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M. F. El-Hewie and D. Fredal

Integrél solution for diffraction problems
involving conducting surfaces with complex geometnes.‘
IL. Apphcatlon to elhpsmdal surfaces "

efficiencies for ellipsoidal surfaces.

1. INTRODUCTION ~

: In part I of this series! we generalized the expressions for q
and p obtained by Stratton? for a plane wave incident upon a

plane surface to the general case of an arbitrary surface. In
the present paper we apply the theory developed in part I for
ellipsoidal surfaces. Numerical results are given for a wide
range of radiation wavelengths and object sizes to present
quantitatively the different physical properties of the scat-
tered fields resulting from the irradiation of an arbitrary
metal surface.

The paper is divided into five sections. In Section 2 the
mathematical formalism of part I is applied to ellipsoidal
surfaces located in a parallel field. In Section 3 numerical
results are presented for the local and integrated absorp-
tions. In Section 4 numerical results are given for the sur-
face currents and the scattered far fields. Our conclusions

are stated in Section 5. - .. b -
‘ = vy AR ( l'“\n—, ‘)1':1
MATHEMATICAL FORMULATION

The letter I is used to denote equations from part I. Givena
plane wave with a propagation constant k& = 2x/X traveling in
the positive z direction (§; = 0) and using Eq. (1.10a), we get

q(Z,0,0) = —(E¥ - SAV/R - (1 + 2,2+ 2D (1)

The real part of the complex refractive index is then ob-
tained from Eq. (I.15) by using F; = F; = 0and F3 = 1,

WZ, o, w) = (g% + 2q cos B, + 1)'7?, (2

where, from Eq. (1.3b), cos 8ia = (1 + 2,2 + Z2,"'2,and ¢, {,
¥, ana A are given by Eq. (LS) as

A(Z, 0,w) = 1 ~ A2sin? 8,82~ /(€ + ), (3a)
B(Z, 5, w) = 2k? sin? 0, £3/(8* + £9)°, (3b)
¥(Z, 0,0} = (05[(A2 + BY + AJI'7, (3c)
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The absorptmty and reflectivity are determined from the Fresnel coefficients of reflection and transmission by the
complex ray-tracing method for a plane wave incident upon the surface Z(x, y} of an isotropic conducting medium
located in vacuum. A coordinate-dependent real refractive index of the form »(Z, 0, w) = [¢%(Z, 7, @) + 2¢(2, ¢, w)
cos 8in + 1]12 is used, where ¢ and cos 8, are defined in part [ of this series [J. Opt. Soc. Am. A 3, 200 (1988)).

Numerical results are presented for the scattered far fields, the surface waves, and the scattering and absorption
We demonstrate the simplicity and accuracy of the complex ray-tracing
method over the scalar-potentials method in solving for an absorbing medium located in parallel fields.
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and
A(Z, o, w) = {0.5[(A% + BY)2 — A2, (3d)

The dependence of », q, A, B, ¥, and A on the surface
coordinates Z, x, and y; the conductivity ¢; and the radiation
frequency w are assumed.

An ellipsoidal surface can be represented by a coordinate
function of the form

He, (4)

Z=(R2—2y? -

where v is the eccentricity and is given by

y=1 for a sphere with radius R and with its center
at the origin of the Cartesian frame of
" coordinates
=( for an infinite cylinder of radius R with its
central axis coincident with the y axis,
O0<y<x1 for an ellipsoid with principal minor axis of 2R,

in the zx plane, and principal major axis of 2b,
on the y axis (b = R/y).

