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-. Abstract

//

- Let Xi be a semimartingale which is either continuous or of counting process type and which
satisfies the stochastic differential equation dXt = Yt a(t, Zt) dt + dM, where Y and Z are pre-
dictable covariate processes, M is a martingale and * is an unknown, nonrandom function. We
study inference for e by introducing an estimator for A(t,z) = fOfOta(s,z)dsdxand deriving
a functional central limit theorem for the-e9timator. The asymptotic distribution turns out to
be given by a Gaussian random field that admits a representation as a stochastic integral with
respect to a multiparameter Wiener process. This result is used to develop a test for independence
of X from the covariate Z, a test for time-homogeneity of o, and a goodness-of-fit test for the

proportional hazards model a(t, z) = ql(t) (z) used in survival analysis.

If

Accession For

NTIS IRA&IDTIC TAB J
UUarnoune ed

Just if iuation

_Distribution/

Avilability Codes
iAvail and/or . .

iDist i special at



1. Introduction

Consider a nonlinear semimartingale regression model in which a process X is related to a
covariate process Z by

=Xo+ + A. ds + Mt,

At = Y a(t, Zt), (1.2)

where a is an unknown, bounded, deterministic function, M is a martingale and Y is an indicator
process, taking the value 1 when X and Z are under observation, zero otherwise. In the case that
X is a counting process, A and ct are called the intensity process and conditional hazard function
respectively. If the intensity process is of the form At = a(t) Zt, we have Aalen's (1978) multiplica-
tive intensity model, for which a well developed theory of hazard rate and integrated hazard rate
estimation exists (see the survey article of Andersen and Borgan, 1985). For the nonlinear model

(1.2) an estimator A(., z) of the time-integrated conditional hazard function A(t, z) = fo a(s, z) ds
at a fixed level z of the covariate Z has been studied by Beran (1981) and Dabrowska (1987) in the
survival analysis setting, and by McKeague and Utikal (1987) in the general case. This estimator
was used to develop methods of inference for the function a(., z) at fixed z, based on observation
of i.i.d. replicates of (X, Y, Z).

In the present paper we study inference for the entire conditional "hazard" function a(-,.). -"

For that purpose we introduce the estimator

1(t, Z) =10o A(t, x)dx

of the time and state integrated hazard function

A(t, z) = a(, x) d8 dx = A(t, x) dx.

When X is a continuous process or a counting process Theorem 3.1 gives the weak convergence of
the appropriately normalized time and state indexed process A to a Gaussian random field. This
is proved by using the results of Bickel and Wichura (1971) to establish tightness. Convergence
of the finite dimensional distributions is shown using Rebolledo's (1980) martingale central limit
theorem.

In Section 4.1 we propose a test for independence of X from the covariate process Z. Here
independence from the covariate means that a is only a function of time. A natural estimator for
A under the hypothesis of independence is given by A(t, z) = z A(t), where A is the Nelson-Aalen
estimator. We derive the asymptotic distribution of A - A in Theorem 4.1 and show that a maximal
deviation statistic based on A - i yields a consistent test for independence.

In Section 4.2 we propose a test for time-homogeneity, i.e. that a = a(t, z) does not depend on
time t. An estimator for A under the hypothesis of time-homogeneity is given by A* (t, z) = t !(I, z).
A maximal deviation test statistic based on A - * is shown to yield a consistent test for time-
homogeneity.

In Section 4.3 we develop a goodness-of-fit test for the "proportional hazards" model a(t, z) =

a, (t) a2 (z), where a, (t) and ci2 (z) are arbitrary unknown functions. This model has been studied
by Thomas (1983), Tibshirani (1984), Hastie and Tibshirani (1986) and O'Sullivan (1986a, 1986b)
in the survival analysis context (where it is a generalization of Cox's (1972) proportional hazards

1'#
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model). These authors propose various estimators for the log relative risk function log a2, where ON

a 2 is assumed to be positive, but, except for O'Sullivan (1986a), who finds a rate of convergence
for his estimator, they do not provide any asymptotic theory. We introduce !(1,-) as an estimator
of the cumulative relative risk function A2 (.) = f0 a2 (x) dx and find its asymptotic distribution.
Technical lemmas used in the proofs of our main results are given in Section 5.

2. Preliminaries

Let (fl, 7, P) denote a complete probability space, (Ft, t E [0, 1]) a nondecreasing, right-
continuous family of sub-u-fields of 7, where 7

0 contains all P-null sets in 7. All processes are
indexed by t E [0,11. The process (Mt, Ft) is assumed to be a zero-mean L-martingale with
sample paths in Skorohod space D[O, 1]. The quadratic characteristic of M will be denoted by (M)
and its quadratic variation by [M]. The processes Y and Z are assumed to be predictable, with
Y an indicator process. For simplicity, Z is supposed to be scalar valued. The processes X, Y, Z
and M are related by (1.1) and (1.2) which can be written in the form

dXt = Y c(t, Zt) dt + dMt. (2.1)

We assume that

(M)t = j (t, Z,, Y) ds, (2.2)

where -y is a bounded, measurable function. Note that if X is a counting process we have

z(t, Z, y) = C(t, z) y. (2.3)

Let W = (W(t,z), (t,z) E [0,1]2) be a two-parameter Wiener process, i.e. a Gaussian process

with zero mean and EW(t,z) W(t',z') = min(t,t') min(z,z'). Let fO fo 0(8,x) dW(s,x) denote a
continuous version of the Wiener integral of a function 0 E L ([0, 1]2, ds dx) defined by Ito (1951),
Wong and Zakai (1974) and Bass (1988). The estimators and test statistics that we shall introduce
have asymptotic distributions which can be represented in terms of stochastic integrals of this type.

