
RADC-TR-88-41 I.Auu
Final Technical Report

* February 1988 K.

0
a'.".

EVALUATION OF PARALLEL
ARCHITECTURES FOR BM/C 3

APPLICATIONS

Pennsylvania State University

C. R. Das, W. Un, M. J. Thazhuthaveetil and T. Feng

, '--

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.IDTIC
.E ELECTEn

SJUL 0 6198if

gIo

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

.J J".I -- ,".' 50 5

zii.. z . .z' .. '
J1% % %

This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS it will be
releasable to the general public, including foreign nations.

RADC TR-88-41 has been reviewed and is approved for publication. ON.

APPROVED:

DAVID F. TRAD
Project Engineer

APPROVED:

-%i-

RAYMOND P. URTZ, Jr., Technical Director
Directorate of Command and Control

FOR THE COMMANDER:

JOHN A. RITZ .I b

Directorate of Plans and Programs

If your address has changed or if you wish to be removed from the RADC mailing list,
or if the addressee is no longer employed by your organization, please notify RADC

4 (COTC) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document requires that it be returned.

..-...,-..... , .. . ,.. .. *,, ,% ,, * ,..*%-'

SEC RI? 0i&0dN OF THIS A MRE
REPORT DOCUMENTATION PAGE 71B. 7pp od

I& REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGSNI/A
2"71HF*T- T A, -P'ATION AUTHORITY -1 161ST-RIBUTION/AVAILABILITY OF REPORT
NIA Approved for public release;

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE distribution unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-88-41

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if applicable)

Pennsylvania State University Rome Air Development Center (COTC)
Bc. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Computer Engineering Program Griffiss AFB NY 13441-5700
Dept of Electrical EngineeringI Iniverqitv Park PA lI A02

Ba. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Rome Air Development Center COTC F30602-81-C-0169

9c. ADORESS (Cif), State, and ZIPC.4e; 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO.

63223C B413 03 P6
I. TITLE (include Security Classification)

EVALUATION OF PARALLE. ARCHITECTURES FOR BM/C 3 APPLICATIONS

12 PIERSONAL AUTHOR(S)

C.R. DAS. W.Lin. M.]. ThazhuthaveGtil. T. Feny
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT

FinalFROMAr87 TO
7 February 1988 98

16. SUPPLEMENTARY NOTATION

N/A

I. 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)
FIELD GROUP SUB-GROUP Computer Architecture

12 IFvaluation
Prfnrmnnrp

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
Several parallel computer systems are commercially available today. They could be divided into

three main classes based on the technique used to connect the processing and memory elements of the
system together - multistage interconnection network (MIN) based systems, bus based systems, and

-' hypercube systems. Commercial examples of these system types are the BBN ACI Butterfly, the
Encore Corp. Multimax, and the Intel Corp. iPSC respectively. The task of deciding which kind of

% parallel system is best suited for a particular programming application domain is a complex one; no well
->, defined guidelines or decision assisting tools are currently available. This report describes a series of

parallel system evaluation efforts being conducted with the BM/C application domain in mind.
Emphasis is placed on the BBN ACI Butterfly Parallel Processor.

:- One aspect of the research is the development of a software tool that can be used to conduct
application dependent performance evaluation studies on the Butterfly. Called the Butterfly

* Performance Predictor, this tool consists of a system simulator and a code simulator. Using user ,%
provided descriptions of the algorithms of interest in terms of a small set of parameters, (Cont'd)

Z0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
SUNCLASSIFIEDUNLIMITED 03 SAME AS RPT. DTIC USERS U CLASSIFIE

% 22a, NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL , -

DAVID F. TRAD (315) 330-2925 RADC/COTC

* DO Form 1473, JUN 36 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

Al MWT 96145' 27-5-88 - 168 UNCLASSIFIED

.1jp

UNCLASSIFIED

19. (Cont'd) the tool generates estimates of various performance based on basic instruction execution
speeds obtained from metrics processor data books. The structure of the tool, which is under
development, is described.

A second aspect of the research effort described in this report is the mapping of -a specific battle
management algorithm onto the Butterfly parallel processor. The goal of this mappping procedure is to
minimize the amount of contention for shared memory and communication links by the individual
processing components. A tree-shaped process structure is suggested and evaluated using a simplified
analytical technique. The mapping procedure is applicable to other algorithms with similar data flow
properties.

No performance evaluation study would be truly complete without a study of the dependability of
the underlying system. None of the existing reliability evaluation tools are capable of computing the
reliability of the Butterfly or Hypercube systems. An analytical model for computing Butterfly
reliability is presented. The model is based on the decompositioy technique. A recursive equation is
derived to compute the reliability of a 41 system from four 41- subsystems. Analytical results are
given for 16-node, 64-node, and 256-node Butterfly configurations.

A new analytical technique to compute the reliability of n-dimensional hypercube systems is also
described. A recursive equation is derived to compute the n-cube reliability from a 2-cube or 3-cube

0 base model. Analytical results are presented for up to 8-dimensional hypercubes.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 13
Just if icat io

By
DistributionI

Availability Codes

AaN~ and/or
Dist Speclal

UNCLASSIFIED
0,

0

TABLE OF CONTENTS

Page

1. IN T R O D U C T IO N .. 1

2. PERFORMANCE EVALUATION OF PARALLEL ARCHITECTURES 5

2.1 Butterfly Performance Predictor Overview............................. 5

2.2 Butterfly Parallel Processor...... 8

2.3 Butterfly Sim ulator .. 8

2.4 Butterfly Network Simulator....................................... 11

2.5 C ode Sim ulator .. 14

3. MAPPING THE BATTLE MANAGEMENT ALGORITHM TO THE
BUTTERFLY PARALLEL PROCESSOR 16

3.1 Characteristics of the Butterfly Network 17

3.2 Problem Formulation and Algorithm Parallelism 19

3.2.1 Nature of the Battle Management Algorithm 19

3.2.2 Task Decom position ... 21

3.3 Algorithm M apping ... 22

3.3.1 Conflict-free Connections 24

6 3.3.2 Reduction of Memory Contentions 28

3.4 Performance Evaluation .. 34

* 4. EVALUATION OF EXISTING DEPENDABILITY TOOLS 36

4.1 C A R E III 36

4 .2 H A R P .. 37

.NL

4.3 S H A R P E .. 38

5. BUTTERFLY DEPENDABILJTY MODELING 40

5.1 16x16 System Reliability .. 40

5.1.1 4x4 A nalysis ... 41

5.1.2 16x16 A nalysis .. 44

5.2 64x64 System R eliability .. 45

5.2.1 Processor M emory Distribution 47

5.2.2 Exactly (ixij) elements working 51

5.2.3 M ore than (ixij) elements working 52

5.2.4 Reliability Com putation ... 55

5.3 Generalization to Higher Systems 56

6. HYPERCUBE DEPENDABILITY MODELING 60

6.1 M odeling Technique ... 60

6.2 T he B ase M odel ... 63

6.2.1 2-C ube analysis ... 63

6.2.2 3-cube analysis .. 63

6.3 G eneralized M odel .. 66

* 6.3.1 System Decom position .. 67

6.3.2 Term Evaluation .. 70

6.3.3 M odified M ethod .. 76

6.4 Results and D iscussion .. 77

7. C O N C LU SIO N S .. 83

R E F E R E N C E S .. 86

JL-i

02

LIST OF FIGURES

Page

Figure 2.1
Butterfly perform ance predictor ... 6

Figure 2.2
Structure of performance predictor .. 7

Figure 2.3
The Butterfly parallel processor ... 9

Figure 2.4
- A Butterfly processor-memory node .. 10

Figure 2.5
Sam ple processor files .. 12

Figure 2.5 (cont'd)
Sam ple data files ... 13

Figure 3.1
A 16x16 Butterfly Parallel Processor with 8 switches 18

Figure 3.2
Process structure and mapping of the simplex method 23

Figure 3.3
A tree-shape communication structure with deposit-access mode 29

Figure 3.4
Communication structure of message search and broadcast through the Butterfly
N etw ork ... 32

Figure 5.1
A 16x16 M ultiprocessor with 8 switches ... 42

Figure 5.2
A 4x4 M ultiprocessor with 2 switches ... 43

Figure 5.3
Reliability Variation of a 16x16 Multiprocessor 56

Figure 5.4

e ii

The Decomposition of the 64x64 architecture to four 16x16 groups 48

Figure 5.5
The Switching node table. .. 49

Figure 5.6
Reliability Variation of a 64x64 Multiprocessor. 50

Figure 5.7
Reliability Variation of a 256x256 Multiprocessor for I z J 192 59

Figure 6.1
A decoinposit lio of a 5-cube with 20 connected nodes 61

Figure 6.2
A 2-diricnsional hypercube network 64

Figure 6.3
A 3-dim ensional hypercube network 64

Figure 6.4
6-cube Reliability Comparison for a Task requiring I Processors 78

Figure 6.5
7-cube Reliability Comparison for a Task requiring I Processors 79

Figure 6.6
8-cube Reliability Comparison for a Task requiring I Processors 80

Figure 6.7
6-cube Reliability Comparison with Different Failure Rate 81

0

iv

P0

CHAPTER 1
INTRODUCTION

The availability of a variety of commercial multiprocessor computers today makes

it difficult to decide on the optimal machine for any specific parallel application area.

In addition to the strengths and weaknesses of each candidate machine, the charac-

teristics of programs in the target application domain must be taken into account in

making this selection. Unfortunately, neither formal techniques nor software tools are

currently available to assist in this decision process. The development effort described

in this report addresses the problem of deciding which class of parallel computer sys-

tems is best suited to the BM/C3 problem domain. In particular, this report describes

* the development of software tools for application dependent performance and depend-

ability estimation of available parallel computers.

Most commercially available parallel computer systems can be classified as bus

based systems, multi-stage interconnection network (MIN) based systems, or

hypercube systems. Bus based multiprocessors consist of processors, memory mod-

ules and other devices, connected to each other through a simple computer bus. Ex-

amples of this class of system include the Encore Multimax, the Sequent Balance and

Symmetry series, and the Synapse N+I system, with new products announced reg-

ularly. These systems are typically restricted in size to a maximum of a few tens of

processors due to the performance limitations of current computer buses. In MIN

based multiprocessors, the processors, memory modules and other devices are con- %

nected through a network of stages of switching elements. The BBN ACI Butterfly

system is one commercially available example of a MIN based multiprocessor. The

* power of the Butterfly MIN makes multiprocessor systems with hundreds of processors

cost effective. Hypercube multiprocessors are a relatively new entrant in the parallel

processor arena. A hypercube system consists of 2**n processor-memory modules,

with each module directly connected to n-1 neighbors, forming an n-dimensional cube.

11 ._ ,,, F.

Sr

Hypercube systems with up to 1024 processor modules are commercially available from

Intel Corp. NCIJBE Corp. and Amnetek. In this report the Butterfly. Hypercube. and

Multimax machines are considerd as candidate architectures for BM'C 3 applications.

A major goal in the design of parallel architectures is to provide high comput-

ing power with assured dependability. High computing power can be provided by

exploiting the parallelism in the application algorithms and by mapping these parallel

* algorithms onto the candidate architectures. Performance evaluation of multiproces-

sors using the a)ove three types of interconnection topologies have been addressed by

various r(,-carchvrs using analytic and simulation models :Bhuyan 84, Das 85, Dias

81. Kruskal 83. Lang 82. Lin 88, Marsan 82. Mudge 84, Read 87, Wittie 81, Wu 84 .

However. most of these studies are restricted to evaluation of the architecture. Con- %

si(heration of both architecture and algorithms in performance evaluation has received

"* little attention to (late. We discuss this aspect of performance evaluation in Section 2

of this report.

The second requirement, "assured dependability" of parallel architectures, stems

from the critical applications in which these machines are used. The performance anal-

ysis of the parallel systems outlined above implicitly assumes that the components of a

system are fault free. These results give the so called "ideal" performance of a system.

However, in a real situation the components of a system fail at random depending on

the failure rates of the components. At the system level, a multiprocessor consists of

two subsystems. One subsystem is the computation facility which is provided by pro-

cessors (nodes) and memories. The second subsystem is the communication network,

used to support interprocessor communication. The failure of a processor (node) or

a memory unit reduces the hardware resources available on the system. The failure

of the interconnection switches or links degrades the communication capability of the

network. All these faults affect the dependability and performance of the system to

varying degrees. A common approach to improve the fault-tolerance of these parallel

systems is to provide graceful degradation as an inherent attribute of a system.

* Following Laprie [Laprie 82', dependability is defined as "the quality of service

2

Fl

delivered by the system such that reliance can be justifiably placed on the service."

Dependability is a generic concept that encompasses reliability, availability, maintain-

ability, and safety as distinct facets of system specification. It has been reported
rAvizienis 78, that there is a clear need for quantitative measurement of dependability

parameters.

At the system level specification, fault-tolerant systems are categorized as either

highly reliable or highly available !Siewiorek 82]. Most of the work in fault-tolerant

evaluation of parallel computers is confined to reliability modeling. This is mainly

because availability evaluation is more complex than reliability evaluation.

Reliability evaluation of parallel systems has been studied under two different ap-

A proaches, namely: terminal reliability and task based reliability [Ingle 77, Raghavendra

84]. Terminal reliability is defined as the probability that at least one communication

* path exists between a pair of nodes. 'L his may be an oversimplified estimate for par-

allel systems where a job (task) is executed concurrently over several nodes. The task

based reliability, on the other hand, assumes that a system remains operational as long

as a task can be executed with the available resources on the system. This is a more

appropriate measure of reliability in a parallel processing domain.

Task based dependability evaluation of some parallel computers have been ad-

dressed by diferent researchers [Arlat 83, Das 85, Das 87, Hwang 82, Ingle 771. These

studies are not complete from different perspectives. For example, none of the mod-

, - combine architecture, algorithm requirements, and software issues, to model the

system behavior completely. This has been handicapped mostly due to the complex-

* ity of the parallel machine architecture. In particular, the exact reliability modeling

of the communication networks, such as the MIN, is quite complex and can lead to

NP-hard problems [Provan 861. Hence, very little research effort has been directed to

model the dependability of parallel computers combining both the computation and

communication degradation.

While classical dependability measures such as reliability and availability are suit-
able to evaluate uniprocessor systems, these measures may not be good indicators of

3

"'A

0%

' parallel system behavior. Dependability measures specify only the operational sta-

tus of a system at any time t. No performance statistics can be gathered from the

reliability or availability study. High performance being the main objective of paral-

lel architectures, performance-related-dependability evaluation is essential to evaluate

these architectures. This evaluation will specify, for example, the execution time of a

job in a real environment when all kinds of component failure and repairs are possible.

Performance related dependability measures are relatively new compared to clas-

sical dependability theory. A number of performance-related dependability measures

such as computation reliability, computation availability Beaudry. 78.. performabilitv

'Meyer 801. capacity and workload characterization iGay 79, have been proposed for

degradable multiprocessors. However, none of these models have been applied in a

real sense to the candidate architectures in consideration.

There are several automatic program packages such a ARIES [Makam 82>, CARE

III Stiffler 82 . HARP Geist 83 , SAVE Goyal 871, and SHARPE JSahner 871 available

for computing the dependability of complex systems. Markov models of a system are

used to compute the reliability/availability of the system using numerical techniques.

However, these packages are not general enough to handle the parallel architectures

under investigation. The difficulty lies in generating the Markov states of a system such

*as the Butterfly or Hypercube. To our knowledeg there is no tool available today that

can generate the Markov chain of the above systems automatically. The capabilities

and weaknesses of some of the packages are reported in Section 4.

4.4

N .A
'W

CHAPTER 2

PERFORMANCE EVALUATION OF PARALLEL ARCHITECTURES

It was decided to commence this study by cencentrating on the MIN based But-

terfly parallel processor. This section describes the development of tools to assist in

the evaluation of the performance of such a MIN based computer system; these tools

S-are referred to as the Butterfly Performance Predictor.