The geometries of the three surfaces are shown in Fig. 1. To
simplify notation we define the following parameters:

w=vyly, g=(y’-1y% u=(R +gy)"2 (5
The surface derivatives are then given by
Z, =~x/Z, (6a)
Z,=-w/Z, (6b)
and the local angle of incidence is defined by
cos 8, = 1/C = Z/u, "

where C = (1 + Z,2 + Z,2)}? [Eq. (1.3b)]. Substituting Z,,
Z,, and cos 8;, from Eqs. (6) and (7) into Eqgs. (1)-(3) gives
the coordinate-dependent refractive index for the surface
Z(x,y). Equations (3a) and (3b) give

-!
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A(Z, 0,w) = 1 - R*[(x* + wh/u?(82 -

and
B(Z, 0, w) = 2&*((x* + yN)/u? /(82 + {2 (8b)

¥, A, ¢, and v are thus determined in terms A(Z, ¢, w) and
B(Z, s, w). In Fig. 2, numerical values for v are plotted for
aluminum, using R = 0.1cm; y = 0,0.5,1;and A = 0.1 um and
A = 1315 um. Figure 2(a) shows the strong coordinate
dependence of » at short wavelengths (e.g., at A = 0.1 um for
an aluminum sphere with a radius of 0.1 cm the maximum/
minimum ratio for » is 1.0296). Figures 2(b)-2(d) show the
relatively weak coordinate dependence of » at long wave-
lengths (e.g., at A = 1.315 um the maximum/minimnum ratio
for » is 1.0010 for the above-described aluminum sphere).

The Fresnel coefficients of reflection and transmmslon,
written in terms of », are as follows™

R, = [(»* - 3in?0,)”* ~ cos 8,,](cos oh(.’ - sin?4,)?
~ 8in?8,)/[(»? - sin? 6,) + cosd,]
X [ cos 8,(»® ~ sin?0,,)? + sin?6,], - (%)

OIE+ 3 (8a)
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Fig. 1. Geometry of the three ellipsoidal metal objects used to
produce the numerical resuits in Figs. 2-11. (a) An infinite cylin-
der, (b) a sphere, and (¢) an ellipsoid (v = 0.5).

R, = —[(+* - 5in®8,,)"* = cos 4, )/
[(v* = sin?0,)? + cos 8, ], (9b)

T, = 2» cos 8,,/[(+* = sin® §,,)'”2

o _K
DL o

s L hre L
v"l‘\"‘- h]

+ cos 8;,][cos 8,(v? — sin?6,)'% + sin20,],  (9¢)

x
.

and
T, = 2» cos 0, /[(»? — 3in? 8,) + cos 8, ]. (8d)

The reflectivity and the absorptivity obtained from the
above coefficients are as follows:

pp = (2 = sin®8,)"% - cos 6,,)
X [cos 8,,(r = sin? 8,,)/ - sin? 8,/ -
[+ - sin? 0,7 + cos 8, ?:
.- =
X [cos 8,,(»® = sin? 0,)'7 + sin? 8,12,  (9e)
é, = |[(»* - sin? 8,)"/2 - cos 0‘;]/

!
|
(2 - sin? 8,02 + cos 8, )12, " (90 i
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a, = 4% cos 6,,(v* — sin’ 0;-,,)”2./
[ ~ sin? 8,)"2 + cos 6,2 .
X [cos 8,62 = sin? )7 + sin? 0,J%, (%)
and o
a, = 4 cos 0, (v? — sin? ,,)%/
[+ = sin? 8,)' + cos 6,,)% (Sh)

Again, the dependence of the R, T, p, and a terms on Z, o,
and w is assumed. The local intensity of the energy flow
normal to the surface in the s wave (TE) at an arbitrary point
on Z is given by Eq. (1.21) and for the p wave (TM) by Eq.
(L22). To express the local intensities in terms of the sur-

»10"

Y AXIS

b)
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face g‘eométry we s'art with Egs. (1.17) and (1.18) and substi-
tute §; = »; = 0 and ¢ for the polarization angle between the
electric vector on the incident fields and the x axis. This
gives :

& = ~cos ¢i + sin ¢J, ) (10a)
i=(Z7- ZONZ? + zZH'"A, (10b)
p=12i+2,]+ 22+ ZDR/CZ2+ZH™, (10c)
&-t=~(Z, sing+2Z,cos pZ,2 + Zyz)m, . (10d)
&-A=(Z cos¢—Z, sing)/C, (10e)
and -