We make the following assumptions:
(Al) For each t, the random vector (Zt,Y) is absolutely continuous with respect to the product

of the Lebesgue and counting measure. Denote the corresponding density by fz(t)y(t)(z,V).
(A2) fz(t)y(t)(z, 1) is bounded away from zero.
(A3) fz(t)y(t) (z, 1) is continuous as a function of t and z.
(Bi) -y(t, z,y) is a continuous function of t and z for each fixed y.
(B2) ot is Lipschitz, i.e. there exists a constant K such that

IQ(ti, zi) - a(t2 Z2 )15 KV</(t - )2 + (zi- Z2 )2

for all t1,t2,z1,z2.

Let C2 = C([0, 1 2) denote the space of continuous functions on the unit square equipped
with the supremum norm " I. Let D2 denote the extension of the space D [0, 1] to functions on
[0,1 2, as described in Neuhaus (1971).

2



3. Estimation of A

For simplicity we restrict the region over which A is to be estimated to [0, 1]2. For each

n> 1, let I . .,2. ) be the partition of the interval [0, 1] defined by

r -lr

2J)= [i+ 1],

where d is an increasing sequence of positive integers. The superscript n will usually be sup-
pressed in the notation, for example we shall write I d,..., ', instead of in) I(")Let

(Xi, Y, Zi, M), i = 1,..., n denote copies of the generic processes defined above, where only M.
is not observable and the corresponding filtrations are independent. Define

n t

X -n)(t) f I{Z,(a) E r}Y,(s)dX,(s), (3.1)

n
- Z I{Z,(8) E .T }Y(s), (3.2)

i= 1

A(t,z) = 1 dX(n)(a), for z E I,,

fl ~ (n8),s

where 1/0 0. Since A(t,z) - foA(t,x) dx, we propose to estimate A by

i(t,z) = A(t, Z ) d.

The asymptotic distribution of A is given by the following result.

THEOREM 3.1. Suppose that A1-A3, BI, B2 hold, dn/n -+ oo, d = o(nW) for some 6 E (1/2, 1)
and X is a counting process or has continuous sample paths. Then

in D2 as n --+ oo, where

m(t,z) =Jtz d(, x),

h( 's, =- z(.) Y ()(z, 1 ) "

REMARK. The process m is a continuous Gaussian random field with mean zero and covariance
function j.'/z As2 t' At'2 %

Cov(M(tl,z), M(t2, Z2)) f= h(s,x) ds dx. '"

Proof of Theorem 8.1. Define
n

dM - Z I{Zi (8) E 1r }Y (s) dM(s), (3.4)

,(n)(s) - Z{Z,(,) E I,-)Y,(8)(s, ,Zt(8). (3.5)
s=1

3



Then by (2.1), (3.1)

Also define the processes S

dz t

d. (j JoY7 !r)(.) dsI(ZE Ir)dX, 
(3.8)

lzd, Y(___(_) dM(")(a). (3.9)rEfo Yr(

Here and in the sequel, any summation over r = 1,..., [zdn] is defined to be zero when [zdnJ = 0.

Now vri(! - A) =Ai (Ip - A)+M. Lemma 1 gives V Il p - All- 0. To complete the proof we

need to show that in D2.
Suppose that M('1).P-m in D 2 . Define a linear map irn:D2 ---* D2 by 7rn(f)(t,z) =

f(t, zr-l)+dn(z-zr-l)(t,Zr) for z E I, where Zr= r/d.. Here 2r,,(f)(t,.) is apiecewiselinearap-
proximation to f(t, .) based on the points z,, r = 1,.. . , dn, for each t. Note that M(n) = X.(M(n)).

Also, appealing to a D2 version of Lemma 4.1 of McKeague (1988), we have ?rn -,m in D2 ,

where we have used the fact that m has its sample paths in C 2 .Thus M()X-m in D 2 . All that
remains to be proved is that M(n) -. m weakly in D 2 . This will be established by showing that

n _ 1) is tight in D2 and the finite dimensional distributions of M(n) converge weakly to
those of m.

Denote the increment of M(n) over the rectangle (a,t] x (z, y] by M( ) ((8, t] x (X, ]) =
(n) (t, /) - j(n) (s, /)- j(nM(t, M)+ (8)(a, z). Tightness is established by checking some prod-

uct moment conditions of Bickel and Wichura (1971) for the increments of (n) over certain
neighbouring rectangles:

E () (~]x(,!l))(Ml((stx(!z])) < K (t - s)2 C(y - x) (z - y) ,:

and and -(n)((,t] X (, Y] ))2( -()( (t, U] X (Z' Yj)) 2  _ K t- ) } (U- )(/ ) .
"

This is done in Lemmas 2 and 3.
To show convergence of all finite dimensional distributions it suffices to show that for any

0< zo < ... < zp_< 1, p > I

M ,Y - M(.,z ij-))"_ 1 L(m(. z3 ) - M(-, zj-))'.

in D[0, 1]P , where D[0, lJP is the product of p copies of D[0, 1]. This can be done using a p-
variate version of Rebolledo's (1980) martingale central limit theorem, as given by Aalen (1977)
and Andersen and Gill (1982, Theorem 1.2) in the counting process case. The processes M(., z.) -
M(., zj_), y 1,... ,p are orthogonal square integrable martingales and by Lemma 4

Z)- A4(., Z,.j-1% (M(-, z,) - M(-, zj..i)t

4
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for each t, j = 1,... ,p. That completes the proof for the continuous case. In the counting process
case we also need to check the Lindeberg condition (cf. Andersen and Gill's (1.4) with I = r,i =
n = dn)

f (n) 2 (n) 4)( "o-'0, (.0
n ,Hj, (a) I j, (s)l > cd (.0

r=1

for all c > 0, where
(, if [z ...l. < r < [z d. l]

10 otherwise,

This is done in Lemma 6.

