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• uch effort has been expended in the field of analytical chemistry toward the development

of selective sensors. The ultimate goal of this area of research is to build sensors that respond to

only one analyte while ignoring all other analytes (interferents) that are present in the samples.

Perhaps the most common example of the result of this effort is the development of ion selective

electrodes (ISE) for the determination of ion concentrations in solutions. While some ISEs are

relatively selective for the desired ions, all suffer from some degree of non-specificity.

Unfortunately, in the field of sensor development this is a common occurrence.
,r.

Another approach to solving the problem of interferents is to use multiple non-selective

sensors and employ multivariate mathematics"(to perform the calibration and prediction. This

was the approach taken in two recent papersl( ) where arrays of ISEs were used to quantify

mixtures of analytes. Analyte quantitation was achieved using either linear* or non-linear'k

regression techniques to model the response of the electrodes to the concentration of analytes in

mixture samples. In both papers, the sensor responses were assumed to obey the relationship

found in the set of extended Nernst equations

Eij =Ej + Sj log( ai + 1 Kjl ail) 1)

where Eij is the potential of the jth electrode in the array measured for the ith sample with respect

to a suitable reference electrode; EJO is the intercept potential of the jth electrode; Sj is the slope of

the response of the electrode in the absence of any interferents (analytes to which the sensor

responds for which it was not designed); ai is the activity of the analyte for which the electrode was

made; ail is the activity of the Ith interfering ion; and Kjl is the selectivity coefficient of the jth

electrode with respect to the Ith interfering ion. In this study, only Lwo analytes were present

(sodium and potassium) and therefore equation 1 can be rewritten in the following form,

Eij = EjO + Si log( CiNa+ + Kj CiK+) 2)

'.A % 'L - 'LW W k - ,,, - . , -•.-
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where the order of the analytes has been arbitrarily chosen and the activities have been replaced by

concentrations (CiNa+, ciK+).

Otto and Thomas (2) used calibration samples containing only one analyte to determine the

slopes (Sj) for each electrode, rearranged equation 2, and used multiple linear regression (4) and

partial least squares (5) to determine the remaining two parameters for the model (EjO and Kj).

Beebe et al. (3) used non-linear regression based on a simplex algorithm and multiple linear

regression (MLR) to determine the model parameters with no a priori information concerning the

slope of the electrode responses.

This study will use a relatively new method of analysis called projection pursuit (6) to

determine the model parameters. Projection pursuit is a nonparametric multivariate technique that

allows the analyst to calibrate a system with no a priori information about the functional form of the

calibration model. In other words, given the responses of J sensors to I samples containing

mixtures of K analytes, projection pursuit can find an appropriate form for the model (log,

parabolic, linear, etc.) as well as the model parameters. In the more common calibration

procedures, knowledge of the functional form is an essential component. For example, in building

the calibration model for an experiment involving absorption measurements, it is common practice

to assume the instrument response follows Beer's Law and use a regression procedure to build the

model. If the linearity criterion is not obeyed, the derived models are not valid, and the true

models cannot be obtained using the normal linear regression techniques. Similarly, previous

papers treating the calibration of arrays of ISEs (2,3) based the calibration models on the

assumption that the electrodes obey a known response equation. Not knowing this "functional

form" can make the calibration quite inaccurate. Furthermore, unexpected departure from the

assumed functional form can yield erroneous results. For these reasons, non-parametric methods

in genm.rMl and projection pursuit in particular are powerful and versatile tools with a wide variety of

possible applications.
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Theory

Notation Throughout this paper matrices will be represented with bold uppercase letters

(R); vectors with bold lower case letters such as rj to signify the jth column of R; and scalar

quantities with plain upper and lower case letters (I, i).

Projection Pursuit In general, the goal of all multivariate calibration procedures is to

estimate model parameters relating an IxJ matrix R containing the responses of J sensors or

wavelengths to I calibration samples to an IxK matrix C containing the concentrations or

characteristics of K analytes in the same I samples. Once an estimate of the model parameters are

obtained, it is possible to predict the concentration of analytes in a new sample of unknown

concentrations.

If the form of the model relating R to C is unknown, often the analyst "assumes" linearity

and hopes for success. Another approach is to guess at a functional form and test its

reasonableness with the calibration data. The problem with the latter approach is that there are too

many functional forms from which to choose. There is literally an infinite number of models that

can be constructed even for the simplest case of one response vector and one concentration vector.

