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Most chemists, if they have heard of cellular automata at all, are

probably familiar with them only as a means of synthesizing complex

computer-graphic images. The public's view of automata has been shaped

by cinematic applications like the Lucasfilm Computer Graphics

Laboratory's creation of the 'Genesis bomb' explosion in Star Trek II -

The Wrath of Khan. The perception of automata as an arcane mathematical

construct has prevented their application to a number of problems for

which they are naturally suited, and has left many researchers with the

public's impression that cellular automata are best left in the hands of

Hollywood's high-tech artists.

Nevertheless, cellular aotomata have been applied to both theoretical

0 problems and experimental data analysis. For example, workers at the

University of Toronto have used such constructs to theoretically model

the formation of stars and galaxies', and cellular-automaton-based

computers have been used to analyze data transmitted to earth from

Landsat satellites2 . The purpose of the present review is to outline

what a cellular automaton is and how it works, and to show how automata

can be used to study real systems. The cellular automaton as a problem-

solving machine will be compared to the more common Turing-machine

approach in the course of this discussion.

0 In essence, the comparison between Turing machines and cellular

automata is a comparison between sequential and parallel methods of

problem solving. Turing machines and cellular automata are both

* mathematical constructs that can be used to investigate the process of

computation. Modern computing is based on theories developed using the
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Turing machine, and the use of parallel constructs like cellular automata

represents a fairly recent development in computing..4
The Turing machine and its operation have been described thoroughly3 ,

and only a brief discussion is necessary here. The Turing machine is

4% usually thought of as a mechanical device, although few would bother to

actually build one. (The operation of the machine is much more

efficiently simulated on paper.) The 'machine' is composed of a tape

(containing 'ones' and 'zeroes') and a tape scanner, and is really quite

similar to a cassette recorder. The only real difference between the

Turing machine and the tape recorder is that the Turing-machine head

reads and writes in both directions on a single track. The direction of

the head's movement and its read/write mode are determined by the state

of the machine and the information configuration of the data tape. The
-a -.

head moves in discrete steps and operates on only one value on the tape

at a time. The head's next step is determined by the current value on

the tape (at the head) and the current state of the machine (a

configuration of "switches' that is itself determined by the previous

value at the tape head). Despite its seemingly simple construction, the

Turing machine has been shown to be capable of performing the most

complex calculations, given enough time.

The simplest cellular automaton resembles the Turing machine in that

0 it also starts with a one-dimensional array of data values. In cellular

automata, however, each site can directly communicate with some of the

others, and the values at all of the positions along the array are

updated simultaneously instead of one at a time (sequentially). A

cellular automaton is perhaps the simplest architecture for a massively

- - parallel processor.
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In a typical cellular automaton, each cell in the array contains one

member of a finite set of possible cell values. The values in all of the

cells change according to the same set of rules (a program). These rules

describe the state of a cell as a function of the previous value in the

cell and the previous values of the cells in some defined neighborhood

around the central site. The values in all of the cells are

synchronously updated. In the simplest case, a cellular automaton is a

A' one-dimensional array of cells arranged on a line so that each cell has

% only two nearest neighbors. A more common computational configuration

has the cells in a 2-D square array, giving each cell eight nearest

neighbors. Mathematical analyses of cellular automata treat the cells

essentially as 'mailboxes', and describe the temporal evolution of

structure in the cell-value configuration. The computational

implementation of cellular automata is a bit more complex, with each cell

representing a simple processor, some memory, and an I/O device. (As a

matter of historical interest, the name 'automaton' came about as the

result of John von Neumann's attempts to construct a machine that could

reproduce itself. When Von Neumann adopted Stanislaw Ulam's suggestion

. to move the search for self-reproducing systems to the mathematical

level, and Von Neumann discovered geometric configurations that

spontaneously replicated in an array, cellular automata were born.)

The difference between conventional computing and computing in a

cellular-automaton framework is essentially the difference between

parallel and seqential methods of problem solving. In sequential problem

solving, of course, a problem is broken into steps, each one of which

must !,e solved before the next step can be attempted. In parallel

problem solving, however, the problem is broken into pieces somewhat

.- °
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differently, so each piece can be solved independently of the others.

