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- Let X; be a semimartingale which is either continuous Qf of counting process type and which
satisfies the stochastic differential equation dX; = Y; aft, Z‘) dt + dM,;, where Y and Z are pre-
dictable covariate processes, M is a martingale and o is an unknown, nonrandom function. We '1\
study inference for a by introducing an estimator for A(t,2) = f; f; a(s,z)ds dz and deriving
a functional central limit theorem for the -estimator. The asymptotic distribution turns out to -
be given by a Gaussian random field that admits a representation as a stochastic integral with
respect to a multiparameter Wiener process. This result is used to develop a test for independence
of X from the covariate Z, a test for time-homogeneity of &, and a goodness-of-fit test for the
proportional hazards model a(t, z) = d;(t) ag(z) used in survival analysis. = .. e
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1. Introduction

Consider a nonlinear semimartingale regression model in which a process X is related to a
covariate process Z by

t

X, =xo+/ A, ds+ M,, (1.1)
4]

A = Yealt, Z), (12)

where a is an unknown, bounded, deterministic function, M is a martingale and Y is an indicator
process, taking the value 1 when X and Z are under observation, zero otherwise. In the case that
X is a counting process, A and a are called the intensity process and conditional hazard function
respectively. If the intensity process is of the form A; = a(t) Z;, we have Aalen’s (1978) multiplica-
tive intensity model, for which a well developed theory of hazard rate and integrated hazard rate
estimation exists (see the survey article of Andersen and Borgan, 1985). For the nonlinear model
(1.2) an estimator A(-, z) of the time-integrated conditional hazard function A(t, 2) = f; afs,z)ds
at a fixed level z of the covariate Z has been studied by Beran (1981) and Dabrowska (1987) in the
survival analysis setting, and by McKeague and Utikal (1987) in the general case. This estimator
was used to develop methods of inference for the function af:, z) at fixed z, based on observation
of i.i.d. replicates of (X,Y, Z).

In the present paper we study inference for the entire conditional “hazard” function af,-).
For that purpose we introduce the estimator

At 2) = /: A(t,z)dz

of the time and state integrated hazard function

ﬂ(t,z)=/oz/ota(s,z)dsdz=/(‘:A(t,z)dz.

When X is a continuous process or a counting process Theorem 3.1 gives the weak convergence of
the appropriately normalized time and state indexed process 4 to a Gaussian random field. This
is proved by using the results of Bickel and Wichura (1971) to establish tightness. Convergence
of the finite dimensional distributions is shown using Rebolledo’s (1980) martingale central limit
theorem.

In Section 4.1 we prcpose a test for independence of X from the covariate process Z. Here
independence from the covariate means that « is only a function of time. A natural estimator for
A under the hypothesis of independence is given by A(t,z) = z A(t), where A is the Nelson-Aalen
estimator. We derive ihe asymptotic distribution of 4~ 4 in Theorem 4.1 and show that a maximal
deviation statistic based on 4 — 4 yields a consistent test for independence.

In Section 4.2 we propose a test for time-homogeneity, i.e. that a = a(t, z) does not depend on
time ¢. An estimator for 4 under the hypothesis of time-homogeneity is given by 4*(¢,2) =t 4 (1,2).
A maximal deviation test statistic based on A — 4* is shown to yield a consistent test for time-
homogeneity.

In Section 4.3 we develop a goodness-of-fit test for the “proportional hazards” model a(t, z) =
a; (t) az(z), where a; (t) and a;(z) are arbitrary unknown functions. This model has been studied
by Thomas (1983), Tibshirani (1984), Hastie and Tibshirani (1986) and O’Sullivan (1986a, 1986b)
in the survival analysis context (where it is a generalization of Cox’s (1972) proportional hazards

1
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model). These authors propose various estimators for the log relative risk function log a3, where :x:
ay is assumed to be positive, but, except for O’Sullivan (1986a), who finds a rate of convergence Hod
for his estimator, they do not provide any asymptotic theory. We introduce A(1,-) as an estimator . )
of the cumulative relative risk function Az(-) = f; az(z)dz and find its asymptotic distribution.
Technical lemmas used in the proofs of our main results are given in Section 5. ..l‘,
&
2. Preliminaries )
Let (2, 7, P) denote a complete probability space, (%,t € [0,1]) a nondecreasing, right- 3
continuous family of sub-o-fields of ¥, where 7 contains all P-null sets in ¥. All processes are B
indexed by t € [0,1]. The process (M, %) is assumed to be a zero-mean L*-martingale with i
sample paths in Skorohod space D|[0,1]. The quadratic characteristic of M will be denoted by (M) "::;
and its quadratic variation by [M]. The processes Y and Z are assumed to be predictable, with A
Y an indicator process. For simplicity, Z is supposed to be scalar valued. The processes X, Y, Z ®
and M are related by (1.1) and (1.2) which can be written in the form i::;{
it
dX, = Y, alt, Z,) dt + dM,. (2.1) '35:;’
4
..l
We assume that . Vit
<M)t =/ '7(t) ZuYu) ds, (2‘2) ) ;:
) 0:::&
where 7 is a bounded, measurable function. Note that if X is a counting process we have '.,:
.0'|.€
)
1t 2,9) = aft, 2) y. (2.3) ’
Let W = (W (¢, 2), (t,2) € [0,1)%) be a two-parameter Wiener process, i.e. a Gaussian process ::;;‘o
with zero mean and EW (t,z) W(t', 2') = min(t,t') min(z,2'). Let [5 [ ¢(s,z) dW (s, z) denote a o
continuous version of the Wiener integral of a function ¢ € L3([0, 1]?,ds dz) defined by Ito (1951), ' "‘
Wong and Zakai (1974) and Bass (1988). The estimators and test statistics that we shall introduce et
have asymptotic distributions which can be represented in terms of stochastic integrals of this type. o
We make the following assumptions: bty
(A1) For each t, the random vector (Z;,Y;) is absolutely continuous with respect to the product \ i
of the Lebesgue and counting measure. Denote the corresponding density by fz(¢)v (¢)(2, y)- ,
(A2) fz()v(e)(2,1) is bounded away from zero. . Y
(A3) fz(e)y(#)(2,1) is continuous as a function of ¢ and =. ®
(B1) ~(t, z,y) is a continuous function of ¢ and z for each fixed y. i-g '
(B2) « is Lipschitz, i.e. there exists a constant K such that ‘4 ::
. 3
<, .
|a(ts, 21) — altz, 22) | < KV (t1 — 13)2 + (21 — 22)? Xy
"X
for all ¢;,t2, 21, 25. %
'
Let C3 = C([0,1]2) denote the space of continuous functions on the unit square equipped i;
with the supremum norm |} - ||. Let D3 denote the extension of the space D [0, 1] to functions on i\"
[0,1)2, as described in Neuhaus (1971). | f,:.
)
J\i
\‘:J,
o
2 \
Ul
Sy
N