Projection pursuit limits the number of choices by allowing the calibration data to determine

an appropriate model. The procedure projects the K dimensional calibration data (the K columns

of C) into a smaller space while retaining the multivariate structure. In other words, it determines

the linear combination of predictor variables that is "best" related to the columns of R. As in any

calibration procedure, the analyst must decide on which of the calibration matrices (concentration

versus response) to use as the predictor variables. In this study, the concentration vectors were

used in this role because the errors in the responses are presumed larger than those in the

concentrations (see equation 3 where the projection pursuit model assumes the errors are primarily % %

in rj) and because of an interest in estimating the coefficients for the columns of C to compare to

the earlier study.
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When using this approach, projection pursuit can be used to estimate the model for one ion

selective electrode at a time. The resulting projection pursuit model for the jth sensor is as follows,

K
rj = Gj( I aIkj Ck) + Ej 3)

k=I

where rj is an Ixl vector corresponding to the response of the jth sensor to I calibration samples;

Cxkj is the coefficient for the kth predictor variable (cl) where DXk = 1; Gj represents a smooth of

the linear combination described by the a quantities (an explanation of this follows); and Ej is the

error associated with fitting the data for the jth sensor.

For each of the j sensors, projection pursuit's goal is to determine the cc quantities and a

smooth that minimizes the associated error (ej). It achieves this by first searching for appropriate (X

quantities, calculating a smooth given that linear combination of predictor variables, and calculating

the error. It then iteratively searches for the linear combination that minimizes the error. The

optimal linear combination is that which yields the most narrow band of points when plotted

against rj. A simple hypothetical problem using simple graphics will make this more clear.

For illustration purposes, it will be assumed that an analyst has obtained a calibration set of

the response of one ISE to I mixtures of two analytes. Let r be the IxI vector of responses of the

ISE to the I samples and C be the x2 matrix of concentrations. Again, for illustration purposes,

assume that the first projection pursuit iteration yielded 0.37el + 0.93c2 as the initial linear

combination of predictor variables to describe r. From equation 3 it is clear that al = 0.37 and cc2

= 0.93. Projection pursuit next determines whether or not this choice of a quantities is reasonable

by "viewing" the relationship between r and the chosen linear combination of predictor variables

(fig. 1). (In practice, the method "views" the result mathematically, and plots are included here

only for instructional purposes..)

To determine the acceptability of the chosen c quantities, projection pursuit determines a

smooth (7) going through the points in figure 1. A smooth is a continuous line that describes the

.,
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general behavior of all of the points. The value of the smooth at any point is based on the local

average of q points on either side where q defines the bandwidth of the smooth. The smooth in

figure 2 was obtained using running averages where q=5 followed by a polynomial smooth of

degree 3. The important point of this illustration is to demonstrate how a smooth describes the

general trend of of the data. The degree to which the smooth describes each point individually (as

opposed to the overall trend) can be determined by adjusting the value of q. Although smooths are

not common in calibration procedures, some common methods of analysis are very similar in their

results. For example, the ordinary regression line can be thought of as a type of smooth describing

the data with the restriction of linearity. Another commonly employed procedure is the use of

spline functions (8) to approximate data when derivative spectra are desired. The spline function

breaks the data into sections and fits polynomials to each section to form a continuous curve.

The smooth used by the projection pursuit is more like the spline function than the

regression line in that it is not based on any model criterion :uch as linearity. The smooth is based

solely on the behavior of the data and does not have any functional form. However, in situations

where there is a real functional relationship (i.e. log, exponential) between the variables being

smoothed, the data should reflect the relationship and the smooth should closely approximate the

true model. For more details concerning the smooth employed by projection pursuit see

reference 6.

Returning to the illustration, once a linear combination of predictor variables is chosen,

projection pursuit calculates a smooth. The deviation of the points from the smooth is then used to

determine whether the linear combination of predictor variables (COk) is acceptable or if the

procedure should continue iterating. If the fit is not acceptable, a non-linear regression technique

(based on the method of Rosenbrock (9)) is used to choose a new set of ox quantities to examine.

A new smooth and corresponding fit are calculated, and the process is repeated until the deviation

from the smooth converges.. In the present hypothetical example it will be assumed that the Cc

quantities determined in the first iteration ((x = (0.37 0.931) were not the best possible and that

the procedure continued searching for new (X quantities until the following model was determined.