8.p=(=Z,cos ¢ +2Z,sin¢)/[C(Z,7 + 2. (100

vig*

X 2

. (1] ~io~

Fig.2. Surface coordinate varistion of the resl refractive index » for aluminum surfaces with R = 0.1 cmand ¢ = 0. A = 0.1 smin(a),and A =
1.315 um in (b)-(d). The different object shapes used are a sphere in (a) and (c), an infinite cylinder in (b), and an ellipsoid (v = 0.5) in (d).
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surface of aluminum targets with R = 9.1 cm: A= 1315umin(a)-
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Fig. 4. Variation of the absorption efficiency with the radiation
wavelength for spheres of aluminum, copper, iron, and gold, calcu-
lated by Eq. (14).

On substituting the different vector products from Eqs. (10)
into Eqgs. (1.21) and (1.22), we get

J,i = 0.5(E}/7)(Z, sin ¢ + Z, cos 9)Y/[C(Z,2 + Z,1)]  (11a)
and

J,! = 0.5(E2/n)(Z, cos ¢ — Z,sin 9)*/[C(Z,2 + Z,1). (11D)
The locﬂ currents on the surface Z are given by Eqs. (1.31)
and (1.32). The various field vectors that appear in the
latter two equations are obtained from Eqs. (1.19) and (10) as

e = ~[E(Z,sin ¢ + Zcos ¢)/

2.2 +Z,62Z, - j2Z), (12a)
b, = ~{(E/n(Z,sin ¢ + Z, cos ¢)/

(2,2 + ZWiZ, +)Z,), (12b)
e} = ~[E(Z, cos ¢ — Z,sin ¢)/

22+ ZIZ, +]Z,), (12¢)

and

b, = [(Ei/n)(Z, cos ¢ - Z,sin ¢)/

(Z2+ 2z, - Z). (12d)

Equations (8)-(12) fully determine both absorption and
scattering parameters at the surface Z, as shown in Sections
3and 4.
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3. ABSORPTION
The total amount of power absorbed at the surface Z is
obtained by integrating the local absorbed intensities over
the surface area eqused to radiation, -
P = ] ] (apin + a,J,)cos 8,dxdy. (13)
0,

The absorption efficiency is then defined as

o P./([ I, I.dxdy). | a0

where I; is the incident intensity.
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Fig. 5. Variation of the Fresnel reflection coefficients of 10.6-um
radiation at the surface of an sluminum sphere with R = 0.1 ¢cm and
¢ =0: (a) R,and (b) R,.
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Substituting the surface derivatives Z; and Z, from Eqs.
(6) and the absorptivities from Eqs. (9g) and (Sh) into Egs.
{11), we get

J,} = 0.5(ZE}/nu)(x sin ¢ + w cos )*/(z? + w?)  (15a)
and

J,! = 0.5(ZE/nu)(x cos ¢ — w sin &Y (* +w?;  (15b)

then thaz total absorbed power is given by

P, = 0.5(E2/n) [ [ (Z/u)(a? + )™
Q, ) : ’

X {a,(x sin & + w cos ¢)*

+ ay(x cos ¢ —~ w sin #)¥)dxdy. (18)

The area of the surface Z exposed to radiation is defined by
=1<n;-n<0. Hence Q, is determined.
Numerical values for the local absorption [the integrand

Y AXIS tcm)
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X AXIS lem)
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0.100

0.ws

T XIS (cam)

-0.05

=

©.03 0.0 -0.05 0.0 0.0 0.5 0.0 0.1
X AX1S (ce)

@

of Eq. (16)] are plotted in Fig. 3 for aluminum surfaces. The
intensities are normalized by dividing by E;E;*/2n, assuming
that E; is independent of the coordinates for a plane-wave
incidence. In Figs. 3(a)-3(d) the electric field vector of the
incident radiation is in the x direction (¢ = 0), which en-
hances the absorption along that direction. In Fig. 3(e) the
electric field points in the y direction (¢ = 90 deg), and, as
expected, the enhanced absorption is along the y direction.
By examining the results from an aluminum sphere with a
radius of 0.1 cm exposed to radiation of two different wave-
lengths {\ = 1.315 pm in Fig. 3(a) and X = 10.6 um in Fig.
3(d)], we note that the local absorption of the longer wave-
length not only is reduced but is more dependent on polar-
ization. This observation is based on the greater elongation
of the absorption contours of the 10.6-um radiation.