3. Estimation of 4

For simplicity we restrict the region over which £ is to be estimated to [0,1]2. For each
n>1,let Il("),. . I}: ) be the partition of the interval [0,1] defined by

I = ['d—"l,dL), r=1,...,dy—1

I =1- di, :]

where d,, is an increasing sequence of positive integers. The superscript n will usually be sup-
pressed in the notation, for example we shall write I;,...,J; instead of I}"),...,I}:). Let
(X:, Ys, Z;, M;), i =1,...,n denote copies of the generic processes defined above, where only M;
is not observable and the corresponding filtrations are independent. Define

X" (2) = Z": fo t I{Z(s) € 1,}Yi(s) dXi(s), (3.1)
=1

Y™ (s) = Y _ I{Zi(s) € L,}Yi(s), (3-2)
=1
Alt,2) = /: Y("l)(s) dX™)(s), for z € I,,

where 1/0 = 0. Since A(t,z) = J, A(t,z)dz, we propose to estimate 4 by

i(t,z) = / Att, ) dz.
()
The asymptotic distribution of 4 is given by the following result.

THEOREM 3.1. Suppose that A1-A3, Bl, B2 hold, d2 /n — oo, d, = o(n?) for some § € (1/2, 1)
and X is a counting process or has continuous sample paths. Then

V(4 - 4)5m

in D; as n — oo, where

mea)= [ [ VRGDM ),

___sz1)
h(s’z) B IZ(O)Y(J)(zil)‘

REMARK. The process m is a continuous Gaussian random field with mean zero and covariance
function

zZi1Az3 ti1At2
Cov(ml(ty, z1), m(t2,22)) = / / h(s,z)dsdz.
0 0

Proof of Theorem 3.1. Define

dM™)(5) = ‘Z I{Zi(s) € 1,}Yi(s) dMi(s), (3.4)
=1
al™ (s) = i: HZi(s) € 1} Yi(s)als, Zi(s)). (3.5)

=1
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Then by (2.1), (3.1)

dX{")(s) = al™ (s) ds + dM™ (s). (3.6)

Also define the processes

dn z rt
00 =vaY [ [ s I lee 1 as )

()
ft,2) = / / (")( 2) ds I(z € 1,) ds, (3.8)

[zd,]

B = 3 [ s M) 59)

Here and in the sequel, any summation over r = 1,...,[2d,] is defined to be zero when (2d,]| =
Now \/n(4 — 4) =y/n(4, — 4)+M. Lemma 1 gives /n||4, — 4]|50. To complete the proof we
need to show that M (") 2, in Ds.

Suppose that M 20 in D,. Define a linear map #x,: D; — D3 by rn( N2 =

St 2r—1)+dn(2—2,-1)f(t, 2,) for z € I,, where z, = r/d,. Here n,(f)(t,-) isa plecewme linear ap-
proximation to f(t,-) based on the points z,,r = 1,...,d,, for each t. Note that M M) = x, (M ("))

Also, appealing to a D3 version of Lemma 4.1 of McKeague (1988), we have 1r,.(M ("))—»m in Da,

where we have used the fact that m has its sample paths in C3.Thus M M2 m in D;. All that
remains to be proved is that M M®) S m weakly in D;. This will be established by showing that
{M M) n> 1} is tight in D, and the finite dimensional distributions of M M(r) converge weakly to
those of m.

Denote the increment of M(™) over the rectangle (s,t] x (z,y] by M®)((s, t] x (z,9]) =
M®)(2,y) ~ M) (s,y) — M(™)(t, z) + M) (s, z). Tightness is established by checking some prod-
uct moment conditions of Bickel and Wichura (1971) for the increments of M M(™) over certain
neighbouring rectangles:

E(M™{(s,8] x (z,4])2(M™((s,8] x (v,2]))* < K (t - )} (y - 2) (= - v)

and
E(M™((8,4] x (2,8]) (M™((t,u] x (=) P S K (2~ )} (u- 1) (v - 2)*.

This is done in Lemmas 2 and 3.

To show convergence of all finite dimensional distributions it suffices to show that for any
0<z<:-<z,<1,p>1

(M(-,2;) = M(, 2;-1))0, 2 (m(, ;) = m(-, 2-1))8,

in D[0,1]P, where D[0,1}? is the product of p copies of D[0,1]. This can be done using a p-
variate version of Rebolledo’s (1980) martingale central limit theorem, as given by Aalen (1977)
and Andersen and Gill (1982, Theorem 1.2) in the counting process case. The processes M (-, z) -
M (-,2;-1), 3 =1,...,p are orthogonal square integrable martingales and by Lemma 4

(M(, 25) = M(, 25-1))e D m(-, 2;) = m(,2521))e,

4
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for each t, = 1,...,p. That completes the proof for the continuous case. In the counting process
case we also need to check the Lindeberg condition (cf. Andersen and Gill’s (1.4) with I =r, 1 = j,
n=d,)

dn 1
3 /o HP (o2 H{IHS (5)] > e}d(Mi™), Do, (3.10)

for all € > 0, where

H(-"](s) )‘ém if {Z_,'_ldn] <r< [Zjdn]
l otherwise,

This is done in Lemma 6.