P.A

. - . ' % '? - ' ' '- '.¢ ' &° -¢ .2 ; . . .. .. .
'
... ,, ..... .:
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r = G(0.85 cl + 0.53 c2) 4)

Figure 3 is a plot of r versus this linear combination of c vectors where the desired fit of the data to

the smooth is achieved. Projection pursuit has found a linear combination of predictor variables

that results in a narrow band of points when r is plotted versus that linear combination.

Once the calibration model has been derived, prediction can be accomplished using two

different schemes. The first is to examine the derived smooth and determine whether it

corresponds to a known function. If an adequate function is available, it can be used in place of

the smooth and the resulting model can be used for prediction. This was the approach taken by the

present work to calibrate the array of ISEs because of the good correspondence between the

smooth and the log function, the ease of implementation of this method, and the unavailability of

the true smooth function as derived by the projection pursuit program.

The second approach to prediction is where projection pursuit is the most versatile. Instead

of replacing the smooth with a known function, prediction can be performed using the smooth

itself. This is possible because the smooth function is continuous within the range defined by the

calibration samples and therefore interpolation can be performed. To illustrate how the smooth can

be used for prediction, one can imagine estimating a calibration model where the instrument

responses at three wavelengths are used as predictor variables and the concentration of an analyte is

to be estimated. A possible model may be,

c = G (0.21 ri + 0.36 r2 + 0.91 r3) 5)

where G and ct = (0.21 0.36 0.91 correspond to the final model. In this example note that the

roles of the response and concentration vectors are not the same as in the calibration of ISEs.

Here, the response vectors are treated as predictor variables while the concentration vector is

treated as a dependent variable. These are not equivalent approaches, and the choice of which

.-. ,--r- a *P .! .. , .
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method to use depends on the error structure and the goals of the experiment.

Once the calibration model has been determined (eq. 5), the analyst can predict the

concentration of analytes in an unknown sample (ex. with response run = [1 2 3 ]) by evaluating .

the value of the estimated smooth at the point (1)(0.21) + (2)(0.36) + (3)(0.91) = 3.66. ,

The advantages of using the estimated smooth in this manner is that departures from

ideality are modelled, and representative models for many systems that do not follow "common" ..

functional forms can be obtained. This is because a smooth is not constrained to follow any

predetermined functionality and is therefore more able to model the behavior of the data. This

characteristic can make the method very valuable in an exploratory sense where unknown _

relationships between variables are sought. One caveat to the use of this method is that it is

possible to overfit the data. Although the smooth used by the projection pursuit is robust and

therefore not overly sensitive to outliers (non-representative calibration samples), it is still capable

of fitting noise as well as data. Another limitation is that the method is ,t useful in situations

where the unknown sample lies outside of the range of responses and concentrations defined by

the calibration set. When a smooth is used as an integral part of the model, extrapolation is not

possible. This is because smooths are a product of the data itself and therefore cannot be used to

infer about behavior beyond the data. It should be noted, however, that both of these limitations

are present in cases where the model is known and the ai alyst should be aware of the possible

complications regardless of the method employed.

Calibration The functionality of the response of an ISE to mixtures of analytes (eq. 2)

makes it very amenable to analysis using the projection pursuit algorithm. The data used in this

study were taken from the third experiment in the study performed in reference 3. The data

consisted of the responses of five ISEs to mixtures of sodium (0.1200 - 0.1650 M) and potassium

(2.00 - 8.40 mM) ions in aqueous solutions (See table 1 for concentration levels of the 11

calibration and 9 prediction samples). An 1 lx5 matrix R was constructed with rows

V.. . .. . - . . - - - - - .- - - - . .-. . .-. . . . °o " . % . . . ,% _ ., ' . % elm ' " ,



8

corresponding to samples, and columns corresponding to sensors (see table 2), likewise, an I lx2

matrix C was formed with columns corresponding to sodium and potassium ion concentrations,

respectively. To build the model for the jth electrode, projection pursuit was used to find caj, and

c(2j as in equation 3 where rj is the response of the jth sensor to the 11 calibration samples; and cl

and c2 are the concentrations of sodium and potassium in these samples, respectively.

For this study, the first approach to prediction was taken where the smooth was replaced

with a functional form. As was expected, the log function corresponded well with the derived

smooth. To compare the model results obtained using projection pursuit to those obtained in the

earlier study using the same data, the followir' g steps were followed to obtain projection pursuit

estimates of EO and S for each of the sensors.