Confidence sets for A

In order to apply Theorem 3.1 to obtain Kolmogorov-Smirnov type confidence sets for

A of the form fA: Vsupt,, I(t,z) - A(t,z)l :_ c) we would need to determine the quantiles of
r = sup, Irn(t, z)1. In the time-homogeneous case, considered below, it is possible to use existing
tables. In the general case, the representation of m in terms of the Brownian sheet process W gives
a way to obtain such quantiles by simulation. We shall only consider this in the counting process
case, but the continuous case is similar. First estimate the function H(t, z)= f0 fo h(s, x) dx ds by

ft(t,z) = r I-=a 1 Y()(s ) (a"

and then estimate h by

-(t, K K ( z- x dfl(sx),

where K is a bounded, nonnegative kernel function with compact support, integral 1 and b" is a %
bandwidth parameter, bn -- 0. The following result, which is proved in Lemma 10(a), shows that %
h is an L2-consistent estimator of h. V

PROPOSITION 3.2. Suppose that X is a counting process, the assumptions of Theorem 3.1 hold, S

dnb2 --+ oo and K is Lipschitz. Then Efo' fo Ih(t,z) - h(t,z) j2dtdz --+ 0.

The process m, with h in place of h, could then be simulated to obtain approximate
quantiles for r. Using Proposition 3.2 it can be shown (cf. the proof of Proposition 4.2) that this
procedure leads to asymptotically correct confidence sets for A.

Confidence bands for the integrated hazard of a time-homogeneoua counting process

Let N be a counting process which is time-homogeneous in the sense that its conditional
hazard function only depends on the covariate process Z, so N has intensity 0

,= Y a(ZA). (3.11)

5



An estimator of A(z) J c(x)dx from i.i.d. copies (Ni, Yi, Zi),i = 1,...,n of (N,YZ) is given
by

!(Z) J A(x) dx, (3.12)

where AW =N(n ._ .(8) for x E 1,,

and N, is defined by (3.1) with X replaced by N. To apply our result to this special case we
note that the projection x: D2 --+ D[0, 1] defined by 7r(f) (z) = f(1, z) is continuous, so by the
continuous mapping theorem (Billingsley, 1968, Theorem 5.1) we obtain the following consequence
of Theorem 3.1. A similar result could be obtained in the case that X has continuous sample
paths.

PROPOSITION 3.3. Suppose that A1-A3, B1, B2 are satisfied, d n/n --+ co and d = o(n6 ) for
some 6 E (1/2, 1). Then, for A defined by (3.12),

in C[0, 1] as n --+ oo, where m = (m(z), z E [0,1]) is a continuous Gaussian martingale with mean

zero and covariance function Cov(m(z1 ), m(z 2 )) = H(zl A z2), where

H(z)= jj 1  a(x) da dx.0 z, 0 Z o() (Z, 1)

With the help of Proposition 3.3 we now construct confidence bands for A. Denote

n [ l 1 1 dN(.)(8).

Jxd.]

= ) =-n E

As a consequence of the proposition,

H)+ H(1) o H(.) + H(1))

in C[0, 1] as n --* oo, where WO is a standard Brownian bridge. Now H is a uniformly consistent
estimator of H by Lemma 9. Thus we obtain the following asymptotic 100 (1 - a)% confidence
band for A:

Az() ± ::V-' - I + z E1) '

where P(supo<t<1 2 lWO(t)1 c a) = a, 0 < a < 1. A table for c. can be found in Hall and
Wellner (1980)

6
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4. Goodness-of-fit tests

4.1. Testing for independence from the covariate process

In this section we consider the problem of testing whether the covariate process Z is

absent from the model, i.e. whether a is only a function of time. Let Ho denote the null hypothesis

Ho: C(t, ZI) = CI(t,z 2 ) for all t, zI, z2 E [0, 1]. Under Ho the natural estimator of A is

A(t, z) = z A(t),

where A is the Nelson-Aalen estimator

~t dX(n)(s)
A(t) =

Jo Y(' ()

and 1

(") (t) = IZ(Z,(s) E [0,1) Y(s) dXi(s),

(n,) = 1(Z,() E [0, 1]) Y(a).

Define some functions g and p by

g(t, z) = y(t, z, 1) fz(.) Y(.) (Z, 1) / p2(t),

p(t) = P(O < Z(t) <_ 1, Y(t) = 1) = fz(t)y(t)(x, 1) dx.

The following result gives the asymptotic distribution of A - A.

THEOREM 4.1. Under the conditions of Theorem 3.1, if Ho holds then

V-(- A --'o l

in D2 as n -o oo, where -4

mo(t, ) f (x) dW (, X) - z f V 8, T) dW(8, ).