Confidence sets for 4

In order to apply Theorem 3.1 to obtain Kolmogorov-Smirnov type confidence sets for
A of the form {4:\/nsup,, |A(t,z) — 4(t,z)| < c} we would need to determine the quantiles of
r = sup, , |m(t,z)|. In the time-homogeneous case, considered below, it is possible to use existing
tables. In the general case, the representation of m in terms of the Brownian sheet process W gives
a way to obtain such quantiles by simulation. We shall only consider this in the counting process
case, but the continuous case is similar. First estimate the function H(t,z)= [y Js h(s,z)dzds by

l‘dn]

H(t,z) = / Y(")( e dx(™ (s)

and then estimate A by

e, z),p// = )k (52) dfite, )

where K is a bounded, nonnegative kernel function with compact support, integral 1 and b, is a
bandwidth parameter, b, — 0. The following result, which is proved in Lemma 10(a), shows that
h is an L?-consistent estimator of h.

PROPOSITION 3.2. Suppose that X is a counting process, the assumptions of Theorem 3.1 hold,
dnb2 — oo and K is Lipschitz. Then E [ [ [h(t, z) - h(t, 2)[?dt dz — 0.

The process m, with h in place of h, could then be simulated to obtain approximate

quantiles for r. Using Proposition 3.2 it can be shown (cf. the proof of Proposition 4.2) that this
procedure leads to asymptotically correct confidence sets for A.

Confidence bands for the integrated hazard of a time-homogeneous counting process

Let N be a counting process which is time-homogeneous in the sense that its conditional
hazard function only depends on the covariate process Z, so N has intensity

e = Yea(Z). (3.11)
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An estimator of 4(z) = [ a(z) dz from i.i.d. copies (N;, ¥;, Z;),i = 1,...,n of (N,Y, Z) is given G
by \'c
N x - M ]
i(z) = / A(z) dz, (3.12) :
0 o
where s
n 1 .'..i
Az) = / dN™(s) forze I,, ,t‘:'
0 "’( )
M)
and N{™ is defined by (3.1) with X replaced by N. To apply our result to this special case we ﬁ"
note that the projection x: D; — D[0,1] defined by x(f)(z) = f(1,z) is continuous, so by the o
continuous mapping theorem (Billingsley, 1968, Theorem 5.1) we obtain the following consequence E
of Theorem 3.1. A similar result could be obtained in the case that X has continuous sample or
paths. i
PROPOSITION 3.3. Suppose that Al-A3, Bl, B2 are satisfied, d%/n — co and d, = o(n’) for 1‘
some & € (1/2,1). Then, for 4 defined by (3 12), :&
N D (.
Vn(4 - A)>m :$ :
in C[0,1] as n — oo, where m = (m(2), z € [0,1]) is a continuous Gaussian martingale with mean !
zero and covariance function Cov(m(z1),m(z2)) = H(z; A 23), where :c':
"
X
__aofz) ]
H(z / / dsdz. ‘
(=) = fZ(.)Y(.)(z 1) 't
.4
With the help of Proposition 3.3 we now construct confidence bands for 4. Denote :',”
[2da] 1 )
= n 1 i
H(z)=— / —————dN")(s). Ny
4 ; o (Y™ (s))2 (¢)
'.'.l
As a consequence of the proposition, E;
s
\/ H(1) . ) ( H() > 2
A() - A(- WO ——— \
in C[0,1] as n — oo, where W0 is a standard Brownian bridge. Now H is a uniformly consistent W
estimator of H by Lemma 9. Thus we obtain the following asymptotic 100 (1 — a)% confidence N
band for A: o
~ - ;'.r
- 1 ’
A(z)ica\/m(w—g—(ﬁ), z€[0,1], :“
n H ( 1) Ayt

where P(supgc<¢<1/2|W°(t)] 2 ca) = @, 0 < @ < 1. A table for ¢, can be found in Hall and
Wellner (1980).

= I LA R e
o 2| O ISR SN

p J ™ 50 TR R ¥ ™ T W L W MR % W b BB e M W W AW PR IE TR .ty " S p
n’t‘n"—“" .'!‘.l! e Lk SOOI R w mY o p AN oy .. A ‘. -0‘1 FOn e i ™ W M e N\ A u,lo- oloo sty .‘l-. ke



4. Goodness-of-fit tests
4.1. Testing for independence from the covariate process

In this section we consider the problem of testing whether the covariate process Z is
absent from the model, i.e. whether a is only a function of time. Let Hy denote the null hypothesis
Ho:aft,z1) = aft, z2) for all t, 21,23 € [0,1]. Under Hp the natural estimator of 4 is

A(t,2) = z A(t),

where A is the Nelson-Aalen estimator

and

J_((")(t) = Z/: I(Z;(s) € [0,1]) Y;(s) dX;(s),

=1

P (s) = 3" 1(Zi(e) € [0, 1) %)

1=1

Define some functions ¢ and p by
9(t,2) = 7(t,2,1) fz)v(s)(2,1) / P2(1),
1
pt)=P0<Z(t)<1,Y(t)=1)= / fzyy (e (=z,1) dz.
o

The following result gives the asymptotic distribution of A- 4.
THEOREM 4.1. Under the conditions of Theorem 3.1, if Hg holds then

V(4 - A)%mo

in Dy as n — oo, where

mo(t,z)=/(‘:/(;z\/de(s, z) -z [:/;@dW@,::).