The abeorption efficiency [Eq. (14)] is computed by using
an automatically adaptive numerical integration method.
The results are plotted in Fig. 4 for aluminum, copper, iron,
and goid spheres of radius R = 0.1 cm. The absorption cross
section Q, is obtained by multiplying n, by the geometrical
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Fig. 6. Partial surface waves [Egs. (17)] on an aluminum sphere

withR=0.1cm, ¢ =0,and A = 10.6 um: (8) Sy, (b) S3,(c) S3,(d) T,
(e) Ty, and () Ts.

cross section of the object. For a sphere of radius 0.1 cm, @,
ranges from 0.03 cm2at A = 0.1 um to 1.25 X 10~*cm?at A =

- 0.1 cm. Results obtained by using the full-wave treatment

and spherical harmonics (Ref. 3, Fig. 13.15) have an asymp-
totic value for Q, of 0.0314 cm? for an iron sphere of radius
0.1 cm. This result agrees reasonably well with the Q, ob-
tained with our calculations. The damped oscillation (due
to diffraction) of the curves of the scattering cross section
versus the radiation wavelength is not accounted for in our
method of solution, which is based on a complex ray-tracing
approach. .

4. SCATTERING

At a point P(x,, ¥, z,) external to the surface Z(x, y), the
scattered field is given by Eq. (1.30). Substituting the ¢’ and
hé terms from Eqs. (12) into Eqs. (1.31) and (1.32) and using

Vol. 5, No. 7/July 1988/J. Opt. Soc. Am. A 1111

By = (28 + yoJ + 2ok)/D, where D = (x,? + y,? + 2,2)/2, we
get the following expressions for the surface currents:

A X e, = (E/C)(S, + Sy + S3k) (17a)

and

A X h, = (E/MCNT\i + Ty + T;k). (17b)
The S and the T terms are dimensionless parameters that
account for the physical and geometrical properties of the
surface, the degree of polarization, and the radiation wave-
length. The S and T terms may also be defined, respective-
ly, as the partial electric and magnetic surface waves or
currents. They are obtained from Eqs. (12), (1.31), and
(L.32) by

8, =[-2,(1+RNZ,sin¢ + Z,cos ¢)

+Z(1-R)Z, cos ¢ = Z,sin))/(Z,2+ Z,%), (18a)
S,=[-Z,(1 + RNZ,sin ¢ + Z, cos ¢)

-Z,(1-R)Z, cos ¢ — Z,sin ¢))/(Z,2+ Z,), (18b)
Sy = =(1 + R)(Z, sin ¢ + Z, cos #), (18¢)
T, =[Z,(1 + R )NZ, cos ¢ — Z, sin ¢)

+Z,(1~-RNZ,siné + Z, cos OZ2+ 25, (18d)
T, =[Z,(1+ R)Z, cos ¢ = Z,sin ¢)

—Z,(1-R)Z sin¢ + Z,cos )(Z,2+ 2,2, (18e)
and
Ty = (1 + R)Z, cos ¢ — Z, sin ¢). (180

Substituting the surface derivatives from Egs. (6) and the
surface field components of the s and p waves from Egs. (12)
into Egs. (18), we get expressions for the S and T parameters
in terms of the surface coordinates:

Sy = [-(1 + R,)(x%sin ¢ + xw cos ¢)

+ (1 = R )(xw cos ¢ — w?sin ¢)}/(x? + w?), (19a)
S, = [-(1 + R,)(xw sin ¢ + w? cos ¢}

= (1 = R )(x?cos ¢ — xw sin ¢)}/(x* + w?), (19b)

- S;=(1+R,)(xsin¢ + w cos ¢)/Z, (19¢)

T, = [(1 + R,)(x? cos ¢ — xw sin ¢)

