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PREFACE

This report was originally written as a manuscript for a paper submitted to IEEE Transac-
tion on Automatic Control in June 1983. In the process of modifying the manuscript, we had to
condense its technical discussions considerably and omit many details. One of our motivations
for writing the paper, however, was our recognition that the multitarget tracking problem is a
non-conventional estimation problem and needs a new mathematically sound foundation. Thus
we intended in this report to present the complete mathematical descriptions which we could not
include in the article. Naturally, our main objective in this report was to make every step in
theoretical development as clear and rigorous as possible, even at the expense of some readabil-
ity. The two major results are stated in the form of two theorems. Several details have been
added in order to ensure theoretical completeness. The review of the recently published NRL
report by Dr. I.R. Goodman has been added. In effect, this report summarizes our efforts at
A.J.&D.S. , from 1980 to 1984, to create a general theory of multitarget multisensor tracking.
Our original intention of writing a two-part paper remains; in the near future we will complete
Part II, which will contain implementational issues such as hypothesis management with several
illustrative examples.

The theoretical development for this report was mainly supported by the Defense Advanced
Research Project Agency under contract MDA903-81-0333. The documentation preparation was
supported by the continued contract MDA903-83-C-0333.

Li August 1984, Shozo Mori

U

* S. Mori, C.-Y. Chong, E. Tse and R. P. Wishne, "Tracking and Classifiving Multiple Targets Without
A Priori Identification." IEEE Trons. on Auto. Contr., Vol. AC-31, No. 5, May. 1986.
00 in 1985 Advanced Information & Eision Systems changed its name to Advanced Decision Systems
(ADS).
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Second Preface

A final draft of this report was completed in August, 1984, as mentioned above. Iaie to
very unusual circumstance, it has remained in that state for almost three years. Since we have %
cited this report in other papers, we are obliged to publish it. I hope that this process will be
finalized in teh immediate hture.

April 1987, Shozo Mori
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ABSTRACT

Based upon a general target-sensor model which
allows dependence among targets and state-dependent
target detection, a Bayesian solution to the multitar-
get tracking problem is derived. When this solution is
applied to a special class of models, a less general but
more implementationally feasible class of algorithms
is obtained. Representative existing algorithms are %
then compared with our results. By doing sow.epro-
vide 'a unified view on Bayesian approaches to the
multitarget tracking problem. Part I covers most of .
the analytical results, while in Part 13, hypothesis
management and other issues pertaining to implemen-
tation of multitarget algorithms are discussed with
several examples.
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NOMENCLATURE

S

Symbol Explanation

{x 1C} the set of x satisfying condition C.

{x } a singleton: the set whose only element is x. ,

'{xi"" ," }the set consisting of x t,, : {x1 , ,x,, }={I I <1i <n } (When
n =0, the set is empty.).

E, UnCC the standard set theoretic notations: member of, union, intersec-

tion, subset of and proper subset of.

the set substruction operation: A \B ={a EA IbB}.,

x the direct product: A xB={(ab) a EA and bEB}. E

#(.0 the cardinality of a set- #(E) is the cardinality of set E, i.e., the I
number of elements belonging to E.

'4,

f: A .--+B a function defined on set A taking values in set B.

(a,)VE , (a, ),- indexed tuple: theoretically equivalent to a function a defined on
set I or {1,....,n}. !

n ! factorial: n !=1.2...n.

0 function composition operation: (Yg)(x )=g(x)).

E) the indicator function of set E: x(e ; E) is 1 if e EE 0 otherwise.

IxL the semi-norm on a Euclidean space defined by a nonnegative
definite symmetric matrix A: IxI-=xTAx where xT is the tran-

spose of vector x.

Ak the assignment function at data set k: a random function defined
on a subset of the target index set IT !4 {1...,NT } taking values in

JM(k)- {1,.... NM(k)> where NT is the total number of targets
and N3 1(k) is the number of measurements in data set k.

A(IJ) the set of all the one-to-one functions defined on set I takinga%
values in J.

lot
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A a 0-1 matrix representing the constraint in the 0-1 integer pro-
gramming form of hypothesis evaluation.

(h)the normalizing constant for the batch-processing type hypothesis
evaluation for the hypotheses on the cumulative data set Z(-) in
i.i.d.-Poisson cases.

the normalizing constant for the modified batch-processing type

hypothesis evaluation for the hypotheses on the cumulative data

set Z(K) in i.i.d.-Poisson cases.

SNT (k) the density of new targets (Reid's terminology in [4]).

I3FA (k) the false alarm density: ,5FA (k)=vFA (k)/pk(Y,,) where vFA (k) is

the expected number of false alarms in data set k and Ms(YSk) is

the scan (search) volume of sensor Sk.

C k) the normalizing constant for the recursive hypothesis evaluation
equation at data set k in general cases.

(k) the normalizing constant for updating the number-of-target distri-
bution at data set k in general cases.

SC kr) the normalizing constant for updating the target state distribution
at data set k in general cases.

Sj CY 4) the normalizing constant for updating the track state distribution
conditioned by a cumulative data set Z restricted by a track r
with a measurement value y in ii.d.-Poisson cases.

c . the objective function coefficient vector in the 0-1 integer program-
ming form hypothesis evaluation.

Doa (f) the domain of function f.

E(.), E(-.) the mathematical expectation; unconditional and conditional.

, F"(. I') the transition probability of the target states in general cases when
the number NT of targets is n.

f[,(" I') the state transition probability for each individual target in i.i.d.-
Poisson cases.

hA
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g(v Ix,k) the density of extended state-to-measurement transition probabili-
ty at data set k:g(v Ixk)ispW(y Ixk)pD(x 1k)ify#O (real data
-- target detected) 1 -pD(x 1k) otherwise (no data - target un-
detected).

H(Z(K)) the set all the (data-to-data) hypotheses on cumulative data set
Z(K).

Hk the state-to-measurement matrix in linear-gaussian measurement
models.

hk() the objective function in the 0-1 linear programming form of hy-
pothesis evaluation.

IDT(k) the set of all the indices for the targets detected in data set k:

IDT (k)=Dom (Ak )Cr.

IT the target index set: IT-{T ... NT} where NT is the total number
of t arget s.

jJ j(k) the cumulative measurement index set up to data set k (when the

superscripts are dropped, J is the measurement index set for the
currently available cumulative data set and I for the same minus
the most recent data set).

JFA(k) the set of indices for all the false alarms in data set k:
JFA (k)-JM (k)\Im (Ak)

Jtf(k) the measurement index set at data set k: JM(k)={1,...,NM(k)}
where NM(k) is the number of the measurements in data set k. r

jFA (m ,X 1k) the set of indices for the false alarms in data set k hypothesized by
a hypothesis X given NM(k)"-m:

jFA (m, E1,...,) )(jk)LU( k)}.

k , k, K indices for data sets.

Lk(z(k),X Z(k-1), ) the likelihood of (z(k),\), i.e., the data set z(k) and the data-to- %
data hypothesis X, given the cumulative data sets Z(k- ) and the
predecessor hypothesis X, in general cases. p

Lk(y 1,) the likelihood of measurement y given a cumulative data set res-
tricted by a track, , in i.i.d.-Poisson cases.

Vi
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l(rL)I )  the track likelihood of track r given the cumulative data set Z(K)
at data set K in i.i.d.-Poisson cases. r

(7.7'k) the modified track likelihood of track r given the cumulative data %
set Z(K) in i.i.d.-Poisson cases with the Poisson number-of-false- "
alarm assumpt ion.

., the random collection of sets of measurement indices in the cumu-
lative measurement index set J(), representing the measurements"% -
from the (real) targets. (Each possible realization of Ak is called a * .. "
data-to-data hypothesis on Z(k). The subscript k is dropped when
there is no fear of confusion.

S
X X data-to-data hypotheses: X is the unique immediate predecessor of

X JZ the data-to-data hypothesis X restricted by the cumulative data
set Z.

X,,, the set of newly initiated tracks (hypothesizing newly detected tar-
gets) in data-to-data hypothesis X.

,ad the set of previously initiated tracks (hypothesizing previously
detected targets) in data-to-data hypothesis X.

PS the hybrid measure on the measurement value space Y, for sensor
S.

NDT (k) the number of targets detected at data set k: •
NDT (k)=# (Dr ())=# (DOM (Ak)).

NA '() the number of false alarms in data set k.

NM (k) the number of measurements in data set k.

N T (k) the number of targets which are detected at data set k for the first
time.

NT the total number of targets

NT the a priori upper bound on the total number of targets (possibly V
+oz such as in i.i.d.-Poisson cases).

1/0 the a priori expected number of targets in ii.d.-Poisson cases.

vFA (k) the expected number of false alarms at data set k. S

'.ii

S
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Vk the a posteriori expected number of undetected targets at data set

O~k the function defined on Ak taking values in the target index set
I - {1...,N}: f2k uniquely assigns a target index to each r in

Ak. (We call every possible realization of f£k a target-to-track hy-
pothesis. The subscript is dropped when there is no fear of confu-
sion.)

4.target-to-track hypotheses: hypotheses on the realization of fk: Z

is a restriction of w.

PD the detection probability function in general cases.

P the a posteriori probability of each data-to-data hypothesis at data
set k (hypothesis evaluation function).

PM the measurement value probability density function in general I
cases.

PNFA the number-of-false alarm function in general cases.

p k) the a posteriori distribution of the number NT of targets given a

data-to-data hypothesis at data set k in general cases.
pkk) the a posteriori target state distribution given the number of tar-

gets and a data-to-data hypothesis at data set k in general cases. J

Prob. the probability measure on the underlying probability space. J

PD the detection probability function in i.i.d.-Poisson cases.

pD the maximum value of the detection probability function in i.i.d.-
Poisson cases.

PFA the density of the distribution of the false-alarm values in i.i.d.-
Poisson cases.

PM the density of the target-state-to-measurement transition probabil-
ity in ii.d.-Poisson cases.

pVFA the number-of-false-alarm probability distribution in i.i.d.-Poisson
cases.

P, ( the track state distribution conditioned by the cumulative data set
restricted by a track, i.e., _,.

viii
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1i the n-target permutation homeomorphism.

71 a permutation on {1 ......,n }

Q(W) a labeled partition (Goodman's notation in [51).

Q11 the a priori target state distribution when the number \T of tar-

gets is n in general cases.

q0 the a priori target state distribution common to all the targets in

i.i.d.-Poisson cases.

Rk the error variance matrix in i.i.d.-Poisson linear-gaussian cases.

IR the set of -eal numbers.

S the set of sensors.

a super-sensor (used to explain the PDA and JPDA algorithms).

L Sk the sensor which generates the k-th data set.

Ek Ik-I the target state prediction variance in i.i.d.-Poisson-gaussian cases.

T(Z(k)) the set of all the tracks on the cumulative data set Z(k).

, -, the time at which the k-th data set is generated.

0 the symbol for "nothing," "no target present," or "no measurement
generated.": according to the usual convention, the set of all the
functions defined on the empty set taking values in a nonempty

& ", set consists of a single element whose domain and range are both
empty. e is a generic symbol for such a special function.

a track: a subset of a cmulative measurement index set such that
it contains at most one measurement index set for each data set.

W(Xn) the set of all the target-to-track hypotheses consistent with a
data-to-data hypothesis X and the condition that NT of targets is
n.

X the common space for the individual components of target states
in i.i.d.-Poisson cases.

X, the target state component when the number Nr of targets is n in
general cases.

LX
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X,,c  the space for the state component common to all the targets when
the number NT of targets is n in general cases. I

the space for the collection of individual components of target
states when the number NT of targets is n in general cases.

X, the individual target state space: X,,=X, x .-x X,'(n times), in gen-
eral cases.

X(t) the target states at time t in general cases.

x, () the state of the i-th target in i.i.d.-Poisson cases.

Xk k-I the predicted target state in the i.i.d.-Poisson-gaussian cases.

x the 0-1 vector representation of a data-to-data hypothesis in the ,
0-1 integer programming form of batch-processing hypothesis ,-,
evaluation.

Y, the measurement value space for sensor s.

y[rlk] the measurement value assigned to track r at data set k: y[r IkI is
yj (k) (the value of the j-th measurement) if (' ,k)E-r and is 0 oth-
erwise (there is no j such that (j ,k)Er).

y, (k) the measurement value of the j-th measurement in the k-th data
set.

Z , Z )  cumulative data sets: Z(k) is the cumulative data set available at
k. When the super scripts are omitted, Z represents a currently
available cumulative data set and Z is the same minus the most ,4

current data set.

4* the cumulative data set restricted by track r.
4={(y [r lkb&) ((z(k),Ic)EZ}.

z~[ (k)
N (k

)

z(k) the k-th data set: z(k)=((yj (k) )J' " ,&f (k)k40), where N. 1(k) is

the number of measurements and yj(k) is the value of the j-th
measurement in the data set. The k-th data set is generated by
sensor Sk at time tk. The k-th data set is occasionally simply I

called data set k.

the set of all the nonnegative integers.

xp
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1. INTRODUCTION

Multitarget tracking is a problem for tracking and classifying a (generally unknown)
number of homogeneous and/or heterogeneous objects (called targets as a generic name), based
on origin-ambiguous noisy measurements from homogeneous and/or heerogeneous sensors,

where some targets may not be detected and some measurements may not originate from any
object of interest (false alarms, clutters, etc.). When the origin of each measurement is known,
tracking and classifying are reduced to joint estimation of continuous and discrete (respectively)
parts of states of stochastic processes based on discrete-time observation. Multitarget tracking
problems are technically very interesting because they may require formalism which cannot be
found in traditional estimation problems. They have great importance due to their wide range
of applications such as air defense, air traffic control, ocean/battlefield surveillance, etc. In the
past two decades, this new field has attracted numerous researchers. Past achievements are well
documented in the survey paper [1] and the Naval Ocean Surveillance Correlation Handbooks,
[2] and [3]. The introductory section of [41 contains a short but exccllent survey and a recently
published report [51 discusses representative past results extensively. Despite considerable efforts
spent in this area, the present stage may well be characterized as an unorganized collections of
numerous "named" or "unnamed" algorithms. As correctly pointed out in [5], no general multi-

C target tracking concept has been created. This failure may be attributed to the general trend
that many algorithms are developed in very problem-specific ways and based on special assump-
tions. One of the objectives of this report is to create a set of basic concepts upon which
researchers can communicate with each other.