The Kolmogorov-Smirnov type test statistic 7(") = \/n sup, , |A(t, z) — A(t, z)| could be
used for testing Hp. Note that the continuous mapping theorem and Theorem 4.1 imply that

T(n) 5 sup, , |[mo(t, )| as n — oco. In order to construct an asymptotic size « test of Ho, rejecting

Hy if T(") is large, we first need to introduce appropriate estimators for the functions g and h
under Ho. Again we shall only do this in the counting process case. Let

fzda] .t (n)
- _ Y (8) yxin s
Gt,z)=n Z:l/" (7(n)(s))3dx( ),
) n [zda] .¢ dj'((")(s)
H(t, z) - 7‘:2; r=1 ‘/(; Yr(") (8) ?(n)(s)

7



and define

g(:,z)=£§/01/olx(‘;‘)x(’;’) 4G (s,2),
M= [ [ x(5)x(55) )

where K is a bounded, nonnegative kernel function with compact support, integral 1 and b, is a
bandwidth parameter, b, — 0.

The distribution of T = sup, , |mo(t, z)| depends only on 8 = (g,h) and is continuous,
see Ylvisaker(1968). Let c,(f) denote the upper a-quantile of T, so that Pp{T > c,(6)} = « for

0 < @ < 1. Given the estimate §,, = (g, h), we may simulate the process mg, with § and & in place

of g and h respectively, to obtain an approximate critical level cs, Q- Ca (0,,). In Proposition 4.2

we show that

lim P(T™ > M) =a.
11— 00
Thus, rejecting Ho when T(®) > cf,") yields an asymptotic size a test for independence. In

Proposition 4.3 we show that this test is consistent against all alternatives.

Proof of Theorem {.1. A
Decomposing £ in a similar way to £ in the proof of Theorem 3.1, we can write

Vn(d = A)(t,z) = M(t,z) — z M(t) + Va4, — A,)(t, 2),

where

(n)
M(")(‘)_‘/_E/ o

and under Hy

Ap(t,2) =2z /ot a(s)I(Y (") (s) > 0) ds.

Putting d, = 1, k = 1 in Lemma 4 of McKeague and Utikal (1987), we obtain \/n||4, — AH—P;O
under Hy. Also, by Lemma 1, /n||4, - AH—{:O. Therefore \/n|| 4, — .ﬁp"fvo under Hp. To complete
the proof it suffices to show that Egmo, where £(t,z) = Xl\(t,z) — z M(t). Set

wt)= [ [ VoG W o,2),

where W is the same Brownian sheet used to define m in Theorem 3.1. Then  is a zero mean
continuous Gaussian martingale with predictable variation process

M)y = [)‘Alg(s,z) dz ds.

Suppose that (M M)—-»(m i) jointly in Dz x D[0,1]. Define a map «,: Do x D(0, 1] by w,.(fl,fg)
(x,,(fl) fz) where 7, is defined in the proof of Theorem 3.1. Then, as in that proof, (M M) =
,,(M, M)—*(m,m) jointly in Dy x D[0,1] and, since m and i have continuous paths, by the
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continuous mapping theorem we may conclude that £ converges weakly to the process m(t, z) —
zm(t)= mo(t, 2).

It remains to show that (M, M)B»(m,ﬁz) jointly in Dz x D[0,1]. The process M is a
martingale and (M )tfb(ﬁ;),, by Lemma 9(a). The Lindeberg condition (3.10), with p = 1 and
H{:') (s) = /n/Y(")(s) can be checked as in the proof of Lemma 6. Therefore, by Rebolledo’s
martingale central limit theorem, M 2. in D[0,1). Also, by the proof of Theorem 3.1, we have
M2m in D;. If we can show that the finite dimensional distributions of (M, M) converge to
those of (m, M), then (M, I\;I)-I—’»(m,r'n) jointly in D3 x D[0, 1] and, since m and / have continuous
paths, by the continuous mapping theorem we may conclude that € converges weakly to the process
m(t,z) — zm(t)= mo(t, z).

To show that the finite dimensional distributions of (M, M) converge to those of (m, m),
it suffices to show that forany 0< 20 <2z, <.+ <2, <1,p2> 1,

(M-, 2;) = M(-,27-1))0= 1, M ()2 ((m(-, ;) = m(-, 2i-1))o 1, ()

in D[0,1]P*!. This is done using Rebolledo’s martingale central limit theorem, as in the proof of
Theorem 3.1. It only remains to consider the covariation between M(-,z) and M(-). By Lemma
9(b)

~ - P -

(M(:,2), M(:))e={m(:, 2),m(")}e,
for each z. There are p+ 1 Lindeberg conditions to check. But these conditions have already been

checked separately for the p components involving M and the one component involving M. This
completes the proof.

PROPOSITION 4.2. Suppose that X is a counting process, the assumptions of Theorem 3.1 hold,
d.b2 — oo and K is Lipschitz. Then if Hy holds, for all 0 < a < 1

lim P(T™ > 7)) = a.

n—+00

Proof. Let © denote the space of all functions of the form 6 = (g,h) with g and h nonnegative
bounded functions on [0,1]2, and endow it with the product metric from L2([0,1]?, dsdz) x
L?([0,1]?, dsdz). Let 6, = (gn, hn), n > 1 be a sequence in © such that 8, — 8. Then \/gn — /7
and VA, — Vh in L2([0,1)2, dsdz). An argument using Doob’s inequality applied twice (cf.
Cairoli (1970) and Bass (1988)) shows that if ¢ € L?([0,1)%, dsdz), then

_/ot'/(;zfﬁ(s,z)dW(s,z)lz < 16/01‘/01 (s, z) ds dx.

