S A N TR TIPS TR SIS TR L WD U U MUV U VOO S O R R oy oy

UNCLASSIFIED
nData £ ntged) @

READ INSTRUCTIONS
i ON PAGE BEFORE COMPLETEING FORM

& AD_A197 340 }2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

. E 5. TYPE OF REPORT & PERIOD COVERED
‘ . . . 30 June ’87 to 30 June °88
Ada Compiler Validation Summary Report: MIPS

’ Computer Systems . MIPS/VADS ’ Version 1.21 6. PERFORMING ORG. REPORT NUMBER
5 MIPS M/500
; 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Wright-Patterson AFB OH 45433-6503

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Wright-Patterson AFB OH 45433~6503 AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
gdathlgE I;rogram Cffice £ Def 30June 1987
nite ates Department o efense HTRONE
: Washington, DC 20301-3081 B T
X 14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) 15. SECURITY CLASS (of this report)
X Wright-Patterson AFB OH 45433-6503 UNCLASSIFIED

15a. gEﬁkBgEéFICATION/DOUNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

S g *

17. DISTRIBUTION STATEMENT (of the abstract enteredin Block 20. If different from Report)

UNCLASSIFIED [:) l " :

ELECTE
18. SUPPLEMENTARY NOTES JUL1S

19. KEYWORDS (Continue on reverse side if necessary and identify by block numbér)

e

LT ACE ELEY

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

MIPS/VADS, Version 1.21, MIPS Computer Systems, Wright-Patterson AFB,
MIPS M/500 under UMIPS-BSD 4.3, Release 2.0 (host and target).
g ACVC 1.8.

DR FORN
00 1473 eDITION OF 1 NOV 65 IS OBSOLETE

1 JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED B
SECURITY CLASSiFICATION OF THIS PAGE (wWhen Data Entered)

1

} Q ‘ » " » % XY ” “pT -t E
ROONCS OSSOSO RS DO L DO O OO MR M DM LML i e i A i Y DY

Polalal

» >
ol o okt i

R RN AN AR L RN RE) F0® 00 tat s e a® Ba¥ 0a Bs’ 1ta¥ a’ Ue® Sa i RYata € 827 Ba% 0% et Ba¥ e NaT 0at VAt Gt atet 0at b1t et et tat bt Bat 0g 0t uyt hgt ba
L. I o - g Y

B
"
&
o8
'.l.
- (
v
]
)
> AVF Control Number: AVF-~VSR-113.0987 ,
87-05-22-MIP
"
™
N
Y
\/
<A
A
3
A
)
4,
3
: Ada® COMPILER :
! VALIDATION SUMMARY REPORT: W
' MIPS® Computer Systems \
MIPS/VADS®, Version 1.21 '
MIPS M/500 .
,,
Completion of On-Site Testing: M)
30 June 1987 Accesion For 7 |
| NTIS CRA&l g ‘
) OTiIC T1AB 0 o
! Unannounced) by
Prepared By: Justiication e] &
Ada Validation Facility i
; ASD/SCOL BY o ¢
! Wright-Patterson AFB OH U5433-6503 Destripition | ‘%
Avaiabitty Coces %
4
) Avad and/for \
Dist Spez.al |
y Prepared For: -
' Ada Joint Program Office ,1 l "4
N United States Department of Defense - ' 2
Washington, DC N,
{
]
S
A ®Ada is a registered trademark of the United States Government I
! (Ada Joint Program Office). !
S
U
\ ®MIPS is a registered trademark of MIPS Computer Systems. N
®VADS (Verdix Ada Development System) is a registered trademark N
' of Verdix Corporation. N
‘. 3
.)
t:“
i 3 3
‘|

PR
AP NN NS AN S T

-
s

v L . » e - W R My ® L - LRl a® O -t M -
O O OO LU O A OO ‘.‘l“.‘.‘ﬁ.g' XOUTSOGOOMNM A L 1 POt T Ot M S MO e W Y M MO M), i (MO

A A N NS,

SO

Y RO TN D _h“.t

B e o TS A A e

+ +
+ Place NTIS form here +
+ +

D B = AR

o Us Y TR
i 0..1‘...‘051. \/

LTSS TR CR N Y
L} L) * L2

-a¥g” . - ava'@¥a e 38 6 R B e OXTOOY
R R R N TR S A N OV T D O T IO N o o » ‘?;_> wal al va'@¥a 478 8") & i gav 0

Ad2® Compiler Validation Summary Report:

Compiler Name: MIPS?VADS® version 1.21

Host: Target:
MIPS M/500 : MIPS M/500
under UMIPS-BSD 4.3, under UMIPS-BSD 4.3,
Release 2.0 Release 2.0

Testing Completed 30 June 1987 Using ACVC 1.8

This report has been reviewed and is approved.

rew 62 N ln

Ada Validation Facility

Steven P. Wilson 2

ASD/SCOL AR

Wright-Patterson AFB OH 145433-6503 :Z;‘g
™

» {:1

X %

[d

ol Ll

AMa~Validation Grganization
Dr. John F. Kramer

Institute for Defense Analyses
Alexandria VA

Ada J%ﬁnt Program 6ffiee

Virginia L. Castor
Director

Department of Defense
Washington DC

.~

[Loyl
e

Ay

‘\
®Ada is a registered trademark of the United States Government S&_
(Ada Joint Program Office). NN
U

®MIPS is a registered trademark of MIPS Computer Systems. @
N
®VADS (Verdix Ada Development System) is a registered trademark :E,::.
of Verdix Corporation. 5\ﬂ
)
o
R

- - - . - » » WA R W N WL 2.5 MWL AL LR T S VS Y YRR RN TR AN
O i O A O N OO O R i s Mo s L Y M N o‘.n.. AT ' A o, 2 o N " ‘

4 ..l..in..l -’tla' ‘ o

B "“Q” 4~ (O S e o .8

EXECUTIVE SUMMARY

fhi. Validation Siwna. y Report (VSR) summar.zes the .usults and couclinsions
of wvalidatiun Gestig Rerformed on the MIPS/VADS, Version 1.27, :ising
Version 1.8 of '"=s Ada” Compiler Validation Capability (ACVC). The
MIPS/VADS 1is hosteu on a MIPS M/500 operating under UMIPS-BSD 4.3, Release
2.0. Programs proc2saaed by this compiler w.:y be ex.cuted on a MIPS /500,
y-arating unde» UMIPS-BSD 4.3, Release 2.0,

rosite testiug was pertformad 29 Juae 1987 through 3¢ uas 1337 at MIPS
Cosputer Systems, Sunnyvale CA, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 2210 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 170 executable
tests that make use of floating-point precision exceeding that supported by
the implementation, were not processed. After the 2210 tests were
processed, results for Class A, C, D, and E tests were examined for correct
execution. Compilation 1listings for Class B tests were analyzed for
correct diagnosis of syntax and semantic errors. Compilation and 1link
results of Class L tests werc analyzed for correct detection of errors.
There were eight of the processed tests determined to be inapplicable. The
remaining 2202 tests were passed.

The results of validation are summarized in the following table:

RESULT CHAPTER TOTAL
2 _3_4_5_6_7_8_9 10 11 _12 14

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0O 0 0 0 0 0 0 0 0 0 0 O 0

Inapplicable 4 73 86 3 0 0 1 1 0 0 0 o0 178
Withdrawn 0 5 5 0 0 4] 1 2 y 0 1 0 19
TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

O .

!

'-’ 2y 'v M NG F;__:".' “p ‘- T "--« T '_.__'s ANy '.’. . o \ -'?.'J\ '-‘\ et '. *. ~ 's.