2.1. Butterfly Performance Predictor Overview

The general operation of the Performance Predictor is illustrated in Figure 2.1. It esti-

mates performance metrics based on two kinds of data: architectural parameters (de-

*tailed information about the parallel machine architecture), and algorithm parameters

(information about algorithms from the application domain under study). Theoreti-
145

cally, such a performance predictor could be used to study different parallel processor

architect ures by merely varying the architectural parameters. In practice, it is difficult

to conceive of a set of parameters powerful enough to categorize bus-based systems,

MIN based systems, and hypercube systems in sufficient detail to allow reasonable

accuracy of performance prediction. A more conservative design goal was employed

in this effort, the architectural parameters were chosen to enable the user to study

P, parallel machines "similar" to the Butterfly.

Figure 2.2 shows the Performance Predictor in more detail; its main component is

a Butterfly Simulator - a program that simulates program execution on a Butterfly

while accumulating performance measures. To drive the simulator under conditions

, representative of the target application domain, two strategies are considered. In the

* first strategy, real Butterfly programs are used. This scheme has obvious drawbacks: it

requires the simulator to be sophisticated enough to process actual Butterfly machine

code and also requires access to BM,/C3 programs coded specifically for the Butterfly.

A more flexible and user-friendly strategy is to drive the simulator with synthetically

5

-- I , C , N ' * , , d,,,t :t . -. -¢ ,' ':

Architectural Output
parameters Predictor Measaurement

*No. of Processors *Execution time
*per Processor MIPs *Utilization

*network topology *Speedup

*Algorithm Parameters
" Granularity

"Communication
"Instruction mix

Figure 2. 1 Butterfly Performance Predictor

Algorithm Characteristics Actual Butterfly Programs

Code Simulator Preprocesso r I

InstrctionPreprocessed MC68020
Exectionprogram files

S Node Network

I1Simulator Simulator

, . Performance

Measures

Figure 2.2 Structure of Performance Predictor

K,
K,

,,,p,7

,0

uenterated instruction streams that are rel)rese utative of the target application domain.

The second key conponent of the Performance Predictor, therefore. is a program

(called the Code Simulator) that generates these instruction streams.

2.2. Butterfly Parallel Processor

Thet Btt erfly iilt iprocessor system is made up) of processor nodes and a Butterfly

interconnection network as shown in Figure 2.3. The network is depicted as a cylinder

,. Iuce both it input and outputs are processor Tiode., unlike a conventional "dance-

hall- rit iproceor architecture, which would have processors at one end and memory

moduleh, at the other. All of the distributed memory i globally accessible. Remote

ninenory accesses are conducted through the network. Each processor node contains

a processor (currently a Motorola 68020), an arithmetic co-processor (MC68881), 1-4

* legabytes of meniory, nmeory management hardware, and an interface to the net-

work. a, illustrated in Figure 2.4

2.3. Butterfly Simulator

The Butterfly Simulator is to contain two components: a network simulator and a

node simulator. The network simulator maintains the status of the Butetrfly network

while producing timing estimates of how long it takes to traverse the network. The

node simulator accepts Buterfly programs as input and estimates their execution time.

It uses the network simulator for timing information related to the Butterfly MIN, and

uses a set of files of architectural information to do its own timing estimation. These

files contain the "architectural parameters" mentioned earlier in this report, and are

referred to as the processor files.

The program execution timing estimates are made at the instruction level. The

execution of the program is traces instruction by instruction, and the time taken for

each instruction is computed based on timing information obtained from Motorola

*: data books for the MC68020 and the MC68881 and accumulated in the Performance

Predictor's processor files: these files contain, for each instruction-addressing mode

8

0r

Processor 1 Request

Processor 3

Memory

~Butterfly

00

q6

Processor n ButeflSwitchl
Memory

4

Figure 2.3 The Butterfly Parallel Processor.

9

4

68020/68881

Processor Node
Controller

Memory Management

EPROM____
SwitchI EPROMInterface

Memory ___________________________

1 Mbyte

N Optional
Memory Daughter Board

(3 Mbyte)

Figure 2.4 A Butterfly Processor-Memory Node.

01

IIK0 I

0 111X

pair. the time that it takes to execute the instruction on the processor. Figure 2.5

shows sample processor files.

This approach has one serious drawback - it can not take data-dependent (coll-

ditional) branches in:o account in producing its timing estimates. This would have

been possible if the Butterfly simulator simulated the actual execution of the input

Butterfly prograins. which would be slow. costly, and difficult to implement. As an

alternative. stati.tics from the literature on research into branch prediction DeRosa

87. Lee S4. McFarling 86. Smith 81 were utilized to take conditional branches into

account. The approach ued in the first version of the Butterfly simulator was as fol-

lows: on en1counterin, a given conditional branch for the first time. it would be taken

with a probability of 0.5. \When the same conditional branch is encountered again in

the processing of the program, the simulator assumes that the branch goes the same

way as it did the previous time with a probability of 0.9: it goes the opposite way with
0

a probability of 0.1.

The first version of the Butterfly simulator is under development in the program-

mring language C on a SUN 3/50 workstation running 4.2BSD UNIX. The development

has proceeded as follows: a timing simulator for a single MC68020 was first developed,

and extended into a simulator for multiple 68020s with one task running on each, by

early September 1987. This simulator is now being extended to time multiple tasks

running on multiple NIC68020s closer to the actual Butterfly environment. At the

same time. efforts to refine the timing estimation procedure are underway, as are efforts

to condense the processor information files, which currently occupy several Megabytes

of disk file space.

The only performance metric that the Butterfly simulator currently measures is

total execution time. Accumulation of other metrics, such as MIPS (millions of of

instructions executed per second), MFLOPS (millions of floating point instructions

* executed per second), processor idle time, and network related metrics are also being

incorporated.

2.4. Butterfly Network Simulator

• =~

Processor File Example:

16% clock rate in nanoseconds
** % section delimiter
ari% section with mnemonics for operand modes
ard
arid

move % section with two operand instructions
add
sub

neg % section with one operand instructions
load

nop 4 % section with no operand instruction and times

bcc 1015 % section with conditional branch instructions and times

bra 10 % section with unconditional branch instructions and times

jsr 10 % section with subroutine call instructions and times

rtr 5 % section with subroutine return instructions and times

frk 20 % section with fork instruction(s) and time(s)

snd 8 % section with send instruction(s) and time(s)
**

rcv 3 % section with receive instruction(s) and times
S EOF

Figure 2.5 Sample Processor File
12

6

Instruction Time File Example:

move % insruction mnemonic
3,4,5;6,7,8; ... ; 7,8,9;

3,4,5;6,7,8; ... ; 7,8,9;
add
3,4,5;2,4,8; ... ; 7,8,9;

23,24,25;36,37,38; ... ; 57,58,59;

**% section for one operand instructions
neg
3,4,5;

5,6,8;

0 EOF

Input Program File Example:

loop: move ari, ard
add arid, ari
bcc loop
bsr inc
jmp end
inc: add and, arid

* rtr
end: nop
EOP

Figure 2.5 (Contd) Sample Data Files

13

The objective of this part of the simulator project is to Implement a software module

%, in C to simulate the dynamics of the Butterfly network. The module is intended to

interface with the node simulator. The two modules interact in a function call manner.

At simulation time, the node simulator keeps issuing requests for network services WA

*. by calling the network simulator. These requests correspond to non-local memory

references generated in chronological order by processor nodes of the Butterfly parallel

processor. For each request, the network simulator will figure out the response time

required by the request through the network by considering latency due to propagation

delay and network contention.

The network simulator comprises two major coniponents: a network switching

:" mechanism and a conflict resolution mechanism. The former is used for directing

a request for accessing a specific memory through the switches and communication

links according to the routing rules of the Butterfly network. The latter is responsible

for det cting network contentions where many requests compete for the same switch

outputs or communication links, and for arranging them in order through the outputs

or communication links in contention. Besides, it will add time penalty to the response

time of a deferred request. The two mechanisms are associated with two essential data

structures - a switch matrix and a collision matrix - for keeping track of network

status and for recording network contentions, respectively. Both are of the form of a

3-dimensional array, reflecting the topology of the Butterfly network.

The implementation of the network simulator is expected to complete by the end

of December 1987.

2.5. Code Simulator

The Performance Predictor, as shown in Figure 2.2, is being designed to accept two

":rms of input: actual Butterfly program files, and synthetically generated program

a' files representative of algorithms in the application domain of interest. The generation

of these synthetic traces is the duty of the Code Simulator.

The Code Sin ,tor is still under development. Its operation is based on a set

14

R0
I ME' maw

of input parameters that characterizes the algorithms of interest. Examples of such

parameters are granularity, parallelism, and communication/computation ratio. Gran-

ularity describes the size of the individual parallel tasks comprising the input program;

it will be used by the Code Simulator to determine how large the synthetic tarce files

are to be. Degree of parallelism describes the number of parallel tasks; the Code

Simulator will use this parameter to determine how many synthetic program files to

generate, as well as in task activation. The computation 'communication ratio would

be used to determine how many computation instructions should be incorporated per

communication instruction in the synthectic program files. Other parameters will

clearly b eneeded to adequately characterize parallel algorithms; these three examples

represent a starting point.

The generation of synthetic program files is to be driven by tables of static and

dynamic statistics of typical high level language program contents. These tables

have been compiled based on the vast literature on instruction execution frequencies,

operand addres,.iig mode frequencies, instruction transition frequencies, etc. [Alexan-

der 75, Brookes 82, DePrycker 82, Ditzel 80, Elshoff 76a, Elshoff 76b, Foster 71, Knuth

71. Tanenbaum 78,\Viecek 82,. Since no statistics are available relating directly to the

N1C68020 instruction set, these tables were derived based on equivalent features re-

ported for other systems in the papers mentioned above.

15!
4

,r

CHAPTER 3

MAPPING THE BATTLE MANAGEMENT ALGORITHM

TO THE BUTTERFLY PARALLEL PROCESSOR

This chapter is concerned with niapping the Battle Management Algorithm onto

a BBN Butterfly T shared-memory multiprocessor. An efficient mapping method

for the algorithm is presented. The proposed method in fact is a general approach to

tailoring and fitting a class of numerical and non-numerical algorithms heavily in need

of global search and broadcast, into the ButtcrflyTM Parallel Processor.

It is known that the overall performance of a parallel algorithm on a multipro-

cessor system depends largely on how well the communication structure of a parallel

sq algorithm is matched with the system interconnection structure. In a shared-memory

* environment, there are two major factors that have adverse effects on achieving the

match of the two structures. These two factors are: (1) contentions in shared memo-

". ries, and (2) conflicts in communication links. Performance analysis on a ButterflyTM

multiprocessor has been presented in Crowther 85], JTomas 861. They point out if con-

tention problems in shared memories and communication links become dominant, the

P V speedup curve goes to saturation as more processors are added. LcBlanc also exam-

Suines the effect of memory and switch contention by adding extra memories and extra

switches in the system network Lcblanc 86]. He concludes that an implementation

based on very efficient communication (e.g., shared memory) may perform worse than

that based on a less efficient mechanism if such efficiency causes too much communica-

tion overhead due to memory and switch contention. Several previous works have been

0done in reducing the memory contention problems. Worthy of notice are the works

done in IBM RP3 and NYU Ultracomputer Pflster 85], jLee 86], in which hardware

message-combining techniques are used. Since the hardware combining networks are

*expensive, Yew proposes an effective software combining tree for decreasing memory

16

0C
•

contention and preventing tree saturation in the interconnection network Yew 87'.

We propose an algorithm-based method for reducing the above contention prob-

lems to the minimum. Unlike previous works, the proposed method does not require

hardware augmentation or mediation in communication networks. Contention costs

_ both in shared memories and in communicatio, links are minimized by an efficient

mapping method with two different phases of tree-shape communication structures,

one for searching and the other for broadcasting. The tree structures allow us to

rapidly determine and broadcast a critical data without concern for memory and link

contentiolns.

3.1. Characteristics of The Butterfly Network

The core of the Butlerfly TM Parallel Processor is a multistage switching network,

called the Butterfly Network, through which processor nodes access remote memories

in a packet switching manner. Major characteristics of a Butterfly Network with 2 m'

1inputs and 2m outputs. where m is a positive even number, are enumerated below:

(1) the number of stages _ 10g42m = T
2'

(2) the number of SEs in one stage ? -, and 3I
(3) the total number of SEs , * m 2m -

If we let N =2 m represent the number of processors, the switch has the advantages

that the total number of SEs needed is O(N1o94 N) and the bandwidth of the network

is O(N). Figure 3.1 shows a spacial case of the BBN ButterflyTM parallel processor

with m -4.

* An m-bit binary representation of the source nodes (processors) and destination

nodes (memories) of the Butterfly network can be expressed as follows:

am-am 2 a20, ao

where rn - 4, 6, 8 The establishment of a connection from a source(S) to its

. destination(D) is based on a self-routing scheme. That is, to establish a connection
from S to D, the binary address of D is used as a routing tag to direct the connection. If

.117

• -. 1 S**?*

stage 0 stage 1 stage 2

P 4 At- -of M4

000 Aft

P5 MI5

*q P9 100

P13M1

P2 000M2

P6 M

'"'-

P3 M3

P7 AW 11'hM7

p,11 ft11 Mil

P 15 M b1

Figurc 3.1. A 16xl6 Butterfly Parallel Processor
with 8 switches.

18I

01

we let S 2,.............. , and D -dm, d,,, __2 dido, every two binary bits d 2 ;- 1112 ,

is corro.-pounling to the setting of the switching element at stage i, where i =O,1

"' 1). is, the stage number. The communication link traversed by the connection

fromn source to destination at stage 7*is described as

1 0 - 3 .6 2 I.... S m 2 - 2 1d2 z I1 d2 -2 2... d3d2d, do),,

w h ere 0 1

3.2. Problem Formulation and Algorithm Parallelism

3.2.1 Nature of The Battle Management Algorithm

The Battle M1anagemient Algorithm belongs to a class of linear programming prob-

* lemns. These problems are concerned with the optimization of a set of linear functions

subject to Somew linear constraints and to the condition that all the variables must as-

U110 nonngative values. The function to be optimized is called the objective function.

For example. a general formulation of linear programming problems is as follows: To

opt imizie the objective function

C 1- 10 1 A 1 1 V... + Vo,dXd + -. + VI~

subject to the linear constraints

V1,o ~ ~ * V 1X i1,d~d + .. + Vi,rXr{ , _>W

.............................. tV 2 r~{< ~

k.OXO -&.I'k .X1 1'-k,d .4 + Vk,r-Xr{<, >% Wk;

Vn Lo-Xo 1'V. 1,1AX1 t n _ ,dXd 4-..+ V,- 1 ,Xr{ ,, >-Wi

* and to the nonnegative condition Xo - 0, X1 0, ... , X, > 0.

A set of values of the variables X0 ,X N1 . Xr that satisfy the linear constraints

and the nonnegative condition is called a feasible solution. A feasible solution that

can optimizes the objective function is called an optimal feasible solution. The region

19

-=5.

that contains all the feasible solution is called feasible region. which is always a convex

polygon.

For the problems of optimizing linear functions subject to linear constraints, it

has been known that an optimal feasible solution is always at a vertex of the feasible

region. Hence, we need to examine the value of the objective function at each vertex

of the feasible region. The problem of finding an optimal feasible solution may become

a very tedious job, as the number of variables and the number of linear constraints

increase. Simplex method is one of the most useful methods for finding an optimal

feasible solution without examining exhaustively the valies of the objective function

at all vertices. It is an iterative search procedure. Starting from an artificial candidate

solution, it first finds a basic feasible solution, which is represented by a vertex of

the convex polygon. From there, it searches for another vertex at which the value

of the objective function will be improved. This search is repeated iteratively until

the optimal solution is found. Since there are only a finite number of vertices, and

the objective function value is improved everytime a new vertex is reached, the search

process will eventually converge to the optimal solution.

The theory of searching another vertex at which the value of the objective function

is better, and of knowing an optimal solution has been reached are described in detail in
.Liu 68,. Here, we only focus on the procedures of the simplex method. The objective

function and linear constraints can be rewritten as follows.

