to problems on an n X n image
can be obtained. These solutions use p processors, where
p is in the range 1 to n®2. An interesting feature is that
when p = n, the Mesh of Meshes with n processors can
solve all of the above image problems in the same time as
an n X n two-dimensional mesh-connected computer with
n? processors. Most of our solutions are simple with a small
constant factor which makes them interesting from an im-
plementation point of view. The Reconfigurable Mesh can
support fast sparse data movement leading to asymptoti-
cally superior solution times to several image problems. In
fact, certain techniques on the CRCW PRAM model can
be directly implemented on this model. For example, sev-
eral graph problems can be solved in O(log n) time which is
the same time taken by the powerful CRCW shared mem-
ory model. The reconfiguration feature can be very useful
in mapping image understanding algorithms, which usually
have nonregular data flow.
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We have studied parallel implementations of the image
and stereo matching techniques developed at USC. Our par-
allel implementations can run on the meshes, pyramids, or
reconfigurable arrays. The simplest of these implementa-
tions is on a fixed-size systolic array of size k*/? x k*/? which
can lead to O(k/?) speed up. This speed up is possible by
careful partitioning of the input data and allocating them
to support data dependencies in the computations .

Recently, we have been studying techniques to imple-
ment basic image computations on commercially available
machines such as the Hypercube and the Connection Ma-
chine. We have developed optimal parallel algorithms for
image template matching on the hypercube class of ma-
chines. Qur techniques lead to optimal solutions to the
template matching problem using fixed memory in each of
the processors.

References

{1] Rakesh Mohan and Ramakant Nevatia. Perceptual
grouping for the detection and description of structures
in aerial images. In Proceedings of the DARPA Im-

age Understanding Workshop, Boston, Massachusetts,
April 1988.

T.J. Fan, G. Medioni, and R. Nevatia. 3-d object
recognition using surface descriptions. In Proceed-
ings of the DARPA Image Understanding Workshop,
Boston, Massachusetts, April 1988.

S.L. Gazit and G. Medioni. Contour correspondences
in dynamic imagery. In Proceedings of the DARPA Im-
age Understanding Workshop, Boston, Massachusetts,
April 1988.

[4] Keith Price and Igor Pavlin. Integration effort
in knowledge-based vision techniques for the au-
tonomous land vehicle program. In Proceedings of
the DARPA Image Understanding Workshop, Boston,
Massachusetts, April 1988.

2]

(3]

5

—

Shou-Ling Peng and Gerard Medioni. Spatio-temporal
analysis of an image sequence with occlusion. In Pro-
ceedings of the DARPA Image Understanding Work-
shop, Boston, Massachusetts, April 1988.

(6] Wolfgang O. Franzen. Natural representation of mo-
tion in space-time. In Proceedings of the DARPA Im-
age Understanding Workshop, Boston, Massachusetits,
April 1988.

[7] V.K.P. Kumar. Parallel architectures for image pro-
cessing and vision. In Proceedings of the DARPA Im-
age Understanding Workshop, Boston, Massachusetts,
April 1988.

[8] Philippe Saint-Marc and Gerard Medioni. An adap-
tive filtering scheme for meaningful features extrac-

tion. In Proceedings of the DARPA Image Understand-
ing Workshop, Boston, Massachusetts, April 1988.

16

(9]

(11]

(12]

[13]

(14]

(15]

A. Huertas, B. Cole, and R. Nevatia. Detecting run-
ways in aerial images. In Proceedings of the DARPA
Image Understanding Workshop, Los Angeles, Califor-
nia, February 1987.

T.J. Fan, G. Medioni, and R. Nevatia. Surface segmen-
tation and description from curvature features. In Pro-
ceedings of the DARPA Image Understanding Work-
shop, Los Angeles, California, February 1987.

T.J. Fan, G. Medioni, and R. Nevatia. Segmented de-
scriptions of 3-d surfaces. accepted for publication in
IEEE Journal of Robotics and Automation, 1987.

Kashipati G. Rao and R. Nevatia. From sparse 3-d
data directly to volumetric shape descriptions. In Pro-
ceedings of the DARPA Image Understanding Work-
shop, pages 360-369, Los Angeles, California, Febru-
ary 1987.

Kashipati G. Rao and R. Nevatia. Computing vol-
ume descriptions from sparse 3-d data. accepted for
publication in the International Journal of Computer
Vision, 1987.