R b avD el At A s B avA a0 ol a0l ath aiE ald 4 st ‘2 ¥E VR .
RN N R A M TN RA YN RS AN s MO KN NN L A s RELRN AN g’ KWV wle ¥a

TABLE OF CONTENTS
CHAPTER 1 INTRODUCTION
1.1 PURPOSE N¥ THIS VALIDATION SUMMARY REPORT 1.2
1.2 USY)i THLS VALIDATICM SU“™ARY REPORY ., 1-2
1'3 REFICUE JES ¢ 6 o o o o o o . ¢ o o « o ' * e o . L‘j \.
1-1‘ DEFINITION OF TERMS . . . 2 L] . . » . . s . . s » 1-3 s> 3
1.5 ACVC TEST CLASSES '« v o v o ¢ o o v v v o o o o o 1-4 o
CPTRR 2 CONFIGURATION INFORMATION .
A %}
2.1 CONFIGUCATION TESTED « . &+ . o o v o s o o s o o o 2-1)
2.2 IMPLEMENTATION CHARACTERLSTICS v o o ¢ o o o o o » 2=2 ::
)
o
CHAPTER 3 TEST INFORMATION "
3.1 TEST RESULTS ¢ & o o & & & o s @ ¢ ¢ & 8 e o e s 3_1 :\"
3.2 SUMMARY OF TEST RESULTS BY CLASS ¢ ¢« ¢« & o o o o o 3=1 -"_
3.3 SUMMARY OF TEST RESULTS BY CHAPTER « « « . « &« « . 3-2)
3.4 WITHDRAWN TESTS ¢ o o + o v o o o o o o o o v o & 322 X
3.5 INAPPLICABLE TESTS & « + o &+ 5 « 0 o o o o » o & & 32 »
3-6 gPLIT TESTS ® 8 e e ® & & & & 3 e ®© 8 s & e s o » 3-3 “g"t
3.7 ADDITIONAL TESTING INFORMATION . ¢ ¢« « ¢ ¢ o « « o 3=4 ' "‘
3- 7 . 1 Pl‘evalidation ® & & & @ » & ¢ ¢ o & s s 0 o ¢ 3-“ h
3.7.2 Test Method . ¢ ¢ + o & & ¢ o o o s o o o o« « « 3=U4 .o‘.'
3.7.3 Test Site ® & & ® & © & & & B s e O o s * o 2 3-" :::
>
APPENDIX A CONFORMANCE STATEMENT >
|‘:
3
APPENDIX B APPENDIX F OF THE Ada STANDARD YW
Y
APPENDIX C TEST PARAMETERS 0
o
APPENDIX D WITHDRAWN TESTS o
e
K
3
ST
' 4
>3
:'.
NG
2
Ny
N

%

el

Y BT R BN N A b e T e

CHAPTER 1

INTRODUCTION

\

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard

must be implemented in its entirety, and nothing can be implemented that is
not in the Standard. "

s ——————— T
’

Even though all validated Ada compilers conferm to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard nermits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
QOther differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. - The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements 1legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of
tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1=1

YO ; o A ‘ - "n
MO IR S0 e A At AR W AN S IRCIC AL W IS, O M e M R O R M WS ML S A X N

f e

c.-h

X
-

S

LN A

{
+

|
|
[
)
|

.

v
4
¥
)

fa » », - - - - ~ ~ - - - - -
‘l l.c.l'! l’u."l,l.\ l‘; AN q‘l.c (A I.n.l.o.l‘.‘l‘u "- (LA l.ﬁ 0, "v“'- W ..-.I.n‘l'n.l.c W, l.. R, > 7y 'u > ‘p o 4%y .' l‘p l.n.an % l‘q

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compi 3¢ that do not conform to the Ada Standard

. To attempt to identify any uusupported language constructs
required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
29 June 1987 through 30 June 1987 at MIPS Computer Systems, Sunnyvale CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with th: national laws of tha originating -country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"™ (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

g R ~
UG Uo M MM A0, L

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Cefense Analyses
1301 Y. Beauregard Street
Alexandria VA 22:ii

1,35 RQEFERENCES

t. Reference Manual {or the Ada Programming Language,

ANSI/MIL-STD-1815A, February 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1984,

1.4 DEFINITION OF TERMS

ACVC

Ada Standard

Applicant

AVF

AVO

Compiler

Failed test

Host

- - - -~ - » .- - .ﬂ . f - - r - W, ~‘ f L™ ¥ "~ A 4 A - - = -
‘»‘l‘-‘l'-'l‘- WS, ‘n’i‘- (U A LN ‘b LI’: AN .l;-.l‘ " J."’ N, ¥ ‘!’ My N .I \ B FoN ‘ -" ik \' o o ! l‘. \ ‘ "

The Ada Compiler Validation Capability. A set of proerams
that evaluates the conformity of a compiler to the Ada
language specification, ANSI/MIL.-STD-1815A.

ANSI/MIL-STD-1815A, February 1983.

The agency requesting validation.

The Ada Validation Facility. In the context of this report,
the AVF 1is responsible for conducting compiler validations
according to established policies and procedures.

The Ada Validation Organization. In the context of this

report, the AVO is responsible for setting procedures for
compiler validations.

A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

A test for which the compiler gonerates a result that
demonstrates nonconformity to the Ada Standard.

The computer on which the compiler resides.

1-3

hl O]

l.’-

Iy

W NSy

o“

Lol ol b, o

-
o,

>

LR

£ oNEIT
. .' 'l ¢

L4
=

o ," ‘:\" »

S

(R U NI W TR WU VPO R TR A R R O O A AN I W AU T AR 00 0t Bl R 1P b . ‘s 4'a f' 8 2 A8 48 Sy

INTRODUCTION

P

Inapplicable A test that uses features of the language that a compiler is -
test not required to support or may legitimately support in a way Y
other than the one expected by the test. 3

Passed test A test for which a compiler generates the expected result. &

~

o

ret. The compu.er fu whicnh A coapliler soncrates code.

A program that checks a compi.cc's conforumity regarding a
particular feature or featurc., to the Ada Standard. In the
context of this report, the term i3 used to designate a
single test, whi-h may comprise one cr nore files.

& o

-
'~ 4

AL ua A tesc found to be in:ccerect ~nl not uued to check cuontormity

test to the Ada language =spiification. A test may be incorrect
because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

-t m oy O

e _-_-_—‘P.._ "

ey re

1.5 ACYC TEST CLASS®S

Conformity to the Ada Standard is measured using the ACVC. The ACVC
! contains both 1legal and ill3<3l Ada programs structured into si« test
classes: A, B, C, D, E, and L. fhe first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors. "
Class L tests are expected to produce link errors. ¢

$

e I W,)

Class A tests check that legal Ada programs can be successfully compiled

and executed. However, no checks are performed during execution to see if

’ the test objective has been met. For example, a Class A test checks that

d reserved words of another language (other than those already reserved in :
. the Ada language) are not treated as reserved words by an Ada compiler. A ‘
. Class A test 1is passed if no errors are detected at compile time and the N
program executes to produce a PASSED message.

i Class B tests check that a compiler detects illegal language usage. Class
¥ B tests are not executable. Each test in this class is compiled and the <
'd resulting compilation listing is examined to verify that every syntax or -:
semantic error in the test is detected. A Class B test is passed if every -
illegal construct that it contains is detected by the compiler.

)

; Class C tests check that legal Ada programs can be correctly compiled and X
N executed. Each Class C test is self-checking and produces a PASSED,

k FAILED, or NOT APPLICABLE message indicating the result when it is :
¥ executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

h}

o

.

1-4

e e
'»

e J' X 'n .