(C Vo,oXo 10', 1Xl ... l dXd - Vo,Xr = WO;

Xrl + Vi, 0 X 0 V 1 Xl t ... II,dd - ...dd Vi,rXr WI;
0

Xr+2 , V2,0 Xo O V2,1X 1 I 1 V2,dAXd V2,rX W2;

Xr--k - Vk,OXo + Vk,IXl ... -k,dXd .. k,rXr Wk;

Xr .- i + V'ni,OXO 4- V'ni,1Xi 1 n 1.d~d 17. n i,rXr Wr&-I,

where W 0 0 0, and X,. 1, Xr-2, . Xrn I are the added slack variables (or basic

variables, initially), X 0 , X 1 ,..., Xr are the non-basic variables. Except the coefficients

20

0l

of the slack variables, an nx(r -2) coefficient mnatrix is generated.
* Al 0 I'll . 1.gd •. . Alr l /

(•170 . . , . •

SVk 17kI Vkd kk

V l ,1 ') 0 -'n -~ 1, -) d ... I " t n -I lr W n ._

For coefficients of the equation of objective function, any negative value will pro-

duce one pivot column. For example. if - 'O.d - 0. then the d-th column is called

the pivot column. To determine which of the variables Xr. I- Xr, 2 Xr. - I will
become a non-basic variable, the ratios are computed.

t*1 d % 2, l.d

Suppose the ratio is the smallest of all the positive quantities, then the coefficient

I'kd is called the pivot. The row that contains the pivot is called the pivot row. As

soon as the pivot is determined, the operations are continued as follows.

(1) The pivot is replaced by its reciprocal.
U(2) The other entries in the pivot row are divided by the pivot.

(3) The other entries in the pivot column are divided by the pivot with their signs

reversed.

(4) For the other entries. Vi,, (i - k,j - d) is replaced by Vt,, - Vk,,j * Y W (i#k)
V.kd

is replaced by IV, - Wk *

The above operations complete one iteration. The iterations are continued until

the coefficients in the expression for the objective function are all positive. At this

point. the optimal solution is found.

3.2.2 Task Decomposition

This subsection deals with decomposing the sequential algorithm of the simplex

method into several concurrently executed subtasks, then these subtasks are assigned

to the processors on ButterflyTM network. In general, there are two correlative fac-

tors influencing the decomposition : granularity and interprocessor communication

cost. To achieve a maximum degree of parallelism, we attempt to distribute compu-

tations to as many processors as possible - fine grain. However, overhead due to

21

Bil0

I

interprocessor communication drives the tasks allocation strategy to cluster modules

to as few processors as possible large grain. Obviously. it is not easy to satisfy these

two conflicting factors simultaneously: therefore, a compronise must be made to find

the optimal arrangement for a task such that the maximum system performance can

be achieved.

Ve illustrate the data flow and process structure of the simplex method in Figure

A3.2. In each iteration, a pivot column is arbitrarily selected corresponding to one

negative coefficient of the objective equation. The following parallel algorithms consist

of four sequential computational phases in one iteration:

Phase 1: To compute all the ratios simultaneously by accessing the local data.

Phase 2: To determine the smallest ratio and the pivot

Phase 3: To modify the data elements on pivot column by accessing the pivot.

Phase 4: To modify the data elemcihts other than those on pivot column.

To obtain the optimal balance in the competition between granularity and inter-

processor communication cost. we arrange one row elements of the coefficient matrix

to he performed by one processor as shown in Figure 3.2. Hence, we are dealing with

mapping a problem with nx(r 2) data elements onto a ButterflyTNI network with

2 processors and 2 ' shared memories. The relation between the problem size and

the network size is

-12 m
2 < n - 2m .

Before the computation starts, we assume data elements are assigned to processors

as the following way: The data elements on row 0. row 1, ... , row (n-i) as shown in
0

the coefficient matrix are assigned te the processors Po, P1 , .. , on the Butterfly

network respectively. That means, the data eiements on row 0, row 1, ... , row (n-i)

are stored in the memory modules A10 .MI 1 , ... , Af, I respectively.

3.3. Algorithm Mapping

A significant aspect of parallel algorithms is that in many cases, the model on p..

* which they run is not physically realizable directly in present day hardware. Typically,

22

0I

0 0*-) : VO -- a WO Processor 0

V Processor I

n

..... Processor k

......... Processor n-i

16 r+2 1

n Number of Constraints
r+2 Number of Variables

Figure 3.2. Process structure arnd mapping of4
the simplex method.

23

4f,05k

for an ideal parallel computer, each processor can access (read from or write into) one

memory in one step. Simultaneou- read or write on a memory by more than one

processor may result in competition problems in that memory and in communication

links. As far as a better system performance is concerned, hence. it is highly demanded

that an efficient mapping for the linear programming algorithn,; on the Butterfly TM

network should be designed to reduce the contention problems both in shared memories

and coinmunicat ion links.

Based on the fact that the same arithmetic operations of the linear programming

algorithms always resi(le in the same level. in the following we design the conflict-free

connection strategies to pre(nt from collision of the communication links at the same

levcI.

3.3.1 Conflict-Free Connections
0

Prior to describing the parallel algorithm and mapping strategies., we first intro-

duce Definitions and Theorems relevant to the algorithm mapping. A routing scheme

must be used to set up the connections between processors and shared memories.

However. the simultaneous connections may result in conflicts, since the Butterfly7'M

network belongs to a class of blocking interconnection network.

Definition: A connection conflict is defined as a situation in which two connections

use the same communication links at some stages at the same time. On the other hand,

two connections which do not result in connection conflicts are said to be conflict-free.

Definition: Let X and U represent two different n.-bit binary numbers, then O(XU)

is the maximum number of consecutively two identical low-order bits of X and U.

For example., if we consider m=6, the number of stage-mi 2=3, and X=01 10 10,

U-A10 10 10, then c(X,U)--2.

S Theorem 3.1: In a BBN ButterflyTAI network of size N=2 m with the number of

stage m. two connections X - Y and U . V (X - U and Y # V) are conflict-free if

and only if

2

A 24

40

% ~ .~~h

proof: The communication links traversed by X -- Y and U -- V at stage i are

described as

(XlXOX3X2 ... XM-1-2iXn2m-2,Y2t- I Y2, - 2...Y3Y2YlYO), and

(UlUOU3U2 ... Um I 2...3V t'3IlVO)

respectively, where 0 < i < ' - 1.

For sufficient condition: since the two connections X -- Y and U - V are conflict-free,

at every stage i,

(XIX1X3X2...Xm I-2jTm-2-2iY2i-lY2-2...Y3Y2YJYO),

(u i U0/,3U2 ... Um I-2,Um-2-2iV2-IV2t-2... V3V2VIVO)'.

This implies

(XI XOX3X2...Xm-l-2iXm-2-2,) I (UlUOU3U2...Uml_2iUm_2_2i) or4

(Y2i-1Y2,-2...Y3Y2YY) # (v 2 ,-Iv 2,-2...v 3 v 2vvo)._

* Hence, we have p(X,U)+ (YV) < *

For necessary condition: we assume c(X, U)= k and o(Y, V) = q, then k & q < M

(1) if I= 0 or - 1, then

(XIXo03X2 ... Xm-1-2iXm-2-2i2Y2- 2 -2...Y3Y2YIYO),

(UIUOU3U2...rUm -- 2iUm-2-2iV2t-lV2,-2...3t'2VIVO), since X :# U and Y V.

(2) if I < i < q, then

(Y2,-- IY2 2... Y3Y2Y yo) = (v2,- v2,- 2 ... v 3v 2vIvo).

Since p(X,U) k, andk< M -q<-5 ,we have

(XIXOX312 ... Xm1-2iXm-2-2i) $' (UIUOU3U2 ... Um2iUm22i).

(3) if q < i < !n - 1, then

(Y2,-1Y2,-2...Y3Y2Y1YO) # (v2i-lV2i-2...v 3 v 2vlvo).

Consequently, at every stage i,

(XI X3X2...1m-1-2iXm-2-2iY2,- 1Y2,-2 ... Y3Y2Y YO),

$ (U1UOU3U2 ... Um1-2iUm-22i'2i V22 ... V3V2VIVO)t

Hence, X -, Y and U - V are conflict-free.

The operation of sending messages from processors to memories (or vice versa) is

25

09

called a permutation routing. Shortly, we relax that the processor-to-memory assign-

ment is a permutation.

Definition: A permutation of bit reversal is defined as that a binary representation is

reversed in every one bit unit. For example, if we define the permutation function of

bit reversal to be p. an m-bit binary number A am-lain-2am-3 a2alao, can be

transformed as the following way, p(A) - aoala2....an3am2a,,_.

Theorem 3.2: The permutation of bit reversal ensures that the communication links

are conflict-free, when it is used to communicate all the source nodes to their respective

destination nodes.

Proof: Assume S, and S, are the binary representation of any two source nodes,

Se am-lam2am-3 a2alao

S)- bn- ib - 2 b,-3 b2 bibo

The permutation of bit reversal completes two connections: S, - D, and Si -, D),

we have

D- p(S,) aoala2.... a3a2amI

Di p(SI) - bobib2 bm- 3 bm- 2bm-I

Since S, , Sj, if we assume (S,,Sj) = w, then 0 < w < -1. This allows,

(1) :(D,,D,) 0, if w 0 (Note that max{w} - 1), or

(2) max p(D,,DJ)) - 1. if wv 02In ithr cse ~(1 ,S) +~pD 3 ,,) ' Based on Theorem 3.1, any of the two

connections are conflict-free. 0

.3 We now describe the conflict-free connection strategies as follows. In the begin-

ning. the 2m processor space is divided into two subspaces, source-1 and destination-i,

each space has 2 m- I processors. For the processors in the source-1 space, the most

0 significant bit of binary representation is zero. On the other hand, the processors in

the destination-I space have the most significant bit one. The connections between

the source-I and destination-I space are established by performing the permutation of

* bit reversal on the remaining m 1 binary bits of the processors in the source-i space.

26

MII0

% Secondly, the processors in destination-I space are now divided into another two

subspaces, source-2 and destination-2. each has 2' 2 processors. For the processors in

the source-2 space, the second significant bit is zero. and the second significant bit of

the processors in the destination-2 space is one. Similarly, the connections between the

space of source-2 and destination-2 are established by performing the permutation of

bit reversal on the remaining m - 2 binary bits of the processors in the source-2 space.

The similar connection strategies are continued until the number of processors in the

destination-m space is equal to one. Since the permutation of bit reversal ensures a

one-to-one connection, the connections established as above also preserve the property

of OT- tO-O11 pernutation.

The above connection strategies can be formulated. First we define a permuta-

tion ph which performs partial bit-reduction and partial bit-reversal. For example, if

-4 - am-lam-2... arn-ha. h -I ... a2aIi0,then

ph(A) = aoala2 ... a, h-1.

Suppose we let Sh - D h and Sh - D h represent any two connections from source-

h space to destination-h space. The m-bit binary representations of Sh , S h D h and

Dh can be expressed as follows, note h = 1,2, 3, ..., m.

h I

sh 11 ... 10a, h j...a 2aiao;

h-i

ShSI 1....lObm h ... b2blb&;

*h h

D ~ ll...llph(SP) - 11...llaaI2...amh-1;

h h

-_ ll...liph(s 1) ...llbobjb2...bm, h- "

If h °n. only one connection is established. The m-bit binary representation of 5,_

and D' become S, l .- 1111...1 and D - .11.

Theorem 3.3: For every h, h 1 to m! the connections Sh -- Dh are conflict-free.

27

1501 lli
* % .Oil

proof: If we let Ah =- arnh I...a,).aIao and Bh - b_ h ...b2blbo, then we have

ph(sh) = p(Ah) and ph(Sh) - p(Bh). Based on Theorem 3.1 and 3.2, since the per- 6

mutation of bit reversal ensures that the connections are conflict-free fork 1,2,..., m,

we have

'(Ah,Bh) + p (p(Ah), p(Bh)) <
2

Also. because of S'h S S h and Dth $ D)h, the following two equations are valid,

(1) ;(Sh.Sjh) 1¢(Ah,Bh), and

(2) , (D, ". Dj ") ;(p(Ah),p(Bh)).

Hence. we have (S,,SJh) + ,(DhD h) 2 According to the necessary condition

of Theorem 3.1, we know for every h, the connections established as above are all

conflict-free. []

* 3.3.2 Reduction of Memory Contentions

d In shared-memory environment, memory contention problems frequently incur

extra execution time and consequently decay the system performance. Hence, the

contention in shared memories needs to be reduced in addition to minimizing the

conflict in communication links. We propose the tree-shape communication structure

which can reduce memory contention problems from O(n) to 0(log2(n)) (where n is

the problem size). The set up of a tree-shape communication structure for searching

is described as follows.

A deposit-access mode, which requires only one-path communication cost, is used

for processors to access the shared memories in the communication structure. For

example, if P,(Pk) is connected to the local memory of Pj(P) by the conflict-free

connection strategies, the deposit-access mode means Pi(Pk) will fetch the compared

result from its local memory and store it, through the interconnection network, to the

local memory of P (PI). P) (PI) performs an arithmetic operation to compare the de--I.
posited result by Pi(Pk) with its own result both stored in the local memory of P,(PI).

After the comparison operation, P in turn deposits the compared result, through the

o interconnection network, to the local memory of P1 with the same procedure. Figure

28

0K

P1

It 'It

P P

Remote memory access

......... .Local m em ory access
Figure 3.3. A tree-shape

communication
structure

*
A-

with deposit-access mode.

29

3.3 shows the tree-shape communication structure built with P,. P3 , Pk, and P. In

this case, P, and P, (Pk and PI) are called pair node. and P, (Pk) is referred as left

child, Pj (PI) as right child. In our design, the right child will become the father in

next level.2%2

Definition: The number of level of a tree structure is defined as the distance from the

farthest leave node to the root. Hence, for a tree structure with 2 ' nodes, the number

of levels equals m. We let h = 1,2,3, ... ,m represent each level of the tree structure.
ft

The subsequent following mapping algorithms serve the purpose of setting up

a tree-shape communication structure on the ButterflyTM network. Meanwhile, at

each level, the conflict in communication links is avoided and the contention in shared

memories is reduced.

* Algorithm 3.1: To compute all the ratios concurrently for a picked pivot column.
FOR i - 0 TO n -1 (all processors execute in parallel)

(1) P, reads data VI;,d and W, from its local memory;

(2) Pi computes the ratio v.

END; L

The binary representation of processor P, (i = 0 to n - 1) is assumed to be

am -am-'2...aiao. For a tree level h, bit am-h (h = 1,2, ...,m) is an indicator to

divide the processor space into two subspaces, source and destination.

(1) If am,, = 0, then P, is in the source subspace.

(2) If am h 1, then the local memory of Pi (that is, M,) is in the destination

subs pace.

The source node P, then connects to its destination by performing the permutation of" bit reversal on its remaining binary digits am-h- a,- h-2...alao.

Algorithm 3.2: To search the smallest ratio and the pivot, we build the searching

tree structure from the bottom level (h = 1) to the top level (h in).

Step 1: For level h 1 on the tree-shape structure

30

01 6, 11,11 1 t1t1,JP -

If a, o 0. then P, connects to its destination by performing the permuta-

tion of bit reversal on its remaining binary digits a,,)a,,, 3 .. .a I a 0 .

Step 2: For level h - 2 on the tree-shape structure

The destination nodes in level h - 1 now are divided into two subspaces. If

(1 0. then P, connects to its destination by performing the permutation

of' bit reversal on its remaining binary digits am- 3am- 4 ... ala0 .

Step 3: Repeat the same procedures until reach level h Zr rn, the tree-shape

('c,iiilication structure can be set up.

Step 4: Th simallest ratio i. determined from the root processor. and the pivot

is found from th e iiiinerator of the smallest ratio. The pivot row can also be ,

decided from the pivot.