Applying this inequality to ¢ = /g, ~ /9 and ¢ = v/h, — Vvh gives FongFo, where Fp is

the distribution function of T under Py. Let Fg 1 denote the left-continuous inverse of Fy. By

Billingsley (1986, p.343) we get ca(6n) = Fy.2(1 - a) = Fy (1 — a) = c4(8), provided Fy! is

continuous at 1 — a. Now by Lemma 10(b) we have é,.’i'»o in the metric of 8. Thus, using a
" P’

subsequence argument, ¢q(0n)—ca(0) and

Esu

t,z

Po(T™ > ¢4(6,)) = Po(T > ca(8)) = a, (4.1)

9
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'.‘ for all but countably many a, where we have used Slutsky’s theorem and the continuity of Fy. Since !
',i. Ps(T™) > co(6,)) is a nondecreasing function of a it follows that (4.1) holds for all 0 < a < 1,

b completing the proof.

?' L
ot

:E PROPOSITION 4.3. Under the assumptions of Theorem 3.1, if Hy does not hold then y LOEA

I as n — 00.

Proof. First note that if Hy does not hold then ||A4 — Ao[| > 0, where ‘

o !

"'i‘ t 1 1

k Ao(t,2) = z/ —/ a(s,z) fz(s) Y (s)(2,1) dz ds.

:: o p(8) Jo

» Also note that by Doob’s inequality and Lemma 7 we have E||M(*)||2 = O(1), where M(") is

“ defined in the proof of Theorem 4.1, and using similar arguments to the proof of Lemma 7

&.::‘ &™) (s) 1 /! 2 1

[5¢) - 2 < —_ el

:.’. E"'4 AO” supEIY‘")( ) p(8) [) 0(8,2) IZ(O)Y(I)(I)I) dzl O(n)’

W

, where 4

i t "(ﬂ)( ) =z

) aln)(s _ _

0 A(tz) =z /0 Fogh md &Ve)= };asnl(a).

8, r=

1:. Thus, since \/n||4 — 4|| = Op(1) by Theorem 3.1,

, V|4 = Aoll < VallA = All + T + ||| + V|| Fp — Aol = T + 04(1),

N

o This shows that T Hoo if Hp does not hoid.

"

e

i} REMARK. The above test for independence can be modified to provide a goodness-of-fit test for

-..“ Aalen’s multiplicative intensity model. Now Hj, is the null hypothesis Hy: there exists a function

.3 co:[0,1] — R such that a(t,z) = ao(t) 2 for all ¢, z € [0,1]. Under this Hp, the natural estimator

o of 4 is A(t,z) = 322 A(t), where A is the Nelson-Aalen estimator as before, except that W

W 1

Y (s) = ) I(Zi(s) € [0,1]) Yi(s) Zi(s). i

q i =1

:' The only changes to Theorem 4.1 are that

iy R

-, 1

- p(t) = / zjz(e)y(e)(z,1)dz

" 0

4‘.

).' and . . o

z 1

i mo?)= [ [ VEGAW,0)- 32 [ [ VeEmdaw(s,). ‘
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4.2. Testing for time-homogeneity

We want to derive a test for the hypothesis Ho:a(t;, z) = a(tz, z) for all ¢;, t2, z € [0,1],
i.e. a is only a function of the covariate. One possible application of such a test would be in testing
whether a pure jump process on a finite state space is a Markov renewal process, see McKeague
and Utikal (1987, Section 1). The natural estimator for 4 under Hy is 4*(t,z) = tA(1, z). In order
to test Ho we could use the test statistic S(*) = \/nsup, , [A(t,2) — A*(t,z)|. As in Section 4.1,
once we know the asymptotic distribution of v/n(4 — 4*) we can derive an asymptotic size a test
for Ho based on S(®). This test can be shown to be consistent using a proof similar to that of
Proposition 4.3. The asymptotic distribution of \/f_l(!i — A*) is given by the following theorem.

THEOREM 4.4. Under the conditions of Theorem 3.1, if Hy holds then

Va(d - 4°)5m,

in D; as n — oo, where

ml(t,z)=/;/;\/17(s_,?)dW(s,z)—t/ol /O'Mx‘)dwp,z).

Proof. Note that v/n(4 — 4*) = x(y/n(A — 4)), where x: D; — D, defined by x(f)(t,z) =f(t,2) -
t f(1,z) is continuous. The result follows immediately, using Theorem 3.1 and the continuous
mapping theorem.

4.8. Testing for proportionality

Thomas (1983) introduced the model a(t,z) = a;(t) az(z) for the conditional hazard
function in the survival analysis context, where «;:[0,1] — R, 5 = 1,2 are unknown functions.
This model is a generalization of Cox’s proportional hazards model to allow for arbitrary co-
variate dependence while keeping the proportional hazards form. In this section we introduce a
goodness-of-fit test for Thomas’ model. Note that this is not the same as a goodness-of-fit test for
Cox’s proportional hazards model. However, Cox’s model can be treated in a similar fashion, see
McKeague and Utikal (1988).

Let Hy denote the null hypothesis Hy: there exist functions a,:[0,1] = R, j = 1,2 such
that a(t,z) = a;(t) az(z) for all t,z € [0,1]. In order that a; and a; are identifiable we impose
the condition A,(1) = 1 under Hyp, where A,(t) = f(: a; (s) ds. Equivalently, we could impose the
condition A3(1) = 1, where A3(z) = f; az(z)dz. A reasonable estimator for A under Hp is

A, 2) = Ai(t) Aa(2),

where
A = M wi = an A 2) = ] ¥4
Ait) = ) (with 1/0 = 0) d  Ay(2) = 4(1,2).

In order to test Hy we could use the test statistic U(") = \/nsup,, |A(t,z) - At (t,2)|. As before,

once we know the asymptotic distribution of \/r—z(ﬁ - AT) we can derive an asymptotic size o test
for Hy based on U(™). This test is an omnibus goodness-of-fit test for proportionality in that it is
consistent against any alternative.
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THEOREM 4.5. Under the conditions of Theorem 3.1, if Hp holds and Az(1) # O, then
V(4 - AT)E'mz

in D, as n — oo, where

maft, 2) = /0 /{, VA, 2) W (s,2) — B Aa(2) /0 /o VR(e,2) dW (s,2)

_ﬂAl(t)/; /Oz \/h(s,a:)dW(s,z)+ﬂA1(t)A2(z)‘/0 /(; VvV h(s,z)dW (s, z)
and 8 = 1/A45(1).