(As mentioned above, cellular automaton sites generally communicate with

a certain neighborhood of nearby cells, so the calculations are not

totally independent.) Turing worked to prove the sequential method

capable of universal computing, while Conway and Wolfram did the same for

the parallel method using cellular automata.

Cellular-automaton behavior (in terms of cell-value configurations)

falls into four distinct universality classes4. Because cellular

automata can be considered approximations of differential equations (with

large numbers of discrete degrees of freedom), it is not too surprising

that these configuration classes parallel the kinds of behavior of

nonlinear ordinary differential equations. Each configuration class can

be categorized with respect to its self-organizing behavior, and in

particular to its attractor. A good appreciation of each of these

classes of behavior can be obtained when one examines their performance

in a digital-filtering context. To simplify the following discussion, a

.' synthetic digitized *spectrum' of 100 readings was created with full-

scale peaks (given a value of 1) and a noiseless baseline (given a value

of zero). The 100 synthetic spectral values that were created are:

O110011011001111011001011111110110010101000100001010100000010000111000011

001101111101011100101101010. The plots that are Figures 1-4 depict

contours of a 100-by-100 element array denoting transitions between the 0

and 1 readings. The original "spectrum" (which is the same for Figures

1-4) occurs above the top row of each figure. The subsequent rows in the

figurAs represent 100 successive synchronous steps in the temporal

evolution of the 1-D automata. Each successive synchronous step is



equivalent to a filtering pass on the previous spectrum, producing a new

sequence of readings.

Figure 1 depicts a cellular automaton rule acting on the spectrum to

produce class 1 behavior. Class 1 behavior is characterized by a limit-

point attractor: temporal evolution from all initial states tends toward

a homogeneous final state. In other words, a class 1 filter acting on a

spectrum tends to reduce all of the peaks to a flat baseline (with a DC

offset, perhaps). Running-means filters (among other rules) have this

effect.

Figure 2 depicts a class 2 cellular-automaton rule acting on the same

initial spectrum used in Figure 1. Class 2 rules are characterized by
_limit-cycle behavior: temporal evolution from all initial states tends to

propagate the value-structures around some sites indefinitely while

extinguishing the values at the remaining sites. The value of a

particular cell after a large number of time-iterations depends upon the

initial values at a definite number of the 'original' cells. Running-

median and certain other nonlinear filters show this kind of behavior,

which is desirable from a spectral-filtering or image-enhancement

standpoint, because all values that are not part of a target structure
-S

are eventually extinguished.

Figure 3 shows a class 3 rule acting on the same initial spectrum

used in Figures 1 and 2. Class 3 rules are characterized by chaotic

kstrange) attractors: temporal evolution from all initial states leads to

reproduction of the original structures at seemingly random locations and

.. scales. This random scaling is typical of fractals, and in fact, fractal

dimensions can be calculated for cellular automata4 . As the number of

time-iterations increases under a class 3 rule, the value in a particular

-7-
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cell is determined by an ever-increasing number of the initial cells.

%; The chaotic pattern that evolves has a fractal self-similarity that is

Mundesirable from a spectral-filtering point of view, because the pattern

means that peaks would spontaneously replicate in the spectrum during

filtering, and would constantly change location and magnitude.

Figure 4 illustrates the fourth class of cellular-automaton behavior,

again using the same initial spectrum as the previous three figures.

Class 4 rules are characterized by the lack of a definite attractor:

temporal evolution from all initial states leads to configurations that

may continue to change indefinitely, or may become extinct after the next

time iteration. The value of a particular cell after a number of time

iterations depends on the values of an indeterminate number of initial

cell values. In other words, there is no general finite algorithm

capable of predicting whether the cellular automaton will evolve to a

homogeneous state after a certain amount of time, or whether some

structures will continue to exist after an arbitrarily large number of

time iterations. The final configuration of a class 4 cellular automaton

is thus formally undecidable, except by the explicit simulation of every

step in the evolution of the cellular automaton. The undecidability of

the parallel-processing problem in cellular automata corresponds to the

insolubility of the halting problem in universal Turing machines (the

logical construct upon which modern CPU-based computers are predicated)4 .