Based on Theorem 3.3, the searching tree can be mapped onto the ButterflyTM net-

work without any conflict in communication links for every level h, and the contention

in shared memories is reduced to O(log2 n).

An example of the communication structure of a searching tree shown in Figure 3.4

(the commii inication direction is indicated by upward arrow) is built with 16 processor

nodes (m 4 and n - 16). Once the tree-shape communication structure has been set

up(also. the pivot has been determined), the second computational phase is concerned

with broadcasting the pivot from the root processor to all other memory modules such

that directly access for other processors becomes possible.

Definition: A memory replication technique is a technique to duplicate a critical data '

* in as miany memory locations as needed by using the deposit-access mode.

The same tree-shape communication structure built in Algorithm 3.2 is used to

perform the memory replication just reverse the access procedure. The direction of

conmunication is indicated by the downward arrow as shown in Figure 3.4. This tree

5' structure is referred as a broadcasting tree.'

Theorem 3.4: A broadcasting tree structure can be mapped onto the ButterflyTM

network with conflict-free connections at each level, on the condition that the con-

31

05

45

0% * h=

4-~' : Remote memorg access

........... : Local memnw ~ access

Figure 3.4. Communication structure of message search
and broadcast through the Butterfly network.

321

nections in a searching tree structure are conflict-free at the same level on the same

network.

Proof: Assume any two connections X - Y and U -, V belong to the connections in

the searching tree structure at level h. Since they are conflict-free, according to the

sufficient condition of Theorem 3.1, we have :(X. U) - V(Y, U) < M. Now, these two

connections in a broadcasting tree structure become Y -- X and V -- U. Since the

inequality :(YVU) - (XU) K is also true, based on the necessary condition of

Theorem 3.1. the connections in a broadcasting tree at level h are all conflict-free. -

Algorithm 3.3: Memory rcplication technique is used to broadcast the pivot from

the root processor to all other processors' local memories. Then the data elements on

the pivot column are modified simultaneously. The pivot processor is defined as one,

K" in which its stored element 1 ;.d is equal to the pivot. For example, if pivot - Vkd. then

* P- P.. the pivot processor.

*, Step 1: Memory replication

The broadcasting tree structure is used to replicate the pivot from the root

processor to all other processors* local memories. Based on Theorem 3.4. the

memory replication can be accomplished with the minimization of contention

in shared memories and with the conflict-free in communication links at each
• .-",level.

Step 2: Now, every processor receives the pivot (Vkd).

FOR i 0 TO n 1 (all processors execute in parallel)

IF i - k THEN P, performs the following operation

1;,d :', (modify the pivot);

ELSE P, performs

.,d (modify other data elements);
1".d

* END:

Step 3: Pivot processor Pk sends its local data V, 1 , j-0 to r, and Wk to the root

processor. With the data flow similar to a wave, the root processor broadcasts

* these data to other processors' local memories by using the broadcasting tree

33

if e, ,

a communication structure.

Algorithm 3.4: To simultaneously modify the data elements other than those on the

pivot column.

FORi 0 TO n 1 (all processors execute in parallel)

IF k THEN P, performs 0 to r, andj d) and k

ELSE P, performs

,) -I (J 0 to r, and 54 d); and

Vi, TV, - W k d

END.

As soon as the first iteration is completed. the second pivot column is selected

according to the next negative coefficient of the objective equation. This begins the

second iteration with the same procedures from Algorithm 3.1 to Algorithm 3.4. The
S

number of iteration is equal to the number of negative coefficient of the objective

equation.

3.4. Performance Evaluation

It is widely known that performance analysis of an iterative algorithm on the

MIMD multiprocessor is a very complex and difficult job, since many factors jointly

determine algorithm performance and the modification of a certain factor may affect

others. For simplicity, we make a few assumptions in an attempt to approximately

/.' .predict the system performance by complexity analysis. Note that the real system

performance should be better than the following analysis, since we consider the worst

case. It is assumed that execution of identical arithmetic operations on different pro-

cessor nodes requires the same response time. In the following discussion, a denotes

the time for completing one multiplication, 3 denotes the time for completing one divi-

sion, ?7 for completing one addition, a for completing one logic comparison operation,

and p for completing one remote memory access with deposit mode. We also assume

that the time required for a local memory access is so small that it can be neglected.

* Let T(i) represent the execution time for algorithm i in one iteration, Tpara represent

34

the execution time of the parallel algorithms on the Butter fly TM4 multiprocessor in

one iteration, and Tuna represent the execution time of the sequential algorithm on

unitprocessor in one iteration. we derive the following three inequalities:

4

Tpara <-- jT(i)

3 - ((u 0lo 2 n) - (141og2 n) - 3 -, j(r + 2)(1 + 1og2 n)) + (r + 1)(a r / (3.1)

ru,,t > 03 + (n - 1)a -t n 3 + (r -, 2)/3 + xn(r~u, - 2)(o + r/); (3.2)

Speedup -I >rtl

1 par.
k=1

-r- l

Z (n,3 + (n - 1)c + nO + (r + 2)3 + n(r + 2)(a + ti))
k=i1; (3.3)

' r+1

Z (3 - ((. + C)log2n) + (3 +pu(r + 2) + y(r + 3)log2n) + (r + 1)(a + q))
k=1

where the maximum number of iterations is equal to r + 1. If we assume the itera-

tive parallel algorithm is homogeneous, then the time for completing each iteration is

almost the same. When r approaches to n, we have

speedup > O(n2)

0(nlog2n)

This expression indicates that the speedup is a first-order increasing function of the

problem size n as n becomes a reasonable large number. The result also verifies our

claims that the parallel algorithms can achieve a higher system performance by taking

advantages of the mapping method.

"5a,.,.

0=

WO V "V %r V VV *d* *

* ~ ~%

CHAPTER 4

EVALUATION OF EXISTING DEPEND)ABILITY TOOLS

I l pointed out in the introduction that there exists 110 too] that call be usecd for

Athe exact dependability evaluation directly. By exact. we mean a Nlarkovian or Si'

Nlarkoviati approach to capture the component failure and repair processes accurai,1'

A , lough i he(re lia. beeni -otiije attemtpt to model a MEN-based rnultiprore,,sor ui~ii(

Nia rk I iait eclrimpie Arlat S13. Blake 87 . these inildlk are very 5iliple and are also

11T irntily extendable to large systems. In the absence oif an exact analytical model.

;ill approximrate model is preferred if it can give acceptable results. Moreover, in

*tire proces., of (developing an approximate model one can get better insight to go for

the exact technvique. In sections 5 and 6, we present approximate techniques for the

oleiiendabillIN, evaluation of Butterfly and hypercube systems,. In this section we first

piresent a b~rief .lrrnary of sole of the exist Ing tools with highlighting their limitations

for the dlit rialit valuat ion of candlidate parallel Computers.

There are a niinbr of existing tools availab~le for computing dependability of

redundant systemns. Tools such as ARIES, CARE 111, HARP. anid Sli kRPE cant be

used for reliability analysis where as tools such as HARP. SHARPE hnd SAN*E ('ait be

used for 1b0th reliability and availability analysis. SHARPE. oil th(other hand. can

-. he used for 1)erformalbility evaluation. In this section a brief sumniarv of CARE 111.

HARP. and SHARPE is given. The conclusions regarding the applicability of these

models to candidate architectures also apply to other tools riot summarized here.

S 4.1 CARE 11I1

CARE Ill (Computer Aided Reliability Estimation, Version Three) is a program

* rlesigned to estimnate reliability of compl1lex redundant systems iStuffier 821. It was

36

developed specifically for fault-tolerant avionics systems, CARE III features are sum-

marized below.

Capabilities

Predict the unreliability (1-reliability) of a system consisting of up to 70 stages

with each stage composed of one or more identical modules.

Can handle hardware software faults of various types such as permanent, transient

and intermittent.

User must specify the number of modules in each stage, the minimum number

of modules needed in each stage for the system to operate properly, the various

combination of stage failures that constitute a system failure and the probability

that a specific module from stage i forms a critical pair(system failure) with a

specific modules from stage j. Hence, a system tree specification involving the

critical pairs must be given as input to the program. The lower level faults in the

fault tree specification are stage failures.

Modules imperfect fault handling (coverage) using Markovian technique.

Fault distribution is given by a Weibull function.

Disadvantages

Can not model availability.

Fault tree in terms of critical pairs of a MIN-based system or hypercube is very

difficult. The number of each critical failure combination can be too large to spec-

ify for a medium or large size system. Particularly various combination of switch

failures that can lead to system failure in a Butterfly type system is extremely

* difficult to specify.

Can not model performance-related dependability.

4.2HARP

wrHARP (Hybrid automated Reliability Predictor) [Bavuso 87, Geist 83] is a soft-

ware package that implements dependability modeling techniques. Its advantages and

disadvantages are given below.

Capabilities
A

S37

0Jr'11 1
a

Can compute both reliability and transient availability of computer systems using

behavioral decomposition along temporal lines. The overall model is decomposed

into fault-occurrence!/repair (FORM) and fault/error handling (FEHM) submod-

ules to analyze the fault-occurrence and coverage effects effectively.

Can handle various types of faults as described in CARE I1l.

User must input either the Markov chain of the system or a Petri-net model, which

can be converted to Markov chain automatically for computing dependability. The

other alternative input can be a fault tree specification of the system.

Can model systems with sequence dependant failures.

(Gives guaranteed bounds on reliability.

Weibull distribution for reliability modeling.

Disadvantages

* Cannot compute MTTF or steady state behavior for repairable systems.

Cannot guarantee the Markov chain automatically. As has been pointed out

earlier, generation of the Markov chain is complex for systems like Butterfly or

Hypercube. Also, a fault-free specification of the candidate parallel system is not

simple. Hence, the difficulty of finding the input model restricts the usefulness of

HARP to parallel architectures under consideration.

4.3 SHARPE

SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evalu-

*ator) is currently under development at Duke University jShaner 871. In addition to

dependability evaluation, it has the capability to include performance with depend-

ability, such as performability. It's advantage are the following.

Capabilities

Supports seven model types such as reliability block diagram, fault tree without

trepeated nodes, acyclic Markov chains and irreducible cyclic Markov chains to be

combined hierarchically in a flexible manner.

Allows to use either combinatorial or Markov/Serii-Markov submodules.

* Uses Symbolic computation.

38 (

0V

~J'rv~~ * ~ ' . - '%

Input to the model is in the format of reliability block diagram, fault-tree, or

Markov chain.

Disadvantages

As like HARP, construction of the fault-tree or Markov chain is again the chal-

lenging problem. Development of a reliability block diagram is also not simple to

model task based evaluation.

.

39

.l !

4

CHAPTER 5

BUTTERFLY DEPENDABILITY MODELING

We have developed a preliminary analytical model for computing the reliability

of Butterfly network based multiprocessors Tien 88'. The model is preliminary in

the sense that the actual Butterfly node failure/repair behavior is not included in the

Ijodel to address the coverage accurately. Also, it does not address the details of a

Buticrfly system such as extra stage of switches, software failures, and system sizes

which are not powers of four. It captures graceful degradation of a Butterfly system

by considering the failure of processors., memories, and 4x4 switching elements (SES)

that constitute the Butterfly network.

The modeling approach is based on system decomposition. Since, the Butterfly

system uses 4x4 switches, the system size is generally given by 4. Although systems

available today can be configured with any number of nodes n, n < 256, the con-

figurations that are not powers of 4 do not use all the N/41og4 N switches used for

the interconnection network. Hence, this model addresses 4' systems first. Extension

of the model to other configuration when N $ 4' is under investigation now. The

modeling approach is based on system decomposition and combinational techniques.

The reliability of a 4' system is obtained from four 43-1 subsystems and the connec-

tion pattern between those subsystems. The reliability model assumes a homogenous

multiprocessor system. The PEs, MMs, and SEs are homogenous and have identical

exponential failure distributions. We define Ap, Am, and A as the failure rate of a

PE. MM, and SE, respectively. The corresponding component reliabilities are given by

Rp(t) -- e- Apt, Rm(t) = e -- A t , and Re(t) - e - '- t . Task based reliability is computed

by looking for a connected system with at least I processors and J memories

5.1 16x16 System Reliability

40

A 16x16 multiprocessor with 8 switches is shown in Figure 5.1. We will call it a

16 node system since a PE, and a MM, are assembled on a single board. The 16 node

system can be decomposed into four 4x4 subsystems while keeping the communication

between the subsystems undisturbed. A subsystem with 4 processors, 4 memories,

and 2 switches is shown in Figure 5.2. While a 4x4 configuration requires only one SE,

Figure 5.2 uses 2 SEs. One switch connects the 4 PEs, and the second switch connects 4

the 4 memories. We call these the input and output switches respectively. A system

with more than 4 PEs and 4 MMs needs at least one input SE and one output SE to

establish the connection.

5.1.1 4x4 Analysis

We first compute the probability of having exactly i PEs and j MMs connected

* at time t, for ij < 4, in Figure 5.2. This is given by

-2

P4(ij)(t) = I{,=0Aj=o) (1 - Rse(t))

+ (4) R' (t) (1 - Rp (t)) 4
-(' .()(- R.m(t)) 4 'R 2e(t) (5.1)

The subscript 4(ij) stands for selecting i PEs and j MMs from a 4x4 or 4 node

system. I{i=oAj=o} is an indicator function given by

1 if i-OAj-O
Iji=O"\j=O} =((5.2)

0 if i 0Vj 1O0

The first term in equation (5.1) represents the situation where any number of

processors and memories are working when at least one SE has failed. This term

* contributes to the P4(o,o) probability. The second term in equation (5.1) denotes the

connection of i working processors with j working memories when both the SEs are

fault free. For example, the probability of 2 processors connected to 3 memories is

given by

41

01 1 A I I I 1 1 i

P 0 MO

P 1 Ml

P2 0 -M2

P3 M3

*P4 M-5

-. P5 M6

P6 M7

P7 M8

P8 M9

P9 M10

PlO Mil
P11 M12

P12 M12

P13 M13

*P14 (-M14

Pi15 (-M15

Fig 5.1 A 16xI6 multiprocessor with 8 switches.

42

PO0D MO

P2 oI---oM2

*P3 aM3

Figure 5.2 A 4x4 Multiprocessor with 2 switches.

44

P423 (t) 2R ()(-- pt Rr t(- Rin(t))Rset

It should be observed that R,,(t) is included for terms like P4 (O,j)(t) or P4(,,o)(t).

This is because the input and output SEs are utilized for any reference to be satisfied.

5.1.2 16x16 Analysis

The reliability of a 16x16 system is derived from the basic 4x4 model. Since the 16

processors and 16 memories can be divided into four groups each with their associated

SEs, we need to distribute the required number of components among 4 groups. For

example, all possible distributions of i PEs within four processor groups and j MMs

within four memory groups must be considered. The probability of selecting i PEs

*and j MMs (ixj) from a 16x16 system at time t is given by

ko kI k 2 1, 1, 12

1Q0=O 0 i2 0)0 k h 0)2 0

(5.3)

where

ko = min(4,i)

kI = min(4, i- io)

k2 = min(4, i - io - il)

k3 i - (i0 + j + i2)

to min(4, j)

11 min (4, J - jo)

12 rin(4,j"- Jo -)

13 D - (o+ J1 + J2)

The distribution of i PEs among 4 groups is such that io + iI + i2 + i 3 i and is

controlled by the last term i3 . Since (4)=O for i3 > 4, all possible valid distributions

of i PEs among four processors groups are generated by the first three summation

expressions. The kis control the maximum number of PEs to 4 in a group. The last

44

three summation terms with the corresponding I,s. generate all the distribution 3 MMs

among four groups.

Any valid distribution of the processors and memories are combined into four

processor memory pairs. The P4 (i1 ,j) (0 < x, y < 3) is the same as in equation (5.1).

It should be observed that by including the input and ou'put SEs in a 4x4 group, we

guarantee connection among the i PEs and J MNis from the four groups. For example,

a P 4 (i . o) group can access a P 4 (0. J) group as the required four S E reliabilities are

inc ludled InI the expression.