H. Shariat and K. Price. Results of motion estima-
tion with more than two frames. In Proceedings of the
DARPA Image Understanding Workshop, pages 694
703, Los Angeles, California, 1987,

Robert C. Bolles, Harlyn Baker, and David H. Ma-
rimont. Epipolar-plane image analysis: an approach
to determining structure from motion. International
Journal of Computer Vision, 1:7-55, 1987.

AN LAV T LS

NLNTAT A U
AR A Dy ')‘ "

Y

AR

l.,'-‘
PRAN
xi X

55
e

-
3

<
Ly

L}
@ 7

ol 4
ol

!
.-

:'. P4
e

.
e
L -

£t
Caglb 3
>

t“:¢‘

L

, ?".

<
At

.
w
.-

4 - -
e
Ceke
ey
« >

T 2 s _A_n
e
PR TN A A

RN iale st
J‘Y? '
.. A4

o %

I 2%
POk

AL AL
LA

'y ‘.
e .,./4-3 A

‘.-’
l‘.



PR S ™

IMAGE UNDERSTANDING: INTELLIGENT SYSTEMS -~
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f Robotics Laboratory, Computer Science Department, \
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: Abstract curved surfaces is shown. Preliminary results o
K on texture segmentation are presented. Edge R
v segmentation into regions is described, along T

This report summarizes progress in model- with global color region segmentation and lo- ;
; based ViSiOfl, imp]emented in the SUCCES- cal color Segrnentation of edges'

SOR system. We present results in three areas. e
: The first area is representation and geomet- "?.f
! ric modeling. New generic modeling of object d
i classes was achieved, models of three classes INTRODUCTION ;«
were built, and a generic model of a hallway p
i was used to build a model of the hallway of our S5
D building. A general ”painted-surface model” o o
X was integrated in SUCCESSOR for metals and ~ SUCCESSOR is intended to be a general, )
) non-metals, specular and non-specular reflec-  model-based vision system. To many, the )

2 tion. A new physical model for diffuse reflec-  phrase is a contradiction in terms. The key N
tion has been incorporated. Curved-axis solids  to generality is to capture general constraints. 2
of revolution (CSR) and set operations with ~ With weak representation, only specific con- o

CSRs have been added. Boundary representa-  straints can be implemented. We concen- ~

tion by ”trimmed-surfaces” has been added. trate on generality of representation. We aim N

s that SUCCESSOR be a comprchensive system ~
X The second area is interpretation of scenes and that it be powerful for applications. Tor "_:

and data. Initial results were obtained in ex applicalionz, reprecentation of domain-specific »
pressing structural relations, measurement ev- detail is important. Our impression is that 3

idence, and predictive evidence in a Bayesian some domain-specific information can be im- o

. network model. Computational complexity plemented with weak representation methods, "\
| was addressed by basing generation of hypothe- but that strong representation methods pro- ol
h ses on quasi-invariant observables. A new  vide an opportunity fo making eflicient use of -
generic observability model for diffuse reflec-  detailed domain-specific information. ‘

tion from surfaces was obtained. New results L
. were obtained on differential geometry of gen- ~ We do fundamental research on components o)
eralized cylinders and ribbons. and on their integration. We also integrate o
results of rescarch in an experimental system A

[ The third area is segmentation and building  for our own rescarch and to support others in -
> structured descriptions of scenes. New results the IU community, especially for target recog- Se

are described from a hierarchical stereo corre-  nition.
¥ spondence system which builds descriptions of a
: objects and surfaces. Stereo reconstruction of ~ Our objective is to identify similarity among o
e - iy ) . ‘ members of an object class, not just to match '
Ad. anee d';)’::i‘;cionws“;ﬂ’c"r;’ff;‘l'ogg"S_‘l"’(';,h e 11, ,,‘:}‘(";::f:dg: identical individuals. We aim to do it with 4

Based Vision Task B,” from a contract to the Defense Advanced methOdS Wthh h ave ]OW com P“tahonal com- P"'