+(1 - R)(xw sin ¢ + w? cos $))/(x2 + w?), (19d)
'I;, = [(1 + R,)(xw cos ¢ — w? sin ¢)

= (1 - R,)(x?sin ¢ + xw cos §))/(x? + w?), (19¢)
and
Ty = —(1+ R,)(x cos ¢ — w sin ¢)/Z. (196

It then follows that the surface currents that contribute
the scattered fields at P may be written as .
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E,(P) = —E ik exp(~ikD)/4xD"] [ [ (Z/u)¥(2,S,
. o,

= 2,5)D = [x,5, T, = (x,} + 2,)T, + y,2,T,])
X explik(xx, +yy, + Zz,)/D]dxdy, (21b)

and
E,,(P) = —E|[ik exp(~ikD)/4zD"} J j (Z/u)(x,S,
o,

= ¥,S0D = ly,2, T, = (x,7 + y, Ty + 2,2, T\l
X explik(xx, + yy, + Zz,)/D]dxdy. (21c)

Since the area of the surface Z exposed to radiation is de-
fined by ~1 < A; « & < 0 and the portion of this area that
contributes to the fields at Pis defined by 0 < #, - A <1, Q,
can be determined.

The depolarization of the scattered waves is determined
by defining an orthogonal system of unit vectors along the
scattered rays similar to that used with the incident rays
[Egs. (10)). Thus, if the plane of incidence of the scattered
light at the point P contains the unit vectors #, and &, the
orthogonal unit vectors along the scattered ray at P are

£ = A, X k/[1=(n,- R (22a)
and

dy =, X i, (22b)

Substituting A, = (x,i + yp/ + 2,%)/D into the above two

equations, we get

tp = (2,0 = y B)/D(z,? + y, ) (22¢)
and

d, = [=(2,2 + y, DI + 2,70 + 2,2,A/Diz, + y, ) (22d)

Equations (21) and (22) give the angle ¢, that the electric
field vector makes with the plane of incidence of the scat-
tered rays at P as

cos ¢, = Re[—(z‘.2 + yp"')E,, +x,y,E,, + x,2,E,]/
{D(z,? + y,)'*[Re(E,,)?
+ Re(E,)? + Re(E,))]'). (23)

The scattered wave front may also be defined by surfaces of
constant phase shift as obtained from Eqs. (21):
# = tan~Y[Im(E, ! + E,,? + E,H'""/

Re(E, '+ E,?+E". (24)

The above-described treatment may also be extended to
the case of an aplanar light beam by taking £, 8s a function in
the radial coordinate. For example, for 8 Gaussian beam, E;
assumes the form E, exp[—(x? + y*)/we?].
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The following observations of the local and far scattering
¢an now be made:

(a) In Fig. 5, in which the Fresnel reflection coefficients
R,and R, [Eqgs. (9a) and (9b)] are plotted, we can see that the
reflection of the local p waves (TM) increases at the central
parts of the surface while that of the s waves (TE) increases
on the periphery. : _

(b) In Fig. 6, the partial surface waves {Eq. (17)] are of
the primary and the secondary orders. Partial waves of the
third and higher orders, obtained by Mie (Ref. 3, Fig. 13.9),
have no correspondence in the ray-tracing approach.

(¢} The normalized local fraction of the energy scattered
at the surface is obtained by an equation similar to Eq. (13)
but with reflectivities p in the place of the absorptivities a.
The numerical results are plotted in Fig. 7 for three alumi-
num surfaces. Comparing the dependencies of the scatter-
ing contours, such as that shown in Fig. 7(a), with the ab-
sorption contours [Fig. 3(a)], we find that absorption con-
tours are more dependent on the polarization and more
elongated along the direction of polarization.

(d) The integrated scattering efficiency, defined by an
expression similar to Eq. (14) but with the scattered power
in the place of the absorbed power, is plotted in Fig. 8. At
wavelengths longer than 4 um it is, to a good approximation,
practical to assume that the four metals considered are infi-
nitely conducting media with near-unity scattering efficien-
cies.