The reliability of a 16x16 multiprocessor with at least I PEs and J MMs working

connected is then given by

R,(N,,')(t) = > PN(,,])(t) (5.4)
zI j J

where N is the size of the system. In this case N - 16. The reliability variation is plotted

in Figure 5.3. The results are given for PE failure rate A= 0.0001, MM failure rate

k,, 0.0001. and SE failure rate A, -r 0.00002. We have assumed a perfect coverage in

this study. However, coverage parameters for the PEs, MMs, and SEs can be included

in the model directly. The solid lines express the analytical results. The model is

validated by plotting the simulation results, shown by dotted lines. It can be observed

that system reliability increases by allowing graceful degradation.

5.2 64x64 System ReliabilityIV)
The system size grows in powers of 4 when 4x4 switches are used for the network.

Therefore, a 4'x4' system can always be decomposed into 4 4+- 1x4'-1 systems without

* disturbing connections. Figure 5.4 shows the decomposition of a 64x64 architecture

into four 16x16 groups. A 64x64 configuration has three stages with 16 switches in

each siage. As mentioned in the previous section, the input stage switches (stage 0)

are included with the processors, and the output stage switches are included with

45

00

C)Q
Cu

II 0

2 / U)

-,/ C) C)-C
/1 0

4-4

000
/ 00 0

/ ~-40 C.004
C)0

* ~Cu C'

00

'H

C 'H

C\1

?' * 'd

y46

the memories. Hence, each group of 16 PEs (PG.), or 16 MMs (MGy), has four w,

SEs associated with it. We represent a processor-memory group by (PGX,MG.) for

0< x,y < 3.

The distribution of i PEs and j MMs between the four groups can be done in

the same way as for the 16x16 system. However, the middle stage switch (stage 1)

controls the access between various processor-memory groups. It can be observed

from Figure 5.4 that PG. (0 < x < 3) can access MG. using only one of the stage 1

switches, whereas, PG, uses two switches in stage 1 for a round trip communication

with MG, when x # y. We number the stage 1 switches by a 2-tuple notation S.,. The

A first number, x, represents the processor group, and the second number, y, represents

the memory group for which a switch is used. For example, switch 10 is used for

a request from PG, to MGo. The round trip path is established through switch

*: (01). The connection between various processor-memory groups is represented by a

switching node table given in Figure 5.5. It should be observed that the upper and

.- lower triangular entries in the table are exactly the same.

The switching node table is used to calculate the number of stage 1 switches re-

quired for connection between a group of processors and memories. For example, if

PGo and PG, need all the four memory groups, 12 SEs are required. This is because

SEs (01) and (10) are common to both the groups. These two switches should be in-

cluded only once to calculate the total number of SEs required to establish connection.

5.2.1 Processor Memory Distribution0

There are two different ways a connected group of i PEs and j MMs can be .

available on the system. The first is the case where exactly i PEs and j MMs are

• working, and at least the required number of stage 1 SEs are perfect for providing

connection between any PE and MM. In the second situation, more than the required

number of processors and/or memories may be working on the system, but, the total

* connectivity is (ixj). This is possible when the number of stage 1 working switches

47 -

%-

%L AL
VplIC V.A- r

Stage I SEs

Ap0

!PGo 2 MGO

-10

*~I I

PGI 21MGI

00

-12

00

,. -

A
I

o. 'P

Fig 5.4 The decomposition of the 64x64 architecture

Pto four 16x16 groups.

48

* ~MG
-4

0 1 2 3
PG

0 01 02 0310 20 30
10 12 13
01

21 31

2 20 21 232 02 12 22 32

30 31 32
303 13 23

Fig. 5.5 The switching node table.

"'

0
0

00

/ 12
-H 0

0 -4

14 - 4

-400 0,I

7 -4

00-4 -

cn4-1

500

are just sufficient to provide a connectivity (ixj). Both the cases are analyzed in detail

below.

5.2.2 Exactly (ixi) elements working

Since the i PEs and j MMs can be distributed in upto four groups, the first step

in computing this probability is to find the number of stage 1 switches required for

connection. Let Nc represents the number of stage 1 switches required to connect i

PEs and j MMs. Nc is given by

3 3

Nc = E Y N, I(PGI v MQ $ 0 & N, not included) (5.5)
Z=O y=O

where N,, is the number of SEs required to connected PG. to MGy. N1, is obtained

p from the switching node table of Figure 5.5. NV = 2 when x 5 y, and N2, = 1 when

x = y. It should be observed that equation (5.5) is a conditional expression. The first

condition says that if there are no working elements either from a processor or memory

gioup, then N, = 0. The second condition ensures that the same switch should not

be included twice. For example, (PGo, MG 1) connection and (PG,, MGo) connection

need the same two switches (01) and (10). Therefore, N10 should not be included in

Nc, as N01 is already included. The Nc calculation is illustrated below by an example.

Example-I

Let the i PEs be distributed in groups PGo, PG,, and PG 2 . The j MMs are selected

from MG 1 , MG 2 , and MG 3 . Then

Nc = Noo +No, + N0 2 + N0 3 + No + N1 1 + N 12 + N 13 + N 20 + N21 + N22 + N23

=0+ 2+2+2+0+ 1+2+2+0+0+ 1+2= 14

As exactly Nc SEs are required to connect i PEs and j MMs,the stage 1 SEs are

* now divided into two groups. The first group is the required number of SEs Nc. The

second group is the additional SEs (16-Nc). The state of the additional switches does

not affect the working group (ixj). Therefore, the probability of i PEs and j MMs

* working at time t given by

* 51

00 .

%%

ko k, k 2 1 I 12

P64(ij)(t= E r- >] i E L P 1 6 (0 0 o)(t)
io=O$I=O ,=1jo=O, =0)2 =0

P1 6 (i.,, 3)(t)Pl 6 (, 2 ,, 2)(t)Pi 6 (,s,j.)(t)Rse(t) (5.6)

Equation (5.6) is identical to equation (5.3) except that the subgroup sizes are

16 instead of 4. Evaluation of the term P1 6 (, 3 ,)(t), for 0 < xy 3, is done using

equation (5.3).

5.2.3 More than ix) elements working

This is the situation where the number of connected processors and memories are

limited by the failure of the stage-1 switching elements. We illustrate this situation

by an example.
0

Example- 2

Consider the distribution P 16 (16,16)(t), P1 6 (16,16)(t), P 16 (16 ,o)(t), and P 16 (o,o)(t).

All the PEs and MMs from group 0 and group 1 are working. Group 2 has only

16 PEs working but memory connection is zero. Group 3 has all elements 0. The

system size is given by (48x32). Let Np be the number of (O,MG,) groups and Nm

be the number of (PG,,O) groups in the distribution. For the above case NP=O and

NM1. Now,as long as S2 2 has failed, the number of MMs working in the third

group is immaterial. PG 2 and MG 2 are disconnected when S22 has failed. PG 2 and

MG 2 are individually connected to the first and second group through S20 , S0 2 and

• S 2 1 , S12, but not connected as a (PG 2 ,MN1G 2) group. Hence, the system size remains

the same, (48x32), with working MMs in group 2.

When at least one of the SEs from each group N 30 , N 3 1 , and N 3 2 has failed,

the number of working processors and memories from group 3 does not increase the

system size from (48x32). In other words, the failure of at least one SE from N",

disconnects processor group x from memory group y. The above two distributions,

(0,0) and (PG,,O) or (O,MG2), are combined to give the maximum numbers of switches

52

N1 that can fail to disconnect the failed groups from the rest of the system. N! is

expressed as

N 1 = N'1 +- N1 2 (5.7)

The first term N', gives the maximum number of SEs that can fail to disconnect a
0frh

(0, 0) group from the rest of the system. The second term N1 2 denotes the number of

SEs that must fail to keep a group size (PGZ, 0) or (0, MGZ) even though there is at

least a memory or processor working in the null groups respectively. Let NI denotes

the minimum number of SEs that must fail to disconnect a (0,0) group from the rest

of the system. NVI Nf1 , and N1 2 can be expressed as

3 3

f Z Z{NYi(PGAMG,=O), (ziy), &(N,, not included)} (5.8.a)
z=O y=O

I Nl - 1 (5.8.b)

and

N1 2 {I{N,>N,)((Np - 1) + Nm) + I{Np<Nm}((Nm - 1) + Np)}+

3

j {NzI (PGvMG.=O), (PGAMG.i#O), &(N.. not included} (5.8.c)
z=0

*Both these terms are conditional to avoid the inclusion of the same switches twice.

The first term N., counts the total number of SEs that disconnects a (0,0) group from

the working groups of the system. It does not include the SE N... The third term

N1 2 counts only the N.., switches for a (PGz,O) or (0,MG.) group. The first term in

(8.c) counts the switches that should fail between more than one (PG3 ,0) or (0,MG1)

0 groups. The indicator function I{N >N,) and I{N,N.N) are used to select the proper

switches. The second term in (8.c) counts the N2 2 switches for a (PG 2 ,o) or (O,MG 2)
group. The third term does not include N.z for a (0,0) group. On the other hand,

* the minimum number of SEs that must fail to keep the system size (ixj) is given by

53

• J.

Nf.m -(Nf 1 - N 2). This is because 1 out of each 2 SEs in N,'(. y is sufficient

for disconnection of a (0,0) group. Also 2 out of 3 group switches are sufficient to

disconnect a (0,0) group. For the above example, NI = 2, N 2 = 1, and Nfm = 3.

To keep the SE failure model simple. we consider only the minimum number of SEs

required to disconnect the groups. Since I out of 2 SEs for each NA is required for a

(0,0) group. the total number of ways the Nfm can be selected is given by

X f1 2 IN (>i N-)1 yp ~NP (N, < j N-(59

For the above example X = (3) X 22.

The situation where more than i PEs and j MMs are working but the total

connectivity is (ixj) is then given by

k0 kI, k 2 10 I 12

P64(,,j)(t) E E Y- Z)2 E E P16(to,Jo) (t)P * 16o; i '~~~o=-Oi I = 0 i 2 = '0 - 02-:0 1(13

"** " i (1 P"* jj (t) N, N -
P,(i,)() ,6(j) (t) (1 -R (t)V X (5.10)

Rse(t)N- in equation (5.10) gives the probabilitythat the required number of SEs N,

are working to keep the connectivity (ixj). (1 - Rse(t))Nf - X represents the probability

that the minimum number of SEs has failed so that the connectivity is (ixj) while

there are actually more than i PEs and/or j MMs working in the system. The term

a Pii(i,i,)(t) in equation (5.10) stands for

I PI 6 t,,ja)) if i A jZ / 0
16

P>-60,,.) (t) :_ P1 6(,(j.)(t) if ix 0 & j., 0 (5.11)
X=1

16

Z P,6 (i.,)(t) if iz $0 & jz -0

* 16 16

E r1 Pio(7 Y)(t) i f 1. 0
r=l y=l

Evaluation of the term P*16 (iJ.)(t) depends on the distribution. When neither a

5 processor nor a memory group is zero in group x, P16 (,.,j.) (t) is the same as equation

54

0r6 QO I1
P '= I

(5.3). When either the processor or memory group is zero, the corresponding proba-

bilities are added for 1 < x < 16 to compute P1*(, 83)(t) The Ps(0,0)(t) is computed

by the fourth term of equation (5.11). It should be observed that the minimum value

of x is 1 for the summations in equation (5.11), since all failed element probabilities

are included in equation (5.6).

5.2.4 Reliability Computation

The reliability of a 64x64 system can be computed by combining equations (5.6)

and (10). It should be observed that all valid working groups are generated by the

above two equations. The only probabilities that are not included are in equation

* (5.10) where more than Nfm. SEs can also fail while keeping the system size (ixj).

However, the contribution of this expression is negligible compared to equation (5.6).

This is mostly because of the term (1 - R.e(t))Nfjr. When we take more than the
minimum number, Nim, this probability decreases even faster. This argument is valid

when the required system size is about 50% of the original size. With i and j less that

32, the contribution from equation (5.10) is about 10%.

The computation of equation (5.10) is very costly in terms of time. Equations (5.6)

and (10) both generate all the distributions and compute N.. In addition, equation

(5.10) generates Njm, and whenever there is a PE and/or MM group 0, it computes

either one or more of the last three expressions of equation (5.11). When (ixj) size

is close to (NxN), the possibility of an (i. V Jv = 0) is negligible. With lower (ixj)

values the probability of finding a null processor and/or memory group increases.

It can be observed that both equations (5.6) and (5.10) are combinatorial expres-

sions. All possible distributions of (ixj) are generated in these equations. Probability

computation for all of these combinations is time consuming. However, the equations

* can be evaluated efficiently by avoiding the regeneration of the similar of distributions.

For example, consider a system of size (48x48). Four possible distributions are:

Processor Memory

a(16, 16, 16, 0) (16, 16, 16, 0)

55

*~ * .nA %?A =.

=all MIN

(16, 16, 0, 16) (16, 16, 0, 16)

(16, 0, 16, 16) (16, 0, 16, 16)

(0, 16, 16, 16) (0, 16, 16, 16)

All of these combinations have the same probability, since N, is 9 for all four cases.

Hence, we need compute only one of these terms. By avoiding the recomputation of

similar distributions, the computation of reliability becomes faster.

Figure 5.6 shows the reliability variation for a 64x64 multiprocessor with I=J=48

and I=J-32. The I=48 result is plotted using only equation (5.6). The analytical

results match closely with simulation without including equation (5.10), since with i

and j equal to 48, only one group of PEs and MMs can be 0 at a time. Hence, the

value from equation (5.10) are negligible. The results for 1-: 32 are plotted by combining

equations (5.6) and (5.10). We have observed that using only equation (5.6), the results

* differ from the simulation less than 10%. So, if the reliability requirements are not

stringent, equation (5.6) should be sufficient to give a close lower bound on reliability.

5.3 Generalization to Higher Systems

It is possible to extend the analysis of 64x64 system to 256x256 multiprocessor.

The basic nature of the equations (5.6) and (10) remain the same except that each

process or memory group has now 64 elements. A unique path 256 node configuration

has 4 stages of SEs : stages 0, 1, 2, and 3. Each stage has 64 SEs. The decomposition

of the 256x256 system into 4 64x64 groups is done by associating the stage 0-(input)

SEs with processors, and stage 2, and 3 SEs with the memory side. Hence, a group of

64 PEs has 16 SEs associated with it. A group of 64 MMs has 16 SEs of stage 2 and

% 16 SEs of stage 3 associated with it. These 64 PEs and 64 MMs have the identical

connection of a 64x64 system.

The four groups of 64 PEs and four groups of 64 MMs are connected through 64

stage 1 switches. These 64 stage 1 SEs can be divided into 16 groups, each having 4

switches. We can then represent the stage 1 connection of the 256 node system by the

same switching node table of Figure 5.5. Now, each 2-tuple notation Sy represents a

56

group of 4 SEs. For example, (00) will stand of 4 SEs that connect 64 PEs of group 0

to 64 MMs of group 0. Similarly, 8 SEs (01) and (12) are needed for communication

between PGo and MG 1 . The required number of SEs N, for any system size (ixj)

can be found by coui.ting the number stage 1 of groups and multiplying this number

by four. N/m can also be computed similarly using equation (5.7). Hence, equations

(5.6) and (5.10) can be used by changing each P1 6(,.,j,)(t) notation to P64(,.,j"}(.

The (64x64) system results are used to compute (256x256) system reliability.

It is theoretically possible to use equations (5.6) and (5.10) for a 256 node relia-

bility computation. But the computation time is prohibitive. This will be illustrated

by an example. Let us assume that we want simply to compute the probability of

(192x192) distribution. One possible processor grouping is (64, 64, 64, 0). The mem-

ory combinations for this processor grouping vary from (64, 64, 64, 0) to (0, 64, 64,

* 64). The generation and computation of this large number of memory distributions

for each processor distribution make this model unattractive for higher order systemsN,

such as the 256 node system. One can avoid recomputation of similar combinations,

as discussed in section 4.2, to save computation time. Using these simplification tech-

niques, we have computed the reliability of a 256x256 multiprocessor requiring at least

192 PEs and 192 MMs. The result is plotted in Figure 5.7. We also have written a

simulation program for 256 node system to verify this analytical results. The results

are compared in Figure 5.7.

