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Q‘%Auch effort has been expended in the field of analytical chemistry toward the development

of selective sensors. The ultimate goal of this area of research is to build sensors that respond to
only one analyte while ignoring all other analytes (interferents) that are present in the samples.
Perhaps the most common example of the result of this effort is the development of ion selective
electrodes (ISE) for the determination of ion concentrations in solutions. While some ISEs are
relatively selective for the desired ions, all suffer from some degree of non-specificity.
Unfortunately, in the field of sensor development this is a common occurrence.

Another approach to solving the problem of interferents is to use multiple non-selective
sensors and employ multivariate mathematics\éQto perform the calibration and prediction. This

was the approach taken in two recent papers\é!?&) where arrays of ISEs were used to quantify

mixtures of analytes. Analyte quantitation was achieved using either linear% or non-linear&&\

regression techniques to model the response of the electrodes to the concentration of analytes in
mixture samples. In both papers, the sensor responses were assumed to obey the relationship

found in the set of extended Nernst equations;

’
~

e

U R U,

Ej = E° + Sjlog(a; + 211 Kji aj) ) 1)

where Ej; is the potential of the jth electrode in the array measured for the ith sample with respect
to a suitable reference electrode; E;° is the intercept potential of the jth electrode; S;j is the slope of
the response of the electrode in the absence of any interferents (analytes to which the sensor
responds for which it was not designed); aj is the activity of the analyte for which the electrode was
made; a;) is the activity of the Ith interfering ion; and Kj; is the selectivity coefficient of the jth
electrode with respect to the Ith interfering ion. In this study, only iwo analytes were present

(sodium and potassium) and therefore equation 1 can be rewritten in the following form,

Eijj = Ej° + §jlog(cinat + Kjcik+) 2)
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where the order of the analytes has been arbitrarily chosen and the activities have been replaced by

concentrations (CiNa*, Cik+)-

Otto and Thomas (2) used calibration samples containing only one analyte to determine the
slopes (S;) for each electrode, rearranged equation 2, and used multiple linear regression (4) and
partial least squares (5) to determine the remaining two parameters for the model (Ej° and Kj).
Beebe et al. (3) used non-linear regression based on a simplex algorithm and multiple linear
regression (MLR) to determine the model parameters with no a priori information concerning the
slope of the electrode responses.

This study will use a relatively new method of analysis called projection pursuit (6) to
determine the model parameters. Projection pursuit is a nonparametric multivariate technique that
allows the analyst to calibrate a system with no a priori information about the functional form of the
calibration model. In other words, given the responses of J sensors to I samples containing

mixtures of K analytes, projection pursuit can find an appropriate form for the model (log,

parabolic, linear, etc.) as well as the model parameters. In the more common calibration
procedures, knowledge of the functional form is an essential component. For example, in building

the calibration model for an experiment involving absorption measurements, it is common practice

e o

to assume the instrument response follows Beer's Law and use a regression procedure to build the
model. If the linearity criterion is not obeyed, the derived models are not valid, and the true
models cannot be obtained using the normal linear regression techniques. Similarly, previous
papers treating the calibration of arrays of ISEs (2,3) based the calibration models on the
. assumption that the electrodes obey a known response equation. Not knowing this "functional
form" can make the calibration quite inaccurate. Furthermore, unexpected departure from the
assumed functional form can yield erroneous results. For these reasons, non-parametric methods
in gencral and projection pursuit in particular are powerful and versatile tools with a wide variety of

possible applications.
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Theory

Notation Throughout this paper matrices will be represented with bold uppercase letters
(R); vectors with beld lower case letters such as rj to signify the jth column of R; and scalar

quantities with plain upper and lower case letters (I, 1).

Projection Pursuit In general, the goal of all multivariate calibration procedures is to
estimate model parameters relating an IxJ matrix R containing the responses of J sensors or
wavelengths to I calibration samples to an IxK matrix C containing the concentrations or
characteristics of K analytes in the same I samples. Once an estimate of the model parameters are
obtained, it is possible to predict the concentration of analytes in a new sample of unknown
concentrations.

If the form of the model relating R to C is unknown, oftzn the analyst "assumes" linearity
and hopes for success. Another approach is to guess at a functional form and test its
reasonableness with the calibration data. The problem with the latter approach is that there are t0o
many functional forms from which to choose. There is literally an infinite number of models that
can be constructed even for the simplest case of one response vector and one concentration vector.