(e) The scattered far-field intensity is plotted in Fig. 9.
Figures 3(a)-9(c) show the scattered power from an alumi-
num ellipsoid illuminated by iodine laser light of a unit
intensity (A = 1.315 um). At this wavelength, the maximum
scattered power (as high as 70% of the incident intensity) is
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Fig. 8. Variation of the scattering efficiency with the radiation
wavelength for spheres of aluminum, copper, iron, and gold.
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contained in two sidelobes in the xy plane. Maximum back-
scattering occurs at 25% in the vicinity of the surface. Fig-
ures 9(d)-9(f) represent results for CO, laser radiation (A =
10.6 um). Here, the amplitude of the scattered power is
much less (maximum reflected intensity 3 X 10~3) than for
that of the iodine laser, but the side scattering perpendicular
to the plane of polarization is still an important feature.
Figures 9(g)-9(1) show the intensity of the far-field scattered
radiation from aluminum spheres irradiated by the iodine
laser [Figs. 9()-9(i)] and by the microwave radiation [Figs.
9(j)-9(D}.

(f) Figure 10 shows contours of equal intensity of the
microwave radiation scattered from aluminum spheres and
is intended to demonstrate the symmetrical properties of the
fields. Contours are plotted in each of the three Cartesian
planes to show the symmetry of the scattered fields around
k, the direction of propagation; &, the direction of polariza-
tion; and the surface orientation. The scattering contours
are slightly distorted from circular curves in the xy plane
and elliptical curves in the yz plane, and the maximum
scattering intensity is as low as 10-# of the incident intensity.

(g) Figure 11 is the result of rotating the plots in Figs.
9(i) and 9(k), respectively, around the x axis and the y axis to
show the forward scattering patterns. The dip in the scat-

enhanced absorption in that plane (the incident electric
vector points in the x direction). In Ref. 4, Fig. 8, the dip in

Fig.9. Scattered far-field intensity from aluminum surfaces withR = 0.1 cmand ¢ = 0: A = 1.315 «m in (a)-(c) and in (g)-(i); \ = 10.6 um in
(d)-(f); A = 1 ecm in (j)-(1). The target geometries are an ellipsoid (v = 0.5) in (a)~(f) and a sphere 1 (g)-(1).

tered power intensity in the zx plane [Fig. 11(a)] is due to the,
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the scattered power occurred in the zy plane and was de- -
scribed by the diffraction effect, since the sphere used there »
had dimensions that were comparable with the radiation ..r_\_
wavelength. Also, in Ref. 4, Fig. 4, with wp = 4.18603A and R :_'
= (.2093)\, the beam spot size wy was taken to be large o
enou;h to cover the whole sphere, and the maximum scat- ' R
tered power occurred in the zy plane. The results from Ref. p:._%
4 are similar to those obtained for a plane wave, plotted in »
Figs. 9(c) and 9(f). Dy
-\_u

‘v

5. CONCLUSION

Based on a complex ray-tracing approach, we obtain concise
analytical expressions for the far scattering fields that ex-
plicitly include the surface function Z(x, y) and its physical
properties, Eqs. (19) and (21). We have demonstrated the

» "y ey
"l ’l ’:

e

efficiency of this approach in solving for the absorption and Y
scattering parameters of large conducting surfaces. Accu- -/'::
rate quantitative descriptions of the magnitude, phase, and ::\
depolarization of the scattered far fields and the surface -
currents are presented. The results obtained are beneficial »

in the design of meta! reflectors and in the study of the
interaction of electromagnetic fields with complex conduct-
ing surfaces, as in the case of depolarization of the backscat-
tering that is due to surface roughness. The proposed anal-
ysis can be .xtended easily to the case of aplanar laser heams
such as Gaussian and higher-order mode beams.
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Note added in proof: In Ref. 1, Eq. (25) should read as
follows: : :

ay(Z, 7, w) = 40 o3 0, (v = sin? 8,))"%/[(+? — sin? 8,)'"
+ cos 8, ]%[cos 6;,(s* ~ sin? 8,)% + sin® 8,,]°.
. {(25)
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