The first step is to assume the final smooth corresponds to the log function for each sensor.

This is suggested by the data as will be discussed later. The a quantities and the log function can

then be used to transform the predictor variab-is (,:) to ield a new vector 1j that is linearly related

to rj.

lj 1og(cqlj c1 + ax2j c2) 6) 'A

Regressing rj onto Ij yields the following equation,

rj =Pj + PIj log(zlj cI + oC2j c2) 7)

To find the corresponding estimates of Ejo and Sj, the following rearrangements of equation 7 can

be made. .!

rj = P0j + P1j log (coj (cl + (of2j/ Ij) c2l} 8)

0rj [ f30j + 131 log(calj)] + 131j' i Og[cl + (ct2jl Oaj) ci2 9)

'-'

. %%
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Comparing this equation to equation 2, yields the following equalities.

Kj ct~/otij10)

Sj =pj 11) --

Ej° =1 30j + 31j log(l 1oj) 12)

0,2q

Note that equations 6-12, and the prediction equations that follow, are based on the assumption Ai'

that the smooth determined by projection pursuit is equal to the log function. As stated e-irlier, in

situations where no functional form can be found to represent the smooth, the calibration and

prediction models can be constructed using the smooth function itself. This latter approach will not

be employed in the present work but can prove to be a powerful alternative to the more traditional

approach.

Prediction Once the calibration model has been estimated for each of the five electrodes,

prediction of analyte concentrations for unknown samples can be accomplished by rearranging

equation 7 and employing MLR. The first step is to write equation 7 in the following form,

10 1(rj-POj)/ = Otlj cl + cx2j c2 13)

In equation 13, rj , cl, and c2 are in plain text because this equation is for one unknown sample as

opposed to the general case of I samples in equation 7. For each unknown sample the value of rj is

measured, 00j and P3ij are estimated, and therefore the left hand side of the equation is a known

quantity. Therefore, for each sensor, one equation of the following form is found for the

unknown sample,

xj = I j cl + Cc2j c2 14)
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where xj is the quantity on the left hand side of equation 13. This can be rewritten in vector

notation as follows,

xj = oXjT c 15)

If the x values calculated for each sensor (for the same unknown sample) are stacked to form a

column vector (x), and the corresponding axj for each sensor are also stacked to form a matrix A,

the following equality will hold,

x =A c +E 16)

where c is a vectr of concentrations for the unknown sample. This equation can be solved using

MLR to yield estimates for the elements of c in the following manner,

c = (ATA)-lAT x 17)

By following these steps, the calibration model can be used to predict the concentrations of

analytes in unknown samples.

Results and Discussion

Five electrodes were used to generate the data analyzed in this study,; a Coming 476_:0

general purpose cation glass electrode, an Orion 94-11 sodium glass electrode with uncharacteristic

non-selective behavior (3), and three plastic membrane based electrodes whose construction will
not be discussed here. The sensors will be referred to as TNO, GP, EH-PP, NA, and METH for

sensors 1-5, resuectively. For a more complete description of the electrodes. instrumentation, and

-A- - - h. - -
,'j
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data acquisition the reader is referred to reference 3.

The first step was to use projection pursuit to determine the values of the ct quantities in (
equation 3. For this study, 11 calibration samples were used to derive the parameters and the

resulting models were used to predict the concentration of analytes contained in an additional 9 test

samples. (It should be noted that projection pursuit is generally used in situations where the

dimensionality of the problems and the number of samples used in the calibration step (I) are much
k

larger than in this example. The ability of projection pursuit to successfully estimate the model

parameters in the present study is due to the low level of noise present.) The resulting cc quantities

for the models of the five sensors are listed in table 3. Since the procedure for model estimation

was identical for each of the five sensors, the details of only the first sensor will be discussed.