The Kolmogorov-Smirnov type test statistic T (n l = N supz IA(t, z) - .4(t, z)j could be
used for testing Ho. Note that the continuous mapping theorem and Theorem 4.1 imply that V

T( " )-D sups,5 Imo(t,z)I as n --+ oo. In order to construct an asymptotic size a test of H0 , rejecting

Ho if T(n) is large, we first need to introduce appropriate estimators for the functions g and h

under Ho. Again we shall only do this in the counting process case. Let

"= ( n( )J(,) o (? (n~)(8)) 3  
4

n(t,z) = - x X(')(s)

7



and define

Zr)rtA

where K is a bounded, nonnegative kernel function with compact support, integral 1 and bn is a
bandwidth parameter, b, --* 0.

The distribution of T = supt,_ Imo(t, z)I depends only on 0 = (g, h) and is continuous,
see Ylvisaker(1968). Let c.(O) denote the upper a-quantile of T, so that Po{T > ca(0)} = a for
0 < a < 1. Given the estimate 0, = ( ,h), we may simulate the process ino, with # and h in place
of g and h respectively, to obtain an approximate critical level c( - ) = c0 (0 ). In Proposition 4.2
we show that

lim P(T (n) > ( n) - ,.
n- co

Thus, rejecting H0 when T (' ) > c(n ) yields an asymptotic size a test for independence. In
Proposition 4.3 we show that this test is consistent against all alternatives.

Proof of Theorem 4.1.
Decomposing A in a similar way to A in the proof of Theorem 3.1, we can write

v -(. - )(t, z) = i(t, z) - z R(t) + % (., - A,)(t, z),

where

d,, ft dM(n)

and under H0

,(t, J) = ,, ( )()( (,) > 0) ds.

Putting dn - 1, k 1 in Lemma 4 of McKeague and Utikal (1987), we obtain ,Allp - AII0 V-
under Ho. Also, by Lemma 1, -, r[p- A +II0. Therefore V/nlli -Alvl--O under Ho. To complete

the proof it suffices to show that Cmo, where C(t, z) = M(t, z) - z M(t). Set
"S

,(t)= JJ Vgs) dW (8,),

where W is the s- me Brownian sheet used to define rn in Theorem 3.1. Then On is a zero mean I
continuous Gaussian martingale with predictable variation process

t I_%(fn) t j g (, ) dxds.%

Suppose that (M, Kf)--(m, r) jointly in D2 x D[O, 1]. Define a map ?r, .: D2 x D[0, 1] by ir'(fl, f2)
(rn(f 1 ),f 2 ), where 2n is defined in the proof of Theorem 3.1. Then, as in that proof, (M,KI) =

, (M ,hK)LD(m,ti) jointly in D2 x D[O, 1] and, since m and fn have continuous paths, by the

8U
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M K' KF MX . .. Y-7 - s 0 - -

continuous mapping theorem we may conclude that C converges weakly to the process m(t, z) -
zff0(t)= mo(t,z).

It remains to show that (M,M)-*(rn,fF) jointly in D2 x D[0,1]. The process R is aPi
martingale and (Kf)t- (fr ),, by Lemma 9(a). The Lindeberg condition (3.10), with p = 1 and
H()(s) = V/'i//Y{n)(s) can be checked as in the proof of Lemma 6. Therefore, by Rebolledo's

martingale central limit theorem, f-* rIi in D[0, 1]. Also, by the proof of Theorem 3.1, we have

M-4rm in D2 . If we can show that the finite dimensional distributions of (M, Kf) converge to
those of (in, On), then (i, Mf)--+ (m, fn) jointly in D2 x D[0, 1] and, since rn and fn have continuous
paths, by the continuous mapping theorem we may conclude that C converges weakly to the process
ma(t, z) - zrn (t)= mo(t,z).

To show that the finite dimensional distributions of (M, Kf) converge to those of (in, Fn),
it suffices to show that for any 0 < zo < z, < ... < zp < 1, p 1,

in D[0, 1]P+. This is done using Rebolledo's martingale central limit theorem, as in the proof of

Theorem 3.1. It only remains to consider the covariation between M(., z) and Mir(.). By Lemma
9(b)

for each z. There are p + 1 Lindeberg conditions to check. But these conditions have already been
checked separately for the p components involving MW and the one component involving ft. This
completes the proof.

PROPOSITION 4.2. Suppose that X is a counting process, the assumptions of Theorem 3.1 hold,
d.b2 -+ oo and K is Lipschitz. Then if Ho holds, for all 0 < a < 1

lim P(T(n) > c('" )) = a.
n-too

Proof Let E denote the space of all functions of the form 0 = (g, h) with g and h nonnegative

bounded functions on [0,112, and endow it with the product metric from L 2 ( [0,12, ds dx) x
L2 ([0, 1]2 , dsdx). Let On = (gn, hn), n > 1 be a sequence in E such that On -+ 0. Then V --+i
and -- / in L2( [0,1]2, dsdx). An argument using Doob's inequality applied twice (cf.
Cairoli (1970) and Bass (1988)) shows that if -0 E L2([0,1]2, ds dx), then

/o'
E 16 f s2(8, x) ds dx.