- Research Projects Agency. Partial support was provided by the p]exlty without Sacriﬁcing gen(‘,rality, a concern b
' Air Force Office of Scientific Research under contract F33615-85- which has been central throughout our WOI‘k, : ;::
p €-3106 e.g. [Nevatia and Binford 73]. vy
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We have made a substantial new step to-
ward implementing general constraints by
generic, symbolic representation of object
classes and general knowledge [Kriegman, Bin-
ford, Sumanewecera 88]. We have designed
and implemented an abstract, generic model-
ing capability in SUCCESSOR, implemented
three classes of generic models and applied a
generic building model to vision for a mobile
robot. Generic modeling is based on an object-
oriented subsystem for a few geometric types.
Figure 1 shows initial success in using a generic
model of the class of buildings in building a
model of halls and doors in our building from
the generic model, using images from our mo-
bile robot, integrating sterco and monocular in-
formation. Figure 2 illustrates a generic model
of the class of screws. Screw types were cho-
sen to cover classes from a machinery hand-
book. Figure 2 also shows the generic model of
the hallway. Generic display methods provide
views of typical examples from object classes.

Two challenges in generality are in using dif-
ferent sensors, vptical images, depth data, and
radar data now that high resolution radar data
are available, and integrating evidence from
multiple sensors. New results on interpretation
contribute strongly tointegrated interpretation
[Binford, Levitt, Mann 87]. We demonstrated
preliminary results aimed toward generic in-
terpretation by expressing structura% relations,
predictive knowledge from generic models, and
measurement evidence in a probability network
madel. Probability networks are natural meth-
ods of representing constraint structures [Pearl
86]. The approach appears promising, how-
ever we work to overcome substantial problems
which are apparent, i.e. modeling relations,
computations of probabilities, and control of
hypothesis generation. Our initial efforts dealt
with computation issues v partial instantia-
tion. i.e. by instantiating snly those hypoth-
esis nodes for which evidence was sufficient,
and by using quasi-invariants for generating
hypotheses.  We have used quasi-invariants
widely in stereo vision [Arnold and Binford 80]
and in ACRONYM [Lim, Chelberg, Cowan 81;
Brooks 81].

To achieve this level of generality, we re-
quire general modeling capability which has
a highly symbolic, compact form. We have

introduced and incorporated a general physi-
cal model for reflectivity which covers specu-
lar and non-specular reflection for metals and
non-metals. A single model appears to be ade-
quate across the entire electromagnetic spec-
trum [Ponce and Healey 88]. A ”painted-
surface” model has been added to SUCCES-
SOR which models surface optical properties
based on these physical models. A physical
model from [Reichman 73] has been introduced
which is the first non-'.ivial model for diffuse
reflection used in computer vision.

Curved-axis solids of revolution (CSR) have
been added to SUCCESSOR [Ponce and
Healey 88]. Solid primitives are built up by
an interactive graphic editor and assembled by
a simple modeling language into tre - by sct
operations, union, intersection, and difference.
Primitives are related in a graph by affixment
by geometric transformations between parts,
including symbolic relations between planar
faces. All relations may be general expres-
sions with parameters, which allows motion of
parts. A boundary representation by trimmed
surface patches has been implemented. The
adaptive algorithm for computing intersections
of SHGCs (straight homogeneous generalized
cylinders) by building variable resolution box
treces has been extended to CSRs. An al-
;%orithm for consistent set operations despite
degenerate cases was implemented. Several
new rendering methods have been immplemented
which include large speedups.

A ncw generic observability model for diffuse
reflection from surfaces was obtained [Binford
87]. The model determines that discontinuities
of surface normal (order 1), surface reflectivity
(order 0), and illumination (order 0) are visi-
ble generically, 1.e. except on a set of measure
zero, as discontinuities in intensity images of
order 0, i.e. steps in intensity. Discontinuities
in surface curvature (order 2) and slope discon-
tinuities of reflectivity and illumination (order
1) are visible generically as slope discontinu-
ittes in image intensity (order 1).

[Ponce 88a] derives uniqueness and equivalence
results for generalized cylinder representations,
for SHGCs. e also compares ribbons of dif-
ferent classes and finds a practical local test for
curved ribbons with skewed symmetry.
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We describe new results with a hierarchical
stereo vision system which builds monocular
interpretations of surfaces and bodies. Stereo
correspondence is made between surfaces and
bodies to reduce ambiguity and computation
[Lim and Binford 88]. The stereo system in-
cludes a solution to the long-standing prob-
lem of correspondence from limbs of featureless
curved surfaces.