Assuming the functional form for sensor 1 is not known, the next step would be to plot rl

versus the "best" linear combination of the c vectors (.919c 1+.395 c2). This plot reveals that

projection pursuit has done a good job at forming a tight band of points. A close examination of

the plot also suggests that the true function describing the data has a slight curvature (negative

second derivative). If a straight line is fit to these points and the residuals examined (fig. 4), it

becomes clear that there is structure in the data that is not accounted for using a simple regression

line on the untransformed data. The shape of the residual structure suggests a suitable

transformation is to descend the ladder of powers for (.919 cl + .395 c-) and the log function is a

reasonable choice. In this study, there was obviously a strong bias toward using the log function

as this is suggested by theory. In other situations the analyst may not have any a priori knowledge

about the relationship between dependent and independent variables. In those situations,

projection pursuit may provide clues concerning the functional relationships. From this

information, hypotheses can be formulated and further investigation performed to verify or

disprove the hypotheses.

For ISEs, the log function was suspected and the data substantiated the form of equation 2.

A plot of log( .919 cl + .395 c?) versus r1 revealed a more linear relationship. Figure 5 is the

residual plot of the regression of rl on the transformed linear combination of c vectors where the

'A

.' ,

A,,..
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!a-ck of structure in the new residuals verifies the log transformation as being acceptable.

Additionally, the log function can be shown to be appropriate by comparing the magnitude of the

residuals (taking into account that the log transformation has been performed). (Note: The original

experiment was set up using a factorial design (10) to choose the levels for the concentration of

analytes. For this reason, four sets of points in figures 4 and 5 are clustered together and are not

ideal for determining the optimal transformation. If the experiment were to be repeated, it would

be advisable to use a different scheme to select analyte concentration levels for the calibration

samples.)

The next step of the calibration procedure is the regression of the vector of responses onto

the vector Ij (eq. 7). This regression step yielded the coefficients found in table 4. These values

can be used to estimate the parameters in the original Nernst equation (eq. 2) using the equalities

found in equations 10-12. The estimated parameters using projection pursuit and those of the

earlier study of Beebe et al. are listed in table 5. The ageement between the two methods is very

good and one would expect the predictive abilities of the two methods to be comparable. Note that

it is possible to improve the projection pursuit model once the log function was chosen to replace

the smooth. One approach to calibration is to use projection pursuit to find the functional

relationships and some other non-linear regression technique to determine the model parameters

given the estimated functional form for the calibration model.

Table 6 lists the results of using the projection pursuit model to predict the concentrations

of analytes in the nine test samples using equation 17. The results of the earlier study using the

simplex model are also included for comparison. These results show that the model derived using

the simplex method yielded slightly better prediction than the model determined using projection

pursuit. This is a reasonable result because of the approach to prediction that was followed. The

projection pursuit smooth was assumed to equal the log transformation and the a quantities

calculated for the smooth were used with the log function. These a quantities were not exactly

optimal for the log function and therefore the projection pursuit model did not perform as well as

the model derived using the simplex procedure.
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As stated earlier, a second approach would have been to use the smooth itself as a part of

the calibration model (eq. 5). Both of these are reasonable options and either could be used

depending on whether the analyst has more confidence in the theory (in which case the functional

model would be desirable) or the calibration samples (where the smooth would be used).

Conclusion

Projection pursuit has been presented along with an example of its use. Although ion

selective electrodes were used in this study, it is not to be inferred that this is the method of choice

for the calibration of ISEs. ISE data were used to illustrate the effectiveness and capabilities of

projection pursuit for calibration and model estimation in general. Many other possible

applications can be imagined and a variety of approaches to the data analysis can be used

depending on the particular type of data at hand. The most powerful aspect of the technique is that

there is no need to assume any functional relationship between variables under investigation. The

method can be used to verify assumed relationships, detect outliers, and determine functional

relationships between variables that are unknown. Furthermore, the method is not tied to any fixed

functional form. If the data do not follow some standard form, the more common modes of

analysis cannot be used for model building. Using the smooths as the funcional forms allow the

analyst to build models that are uniquely characteristic of the system under investigation.
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Figure Captions:

Figure 1. For the hypothetical example, plot of r versus 0.37c, + 0.93 c2.

Figure 2. Plot of r versus 0.37cl + 0.93c2 with a smooth included. This plot shows the

relatively poor fit of the data to the initial smooth estimate.

Figure 3. Plot of r versus 0.85cl + 0.53c2 for the hypothetical final model where the desired

tight belt of points is achieved.

Figure 4. Plot of residuals versus fitted values resulting from the regression of rl onto

(.919cl + .395c2).

Figure 5. Plot of residuals versus fitted values resulting from the regression of rl onto

log(.919c1 + .395c2).
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Table I. Composition of samples used for calibration and prediction.