Applying this inequality to 4, = - V and , = - - gives F0.Fo, where Fe is
the distribution function of T under Po. Let F - ' denote the left-continuous inverse of F6. By
Billingsley (1986, p.343) we get ca(On) = F;'(1 - a) - F;-'(1 - a) = c0 (O), provided F - 1 is

continuous at 1 - a. Now by Lemma 10(b) we have 0, - B in the metric of E. Thus, using a
P6subsequence argument, ca(,n) *c+(O) and

Pe(T( ) > c.(#n)) - Po(T > ca(0)) = a, (4.1)

9



for all but countably many a, where we have used Slutsky's theorem and the continuity of Fe. Since
Po(T(") > c.(0n)) is a nondecreasing function of a it follows that (4.1) holds for all 0 < a < 1,
completing the proof.

PROPOSITION 4.3. Under the assumptions of Theorem 3.1, if Ho does not hold then T(4)-Poo
as n -- + oo.

Proof First note that if Ho does not hold then 11A4 - Ao(I > 0, where

Ao(t,z) = z -I a(s, X) fz(,) Y(s)(Z, 1) dz ds.

Also note that by Doob's inequality and Lemma 7 we have E IIR(-)112 = 0(1), where R(n) is
defined in the proof of Theorem 4.1, and using similar arguments to the proof of Lemma 7

E llp - A01 2 S E &(n)(s) 1 ja(s, x) fz(.) y(.)(Z, 1) dz =0 ,

where

.p (t, z) = z ()(s) d8 and &(r)(s) r
r=1

Thus, since v ,lA[ - ill = Op(1) by Theorem 3.1,

v'lAl - Aohl < vrnIA - ill + + IlM(&)II + VIIp - oll = T ( %) + op(1).

This shows that T()- oo if Ho does not hold.

REMARK. The above test for independence can be modified to provide a goodness-of-fit test for
Aalen's multiplicative intensity model. Now Ho is the null hypothesis Ho: there exists a function
a : [0, 1] --- R such that a(t,z) = ao(t) z for all t, z E [0,1]. Under this H0 , the natural estimator
of A is A(t, z) = z2 A(t), where A is the Nelson-Aalen estimator as before, except that
- ft

() ()= ZI(Z,(s) E [0,1]) Yj,(8)Z,().

*: The only changes to Theorem 4.1 are that

p(t) = 11 x jz(t)y(t)(x, 1)dx

and

Mo(t, z) = jf v(',)dW(s,x)- X,) jdW(s, x).

10
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4.2. Testing for time-homogeneity

We want to derive a test for the hypothesis Ho: a(ti, z) = a(t 2 , z) for all t1, t2 , z E [0, 1],

i.e. a is only a function of the covariate. One possible application of such a test would be in testing
whether a pure jump process on a finite state space is a Markov renewal process, see McKeague
and Utikal (1987, Section 1). The natural estimator for A under Ho is A* (t, z) = t.A(1, z). In order
to test Ho we could use the test statistic S(n ) = V/nsupt,. IA(t,z) - A*(t,z)1. As in Section 4.1,

once we know the asymptotic distribution of Vir(A - A4*) we can derive an asymptotic size a test
for Ho based on S ( n ) . This test can be shown to be consistent using a proof similar to that of
Proposition 4.3. The asymptotic distribution of v/fi(A - A*) is given by the following theorem.

THEOREM 4.4. Under the conditions of Theorem 3.1, if Ho holds then

in D2 as n -- oo, where

mx(tZ) = f V'K-i7 )dW(s,x) - t f i/)i(7-)dW(8,X).

Proof. Note that v i(A - A*) = 7(vf(! - A)), where r: D2 --+ D2 defined by 7r(f)(t, z) =f(t, z) -
t f(1, z) is continuous. The result follows immediately, using Theorem 3.1 and the continuous
mapping theorem.

4.9. Testing for proportionality

Thomas (1983) introduced the model aCt,z) = cr(t)a2 (z) for the conditional hazard ,P
function in the survival analysis context, where ao-: [0, 1] -- R, j = 1,2 are unknown functions.
This model is a generalization of Cox's proportional hazards model to allow for arbitrary co-
variate dependence while keeping the proportional hazards form. In this section we introduce a
goodness-of-fit test for Thomas' model. Note that this is not the same as a goodness-of-fit test for
Cox's proportional hazards model. However, Cox's model can be treated in a similar fashion, see
McKeague and Utikal (1988).

Let Ho denote the null hypothesis Ho: there exist functions oti: [0,1] -* R, j = 1,2 such
that a(t,z) = cl(t) C12(z) for all t,z E [0, 11. In order that a and ct 2 are identifiable we impose

the condition A,(1) = 1 under H0 , where A,(t) = fa ri(s) ds. Equivalently, we could impose the •

condition A2(1) = 1, where A 2 (z) = f0 a(x) dx. A reasonable estimator for A under H0 is -.,

At (t,z) = A, (t) A 2 (z), .

where

A, (t,1) (with 1/0 =- 0) and A2 (z) = .(1,z).

In order to test Ho we could use the test statistic U W = n sup, (t, z) - At (t, z)J. As before,

once we know the asymptotic distribution of 4n(A - At) we can derive an asymptotic size a test
for Ho based on U("). This test is an omnibus goodness-of-fit test for proportionality in that it is

consistent against any alternative.