Proof. The result follows readily from Theorem 3.1, using the continuous mapping theorem (cf.
the proof of Theorem 4.4) and the identities

(4 - ah)(t,2) = (A - A)e,2) - .4_(11:1—)[’3(" 1) A(1,2) - A(t,1) 4(1,2)]

A ] l 1
+ﬂ(t,1)~4(1’z)[,4(1,1) - ﬁ(l,l)]

= (A - A)(t,2) = = (A6, 1) — A6, 1) (A(1,2) — A(1,2)) + A(1, 2)(A(e, 1) - A2, 1)

A(1,1)
+AED(40,2) - 4,9 + 2B G, - 4w,y

4(1,1) - 4(1,1) [A“(t,l)ﬁ(l,z) _ A(t,l)A(l,z)]
A(1,1) A(1,1) A,y

REMARK. Under Hy, we have from Theorem 3.1 that A; and A; are uniformly consistent esti-
mators of A; and A, respectively, and

SR

Vr(Az — Az)Bom; (4.9)
in D[0,1] as n — oo, where mg is a continuous Gaussian martingale with covariance function o
SN
ziAz3 1 l-\,':.‘
Cov(mga(z1), ma(22)) =/ / h(s,z)dsdz. !
0 o ',:-

LI
G4

This could be used to obtain confidence bands for A; under Thomas’ model, by transforming ms;
to Brownian bridge (cf. the discussion following Proposition 3.2). An analogous result can be
obtained for A;.
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5. Technical Lemmas \

In this section we make frequent use of lemmas from McKeague and Utikal (1987). We apply
those lemmas by changing w, to d;!, by taking I, = I, when z € I,, by changing Y (")(s, z)
to v\ (8), 7™ (s) to ¢ ")(s) and J(")(s z) to Jy ")(s), where J; ")(s) = I{Y(")(s) # 0}. Since
Ui<r<d. Ir = [0,1] for all n, the set C in A1-A3, B1, B2 of McKeague and Utikal (1987) can be [
chosen as [0,1]. Results quoted from McKeague a.nd Utikal (1987) will be referred to as Lemma

- e W
)

:: A, etc..
'
. LEMMA 1. Suppose that A1, A2 and B2 hold and .
P |
:' d, = o(n®) for some § € (1/2, 1). (5.1) R
0 )
i;. Then
R E||p - 4]l =0(d;*). ]
“: t
::.: Proof. From (3.8) we have :
o
) n)( z pt
i E|f, - 4| = (n) ds I(z € I,)dz - / / a(s,z)dsdz ]
’5 o Jo !
;:. a n) (8) LY

< dJ —a(s,z)| < I + L t
EE et 2% Y () a(s z)l <hL+D,
where
‘ L]

n) :
o I, = sup o (8) _ J™ (s)a(s,z) |,
:: ! l'r,:EIi Yr(n) (8) ( ) ( )I ‘-
: I = sup [a(s,2)| E (1 - IM(s)).
. r,9,T .
E By Lemma A.5 we have I, = O(d;!). Next, by Lemma A.4 we have I, = O(exp{-n K d;'}), ]
v where K = inf,, fz(zy(g)(z,l). Thus, since exp{—n K d;'} = O(d,/n)* for all nonnegative ;
j integers k and (d,./n) = 0O(1/d,) for k sufficiently large by (5.1), we have I = O(d,'). This )
Y completes the proof. '
” Proof of tightness ‘
- U
N First note that l
'_', n
. M), = Y {7 () € LIV ()M), (52)
X =1
:: and, since M{™), r = 1,...,d, are orthogonal martingales,
:: teda]
M(n) == (n)

;. AT, 2, = 7 g o A (53)
ty r=
s.
:‘: 13
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Tightness of {M" (") n > 1} in D, will be shown by establishing a product moment condition
on the increments of M(") over the grid T(*) = [0,1] x {0, 1/dy, 2/dy,...,1}.
For fixed 0 < 8 <1,0 < z < y £ 1, define the martingale
My(t) = M™((s,1] x (2,4]), t2s,
and denote m; = M? — (M;).
LEMMA 2. Suppose that A1, A2 hold, d,, = o(n) and X is either a continuous process or a counting
process. Then there exists a positive constant K such that for all n > 1, (s,z), (¢,y) € T(®)
E(M)2 < K (t - 8)*(y - 2)?, (5.4)
Emi(t) < K (t - s)(y - z)°. (5.5)
Proof. By (5.3)
n? lyd”l my, [ 1 (n)
(M) = o7 B[ Py, [ —— ).
- ,zd,,ﬂ [ZROIE ’(v) O O )
By (2.2) there exists a positive constant K such that d(M),/ds < K, for all 0 < s < 1. Therefore,
by (5.2), d{M; (n) Yo/ds < K 1Y,-(")(s) Applying Fubini’s theorem we obtain
), [ — it
E / ——d(M," / —_—d({M"
c B2 T T @ Py T
2 t ot 1
< Kl/ / E dvidus.
o Jo Y (01) Y (v2)
But by Lemma A.3
2 d,\2
supE[ (")(s)] 0(7{) )
This proves (5.4). Now we turn to the proof of (5.5). First we need to obtain an explicit expression
for m;. Integration by parts gives
t
M2(t) = 2 f My(v=) dMi(v) + [Ma)s.
[ ]
In the case that X has continuous sample paths {M;] = (M;). In the counting process case
Mi]e= D (AM;(v))?,
a<v<t
where AM; (v) = M;(v) — M;(v-) is the jump in M; at time v, so from (3.6), (3.9)
L x(n)
M) = = / - ™ (v)
z ,_,,4.,“ . (v ’( T
= (My)¢ + ne,
14
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where
n IVz‘nl t 1 )
"= / — o= dM;" (v).
drzi r=|zduj+1"* (Y'( (v))z
Thus

ml(t) = 2/.‘ Ml(v—) dMl(U) + ne,

where in the continuous sample path case 7, is zero. From this expression we get

Emi(t)<8 E / ‘ MZ2(v=) d(M;), + 2 E(n),. (5.6)