Projection pursuit limits the number of choices by anWing the calibration data to determine
an appropriate model. The procedure projects the K dimensional calibration data (the K columns
of C) into a smaller space while retaining the multivariate structure. In other words, it determines
the linear combination of predictor variables that is "best" related to the columns of R. As in any
calibration procedure, the analyst must decide on which of the calibration matrices (concentration
versus response) to use as the predictor variables. In this study, the concentration vectors were
used in this role because the errors in the responses are presumed larger than those in the
concentrations (see equation 3 where the projection pursuit model assumes the errors are primarily
in rj) and because of an interest in estimating the coefficients for the columns of C to compare to

the earlier study.
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2 o When using this approach, projection pursuit can be used to estimate the model for one ion

e e

selective electrode at a ime. The resulting projection pursuit model for the jth sensor is as follows,

;c: K

\J

W rj = Gj( z Mkj €k ) + E€; 3) :
" k=1 ‘
L X
.‘

!

3

be.

where rj is an Ix1 vector corresponding to the response of the jth sensor to I calibration samples;

aj is the coefficient for the kth predictor variable (cy) where 3ok = 1; Gj represents a smooth of

w the linear combination described by the ¢ quantities (an explanation of this follows); and g; is the
o
:,. error associated with fitting the data for the jth sensor.
! . . : . . .
", For each of the j sensors, projection pursuit's goal is to determine the ® quantities and a
w», smooth that minimizes the associated error (g;). It achieves this by first searching for appropriate &
10 ] y pprop
o
) quantities, calculating a smooth given that linear combination of predictor variables, and calculaung
n
W the error. It then iteratively searches for the linear combination thiat minimizes the error. The
y

: optimal linear combination is that which yields the most narrow band of points when plotted
N
A . . . . . . . .
s against rj. A simple hypothetical problem using simple graphics will make this more clear.
A
P For illustration purposes, it will be assumed that an analyst has obtained a calibration set of
K the response of one ISE to I mixtures of two analytes. Let r be the Ix1 vector of responses of the
‘o
| ISE to the I samples and C be the Ix2 matrix of concentrations. Again, for illustration purposes,
! s - . . s
‘" assume that the first projection pursuit iteration yielded 0.37¢; + 0.93¢3 as the inital linear
N combination of predictor variables to describe r. From equation 3 it is clear that o} =0.37 and &3
? . . . . . . ae .
.:o' =0.93. Projection pursuit next determines whether or not this choice of a quantities is reasonable
t

! by "viewing" the relationship between r and the chosen linear combination of predictor variables
i (fig. 1). (In practice, the method "views" the result mathematically, and plots are included here
“
f\: only for instructional purposes.)
2 To determine the acceptability of the chosen o quantities, projection pursuit determines a
F smooth (7) going through the points in figure 1. A smooth is a continuous line that describes the
R
"
\.‘
o
”
"
»,
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general behavior of all of the points. The value of the smooth at any point is based on the local
average of q points on either side where q defines the bandwidth of the smooth. The smooth in
figure 2 was obtained using running averages where q=5 followed by a polynomial smooth of
degree 3. The important point of this illustration is to demonstrate how a smooth describes the
general trend of of the data. The degree to which the smooth describes each point individually (as
opposed to the overall trend) can be determined by adjusting the value of g. Although smooths are
not common in calibration procedures, some common methods of analysis are very similar in their
results. For example, the ordinary regression line can be thought of as a type of smooth describing
the data with the restriction of linearity. Another commonly employed procedure is the use of
spline functions (8) to approximate data when derivative spectra are desired. The spline function
breaks the data into sections and fits polynomials to each section to form a continuous curve.