The disadvantage of equation (5.6) and (5.10) for higher order systems is mainly

because of the generation of all distributions, and in finding the numbers N, and Nfm.

Therefore, there is no approximation involved in the model except in neglecting the

terms Nfm+I to Nf. As mentioned in section 4.2, contribution of these terms is very

small. We are currently looking at approximation techniques that can be used to

* compute 256 node system reliability efficiently.

One such approach is to use a recursive computation of higher order systems

starting from the 4x4 model. The first and last stage SEs are always included with

* the processors and memories. Starting from the 4x4 model, we can compute the

57

IN - -~~. ("T'=/N'NL
~ ,~, %

&Ii

reliabilities of (8x8), (16x16), (32x32), (64x64), and (128x128) without considering the

middle stage SEs. A (256x256) system reliability can then be computed by considering

two (128x128) systems. An approximate number of middle stage SEs will be included

in these expressions to provide connections between the PEs and MMs. For example,

a (64x64) system working with (48x48) configuration needs at least 9, 12, or 16 SEs

from stage 1 depending on the processor memory distribution. We should then be able

to get a fairly accurate result for (64x64) system by including an average value for the

reliability of stage 1 SEs with two (32x32) system reliability. The same principle can

be applied for a 256 node multiprocessor.

'58

A K

6

K, K

C'4Q as

0

0 0

0 u
0

o 0V

- 0)

C4

0 0

41 -

000

otK0 '0ko0 00k

N o
I

590 '.

'
CHAPTER 6

HYPERCUBE DEPENDABILITY MODELING

Ve have ((lvl(,op((t an approxilnate techniques to compute the reliability of Hv-

perclube multiprocessors. The model is based on the decomposition principle, where a

hypercube of a higher dimension is recursively decomposed into smaller hypercubes,

until the reliability of the smallest cube is modeled exactly. Th, rcliability of the large

n-cube is then obtainedt fromi this siiIallet])a,(, Ii(,del using a recursive (,(juation. The

reliability nodel used is task based - it is assuimed that the system is operational if """

the task can be executed on the system. Analytical results are given for n-dimensional

hypercubes with upto 75 '(system degradation. The model is validated by comparing

analytical results with simulation results.

6.1. Modeling Technique

We use a 2-cube (4 nodes) or 3-cube (8 nodes) system as the base model in this

analvsis. The exact task based reliability analysis of the base model is first done for

various numbers of required nodes. I. where I < 2" for n = 2 or 3. The reliability

of a higher dimension cube is obtained recursively from the base model results. We

decompose an n-cube into 2 (n-1)-cubes, each (n-1)-cube in turn into 2 (n-2)-cubes,

etc.. until a 4-cube is divided into 2 base model 3-cubes. We start with the exact

base model equations and derive results for a higher dimension system by considering

the connectivity between two (n-l)-cube systems. One possible decomposition of the

problem for a 5-cube system with 20 nodes working is given in Figure 6.1.

In this report, we shall assume that the failure rate of the links is negligible com-

pared to the node failure rate. Thus. only processor failure is considered. While this

is an optimistic assunption, it is widely used in the modeling of parallel architectures

to keep the analysis simple. Further, if we include the failure rate of the common I/0

60

II

0-b I=2

Base model-- 3-cube 3-cube 3-cube 3-cube

6 2 4 8

Fig. 6.1 A decompositiono of a 5-cube with 20 connected nodes.

"V 61'V °,

°S'

.N V . *,

qpt..

* bus along with the processor failure rate, the failure probability of individual channels

becomes very small. In this case, the link failure assumption becomes less critical.

We assume homogeneity of processing nodes, with identical and exponential distri-

bution of failure time. We define A, as the failure rate of a node. We consider reliability

evaluation of only non-repairable hypercube systems in this report. A separate front

,-nd host processor is assumed to perform all the maintenance action. Detection and

isolation of the failed nodes, and reconfiguration of the system to a degraded mode,

are all done by the host processor. Host processor failure probability is not considered

in this report. However, this , an be included into the model without much difficulty.

We use the following notation in this analysis:

Notation:

N • Number of nodes in the hypercube, N=2'.

X,, Random variables that represent the number of processors (nodes) in the n-cube.

G(N.i, p)) , the probability of having exactly i good units out of N

units, where p is the unit reliability.

A, : Node failure rate.

R,(t) " Node reliability at time t, given by e- p

P(X, i) :The probability of having i good connected units in the n-cube.

R (t) : The n-cube transient reliability.

C, 1(', j -Connectivity of two (n-1)-cubes; one cube with i connected processors and

the other cube with j connected processors.

P(C 1 j4 - i) : The conditional probability of having i disconnected

processors working in the (n-1)-cube.

Dn - (i, j) : Connectivity of two (n-1)-cubes. One group with i connected nodes and

the second group with j disconnected nodes.
II

G, (. x) :Number of x connected nodes from N.

Gd(N. x) : Number of x disconnected nodes from N.
C,(x. y) " Number of y connected nodes from x connected nodes

S. -62

U 5 %

%I

- - - - - - -4

* 6.2 The Base Model

In this section exact analyses for 2-cube and 3-cube configurations are presented.

N We assume perfect coverage in all this analyses. However, an appropriate value for

coverage could be inlcluded in the model without changing its basic structure.

6.2.1 2-Cube analysis

A 2-diniensional hyperculbe (with N=4) is shown in Figure 6.2.%

Froinsimlple conihlinatorics. we have the exact probability for various numbers of

connected working nodIes at time t

P1' P(X,, 3) 4R,,(t)3 (1 - R.(t)) (6.1.b)

P X, 2) 4 t 1- R, t)2(6.1Lc)

**(X, 1) =4R,(t)(1 - R,(t))3 + 2R,,(t) 2(1 - R,()2(6. 1.d)

P P(X, 0) = (1 - R,,(t)) 4 (6.1Le)

It should be observed from P(X,, 1) that a situation such as nodes {O, 3}

working, or J1,21 working, in Figure 6.2 gives effectively only one working node, as

the diagonal elements are not connected.

6.2.2 3-Cube analysis

A 3-dimensional h~ypercube (with N--8) is shown in Figure 6.3. While the prob-

ability expressions, below could be obtained using the 2-cube model, we derive them

~ directly due to their simplicity.

0 The p)robability of exactly I connected processors working in the 3-cube, for 0 <

I < 8, are given below.

P P(X, 8) G (4. 4,p) G(4, 4,p) = R,,(t) 8 (6.2.a)

P(X,, 7) 2 G(4, 4,p) G(4, 3, p) =8 R,(t 7 - R,,(t)) (6.2.b)

P(, 6) 2 2G(4, 2, p.)G(4, 4, p) +G (4, 3, p) G(4, 3,p)

28 R,, (f) 6(1 R,,(t)) 2 (6.2.c)

63

% .%

Fig. 6.2 A 2-dimensional hypercube.

Group-I ru-

Fig. 6.3 A 3-dimensional hypercube.

64

I,,!01WN
N ' m l

4 ago=

P(Xn = 5) 2G(4,1,p)G(4,4,p) - 2G(4,2, p)G(4,3,p) - P(Xn = 5)dac

56Rn(t) 5(P -- (t))3 - 2 * 4R.(t) 5 (1 - Rn(t))3

48R,(t) 5(1 - R,(t))3 (6.2.d)

The disconnected probability P(Xn = 5)disc appears in the above expression to

take care of the situations where 4 out of 5 working nodes are connected. An example

is when nodes {O, 2, 3, 5, 6} are working. There will be 8 such cases in the 3-cube.

P(X. --- 4) = P(X = 5), + 2G(4,0,p)G(4,4,p)
- 2G(4,1 p)G(4,3,p) + G(4,2,p)G(4,2, p) - P(Xn 4)ac

- 8R.(t) 5 (1 - Rn(t))3 + 2Rn(t) 4 (1 - Rn(t)) 4
- 32R,(t) 4 (1 -- R,(t)) 4

36R.(t) 5 (1 - R.(t)) 4 - 32Rn(t) 4 (1 - &(t)) 4

= 8Rn(t) 5 (1 - Rn(t)) 3 -+ 38Rn(t) 4 (1 - Rn(t)) 4 (6.2.e)

The P(X,, -5)disc is the same as P(Xn = 5)disc terms of the previous equation

(2.d). With 4 nodes working, there can be 1, 2, or 3 connected nodes which should

be subtracted from the P(Xn = 4). For example, working nodes {1,2,4,7} are all

disconnected and contribute only to P(Xn = 1). Nodes {0,2,5,7} give 2 connected

groups and add to P(X, = 2). Finally, nodes {0, 2,3, 5} contribute only to P(X" = 3).

All of these disconnected terms are included in the term 32Rn(t) 4 (1 - R,(t))4.

P(Xr = 3) " P(Xn = 4)disc + 2G(4,0,p)G(4,3,p)

+ 2G(4,1,p)G(4,2,p) - P(X : 3)d,,c

- 24R,,(t) 4 (1 - Rn(t))4 + 8R,(t) 3 (1 - R,(t))5

+ 48Rn(t) 3 (1 - Rn(t))5 - 32Rn(t) 3(1 - Rn(t))5

The first term repre -nts the 24 cases where, out of 4 working nodes, only 3 are

connected. The last term represents the 32 cases where C,- 1(1,2) $ 3. The expression

simplifies to

P(X, = 3) 24Rn(t) 4 (1 - Rn(t)) 4 + 24Rn(t) 3 (1- R,(t))5 (6.2.f)
P(Xn = 2) P(Xn = 4)disc + P(Xn = 3)dtc + 2G(4,0, p)G(4,2, p)

+ G(4,1,p)G(4,1,p) - P Xn 2)disc

65

0 6R,(t)4 (1 - R.(t)) 4 - 24R.(t) 3 (1 - R,(t))5

+ 12R,(t) 2 (1 - R,(t))6 - 16R,,(t) 2 (1 - R,(t)) 6 - 16R,(t) 2 (1- R (t)) 6

Tsen

The first term represents the cases where 2 out of 4 working nodes are connected.

The second term represents the 24 cases where 2 out of 3 working nodes are connected.

The last term is subtracted to take care of the situations where 2 working nodes are

disconnected. After simplification we get

P(X, - 2) 6R,(t) 4 (1 - R.(t)) 4 - 24R.(t)3 (1 - R.(t)) s + 12R,(t) 2 (1 - R.(t))6

(6.2.g)

P (X,, 1) - P(X, :- 4)d,., P(X. -- 3)d,.c - P(X = 2)ds+ 2G(4,0, p)G(4, 1,p)

2R,.(t) 4 (1-- R,(t))4_ 8R,(1) 3 (1 - R,(t))5

16R, (t) 2 (1 - R,(t))6 -, 8R,(t)(1 - Rn(t)) 7 (6.2.h)

The first term represents the two cases where two diagonal elements from each

* 2-cube are working, but are disconnected. The second term is for the 8 cases where all

3 working nodes are isolated. The third term is for the cases where 2 working nodes

are 'isconncted

P(X, = 0) - (1- R.(t)) 8 (6.2.i)

6.3 Generalized Model

In this section we develop a generalized reliability model for an n-cube, for n > 3.

We assume that the system works as long as I connected processors are working in the

hypercube. The system reliability is expressed as

N

* R,(t) = ZP 3 (t) (6.3)
j=I

where Pi(t) is the probability that j connected processors are working in the system

at time t. At any time t, Pj(t) is given by P(XZ j). Hence, dropping the time

parameter, system reliability can be written as

N

" .' R,(X, > I) ZP(Xn j) (6.4)

66
0w

M, ? , 3
=

,•/7 [

6.3.1 System Decomposition

To calculate the probability P(Xn 3) we divide the n-cube into two (n-1)-cubes

(groups). There are two situations under which there will be j connected processors

in the n-cube. In the first situation, exactly j connected nodes are working in the

hypercube, with k nodes in one group and (j-k) nodes in the second group. In the

4: second situation there are more than j nodes working in the hypercube, but the actual

connectivity is only j. For either of these two cases, there are two possibilities for the

nature of the connectivity between the two (n-1)-cubes. Either the k and (j-k) nodes

working in the two (n-1)-cubes are all connected in their individual groups and the

total connectivity is j, or one of the two groups is not internally connected but the

total connectivity is still j. For the second case, where a total of more than j nodes %

are working in the two groups, the two working groups may or may not be connected.

These four possible working node distributions are discussed below.

Distribution I

This is the case where there are two connected groups with a total of exactly j

connected nodes for a given j > 1. Let us divide these nodes into two groups such

that k connected nodes are working in one of the (n-1)-cubes, and the remaining (j-k)

connected nodes are working in the second group. These two groups must be connected

such that the total connectivity is j. This situation can be represented as

P(Xn- = k)P(X, , j k)(1 - P(Cn l(k,j - k) -$ j)) (6.5)

, 11% The first two terms give the probabilities that k and (j-k) nodes are connected in their

..-% respective groups. P(Cn- I (k, j k) $ j)) is the probability that the total connectivity

in the n-cube, which is given by the connectivity of k and (j-k) nodes in the two (n-i)-

cubes, is not j. Since we are interested in exactly j connections, (1 - P(Cn- 1 (k, j- k)

j)) is used in equation (6.5). Ifj > 2n - 1, then P(Cn-I(k,j - k) j) .

Distribution II

67

% %~

The other possibility is that k connected nodes are working in one (n-1)-cube,

and (j-k)-nodes are working in a disconnected fashion in the second (n-1)-cube, but

all of the j nodes happen to be connected. For example, assume that node 3 has failed

in group-1 and nodes 4 and 7 have failed in group-2 in Figure 6.3. Hence, the two

working nodes 5 and 6 are disconnected in group-2. But all the five nodes are working

connected due to the hypercube topology. This situation can be expressed as

S(X"_ k)P(C._ $ -kX_ j ... k)(1 P(D,,-(k,j - k) j)) (6.6)

The second term in equation (6.6) gives the conditional probability that (j-k)

working nodes are disconnected. The term P(Dn-1 (k,j - k) A 3) gives the probability

that the total connectivity of the k connected nodes from one (n-1)-cube and (j-k)

disconnected nodes from the second (n-1)-cube is not j. The probability of connectivity

O- being exactly j is obtained by subtracting this value from 1.

We assume that k > (j k), i.e., the group with fewer nodes is the disconnected

group, since the probability of disconnection decreases with increasing number of nodes

in a group.

Distribution III

The third possibility is that j connected nodes are working in one (n-1)-cube,

s processors are working in the second (n-1)-cube, but the two groups are totally

disconnected. For example, assume that nodes {1, 3} have failed in group-1 and nodes

{4,6} have failed in group-2 in Figure 6.3. If j=2, group-1, with 2 connected nodes

{0, 2}, satisfies the task requirement. There are three possibilities in group-2: only 5

works, only 7 works, or both 5 and 7 work. Any of these three possibilities can not

increase the total number of connected nodes in the system, as the two groups are

always disconnected. Obviously, this kind of situation occurs only if j < 2" -. If

2" 1 the two groups are always connected. Also distribution III can not occur

if j > 2n - 1 . From the 3-cube in Figure 6.3, we find that there are min(j, 2n- j)

positions for s in group-2 that are always disconnected from the j positions in group-1.

I'S 68

For example, if j=3 in group-i, there is only one position in group-2 that is disconnected

from group-1. For j=2. there are only 2 nodes in group-2 that are disconnected from

group-1. The probability of distribution III can be approximated as

in n, 2 r* - 1 - 3)
2 -I -j,() n

2 (: -- Rn(t)8(1 - R, for j <2"-

S=I

(6.7)

This equation gives nearly exact probability when j is close to but less than 2n - .