,--'I



THEOREM 4.5. Under the conditions of Theorem 3.1, if Ho holds and A2(1) 0 0, then %

Vfn( - Aft)Am 2

in D 2 as n --+ oo, where

M2 ( ' Z) fi I j hv sxdW(s,x) - P A2(z) ft f \/(9 x) dW (,.x)

-#AlCt) f h-s) dW(s, x) +6 A, (1t) A2 (Z) f l-x) dW (,X)
Jo

and = 1/A 2 ().-

Proof. The result follows readily from Theorem 3.1, using the continuous mapping theorem (cf.
the proof of Theorem 4.4) and the identities

( - ~At)(t,z) = (A - A)(t,z) - [A(t, 1) A(i, z) - A (t, 1) A (1, z) ]

+ (tZ1) A (lz ( 1, 1) ] _1_

( .-4)(t, Z) - l[ (,) - A t,1)) (1(1,z) - A(1, z))+ A, z,)Ct,) - ACt, 1))A(IJi)

t(.4(1,))2 (1(1,1) ,(1,1))

+ (1,1) - .(1,I) . (t, l).(l,z) A (t, ) ).l, /

+________ I ,Zf.I

REMARK. Under H0 , we have from Theorem 3.1 that A, and A2 are uniformly consistent esti-
mators of A, and A2 , respectively, and

.vfn(A2 - A 2 )- m (4.9)

in D[0, 1] as n -+ oo, where m3 is a continuous Gaussian martingale with covariance function

IzAz2 I0

Cov(M3 (Z), M(Z 2)) h (s, x) 11 dx.

This could be used to obtain confidence bands for A2 under Thomas' model, by transforming m3
to Brownian bridge (cf. the discussion following Proposition 3.2). An analogous result can be
obtained for A,.

12



5. Technical Lernmae

In this section we make frequent use of lemmas from McKeague and Utikal (1987). We apply
those lemmas by changing w,, to d- 1 , by taking , = I,. when z E 1,, by changing Y(n)( ,z)

to Yn)(s), y(n)(s) to (nn)(s) and J(n)(s,z) to J,!')(s), where j,4)(s) = 8 $ 0). Since
U_5 I, = [0,1] for all n, the set C in A1-A3, B1, B2 of McKeague and Utikal (1987) can be

chosen as [0, 1]. Results quoted from McKeague and Utikal (1987) will be referred to as Lemma
A.1, etc..

LEMMA 1. Suppose that Al, A2 and B2 hold and

dn = o(n') for some 6 E (1/2, 1). (5.1)

Then

E 11;p - All1 = 0(dn-1 ).

Proof. From (3.8) we have

t'X r=1 fo Jo0n) 8

< sup E a () (8,X) < 1 + 12,
., ,n (s)

where

sup 1;7-~

12 = sup Ia(,x)I E(1 - J(n)

By Lemma A.5 we have I, = 0(d;'). Next, by Lemma A.4 we have 12 = 0(exp{-nKdK1 ),
where K = inft,. fz(ty(t(z,1). Thus, since exp-nKd;1 ) = 0(dn/n)k for all nonnegative
integers k and (d/n) = 0(1/dn) for k sufficiently large by (5.1), we have 12 = 0(d;'). This
completes the proof.

Proof of tightness

First note that

d(M=(n))- I(Z, (s) E I,1rY(s)d(M,). (5.2)
t=l

and, since M,( n ) , r = 1,... ,d are orthogonal martingales,

= z (n) d(M(n)).. (5.3)

1.3
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Tightness of {M('), n > 1) in D2 will be shown by establishing a product moment condition
on the increments of M(n) over the grid T( ) = 10, 11 x {0, 1/4, 2/d,..., 1}.

For fixed 0 < 8 < 1, 0 < z < y < 1, define the martingale

Mi.(t) = t()((8 ,t] X (X,y]), t > 8,

and denote mi = M? - (MI).

LEMMA 2. Suppose that Al, A2 hold, d = o(n) and X is either a continuous process or a counting
process. Then there exists a positive constant K such that for all n > 1, (s, x), (t, y) E T(n)

E(MI)2 < K (t - s)2(y - z)2, (5.4)

E m2(t) < K (t- s)(y- x)2 . (5.5)

Proof. By (5.3)

2 lyd.i ft 1 / ( t'E(MI)2 Ef d(M(,n)),,f d/M(")\ .t , ,,i++ (,(n)(V))2 r :()) '"
7,, r2=[xd .1+1 E1 rl 2~7 ~~ ) ()

By (2.2) there exists a positive constant K, such that d(M)./ds < K for all 0 < a < 1. Therefore,
by (5.2), d(M(")./ds < K 1 Y(")(a). Applying Fubini's theorem we obtain

E] 1 d(Mr)), 1( d(Mr2 ()r 2 (V) I

tft I .

< K12 E 1) dvldv 2.
-Yr(n (VI) Y, (V2)

But by Lemma A.3 '

sp[ 1 ] 2...Q()
su L y(n) (s) _

This proves (5.4). Now we turn to the proof of (5.5). First we need to obtain an explicit expression
for mi. Integration by parts gives

M12(t) = 21f Mx(v-) dM1 (v) + [Milt-
In the case that X has continuous sample paths [MI] = (MI). In the counting process case

[Milt = E (AM1 (v)) 2 ,

-<V<t

where AM,(v) = Mi(v) - MI(v-) is the jump in Mi at time v, so from (3.6), (3.9)

n t  1
r=Izd.+l r

= (M1 ), + fi,

14
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where In [yd.] t, dM (n) (V).

r=(zd.]+1 (ld rt)

Thus

ini(t) = 21:. M, (v-) dMi (v) + t,

where in the continuous sample path case it is zero. From this expression we get

Emi(t) _8 E M?(v-) d(M). + 2 E(q),. (5.6)