The smooth used by the projection pursuit is more like the spline function than the
regression line in that it is not based on any model criterion cuch as linearity. The smooth is based
solely on the behavior of the data and does not have any functional form. However, in situations
where there is a real functional relationship (i.e. log, exponential) between the variables being
smoothed, the data should reflect the relationship and the smooth should closely approximate the
true model. For more details concerning the smooth employed by projection pursuit see
reference 6. -

Returning to the illustration, once a linear combination of predictor variables is chosen,
projection pursuit calculates a smooth. The deviation of the points from the smooth is then used to
determine whether the linear combination of predictor variables (ck) is acceptable or if the
procedure should continue iterating. If the fit is not acceptable, a non-linear regression technique
(based on the method of Rosenbrock (9)) is used to choose a new set of & quantities to examine.
A new smooth and corresponding fit are calculated, and the process is repeated until the deviation
from the smooth converges.. In the present hypothetical example it will be assumed that the &
quantities determined in the first iteration (a = {0.37 0.93]) were not the best possible and that

the procedure continued searching for new o quantities until the following model was determined.
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r= G0.85¢c; + 0.53¢y) b
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": Figure 3 is a plot of r versus this linear combination of ¢ vectors where the desired fit of the data to
)
the smooth is achieved. Projection pursuit has found a linear combination of predictor variables
o that results in a narrow band of points when r is plotted versus that linear combination.
, Once the calibration model has been derived, prediction can be accomplished using two
‘.. - - - - . . .
different schemes. The first is to examine the derived smooth and detzrmine whether it
R corresponds to a known function. If an adequate function is available, it can be used in place of
iy
b/ the smooth and the resulting model can be used for prediction. This was the approach taken by the
)
8, .
. present work to calibrate the array of ISEs because of the good correspondence between the
' . . . I3 ey
it smooth and the log function, the ease of implementation of this method, and the unavailability of
)
:' the mue smooth function as derived by the projection pursuit program.
)
' The second approach to prediction is where projection pursuit is the most versatile. Instead
. of replacing the smooth with a known function, prediction can be performed using the smooth
- itself. This is possible because the smooth function is continuous within the range defined by the
) ‘ . . . . .
calibration samples and therefore interpolation can be performed. To illustrate how the smooth can
> be used for prediction, one can imagine estimating a calibration model where the instrument
Y
s responses at three wavelengths are used as predictor variables and the concentration of an analyte is
AN
By . .
to be estimated. A possible model may be,
! ¢ =G(02lr+ 0361 + 09113) 5)
[/
e where Gand a =[0.21 0.36 0.91 ] correspond to the final model. In this example note that the
-
" roles of the response and concentration vectors are not the same as in the calibranon of ISEs.
F~

Here, the response vectors are treated as predictor variables while the concentration vector is

treated as a dependent variable. These are not equivalent approaches, and the choice of which
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method to use depends on the error structure and the goals of the experiment. G
I-(
oty
Once the calibration model has been determined (eq. 5), the analyst can predict the ®
o,
. . . A . +
concentration of analytes in an unknown sample (ex. with response ryp =[ 1 2 3 ]) by evaluating :‘_’,’.
f>
) ) . oy
the value of the estimated smooth at the point (1)(0.21) + (2)(0.36) + (3)(0.91) = 3.66. Q‘; .
l\.l'
The advantages of using the estimated smooth in this manner is that departures from »
A : : " " :".’-
ideality are modelled, and representative models for many systems that do not follow "common -
functional forms can be obtained. This is because a smooth is not constrained to follow any T
N
predetermined functionality and is therefore more able to model the behavior of the data. This *."
<
characteristic can make the method very valuable in an exploratory sense where unknown W
W (3
relationships between variables are sought. One caveat to the use of this method is that it is b
)
possible to overfit the data. Although the smooth used by the projection pursuit is robust and ".“ ‘
Py
therefore not overly sensitive to outliers (non-representative calibration samples), it is stll capable f-s .
$
of fitting noise as well as data. Another limitation is that the methed is not useful in situations !
 Sab
. . : 5
where the unknown sample lies outside of the range of responses and concentrations defined by ®
the calibration set. When a smooth is used as an integral part of the medel, extrapolaton is not A )
)
possible. This is because smooths are a product of the data itself and therefcre cannot be used to e
N
infer about behavior beyond the data. It should be noted, however, that both of these limitations '
I
are present in cases where the model is known and the ar alyst should be aware of the possible :;:
L
o
complications regardless of the method employed. s;,‘,f
bt
[
g
C’hl
. 0o
Calibration The functionality of the response of an ISE to mixtures of analytes (eq. 2) N
e
. L .. . . L iy
makes it very amenable to analysis using the projection pursuit algorithm. The data used in this
study were taken from the third experiment in the study performed in reference 3. The data N
consisted of the responses of five ISEs to mixtures of sodium (0.1200 - 0.1650 M) and potassium N
2
(2.00 - 8.40 mM) ions in aqueous solutions (Sce table 1 for concentration levels of the 11 ."
S
. .. . . 2,
calibration and 9 prediction samples). An 11x5 matrix R was constructed with rows o
.
.'_:: !
53
o
« N
e.:
Ry
.': |
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corresponding to samples, and columns corresponding to sensors (see table 2), likewise, an 11x2
matrix C was formed with columns corresponding to sodium and potassium ion concentrations,
respectively. To build the model for the jth electrode, projection pursuit was used to find o}, and
a2j as in equation 3 where rj is the response of the jth sensor to the 11 calibration samples; and ¢}
and ¢ are the concentragons of sodium and potassium in these samples, respectively.