AN

)
. ol W W o MO A PR T TR BN A T A et . 4
by % .0."! AN .l'.-l \“"- N-\.‘ ‘\ AT \ ~ \\ e

AT,

NN N T T R R R T T R O R T R R T R AT T o oy s . 12,72 00" ats 208" T €5

INTRODUCTION 0y

—_nre

”

]
permitted in a compilation or the number of units in a library--a compiler 2
may refuse to compile a Class D test and still be a conforming compiler. ’
Therefore, 1if a Class D test fails to compile because the capacity of the b

2cufp-.ler is exceeded, the test is classified as inapplicable. If a Class D \
tes” compiles successfully, it is self-checking and produces a PASSED or
FALi.*D message during execution. b

Each Class E test i3 seif-checkin-s und produces a NOT APPLICABIY, PAS-uD,

or FAILED message when it is ormiipiled and executed. However, the Ada ‘)
Standard permits an implementation to reject programs containing some :ﬁ
features addr~3sed4 by Class E tests luring compilation. Therefore, A Class A
% test is passed by 1 compiler if it i3 compiled successfully and rxecutes t'
vroduce a P'ASHED message, or i if is cejected by the 2awmpiler for o £
“.1hble reascr 4
"

Cla:s L tests chevk that ldacomplete or illegal Ada programs involving X
multiple, separately compiled units are detected and not allowed to SP

"

execite. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main

Y.,

program are elaborated. _ﬁ
&5
Twe library units, the package REPORT and the procedure CHECK_FILE, support ;
the self-checking features of the executable tests. The pacvtage REPORT *
provides the mechanism by which exerutable tests report PASSED, FAILED, or !,
NOT APPLICABLE results. It also provides a set of identity functions used -g
to defeat some cumpiler optimizations allowed by the Ada Standard that .
would circumvent a test objective. The procedure CHECK_FILE is used to ::.
check the contents of text files written Dy some of the Class C tests for =3
chapter 14 of the Ada Standard. The operation of these units is checked by ™
a set of executable tests. These tests produce messages that are examincd
to verify that the units are operating correctly. If these units are not §~
operating correctly, then the validation is not attempted.) y§
‘,’)
The text of the tests in the ACVC follows conventions that are intended to S
ensure that the tests are reasonably portable without modification. For d
example, the tests make use of only the basic set of 55 characters, contain !_
lines with a maximum length of 72 characters, use small numeric values, and *?.
place features that may not be supported by all implementations in separate :
tests. However, scme tests contain values that require the test to be {
customized according to implementation-specific values--for example, an i
illegal file name. A list of the values used for this validation is L
provided in Appendix C. %
N
A compiler must correctly process each of the tests in the suite and N
demonstrate conformity to the Ada Standard by either meeting the pass :~f
criteria given for the test or by showing that the test is inapplicable to S:
the implementation. The applicability of a test to an implementatior is ~
consider:d each time the implementation is ‘ailidated. A test thoi i~ ’
inapplicable for one validation is not ncr~essarily inapplicable for a 6”
subsequent validation. *
o
o
1-5 ;
~
N
o~

; " " "0
ROCORAOROCOTN X0 SO O X0 i X |... " Al

)

-

4 §
3| o
f R
! INTRODUCTION .
¢ :
’ . -
Any test that was determined to contain an illegal language construct or an
erroneous language construct is withdrawn from the ACVC and, therefore, is k
i not used in testing a compiler. The tests withdrawn at the time of
1 validation are given in Appendix D.
U
1)
b]
Py K
¢ 3
. t
t
"
y N
‘
N (4
o 8
L .
; 2
\ v
) .
3 f
) (]
,. .'
P 1
f 3
b
L]
¢ .
) “
2
N
)
o)
) W
F ;
. t
y '. g
1. L] .
r' .
x .\
? K
i .
’
’l
D A
»
;' L}
. 4
)
1
X
+
1-6 3

1,
)
»
)

YRR,

» '_"h U T 8

P AN

“ I | 5 " 3 " N‘ﬁ'\" o -\}" -";c." e e 1"' » ‘,"D'.' ‘-".p"\“"‘;""‘.’"f"l“ -'\I\ -'-" -"uf"l \-'\ .‘t-..'.-‘f..ll.' ™ V‘.f‘

RPN RS U WA O 0,018,880V 0"020 0 2 0t g "8 % URWFLN RN O R U N R RN RURL WL WL WL FUR UYL PUWU PUWC WU VOV WY ".;

¢
bat
.‘

CHAPTER 2 '

CONFIGURATION INFORMATTION

P

<»: CONFIGURATION TwSTED Wl

2 e e w A
-
-

The candidate compilation system for this validation was tested under the .
following configuration:

Compiler: MIPS/VADS, Version 1.21)

PR

)
ACVC Version: 1.8 i
Certificate Number: J370628W1.08107

Host Computer:

)
E Machine: MIPS M/500 n
Operating System: UMIPS-BSD 4.3, Release 2.0 .
3 Memory Size: 8 megabytes 5
i \
% Target Computer: R
‘ Machine: MIPS M/500 5
: Operating System: UMIPS-BSD 4.3, Release 2.0 j
. Memory Size: 8 megabytes ﬁ
:)
: 3
: X
=

. ", { ", . o . " = ¥ PR W - o ™
WO I VA L SN T T T~ T T T O I Dt I, L, 2o T 4 o T O

PPN IO DT AR R N RPN A A TN R AR TANLAUNLY ¢ K D SN LW UMY WM RN U S Ba? B2l latedac oty

.\

J .‘

X

X

CONFIGURATION INFORMATION '(

M

!

- 3
2.2 IMPLEMENTATION CHARACTERISTICS .
One of the purposes of validating compilers is to determine the behavior of V]
a compiler in those areas of the Ada Standard that permit implementations »l
t.. differ. Class D and E tests specifically -heck for such implementation ﬁ
differences. Howevar, tests in other classes also characterize an fﬁ
implementation. This compiler is characterized by the following -
interpretations of the Ada Standard: 44
o

X (]

i'.

. Capacities. ?S

o

.

The compiler correctly processes tests containing loop statements —

nested 9o 65 1levels, bloeY statements nested to 65 levels, and

recursive procedures separately compiled as subunits nested to 17 4§
levels. It correctly processes a compilation containing 723 g}
variables in the same declarative part. (See tests D55403A..H (8)
tests), D56001B, D6400SE..G (3 tests), and D29002K.) o
R,

. Universal integer calculations. g&
W

An implementation is allowed to reject wuniversal integer “@

calculations having values that exceed SYSTEM.MAX_INT. This
implementation does not reject such calculations and processes

them correctly. (See tests DA4AOO2A, D4A002B, D'AOO4A, and 14

D4AOOUB.) Y

3

‘!

. Predefined types. e,
1%

This implementation supports the additional predefined types %
SHORT_INTEGER, LONG _FLOAT, and TINY_INTEGER in the package .\V
STANDARD. (See tests B86001C and B86001D.)

. Based literals.

£

An implementation is allowed to reject a based 1literal with a
value exceeding SYSTEM.MAX_INT during compilation, or it may raise
NUMERIC_ERROR or CONSTRAINT_ERROR during execution. This

SR

».

implementation raises NUMERIC_ERROR during execution. (See test k.
E24101A.) Lt
3
.« Array types. 3
ThY
An implementation is allowed to raise NUMERIC_ERROR or g&f
CONSTAAINT _ERROR for an array having a 'LENGTH that exceeds i
STANDARD.INTEGER'LAST and/or SYSTIM.!'AY_INT. ot
-.
A
I‘
¢
2-2 ’