Calibration Prediction
Sample [Na+] M [K+] mM Sample [Na + ] M [K ] n,

1 0.1200 2.00 1 0.1200 3.82

0.1200 5.48 2 0.1200 7.00

3 0.1200 8.40 3 0.1350 3.82

4 0.1350 2.00 4 0.1350 7.00

5 0.1350 5.48 5 0.1500 2.00

6 0.1350 8.40 6 0.1500 7.00

7 0.1500 3.82 7 0.1500 8.40

8 0.1500 5.48 8 0.1650 3.82

9 0.1650 2.00 9 0.1650 7.00

10 0.1650 5.48

11 0.1650 8.40
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Table II. Responses of sensors to calibration and prediction
samples.

Calibration Sensor
sample TNO GP EHPP NA METH

1 -3.10 -49.00 4.80 13.20 -6.40
2 -2.50 -45.40 6.20 15.60 -5.70
3 -2.40 -43.10 6.90 17.10 -5.50
4 -0.20 -46.60 7.10 16.50 -4.20
5 0.10 -43.50 8.40 18.30 -3.60

6 0.30 -41.20 9.40 19.70 -3.40
7 2.10 -43.00 9.60 19.70 - 1.20

8 2.30 -41.60 10.10 20.50 -0.90
9 4.40 -42.60 10.90 20.90 0.90

10 4.40 -40.00 11.80 22.30 1.20
11 4.40 -38.20 12.40 23.20 1.30

Prediction

1 -2.80 -47.10 5.40 14.40 -6.10
2 -2.60 -44,30 6.50 16.40 -5.70
3 -0.10 -45.00 7.90 17.50 -3.90

4 0.10 -42.30 8.90 19.00 -3.50
5 2.00 -44.60 9.00 18.90 -1.50
6 2.30 -40.60 10.40 21.00 -0.80
7 2.20 -39.70 10.70 21.40 -0.80
8 4.50 -41.10 11.50 21.70 1.20
9 4.40 -39.00 12.10 22.70 1.20

-~~~~~~~... - " - = " I " I - - I. ...
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Table III. Results of projection pursuit of rj and C.

Sensor (Xl (X

TIN0 0.919 0.395

G P 0.152 0.988

EHPP 0.403 0.915

NA 0.310 0.951

MVETH 0.819 0.574

2K-:'
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Table IV. Results of regression step of calibration phase.

h

Sensor P0 0

I.-

TINO 46.40 5 1.6 3
GP 35.32 49.70

EHPP 63.18 44.81
NA 9 1. 34 55.18
METH 46.38 52.72

*0,

*0]

.
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Table V. Final models derived from projection pursuit and simplex (3).

Model

Projection pursuit Simplex •

Sensor Eo  S K Eo  S K

TNO 44.50 51.63 0.43 44.51 51.64 0.44

GP -5.36 49.70 6.51 -5.36 49.69 6.51

EHPP 45.47 44.81 2.27 45.37 44.78 2.39

NA 63.25 55.18 3.07 63.07 55.07 3.18

MIETH 41.81 52.72 0.70 41.81 52.72 0.70

1- -1
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Table VI. Predicted concentrations and (% relative error) of prediction for test samples.

Model

Projection pursuit Simplex

Sample [Na + ] M [K+ ] mM [Na + ] M [K+ ] mM

1 0.1202 (0.2) 3.50 (8.4) 0.1198 (0.2) 3.73 (2.4)

2 0.1999 (0.1) 6.92 (1.1) 0.1199 (0.1) 6.86 (2.0)

3 0.1342 (0.6) 4.26 (11.5) 0.1351 (0.1) 3.89 (1.8)

4 0.1341 (0.7) 7.53 (7.6) 0.1349 (0.1) 7.15 (2.1)
5 0.1493 (0.5) 2.13 (6.5) 0.1498 (0.1) 2.03 (1.5)

6 0.1498 (0.1) 6.99 (0.1) 0.1497 (0.2) 7.00 (0.0)

7 0.1486 (0.3) 8.48 (1.0) 0.1486 (0.9) 8.45 (0.6)

8 0.1668 (1.1) 3.50 (8.4) 0.1665 (0.9) 3.69 (3.4)

9 0.1645 (0.3) 6.79 (3.0) 0.1641 (0.5) 7.03 (0.4)

Average % relative error (0.4) (5.3) (0.3) (1.6)
---
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