For this study, the first approach to prediction was taken where the smooth was replaced
with a functional form. As was expected, the log function corresponded well with the derived
smooth. To compare the model results obtained using projection pursuit to those obtained in the
earlier study using the same data, the followir.g steps were followed to obtain projection pursuit
estimates of E° and S for each of the sensors.

The first step is to assume the final smooth corresponds to the log function for each sensor.
This is suggested by the data as will be discussed later. The a quantities and the log funcdon can
then be used to ransform the predictor variabies () to yicld a new vector | that is linearly retated

to rj.

lj = log(oqj ¢ + ojc) 6)

Regressing rj onto 1 yields the following equation,

rj = Poj + Pijlogarjer + ozjea) 7

To find the corresponding estimates of Ej°® and §;, the following rearrangements of equation 7 can

be made.

ri = Boj + Bijloglogjler + (apy ayj) ez]] 8)

l—-’.
|

= [Boj + Bujlog(a1p] + Bijlogler + (ooy ay)) ezl 9)
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Comparing this equation to equation 2, yields the following equalities.

Kj = agj/oy; 10)
Sj =By 11)
© = Boj + Pijlog(ay 12)

Note that equations 6-12, and the prediction equations that follow, are based on the assumption
that the smooth determined by projection pursuit is equal to the log function. As stated earlier, in
situations where no functional form can be found to represent the smooth, the calibration and
prediction models can be constructed using the smooth function itself. This latter approach will not
be employed in the present work but can prove to be a powerful alternative to the more traditional

approach.

Prediction Once the calibration model has been estimated for each of the five electrodes
prediction of analyte concentrations for unknown samples can be accomplished by rearranging
equation 7 and employing MLR. The first step is to write equation 7 in the following form,

10 (- Bop / Bujl _ ojc1 + apjc2 )

In equation 13, 1j, c1, and c; are in plain text because this equation is for one unknown sample as
opposed to the general case of I samples in equation 7. For each unknown sample the value of rjis
measured, Boj and Byj are estimated, and therefore the left hand side of the equation is a known
quantity. Therefore, for each sensor, one equation of the following form is found for the

unknown sample,

Xj = QyjC + 02jC2 14)
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where xj is the quantity on the left hand side of equation 13. This can be rewritten in vector

notation as follows,

xj = oT ¢ 13)

If the x values calculated for each sensor (for the same unknown sample) are stacked to form a

column vector (x), and the corresponding @;j for each sensor are also stacked to form a matrix A,

the following equality will hold,

X=ACc+¢ 16)

where c 15 a vecior of concentrations for the unknown sample. This equation can be solved using

MLR to yield estimates for the elements of ¢ in the following manner,

c = (ATA)IAT x 17)

By following these steps, the calibration model can be used to predict the concentratons of

analytes in unknown samples.

Results and Discussion

Five electrodes were used to generate the data analyzed in this study; a Corning 476220
general purpose cation glass electrode, an Orion 94-11 sodium glass electrode with uncharacteristic
non-selective behavior (3), and three plastic membrane based electrodes whose construction will
not be discussed here. The sensors will be referred to as TNO, GP, EHPP, NA, and METH for

sensors 1-3, respectively. For a more complete description of the electrodes. insoumentation, and




ke
An L)

Ly

11

data acquisition the reader is referred to reference 3.

The first step was to use projection pursuit to determine the values of the o quantities in
equation 3. For this study, 11 calibration samples were used to derive the parameters and the
resulting models were used to predict the concentration of analytes contained in an additonal 9 test
samples. (It should be noted that projection pursuit is generally used in situations where the
dimensionality of the problems and the number of samples used in the calibration step (I) are much
larger than in this example. The ability of projection pursuit to successfully estimate the model
parameters in the present study is due to the low level of noise prescnt.) The resulting o quantities
for the models of the five sensors are listed in table 3. Since the procedure for model estimation
was identical for each of the five sensors, the details of only the first sensor will be discussed.