o - 5y)
KO DM NI M o MU ..‘l‘g‘l.ﬂ.. W AR AR NG e ML RLRO

I T R T R R RN R N AR AN R FOCAT A mA R A NAK WA K O UWU WU WO WO WU WU W YU W U WLV 31 2% 2™ va 02" ok * 3,

K
CONFIGURATION INFORMATION :5
Ky
)]
A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST '
raises NUMERIC_ERROR when the array type is declared. (See test 4
C52103X.) (N
]
A packed two-dimensional BOOLEAN array with more than INTEGER'LAST ﬁ
compon&nts raises NUMERIC_ERROR when the array subtype is w
declared. (See te-" C52104Y.) b
A pull array with one diwmension of langth greater than ;z
INTEGER'LAST may raise NUMERIC_ERROR «r CONSTRAINT_ERROR either I
vwhen declared or assigned. Alternatively, an implementation may .
accept the declaration. However, lengths must match in array d&
slice assiguuents. ‘'‘hig implementation raises NUMERIC_ERROR wnen '
tha array type is declared. (Sec teat KS2103Y,) ‘
)
(
In assigning one-dimensional array types, the expression appears ;&
to be evaluated in its entirety before CONSTRAINT_ERROR is raised §§
when checking whether the expression's subtype is compatible with LN
the target's subtype. In assigning two-dimensional array types, Ol
the expression does not appear to be evaluated in 1its entirety -
before CONSTRAINT ERROR is raised when checking whether the 'g
expression's subtype is compatible with the target's subtype.)
(See test C52013A.) Q&
6 .‘
. Discriminated types.)
N “»
Vg
During compilation, an implementation is allowed to either accept ,&
or reject an incomplete type with discriminants that is used in an ,$
access type definition with a compatible discriminant constraint. ﬁ
This implementation accepts such subtype indications. (See test
E38104A.) .
!.t
N
In assigning record types with discriminants, the expression %:
appears to be evaluated in its entirety before CONSTRAINT ERROR is ‘%
raised when checking whether the expression's subtype is |b
compatible with the target's subtype. (See test C52013A.) b
« Aggregates. .«‘
In the evaluation of a multi-dimensional aggregate, all choices by
appear to be evaluated before checking against the index type. -
(See tests C43207A and C43207B.))
)
£
In the evaluation of an aggregate containing subaggregates, all ;}
choices are evaluated before being checked for identical bounds. J
(See test EU3212B.) «
All choices are evaluated before CONSTRAINT_ERROR is raised if a)
bound in a nonnull range of a nonnull aggregate does not belong to p
t

an index subtype. (See test E43211B.)

2-3 4

(3 7 LEYS. ¢ T g W (W "t Tl B " g M LI 3 ¥ - L"EN B, - .‘:
WK 4 (N ’,‘ # .l‘ al’. l.a. "I...A‘..l'. “n...’ l'-.l.’.l".t.!.l‘!.l’v Do 0 x s .“l.- W .- W0 R0 00 0 05000, 0.50, %050, W5y, .‘n t, 19, 90,98, .n » l’. LA I.O‘.‘I .‘o Lid) 0"“

© ge% 5a® Ga® Sa¥ 457 B Baf 8at 85 ¥ Unt dut 0a¥ ba te¢ Bit da® 0at 0a® st 2% Wat s’ St 02 20 Ma? BT a0 Aa hat Gt et B8 o8 Rah XYY NG TP TSR VP VW SWA
RIS L WP WL (K. # IR WU (AR »
(4

»_oul e

.

CONFIGURATION INFORMATION

-
-

e

« Functions.

. An implementation may allow the declaration of a parameterless
: function and an enumeration literal having the same profile in the
: same immediate scope, or it may rejiect tLhe function declaration.
:‘ Tf it ar~cepis the function declaration. the use of the enumeration
literal's ideutifier denotes the runction. This implementation
rejects the declaration. (See test E6<101D.) \

o o N

-

. Hepresentation clauses.

The Ada Standard does wnot ~equire .. implementation to support
cepresentation clauses. f -~ reprusentation clause iz not
h supported, then the implementation must reject it. While the
P operation of representation clauses is not checked by Version 1.8
: of the ACVC, they are used in testing other language features.
’ This implementation accepts 'SIZE and 'STORAGE_SIZE for tasks,
'STORAGE_SIZE for collections, and ‘'SMALL clauses. Enumeration
representation clauses, including those that specify noncontiguous
values, appear to be supported. (See tests C55B16A, C87B62A,
C87B62B, C87B62C, and BC1002A.)

% T e

-

P - - -
-y % ¥ 8

. &"L'agmas o

The pragma INLINE is supported for functions and procedures. (See
tests CA3004E and CA3004F.) “
4

b s e

. Input/output.

¥ The package SEQUENTIAL_IO can be instantiated with unconstrained
array types and record types with discriminants. The package N
DIRECT_IO can be instantiated with unconstrained array types and "
record types with discriminants without defaults. (See tests g
AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.) a

An existing text file can be opened in OUT_FILE mode, can be
b created in OUT_FILE wmode, and can be created in IN_FILE mode.)
: (See test EE3102C.)
[

More than one internal file can be associated with each external
Py file for text I/0 for both reading and writing. (See tests N
A CE3111A..E (5 tests).)]

More than one internal file can be associated with each external ™
file for sequential I/0 for both reading and writing. (See tests
CE2107A..F (6 tests).)

ey

*

More than one internal file can be associated with each external

£

: file for direct I/0 for both reading and writing. (See tests }
\ CE2107A..F (6 tests).) .
;]

2-4 z
O' i
R X o e R DY oo i DNy X AN o St WL DAL LN S SN S N RN,

R AR A R A A I T T A N I T TR O oY @ 88 8" 2 """ 24" S0 0 a Vel s L1 LI SR Sk 8, ool Al Al @i o Bve Bta AV G0 Bt St

CONFIGURATION INFORMATION !
An external file associated with more than one internal file can LK
be deleted. (See test CE2110B.) 4
Temporary sequential and direct files are given a name. Temporary b

files given names are deleted when they are closed. (See tests h?
CE21084 and CE2108C.))

+ Generias, o

Generic subprogram declarations and bodies can be compiled in X3
separate compilations. (See test CA2009F.) b

Generic paci2ge declarations ang bodies can B compiled in ’
separate compilations. (See tests CA2009C and BC3205D.) K

, \ B RN amLP L% iy N AN e
£ ARV AL VAR O e N ; . N W AR AT NARARA (N

IR KA LN AR 3 T gt Ept ‘ga* dat 42 » VLR TSP W W T > SR aby ath ub

» Sal Ra¥ vy
Y
N
)
K3
-3
- »‘;
N
)
O
g
CHAPTER 3 ;:,
o
TEST INFORMATION ::i
=)
)
|‘{E
3.% TEST RESULTS ‘:i
\J
%
Version 1.8 of the ACVC contains 2399 tests. When validation testing of ;:g
MIPS/VADS was performed, 19 tests had been withdrawn. The remaining 2380 M
tests were potentially applicable to this validation. The AVF determined b
that 178 tests were inapplicable to this implementation, and that the 2202 '.::
applicable tests were passed by the implementation. '.:}
L
(N
The AVF concludes that the testing results demonstrate acceptable ‘::
conformity to the Ada Standard. ',
-.,\:»
v
3.2 SUMMARY QOF TEST RESULTS BY CLASS v
-'
RESULT TEST CLASS TOTAL ';:’
A B C D E L 5
\J
Passed 69 865 1192 17 13 46 2202 :
Failed ® 0 0 0 0 0 0 X
Inapplicable 0O 2 176 o0 0 0 178 N
iy
Withdrawn 0 7 12 0 0 0 19 -{:
TOTAL 69 874 1380 17 13 46 2399 =y
N
\-
S
.\‘
v i
(%
T
(
N
3-1 '
‘
K T e L

' - i Q e N atd a0 et VO RRT iRk taly” TR - vy
AT ARA T ke . KRR 2" Vad hd’ 500, 0 M2 $.8" *8.270.8°8.2" .00, 00 0 0" -o ’ - Vel Wy J & &

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER
RESULT CHAPTER TOTAL
- 2.3 85 6 _7_8 9 0 11 12 14
Passed 102 252 334 244 160 97 1356 .31 130 3= 218 233 2202
Failed 0 0 0 0 9 0 0 0 0 0 0 O 0

Inapplicable 14 73 86 3 0 0 1 1 ¢ 0 0 0 178

o e

Aithdrawn 0 5 5 0 0 1 1 2 I 0 1 s 19
: TOTAL 116 330 425 247 167 98 140 264 134 32 219 233 2399
3.4 WITHDRAWN TESTS
o The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
§ this validation:
C32114A c41404A BT4101B
B33203C B45116A C87B504
. C34018a cu8008a C92005A
359044 B49006A CO40ACA
B37401A B4AO10C CA3005A..D (4 tests)
BC3204C

See Appendix D for the reason that eacn of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation is not necessarily inapplicable for a subsequent attempt. For

this validation attempt, 178 tests were inapplicable for the reasons
indicated:

AN s A s

: . C34001E, B52004D, B55B09C, and C55BOTA use LONG_INTEGER which is
! not supported by this compiler.