In a recent paper [6], an attempt was made to create a unified view on this subject by't "a

describing the multitarget tracking problems in terms of a special class of dynamical systems,
i.e., event-driven linear stochastic systems. In multitarget tracking problems, however, when
target detection and measurement assignment to targets are considered as an "event" process,
such a process is clearly driven by the target state process, not vice versa. In this report, we will
present a completely different view on the subject. We contend that the multitarget tracking
problem is "unconventional" or "non-classical" in the sense that it calls for a new type of
mathematical modeling and formalism. The essential features of the problem are: (1) The
number of the objects to be estimated is, in general, random and unknown. The number of
measurements in each sensor output is random and a part of observation information. (2) Gen-

1 eraly, there is no a priori labelingi of targets and the order of measurements in any sensor out-
put does not contain any useful information. For example, a measurement couple (vy'2) from a

r sensor is totally equivalent to (y2 y). When a target is detected for the first time and we know

it is one of n targets which have never been seen before, the probability that the measurement
originating from a particular target is the same for any such target, i.e., it is 1/n. The above
properties (1) and (2) are properly reflected when both targets and sensor measurements are con-
sidered as random sets as defined in [7]. We will tentatively call such properties random-set
nature. In short, according to our view, one of the fundamental aspects of multitarget tracking

By this, we mean that the targets does not have a priori identification.
See the last remark in Section 2.

i ',I
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problems is random-set nature. The uncertainty of the origin of each measurement in every sen-
sor output should then be imbedded in a sensor model as a stochastic mechanism which converts
a random set (set of targets) into another random set (sensor outputs).

Theories of random sets or stochastic geometry are mainly concerned with random sets
whose realizations 2 are uncountable sets such as closed, open or convex sets in Euclidean spaces,
and are mathematically highly sophisticated. Fortunately, when we restrict ourselves to random
sets whose realizations have only finite members with probability one, we can still apply stan-
dard probabilistic techniques. For example, a random finite set X of reals can be probabilisti-

cally completely described by specifying probability Prob. {#(X)--n}3 for each nonnegative n
and joint probability distribution with density p,(xi....) of elements of the set for each posi-
tive n. In order for this specification to be appropriate, however, we must require every p, to
be interchangeable (permutable). This is the basic approach which we take in this report. As in
almost all the existing literature on multitarget tracking, the basic task is to hypothesize the ori-
gin of each measurement and to evaluate all the possible hypotheses, or in other words; to gen-
erate and evaluate all the possible partitions of measurements. To accomplish this, we will
define hypotheses and tracks (two terms widely used but often vaguely defined) rigorously and I.
relate them to particular random sets.

In the next section, we will describe a general class of target/sensor models which form the
basis for the new general multitracking algorithm described in Section 4. Section 3 gives defini-
tions of hypotheses and tracks. For a problem statement, Sections 2 and 3 are quite lengthy, but j
necessary so, since to date there has been no mathematically rigorous problem statement for gen-
eral multitarget tracking problems, and some confusion seems to exist in basic modeling. In Sec-
tion 4, a general recursive formula for evaluating hypotheses is derived based on a general model.
In Section 5, we restrict ourselves to a more limited class of models, i.e., what we may call iid.
(independent, identically distributed) - Poisson (number of targets) cases. The results derived in
Section 5 are, however, general enough to include many existing algorithms roughly speaking as
a subset, as seen in Section 6 where we compare our results with other existing algorithms. Sec-
tions 5 and 6 together provide a set of implementationally feasible algorithms and a unified view
on existing algorithms. Part I covers most of the theoretical issues, whereas Part 1I of this
report describes hypothesis management and other implementational issues with simple exam-
pies.

P°4

2 In this report, a realiztaho of a random dement is synonymous with a sample, i.e., a partiiular value of
a random element when a point in the underlying probability space is specified.

For any set A, # (A) is the cardinality of A or the number of members of A.

2..
.4
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2. MODELS OF TARGETS AND SENSORS

2.1. Target Model A target is a generic name for the least unit of object which we wish to
track and/or classify and which, when detected by a sensor at a certain time, may generate a
measurement in the sensor's output. In our model, all the targets of interest are modeled as one
entity rather than as a collection of individual targets. Formally, a target system state at time t

is a realization (X( ),NT(t)) at t of a continuous-time stochastic process4 (X (t ),Nr ()),IE, ,o) on

a target system state space U (X1 x{n}) which is the formal disjoint union of a system
n -0

(X,, ),t of hybrid sets. By a hybrid set, in this report, we mean the direct product of a measur-
able set (called continuous part) in a Euclidean space and a finite set (called discrete part). The
use of hybrid sets allows us to include discrete component into the target states, e.g., different
types of targets (with different dynamics), sudden structural changes in dynamics (such as
maneuvers), changes in operational modes (such as stop/go modes), etc., in addition to the usual
physical (geolocational) states such as position, altitude, velocity and acceleration. The second
element, NT (t), represents the total number of targets in the system at time t. When n =0, X,
is defined as {O} where 0 is merely a symbol for "no target" and GiX,, for all n > 0. The follow-

ing assumption is made for the stochastic process (X(t ),NT (t )) E,o):

Assumption 1: (Constant Number of Targets and Markovian Property) The second com-

ponent of the stochastic process (X,NT), i.e., the number of targets NT, is constant but in gen-
eral random with a known probability distribution. For each positive integer n, given NT=n,
the first component X of (X,NT) is a temporally homogeneous Markov process on X. having
initial distribution

Q (dX) = Prob. {X (t O)EdX INT =n )

and transition probability

'7r
F- (dK IX) = Prob. {X(t + t)Ed IX(t )=X,NT -n (2)

for each XEX,, ,each tElt [,o) and each At >0.

Remark 1: The temporally homogeneity assumption can easily be removed. However, this
assumption reduces notational complexity in the following discussions. One should not confuse
the constant number, Nr, of targets with the number of detected targets or that of targets in

4t1 is the time when no sensor has begun operating yet.

6
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the sensors' fields of view. For example, when the targets are born and die as in the models
described in [5] and [8], we can imbed an appropriate birth-death process into the target dynam- i.

ics. In such a case, Nr is the total number of all the targets which once exists in a nonempty
interval included in [to,oo). Implicitly, we have assumed the finiteness, i.e., Prob. (NT < o)=1,
which correctly reflects the reality 5 , while an upper bound /VT such that Prob. {Nr _<ir }=1
may or may not exist.

In order to model the random-set nature of the targets as a whole, we need some additional
structure in the model: First, for each positive integer n, we assume that the component X, of
the target system space is further decomposed as

X, = XCX, (3) ,

where X C is the space for the common target state for all the targets in the system and
X t=Xx ... xX(n times) is the direct product of n identical individual target state spaces
X,'. In a simple example, X,=({} (no common target state space) and every X,' is a hybrid
space so that, for each n and t, when Nr=n,X()=(xz(t),...... ,,()) and each x (t) represents
the i-th target's state in X,' at time t. In another example, XC-Xi-R 2 (- the set of pairs of

reals)6, and (xoxl ..... x,, ) in X,, represents a target system state for a group of targets, where .

x0 is the hypothetical centroid and each ; is the displacement of target i from x0. We call a ,
function rl:X, .-.. X,, an n-target permutation homeomorphism (induced by a permutation 7r) if, for
every (Xc,(X ):'.1) in X, =XCx X1, we have .R,,

W 'M ,V- "1) -- WY (X,(oV))_..) (4)

for a permutation 7r on {1,...,n }. Then we can state our interchangeability requirement for tar-
gets in the following way:

S

Assumption 2: (Target Interchangeability (1)) For each positive integer n, initial distribu-
tion Q" and state transition probability F' are interchangeable (or permutable) with respect to

the individual target state part X t of X,, i.e.,

Qn (11 (dX ))=Q n (dX) 5
0 0

s Consider all the airplanes in the world. The number of the airplanes which have been built by the
present time is of course finite. The number of airplanes which will be built in the future is also finite
although a probability-one upper bound on it may not exist.
6

4
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and

S
Fn,(n(dx)In(x))= F (d" IX), (6)

for any n-target permutation homeomorphism fl.

This assumption states that there is no a priori labeling 7 of targets and the labeling by

means of integers, {1,..,n }, is just one of many equivalent ways of labeling. Since targets do not
have a priori labels, sensors can not treat targets with a priori discrimination. This fact must be
incorporated into any sensor model as will be done below. Thus our target model is represented
by (Prob. {NT =n },Qn ,(F", )A, >0),0 which satisfies Assumptions 1 and 2.

2.2. Sensor Model Let S be a finite set of sensors. Each sensor s in S is modeled as a gen-
eric mechanism which observes the target system state space and generates a finite set of meas-

urements, called data setsg, intermittently according to a certain sampling pattern. Each meas-
urement in a data set output from sensor s in S is an element of measurement value space Y,
for sensor s. Each Y. is also a hybrid space with hybrid measure p. By the hybrid measure
on a hybrid space, we mean the direct product me-asure of Lebesgue measure on the continuous
part and the counting measure on the discrete part. The continuous part of Y, may be used for
analog information such as range, azimuth, elevation, etc., whereas the discrete part may be
used for discrete information such as size/ cross-sect ion classification of aircraft radar images,
wheeled/tracked classification of ground vehicles, etc.

Formally a data set is a random element ((Y ,'',NM ,t ,s ) which is an element of

0ui u~ ( (Y. rx (mx [0 ,oo)xfs))

and represents Nm measurements, YI ..... generated by sensor s at time t.
(Y.)r =Y, x .... x Y, (m times) and (Y)O--{O) where 0 is a symbol for "no measurement." As we

did for targets, we have included the number NM of measurements in each data set to model
objects with variable number of members explicitly. The purpose of the inclusion of (t ,s) is 1o
make clear the source of each information. Then we call any collection of such data sets a

cumulative data set. The following six assumptions are used to further specify our generic sensor
model:

See the last remark in this section.
s synonymous to scans, frames, return sets, etc.

5
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Assumption 3: (Finite Sampling Rate and Known Exact Timing) Every sensor generates at
most one data set at any given time t EIto,oc) and it produces only a finite number of data sets
in any given finite interval in [topo). The time (tE[t 0,oo)) and the source (sES) are exactly
known. The sensor scheduling is completely determined by each sensor and is assumed to be
independent of the target system.

Assumption 4: (Conditional Independence) Given the target system stochastic process,
each data set is independent from other data sets and depends only on the target system state
at the time it is generated.

Assumption 5: (No Merged Measurement) Each measurement in each data set may or may 0
not originate from a target. When a measurement in a data set originates from a target, it does
not originate from two or more targets.

.1

Assumption 6: (No Split Measurement) No target generates more than one measurement in
any data set.

Assumption 7: (Random Order) The order of the measurements in any data set contains "' A
no information about targets. Li

Assumption 8: (Absolutely Continuous Distribution) For each data set from sensor s in S, LJ

given the target system state, the set of detected targets, the number of measurements and the
assignment of the detected targets to the measurements, the joint distribution of measurement
values has density with respect to hybrid measurep,.

Assumption I implies there are at most countable data sets generated in [to,oc). Thus,
throughout the rest of this paper, we assume that the data sets are indexed by positive integers

as9, z (1),z (2),z (3) ....., where

z (k) ((y (k )NM(kkk)%

is the k-th data set, in such a way that tktk Whenever k<Jk-' We will call each z(k) simply data
set k. Since (tksk) is assumed to be exactly known (Assumption 3), we may treat them as non-

°S.

9 Altemativdy, we can index data sets by their third and fourth components, i.e., time and source (t.s),
which by Assumption 3 can identify data sets uniquely. This alternative indexing is useful when we -isid-
er target system state estimation based on different cumulative data sets.

6
9

-S"'
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random elements. Assumption 4 then should be interpreted as follows: For any cumulative data
set {: (1) ......,z(K )}, we have

K
Prob. (fl,{z (,)e(Ekx {(' (, ,)})} I (X (,,))A.,NTv) =

K (8) i

H Prob. ({z (k )E(Ek x {t Sk )})} I X (T )T
k-1

where each Ek is a measurable set in U (YI) mX m}, i.e., Ek=oU xm} with ech EZ'

being a measurable set in (Y,,)m. Therefore, modeling sensors means .c'ecifying each factor on

the right hand side of (8) for each k.

One of unique notions involved in multitarget tracking problems is "detection of targets" or
"origins of measurements," which can be modeled under Assumptions 5 and 6 as follows: First we
define a random set

T, = {i E7-+ I1<i <NT} (9)10

F which we call target index set. For each k, random set

JM() =J + I1<j _NM (k)} (10)

is called measurement index set at k. Then, for each k, we assume a random function" Ak
1_ defined on a subset of IT and taking values in JAI(k). We call such Ak assignment function at

k. j=Ak(i) means that the i-th target is detected by sensor $k at time tk and generates the j-
th measurement, or -th measurement originates from i-th target. Thus

IDT (k DOM (AJ)12

is the random set consisting of indices for targets detected by sensor sk at time tk (or detected in
data set k) and

10 7+ is the set of all the nonnegative integers.

It Usually a random function is defined as an random elemnt whose samples share the same domain it
the domain of the random function Ak may differ from sample to sample.
2 For a function f, Dor (f) and Im (f ) are the domain and the range of f.
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JpA (k ) = Jm(k l\tm (Ak) (12) 13

is the set of indices of measurements in data set k which do not originate from any target. We
call such measurements false alarms14. Assumpfion 6 then implies that any realization of assign-ment function Ak is one-to-one• For the later use, we define random integers, i~e, the number of

detected targets at k-

NDT (k) = # (VDT (k)) (13)

and the number of false alarms in data set k

NFA(k) # (JFA (k)) . (14)

Then we have an obvious relationship ]

NM (k) = NT (k) + NFA (k) (15)

for each k.

We may visualize our generic sensor measurement generating mechanism as the following
four-step processes, for each k:

(1) Detection: For each nonnegative integer n, let D(n) be the collection of all the subset
of {1 .... ,n}. D(n)-{0} when n--O. Apparently, NT=n implies IDT(k)ED(n) for each k.
Then the detection mechanism can be specified by the detection probability function defined by

PD(D IX,n,k) = Prob.{DT(k)=D IX(tk)=XNT =n} (16)

for each (D,Xn)EUD(n)xXnx {n} and each k. When DiD(n), the right hand side of (16) is
n-0

0.

13 \ is the set subtraction operation, i.e., for two sets,A and B,A\B={aEA Ia B}.
14 They have also many other names such as false returns, clutters (in case of radars), nuisance targets
(not real targets), etc.