Assuming the functional form for sensor 1 is not known, the next step would be to plot r;
versus the "best” linear combination of the ¢ vectors (.919¢1+.395 ¢2). This plot reveals that
projecticn pursuit has done a good job at forming a tight band of points. A close examination of
the plot also suggests that the true function describing the data has a siight curvature (negative
second derivative). If a straight line is fit to these points and the residuals examined (fig. 4), it
becomes clear that there is structure in the data that is not accounted for using a simple regression
line on the untransformed data. The shape of the residual structure suggests a suitable
transformation is to descend the ladder of powers for ((919 ¢ +.395 ¢3) and the log function is a
reasonable choice. In this study, there was obviously a strong bias toward using the log function
as this is suggested by theory. In other situatons the analyst may not have any a priori knowledge
about the relationship between dependent and independent variables. In those situations,
projection pursuit may provide clues concerning the functional relationships. From this
information, hypotheses can be formulated and further investigation performed to verify or
disprove the hypotheses.

For ISEs, the log function was suspected and the data substantiated the form of equation 2.
A plot of log( .919 ¢ + .395 ¢p) versus ry revealed a more linear relationship. Figure 5 is the

residual plot of the regression of ry on the transtormed linear combination of ¢ vectors where the
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lack of structure in the new residuals verifies the log transformation as being acceptable.
Additionally, the log function can be shown to be appropriate by comparing the magnitude of the
residuals (taking into account that the log transformation has been performed). (Note: The original
experiment was set up using a factorial design (10) to choose the levels for the concentration of
analytes. For this reason, four sets of points in figures 4 and 5 are clustered together and are not
ideal for determining the optimal transformation. If the experiment were to be repeated, it would
be advisable to use a different scheme to select analyte concentration levels for the calibration
samples.)

The next step of the calibration procedure is the regression of the vector of responses onto
the vector lj (eq. 7). This regression step yielded the coefficients found in table 4. These values
can be used to estimate the parameters in the original Nernst equation (eq. 2) using the equalities
found in equations 10-12. The estimated parameters using projection pursuit and those of the
earlier study of Beebe et al. are listed in table 5. The agreement between the tw methods is very
good and one would expect the predictve abilities of the two methods to be comparable. Note that
it is possible to improve the projection pursuit model once the log function was chosen to replace
the smooth. One approach to calibration is to use projection pursuit to find the functional
relationships and some other non-linear regression technique to determine the model parameters
given the estimated functional form for the calibration model.

Table 6 lists the results of using the projection pursuit model to predict the concentrations

of analytes in the nine test samples using equation 17. The results of the earlier study using the

simplex model are also included for comparison. These results show that the model derived using
the simplex method yielded slightly better prediction than the model determined using projection
pursuit. This is a reasonable result because of the approach to prediction that was followed. The
projection pursuit smooth was assumed to equal the log transformation and the & quantities
calculated for the smooth were used with the log function. These o quantities were not exactly
optimal for the log function and therefore the projection pursuit model did not perform as well as

the model derived using the simplex procedure.
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As stated earlier, a second approach would have been to use the smooth itself as a part of
the calibration model (eq. 5). Both of these are reasonable options and either could be used
depending on whether the analyst has more confidence in the theory (in which case the functional

model would be desirable) or the calibration samples (where the smooth would be used).
Conclusion

Projection pursuit has been presented along with an example of its use. Although ion
selective electrodes were used in this study, it is not 1o be inferred that this is the method of choice
for the calibration of ISEs. ISE data were used to illustrate the effectiveness and capabilities of
projection pursuit for calibration and model estimation in general. Many other possible
applications can be imagined and a variety of approaches to the data analysis can be used
depending on the particular type of data at hand. The most powerful aspect cf the technique is that
there is no need to assume any functional relationship between variables under invesugation. The
method can be used to verify assumed relationships, detect outliers, and determine functional
relationships between variables that are unknown. Furthermore, the method is not ted to any fixed
functional form. If the data do not follow some standard form, the more common modes of
analysis cannot be used for model building. Using the smooihs as the func'ional forms allow the

analyst to build models that are uniquely characteristic of the system under investigation.
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Figure Captions:

Figure 1. For the hypothetical example, plot of r versus 0.37¢; + 0.93¢3.