. C34001F and C35702A use SHORT_FLOAT which is not supported by this
) compiler.

+
)

-~ i y P » r o v\r-‘-(r-{‘v‘ r.(ijfv(‘(u")ff.l‘r'"'"
‘.h'.h-‘-‘J\'.'i-'l.‘a.'n.-.'s Ve it LU SNSRI AN A, W ARG A A AON Gah M

AL A

ESIEEE

D R

- % W T WX

. -t e 6 a8 a A% A Rn ANCA'RTRIL Y TP YGTCNTR)
TN A R R IR N AL N) N WU VUL PU N LW O R T ¥ OO0 LY ek Lol TR g

TEST INFORMATION ,

. CB863501F redefines package SYSTEM, but TEXT_ IO is made obsolete by
this new definition in this implementation and the test cannot be '

executed since the package TEXT_IO is dependent on the package .
SYSTEM.

. C96005B checks implementations for which the smallest and largest)
values 1in type URATION 1ire dir':rent (rom the smallest and ®
largest values in DURATION'S basc type. This is no’ -he case for W,
this implementation.

» pd
0
e

. The rollowing 170 tests require a floating-point accuracy that J
exceeds the maximum of 15 supported by the implementation: "

)

.
C24113L..Y (14 tests) C35705L..Y (14 tosts) \
C357061,,.Y (14 tests) C35707L..Y (14 tests) (N

C35708L..Y (14 tests) C35802L..Y (14 tests) q

Cls5241L..Y (14 tests) C45321L..Y (14 tests)

Cus521L..2 (15 tests) CU45621L..2Z (15 tests) 3
‘:::
i
3.6 SPLIT TESTS i.
P
If one or more errors do not appear to have been detected in a Class B test f\
because of compiler error recovery, then the test is split into a set of)
smaller tests that contain the undetected errors. These splits are then |
compiled and examined. The splitting process continues until all errors '}

are detected by the compiler or until there is exactly one error per split. 8
Anr Class A, Class C, or Class E test that cannot be compiled and executed iy
because of its size is split into a set of smaller subtests that can be O
processed. \f
o
Splits were required for 19 Class B tests: ‘ﬁt
o~
B24204A B37201A B67001B i?
B24204B B38008A B67001C A
B24204C B41202A B67001D ‘Q
B2A003A B44001A B91003B Y
B2A003B B640O01A B95001A B
B2A003C B67001A B97102A o3
B33301A f:
-\
3

W

’
2t
Ol

¢
A
(]

(%

3-3 ’

3

"4

O S RO C ORI N MM AN KM NN R A ST A RS DR i f LV T TR K

N UV L N RN VR TR N X N T YL TU SN FOT TN PO PO FUN PO U PO U TUR T T TR TR T O T OO, - 0n a0 abe"all o8 otk 292" NG — ‘.‘,“..

TEST INFORMATION {i
- Y
d
3.7 ADDITIONAL TESTING INFORMATION .'
3.7.1 Prevalidation :ﬁ
)
!,
Prins to validation, a set of test results for ACVC Version 1.8 produced by i$
i M PS/VADS was submitted to the AVF by the applicant for review. .*
Wassei 3f these results wonst:-ated that Lhe o»oapiler successfully s
rassed 411! applicable tests, and that the compii~=r -shibited ~he expected 1!
behavior on all inapplicable tests. 2
.
b8 ¢
'3t Method R
wiay ol the MIPS/VADS using ACVC Version 1.8 was conducted on-site by a .:‘
validation team from the AVF. The configuration consisted of a MIPS M/500 ?ﬁ
>perating under UMIPS-BSD 4.3, Release 2.0. #ﬁ
\
A magnetic tape containing all tests except for withdrawn tests and tests)
requiring unsupported floating-point precisions was taken on-site by the]
validation team for processing. Tests that make use of ¢
implementation-specific values were customized before being written to the d:
magnetic tape. Tests requiring splits during the prevalidation testing A
were included in their split form on the magnetic tape. iﬁ
The contents of the magnetic tape were loaded onto a VAX 8600 and then .“
transferred to a MIPS M/500 computer using Ethernet. After the test files Q
were loaded to disk, the full set of tests was compiled and linked on the ﬁ%
MIPS M/500, and all executable tests were run on a MIPS M/500. Results e
were printed from the MIPS M/500. !z
\J
Th: ompiler was tested using command scripts provided by MIPS Computer i!
Systems and reviewed by the validation team. "ﬁ
.‘ T
Q)
Tests were compiled, linked, and executed (as appropriate) using two ﬁ
identical computers. Test output, compilation listings, and job logs were :k
captured on cartridge tapes and archived at the AVF. The listings examined V
on-site by the validation team were also archived. L]
-
Y
N
S
3.7.3 Test Site N
The validation team arrived at MIPS Computer Systems, Sunnyvale CA, on 28
June 1987, and departed after testing was completed on 30 June 1987. i
o
. .;
. ‘
]
o
Y
"I
{
oy
3-4)

<5

N 4 P X AT 0 " (S S LS & « » - [; -
O DO N OGO OO XU KA B N OO MU O DO O D S xS R AR OO M P 2 MO g e N M MO e T O LR

IR DIT YU TN WU WU ¥

o

e e e e e

PR R .

- . ~ PR T R - - . PR W o o g e
T O e e e e I SO e S A U WL G aty AN LS W G Al T

> g2t 2% 040 030 41" dat bt 0 T ek gal 82 Ba® a7 $a% $2¥ $av 830 34% 4, O T A TN PO LR T R

.....

APPENDIX A

CONFORMANCE STATEMENT

MIPS Computer Systems nas submitted the following
declaration of conformance concerning the MIPS/VADS.

A-1

-

U Wy W l'i"1~.'
.

gl

R BRSNS

-

o o

«

5

L
\gy

- gl . ~ - e “a'athCate’; . va " rew n
P WIS M WO PGP 0 WU VUL TR TURCR O U R YOO O « ‘o % A% .|t|.-| ¥, Y v - 8. 7 ‘...

N
i
&

| 4
o

- &
DECLARATION OF CONFORMANCE ::E

Compiler Implementor: MIPS Computer Systems .
Ada® Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH '..
Ada Compiler Validation Capability (ACVC) Version: 1.8 ::.
.-:
| i
3a3e Configuration R

(3

, o

Base Compiler Name: MlPS‘?VAI)Sd)\-’ersion: 1.21 -'
Host Architecture ISA: MIPS M /500 OS&VER # UMIPS-BSD 1.3, Relcase 20 é
Target Architecture ISA: MIPS M, 500 OS&VER #: UMIPS-BSD 4.3. Release 2.0 '
Implementor’s Declaration :":f

Wl

)

1, the undersigned, representing MIPS Computer Systems, have implemented no deliberate E:'
extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler listed in this :..:',
declaration. I declare that MIPS Computer Systems is the owner of record of the Ada language '
compiler listed above and, as such, is responsible for maintaining said compiler in conformance o
to ANSI/MIL-STD-1815A. All certificates and registrations for Ada language compiler listed in {;
this declaration shall be made only in the owner’s corporate name. t
’ (N ol
¢

‘ b\\ e Date: Q‘}‘?)(JJ S .

MJPS Compauter Systems "
arry Weber, Director of Languages ‘::I‘\
]

) * .‘:

Owner’s Declaration

S
I, the undersigned, representing MIPS Computer Systems, take full responsibility for implemen- :.u:
tation and maintenance of the Ada compiler listed above, and agree to the public disclosure of .::‘t
the final Validation Summary Report. 1 further agree to continue to comply with the Ada '::z
trademark policy, as defined by the Ada Joint Program Office. I declare that all of the Ada Y
language compilers listed, and their host/target performance are in compliance with the Ada .

Language Standard ANSI/MIL-STD-1815A.