Class 4 cellular automata can be considered as models for parallel

processing in general, and some work indicates that cellular automata may

be better models for computing at certain levels than the more

.-" conventional Turing-machine construct8 .



Parallel processing using cellular automata has many real

applications, both inside and outside of chemistry. Mackay8 has proposed

cellular automata as a way of developing a unified theory of crystal

formation capable of describing the 230 space groups as well as the

occurrence of pseudosymmetry and local symmetry. Burks and Farmer7 at

the Los Alamos National Laboratory have been working on modeling the

evolution of DNA sequences using cellular automata. Axelrod and

Hamilton6 have described the evolution of cooperation in a Darwinian

world using elegant experiments involving cellular automata and a variety

of ruleL contributed by invited theorists and by people responding to a

magazine advertisement. At Indiana University we have recently been

applying cellular automata to the three-dimensional imaging of surfaces

by means of near-infrared reflectance spectrometry. The types of

surfaces we have chosen to investigate are painted, specifically, the

. painted walls in historic buildings that are being restoredg.

Over time, the accumulation of dirt and smoke on historic surfaces,

as well as the aging of overcoat layers like varnishes, gradually

obscures both the color and pattern of paintings, murals, and walls.

Typically a general darkening of the surfaces gradually destroys their

color and contrast. Later, restorers may repaint these surfaces to match

their present (decadent) condition, and might consequently conceal

entirely detail that was already becoming obscured by the aging process.

Even very few such cycles of aging and restoration are sufficient to

alter fundamentally the nature of a surface covered with decorative
0.. designs. Finally, political and aesthetic considerations often result in

the deliberate and total concealment of original surfaces in historic

-- 9-
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buildings. In these cases the circumstances and even locations of such

alterations are often long forgotten.

The usual method of investigating historic surfaces employs

stereomicroscopic analysis and manual dissection of individual paint

layers to detect the presence of concealed images and designs. This

method is tedious and expensive, and it unnecessarily damages the areas

that do not conceal interesting subsurface patterns. A spectroscopic

Vmethod is really simpler and less destructive.

In our work, a target surface was divided (not necessarily

physically) into pixels (see Figure 5), the near-infrared spectra of

these pixels was loaded into a cellular automaton, and the cellular

V' automaton rules were selected. The proper choice of (class 2-type) rules

- forces the temporal evolution of the automaton to converge on an

attractor that is the image of the subsurface design (see Figure 6). The

use of this nondestructive spectroscopic method of reconstructing

subsurface images might permit restorers to choose intelligently either

to restore the original designs they find, or to duplicate them on a

freshened surface with new stencils.

-Cellular automata have contributed much to computer graphics, and

-.. they have much to contribute to chemistry and other sciences as well.

.ajor changes in parallel processing and the implementaLiun and role of

pattern recognition are now underway'0 . The cellular-automaton model

suggests that more than just the process sensors used in pattern-

recognition methods can benefit from simplification: the computers, and

even the calculations themselves, can benefit from a union of

simplification and parallelism. Future work, particularly in the area of

.. parallel algorithms and the design of instruments optimized for use with

;" - -10-
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-such e.gorithms, will open up a range of applications that have yet to be

"agined. 7,- , k ,
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FIGURE CAPTIONS

Figure 1. A class 1 rule operating on a synthetic spectrum.

Figure 2. A class 2 rule operating on a synthetic spectrum.

Figure 3. A class 3 rule operating on a synthetic spectrum.

- Figure 4. A class 4 rule operating on a synthetic spectrum.

Figure 5. The Indiana University (IU) logo was painted in this format

(using red and green acrylic paints) on illustration board.

The logo was then covered with one layer of white acrylic

paint and one layer of white enamel paint.

Figure 6. The attractor for the cellular automaton formed by the near-

infrared reflectance spectra of the overcoat-concealed

painting in Figure 5.
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