We also report edge segmentation of images
into closed regions by curvilinear extension and
determining cycles in the connectivity graph.
Ribbon determination by projection has also
been accomplished. The report also describes
local color region discrimination with curvi-
linear edgel linking. [Sumaneweera et al 88].
Texture segmentation remains a great problem.
Some preliminary results in texture discrimina-
tion show about 90% success in discriminating
pairs of very different textures from Brodatz’s
collection. [Vistnes 88].

INTERPRETATION

Our theme in interpretation is recognition by
structure. Structures are 3d generalized cylin-
der primitives linked at joints. Measurements
provide constraints on ribbons, i.e. images of
generalized cylinders, and constraints on re-
lations betwecen them. To relate ribbons to
generalized cylinders, ie. to relate images
to surfaces, we use quasi-invariants and infer-
ence 1ules [Binford, Levitt, Mann 87]. This
Jeads to a network formulation of interpreta-
tion and recognition which includes geomet-
ric constraints (non-statistical) and statistical
measurement uncertainty. Figure 3 shows ob-
jects from the class of plumbing fittings from
that exercise. The Bayesian network proba-
bility formulation of [Pearl 86] was used to
solve for overall probabilities of hypotheses in
a test case generated interactively from edge
segments as test data.

A key issue is control of interpretation within
the network. This was addressed in two ways in
that work. First, hypotheses were instantiated
only based on measurement data or prior evi-
dence. Second, quasi-invariants limited the set
of hypotheses generated. The effect of these
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two is to change the probability network to
an incomplete network. We have not yet ad-
dressed the change which results to the proba-
bility computation from partial instantiation.
In [Nevatia ard Binford 73], indexing based
on topology of axes of generalized cylinders
was used for hypothesis generation from depth
data. Hypotheses were verified with statistical
tests of hypotheses against size ratios of gener-
alized cylinders.

[Binford 88] derives a generic observability
model for non-specular reflection. He consid-
ers the image intensity equation and deter-
mines which discontinuities of image intensity
are caused by surface discontinuities of order
0, 1, and 2 (discontinuities in depth, tangent
plane, and curvature, respectively), reflectivity
discontinuities of order 0, 1, and 2 and dis-
continuities in illumination of order 0, 1, and
2. Generic observables are observable except
on a compact set of measure zero, the stan-
dard mathematical definition. The results are
that surface discontinuities of order 0, 1, and 2
are generically observable. Reflectivity discon-
tinuities of order 0 and 1 and discontinuities
in illumination of order 0 and 1 are generic
observables. These results have consequences
for perceptually adequate representation, e.g.
surface representations must be C? except at
boundaries, otherwise they introduce spurious
discontinuities in image intensities. The results
have the consequence that it is possible to gen-
erate generic predictions about image disconti-
nuities.

[Ponce 88a] uses differential geometry of
SHGCs to prove several uniqueness results.
Parabolic lines of an SHGC are either meridi-
ans or parallels, i.e. either constant z or con-
stant 6. If a surface is described by two SHGCs
with the same axis and cross section plane,
then the SHGCs are equivalent. A surface de-
scribed by an SHGC with two parabolic merid-
tans and two parabolic parallels has no other
non-equivalent SHGC description. For a non-
linear SHGC, the direction of the axis is de-
termined by the direction of the cross-section,
and the converse. A surface with at least two
parabolic lines has at most one SHGC descrip-
tion if these lines are parallel, and at most three
if they intersect. An SHGC is not necessarily
regular; necessary and sufficient conditions are
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derived for regularity.

[Ponce 88b] finds a local condition for skewed
symmetries for curved ribbons. It extends the
angular bisector condition for straight ribbons
to a condition on curvatures. He proposes an
algorithm for finding them. He also compares
three classes of ribbons and extends previous
results in relating them.