.‘\

Date: (o I%O/ (q—))
Larry Weber, Director of Languages Y
'l

2

®Ada is a registered trademark of the United States Government (Ada Joint Program Office). e,

]
®MIPS is a registered trademark of MII’S Computer Systcins. !
)

®VADS (Verdix Ada Development System) is a registered trademark of Verdix Corporation. ‘:'::
(

i

(U

B

'('

LTSN LY A O

.l.l . ¥, |‘u WSy I's. clc‘ U . \.Q » s » M ' l ",(’ ‘-‘I‘O YF ol N . .‘s ‘w. .\.-

- » LR T TN
NS, A")

:p ¢l By ¢ b Wk YO PO PN R T AN N R A - da®84" $2°ata" %"

APPENDIX B

APPENDIX F OF THE Ada STANDARD

ihe only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation c¢lasses. The implementation-dependent characteristics of
the MIPS/VADS, Varsion 1.21, are described in the following sections which
discuss topics in Appendix F of the Ada Language Reference Manual
(ANSI/MIL-STD-18154). Implementation-specific portions of the pacxage
STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -2_147 u83 648 .. 2_147 u83 _6u7;
type SHORT_INTEGER is range -32_ 768 .. 32 767,
type TINY_INTEGER is range -128 .. 1273

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONG_FLOAT is digits 15

range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 6.10351E-05
range -131072.00000 .. 131071.99993;

end STANDARD;

B-1

N0 OO XIO ~ e PN P RGP T e e e e e T
IOOGOCOONOOO O KX A_A"t PO IO TR XU P R O Rl e o A Ut L PE NS, X X

1 SR

AN

e

R
-

el

g;.q. Ay Ay "y w

TRy

5~

.
»

MRS G

ua B g

. . i .. . AR N o a5 2%4. 8"
2g9 Vo ¥ PO R M Ca T, wr ' - [SalSaR 2ol .

ATTACHMENT II

APPENDIX F. Implementation-Dependent Characteristics

1. Imnlementation-Dependent Pragmas
1.1. 5HARE_BODY Pragma

The i+ ARE_BODY gragma takes the name of a generic instantiation ¢r a generic unil as
the fi. . argurent and « .. of the identifiers TRL ! or FAT SE as the second argument. This
pragma is vonly allowed immediately at the place of a declarative item in a declarative part

or package specification, or after a library unit in a compilation, but before any subsequent
compilation unit.

When the first argument is a generic unit the pragma applies to all instantiations of that
generic. When the first argument is the name of a generic instantiation the pragma applies
only to the specified instantiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a generic
instantiation with code generated for other instantiations of the same generic. When the
second argument is FALSE each instantiation will get a unique copy of the generated code.
The extent to which code is shared between instantiations depends on this pragma and the
kind of gensric formal parameters declared for the generic unit.

1.2. EXTERNAL_NAME Pragma

The EXTERNAL_NAME pragma takes the name of a subprogram or variable defined in
Ada and allows the user to specify a different external name that may be used to reference
the entity from other languages. The pragma is allowed at the place of a declarative item

in a package specification and must apply to an object declared earlier in the same package
specification.

1.3. INTERFACE_OBJECT Pragma

The INTERFACE_OBJECT pragma takes the name of a variable defined in another language
and allows it to be referenced directly in Ada. The pragma will replace all occurrences of
the variable name with an external reference to the second, link_argument. The pragma is
allowed at the place of a declarative item in a package specification and must apply to an
object declared earlier in the same package specification. The object must be declared as a
scalar or an access type. The object cannot be any of the following:

a loop variable,

a constant.

an initialized variable,

an array, or

a record.

2. Implementation of Predefined Pragmas
2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

B-2

- LR) " mJ ¢~\1-qN'.'q-v-“.‘
AR AN NGAGACAGAON LA MIONAC RS W R B G s T o LI O O gl e WAL AR WAL TN

£ N T e

| A
s

R A et f'.T C

¢

v:
| : Y,
N,
NG,
*
2.2. ELABORATE v
This pragma is implemented as described in Appendix B of the Ada RM. h
’
2.3. INLINE I
This pragma is implemented as described in Apnendix B of the Ada RM. N
2.4. INTERFACE O
This pragma supports calls to ‘C’, PASCAL, PL1, and FORTRAN functions. The Ada sub- o
programs can be either functions or procedures. The types of parameters and the result N
Lype foe functions must be scalar, access or the predefined iype ADDRESS in SYSTEM. An o
vwtioral third argument overrides the default link name. All parameters must have mode ooy
‘¥, *7.-~rd and array objects can he passed by reference using the ADDRESS attribute.]
1
23. LiST e
This pragma is implemented as described in Appendix B of the Ada RM. :2
2.6. MEMORY_SIZE e
This pragma is recognized by the implementation. The implementation does not allow SYS- N
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled. ::,
.l
2.7. OPTIMIZE 0
This pragma is recognized by the implementation but has no effect. |:“f
1]
2.8. PACK S
This pragma will cause the compiler to choose a non-aligned representation for composite :
types. Components that are smaller than a STORAGE_UNIT are packed into a number of -
bits that is a power of two. level. 4
29. PAGE i
This pragma is implemented as described in Appendix B of the Ada RM. o
oy
2.10. PRIORITY X
This pragma is implemented as described in Appendix B of the Ada RM. :':-;
2.11. SHARED)
This pragma is recognized by the implementation but has no effect. >
,-\‘
2.12. STORAGE_UNIT -
Y
This pragma is recognized by the implementation. The implementation does not allow SYS- -~
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled. .
2.13. SUPPRESS 2
This pragma is implemented as described, except that RANGE_CHECK and o~
DIVISION_CHECK cannot be supressed. :;'
)
,
2.14. SYSTEM_NAME ."
This pragma is recognized by the implementation. The implementation does not allow SYS- .
TEM to be modified by means of pragmas, the SYSTEM package must be recompiled. N
N
B-3 P
R
]
-\.
™~
R

R o . e N N N o
RXN KA "L.“.-'l.s" n‘\,n’lh‘l."l,.‘to A W AW e S KA s “.- "'.‘" ""J.'.l" 2 a WONAT.ERN WAL ERAT

. v . e . b gat B v At 3a" tat Bs". ¥a' 0a° Ba- 6 ibE Ve’ bg s03"alh a'R oV,
e e g Bt £ M. s @Ta AV BT g¥a 4%a §Pa 6€a 6'p 8's £'a 4T (M I'O't'aoobvat y 1a* 80", ¥y &

bt W e

B g S "

e

- -

X

r

-

-l -

\
B
3
t

3. Implementation-Dependent Attributes y
NONE. .»
4. Specification Of Package SYSTEM b
package SYSTEM ‘ ::
is

type NAVE is (UMIPS43);

SYSTEM_NAME : constant NAMVE := UMIPS43; Y

STORAGE_LNIT : constant := §; J
MEVORY_SIZE T constant := 16_777_216; i

-- System-Dependent VYamed Numbers

MIN_INT : constant := -2 _147_483_648;
MAX_INT : constant = 2_147_483_647;
MAX_DIGITS : constant := 15;
MAX_MANTISSA : constant := 31;
FINE_DELTA : constant := 2.0**(-30); "
TIK : constant := 0.01; A

-- Other System-dependent Declarations '

-

subtype PRIORITY is INTEGER range O .. 99; -
MAX_REC_SIZE : integer := 64*1024;

-

type ADDRESS is private;