As the difference between j and 2" - 1 increases, equations (6.7) becomes less accurate,

since we are not choosing s from all possible (2 "- - j) positions. The factor 2 appears

in equation (6.7) since the j connected nodes can be in either of the two (n-1)-groups.

Distribution IV

This last case depicts a situation where some k nodes, k > j, are working in the

n-cube, but only j of them are connected with the two groups not totally disconnected.

This is the reverse case of distribution III, where the two groups are disconnected. For

example, suppose that nodes {0, 3, 6} have failed in Figure 6.3 of the 3-cube. This

leaves 5 working processors in the system, of which only 4 are connected; node 2 is

disconnected. We represent this case as

NE P(Cn = jig, = k) (6.8)

where N is the total number of nodes in the hypercube. Equation (6.8) represents the

probability that j nodes are connected from k working nodes.

Now, by combining all the four cases, the approximate equation for j connected

nodes is given by

. P(X, = 4 P(X,,- k)P(Xn_ 1 j- k)(1-- P(C,-_,(k,j -k) # j))
k=rm

M

+ Z P(X_, k)P(Cn_ J - kX_ n - k)(I - P(D._(k, - k) € i))

69

m2n(" -2)R()

-'-2 P(_ - J("3R()(t)~- -8

N
+ 'f P(C - J'x, = k) (6.9)k-7+1 ,

where m and M are given by rn max(O,j - 2r" 1) and Ml min(2"',j). These

two values determine the lower and upper bounds of k in an (n-1)-cube.

The second term in equation (6.9) is used if k > - k. Otherwise, this expression

is evaluated as

>P(X,-i - - k)P(Cn, I klX,-- k)(1 - P(D,,(j k, k) $ j))
k- m

Also, as explained under distribution III, the third term is evaluated if J < 2"- 1. It

should be observed that equation (6.9) is a recursive expression; the n-cube probability

is derived from (n-1)-cube probability. The recursion is continued until (n-l)=2 or 3.

6.3.2 Term Evaluation

There are four different probability terms in equation (6.9) that need to be
quantified. These are P(Cn-i(k,j -- k)) j), P(C- 1 $ j - kjXi j-

P(Dn (k, j k) - j), and P(Cn X, = k). We address these terms below.

I) P(C, l(k,j -k)$j)

If j > 2" -, the probability of disconnection between two connected groups of k

and (j-k) nodes from the two (n-l)-cubes is zero. For example, let j=5, k=3, and n=3.

%! Because k and (j-k) nodes are connected in the two groups, there must be at least one

link that connects the two groups.

The probability of disconnection is non-zero when j < 2". If we choose j-k

• connected processors from one (n-1)-cube such that (J--k) < 2n-, then the remaining

(2
- j k) nodes are also connected, considering no failure. On the other hand, if

(j - k) > 2 -- , the (2n-i _ j _ k) nodes are not always connected. In other words,
0

when more than half of the nodes are connected in a hypercube. the rest of the nodes

may be dispersed on the various vertices of the cube without being connected. Hence,

if we assume that (j-k) is a small number, k > j - k, then (2"- 1 k) nodes will

be connected.

Now, if we assume that (j-k) nodes are connected in one (n-l)-cube, then there

are (2 n- - J -+-k) counterpart positions in the second (n-1)-cube which have no direct

connection to the j-k nodes of the first group. For example, if {5, 7} are the j-k nods

in group-2 of Figure 6.3. then nodes f{0, 2} are not connected to 5, and 7. We will refer

to nodes 0 and 2 as the counterparts of nodes 5 and 7. Nodes {1,3} have connection

to 5 and 7 directly.

Since we are looking for k and (j-k) nodes to be disconnected, we can guarantee this

situation if the k connected nodes are now chosen from the (2n - + - i + k) counterpart

positions in the second group. Hence, we can write

* P(C. I(kj k)zj)=

,.. 0 if 2n - I

,I. (no of (j-k) processors connected)
(no. of k processors connected from (2n- I -j-k) connected) if j < 2n - Iof (no of (3 -k) processors connected)* -

(no. of k processors connected)

0 if J> 2 1
jCc(2 n - -j+ k,k) 2n_, (6.10)acG(2n_ 1, k) if Ij <2

where Gc(2"- ,k) gives the number of k connected processors from one (n-1)-cube

and Cc(2n - i - J + k,k) gives the number of k connected processors from among
(2 n-, - J"+ k) connected processors. We determine the disconnected probability by

dividing the number of disconnected combinations by the total number of possible

connections from among two (n-1)-cubes.

The exact evaluation of the term Cc(2 n - I j+ k, k) is extremely difficult. However,"
after examining several cases, we approximate this term as

, C,(2n--j+k,k) z2n- -j+l if <"2 (6.11)

r, --. 71

The validity of this approximation will be discussed when we analyze this analyt-

ical results in section 5.

Evaluation of the denominator in equation (6.10) is also complex, since a simple

(2' k ') does not guarantee connected nodes. We know P(X- I) both for the base

model and for higher order models. Hence. we approximate

P(X. - Gc(2" ' .)R,(t) 1(1 R,(t)) 2 ' (6.12)-

This is an approximation. since we could also get j connected working nodes from

more than j working nodes, as discussed in distributions III and IN'.

Finally. if the k j k condition is not satisfied, we can change the order of

evaluation as (j- k) > k in order to satisfy all values of k from m to M in equation

(6.9).

II) P(C , J k1 X,_l --- k)

Here we are interested in determining the probability that there are (j-k) pro-

cessors working in the (n-1)-cube, but all the (j-k) nodes are not connected. This

probability can be expressed as
P (c" k~ X, -- k)=

(2' k)R,(t)3 k(1 - Rn(t))2"' -3 +k _ P(X_, - k) (6.13)

The first term in equation (6.13) represents the probability of all possible combi-

nations of (j-k) nodes from among 2"- nodes. The second term gives the probability

that all the (j-k) nodes are connected. Subtracting the second term from the first

term, we get the probability when connectivity is not equal to j-k.

III) P(D,-I(k,j k) #i)

* Here, we are interested in finding the probability that k connected nodes from

one (n-i) cube and (j-k) disconnected nodes from the second cube are not j connected.

If k -: 2" ', this probability is 0, since all the disconnected (j-k) nodes of one group

are connected to k nodes of the other group. Also, if j-k=0 or 1, then there is no

72

" ~ ~ ' .':i": ;,: '' "7 - - 'p : %, ,, , ',. ' V ' . ,. . .

disconnection possibility. It is only when k < 2n-1 and (j-k) > 1 that this probability

is non-zero.

Since k nodes are working in one (n-1)-cube, there are (2 n - 1 - k) counterpart

positions in the second (n-1)-cube that have no connection with the k nodes of the

first group. If we choose s nodes from these positions, then the remaining (j-k-s) nodes

vi must be disconnected from s to satisfy the condition that (j-k) nodes be disconnected.

Hence, we write P(Dn- I (k,j - k) $ j)
n(2n- kj- k-) (a nodes in (2 n-1-k) position,).

(j-k-s nodes from. available position.)*
*-(probability that . and (3i-k-) are disconnected)

-.. _ (no. of (3 -k) nodes disconnected)

- -k j - k- 1) 2nI
- ~ -,3 ~k)(6.14)Gd (21_ I,j-k)

where total min(2 1 -- s * n, k) is the number of available positions from which

to choose the (j-k-s) positions. We choose the minimum of the two terms, because if

k < (2 n -' - s * n), there are some positions in 2n - - s * n which are disjoint to k

positions in the first group. This argument is based on the fact that k positions in one

(n-1)-cube are connected to exactly k positions in the second (n-1)-cube. Hence, if we

choose (j-k-s) from 2n - I - s * n, where (2 n- I - s * n) > k, there is a possibility that we

can have three disjoint groups: k, s, (j-k-s). Since we consider the complete disjoint

case in distribution III, these terms should not be included in distribution II. The term

*.. Gd(2n-',j - k) gives the total number of cases where (j-k) nodes are disconnected.

-' This can be obtained from equation (6.13) by the following approximation.

P(Cn_ I j - klXn- j - k) Gd(2f-l,j - k)R (t)i-k(i - Rn(t))2' +k

(6.15)
-

%- The parameter s can vary from 1 to (j-k-1) so that s and (j-k-s) can be considered as

• two disconnected groups.

The term IJ -k-s represents the disconnected probability of s and (j-k-s) nodes.

If we choose s nodes from (2 n 1 - k) counterpart positions, all the neighboring nodes

of s can not be selected for disconnected positions. For example, if we choose node 0

73 .

Jr

ita- . 'i ,gur(6.3. th i i ,',inctcd nodes I and 2 to 0 can not ,(ii-ed ;s disconnected

po,.itions O1ly node 3 can be selected for (j-k-s). Hence. the number of available

disconnected positions iust be greater than or equal to (j-k-s) for a connection between

. and (j-k-s) to exist On the other hand, when the number of available disconnected

positions is less than (j-k-s), some of the connected positions of s will be used for (j-k)

positions. In this case, there is no disconnection. We write this function as

0 if 2- -- *n< - k (6.16)1If

It ,hould bt observed that for a given s. s'n positions are not available for dis-

conne'ct" ,n where n i, the size of the cube. This leaves only (2" s - v) posit ion in

Th' (n-l)-cul e t,,r choosing the remaining (j-k-s) positions. 2" 1n >(k s)

assures that s and j-k-s are disconnected.

:'IV) P(', -JX, -- k) , J k - 2'n

),Let us assume that there are s connected processors working in group-1 and (k-s)

processors working group-2. Out of the (k-s), only (j-s) are connected to group-i,

Prid (k-j) are disconnected from group-1. The upper value of s is given by U

7m rn(2" 1 -,J' -1), since if s - 2" -'. all the woricing nodes from group-1 are connected

to all the (k-s) working nodes of group-2. If s=j, or j= 1 then all the working nodes are

in one group. This distribution then becomes identical to distribution III. Hence. the

lesser of 2" 1 1 and j-1 is the upper bound for one working group. The lower bound

for s is given by L ri, ox(1,k - (2'- 1)). since no more Than (2" 1) nodes

can be working in the second group if the two groups are disconnected. This leaxes us

with k - (2" ' 1) nodes to start within the first group. Therefore, the minimum of

1 and k - (2n 1 1) gives the lower bound for s.

Now, the situation is that s connected nodes are in group-I, (k-s) disconnected

nodes are in group-2 and the connectivity between the two groups is j. This is expressed

as

P(C,- JX, k) 2 V(X,, P (C, k s X,- sk - s)i
s L

S... 74

%'%

S%

N% % %

----- -----

% P (Dn, k -- s)) (6.17)

The first two terms of equation (6.17) are already known. We have to evaluate only

the third term. This can be derived using the same argument as for term III, since

P(D,, I (s, k .q) , k) can be written as the summation of all P(D- 1 (s, k - s) i)

terms for s k. However, we are interested only in j connections between s and

k-j.

Since there are s processors working in the first group, there are (2 1 - s) posi-

tions in the second group that are not connected to those s positions. As (k-j) positions

are always disconnected from j positions,. we choose (k-j) from (2 " - ' - s). The nu-i-

ber of ways in which we can choose (k-s) disconnected nodes from 2 ' is given by

(;d(2" - k s). We then write the third term in equation (6.17) as

r . (2"- -s) (totall I) i

\ k-j 3 I -, - ,3
s

SP(D,, (s.,k -s) j) (6.18)

where totall in(2' -1 ((k j) * n, s) is the number of available positions to

choose the remaining (j-s) positions which are connected to the s positions of the first

group. The term totall is computed based on the same argument as for the term

* - total in equation (6.14). lk 3, S gives the probability that there is no connection

between (k-j) and (j-s) nodes in the second group. If we can guarantee that there is no

connection between (k-j) and (j-s) nodes, then we havej connected nodes from k. This

is because the (j-s) nodes in the second group are selected such that there is always

sonme connection to the first group s nodes. More specifically, for each s positions in

- on((n-i)-cube, there are s positions in the second (n-1)-cube which are connected.

The term Ik 7, is given from equation (6.16) as

J0 if 2 k j)*n <I-: k ,j S (. 9
I 1 if 2" (k j)*n >j-s

Equation (6.19) shows that when the number of disconnected positions are less

t lien required (j-s). the disconnection probability is 0. Otherwise (j-s) and (k-j) are

* always (liscollrecte(d.

75

%* V %% W OF W*5-N* %IW16

-" "Mr .p -,-"
bI .,,,

* All the terms in equation (6.9) are now quantified to derive P(X, j). The

system reliability can be computed from equation (6.4).

We expect that equation (6.9) will give fairly accurate results when the value %

of j is close to N 2, since most of the working nodes are connected when j is large.

Equations (6.12) and (6.15) give better approximation in this case. When j is less

than N, 2. the probability of a larger number of disconnected working nodes increases.

Equations (6.12) and (6.15) deviate more from the reality in this situation.

6.3.3 Modified Method

We can divide equation (6.9)into two parts depending on the actual number ofiF
working nodes. The first two terms of equation (6.9) give the probability of j connected

nodes when exactly j node are working in the system. The second two terms give j

4--* connected nodes from k working nodes where k > j. Hence, we can rewrite P(X j)_

as
-. N

.. P(X, P P(X, j) + P(C.,= jjX. = k)4 (6.20)
" " k=)+l

We evaluate the first term of equation (6.20) for all the j connected nodes. This

. is cormput-d recursively from the first two terms of equation (6.9). After expanding

the first two terms of equation (6.9) and simplifying, we get

SM
P(X, 3) P(X, = k)G(2 ',k -j,p)

-6 k=mn

- P(X, - -- k)C,(2 -' j k,k)R,(t)k(1- Rn(t))2" '-k
k Sm

,.~~ , X (X. k) P(D, l(k,j k))Gd (2"-,j k) _:

k m

* *R,(t)J -k(1 - R,,(t))2" ' -)4k (6.21)

The second term of equation (6.20) is computed assuming that all the disconnected

nodes are present only one level lower than the n-cube, i.e., the computation is done

76

ON' N ' '
"'7

S at the (n-1)-cube level. It does not go recursively down to the base model. We write

this as

P (C,, X, = k)* P P(C, = j Xr = k)

+ 2p(x2 R)(k (t)k-(1 - R-(t))2-- -k-- (6.22)

The first term of equation (6.22) is the same as equation (6.17). However, this is

required only at the (n-1)-cube level. The second term is for distribution III, given by

equation (6.7). This term is valid for j < 2n-i and k < 2n- 1

Since all the terms required for equation (6.22) at the (n-1)-cube level, are available

from the previously computed terms of equation (6.21), this modified method is faster

than equation (6.9).

6.4 Results and Discussion

U- The original equation (6.9) or the modified equation (6.20) can be used to compute
P(Xn j). Most of this results are based on a node failure rate of 250 in 106 hours;

i.e. A 0.00025. While analytical results for hypercubes of any size can be computed

using this model, we are including here a few results because of space limit. Figure

6.4 shows the reliability variation with time of a 6-dimensional hypercube for different

task requirements. The soli.d curves are for the analytical results using the modified

technique. The dotted curves are for simulation results. The analytical results are

f. computed using 2-cube base model. However, the results are almost the same for both

the 2-cube and 3-cube. It can be observed from Figure 6.4 that the analytical and

simulation results match closely for I=48, 32, and 16. %
S

Figure 6.5 shows the reliability variation of a 7-cube system under different task

requirements. The analytical and simulation curves match closely for 25%, 50%, and

75% node degradation (I=96, 64, 32). The difference between the analytical and

simulation results is less than 6%. In Figure 6.6, the reliability variation of 8-cube

system for I=64, 128, and 192 is given. The results match very closely with that of

simulation.