8N
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JFA (k) J (k)\ Im (A,,) (2
(12

is the set of indices of measurements in data set k which do not originate from anty target. We
call such measurements false alarms'4 . Assumption 6 then implies that any realization of assign-
ment function Ak is one-to-one. For the later use, we define random integers, i.e, the number of
detected targets at k

NDT (k) # VDT (k)) (13)00

and the number of false alarms in data set k

NFA (k) #JFA (k)) (14)

Then we have an obvious relationship j~

NM (k) NDT (k) +NFA (k) (15)

for each k.

We may visualize our generic sensor measurement generating mechanism as the following '

four-step processes, for each k:

(1) Detection: For each nonnegative integer n , let D(n ) be the collection of all the subset
of {1 ... n). D(n)-={O5 when n-=O. Apparently, NT=n implies IDT(k)ED(n) for each k.
Then the detection mechanism can be specified by the detection probability function defined by

PD (D I Xn kA) = Prob. {!D (k)=D I X(tk)==XNT =n }(16)

00 -

for each (DKn)EUD(n)xXnxfn} and each k. When Di D(n), the right band side of (16) is

0.0

13 \ is the set subtraction operation, i.e., fcr two sets, A and B,A\B={aEA Ia B}.
SThey have also many other names such as false returns, clutters (in case of radars), nuisance targets

(not real targets), etc.

8

% P



TR-104801 ' May 12, 1988 Section 2

(2) Number of Measurements: Because of relationship (15), given the number NDT (k) of
detected targets in data set k, the number Nm(k) of measurements is determined by the number
NFA (k) of false alarms. Its statistics can be specified by the number-of-false alarm probability
function,

P,,,,(in I ,n ,k) = Prob. {NFA (k)=m I IDT (k)=D X (k)=X NT =n } (17)

for every (m ,D ,X,n )EMx (UD(n)xXnx{n}) and for each k. When D iD(n ), the right hand
n-0

side of (17) is arbitrary.

(3) Random Assignment: According to Assumption 7, given the set IDT (k) of detected tar-
gets and the number NAI(k) of measurements for each data set k, the assignment of the origin of
each measurement is totally random. In other words, every possible realization of assignment
Ak is equally possible. For any pair (I ,J ) of finite sets, define p

A(I,1) = {a'1-.J ja is one-to--one. } . (18)

Then # (A (I,.)) is # ()! ) when # (J) # (1) and 0 otherwise. Therefore we have, for
(1 ()-# (V)!

any k,

Prob. {Ak =a INM (k)=m ,DT (k)=D ,X (tQk)=X ,NT =n) = (m -# (D)). (19)m!

for every (D,X,n)EUD(n)xXnx{n}, every m>#(D) and every aEA(D,{I .. ,m}). When
n-0

a CA(D,{1 .....,. m }), the left hand side of (19) is of course 0. It is arbitrary if m < # (D).
.N

(4) Measurement Values: Through the above three steps, we have determined which tar-
gets are detected, the number of measurements and the origin of each measurement. The last
step is to assign some measurement value to each measurement index jEJM(k) being condi-
tioned by (Xtk),NT), Nm(k) and Ak. By Assumption 8, we specify this step by the measure-
ment value probability density function defined by

PM(y a m ,X,n ,k) 1,'(dy) Prob. {iyEdy iAk=a, '(k)=m ,Atk)=X,NT (20)

for every (X,n )E U X, {n}, every (a,m) such that a EA(D,{1,...,m}) and m ># (D) for some
n,-1
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DC{1 ,....,n }, and every y E(Ys,) m , where u' is the m-tuple direct product measure of ,-"-f
0

Thus our generic sensor model is specified by detection probability function PD, number-
of-false-alarm probability function PNA and measurement value probability density function %

PA'. F, -

Remark 2: We should note that that the above three functions defining the generic sensor
model in (16), (17) and (20) are, in general, all conditioned by the target system state at time 1k

when each data set k is generated. In particular, (16) is not the joint probability of target ii
detection but is a conditional probability of target detection conditioned by the target system
state. Therefore, no-measurement data set (O,0,4,0k), i.e., "sensor sk is up at time t k but does
not observe anything," is at least potentially as informative as other data sets with positive
numbers of measurements. For example, for a sensor monitoring radio communication of a tar-
get, the probability of detecting the target is zero if the radio equipment of the target is turned
off. Thus the absence of any reception while the sensor is up may provide vital information on
the state of a target in some cases. In another example, an MTI-type1 5 radar may detect targets %

only when the absolute values of targets' radial velocities exceed a given threshold. In such a
case, the absence of radar return around the position where a target is expected to exist may be
a valuable information indicating the targets stops somewhere in the vicinity of that position. It
should also be noted that, in our formulation, every data set contains nwnber-of.measurement
information, and hence, every sensor is a type-1 sensor in Reid's terminology in [4]. A type.2
sensor in his terminology is a sensor which generates data sets each of which contains at most
one measurement, i.e., NM(k)<I for all k, and is not treated separately in our formulation.

Remark 3: For sensor systems with measurement time delays dependent on the target
4._

state (e.g., acoustic sensor systems described in [9D, a simple model where the target state is a
pair, (positionvelocity), may violate Assumptions 3 and 4, and/or other assumptions. In such a
case, in order for our formulation to be applicable, careful modeling is necessary so that all the
assumptions made so far are valid at least in an appropriate sense of approximation. Although
Assumptions 5 and 6 are quite standard in the multitarget tracking literature, their relaxation
may be required in some applications. Assumption 5 may be relaxed by assuming a random col-
lection of subsets of target index set Ir and by considering each of such subsets as a potential
origin for a measurement for each data set. Recently an algorithm which allows measurements P

to be merged has been developed in [10]. At this moment, however, it is not clear how to relax
Assumption 6. In this report, we will not attempt to relax these assumptions. Another way to
state Assumption 7 is that a data set is the unit of sensor data in which the order of measure-
ments in it does not contain any information about the targets. In some cases, however, the
order of measurements from a set of returns may contain information about targets; Such may %

15 MTI - Moving Target Indicator

10
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be a case when a radar uses a particular scanning pattern. In such a case, the data set should
be further divided to the point where the measurement order does contain any significant infor-
marion about targets.

Finally, in order to reflect the random-set nature of targets correctly, we must requirc the
following interchangeability assumption in addition to Assumption 2.

Assumption 8: (Target Interchangeability (2)) Detection Probability function PD, number-
of-false-alarm probability function PN and measurement value probability density function PAf

are all invariant under target permutation, i.e., PD(7r(D) [H(X),n ), PNA(m [7r(D),Il(X),n ) and

Pf(V Ja,,,fl(X),n) are all invariant with respect to any n-target permutation homeomor-
phism 1] induced by a permutation r on {1.,n }, where .

7r(D ) -- r(i )Il i ED ) ,

and, when a EA(I ,J), a ,:7r(Dom (a ))--+J is defined by 1 6

a (i) (z r-t Xi) a(7r'(i

for all i Er(Do-n (a)).

Remark 4: We may characterize the two target interchangeability assumptions, Assump.
tions 2 and 8, as target without a priori identification, although the use of term, "identification,"
may well be controversial since it is used in other areas of control theory with very distinctive
meaning such as system identification, parameter identification, identification of weighting func-
tions, etc. Suppose that the total number of targets is n and that there are m detected targets
(of course m <n). Then, with the interchangeability assumptions, any one of n V(n -m)! possi-
ble ways of associating the m sets of data to the n targets is equally likely. This means that
the targets are not discriminated from each other a priori or they are not identified a priori. On
the other hand, if each target index has a specific meaning identifying a specific target, we may
say the targets have a priori identification. This concept of target identification should also not
be confused by "target classification." Almost all the "real" targets have unique identification,
such as name, number plates, manufactory serial numbers, etc. However, in a target model
where the targets do not have a priori identification, such identification is not considered within
the model. Therefore the targets are labeled or discriminated with each other only through
measurement indices. In such a model, the target classification is to determine the targets'
discriminants as much as possible and the ultimate classification is to determine the 4

a6o is the function composition operator and r- is the inverse function of r.

,..1
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identification of each target by means of a name, a registered number, etc., whenever it is possi-
ble. We will see more discussions on this subject in the next section as well as in a part of Sec-
lion 6.

3. TRACKS AND HYPOTHESES,
p

Although tracks and hypotheses are among most frequently used terms in the multitarget
tracking literature, they arc not often explicitly defined. Our definitions of tracks and ,J
hypotheses introduced in this section closely follow Morefield's notation in [11] but differ in one
crucial aspect, namely separation of the measurement-value information from the number-of- '
measurement information in each data set. In other words, we will form tracks and hypotheses
on the set of measurement indices rather than directly on the collection of data sets.

First we wiU remove the measurement-value information: For the moment, let Z be the
cumulative set up to K, i.e., "-,

Z = {z(k)II<k<-K} (21)

Then we call .0

K%
-- U JM (k)x }

k-I ' (22) ,

K
= U { .... NM(k)}×x k }

k-I

the cumulative measurement index set at K (or up to K or associating the cumulative data set
Z). Then the cumulative data set Z represents all the information available up to and including
the most recent data set z(K). Every (jk) in the cumulative measurement index set J
represents the i -th measurement in data set k generated by sensor Sk at time t k Define a ran-
dom collection of subsets of J by

A = { (i ,k)Ij=Ak(i)and lk<K}I 1i N } } ()(23)

= {Tk(i ) - {")tj=Ak(i )and 1<k<K k }#0 1<i <NT}

12
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Each member of A is a set of measurement indices which are included in the cumulative mcas-
urement index set J and represent all the measurements originating from a target indexed by an

iEIT. Since each A is a random one-to-one function (corresponding to the no-split/merged-
measurement assumption, i.e., Assumptions 5 and 6), it follows from definition (23) that A must
sat isfies the following conditions:
(i) Each member of A is not empty and contains at most one measurement index for each data

set.
(it) Any two members of A do not share a common measurement index at any data set.

Then we call any possible realization X of A a data-to-data association hypothesis or data-
to-data hypothesis or simply hypothesis at K or on the cumulative data set Z. Let the set of all
the data-to-data association hypotheses at K be denoted by H(Z). On the other hand, any sub- C.

set 7 of cumulative measurement index set J is a possible "trace" of a target (detected in at least •
one data set up to and including K) and called a track at K or on cumulative data set Z if it
contains at most one measurement for each data set up to and including K. The set of all the
tracks on cumulative data set Z (or at K) is denoted by T(Z). Namely, we have

T(Z)= {_rJ I#(rlk)<1 for all k such that I<k<K} (24) 17 -

and %
-rT Ifr2=0 for all.(25)

H(Z) = .XT (Z)\{0} I(rr 2 )EXx X such that rj#r 2l "

In (24) and other subsequent equations, we define

rI k = E{j + I U A )E7 (26)

for any rC72.4x Z+. We should note that the empty collection 0 is included in H(Z). We call
such hypothesis null hypothesis, which hypothesizes that all the measurements in cumulative

hypothesizes a target not detected in any of data sets up to and including K.

Given a cumulative data set Z, each XEH(Z) hypothesizes the following events:p..

(1) There are # (X) targets which have been detected and generated at least one measurement
in at least one data set up to and including K. This means number Nr of targets is at

least # (X).
(2) Each track r in X corresponds uniquely to a target which have been detected at least once

up to and including to K.
As. ,.

17 The definitions (24) (or (25), respectivdy) can be easily extended to the set of all the hypotheses (or S

tracks, resp.) on an arbitrary cumulative data set rather than Z defined by (21).

A13
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(3) (j ,k)Er for a track r in X means that the j-th measurement in data set k originates from a
target identified by track r.

(4) For any k<K and rEX, rlk=o means that the target identified by r is not detected
(falsely dismissed) and hence generates no measurement in data set k.

(5) J\(UX) is the set of all the measurement indices of false alarms in all the data sets up to
and including to K.

It follows from the above discussions and the definitions A that

Prob. {AEH(Z)Iz} = Prob. {AEH(Z)IJ }

= E Prob. {A=X IZ}
XEH(Z) (27)

E _ Prob. {A=XJJ (27)

XEH(Z)

J

which means that set H(Z) of all the hypotheses on cumulative data set Z is a mutually distinct
and collectively exhaustive set of "explanations" of the origins of all the measurements in cumu-
lative data set Z. We should note that, in order to generate all the hypotheses in H(Z), we only
need cumulative measurement index set J or equivalently number-of-measurement sequence,
NM(1),NM( 2 ) ...... The objective of the rest of this report to evaluate each hypothesis, i.e., to
calculate its a posteriori probability Prob. {A=X IZ} and to infer the target system state
(X(tk),NT) under each hypothesis. We need a few preparations before the next section in which
the main result of this report is stated. "

First define a random subset of target index set IT by

K K
I = U Dom(Ak) = U !DT(k) (28)

k-1 k_1

which is the set of indices for all the targets detected at least once in a data set up to and
including K and is called cumulative detected target index set. Then definition (23) of A implies
# (I)=# (A). Although A "explains" all the origins of measurements in cumulative data set Z,
it does not tell us which track comes from which target. In other words, the target labeling by
{1,..,NT} is lost in the set operation in (23). This uncertainty can be represented by another
random function fl which is defined on A and taking values in IT . For each r in A, n(r) is
defined as an i such that .5

r ={(k)Ej Ij=Ak(i) and l<k<K} (29)

V, Asz
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Since each Ak is a random one-to-one function, such an i is unique, and hence, Q is well defined.
Moreover any realization of fl is also one-to-one and Jm(fQ)=I. We call any realization of Q2 a
target-to-track hy.pothesis on Z and any realization (w,X) of (f,A) a target-to-data topothesis on
Z. Let WV(X,n) be the collection of all the target-to-track hypotheses under assumptions A=X
and NT =n, i.e.,

W(,,n) = w :-{1,. ..,n} is one-to-one.} . (30)

We should note that pair (f2,A) is nothing but another form of representation for the assignment(tuple (Ak)[.I. This is so since, for each k, we have

Dom (Ak) = DT(k = {i EIm (f0) I f'(i) [k ,0} (31)

and

= Ak(i) if and only if {i}=f-t(i)k (32)

As a consequence of our target interchangeability conditions, we have the foUowing important
lenma:

Lemma1: For each XEH(Z), for each n ># (X) and each wEW(Xn), we have

Prob. {l--w I A=X,NT =n } # (W (,,))-= (n .- (X))! (33) -

Proof: Since W(Xn) contains all the target-to-track hypotheses when conditioned by A=X
i and NT =n ,we have

Z Prob. {n=w I A =X>, =n) =1 . (34)
wEW(Xn) 9

On the other hand, if wiEW(X,n) and c2EW (,,n ), there exists a permutation 7r on {1,..,n } such

that wl=u w, or w(r)=fr(w2(r)) for all rEX. Since # (W(Xn ) W W ( to show (34), it suf-(n --#())

fices to show that Prob. {f2=z w IwA=X,NT } or equivalently Prob. {f2=v w,A=X INT } is invariant
under any permutation 7r on {1,...,n}. Since (f2,A) is one-to-one to (Ak) k., there exists (Ok) kj.,

such that

15
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K

{f1=,A=X = fl {A,=ak)

k-1

Thus, using Assumption 4 (Conditional Independence), we have

Prob. {=w,A =X I Nr =n}

K
= 3 Prob. {fl=w,.A=X\ I("(tk))k.=(Xk).lNTr=n } Prob. {(X(tk))f.l 1 dk INr=n }

= Prob.( mAk=a})(X(tk) k- ( -,Nr=n)Prob. {(X (tkk)).1E h.dXk INr =n

= I Prob. (Ak=ak X(tk)=Xk,NT=n}Prob. {(X(tk)).lEhd. ' INT=n}
k-1 -

Using (16), (17) and (19), we have, for each k, .