In order to obtain an upper bound on the first term on the r.h.s. of (5.6) we shall use the Burkholder-
Davis-Gundy inequality (see Dellacherie and Meyer, 1982, p.287)

E sup M,(v) 5 K E[M]t, (5.7)
wEl.,t]

where here, and in what follows, K is a generic positive constant which is independent of n. Then,
by orthogonality of the martingales M ( n ), r = 1,... , dn,

t' n I*'a ]  ft
E M 2(v-) d(MI). ="n E M1 (V-) d(M(,n))

(yz,,]n, (V)) 2 'dn =ld.]+l (f. ' )

n<- 4d (y - x)(t - 8) K sup E ( ( -)(V-d2, y.(-)(,,)
<r, ---

-d, (y -)(ty - 8)(E[MI]2)4 (sup E (1/Y(n)(v) )2)

(by (5.7) and the Cauchy - Schwarz inequality)

<K (y - x)(t - s)(E [M1]') 4 , (5.8)

by Lemma A.3. Now [A1J = (M) + n, so

E [M1]t < 2 E(M) t + 2 E(rq)t 5 K (t - s) 2 ( ' - )2 + 2 E(r/)t (5.9)

by (5.4). Also

fY41
E(17)t= Ef dI(M("))d 2 _ = . ( n' ' ( ,) ) , C

< dn (y - x)(t - ) K sup E n)V

< K (Y- (t - s) (by Lemma A.3 )
n d n

_ (y-)2(t- s) (5.10)

since dn = o(n) and y - x > 1/d if z : y. The desired inequality is now obtained directly from
(5.6), (5.8)-(5.10).

15
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LEMMA 3 (Tightness). Suppose that Al, A2 hold, d. = o(n) and X is either a continuous process
or a counting process. Then {M(n), n _ 1} is tight in D2 .

Proof. Consider the following increments of M() over neighbouring rectangles in [0, 1]2. Define
M as before and

M 2() = - n)()( (t,t] ) X (X,z ),

where 0 < s < t < u < 1, 0 x < y < z < 1. Suppose that the corner points of the rectangles
belong to T( ). Also, denote mj = Md? - (M,), i = 1, 2, 3. From the representation of m1 in
the proof of Lemma 2 it can be seen that mi and m2 are orthogonal martingales. Thus, using the
Cauchy-Schwarz inequality and Lemma 2, we get

E M'?(t) M22(t) = E(M),(M2) + E mi(t)(M2 )t + E m 2 (t)( )t + E m1 (t) m 2 (t)
<(t - 8), (Y - X)(Z - W). (5.11)

Next, by the martingale property of M 3 , we have

E M2(t) M2(u) = E(M?(t) E(M3l(u) I) = E (M2(t)(M3 )u)

= E mi(t) (M3 ), + E(MI), (M 3 )u,

so that, again using the Cauchy-Schwarz inequality and Lemma 2, we obtain

E M1(t) M3(u) < K (y - z) 2 (t - s)1 (u - t). (5.12)

The inequalities (5.11) and (5.12) imply that "condition (f, y)" of Bickel and Wichura (1971,
p.1658) is satisfied with P = 3/2, -y = 4, for rectangles whose corner points lie in T('). Clearly
T(') becomes dense in 10, 1]2 as n grows large. Moreover, M(")(t, z) is constant as a function
of z over each interval j,() = [(r- 1)/d, r/d), r - 1,...,d4, so the modulus of continuity

w (A( )) defined in Bickel and Wichura can be computed using T( ") instead of [0,112. Tightness

of {j(n), n > 1} now follows from the remarks following Theorem 3 of Bickel and Wichura (1971,
p.1665).

Convergence of finite dimensional distributions

Recall the notation H(t, z) = fofo h(s, x) dx ds.

LEMMA 4. Suppose that A1-A3, B1 hold and dn o(n). Then

sup ( ((.) - Ht, z) I--,.
t,z

Proof. From (2.2) and (5.2) we have d( = I{Z,(s) E .1T}Y(s)-y(s,Z,(s),1)ds. By
continuity of -(.,., 1)

I{Z,(a) E Ir y(s, Zi(s), 1) = I{Z,( s) E I,}(y(s,x!"),1) + o(1)) (5.13)

and d(r o(1)ds for arbitrary 4(n) EI uniformly in r dn

and 8 E [0, 11. Therefore by (5.3)
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= (M'] tf (n~~$), 1) +o(1)) ds.
~j _ J0 d_ y (n)~8

Thus, since h is continuous,

E sup I )(., ()t- 1(tz) I
t,Z

d, .. E [ li go d r ( ( , ( n )' ) + °(1)) - h( s( )) d + °(1)

</I +12 + 0(1),

where

I= sup Ef-1 10(1))
*, d y (n) (s)

12 =supE' - y8,X n

It follows from Lemma A.3 that I, - 0. From (5.13) we have that ,'r(a) = Y, "(a) (-(,, g", 1)+
o(1)), where y(n)(a) = En. I {1Z(s) E I) Yi(8) -y(a,Z1( (),1). Therefore

7(n,"),l) yr)() 1
-Y( 8 X r+ Y P ( ) .

y(n)(s (y() (,))2 + (n)() 1 .

Application of Lemma A.6 yields 12 -0 0. This proves the lemma.

LEMMA 5. Suppose Al, A2 hold and dn = o(n). Then, if X is a counting process, the Lindeberg
condition (3.10) is satisfied.