77

9

00

C,,

coo
cn
0)

C14

0) p

04-

/- C-4
C)

oo C)
C CC
C)

1-4I

R E L A B IL I To

* .-70

di 4

C0

0

U)

x C~

03

-4- 0)

CC
C:) cD 0)

'0

*~~ 4-4 1
C U'- 0 C\10

'MiW

C~C 0 C
MiX

RELIABILcT
C) r

*544

R

79

4)
Q-
0

f-4

06

oo w
0

C) H

co 4'
C '4 0 4
r- Cu) 0

.
*~C z)C

'41

E 4 -4

C14 0

0 00

C\V~

R ~ ~ ~ ~ ~ -E H

0H

80H

00

C 1-4rC 1 4-4

Co C -4

o4

II~ 4 -

CD a)

0 C) -H

C) C,

E44

C4 a
in C-i

C;0

R E LI A I LI T

0 ~ C) 0 1

In Figure 6.7, the validity of the approximate technique for different node failure

rate is analyzed for a 6-cube system with at least 32 connected nodes. It is observed

that results from the approximate technique agree with simulation results for all A,

values.

0

i82

"%

uI!

CHAPTER 7

CONCLUSIONS

This report is intended to summarize our research efforts in evaluating parallel

architectures for BM/C 3 applications. The efforts are focused on defining evaluation

criteria, developing tools and performing analysis in determining the suitability of

existing parallel computer architectures to provide optimal processing environments

for the BM/IC 3 applications. Our research work consists of three major components:

(1) development of a BBN Butterfly performance predictor, (2) mapping of the Bat-

tie Management Algorithm to the Butterfly Parallel Computer, and (3) performance

and dependability evaluators for the Butterfly parallel computer and the Hypercube

'multiprocessor.

The main component of this Butterfly Performance Predictor is a program that

* asimulates program execution on a Butterfly while accumulating performance measures.

Performance estimates are made based on instruction execution rate information de-

rived from Motorola data books relating to the basic hardware components of the

Butterfly "omputer. To derive the simulator under conditions representative of the

target application domain, a second program generates synthetic instruction streams

that are representative of the target application domain. The first version of the But-

terfly simulator is under development in the programming language C on a SUN 3/50

workstation running 4.2BSD UNIX.

The Battle Management Algorithm, formulated as a linear programming algo-

rithm, is a problem that in nature requires intensive interprocess communication for

simultaneous process execution. Our attempt is to minimize the contention costs both

in shared memories and in communication links by setting up a tree-shape communi-

cation structure among processor nodes. The tree-shape communication structure is

used for searching a minimum value in one computational phase, and for broadcasting

83

it in another computational phase. The proposed method is also applicable to other al-

gorithms with similar data-flow graphs. Therefore, with the advantages of minimizing

contention costs. the algorithm-based method leads to a new technique for mapping

algorithms onto to-date parallel processors. Evaluation of the parallel algorithms is

accomplished by a simplified mathematical analysis for approximately predicting the

system performance. The result indicates that if the proposed method is used to map

the linear programming algorithms of size n onto the Butterf lyTM parallel processor,
0(n 2)

an _-_, n 2) speedup can be achieved.

The novelty of the reliability evaluation of the Butterfly network mainly lies in

the use of an analytical model for precise definition and accurate analysis. Reliability

evaluation of multiprocessor systems using Butterfly type network is addressed. The

Butterfly network is a multistage network designed out of 4x4 switches. The novelty
of the evaluation technique is the development of an analytical model for reliability

computation. The model is based on a decomposition technique. Using this technique,

the reliability of a 64 processor and 64 memory configuration, (64x64), is computed

from four (16x16) system reliability. The (16x!6) reliability in turn is computed from

four (4x4) reliability. The reliability model is known as task based reliability, where a

system remains operational as long as a task can be executed on the system. The failure

of the PEs, MMs. and SEs are included in the analysis to consider a complete system.

The model is suitable for the analysis of medium size systems, such as (16x16) and

(64x64) multiprocessors. While a (256x256) configuration could be analyzed using our

model, the computation time is a major concern unless some approximation technique

is used to simplify the switch connection. We are currently investigating in applying

approximate methods to improve the computation efficiency.

We have also devised a new analytical technique to compute the reliability of

an n-dimensional hypercube. The model is based on the decomposition principle. A

recursive equation is derived to compute n-cube reliability based on 2-cube or 3-cube

base models. The model is developed by considering four different situations, where

4,.4 the required number of connected nodes are working on the system. Analytical results

84

0

for various hypercubes are compared with simulation results to show that they are in

close agreement. Several extensions of this model are presently under investigation.

The immediate extension is to apply this model to repairable hypercubes to compute

transient and steady state availability. Also, inclusion of link failure in the base model

and between two base models should allow us to consider both the node and link

failures.

Performance and dependability evaluations are essential for any system character-

ization. Two types of parallel systems, namely; Butterfly and Hypercube are studied

here. It is pointed out that there is no existing tool available for the performance

evaluation of these machines considering both the architecture and application algo-

rithmis. Similarly none of the existing dependability packages can be applied to the

above systems directly. Thebe observations clearly dictate the necessity of developing

evaluation tools for these architectures. Preliminary results of the Butterfly perfor-

mance predictor, Butterfly and Hypercube reliability tools are included in this report.

0

85Flk l 1111 1111111 'IllI

REFERENCES

rAlexander 75]
Alexander, W.G. and D.B. Wortman, "Static and Dynamic Characteristics of
XPL Programs," IEEE Computer. August 1975, pp. 41-46.

[Allik 87]
Allik, H., S. Moore, E. O'Neil and E. Tenenbaum, "Finite Element Analysis on
a Shared-Memory Multiprocessor," 1987 International Journal of Computers and
Structures.

Arlat 83
Arlat. J. and J.C. Laprie. "Performance-Related Dependability Evaluation of Su-
percomputer Systems," Proc. 13th FTCS. .une 1983, pp. 276-283.

SAvizienis 78
Avizienis, A., "Fault-Tolerance; The Survival Attibute of Digital Systems," Proc.
IEEE, October 1978, pp. 1109-1125.

iBavuso 87]
Bavuso, S.J., J.B. Dugan et. al., "Analysis of Typical Fault-Tolerant Architectures
using HARP," IEEE Trans. on Reliability, Vol. R-36, June 1987, pp. 176-185.

[Beaudry 78
Beaudry, M.D., "Performance Related Reliability Measures for Computing Sys-
tems," IEEE Transactions on Computers, Vol. C-27, Jan. 1978, pp. 540-547.

Bhuyan 84'
Bhuyan, L.N. and D.P. Agrawal, "Generalized Hypercube and Hyperbus Struc-
tures for a Computer Network," IEEE Transactions on Computers, Vol. C-33,
April 1984, pp. 323-333.

'Blake 87]
Blake, J., and K. Trivedi, "Multistage Interconnection Network Reliability," Sub-
mitted to IEEE Transactions on Computers.

[Brookes 82]
Brookes, G.R., and I.R Wilson, "A Static Analysis of Pascal Program Struc-
tures," Software Practice and Experience, Vol. 12, 1982, pp. 959-963.

Crowther 85]

Crowther, W.. J. Goodhue, E. Starr, R. Thomas, W. Milliken, and T. Blackadar,

"Performance Measurements on a 128-Node ButterflyTM Parallel Processor,"
1985 Int'l Conf. on Parallel Processing, pp. 531-540.

[Das 851
II

86

Z-4.- V

Das, C.R. and L.N. Bhuyan. "Bandwidth Availability of Multiple-bus Multipro-
0 cessors," IEEE Trans. on Computers. Special Issue on Parallel Processing, Oct.

1985, pp. 910-926.

Das 87
Das. C.R. and L.N. Bhuyan, "Dependability Evolution of Interconnection Net-
works." Information Sciences, and international Journal, Special Issue on Parallel
Processing. October 1987.

Das 88
Das. C.R.. J. Kim et. al., "An Analytical Model for Computing Hypercube Avail-
abilitv."' Submitted to 18th FTCS.

Deprycker 82
Deprycker, 'V., "On the Development of a Measurement System for High Level
Language Program Statistics," IEEE Trans. on Computers. Vol. C-31, No. 9,
pp. 883-891. 1982.

Deros a
Derosa, J.A.. and H.M. Levy, "An Evaluation of Branch Architecture," Proceed-
ings of the 14th Annual International Symposium on Computer Architecture,
1987.

* Dias 81
Dias, D.M., and J.R. Jump, "Analysis and Simulation of Buffered Detla Net-
works,** IEEE Trans. on Computer, Vol. C-30, April 1981. pp. 273-282.

Ditzel 80
Ditzel, D.M.. "Program Measurements on a High Level Computer," IEEE Trans.
oil Computers, 1980. pp. 62-72.

Elshoff 76a,
Elshoff, J.L., "A Numerical Profile of Commercial PL/1 Programs," Software
Practice and Experience, Vol. 6, 1976, pp. 505-526.

'Elshoff 76b 1

Elshoff, J.L., "An Analysis of some Commercial PL/1 Programs," IEEE Trans.
on Software Engineering," Vol. SE-2, pp. 113-120, 1976.

Foster 71]
Foster, C.. and R. Gonter, "Conditional Interpretation of Operation Codes," IEEE
Trans. on Computers, Vol. C-20, No. 1, pp. 108-111, 1971.

Gay 79i
Gay, F.A. and M.L. Ketelsen, "Performance Evaluation at Gracefully Degrading
Systems," Proc. FTCS-9, Madison. June 1979, pp. 51-57.

V, ;Goyal 87i
Goyal, A., W.C. Carter, et. al., "The System Availability Estimator," Proc. 16th
FTCS June 1986, pp. 84-89.

87

01 1

• Hwang 821

Hwang, k. and T.P. Chang, "Combinatorial Reliability Analysis at Multiprocessor
Computers," IEEE Trans. on Reliability, Vol. R-31, Dec. 1982, pp. 469-473.

Ingle 77'
Ingle, A.D. and D.P. Siewiorek. "Reliability Models for Multiprocessor Systems

With and Without Periodic Maintenance," Proc. 7the FTCS, June 1977, pp. 3-9.

A Kim 88

Kim. J., C.R. Das. et. al., "Reliability Evaluation of Hypercube Multicomputers,"
submitted to 8th ICDS.

Knuth 71.
*" Knuth. D.E., "An Empirical Study of Fortran Programs," Software Practice and

Experience, Vol. 1, pp. 105-133.

Kruskal 83
Kruskal. C.P. and M Snir, "'The Perforimiaince of Multistage Interconnection Net-
works for Multiprocessors," IEEE Transactions on Computers, Vol. C-32, Dec.

1983, pp. 1091-1098.

Lang 82
Lang, T. et. al.. "Bandwidth of Crossbar and Multibus Connection for Multipro-
cessors," IEEE Trans. on Computers, Vol. C-31, December 1982, pp. 1227-1234.

', rLaprie 821

Laprie, J.C. and A. Costes, "Dependability: A Unifying Concept for Reliable
Computing," Proc. FTCS-12, June 1982, pp. 18-21.

LeBlanc 86
LeBlanc, T.J., "Shared Memory Versus Message Passing in a Tightly Coupled
Multiprocessor: A Case Study," 1986, Int'l Conf. on Parallel Processing, pp.
463-466.

Lee 86
Lee. G., C.P. Kruskal and D.J. Kuck, "The Effectiveness of Combining in Shared
Memory Parallel Computers in the Presence of Hot Spots," 1986, Int'l Conf. on
Parallel Processing, pp. 35-41.

b z:-Lee 84

* Lee, J.K.F.. and A.J. Smith, "Branch Prediction Strategies and Branch Target
Buffer Design," IEEE Computer, January 1984.

LLin 88;
Lin. W. and C.L. Wu, "A Distributed Resource Management Mechanism for a

Partitionable Multiprocessor System," to appear, IEEE Transactions on Com-
puters, January 1988.

'Liu 68]

Liu, C.L., Introduction to Combinatorial Mathematics, Computer Science Series,
pp 1968, chapter 12.

'V

88N4 >

9N

Makam 82,
Makam, S.V. and A. Avizienis. "ARIES 81: A Reliability and Life Cycle Evalua-
tion Tool for Fault Tolerance Systems." Proc. 12th FTCS June 1982, pp. 269-274.

Marsan 82
Marsan. M.A. and M. Gerla, "Markov Models for Multiple-bus Multiprocessors,"
IEEE Trans. on Computers, Vol. C-31. March 1982, pp. 239-248.

IMcFarling 86
McFarling, S. and J. Hennessy, "Reducing the Cost of Branches," Proceedings of
the 13th Annual International Symposium on Computer Architecture, 1986.

Meyer 80
Meyer. J.F.. "On Evaluating the Performability of Degradable Computing Sys-
temis.' IEEE Trans. on Computers, Vol. C-29, Aug. 1980, pp. 720-731.

Mudge 84
Mudge. T., J.P. Hayes, G.D. Buzzard, and D.C. Winsor, "Analysis of Multiple-
Bus Interconnection Networks," Proc. Int. Conf. on Parallel Processing, Aug.
1984, pp. 228-232.

O'Neil 87]
0 O'Neil, E., E. Tenenbaum, H. Allik and S. Moore, "Finite Element Analysis on the

BBN ButterflyTM Multiprocessor," 1987 The Second International Conference
on Supercomputing, Santa Clara, CA.

[Pfister 85]
Pfister, G.F. and V.A. Norton. ""Hot Spot" Contention and Combining in Multi-
stage Interconnection Networks," IEEE Trans. on Computer, Vol. c-34, No. 10,
Oct. 1985, pp. 943-948.k!

Provan 861
Provan, J.S., "Bounds on the Reliability of Networks," IEEE Trans. on Rel., Vol.
4-35, Aug. 1986, pp. 228-232.

* Raghavendra 84]
Raghavendra, C.S. and D.S. Parker, "Reliability Analysis of an Interconnection
Network," Proc. 4th ICDS, May 1984, pp. 461-471.

*]Reed 87]
Reed, D.A. and D.C. Grunwald, "The Performance of Multicomputer Intercon-
nection Networks," IEEE Computer, June 1987, pp. 63-73.

JSahner 87]
Sahner, F.A. and K.S. Trivedi, "Reliability Modeling Using SHARPE," IEEE
Trans. on Reliability, Vol. R-36, June 1987, pp. 63-73.

Sheu 88]
Sheu, T.L. and W. Lin, "Mapping Linear Programming Algorithms onto The
Butterfly Parallel Processor," Submitted to 1988 Third International Conference

* on Supercomputing.

89

0 •Siewiorek 82i
Siewiorek, D.P. and R.S. Swartz, "The Theory and Practice of Reliable System
Design," Digital Press, 1982.

[Smith 81]
Smith, J.E., "A Study of Branch Prediction Strategies," Proceedings of the 8th
Annual International Symposium on Computer Architecture, 1981.

[Stiffler 821
Stiffler, J.J. and L.A. Bryant, "CARE III Phase III Report- Mathematical De-
scription." NASA Contractor Report 3566, November 1982.

ITanenbaum 78i
Tanenbaum, A.S., "Implications of Structured Programming for Machine Archi-
tecture." CACM. Vol. 21, pp. 237-246. 1978.

Tien 88
Tien, L., C.R. Das et. al.. "Reliability Evaluation of Butterfly Networks Based
Multiprocessor Systems," Submitted to 8th ICDS.

jTomas 86i
Tomas, R.H., "Behavior of the ButterflyTM Parallel Processor in the Presence
of Memory Hot Spots," 1986 Int'l Conf. on Parallel Processing, pp. 46-50.

[Wiecek 82]
Wiecek, C.A., "A Case Study of VAX-11 Instruction Set Usage for Compiler
Execution," ACM, 1982, pp. 177-184.

iWittie 81-
Wittie, L.D., "Communication Structures for a Large Multimicrocomputer Sys-
tems'" IEEE Trans. on Computers, Vol. C-30, April 1981, pp. 264-293.

]Wu 841
Wu, C.L. and T.Y. Feng, "A Tutorial on Interconnection Networks for Parallel
and Distributed Processing," IEEE, 198D4.

"Yew 87;
Yew, P., N. Tzeng and D.H. Lawrie, "Distributing Hot-Spot Addressing in Large-
Scale Multiprocessors," IEEE Trans. on Computer, Vol. c-36, No. 4, April 1987,
pp. 388-395.

S

9'1 US G 1908 511-117/64100M

90LS