X

NO_ADDR : constant ADDRESS:

function PHYSICAL_ADDRESS(I: INTEGER) return ADDRESS:
function ADDR_GT(A, B: ADDRESS) return BOOLEAN;
function ADDR_LT(A, B: ADDRESS) return BOOLEAN; '
function ADDR_GE(A, B: ADDRESS) return BOOLEAN; \
function ADDR_LE(A, B: ADDRESS) return BOOLEAN;

function ADDR_DIFF(A, B: ADDRESS) return INTBGER;

function INCR_ADDR(A: ADDRESS: INCR: INTBGER) return ADDRESS:
function DECR_ADDR(A: ADDRESS: DECR: INTBGER) return ADDRESS:

function ">"(A, B: ADDRESS) return BOOLEAN renames ADDR_GT:
function "< (A, B: ADDRESS) return BOOLEAN renames ADDR_LT; Iy
function ">="(A, B: ADDRESS) return BOOLEAN renames ADDR_GE: %
function "<="(A, B: ADDRESS) return BOOLEAN renames ADDR_LE: o
function "-"(A, B: ADDRESS) return INTEGER renames ADDR_DIFF;
function "+" (A: ADDRESS: INCR: INTEGER) 3
return ADDRESS renames INCR_AIDR: .
function "-"(A: ADDRESS: DECR: INTEGER) b
return ADDRESS renames DECR_ADDR:

pragma inline(ADDR_GT): N
pragma inline(ADDR_LT);

pragma inline(ADDR_GE): y
pragma inline(ADDR_LE); N

. . ' . XN T "
02000000 DAGQCRNL OGO MO OROAOC OO0 NOONOEC DR AL = MU XL M WA R G AR A AU UCE R X U R R R A

G W T WG U W P AU WU U WY L WU WY * pata0at R’ atatata? Hatat " fa¥ fa® o 420 . 0a* 0a% 02" 02 93, 2% 4" Hptalp® a¥ Ba® 8a% % 0¥ 92V tat ARV U Qe $at Ba¥ g

- W

pragma inline(ADDR_DIFF):

pragma inline(INCR_ADDR): ::ﬁ
pragma inline(DECR_ADDR): X
pragma inline(PHYSICAL_ADDRESS); t
W\
private) 0
type ADDRESS is new integer: Q’;
“{)_ADDR : constant ADDRESS := O; t
:nd SYSTEM; :.’
1]
S. Resirictions On Representation Clauses ."ﬁ
(W
1Y,
S.1. Pragma PACK -::‘
¢
Array and record components that are smaller than a STORAGE_UNIT are packed into a c:'
number of bits that is a power of two. Objects and larger components are packed to the =
nearest whole STORAGE_UNIT. .
.‘l
5.2. Size Specification 4]
The size specification T'SMALL is not supported except when the representation ::‘
specification given is the same as 'SMALL for the base type. "
5.3. Record Representation Clauses g
Components not aligned on even STORAGE_UNIT boundaries may not span more than e
four STORAGE_UNITs. e,
y
54. Address Clauses '.
Address clauses are supported for objects and entries.
5.5. Interrupts ‘o
Interrupt entries (UNIX signals) are supported. -
d
5.6. Representation Attributes ¢
The ADDRESS attribute is not supported for the following entities: ! ,
Packages K“
Tasks e
Labels s
Entries o
)
S5.7. Machine Code Insertions "
Machine code insertions are not supported. ..:‘
“l
t
6. Conventions for Implementation-generated Names ':"
There are no implementation-generated names. ?
v
Al
"
B-S .l:,

oy

, Ty R WY Y
Fy i‘«‘l‘_ W, l'-..'li‘l‘l.. I‘;ll'.n.l'l.l‘\ l'y.l..!\'; A% .u ‘Qi...l "l..'.."..'l.l.“‘. .U- "(% " x N X !'s A g N

vag Uad Al Tud VaB Vg ¥ Tov Fgd valt G0 3, ARRUS UMM TR, ¥ O \ L W WL W W WA VARV ALK T LRt a RNV UTUVCW UV OV LUV R0

7. Interpretation of Expressions in Address Clauses

The function PHYSICAL_ADDRESS is defined in the package system to provide conver- ’
sion from INTEGER values to ADDRESS values.

l.‘
. &
8. Restrictio::s on Unchecked Conversions '
There are 10 rerivictions on the types with which the generic function ;"ﬁ
UNCHECKED_CONVERSION can be instantiated. hal
$
9. implementation Characteristics of L/U Packages p
Instaniistions of DIRECT_IO use the value MAX_REC_SIZE as the record size (expressed }
in STORAGE_UNITS) when the size of ET EMENT_TYPE exceeds that value. For exam ple I
for unconstrained arrays such as string where ELEMENT_TYPE'SIZE is very large. (e}
MAX_REC_SIZE is used instead. MAX_RECORD_SIZE is defined in SYSTEM and can be ‘.
changed by a program before instantiating DIRECT_IO to provide an upper limit on the :~:
record size. In any case the maximum size supported is 1024 x 1024 x STORAGE_UNIT W
bits. DIRECT_JO will raise USE_ERROR if MAX_REC_SIZE exceeds this absolute limit. d
" Instantiations of SEQUENTIAL_JO use the value MAX_REC SIZE as the record size e
(expressed in STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. -4
For example for unconstrained arrays such as string where ELEMENT_TYPE'SIZE is very]
large, MAX_REC _SIZE is used instead. MAX_RECORD_SIZE is defined in SYSTEM and N
can be changed by a program before instantiating INTEGER_IO to provide an upper limit ::v
on the record size. SEQUENTIAL _]O imposes no limit on MAX_REC_SIZE. i’
';‘
10. Implementation Limits e
The following limits are actually enforced by the implementation. It is not intended to ‘
imply that resources up to or even near these limits are available to every program. o)
&
t
10.1. Line Length "
The implementation supports a maximum line length of 500 characters including the end ':f.
of line character. ;::
OC
Y
10.2. Record and Array Sizes \

The maximum size of a statically sized array type is 4,000,000 x STORAGE_UNITS. The
maximum size of & statically sized record type is 4,000,000 x STORAGE_UNITS. A record
type or array type declaration that exceeds these limits will generate a warning message.
10.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the

)
W
]
“‘
KN
main program is allocated a fixed size stack of 10,240 STORAGE_UNITS. This is the value)
returned by T'STORAGE_SIZE for a task type T. §
'

10.4. Default Collection Size

In the absence of an explicit STORAGE_SIZE length attribute the default collection size for
an access type is 100,000 STORAGE_UNITS. This is the value returned by
T'STORAGE_SIZE for an access type T.

10.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared statically
within a compilation unit. If this value is exceeded the compiler will terminate the

B-6

K/ v .“ ~

- - yw

L W n - . [T Ry R R V. W MO A B AR N
B S O O A S T O O A R DT T L RIS M L AT OO Tt e DT e R M W U B I SR L CTARE AN L SN OO S0

CRIEI R L P L N LU M Y U G PR UN AN W R AR R I N N A RANR Ty Y pa e 0l A ata Aty aVi 'R a%h g% - o .

compilation of the unit with a FATAL error message.

W - -
LA b X

(K

S P

{ .

g

v

.yt T N AT A LA A AT T At AT A R A A" 8t WA A AT e A
DO O N N I A I IS CIC BGAC BGAANGEDNd AT AN T e e TN "\"." NS IS TN I AN N 3N PN RS

b Son a8 pl Tl ial Cud Vof 0gh SR LD duB € ok th kit

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such

as the maximum length of an input line and invalid file names.

A test that

makes use of such values is identified by the extension .TST in its file

name.
with a dollar sign.

before the test is run.
below.

Actual values to be substituted are represented by names that begin
A value must be substituted for each of these names
The values used for this validation are given

Name and Meaning Value

$BIG_ID1 (1..498 => 'A', 499 => '11)
Identifier the size of the
maximum input line 1length with
varying last character.

$BIG_ID2 (1..498 => 'A', 499 => '27)
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 (1..249 => 'A', 250 => '3', 251..499
Identifier the size of the
maximum input line 1length with
varying middle character.

$BIG_ID4 (1..249 => 'a', 250 => '4', 251,.499
Identifier the size of the
maximum input line 1length with
varying middle character.

$BIG_INT_LIT (1 oou96 => '0' ’ u97o .u99 => "298")
An integer literal of value 298
with enough 1leading zeroces so
that it is the 3size of the
maximum line length.