Proof. By (2.2) and (5.2) it suffices to show that

I, = x yE(n)(, d. Y(n) C I-0

But, by the Cauchy-Schwarz inequality, Lemma A.3 and Chebychev's inequality

I -up [r r>dn Sr,.
" 

s yr(n( )  dn y r(n)

< d .nn)21 =0

which proves the lemma.

We shall make use of the following notation:

(n )(,) = d {M r{ )) .
da = >j1{Z(8) E 1}Y(s) 1(8,Z,(8),1),

i=1d8

r=1

17
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*I )7 .A7. K. .. . . . . . . . . . . . . . . . . . . . .

LEMMA 6. Suppose that AI-A3, BI hold and d. o(n). Then

sup E n (nf)(:82 fg(8, x) dx]0().

Proof By the Cauchy-Schwarz inequality and Lemma A.3 (with w,, = 1)

E~nry~)(8 _fg(8,X dX2

(?(n)fA (8)21

Il7. 1 /2I ~flf ___ [I(?() 2 1 2(8g(S ]41/

(n[)n(s)Jf ~~ ~ n n p(s) ) P )d

< K{I 1 (s) + 12(8)}1/2,

where

11(8) = E 1 -yn s [p2 (8)g (a,x) dx]4,%

n

Now 1(n) (s) is a sum of i.i.d. r.v.'s, each of which is uniformly bounded in 8 and has expectation

f0' 2 (s)g (8,x) dx. Thus sup.1 , l(8) = 0 (1/n 2 ). Similarly sup, 12(8) = 0(1/n 2 ). This completes
the proof.

LEMMA 7. Suppose that A1-A3 hold and 4n = o(n). Then

sup E ____ (n ]~)) pIfy(s, x,1) dl 0

Proof. Using the Cauchy-Schwarz inequality and Lemma A.3, as in the proof of Lemma 6, we see

that it suffices to show that I, --*0 and 1, -* ,0, where

- E y (n) (s

S 1nr=1 r7 s Z.'

12 = sup E[-1Y(n)() -p(S)]
2 .

Since -1( .1) is continuous, foc y (s, x, 1) d = d;' (8,du Xrs 1) + 0(1) uniformly in s and z,
where Xr E I. is arbitrary. Thus

11 :5 sup E r(8) 7'(8, Xr, 1)~ +o0(1)

which tends to zero by Lemmas A.4, A.5 (with a replaced by -y). Finally, 12 -*0 by the proof of
Lemma 6.
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LEMMA 8. Suppose that Al, A2 hold and d = o(n). Then
(a) (M)t-+ fo'f g(s,z)dxds;

(b) (P(., z), . fot - fo y(s, x, 1) dx d8.

Proof. Using the orthogonality of the martingales Mr n ), r = 1,... ,dn, we have

f o (?(n)(8))2

T Z ,.(n)d,.
n I! r (n ) (sf () ds.

Parts (a) and (b) the follow immediately from Lemmas 6 and 7, respectively.

Estimation of H, h and g

LEMMA 9. Suppose that A1-A3, BI hold, X is a counting process and d = o(n). Then

supj ft(t,z)- H(t,z) IL0.
t'z

Proof. From (3.4)-(3.6) and (5.3) we obtain ft - H = I + 12, where

(t, z) = n ~ Izd) (8)
I(y,,)(,))2

J2(t,,Z) =Z (,)),t- HC(,,z).

From Lemma 4 we have that sup, 112(t,z) I-+0. By Doob's inequality, (5.2), (2.2), (2.3) and
Lemma A.3 we get

E sup 1,2(t, z) !5 4 n Ef d(M,(n))
, - SU= (

<4sup (, z) sup E (, ,o(Y 7 ( )~ ) (

LEMMA 10. Suppose that X is a counting process, the assumptions of Theorem 3.1 hold, db -n*

oo and K is Lipschitz. Then
(a) E fo'f Ih(t,z) - h(t,z)12 dtdz --+ 0;

(b) under the null hypothesis Ho of Section 4.1, E fof' IJh(t,z) - h(t,z)12 dtdz --+ 0 and

Effo f (t, z) - g(t, Z)12 dt dz -- 0. I
Proof We shall prove (a); the proof of (b) is similar. From (3.6) and the definition of h, we can

hw-it = (h -h) + (h-ht) + (ht - h') - R, (5.14)

19
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where

where (t'z) = f'jjK(ta) K(zbx) h(s,x)dsdz,

h,. K(zb - f K(t -)h(sx) ds,
1 4dt z) =(n) 2

h*(~z)d. ~b. b, K~~-)-
r= 1 

,(n 8

and x, r/d4. Now let us treat each term in (5.14) separately. First, since h is continuous,,t

Secondly, since h is continuous and K is Lipschitz,

su h*tz -(t, z)j ~~ K(~~Z h(t ~- -Z(n (, ) 2(,X

1d E zn -o b d. r

t~~z n ~ r=1"r~

2 bt 0,b

Thirdly, using Lemma A.6 and the assumption that K has compact support,

sup Elht(t,z) - h(t, z)E
t,g

f dfsup IK(--'- ) ds sup -K (zpE h (s, r)- + 0(I)

t~ ~ b sz E= ..n db((n()2 ,

r=l1"

Lo( -L) + o...

Thialy, using Lemma A.3 a

(n)2
t4 ZrJ'(8) Ea] [* () ]ds}r 8

supj~ [f1 K( ~sup [ K ( u jhsX) (y

20 2
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