Prob. {Ak=ak IX(tk)=-Xk,NT =n } = PD (DOm (ak) IXk,n)

,M,,n()- (-&-W (1- (ok)) (m +# (Ia (ak)))! No ,

Therefore, it follows from the target interchangeable assumptions, Assumptions 2 and 9, that
Prob. {fls w,A=X INT =n } is invariant with respect to ir. Q.E.D.

This lemma is very important. First this lemma states that we do not have to evaluate
every target-to-data hypotheses (wX) instead evaluation of every data-to-data hypothesis is suffi-
dent. Secondly this lemma gives a hint as to what should be the appropriate set of variables to
propagate forward when we evaluate each hypothesis recursively. The importance of this choice
may be illustrated in the following very simple example: "

Example 1: Assume Prob. {NT=2}-1, X2={S,S 2}, and targets are stationary and i.i.d.,
i.e.,

Q2(E)= 2 q(i1 )q(i 2) a"

with some q :X,-..(O,1) such that q(S 1 )+q(S2)=l. Suppose we have a data set

16 Iv
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Z.(1)=(SIS,2 1,s 1) from a sensor S1  at time 112!10 with PD({I,2} IX2,1)=I,

PSF.(0 D,X2,1)=I, and PM(Xo(I),24(2) Ia 2,(XjX 2),2,l) = 1, where Y, ={S, 2}. Namely, the

probability detection is one, no possibility of false alarms and the measurement error is zero.
Let Z={z(1)}. Then apparently Prob. {A=X IZ}=l where X={ri,r2), rt={(1,1)} and r2={(2,1)}.
Then, by Lemna 1, Prob. {fQ=-.A=XNT=2}='. for each one-to-one function w from X to
{1,2}. Thus, we have

Prob. {X(t )=(S,S2) INT=2,A=X,Z} = Prob. {X0 1)=(S2,S1 ) INT=2,A=X,Z} = I.

Namely conditional distribution of targets is no longer independent although the a priori distri-
bution is independent. This is a direct consequence of our assumption of no merged measure- S
ment, i.e, if a target is at S , the other target must be at S2, and vice versa. The mixing of the
target state distribution with all the realizations of fl, which are all equaly likely because of the
target interchangeability assumptions, thus turns the independent a priori distribution into a
posteriori distribution with cross-correlation. In this particular examp!e, the a posteriori distri-
bution is still interchangeable. In general, however, this kind of mixture may create very compli-
cated a posteriori distributions. On the other hand, if we conditioned the state distribution by
one of the equally probable realization of £1, then the a posteriori distribution is still independent
although, in this particular example, the distribution is degenerated.

This example suggests that

Prob. {X (tx )Cd INT =n ,A =X,Z}
- Prob. {X(tx )EdX INr=n,f- -w,A=XZ} Prob. {fl=w INT =nA=XZ)

EW(J\,,)

n ww(),,,)

may not be in an appropriate set of variables to propagate forward when we evaluate
hypotheses recursively and infer the target state (XNT) accordingly. We may say the above

mixture is an unnecessary "over-aggregation" of information. For this reason,

Prob. {X(IK)EdX [I=w,A=X,NT,Z}

is more appropriate as shown in the next section.

Before we close this section, we will investigate the relationship among tracks and

hypotheses. For this purpose, we consider all the cumulative data sets and, to explicitly

17
a._
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represent the difference, we denote the cumulative data set up to K by Z(K). The corresponding
cumulative measurement index sets are denoteed by j(K). Then such cumulative sets (and
cumulative measurement index sets) are finitely or at most countably many. Then apparently,,.
we have the inclusion relationship,

T (Z)) C T (Z ( ' ) ) and H(Z( ) ) C T (Z(k:))

for all kl k2. Redefine Z as the maximum cumulative data sets, i.e., Uz(k)-U- Z(k). Then, -

k>1 k>1

for any track TET(Z), we call rf-l(0) the restriction of track ron Z(kT. For any hypothesis
XEH(Z), we call

x iz~k= {rfl(k) ITEX}\ {21

the restriction hypothesis X on Z(k). When a track r, is a restriction of r2, we say r, is a prede- -l

cessor of %, or equivalently, r2 is a successor of rT . This predecessor/ successor relationship is
defined on H(Z) through the above restriction operation in the same way. Then each

predecessor/successor relationship defined a partial order on each of T(Z) and H(Z).1 An
immediate predecessor of any track or any hypothesis is unique and called a parent (always sin-
gle). Therefore both T(Z).and H(Z) are arborescent (tree-like) with such partial orderings, i.e.,
the set of predecessors of any element is totally ordered. This justifies the commonly used ter-
minology such as hypothesis tree or track splitting.

We conclude this section by the following remark:

Remark 5: According to Morefleld's notation in [111)9, a track is a subset of a cumulative
data set Z rather than a cumulative measurement index set J as in our formulation. When a
track is defined in such a way, it include measurement values, and hence, the a priori probability
distribution or its density of a hypothesis (as defined as a possible collection of tracks) is very
hard to calculate and may not be well defined. For example, the validity of the following two

equations' is questionable:,V

P (X) = exp(-vFA ) (vFA ) N /NF, 
Ze

where VFA is the expected number of false alarms and NFA is the hypothesized number of false

alarms, and -N-

IS The partial order on T(Z) is merely the set-inclusion partial order.
19 In Morefield's notation, r is a hypothesis and X is a track.
20 Each of these equation is in [11].

V , le-



TR-1048-01 May 12. 1988 Section 3

P(X) = 1- L)
'EX

whcrc 1, is the lcngth of track r and L is the expected track length. We will present an alterna-
tive batch-processing type formulation in Section 6 and a possible application 0-1 linear pro-
gramming techniques.

' 4

4. GENERAL RESULTS

This section describes the main result of this report, i.e., the recursive hypothesis evalua-
tion formula. All the assumptions made in Section 2 will be used. However, we should note
that we have made very general assumptions which allow dependence among targets although
the target interchangeability is still crucial to our derivation of the general algoithm. To expli-
citly specify cumulative data sets, we denote cumulative data set up to k by ZQk), and accord-F ingly, the cumulative measurement index set up to k by j(k). Instead of (23) and (29), we use

Ak = {{(Aki),k)'liEIDT(k)'and l<k<k} I1 < NT {%

andF: S

flk(r)=i if and only if = k() J =Agi ) and 1 <k<k}

Each hypothesis on Z(k) can be evaluated recursively according to index k. With usual I

notational abuse of P, we have

P (Ak I Z(k)) -p (Z~k),A* I Z(k- 1),Ak-3. k1 k)) (35)
P (Z(k)Z -1 )) I -

for each k. Since P(Z(k) IZ(k - )) is the normalizing constant, the hypothesis evaluation, i.e.. the
calculation of P(Ak IZ(k)), can be accomplished by calculating P(Z( ),Ak IZ(k-1),4-1_) if
P (hk_ 1 IZ(k- 1 )) is known under the recursion assumption. This is done by considering all the
factors involved in this term, i.e., the sensor models specified by the detection probability func-
tion PD, the number-of-false-alarm probability function PNA, the measurement-value

19
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probability density function PMA, the target system state estimate based upon the previous
cumulative data set Z(k- 1, and at last most importantly, by random assignment of measure-
ments and target interchangeabiLity.

To accomplish the recursion, we must chose an appropriate set of variables 2 . We should
have a complete sct of information from which we can calculate P )(Z),Ak " Z(k-'Ak_1) while we
wish to minimize the set of variables which we must carry forward. Taking the consideration
made at the end of the last section into account, the following set of variables to be propagated
is chosen: For each k > 0, we define

p k)(X IZ(k)) = Prob. {A(k)=X IZ(k)} , (36) r
Pk) (n IX,Z(k)) = Prob. {NT=n IA(k)=XZ(k)) , and (37)

pkk) (dx Iwn ,Z(k)) = Prob. {X=,k)EdX NIrk=wNT=n ,A(k)=XZ(k)}, (38)

for each XEH(Z(k)), each n ># (X)u, and some wEW(X,n). Only one w is necessary because, in
an appropriate sense, (38) is invariant with respect to any wEW (X,n), as shown in the following --

theorem. The evaluation of such an w is also unnecessary thanks to Lemma I in the previous

section. The following theorem is the main result of this report. For this theorem, we defineZ(0)=O,-,-

p0) ( )= 1  ,(36')

Pt°r) (n I0,0) = Prob. {NT =n } and (37')

P (dX I ,n ,0) = Qn (dX) (38')

Theorem 1: (General Result) For each k> 0, let Z=Z(k) and Z=Z(k- . Then, for each

XEH(Z), when is the unique parent of X on Z, we have

[I] (Target System State Estimate Updating) for any n ># (X) and any wEW (X,n),

2' The variables (or more appropriately called "functions") which are to propagate forward. They may be

called filtering states or safficient statistics.

22 By the definition of Ak, Prob. {NT<# (Ak)).=O for any k.

20 a
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P k)(dX I, ,xZ) Cck)(z (k) I,X,n )-'

Pif( y, (k))j-k la ,NA(k)X,n ,k) PN.,(NAt(k) -nD( Ik) ID,X n ,k)
1 ()(39)

PD(D X n A)J F%1k 1 (dV I') pk-)(k I-n ,(72)
x,

where Cx is the normalizing constant for (39) and defined by

C-Xk)((.Y~r~k~Sk) Iw,X~n) Z

f P(y Ia ,m,X,n k) PNF(m -nD(X Ik) IDA , ,k)
x. (40)

PD(D IX ,n ,k . (dX IX) P k-)(d.9 I n , ,Z)
x,.

for each (y,m)E U (Y,) x {m }, nD(X Ik) is the number of targets which are hypothesized (by- X)

to be detected in data set z (k), i.e.,

nDX I) Z# (7 (k) , (41)
TEX

and M:W ( ,n), D D (n) and a EA (D ,J (k)) are uniquely defined by

t( r)=(rJ(k- )) for every rEX such that rrfJ(k-1) 0  , (42)

D = Dom(a) ={iElm(w) I (w -(i)Ik) #0} and (43)

{a (i)} - -F(i ) Ik for all i ED , (44)

[21 (Target Interchangeability) for any n ># (X), C)(. wXn Z) defined by- (40) is invariant for
all wEW (X,n), and moreover, for any wEW (X,n) and any permutation 7r on {1 .. ,n },

Px(k)(X Iw,n ,XZ) - pk)(n(dx)Iw,h x,z) (45)

if a- w and nl X,, -+X, is the n-target permutation homeomorphism induced by r,

[3) (Number-of-Target Estimate Updating) for an), n ># (X),

,'
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p~ (n !XZ)-- CL(z(k)IX 2)-' Cl)(z(k)1 n 2) (n -  - ' (# p' % I,Z) (46)

-Nr r(n -) (()))

ithere C is the normalizing constant defined by

00 (47) ,1

Z CS-(k)((Y,M/k,Sk) V,,Xn 2 (n -#()!P?,-') (n I2
M -# (A)(

for each (ym)E U (Y'k)" x {m} and w is an arbitrary target-to-track hypothesis in W (X,n),
M -0

and

[4] (Hypothesis Evaluation)

Lk(z(k),XI,-)p _) 1)(8"S
PWk(X 1Z)= pTk)(z~Z ) (48)

where P~k)(z (k)iZ) is the normalizing constant and Lk (z (k),\, Z., ) is the likelihood of (z (k ),X) " ,

given (2,X) defined by

- (M -nO(X I k ))! Cfr('mt')I2)49
Lk ((y,Mtk,),X !) C (m-n0 (XJk))! (49)

for each (ym)Eu (Y, )" x fm with nD(X 1k) and C (k,) being defined by (41) and (47), respec-

tively.

Proof. First we will prove [1] and [2]: To prove 11], roughly speaking we follow the Baye-
sian expansion,

PP (ZAk IAk_,_K,Nr ,) p (d.X" I flk-1,NT ,Ak _Z)
P(Z,Ak,f)k IAk-:f2k,_,NrZ) -Nd

abusing notation P. Therefore we must calculate P (Z,Ak,flk IAkl,fklX,NT2). Let m and
n be arbitrary nonnegative integers, E any measurable set in (Yk)", XEH(Z) any data-to-data

hypothesis on Z, wEW(Xn) be any target-to-track hypothesis compatible with (Xn), 3,CH(Z)

229
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any data-to-data hypothesis on Z, and DiEW(X,n) be any target-to-track hypothesis compatible
with (X,n). Then a straightforward but rather lengthy application of Bayes rule gives us the fol-

lowing expansion:

Prob. {z (k)EEx {,n,,,s4 ),Ak=X k=A.= JAk-I=,-2k-I=Z,X(Ik)=XNT=n 2}

= S Prob. {IDT(k)=D IAkj=_\k-I=_ X(,)=-XNr= ,Z}

DED(n)

Prob. (NM (k)=ni IIDT (k)=D AkI=X flk..I=w,X(lk )=X ,NT =n ,Z}

tS Prob. A,=a INM(k)=m ,'DT(k)=D,Ak-I=flk-I= ,X(Zk)=XNT=12 2} (50)23

Prob. {Ak=X IAk=a ,N, (k)=n ,A*-...i k-1=,_ X(tk)=X,NT=n 2}

Prob. {Jft=w IAA=a ,NM(k)=m Ak=)\',2k_I=w,(Ik)=XNT =l ,Z}

Prob. {(yj (k))-. 1EE IA,=a ,Nm(k)=m .Ak=X.,-nfkWX(tk)=XNT=n ,}

The first, the second, the third and the sixth factors on the right hand side of the above equa-
tion are given by (16), (17), (19) and (20), respectively. Namely, for the first factor, we have

L •[' Prob. {IDT =D I Ak._= ,Qk..=',X ( k )=X ,NT =n )

=Prob. {IDT=D IX(tk)=-XNT=n }=PD(D IX,n ,k)

since data sets are conditionally independent. For the same reason, the second factor is given by

Prob. {NM (k )=m I IDT =D ,Ak l=,X5 k,=,X (tk)=X ,NT =n }.