Figure 2. Plot of r versus 0.37¢y + 0.93¢3 with a smooth included. This plot shows the ot

o
relatively poor fit of the data to the inidal smooth estimate. ﬁ

Figure 3. Plot of r versus 0.85¢y + 0.53c3 for the hypothetical final model where the desire Wy

tight belt of points is achieved. i

Figure 4. Plot of residuals versus fitted values resulting from the regression of rj onto &

(919¢; + .395¢9).

Figure 5. Plot of residuals versus fitted values resulting from the regression of ry onto o

log(.919¢) + .395¢). -
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TableI. Composition of samples used for calibration and prediction. T
o

%
. . . w.
Calibradon Prediction ‘

Sample [Nat]M [K*] mM Sample [Nat] M (K] mM bt
&

1 0.1200 2.00 1 0.1200 3.82 >
2 0.1200 5.48 2 0.1200 7.00 »
3 0.1200 8.40 3 0.1350 3.82 ;‘-
4 0.1350 2.00 4 0.1350 7.00 o
5 0.1350 5.48 5 0.1500 2.00 °
6 0.1350 8.40 6 0.1500 7.00 S
7 0.1500 3.82 7 0.1500 8.40 e
8 0.1500 5.48 8 0.1650 3.82 e
9 0.1650 2.00 9 0.1650 7.00 .
10 0.1650 5.48 s
11 0.1650 8.40 N
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Table II. Responses of sensors to calibration and prediction
samples.

Calibration Sensor
sample GP EHPP

-49.00 4.80
-45.40 6.20
-43.10 6.90
-46.60 7.10
-43.50 8.40
-41.20 9.40
-43.00 9.60
-41.60 10.10
-42.60 10.90
-40.00 11.80
-38.20 12.40
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Table III.  Results of projection pursuit of rj and C.

Sensor ol (o)

TNO 0.919 0.395
GP 0.152 0.988
EHPP 0.403 0915
NA 0.310 0.951
METH 0.819 0.574
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Table IV.  Resulis of regression step of calibration phase.

]

L]
Iy

N

.y
2 -

i Sensor Bo B1

TNO 46.40 51.63
GP 35.32 49.70
. EHPP 63.18 44.81
NA 91.34 55.18
. METH 46.38 52.72
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Table V.  Final models derived from projection pursuit and simplex (3). N,

Model pd
Projection pursuit Simplex o
Sensor EO S K EO S K T

,q.,:

Ly
d

»

*
«

TNO 44.50 51.63 0.43 44.51 51.64 0.44 "
GP -5.36 49.70 6.51 -5.36 49.69 6.51
EHPP 45.47 44.81 2.27 45.37 44.78 2.39
NA 63.25 55.18 3.07 63.07 55.07 3.18
METH 41.81 3272 0.70 41.81 52.72 0.70
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Table VI.  Predicted concentrations and (% relative error) of prediction for test samples. o

Model
Projection pursuit Simplex 0
Sample [Nat] M [K¥) mM [Nat] M [K+] mM

0.1202 (0.2)  3.50 (8.4) 0.1198 (0.2)  3.73 (2.4) °
0.1999 (0.1)  6.92 (1.1) 0.1199 (0.1)  6.86 (2.0) W
0.1342 (0.6)  4.26 (11.5) 0.1351 (0.1)  3.89 (1.8) ]
0.1341 (0.7)  7.33 (1.6) 0.1349 (0.1)  7.15 (2.1) “:"?
0.1493 (0.5)  2.13 (6.5) 0.1498 (0.1)  2.03 (1.5) e
0.1498 (0.1)  6.99 (0.1) 0.1497 (0.2)  7.00 (0.0) ey
0.1486 (0.3)  8.48 (1.0) 0.1486 (0.9)  8.45 (0.6) 2
0.1668 (1.1)  3.50 (3.4) 0.1665 (0.9)  3.69 (3.4)
0.1645 (0.3)  6.79 (3.0 0.1641 (0.5)  7.03 (0.4) ' »

O 00 N O Wt AW N

Average % relative error 0.4) (5.3) (0.3) (1.6) . R
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