C-1
SOCICCROC MM M T T ,h‘.’a‘.‘o‘.’t'.’;.‘1.h'.'l'.‘l'.‘ p I IR M o " X |.|1. .Jﬂ. B the .‘l. X M .‘a,..n. - -\ AT r‘ a!

=> 'AY)

=> 'A')

TEST PARAMETERS

Name and Meaning

Value

$BIG_REAL_LIT
A real literal that can be
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS
A sequence of blanks twenty
characters fewer than the size
af the maximum line length.

$COUNT_LAST

A universal integer literal

whose value is TEXT_IO.COUNT'LAST.

$EXTENDED_ASCII_CHARS
A string 1literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD_LAST
A universal integer literal
whose value is TEXT_IO.FIELD'LAS

$FILE_NAME WITH_BAD_CHARS
An illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE_NAME WITH_WILD_CARD_CHAR
An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER_$HAN_DURATION
A universal real value that lies
between DURATION'BASE'LAST and

DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER_IHAN_pURATION_ﬁASE_LAST
The universal real value that is
greater than DURATION'BASE'LAST,
if such a value exists.

AR R OO NI WA S et 0",4".;".;‘0.;",1 SR HANY LN NN

T.

c-2

SOOI A M XS AR KRN MO AR N W T I

(10.“93 = '0', ugu..ugg =D "6900E1")

(1..479

2_147_483_647

"abcdefghi jklmnopqrstuvwxyz! $$26[\]1"" {}~"

2_147_U83_64T7

"abcdef/ghijklmnop/qrstuvwxyz’ &

"1234567890ABCDEFGHI JKLMNOPQRSTUVWXY Z"

"XYZ/ZYE"

100_000.0

10_000_000.0

U

R

Tt aT. WY, gh, 3t 8% a¥. 805 8% $%5 §'s 870 'g.4%p 8t

Name and Meaning

PR TR R R R R R O O U R O A U e e

TEST PARAMETERS

Value

$ILLEGAL_EXTERNAL_FILE_NAME1
An illegal external file name.

$ILLEGAL_EXTERNAL_FILE_NAME2 ‘
An illegal external file name
that is diffcrent from
$ILLEGAL_EXTERNAL _FILE_NAME1.

$INTEGER_FIRST

The universal integer literal
expression whose value is
INTEGER'FIRST.

$INTEGER_LAST

The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS_THAN_DURATION
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of
DURATION.

$LESS_IHAN_pURATION_BASE_FIRST
The universal real value that is
less than DURATION'BASE'FIRST,
if such a value exists.

$MAX_DIGITS
The universal integer 1literal
whose value is the maximum
digits supported for
floating-point types.

$MAX_IN_LEN
The universal integer 1literal
whose value is the maximum
input 1line 1length permitted by
the implementation.

$MAX_INT
The universal integer 1literal
whose value is SYSTEM.MAX_INT.

C-3

"/no/such/directory"

®/no/such/directory”

-2_147_483_648

2_147_U83_647T

-100_000.0

-10_000_000.0

15

499

2_147_483_647

" g gy o4 ¥

o,
g

(X3

o Yo

-
X

;?j?:"14§|'Hf

[
x

4,..-<
[e

TR WU A T WU WO UM YU W WU WU VO WU YU WU WU WU WU WU W WL W

TEST PARAMETERS

Name and Meaning

-.‘:|-'.a..- v et bt §15 gav Jab gt @

Value

S et " a0atu 020 2% 82" % 0a% ¥aV dhat n"‘
.

Yy

L]

i
AN

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER
if one exists, otherwise any
undefined name.

$NEG_BASED_INT
A based 1integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

$NON_ASCII_CHAR_TYPE
An enumerated type definition
for a character type whose
literals are the identifier
NON_NULL and all non-ASCII
characters with printable
graphies.,

c-4

IR RIEAN? s h » AL U W
MSAEITAN: ,'l‘»'\")i‘:'i'-'lt‘l‘-'l.-‘,t’u " -!l‘o l.o.l.i h‘hﬂl.»‘l‘n..l.n.i.. NS A .l. A e ¥

TINY_INTEGER

16#FFFFFFFD#

(NON_NULL)

l -.' ..0- v.".lt 0 ..0...' ‘] .l..:.

T RE a 5;‘. \ h '.‘n Js.h.‘u'!‘

AN 7 M3 6pd o "y, AW, 4 IR " " N w9 2™ a NN W RO WU WA OO * §uh &0 NN R - ™ h . MR VR UPLUSLN UN o L) » AR P

APPENDIX D A

WITHDRAWN TESTS Q}

Some tests are withdrawn from the ACVC because they do not conform to the 0
Ada Standard. The following 19 tests had been withdrawn at the time of U
validation testing for the reasons indicated. A reference of the form %
"pAl-ddddd" is to an Ada Commentary. .

S
. C32114A: An unterminated string literal occurs at line 62. f\
. B33203C: The reserved word "IS" is misspelled at line 45. §
« C34018A: The call of function G at line 114 is ambiguous in the j.
presence of implicit conversions.]
e
« C35904A: The elaboration of subtype declarations SFX3 and SFX4 N
may raise NUMERIC_ERROR instead of CONSTRAINT ERROR as expected in \?
the test. !
. B37401A: The object declarations at lines 126 through 135 follow Qﬁ
subprogram bodies declared in the same declarative part. Mﬁ
N,
. CH41404A: The values of 'LAST and ‘LENGTH are incorrect in the if A
statements from line T4 to the end of the test. ;
. BUS5116A: ARRPRIBL1 and ARRPRIBL2 are initialized with a value of cj‘
the wrong type--PRIBOOL_TYPE instead of ARRPRIBOOL TYPE--at line :‘
41, Wi
A
. CUBO0BA: The assumption that evaluation of default initial values 51
occurs when an exception is raised by an allocator is incorrect
according to AI-00397. 2
w)
et
. BU9O06A: Object declarations at lines 41 and 50 are terminated Ny
incorrectly with colons, and end case; is missing from line 42. s
== he!
. BU4AOY0C: The object declaration in line 18 follows a subprogram z,
body of the same declarative part. o
Wi
ity
5".;
oy,

D=1

- A A - e (RS ™™ T am "}
‘l‘fi“ N, t’.’l‘v'l‘i W, l.e |’I .- Y, .‘l‘.‘l l‘-,.l n'.\'t (Y ‘v.l) O‘., n.l';. T S l'n l‘..i“ .p. ‘Q"" .'n I‘g.‘i‘ l""‘..l l‘n I‘- l‘.‘.‘- () -.\'. AT R () e L A LM L M gy M AN . \‘-.‘s'- Al

i e g . & . " v . PR TN T Y g 5 @*h
R R R N R AN T TN TR U *y §7 RN A RN] - J u,.n.ls 1 (W WV Y \J ' 9| ¥ - 53 »

]
.
4
1 ::4“;
- WITHDRAWN TESTS l.'
..C
. BT4101B: The begin at line 9 causes a declarative part to be)
treated as a sequence of statements. k
¢
'
. C87BS0A: The call of "/=" at line 31 requires a use clause for @
package A. o,
. ‘:.:.
. C92005A: The "/=z" for type PACK.BIG_INT at line 40 is not visible .
without a use clause for the package PACK. b
1
. COU0ACA: The assumption that allocated task TT!1 will run prior to 3
the main program, and thus assign SPYNUMB the value checked for by ﬁ
the main program, is erroneous. X
. CA3005A..D (4 tests): No valid elaboration order exists for these ﬁ;
tests. N
0
. BC3204C: The body of BC3204CO is missing. by
A.l‘

o,

~ S

= Al PR e P
-af -

-
e

et -

B K

D-2 .'-

N -y 3 < - A R A LS LT g Sl VoL A ey A
LA L‘!L.'L 242 J*J l.‘.h‘,'\‘.h‘_h‘.h‘_l.‘_....h N N IS S I T SN KX -". Ol e X ' = .A.ll ’,. ,J J P ¢ " 5 J) AT AR Fe

n Sy AL