= Prob. {NM (k)=-m I Ir =DX (tk)=X,Nrn }

t"PN, (m-#(D)ID,X,n,k) if m># (D)

0j otherwise

Since IDT (k)=Dom (Ak), the third factor is given by

Prob. {Ak INM(k )=m JDT =D ,Ak.l-=--,fk=,X (tk)=X r =n Z

(m --# (D))! if Dora (a)= D

= Prob. fAk INM(k)=mJDT=D,X(1k)=XNT=n}= {0 mfomw )D

*0 othnerwilse

23 (50) is composed as Po=*PP2FPPPP,. By the i-th factor on the right hand side of (50), we

mean conditional probability P,.

2
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In the sixth factor, as far as data set z(k) is concerned, the condition by assignment hypothesis ,*

a and the condition by target-to-data hypothesis (.,X) are redundant. Thus we have

Prob. {(y, (k)),'-sEE IAk=a ,N,%(k)=m ,,\k=X,lk=',X(tk)=X,NTn T }n

mY

E

On the other hand, the fourth and the fifth factors merely check the consistency among X,
' and a. The fourth factor is 1 if is the unique parent of X onZ and if I

S
>1X d X~UX,,~, (51)

,-where

Xdd { kj=aMT) I TEX anid
(52)

X.= {(a (i ),k)} I EDOM (a )Um (Z)

It is 0 otherwise. In (51) and (52), X,, is the set of tracks which have been already started in
j(k-1) and \,,,, is the set of tracks corresponding to the targets which X hypothesizes to be

newly detected in data set z(k). The fifth factor is 1 if 0 is the restriction of w to in the sense .
of (42) and the target-to-track assignment by w is consistent with the target-to-measurement- Li

index assignment by a, i.e., it is l if

= (rn(k-1) if TEX0.1d{ lk f a (4Tr))) if rEX,,w (%)

and 0 otherwise. Therefore, for a given target-to-data hypothesis (w,\), the fourth factor times

the fifth factor is 1 if (M,D,a) satisfies (42) to (44)24 and 0 otherwise. Then, since a is one-to-

one, (44) implies nD(, Ik)=-Z-# (r 1k)=# (Dom(a)). Thus (50)is reduced to

: In other words, if (Z,D,a) is uniquely determined by (42) to (44) from given (w,X). ,,

2'

• U,

' .€!o~ r r , ,,, ./ . , , j % , , ,,..- o .;,- -, ..,-, , .- , .°.. - ;'2"''." ',. -."-.-" " '' . "''.").- " ..2.-4''
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Prob. {z (Ak)E x {),Ak --X,k=W I Ak-Ilfk =:,,X (tk)=X ,NT , }

=PD(D IXn ,k) PVN(In-nD(X Ik) ID,Kn ,) (54)D' -' (\ I k))!f
,n! f PH (Cv nXnA ~u,(y

if m>#(D) and (nJ).a) satisfies (42) to (44). Otherwise the left hand side of (54) is zero.
Equation (54) together with "extrapolation" equation,

Prob. {X (tk)EdA' Ik-14MNTf =nAk.l X,Z} It'

,f F, (X l)P X k- )(Y 17,n XZ) (55)

X,

implies (39) with (40), which concludes the proof for part [1]. Then part [2] follows immedi-
ately: The second statement of [2] for k=0, which should mean (5) in Section 2, is true by
Assumption 2. Suppose the second statement of part [2] is true for k-1. Then , by the inter-
changeability assumptions, Assuptions 2 and 9, we have

PM(CV,m)ji 7r-,m,fl(X),n,k) PN,(m -nD(X Ik)Ir(D),l(X),nk) k)

PD(tr(D) IlI(X),n ,k ) ,._ (nI(dX) Irl(Y)) Pk-')(rl(d ) lis :,n ,2)
* It

is invariant for any n-target permutation homeomorphism 1l induced by any permutation r on
{1,....,n}. This means that the normalizing constant Cik)(. Iw,X,n,) is also invariant for all
wEW (X,n) (the first statement of part [21) and the second statement of part [2] is also true for
k. This completes the proof of parts [1] and [2].

I S

Next we will prove [3]: To do this, roughly speaking, we must calculate
P(Z(k),Ak IAk.-,NTZ(k-1 )). Let m be any noni.egative integer, E any measurable set in

(Ys)"', XEH(Z) any data-to-data hypothesis on 71 and n any nonnegative integer such that
n ># (X). Then it follows from a straightforward application of Bayes rule and from (40), (54)

IV
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and (55) that

Prob. {:(k)EE x{m k 0 s '.Ak =X I=X =,T ,Z}

E%% (X Prob. {: (k)EE x ,n ik .Sk ,Ak =Xk =W i k.Xl=.._=(W X),NT=' ,Z}

Prob. {fk JG. X) I Ak-i=X,NT=n ,Z}

-E 0n Prob. Q -1=()IAkl=XNT=n
(56)

jf Prob. {(k)EE X x {n ),A k=X ~f4=W Ak.1 Xf k. I ) X (tk ) X ,NT7-=n , },

Prob. {X(tk)Ed I_-=(W I)TVr=n ,Ak_1=U}
(-, (X I k) 

, l

- Prob. {flk-x=(-' IX) I'k.. 1=X,NTr=n 2k)) f Ck)&yn1~ jw,\,n f~ ~yEw OPa) 
j E

E

where T is the unique parent of X on 7 and (w I)EW(X,n) is the restriction of w in the sense of S

(42). According to part 12] which has been already proven, C k)(, lw,X,n 2) is invariant with

respect to w. By Lemma I in the previous section, we have # (W(X,n) (n(X))! and

Prob. {k-I=W I Ak,=XNT =n 2) = -(n -# (X))! _:
n'I"

for all 7 W(,n). Hence (46) and (47) follow from (56), thus completing the proof of [3].

For any m >0, any measurable set E in (Ys,)", and any XEH(Z), we have

Prob. {z (k)EE x {m},Ak= I Ak-t= 3,}
00(57) 

746

= NProb. {z(k)EEx{m),Ak=X IAk-l=XNT=n 2} Prob. {Nr IAk-_=U2} (7

where 3" is the unique parent of X on 7. Therefore, (48) and (49) follow from (56), (57) and
Leinma 1 in the previous section, completing the proof of part (4]. The reason why

A0
Lk(: (k),X i z7) is called the likelihood of (z(k),X) given (Z,X) is clear in (57). Q.E.D.1-V.

g Co-

L' 

kp

An interesting observation of the general result stated in terms of Theorem I is the normal- '--

izing constant of the Bayesian formula at each level, i.e, target system state estimation --

number-of-target estimation - hypothesis evaluation, which is always used in the next hiaher

26 %'
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level. As the final stage of this chain, we have the following corollary:

Corollary to Theorem 1: The likelihood of the current data set z (k) given the past cumulati'e
data set Z -'). or the density (in an appropriate sense) of probability distribution of the current
data set z (k ) conditioned ly% the past cumulative data set Z(k- ), is given by

p~k)((y,m¢,t s -))Z(k-l)) = Lk ((y,mk ,sk),X 1,Z(k- )) p (k-)( Iz(k-1)

XEH(ZkY

for each Oym )E U (Ys) m x {m } and each hypothesis XCH(Z(k)) whose unique parent on Z -z is
Fm -0

The proof to the above corollary is obvious from (48) and the proof of part [4] of Theorem
1. Theorem I gives us a general multitarget tracking algorithm in which the set of variables to
propagate forward is (1) all the hypotheses in H(Z) and all the tracks in T(Z), (2) evaluation
Pk) of each hypothesis, (3) number-of-target statistics Pr) given each hypothesis and (4) tar-

get system state statistics P>(k) given each data-to-data hypothesis, each number-of-targetsTi hypothesis and each target-to-track hypothesis. By imposing additional assumptions, we can
derive many different multitarget tracking algorithms from the general result shown in Theorem
1. One of the most interesting result is obtained when we impose the independent target
assumptions together with Poisson assumption on the number of targets, which will be discussed
in the next section.

5. I.I.D.-POISSON CASES

By i.i.d. (independent, identically distributed) - Poisson cases, we mean cases where several
additional assumptions, the most importantly, the independence among targets and Poisson dis-
tribution of the number of targets are added to our basic assumptions, Assumptions 1-9. With
such assumptions, the general result derived in the previous section can be greatly simplified. In
short, in these cases, we may evaluate tracks and hypotheses separately, and accordingly, the
filtering equation described by (39) and (40) in the previous section is also decomposed into a set
of track-wise equations. First we will list our additional assumptions:

27
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Assumption AL For each positive integer n, the common component of the target system
state space is a formal singleton, i.e., XC={0 } '2 5 and the space X,, for the individual target states

is identically equal to some hybrid space X, i.e.,

X, = (X)" = Xx .... xX (n times)

For each n > 0, given Nr=n, the first component X of the stochastic process (X(t),NT)rE[, o, =)

is a system (.x, )2-. of n time-homogeneous 6 Markov processes which are independent to each
other and have common initial distribution

qo(dx Prob. {x, ( o)Edx}

and state transition probability

f, (dx Ii) = Prob. {fx (t +At )Edx I; (t )=X}

In other words, we assume

Q" -(-d ,f qo( ) (58)

and

for each n > 0.

Assumption A2: The a priori distribution of number Nr of targets is Poisson with mean

VO, i.e.,

Prob. {Nr =n } = exp(-v 0) -. "

25 X C will be ignored henceforth.
2 The time homogeneity assumption is being made again only to reduce the notational complexity.

28

), %-,



- - - -7-P V -7 . - - - ..

TR-104N-01 May 12, 1988 Section 5

for all n X. 
'

Assumption A3: The detection of targets is target-wise independent and the detection of
any individual target i depends only on its state x,, i.e., for any data set k, any n >0, any
(x, ),"IEX" and any DED(n ), we have

PD(D l(x, ).h~€n,k) = 171 pD(', 1k)"' "')(I -PD(y k))(( D))

with a common target-wise detection probability function PD( 1k) :X - 0,1].

Assumption A4: The number of false alarms in each data set k is independent of target
states or any other elements in the data set, and has distribution pVA( (k), i.e.,

PN,,(m IDxn k)=pA(m 1k) (61) "

00.

Co

for any (Dxn)E U D(n)x Xx {n. Given the number of false alarms in data set k, the vector

of false alarm measurement values is a system of i.i.d. random elements in Yk with a common

distribution having a density PFA (" 1k) with respect tou,,.

Assumption A5: The error in a measurement originating from a target i in any data set k
depends only on its state x, and can be modeled by a common state-to-measurement transition
probability having a density PM( [,k): YSkxX -" [0,oo). Together with the second half of 5!

Assumption A4, we have

LS

PM ((y, )j.! I (a ,D ,(, ),"- In ,) 1 pI P y. x,.( PA (yj k)) (62)

for each n>0, each (x,),".1 CX", each DED(n), each m>0, each aEA(D,{1,....,n}) and each

We should note that Assumptions A] - A5 are assumptions which are "additional" to
Assumptions I - 9 made in Section 2. For example, equations (58) - (62) satisfy the requirement •

27 For any set A , X(.4 ) is the indicator function of A, i.e., X(a A ) is 1 if a EA and 0 other'w\ise.
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of the target interchangeability by Assumptions 1 and 9. Before stating the multitarget tracking
algorithm resulting from these assumptins, we will introduce several helpful notations and
preparations: As in the previous section, we denote the cumulative data set up to k by Z(k) and
the corresponding cumulative measurement index set by j(k). Let the maximal cumulative data
set be denoted by Z, i.e., Z=fz (k)Ik > 0}= U Z(k). For each k and each track rET(Z), we will

k>O
associate a probability distribution on X. First, for each k, we define

yITlk]= {(k) if Trk={J} (63)

if rjk =0

where 0 is used symbolically to represent the fact that track r misses measurement at data set k.
Thus y[r k ] is the measurement value yj (k) in Y,, assigned to track r if rlk =(j} and is 8 if

no measurement is assigned to r at data set k. Then we define cumulative data set Z restricted I.
by track rET (Z) by

Z -(y [r Ik],k) I(z(k),)EZ}" (64)

which is actually another representation of a sequence (y [71l]y [r 121 ...... ) of random elements
in ({}U( U Y,).

£ ES i

Consider a Markov process x on X which has initial state distribution q0 and state transi-
tion probability f,. Then, for each r, we can consider (y[rlkD],> 0 or equivalently Z 1, as a j
sequent of observation data from an incomplete observation mechanism which provides a meas-
urement value in Y, if the observation is successful and provides nothing (represented by 6) oth-

erwise, for each k, according to the statistics specified by PD and PM. Such an observation
mechanism can be modeled by g(. .,k) : (Y:,U{})xX -. 10,oo) which is defined by

U.

g(y IxIk)= fPM(Y IXk)PD(X 1k) ify 0 (65)
[I -PD(X 1k) ify=.

for each k. For each cumulative data set Z and each track rET(Z), we denote the conditional
distribution of the state of this Markov process at time t, conditioned by Z 1, (Z restricted by r)
by p, ( IZ 1,) which we call track state distribution. Then we have a standard formulation of non-
linear filtering problem with a continuous-time Markov process and discrete-time observation

mechanism defined by (65). Thus we have the following lemma:
3.0.-.
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Lemma 2: For each track rET (Z(k)) on each cumulative data set Z H), we have

P,,(dL. IZSj)= C.V 1- 1kI IZ, )-' g y IT 11 jx,k)p,,(dr IZ'J - I (

ithere

ck(y lZS -')) f g(y Ix,k)p,,(dx IJZ -nj _1)) (67)ii x
for each YEY,, U{O} and

J -,_,dx Ii~p,_1(dr ZFikt if k> I
,(d'r IZ/ nj)(k-1) = (68)

if ",(,_,(dx f)q0(dx) if k=1

f I3

Lemma 2 provides a tracking algorithm for single-target no-false alarm cases. It is, how-{ ever, nothing but a standard form of the nonlinear filtering equations based on sampled data
and is obtained by straightforward application of Bayes rule. Hence, it is not necessary for us to
provide a proof. The algorithm consists of the updating formula (66) with (67) and of the extra-
polation formula (68). Using the notion of track state distribution, the main result of this sec-
lion can be written in form of the following theorem:

Theorem 2: (I.I.D.-Poisson Cases) For each k, let Z=Z(k), Z=Z ( - 1) and I-i'- ). Then.

for each hypothesis XEH(Z) with the unique parent K on Z, we have I

il (Target System State Estimate) for each n ># (X) and for each wEW (X,n),

31
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p(k)HL I wnXZ r f I
nU

I E: IM (.)•

iJ (Number- of-Target Estimate) for each n ># (X),

/k~ (. (X)) (0
PZkr)(n IXZ) = exp(-Vk) (n -k (70))

where Vk =E (NT -# ()IX ,Z) which is given recursively by

Vk =C(0IZ0)vkl (71)

for each k > 0 with c (01 Z i) being defined by (67),
and

iii] (Hypothesis Evaluation)

p ' (X I Z) = C 9) (Z)-' P ,-'(K IZ) LZ"(z (k)lIX) H ,*(y [rI kI17n.T) (721) ;TEX-

where C k) (Z) is the normalizing constant defined by
L

(Z) = NM (k)! ep (Vk~--k) P ) (k) (73)

L['(. IX) is the false alarm likelihood function defined by

LA((yj 7 ! IM4tk Ix) X)

(m -nD(X Ik))! pN, (m --n (X Ik)) flfFA(yj k) (74)

for each ((yj )I,m )e .0(Ys,,)x {m} with

jFA(m,X k)= {1, ..... }\ (U (r I k)) (75)

being the set of indices for measurements which X hypothesizes to be false alarms, and L*(. Z,)
is the track-to-measurement likelihood function defined by V
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Vk-ICk(l' IZI,) if rlJ'=z, (76)L f' li) CkV IZn) otherwise

for each y Ey,,U{o} .