In order to obtain an upper bound on the first term on the r.h.s. of (5.6) we shall use the Burkholder-
Davis-Gundy inequality (see Dellacherie and Meyer, 1982, p.287)

E sup M{(v) < K E[M,)?, (5.7)
v€E[s,¢]

where here, and in what follows, K is a generic positive constant which is independent of n. Then,
by orthogonality of the martingales M,("), r=1,...,d,,

t lyda] t
n MZ(v-)
E MZ(v=) d{My), = — E E l_d(M,S") Y
/' ' ( ) 1 d?i r=[zd.}+1 ’ (Y"(")(v))2 )

n M3 (v-)
< 'J?:dn (y-2)(t-8) K sup E (W)
< K (v 2)(t - ) B2 (sup B (1/Y) (0) )}

dn
(by (5.7) and the Cauchy — Schwarz inequality)
<K (y-2)(t- o) (E [M])3, (5.8)

by Lemma A.3. Now [M;] = (M;) + 1, so

E M} <2 E(M1)] +2 E(n): < K (t - 8)*(z - y)*> + 2 E{n). (59)
by (5.4). Also
lydal t 1
E(n) = — E | ———d(M™),
NAE- IEI J TSI
n 1 3
< ﬁ"d” (v-z)t-8) K Srl’l'? E (W)
< Kd—:(Ld_i)(t—s) (by Lemma A.3)
< K (y—-z)?(t - s) (5.10)

since d, = o(n) and y — z > 1/d,, if £ # y. The desired inequality is now obtained directly from
(5.6), (5.8)-(5.10).
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LEMMA 3 (Tightness). Suppose that Al, A2 hold, d, = o(n) and X is either a continuous process
or a counting process. Then {M{™), n > 1} is tight in D,.

Proof. Consider the following increments of M(®) over neighbouring rectangles in [0,1]2. Define
M, as before and _

My(t) = B ((5,8]) X (3,]),

Ms(y) = M™((t,4]) % (2,9]),

where 0 < s <t <u<1,0< z < y< z< 1 Suppose that the corner points of the rectangles
belong to T("). Also, denote m; = M? — (M;), { = 1, 2, 3. From the representation of m, in
the proof of Lemma 2 it can be seen that m; and mg are orthogonal martingales. Thus, using the
Cauchy-Schwarz inequality and Lemma 2, we get

E M3(t) M3(t) = E(M1)e(Mz): + E my (t){Mz)e + E ma(t)(M1)e + E my (t) mz(t)
<@-a)iy-2)(z-v) (5.11)
Next, by the martingale property of ms, we have
E M} (t) M3(u) = E(M7(t) E(M3(u)|%) ) = E (M7 (t)(Ms)u)
= Em;(t)(Ms)y + E(M1)e(M3)u,
so that, again using the Cauchy-Schwarz inequality and Lemma 2, we obtain
E M2(t) M2(u) < K (y—2)%(t - 8)} (u —1). (5.12)

The inequalities (5.11) and (5.12) imply that “condition (8, 4)” of Bickel and Wichura (1971,
p.1658) is satisfied with § = 3/2, y = 4, for rectangles whose corner points lie in T(). Clearly
T(™) becomes dense in [0,1]? as n grows large. Moreover, M) (t,2) is constant as a function

of z over each interval 1™ = [(r — 1)/d,, r/d,), r = 1,...,dy, 8o the modulus of continuity
w;'(M (n)) defined in Bickel and Wichura can be computed using T(") instead of [0, 1)2. Tightness

of {M("), n > 1} now follows from the remarks following Theorem 3 of Bickel and Wichura (1971,
p.1665).

Convergence of finite dimensional distributions
Recall the notation H(t,z) = [, fJ h(s,z)dz ds.
LEMMA 4. Suppose that A1-A3, Bl hold and d,, = o(n). Then

N(n) Ll
s‘up [(M\™)(-,2))e — H(t,2) |=0.
z

Proof. From (2.2) and (5.2) we have d(M™), = Yoic11{Zi(s) € I} Yi(s) (s, Zi(s),1)ds. By
continuity of ~(-,-,1)

I{Z;(s) € I,} (s, 2:(s),1) = I{Z;(s) € 1, } (7(s,z£"),l) + 0(1)) (5.13)

and d(M™), = Y™ (s) (v(s,z\™,1) + o(1) ) ds for arbitrary z{™ € I, uniformly in r =1,...,d,
and s € [0,1]. Therefore by (5.3)

i

.'.,.I',l’

505 ®

Y



[zda]

~ 1
(n)y¢. == z
(M ( b z))‘ dn ot
Thus, since h is continuous,

E sup [(B)(.,2). - H(t,2) |

/t 1—1——(7(3, :ci"), 1) + o(1)) ds.
o dn Y™ ()

1 dy in 1 (n) )
SZ;E/O ld—nmh(s,x, 1)+ 0(1)) — k(s,z{™)| ds + o(1)

< 5L+ Iz +0(1),
where

b= B[ gm0

n)
RO (U008 ) NPT
IZ_SEPE . Y,(")(s) h(s,zi™)|.

It follows from Lemma A 3 that I; — 0. From (5.13) we have that v{")(s) = ¥;{")(s) (v(s, 2™, 1)+
o(1)), where %")(s) = 7., I{Zi(s) € I} Yi(s) 7(s, Z:(s),1). Therefore
Ae,z™,1) __4M(e) 1
PR w2
Y'Ws) (e YR(e)
Application of Lemma A.6 yields I; — 0. This proves the lemma.