REPRESENTATION
GENERIC MODELS

The generic models in SUCCESSOR ex-
tend the representation mechanisms by which
generic models of object class are implemented,
compared to ACRONYM. In ACRONYM,
class models were implemented by constraints
on number of elements ind parameters, e.g.
number of engines on aircraft, and range of
sizes. In the new work reported here, the
basis for constraints is larger. Instead of
varying numbers, variants for components can
be within a type structure. The underly-
ing object-oriented subsystem has classes, sets,
numbers and mappings There is a type sys-
tem. Inheritance is based on subclasses, i.e.
specializations, similar to ACRONYM. Curves
and surfaces are represented at a level of ab-
straction. Geometric constraints can be in-
stantiated as algebraic constraints on which
symbolic manipulation can be performed. A
generic model of generalized cylinders was im-
plemented to provide an interface to the ge-
ometric modeling part of SUCCESSOR. This
model represents generalized cylinders explic-
itly as a spine curve and a cross section surface.
Constraints are more difficult to show in a fig-
ure than the set operations shown. About 90%
of screw types in a machinery handbook have
been modeled. A number of constraints do not
show up in figure 2: e.g. head and shaft are
coaxial: there are scaling rules, ratios of sizes,
which determine how components of different
sizes of a screw type scale. The result is re-
markably compact and powerful.

The generic hallway model is to be part of a
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generic building model. The particular exam-
ple was chosen in part as a simple example to
demonstrate effective use of a generic model
to guide perception in building a model of our
particular building. Even at an early stage,
initial results gave a much richer perception of
the hallway than the special purpose vision sys-
tem from the mobile robot. Important parts of
the model were functional, not geometric. Ge-
ometric constraints are derived from the func-
tional constraints. Major functions included
were: 1. Environmental isolation generates en-
closure and dictates connection of rooms to
a hallway. 2. Human movement and occu-
pancy places constraints on height and width
of doors, width of hallway, and height of rooms.
3. Gravity affects construction to make walls
and doors vertical and floors horizontal. 4.
Cost limits the size of construction to slightly
larger than human dimensions.

The next step is to use generic models in other
model-based vision domains, especially the do-
main of pipe fittings.

PHYSICAL MODELS OF SURFACES

Modeling of optical properties of surface ma-
terials and of sources has now been imple-
mented in SUCCESSOR [Ponce and Healey
88]. The surface material model is based on a
comprehensive model which is imported from
physics. The model includes homogeneous ma-
terials like metals and inhomogeneous materi-
als like plastic, specular and non-specular re-
flection. Non-specular reflection from inhomo-
geneous materials is important for the vast ma-
jority of surfaces seen in everyday life. A new
model from [Reichman 73] is an extension of
Kubelka-Munk theory which we have used for
spectral properties to date. The new model
has great significance in prediction and recogni-
tion of materials. Surface reflection, specu%ar-
ity, is modeled by Fresnel reflection augmented
by the analysis of [Torrance and Sparrow 67).
Body reflection is given by Reichman’s major
extension of the Kubelka-Munk theory. This is
the first non-trivial model for diffuse reflection
from the body of an inhomogeneous material
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in vision or graphics.

The model has some immediate consequences.
It allows discrimination of metals from non-
metals from color images [Healey and Bin-
ford 88]. The model predicts color variation
with geometry of body reflection from inho-
mogeneous materials, a variation overlooked so
far by other treatments. Another consequence
of the model is that reflection from homoge-
neous surfaces should have the same spectral
response over the surface, whether at a specu-
larity or far from one, over an intensity range
of several orders of magnitude. Figure 4 shows
results of experiments carried out which con-
firmed this prediction. We are unaware of any
such previous result.

GEOMETRIC MODELS OF SURFACES

Geometric models in SUCCESSOR
are part-whole graphs with generalized cylin-
ders as volume primitives. The class of gen-
eralized cylinders implemented in SUCCES-
SOR previously included star-shaped SHGCs,
i.e. straight homogeneous generalized cylin-
ders, which have straight axis, star-shaped
cross section, and arbitrary scaling along the
axis. Curved-axis solids of revolution {CSR)
have been added and integrated [Ponce and
Healey 88]. They have circular cross section
with variable radius, i.e. swept with a scal-
ing function along an arbitrary curved axis in
3-space.

Solid primitives are built up by an interactive
graphic editor and stored as files. Primitives
are assembled by a simple modeling language
into CSG trees (computational solid geometry)
with primitives connected by set operations,
union, intersection, and difference. Primitives
are related in a graph by affixment relations
which represent geometric transformations be-
tween coordinate systems of the parts. Geo-
metric relations between parts may be specified
by symbolic geometric relations between planar
faces of primitives, e.g. ”with face ifacel; in
contact with face jface2;”. These relations and
other affixment relations may be general ex-
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pressions with parameters such as time. Thus,
articulated objects which movein time are rou-
tinely modeled.