.

Proof: First we will prove [i] and [ii] by mathematical induction. [ii] and [ii] are obviously

true for k=0.28 Suppose that [i] is true for k-1. Let XEH(Z) be an arbitrary hypothesis on Z,
n ># (X) and wW (Xn). Let DC-D(n), ZEW( ,n) and aEA(DJM(k)) be determined uniquely
by (42), (43) and (44). Then, it follows from the additional assumptions (59) - (62) and from the
extrapolation equation (68) that, for any m >0, any measurable set E in X", we have

f Pm(y, ),"= Ja ,m ,(x,).,,n ,k) PNF(m -nD(X k)) ID,(x,)?.in ,k)
PD (D" _,~ , ,(~r ),-i)P (f, Fan ,f

X.

= f (, (. ,Ix,)) ( -FI (y, k))0A, (M-nD( 0k) Ik)

POADre)( (y 1k) l(

E JEX

where nD(X k) is the number of targets which are hypothesized (by X) to be detced in data set

rz(k) defined by (41). Then (69) follows from (77),/.Lemma 2 and part [1] of Theorem 1, i.e, [i] is ,.,
also true for k, concluding the proof of Ii]. ..

It also follows from (67) and (77) that the normalizing constant defined by (40) is given by

'.-

28 Fr ks, the left hand sides of (69), (70) and (72) are defined by (38'), (37') and (36'), respectid.

33 4
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'-w((y )":.I,m /k,Sk W,,,n,Z) =pNFA(mn(X 1k) 1k) i pFA(y, I k))

(il c(vo((,))l4n))( H c(04l-T))(c(OlZ1)) -  (78)

rE), rEx
w(r)ED w(r) D

where each c(. I') is defined by (67). Obviously, wEW(Xn) is arbitrary in (78). To prove [ii],
assume that [ii] is true for k-1. Then, for any n>#(X) and any wEW(X,n), it follows from
(78),

C k)(ymtk,sk I w,X ,n ,Z) (n - (X))! p k) (n j ,Z)

- X))( (79)

d V- ( --.V C)) c(O1 D)R

for each (y,m)Eu(Y,r x {m} where
M -0

=PNF.(M--D(Xlk)Ikj I AYk) cI C(VnY~)t~~lJA UEFA (1X k Y) ,.(,> E D (80)

r 0( l4l7))eXP(-Vk.1)
w(r)D 1J .

Then, according to part [3] of Theorem 1, (70) and (71) follow from (79) and (80), i.e., [ii] is true
also for k, concluding the proof of ri].

From (79) and (80), we can calculate the normalizing constant defined by (47) as

C Vk)(y ,tk ,sk I X2) = d eV (Vk) (Vk-1) #  (81)

where d is defined by (80). Let X,,, and Xdd be defined by given X, given n and an arbitrary w

through (52) with (a,M) being uniquely determined by (42) and (44). Then we have

# (X,,.)=# (X)--# ( ) and

(rjc (y: [i- Ik J]14 Ak) (Lk_) x-. ())).

= l ( k (Y' 7 1,O k 14In.T)) ( r__k-,ck(y[rjkjj~jD) ) (2)

EX v fik

V.
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It follows from (74)-(76) and (80) - (82) that the likelihood Lk(z(k),X IZX) of (z(k),X) given ,
(Z,X), defined by (49) becomes

L,.(z (k),X IZ, ) = exp(vk (k-), LFA(z (k) I X)LLk(y [r Ik ]1-,n) (83)
N~f (k)! EX

Then [iii] follows from part [4] of Theorem 1. Q.E.D.

We should remember the empty track 0 is always included in T(Z) and p,(. IZ1) is the
common a posteriori distribution at time t of targets which are not detected in any data set
included in Z. The reason why 4. defined by (76) is called track-to-measurement likelihood
may become clear in the following interpretation of hypothesis evaluation equation (72): The
posterior probability of any hypothesis ) is the product of

(1) a priori (with respect to the current data set) probability of X, i.e., the past
evaluation Pff-)(TIZ) of the unique parent of X based on the past
cumulative data set 2,

(2) the likelihood LFA(z(k)jX) of a set of measurements indexed by
JFA (Nm(k),X I k) being the set of false alarms in data set z(k),f7 (3) the likelihood L ,(yIrIk]lZnj-)=ck(y tITlk]1Zf n) of a measurement
y[I/k]#9 originating from a previously detected target whose track is F>
r fJf# in Z,

(4) the likelihood 4( IZ,_fTl)=ck(6 IZ.,n.) of a previously detected target whose
track is r'F6"0 in Z being undetected in the current data set z(k), and .a

(5) the likelihood Lk(yfrlk]1Z )=vk,ck(ylrlk]iZ ) of a measurement

,.. y [r Ik]#1 originating from a newly detected target (,rl'=0),

divided by the normalizing constant. Likewise, we call Lk(O IZO)=vk..ck(9 1Z) the likelihood of

an undetected target remaining undetected. 29

Remark 6: Part [i] of this theorem is valid even without Assumption A2, i.e., a Poisson dis-
tribution on number NT of targets. In other words, i] is a consequence of all the independence
assumptions: targets, detection, measurement errors, etc. We should note that the target distri-
butions are independent only when conditioned by a target-to-data hypothesis (..,). As dis-
cussed in Section 3 (Examp/e 1), when we mix (69), this independence will be generally lost. On -
the other hand, for parts [ii] and [iii], Assumption A2 is crucial. Thanks to this assumption, the
conditional probability (under hypothesis X) on the number NT-# (X) of targets which are not

29 By (71), this likelihood is nothing but the conditional epectation of the number of targets which are
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detected in cumulative data set up to k is independent of X or of any measurement

(k)), ,NV (k))<k . It is also Poisson and depends only on the information about which sen-
sor was up at each particular time, i.e., (tk/tD.<k. When we exclude Assumption A2, we must
calculate the a posteriori distribution of number NT of targets separately for each hypothesis X,
although such statistics depend only on the number # (X) of tracks in X.

Even with the additional assumptions introduced in this section, Theorem 2 provides a gen-
eral multitarget tracking algorithm which includes many existing algorithms as a proper subset A.

in a sense which we will describe in the next section. Before closing this section, we will show a
batch-processing algorithm as a corollary to Theorem 2.

wI

Corollary to Theorem 2: For each K and each XEH(Z(K)), we have

pdcK(X IZ(K)=(,))(k~ F (k)) (riIK @2rZK)))(4.
.l

where BWK) is the normalizing constant defined by

KUO = ("V-.') IN(k)! ,(85)
k-I ;

and IK (r,Z(K)) is the track likelihood of r at k defined by

IK (rZ(K)) = LOkh.Ck(Y [r 1k ] il),,) (86) Ne

with each Ck I.) being defined by (65).,5

This corollary can be proved by a straightforward repetitive application of Theorem 2
although one must carefully handle the null track. In order to obtain track likelihood IK (r,Z(K))

for each track r, we need to calculate the normalizing constant ck(. 1.) of the filtering process
according to (67), which means that we must recursively calculate the track state distribution
according to the filtering equations (66) - (68). The track likelihood itself can be calculated
recursively as

not detected in any data set up to and including k.
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o(k) Z if k=O
k(r,Z) = Ck i, 1k] i. - ) kl(r-ni ),Z(k-1)) otherwise

or

I ) if rnJ (k)=
k Ck~ y17 1k J Z :k, _ ) ) lk -(r nJ (k- ),Z (k- 1)) othe rw ise

which follows immediately from (86). As shown in the last equation, the null track likelihood
lk(0,Z (k )) is nothing but the expected number Uk of undetected targets, which is common for all
the data-to-data hypotheses. Using (85) and (86) we can actually calculate a priori probability
of each hypothesis X, i.e., Prob. {A=X}. Its calculation, however, involves the whole evaluation
processes. This is a reason why we may not use a simple-minded Bayesian expansion such as-

P(X IZ)- P(Z IX)P(X)
P (Z)

6. RELATION TO EXISTING ALGORITHMS

In an appropriate sense, the algorithm provided by Theorems I and 2 in the previous sec-
tions includes representative multitarget tracking algorithms which have been developed up until

now, as a proper subset. This section will show this by describing the relation of our algorithm
developed in the previous section to representative existing algorithms. Since Reid's algorithm
described in [4] gave us the most significant motivation for this report, we will spend dispropo-
tional space for it.

3 Cf. Remark 5 in Sec icri 3. .
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6.1. Reid's Algorithm Besides all the assumptions we have made by now, in [4], the indivi-
dual target state transition probability f, is given by a linear-gaussian model,
x, ( )=FkX- (tkI)+gaussian noise, and the measurement error is also linear-gaussian as
),(k)=Hkx-, ())+gaussian noise, where the individual target state space X is a Euclidean space
and matrices F and H are with compatible dimensions. Moreover, each measurement value
space Y, for each sensor s is implicitly assumed Io be a compact set in a Euclidean space with
search (or scan) volume p. (Y, ). In other words, each Y, is the field of view of sensor s. By
assuming uniform probability detection on the field of view for each sensor, we have

PD( k ) =pax f G(y -Hkx,Rk)dy (84)

Y. k

where pD"A(0,1), G(.=) is the density of the zero-mean multidimensional gaussian distribution
with variance matrix B and Rk is the measurement noise variance matrix. Accordingly, the
state-to-measurement transition may be modeled as

PM(yIx)) G (y -Hkx"Rk)

f(G (r-Hkx ;Rk)k* (85)

Assume that the initial distribution q0 of the individual targets is thinly spread over a large
region and that the measurement error variance Rk is very small compared with the field of view
for each sensor. Then we may conclude that each nonempty track has a state distribution
which is well approximated by a gaussian distribution. Thus, for each data set k and each track
rTl(Z(k)) such that -=rfJ(k,)#, we can approximate the track state distribution

p,,(. jZit- t )) by a gaussian distribution with mean "kl1-I and variance Ek Ik-I" Then, for

y EY,,, the track-to-measurement likelihood defined by (76) becomes

L*(y Zk 2)) pT G (y #Ikik Ik-I ; HkEk Ik-IHk+Rk)
-. __ ( } -!( 86)3 13p (27r) 2 det(HkEk Ik-,t+Rk) 2 exp(

where

x = '--Xk Ik- Hk Ik,Hr+R)-' (87)32

31 HT is the transpose of matrix or a vector H.
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PFA (Y k)=O(x,(Ysk))- (89)

2.-

When we add a series of approximations mentioned above and the additional assumptionls
((84), (85), (88), (89), etc.) to the general algorithm shown as Theorem 2 in the previous section,
we obtain exactly Reid's algorithm described in [4] if we define false alarm density by

OFA (k) = vFA (k)Iuk(Ytk) (90)

and density of previously unknown target that has been detected 34 by

ONT(k) = 4(y[r IkJIZl'j-'1)) =vk-I ck(y[rlkIZlj - >) (91) -

where y [r Ik] is the value of the measurement which is hypothesized by track r to originate from :.
a newly detected target.

We should note that in [4] the left hand side of (91), i.e., 1,Tr(k), is a constant for any
given k while the right hand side is a function of measurement value y [r ik]. Thus (91) shows a
crucial difference between our algorithm and Reid's in [4]. In fact, Oiv (k) should be a function "
of k and the measurement value, since otherwise newly started tracks (hypothetical newly
detected targets) may be given increasingly unjustifiably high possibilities. For example, sup-
pose we are watching an area for a sufficiently long period of time with a reasonably high proba-
bility of detection. Then the chance that we see a target which is detected for the first time in "

the middle of the field of view is very low. This is so since if that happens such a target must
have evaded detection many times while moving around or reaching the middle of field of view,
which is very unlikely. To prevent this from happening, Reid proposed to adjust his eNT as
described in a paragraph in [4]:

............. a calculation of OnT, the density of new (i.e., unknown) targets, is performed whenever a
data set from a type 1 sensor is received. The density of new targets s,vr depends upon the
number of times the area has been observed by a type 1 sensor and the possible flux of undetected
targets into and out of the area.

Aside from the above description, there is no further explanation as to what "calculation" is per- 0
formed to obtain appropriate 3NT In earlier literature [14] by Reid, a rather heuristic method -.

for calculating NT is described, in which the target state space is divided into many square cells
and the inflow/outflow of undetected targets from cell to cell is considered. In effect, this kind
of procedure corresponds to the calculation of expected number Pk of undetected targets and the

state distribution p,(. IZ 10) of null track. •

3 Reid's terminology in [4].
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The derivation of Reid's algorithm in 14] is based upon the following Bayesian expansion:
First let

N.,., (k) = # (Ak)-# (A,- 1)

be the number of newly detected targets in data set k. Reid then assumed that NT(k) has a

Poisson distribution with a given mean 35 I/T (k) and that the measurement valuey() originat-
ing from each newly detected target i is uniformly distributed on the field of view, Y,. With

the uniform detection assumption, the density of newly detected target is calculated as

eNT (k) = V (k Yp,(Y.")