A boundary representation by trimmed sur-
face patches has been implemented. Trimmed
surface patches are subsets of the 2-d param-
eter space of the surface, limited by intersec-
tions and other restrictions. The adaptive al-
gorithm for computing intersections of SHGCs
by building variable resolution box trees has
been extended to CSRs (curved-axis solids of
revolution). Intersections are represented by
polygons in the parameter space of general-
1ized cylinder primitives. To maintain consis-
tent representation despite degenerate cases,
an analysis of [Ladlaw, Trumbore, and Hughes
86] was implemented. The intersection algo-
rithm is of order \/» in the number of poly-
hedral faces necessary to approximate the sur-
faces uniformly to the desired resolution.

Cross sections and axes of CSRs are formed
of curve segments which are now straight lines
and cubic splines, joined at knots which may
be C° C!,0rC?, i.e. with 0, 1, or 2 continuous
derivatives.

Several new rendering methods have been im-
plemented. Previously, limbs of SHGCs and
tubes were calculated in closed-form analytic
solutions. Z-buffer methods and ray tracing
were implemented for hidden surface display.
Now, back-to-front facet painting for single ob-
jects has been implemented. The method is
quite efficient. Ray tracing is performed with
the quadtree representation of surface patches.
Also, the screen is organized as a quadtree.
Some speedups have been incorporated for ray
tracing for line drawing display. Ray tracing
is performed only at limbs of surfaces. Fig-
ure 5 shows an example. Further, visibility of
contours changes only at occlusions, ie. T-
junctions. This has been implemented.

SEGMENTATION

[Lim and Binford 88a] show results from an al-
gorithm which presents a solution to the long-
standing problem of stereo surface reconstruc-
tion from two views of a featureless curved sur-
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face. Figure 6 shows the problem, two views
of the limb of a curved surface do not corre-
spond. The limb depends on viewpoint. The
solution is to make accurate constraints, i.e.
without surface marks, the constraint is that
we have four rays which are tangent to the sur-
face on an epipolar plane. These are four con-
straints. Surface marks for which correspon-
dences are established provide additional con-
straints. One choice for cross section curve is
a conic, which has five parameters. Four tan-
gents alone have only four constraints. Adding
a constraint which minimizes perimeter to area
provides a unique solution. There may be other
evidence in an image, e.g. edges which termi-
nate the surface. By assuming a generalized
cylinder which scales along the image, the ter-
minating edge puts additional constraints on
the curved surface estimate from the image.
Figure 7 shows a result for a cylinder.

[Lim and Binford 88b] show new results from
a hierarchical stereo system which builds high
level interpretations from separate monocular
images. It organizes the image into extended
edges which are organized into vertices SNalwa

and Binford 86, Nalwa and Pauchon 87|. The
accuracy of vertex determination is improved
by extrapolating edges into vertices. Figure 8
shows this organization. Three-dimensional in-
terpretation enables grouping extended edges
into surfaces, accounting for occlusion. Sur-
faces are grouped into bodies. Figure 9 shows
left and rnight images of a scene grouped into
bodies. Stereo correspondence is made at the
level of bodies, rather than at the level of epipo-
lar edge elements, which is typical. There are
about two orders of magnitude fewer bodies
than edgels. Correspondence of bodies requires
about four orders of magnitude less computa-
tion than matching of edgels.

An algorithm which finds regions as cycles
of curvilinear elements has been implemented.
First, edge elements are extended over gaps
by curvilinearity. Intersecting curvilinear el-
ements are determined. Cycles are determined
in the connectivity graph of intersecting edges.
Preliminary results are shown in figure 10. An-
other algorithm finds ribbons using smooth lo-
cal symmetry [Sumaneweera et al 88]. It uses a
projection method to cut computational com-
plexity. Local segmentation along edges using
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normalized color has been demonstrated.

TEXTURE

Currently, edge segmentation works passably
for scenes with large textureless image regions.
There is still room for improvement for texture-
less scenes, but segmentation is weak for scenes
with texture. [Vistnes 88] reports progress
in discriminating textures by some functions
which have been believed to be important.
They do seem effective in discrimination.