Let

N oldD(k) = # (fk - A k-nIDT (k))

be the number of targets which are detected in some data set included in Z(k- 1) and also in the
current data sel z (k). Then, again with the uniform detection assumption, we have

Prob. {N' (k)=n IAk.l=KZ(k- )} - # ( ) (pff)n(1 ) (92)
n ! (#(X)-n

for each XH(Z(k-3 )), each integer n such that O<n <# (i). In other words, the probability dis-
tribution of NNd(k) conditioned by AkI becomes a binomial distribution with mean

(Ak-po '. Then, conditioned by NAT(k) and N2=(k), the probability distribution of the
number NM(k) of measurements in the current data set z(k) is determined by the number-of- "SumPF., i.e., (88). Assuming that N (k), NtT (k) and NFA (k) are
false-alarm probability function PN T

independent when conditioned by (Ak.IZ(k- 1)), we have

Prob. {NDT(k)=nDr ,NNT(k)=nNT ,NFA (k)=nFA JAk e--X,Z(k- )} e

(vFA (k)) " A (V , (k))"'N # (k)! -( maz)# W)',T (93)
nFA nNT no r  ! (# ( ')_nD O ! ,

To obtain the final form of Reid's algorithm, the following two equations are used:

35 pTh is included in vT(k) since NNT (k) is the number of newly targets. Roughly speaking. %"c have
VNT (k )=pff'x Lk -I.
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Prob. {Ak=X INFA (k)=nFA D"T° DT VNT = A _ -J

nFA ! n.VT fnDT ! (# (T)-nDT)P (94)

(nFA +nD +nT )Y # (K)

and

Prob. {(vj (k ))j' 1E(d4'j )j".11 I Nk (k )=m ,A k=,Zk -

( 1  v~"F~A( ) Ik)+.,!,r (X 1k)

(95)_.q"( Z )k k , )(k 'r, ) +R, )) y
e G ((y, -- )Zk- El (Z Hk 0)

where tk(Z .,n(k.-1)) and -'k(Z l}(k_) are the mean and the variance of the track stae distri-

but ion pik jZ I _1)) which is assumed to be gaussian.

Reid obtained his final form by multiplying the three key equations, (93) - (95). In all of
these equations, target interchangeability is used implicitly. With closer observation, we may
question the exactness of these equations: For example, when we integrate (95) over (Y 3,r, the

integral will be strictly less than one while it should be exactly one. This is so because Yk is a

compact and hence a proper subset of a Euclidean space. Moreover, (93) and (94) are valid only
when the probability of detecting targets which have been detected before is the same for all "m

such targets. For example, if a target leaves the field of view of a sensor, such an assumption
certainly invalid. The same conclusion may be said when a target is detected by a sensor but is -e

outside of the field of view of another sensor, or when a target is on the edge of the field of view
of a sensor. On the other hand, according to our formulation shown in the previous sections, P

the statistics N~d(k) can be calculated as

Prob. {ND$=n IAk _=XZ(k- I)}

= Et{ (fpD(x Ik)pt,(dx IZ )) (-PD(x k)p(dx Z(92'):.
d'.

Similarly, the statistics on number NT(k) of newly detected targets on data set k is calculated
as

42
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Prob. {N vr (k)-n\T _=,Zk '- } = exp(-Vk..p (k-2p )I (96)

nNT!

for any XEH(ZV - 1) where

p = fp(x Ik)p,,(d 7- - ))

Namely, in our formulation, the Poisson assumption on the total number of targets plus
independence assumptions together imply that the distribution of the number NNT (k) of newly
detected targets at k is Poisson. While, in [4], (96) is used as an assumption. Traditionally,
newly detected targets are treated by a very ambiguous notion of "Poisson arrival" with which
any underlying target model is not clearly stated. Our formalism is based upon a very simple
observation that, if a target is newly detected, it must exist. This includes the case where a tar-
get is born in the middle of the field of view of a sensor. In other words, our concept of
existence is independent of time.

Reid also extended his linear-gaussian result outlined above to non-gaussian cases (totally
discrete space and hybrid space) in [12], [15] and 116]. Besides the problem mentioned above, the
uniform detection assumption may be inadequate in some applications. For example, when a
surveillance region includes masking areas or sensor's detection is highly dependent on a target
state component (such as MTI-type radars, emission-detection type sensors, radars with cross-
section sensitive detection, etc.), this assumption may be unacceptable. In such a case, the
detection probability function must be included in an integrand of the track-to-measurement
likelihood rather than a constant multiplier, and accordingly, the track state distribution must

be updated by assumption that the hypothesized target has evaded the detection. When weI .

ignore this consideration, however, there is no need for re-evaluation of either hypotheses or
track state distributions by a no-measurement data set (0,0, ,s). This is why Reid separately
treats type-2 sensors which generates only data sets each of which contains at most one measure- 'I"

ment. Apparently, when no-measurement data sets are valuable information, such treatment is
inadequate.

.5-'

6.2. PDA and JPDA As shown in the previous subsection, the most difficult part of multi- %-

target tracking problems arises when the number of targets is not known so that we must I "

hypothesized each measurement as a potential new target which has not been recognized before.
Thus if the number of target is known, considerable simplification is possible. The PDA (Proba-.
bilistic Data Association 117] ) and the JPDA (Joint Probabilistic Data Association 118] and 1191)
algorithms are based upon the assumption of known number of targets. Moreover, one of the 'p

underlying assumptions for these algorithms may be characterized as targets with a priori identif-
ication as discussed later. First, we will show that our algorithm can be reduced to PDA or

43.
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JPDA algorithm with additional assumptions:

To do this, aside from all the assumptions made in Sections 4 and 5, we add an extra sen-
sor which we may call "super sensor" providing a priori information on targets. Let S be
SU{'} and 'S. Assume that, at k--O and only at k---O, sensor I' provides a data set
((v, (0)),1.11,n 101) md that, in this special data set, the probability of detecting all the targets is
one and there is no false alarm. The effect of having this special data set is twofold; (1) The
number of targets is exactly known, i.e., NT =n, and (2) targets are labeled by measurement
index (i ,0). Suppose, as a result of update-by-measurement, we have the track state distribution
Pl0 (" viZ., .o))) for track {(i ,0)}. For each data set k> 0, because Prob. {NT =n .=-1 the likelihood S-

of any measurement originating from a newly detected target is always zero. Therefore, when k
we extend every cumulative data set to include the super sensor data set k=0, all the hypotheses
in H(Z) for any cumulative data set Z with positive a posteriori probability have the same
number of tracks which uniquely correspond to each other through their unique predecessors on
Z(°). On the other hand, H(Z) is a mutually distinct and collectively exhaustive, set of
hypotheses on Z, or {{Ak=X)}IXEH(Z)} is a partition of the underlying probability space which
is measurable with respect to the a-algebra generated by cumulative data set Z. Therefore, we

can combine3s data-to-data hypotheses provided we know which track corresponds to which
track in each hypothesis. For example, when X =(iJr7' (i=1,2) represents a two hypotheses on
a cumulative data set Z(k), if we know r/and r; originate from the same target for each j , then u

we can combine these two hypotheses into one hypothesis X=(r1,r 2} so that each "combined"
track ri has track state distribution ,.

pt, . Z F1, ) T,.II, P HP( II Z(k)) + pt, (" IZ r;! P H(X,21Z (k) - (97) '

Having included a "super" sensor, we know exactly which track goes to which track. Therefore,
we can actually combine all the hypotheses at each k thereby propagating only one hypothesis ,
to the next data set. Moreover, by manipulating the individual target state space, we can have
different kinds of target dynamics assuming that such information is also provided by the
"super" sensor. From another view point, by having the "super" sensor, the targets are given a ""
priori identification. Therefore, for "non-super" sensors, the origin of every measurement is con-
sidered in reference to such target identification. This kind of approach may be appropriate
when the targets of interest are positively identifiable and their number is small. We have thus %

derived an extended version of PDA (Nr=1) and JPDA (NT>0) from our general algorithm
shown in Section 6. We also have shown that, in an appropriate sense, multitarget tracking 1.

without a priori identification (labeling) is more general than that with a priori identification.

Like Reid's algorithm, the PDA and JPDA algorithms assume the linear gaussian target

3 Combining hypotheses is one of the critical topics in implementing any multi-hypothesis multitarget I
tracking algorithm and will be treated more thoroughly in Part I of this report.
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dynamics and measurement mechanisms. PDA uses so-called "improper" distribution 37 and
JPDA uses the Poisson number-of-false-alarm assumption (88). Also each track state distribu-
tion is assumed to be gaussian. When combining hypotheses, track state distribution of each
"combined" track is therefore the sum-of-gaussian distribution with a posteriori probabilities of
hypotheses as weights, as in (97). As in Reid's algorithm, such a sum-of-gaussian distribution is
then approximated by a gaussian distribution both in PDA and JPDA. Therefore, the JJIDA
algorithm may be obtained also from Reid's algorithm by letting the newly detected target den-
sity be zero and by assuming a "super sensor" as discussed above, when hypothesis combining is
performed to its extreme degree (combine-all). However, we must admit that the above discus-
sions are slightly artificial and lack in theoretical rigor by introducing an artificial "super sen-
sor." More rigorous treatment of targets with a priori identification (labeling) should be done by
an analysis which is similar to that in Sections 3 and 4 but without a priori interchangeability
assumption, Asswnption 2. In such an analysis, we must evaluate target-to-data hypotheses

rather than data-to-data hypotheses. Then hypothesis combining is performed on target-to-data
hypotheses. In effect, this combination is equivalent to the mixture of target system state distri-
bution via target-to-track hypotheses, which was discussed in Section 3 in terms of Example 1.

[ 'Therefore, the JPDA algorithm involves the two major approximations: (1) approximation of
sum-of-gaussian distributions by gaussian distributions and (2) approximation of dependent dis-
tributions (resulting from target-to-data hypothesis mixture - or hypothesis combining) by
independent distributions. To the best knowledge of the authors, the second kind of approxima-
tion involved in the JPDA algorithm has not been noticed up to date.

, lSeveral minor differences of the JPDA algorithm from Reid's algorithm may also be

observed. One of the differences is the treatment of validation regions. In Reid's algorithm, the

probability of a measurement faling out of the validation region of any track is ignored. As
mentioned in Section 6.1, the data validation can be appropriately viewed as an approximation

r- in Reid'd algorithm. On the other hand, in PDA and JPDA algorithms, the probability of "real"
measurement falling out the validation region is explicitly considered. Moreover, a delicate con-
ceptual difficulty arises from the fact that, in [17] - [19], hypotheses are formed based upon the

r result of data validation. This results in a slight difference between the PDA and JPDA algo-
L rithms, i.e., when we let the number of target be one, the JPDA algorithm does not coincide

with the PDA algorithm 38. Nonetheless, unless validation regions are inadequately small39 , the

[ treatment of data validation should not affect performance of any multitarget tracking algo-
rithm and such delicate difference resulting from different treatments of data validation should

7' f3 An improper distribution is a probability distribution P on a measure space (X ,B ,ji) having a con- €
stant density p on X with respect to p when u(X)=oo. However, apparently such a probability distribu-
tion never exists. More plausible modeling will be obtained when we assume that, for each data set k, the
number-of-false-alarm probability function pNFA( . 1k) is constant on {0,1 ..... ,NFA"(k)} with a priori
upper bound NfA"(k) When there is no newly detected target in the data set, this upper bound does not
affect the hypothesis evaluation because of the cancellation as far as the number of measurernlt Nmr(k)
does not exceed NmA"(k). Therefore, we can chose any upper bound even after the data set is received. .'

3 After adjusting both algorithms due to the difference of the number-of-false-alarm distribution assunp-
tions.
39 In such a case, we can easily imagine that any algorithm may not perform well.
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be negligible. In the JPDA algorithm, the probability of detection is assumed to be a function of
"targets." However, for each given target, the detection probability is a constant and indepen-
dent of its state ike in Reid's algorithm. As recognized widely, both PDA and JPDA algorithms
implicitly assume separate a "track initiator" which provides all the a priori information, i.e., the
number of targets and state estimate for each target. Then we may call algorithms such as PDA
and JPDA "track continuation." It is obvious, however, these two processes, track initiation and
track continuation, cannot be carried out independently in general cases. Let us call a system for
track continuation a track e.tender tentatively. For example, a newly detected target may pro-
duce a measurement in a validation region of a track maintained by a track extender and may 2
be ignored by both because a track extender considers it as a false alarm and a track initiator
considers it as a continued track. In such a case, both must negotiate. In [4], Reid shows that I
his algorithm can be used for track initiation and continuation simultaneously. The clustering
procedure described in [4] and discussed in Part II of this report then provides a way to perform
these two processes separately as far as it is possible. As shown in Part U of this report, how- /
ever, the Poisson assumption of the number of false alarms in each data set is a crucial assump-
tion to enable the clustering procedure.

6.3. Morefield's Algorithm Morefield's paper [11] motivated us in selecting appropriate
definitions of tracks and hypotheses. As mentioned before, our definitions are different from his
in that we have separated the measurement-value information from the number-of-measurement
information. By this separation, we have succeeded in treating tracks and hypotheses
mathematically rigorously as shown in Sections 4 and 5. Although this report was motivated
considerably by Reid's paper [4], it does not clearly defined tracks and hypotheses. In [171 - [19]
for the PDA and JPDA algorithms, only target-to-data hypotheses are in effect considered.
Before discussing Morefield's algorithm which uses a 0-1 linear programming technique, we wiU
show a general batch-processing algorithm which is obtained by adding the Poisson number-of-
false-alarm assumption (88) for each data set.

With this additional assumption, for each k, false alarm likelihood /,A defined by (73) in
Section 5 becomes

J1-(z (k)X) exp(-vFc ( L'FA(k)pFA (y, (k)lk) (98)
i (F )=Nm(k)( 1k)

for each hypothesis XEH(Z(k)) where jFA ('," k) is defined by (75) in Section 5 and vFA (k) is the
expected number of false alarms in data set k. For each data set K and each track r7T(Z(K)),
define the modified track likelihood by 4'

ti Ck(y [r jkIZf 1 (.l);(, () =k-l)j Jl (9

k-1 i (v(k)p A (y [r Ikllk)) V (99) 
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where

E(y)= if y 

(O

Then it is easily seen that we can restate the result of Corollary to Theorem 2 in Section 5 as

p,~)() IZ(kV))= ( ))-1 rL.t(rZ(K)) (101) V'
TEX

with

K-#)=pz(Z(K)( F (102)
- PzZ~)exp(vo-vx) exp(YEvFA (k) INM (k)(1)

k-I k-I

for each K and each \EH(Z(K)). In (84) and (101), the product over the empty set is defined as
one as usual. Take the logarithm of (101) and ignore the normalizing constant. Then we have a
function hK :H(Z( )).+IR defined by

hK(X) = Y" o 4 (.,Z(f)))= Y lo&(rZ())) X( ; .) (103)

for every XEH(Z(A)).