A dense set of directional operators were ap-
plied at a set of lengths, elongations, and di-
rections to estimate local length, elongation,
direction, and intensity [Vistnes 88]. Two
types of operators were employed, much as in
the visual cortex of animals, namely elongated
center-surround operators and edge operators.
For each individual operator, the significance
of a discontinuity in the mean value was esti-
mated by summing along strips along the oper-
ator’s direction and testing the significance of
a discontinuity in value of two linear fits, one
on either side of the center. Figure 11 shows
the form of the operator.

Overall significance was estimated by assum-
ing that each operator was independent. A
four-forced-choice experiment tested discrima-
tion between all pairs of 10 images from Bro-
datz. This experiment was run three times
for different numbers of lengths, elongations,
and orientations of center-surround operators,
and lengths and orientations of edge operators.
Discrimination was high, above 90% for typi-
cal preferred choice of operator set. To com-
pare with a standard texture operator, Laws
operator was run on the same experiment. It
achieved 40% discrimination. The textures
used were quite varied and did not have small-
scale texture. These results are encouraging for
further research.
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sion in the Intelligent Task Automation 1988.
Project”; Proc SPIE San Diego, 1984.
[Nalwa and Binford 86] V.S.Nalwa and
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Figure 6: two views of the limb of a
Figure 5: line drawing of curved surfaces. curved surface do not correspond.
Ray tracing was done only at boundaries. The limb is viewpoint dependent.

Figure 7: curved surface estimate using
stereo with tangent constraints.
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Figure 10: Cycles of edge elements.

An edge detector. It divides its receptive field ]
into N slices (here, N = 4) on either side of a hypothesized A texture edge formed from images D23 (peb-
edge, as shown. bles) and D94 (bricks).

Figure 11: Texture discrimination
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IMAGE UNDERSTANDING RESEARCH
AT THE UNIVERSITY OF MARYLAND
(December 1986 — January 1988)

Azriel Rosenfeld
Larry S. Davis
John (Yiannis) Aloimonos

Computer Vision Laboratory
Center {or Automation Research
University of Maryland
College Park, MD 20742-3411

ABSTRACT

This report briefly summarizes research in image
understanding conducted at the University of Maryland
during the 14-month pericd December 1986 through
January 1988. The areas covered includ. motion
analysis, 3D vision, range sensing, navigation, interpreta-
tion of aerial images, digital and computational
geometry, parallel algorithms, “pyramid” techniques,
and other topics.

1. MOTION ANALYSIS

Our research on the structure from motion problem
has dealt with the case of rigid motion using point
correspondences (microfeatures) or line or contour
correspondences (macrofeatures), as well as ‘‘correspon-
denceless” methods. We have also studied the nonrigid
motion problem, or in general, the problem of determin-
ing the transformation parameters when an object
undergoes a transformation as seen in a sequence of
images. We have developed a novel method of determir-
ing an observer’s motion parameters when a full (47
steradian) image flow field is available. [Other motion;
related work is described in the sections on 3D vision
and navigation.]

In connection with point correspondences, we have
obtained new results on how many points in how many
views are necessary and sufficient to recover structure.
The constraints in the cases where the velocities of the
image points are known, and the positions of the image
points are known with the correspondence between them
established, are different and have to be studied
separately. In the case of two projections of any number
of points there are infinitely many solutions but if we
regularize the problem we get a unique solution under
certain assumptions. Finally, we have developed an
algorithm for learning this particular kind of regulariza-
tion. [1]

We have also developed a theory of the computa-
tion of three dimensional motion and structure from
dynamic imagery, using only line correspondences. The

traditional approach of corresponding microfeatures
(interesting points—highlights, corners, high curvature
points, etc.) has shortcomings. We have obtained 2
closed form solution to the motion and structure deter-
mination problem from line correspondences in three
views. The theory has been compared with previous
ones thai are based on nonlinear equations and iterative
methods. (2, 3]

In the area of ‘“correspondenceless’’ techniques, a
method has been developed for the recovery of the
three-dimensional translation of a rigidly translating
object. The novelty of the method consists of the fact
that four cameras are used in order to avoid the solution
of the correspondence problem. The method is immune
to low levels of noise and has good behavior when the
noise increases. The noise immunity is so high that even
though the algorithm is intended only for translating
objects, its accuracy is very high even if the object is
rotating (with a small rotation) as well. [4]