,Thus the problem of obtaining the maximum a posteriori probability (MAP) hypothesis X
at K is equivalent to that of maximizing hK(X). In (103),

(x(r ; >)), (z(K \(0) E {0,1I

for each XEH(Z(K)) or each X can be considered as a 0-1 vector with dimension
# (T( ) ). Namely, H(Z(K)) is isomorphic to a subset

F = txE{O,1}I~'') )U7 e jx ,+x <<l for all (r,,r2) such that r1 r2 and fr,nr#Z) "

of {0,1}O ' )T (( "'. Define a binary matrix AE{O,1}( r z("\}))xj(K) by
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A(,.o "k))= x((j ,k) ; r)

for all 7ET(Z(K))\{ } and all (j ,)EJ(K ) . Then we have

F = {xE{0,1 }" (zc\{} IAx<l}'

where 1C{0,1} "j(K) is the all-one binary vector. Thus the problem of maximizing (101) or%
equivalently (103) over the set of all the hypotheses in H(Z(K)) can be rewritten as a 0-1 linear
programming

find xEf{0,l} " (ZK)J\) which
maxies cT x

subject to Ax<1

where CEIRT(Z(K )\{0} is defined by

for all rET(Z(K)). To solve the above linear programming, we need a special algorithm which is
extensively discussed in [111. Although we are not certain, some of algorithms for solving classi-
cal assignment problems such as Munkres' algorithm[201 or modified Munkres'[21] may be appli-
cable or modified to solve the above problem formulated as a linear programming.

The modified track likelihood can be recursively calculated as

/0if k 0

/(rZk) FkFA[rnk~ else if y[r Ikl]so

Ck(O IZk),(k)) otherwise

or

.,

N
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.,

Ckk))[rnk els if yI-k)) O( )VFA(k)pFA('I r jk]Ik) else ifylrlk]#0

Ck (O IZ Jk,) othen'ise

for each k and each rET (Z(k)). Thus (101) also provides algorithms in which track likelihood for
each track is recursively calculated and hypothesis evaluation is performed by multiplication of
track likelihoods. In 111], like Reid's (in [4]), PDA, JPDA and other many algorithms, target
dynamics and measurement mechanisms are modeled as linear-gaussian. Therefore, we can
repeat the process shown in Section 6.1 to reduce the general algorithm derived in Section 5 to
Moreficld's algorithm. However, two comments may be noteworthy: (1) The probability of
detection is totally ignored in the track likelihood in [11]. (2) The target density information is
also ignored in [11]. When the probability of detection is reasonably high and the value of track
likelihood is dominated by gaussian terms, the above (1) may not be any deteriorating factor.
The above (2) was given some consideration in [11] as part of a priori information represented
by P (X) which we cannot define and/or calculated easily as mentioned in the last paragraph in
Section 5. We should note that our formulation in terms of (101) does include all the a priori
information regarding targets and sensors.

6.4. Goodman's General Model In [5] and [8], Goodman describes a model which is a gen-
eralization of conventional linear-gaussian models and derived an algorithm based on it. The
final results in both papers are very complicated and are spread out through over more than ten

equations. We will try to extract the essence of his approaches and results as much as possible.
Since the result in 18] is incorporated into (5], we will discuss only [5]. Our assumptions,
Assumptions 1 - 9 and Assumptions Al - A5, made in Sections 2 and 5 are all shared by the set

assumptions made in [5] except for those listing below:

(1) The number of targets is possibly infinity.
(2) The detection of an individual target is represented by a Markov process.
(3) Possibly unresolved measurements, i.e., merged measurements are considered.

icuOne of the causes which make [5] and [8] very complicated and difficult to follow is the

inclusion of the targets' birth-death processes. This may be handled more simply by setting the
individual target state space as

X X,, o,o .u x {dead ,alive }x Xoher dscrete comp , ie

Targets are indexed by positive integers and every positive integer corresponds to a target which

40 Plus other minor details which the authors may have overlooked.
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may "emerge." Therefore, (9) in Section 2 may be modified as '

IT- = {i EZ+ I target i once lives } (9')

and N '=# (I'). Then, in [51, the probability of N j=oxo, i.e., I '=M+, may not be zero. This
may cause some mathematical concern because IR' is not a locally compact space with the usual
direct-product topology. However, with an appropriate assumptions on the birth-death process,
at any finite time t, the number of targets which has been born up until t (including already
dead ones) is always finite. Also the inclusion of possibility of merged measurements makes the
discussions in [51 very complicated. We will therefore retain our no-merged-measurement I
assumption in the following discussion. The above assumption (2) in [5] is rather questionable.
In Assumption (1-6) of in Section 11.4 of 15), it is stated that the detection probability of a live 0

target may be function of its state and "typically could be a monotonically decreasing function
of the distance between the positional components and the location of the centroid, for example,
of sensor system." This statement may conflict with the markovian assumption of target detec-
tion. The authors believe that the conditional independence assumptions, i.e., Assumption 4 in
Section 2 and Assumption A3 are more plausible and realistic. The target dynamics and meas-
urement mechanisms in [51 are modeled by "so-called" event-driven linear systems, i.e., for target
i, we have

dx(t) F (x)q(t ),t )x[(t )d + G (xS(t ),t )dw, (t) + ui (.rd t ), )dr

and

y(tk) H(xd(tk),kyrc(tk) + Vi (1) :

where xt4(t) and xd(t) are the continuous (geolocational) and the discrete' parts of the i-th tar-
get, respectively. y, c(k) is the continuous part of the measurement in data set k originating %
from target i while yid(tk) have a certain transition probability from (xI(c)(t),xdtk)).

The uncertainty of measurement origins and hypotheses on it is modeled as follows: For
each data set k, let the set of measurement values originating from detected targets and false
alarms be denoted by

((F (k )

and

41 {dead ,alive } component being excluded.
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((Ypr(k)) E zDT(k),IDr (k) ]

where NFA (k) is the random integer representing the number of false alarms and IDT(k) is the .

random set of detected-target indices. Then, for each k, the uncertainty of measurement originS
is modeled by a random function ak which has formal disjoint union

({1 ...... ,NFA(k)}x {FA}) U (IDT(k x{DT })

as its domain and takes values in

.M(k) = ,....,NM(k)}

where NM(k)=NDr(k)+NFA (k)=# (DT(k))+# (JFA (k)) is the number of measurement in data
set k. Every Ok is then assumed to be one-to-one. Conditioned by its domain and range, every
realization of ak is assumed to be equally probable. For each data set K, define a random set
I(K)by

K
I(K)= (K ID(k)xDT) U {}

Let j(K) be the power set of the cumulative measurement index set j(K), i.e.,

j (K)=pj Ij_(:j(K)}

Define a random mapping Q(K), from I(K) into j(K), by

Kk
{(ak(i),k ) I 1<k <K} if i E UIDT (k)x {DT}

Q-(K).j K_-
K k-I -

whose realizations a-re called labeled partitions. Then we have

Q(K)(i) $ 0 for all iEI(K) {O ,

51

ink.

444 ' .' , Z ;,' , ,- - 4'; ",, z , : ' % % 4,*-,.4 4 .* : .'" ," ;-.:'" . _'.% ;,. ,'. ' .' '.- - -. : ',:,';



$

Section 6 May 12, 1988 R-1048-ol

Q(K)(i) nQ ()l ,= (0 for all (i i)j(K)× !(K) such that i7i' and %N

U Q(K)(i) j (K)
iE I( )

Namely, the image of random function Q(K) is a partition 42 of j(K) but, as a function, Q(K)

attaches labels to each element of the partition. Each label is either a target index (i>O) or a
common false alarm label. Since the false alarms are independent, this formulation is equivalent
to (SIx ,Ak) defined by Section 3. In other words, a labeled partition in [5] is another representa- -

tion of a target-to-data hypothesis defined in Section 3. -

Then the evaluation of each labeled partition, or equivalently of each target-to-data
hypothesis, done in [5] generally follows the steps taken in the derivation of Reid's algorithm in
[4] as

P (z (k),Q(k) IZ(k-1),Q(k 1) = P (z(k) IN (k),Q(k),z(k-I)P (Q(k),N.1 (k) I Q(k-),Z(k -1))

The second factor on the right hand side of the above equation is calculated by the measurement w,

error and false alarm value models while the second factor is subsequently expanded by number ]
N7 (k)=#k (k W)=#(IT (k)) of targets born up to t k and number N, ,(k) of newly born targets

as

P (Q(k)j, (k) IQ(k-)Z( - 1) = P (Q(k),NAI(k),NT (k),N. (k) IQ(k-1)Z(k -1))-
N, (k W,.. (k)

Each term of the right hand side is then expanded as

p (Q() (k),NrV (k ) , (k) Q(k- 1),Z (" - 1) .

- P(Q(k) I NNT (k),N old(k),NA (k),NT (k),N,w (k))
(NNT (k ),N 0"'(k ),NpA (k)IN-r(k), .(k))'"

P (NT (k) IN.. (k )Q(k -)) P (New (k) I Q(k - )) .

%',

Namely, like in the derivation of Reid's algorithm discussed in Section 6.1, a crucial step to

derive the multitarget tracking algorithm in [5] is a Bayesian expansion by means of the number

'2 When the set of false alarms, Q(K)( 0 ), is not empty. If it is empty, {Q(k)(i) Ii1l(K>\{0}} is a partitionof j (K).
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NA.T(k) of newly detected targets, the number NT(k) of targets which has been detected bc"ore
and detected again at k and the number NFA (k) of false alarms. As mentioned in Section 6.1,
this kind of expansion is useful only when the detection probability is not functionally related to
target states. Thus the comments made in Section 6.1 may be relevant also to [5].

As oppose to Reid 14] and Morefield 111] which evaluate data-to-data hypotheses, 15] evalu- .
ates target-to-data hypotheses as in the PDA and JPDA algorithms. As partitions of the under-
lying probability space based upon the available information, the partition by target-to-data
hypotheses is finer (sometimes considerably finer) than that by data-to-data hypotheses. This
may cause both theoretical and practical problems. As discussed in detail in Part I] of this
report, the number of hypotheses poses always serious problems to any kind of multi-hypothesis
tracking algorithms. One of the solutions is to combine or "aggregate" hypotheses. As men-
tioned in Sections 3 and 6.2, when hypotheses are combined, we may introduce cross-correlation
among targets, which sometimes may require a large amount of memory. On the other hand,
the infinite number of potential targets may cause some theoretical difficulty. For example, sup-
pose a sensor observes a single measurement at one scan when no other data set has been gen-
crated and when we know there is no false alarm generated in this scan. Then we know at least
one target has been born and detected. If we assume that the number of potential targets one of I
which may be the detected target is infinite, the probability of each target-to-data hypothesis is
zero while we have one data-to-data hypothesis having probability one. Moreover, the assump- %

tion that each newly born target appears uniformly in a given space may be questionable. 6

A,

7. CONCLUSIONS

A general multitarget tracking problem without a priori target identification (labeling) was
formulated and a Bayesian solution to the problem was given. This formulation may be the
most general within the assumption of no prior identification of targets. We did exclude, how-
ever, the possibilities of merged or split measurements. Inclusion of either one of these possibili- ',

ties may cause considerable complication. We have shown that, when targets do not have a
priori identification, we need to evaluate only data-to-data hypotheses and evaluation of target- ."
to-track hypotheses is unnecessary. However, the consideration of target-to-track hypotheses
was a key step in deriving our general algorithm. For the cases where several additional
assumptions are made, called i.i.d. Poisson cases, the general result was reduced to a much
simpler form. From this form, we can derive many specialized forms depending on the real
problems.

P
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We have also shown that, even when the algorithm is restricted to the i.i.d. Poisson cases, :%
it includes most of the representative existing multitarget tracking algorithms as a proper subset
in an appropriate sense, thereby providing a unified view on multitarget tracking problems.
Besides general.ity, our theoretical and practical contributions include the following two aspects:
First we considered the dependence of target detection on target states explicitly and incor-
porated it into our final form of the algorithm. This may be very important since, to the best
knowledge of the authors, this dependence has been long neglected in the multitarget tracking
literature while, in a practical sense, it is not negligible in the case of sensors with target state
dependent detection characteristics. This will cover many practical issues such as radial velocity
dependent detection by MTI-type radars, terrain masking, range and/or cross-section dependent
detection by radars, radio-emission and/or target-activity dependent sensors, etc. Secondly we
defined the likelihood of a measurement originating from a newly detected target in a very cleart
term. This provides the density of newly detected targets in Reid's algorithm with a tran-
sparent meaning. Moreover this eliminates a very ambiguous but often used notion of Poisson
arrival of newly detected targets. Our basic viewpoint is that, whenever any target is newly
detected by a sensor, it has been evading detection up to that point either because of failed
detection or because of zero detection probability, i.e., because it has been out of field of view of
any operating sensor, not active generating no detectable signal, not moving, thereby creating no
radial velocity, etc.

As seen in Sections 4 and 5, the general multitarget tracking algorithm reduces the problem
into a number of filtering problems that are subproblems, in either general or i.i.d.-Poisson cases.
This means that all the filtering techniques developed up until now43 are valuable sources for
multitarget tracking. On the other hand, we may say that hypothesis management is one aspect

truly unique to multitarget tracking. By hypothesis management", we mean many techniques
to reduce the number of hypotheses while maintaining reasonable performance of the multitarget
tracking algorithms. A variety of techniques have been developed in the past two decades.
They provide us with very valuable information whenever implementational issues of any algo-
rithm are concerned. For example, the "combining" of all the target-to-data hypotheses in PDA
and JPDA algorithms can be viewed as a particular hypothesis management technique. Al
A.. & D.S. , we have developed a general-purpose system for multitarget tracking, called GTC

(generalized tracker and classifier)4 5, which has been implemented in SAIL-, C- and LISP- pro-
gramming languages. Implement at ional issues will be discussed in Part HI of this report together
with several examples created by GTC.

43S

.

' See [221 for one of the most recent survey papers on this topic.
Terminology borrowed from Al (artificial intdligence).

45 The "tracker" part represents state estimation of geolocational entities while the "classifier" part any es-
timation of discrete entities. See [231 for a concise description of GTC.
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