LEMMA 5. Suppose Al, A2 hold and d,, = o(n). Then, if X is a counting process, the Lindeberg
condition (3.10) is satisfied.

Proof. By (2.2) and (5.2) it suffices to show that

de 1
n l \/;3_ l
I=—§fE/ 1{¥° >ebds— 0.
! 2o Jo YV(e) {dn Y™ (s) }

But, by the Cauchy-Schwarz inequality, Lemma A.3 and Chebychev’s inequality

L < SSP{E [y'(nl)(s)]zp [-;i\/:;}’,(—"l)(.s > 5] }1/2

{o(2) %)} =o(%)

il
d,
n
< —
=7
which proves the lemma.
We shall make use of the following notation:
d(M{™) <
A) = B = 5 1) € L3¥i(0) 2(e, Zi6), 1),
=1
dn

¥ (s) = D 4i™(s).

r=1
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A LEMMA 6. Suppose that A1-A3, Bl hold and ¢, = o(n). Then I,
‘7 Rt
9 ~(n) 1 2 |
A(s) —of}
, sup B ["(?(u)(s))z /o 9(s,2) "’] = O(n)' ;
~ :
f! Proof. By the Cauchy-Schwarz inequality and Lemma A.3 (with w, = 1) \ ‘:ﬁ
! ¥
' (n) 1 2 '»
q (8) 1 ¢
) E[ (Y(")( JE / 9(s, z) d:cj _
2 7
) n 8y1/2 1 Y(n)(s)\2 [? 441/2 .
b < - _—(n) o \"J 2 W
[ = {E[}"(u)(s)] bR e - ( np(e) ) /o P(s)a(s,2)dz] '} 2
< K{Li(s) + Iz(s)}'/?, .
' where .
’ 1 (n) ' ¢ )
: L{s)=E[-4"(s) - [ #*(s)e(s,2)dz] , N
K n 0 ‘:
¢ Y () (s)14
,; o= 2lpr - £200 :
' Now 5(")(s) is a sum of i.i.d. r.v.’s, each of which is uniformly bounded in s and has expectation ‘f
I3 p*(8)9(s,z) dz. Thus sup, I1(s) = O(1/n2). Similarly sup, I3(s) = O(1/n?). This completes ::
the proof. ﬁ
K LEMMA 7. Suppose that A1-A3 hold and d,, = o(n). Then -»
y it ¢
) n z
D (3) 1 / -
E ,x,1)d 0. )
L) s"'? ld,,Y(")(s) (n) (8) (8) o 7(8 x ) a:, b d 2
A
A Proof. Using the Cauchy-Schwarz inequality and Lemma A.3, as in the proof of Lemma 6, we see Ny
; that it suffices to show that I; — 0 and Iy — O, where \_
t
| lzdn] n) (8) z 2 T
] L= sup E / v(s,z,1)dz| , s
[d (")( 8) o ] 7
L =swpE [;7‘"’ (s) - p(s)]2. !
8
Since 4(-,+,1) is continuous, [ v(s,z,1)dz = d;? led"] v(s,z,,1) + o(1) uniformly in s and z, 3
K where z, € I, is arbitrary. Thus |:;
) ¢
! (n) g
7 (8) Py
- (s, z¢,1){ + 01 )
T ~ 10621 +o0) ,

; which tends to zero by Lemmas A4, A.5 (with a replaced by v). Finally, I; — 0 by the proof of .
Lemma 6. )
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LEMMA 8. Suppose that A1, A2 hold and d,, = o(n). Then ” !

(a) (M),-fv f(;fol 9(s,z) dz ds; :‘_

~ — P -

(5) (B, 2, MONE [§ 57 J5 (0,2, 1) de o 3
Proof. Using the orthogonality of the martingales M,("), r=1,...,d,, we have :3:
Y

t  s(n) ),

o 7™ (s) J

<M>‘ =n (}',(n) (8))2 ds! N

l‘d"l ('l)( 4]

8) b

M M = / ds. o

( ( Z) ( )>‘ (n) (B) Y(”) (8) ;’;)-

l;fk,'

Parts (a) and (b) the follow immediately from Lemmas 6 and 7, respectively. ot
)

Estimation of H, h and g ?‘:

4

LEMMA 9. Suppose that Al-A3, Bl hold, X is a counting process and d, = o(n). Then ':

P Ll L} ‘:

sup| H(t,z) — H(t,z) |=>0. o

‘,l (78

]

Proof. From (3.4)-(3.6) and (5.3) we obtain # — H = I, + I, where 0

lzd.]

2) = M)
Il(t’ ) / (Y(n)( ))2 ( )’
Lt z) = (M(")(-,z) Ye — H(t,2).

From Lemma 4 we have that sup, , |I3(t, z) IQO By Doob’s inequality, (5.2), (2.2), (2.3) and
Lemma A.3 we get

n2 dn
mwMHK4”” /]mmw<wm.
23,—. upa(e, ) sru.pE(yr(")(s) )s - 0(%‘) O(d_r:l) B O(%)

LEMMA 10. Suppose that X is a counting process, the assumptions of Theorem 3.1 hold, d,, b2 —
oo and K is Lipschitz. Then

(a) E [y [y |h(t,z) - h(t,2)|? dt dz — o;
(b) under the null hypothesis Hy of Section 4.1, Efo fo |R(t,z) — h(t,z)|? dtdz — O and
E'_fo fo 13(t,z) — g(t, z)[>dt dz — 0.

Proof. We shall prove (a); the proof of (b) is similar. From (3.6) and the definition of h, we can
write

=(h-h)+ (h-nh) + a1 -n*) - R, (5.14)

19 '

AT

P—
S -

\ Y " ~ n ” g - - % LS T TR G R TS TS I S AR TR RN
"l".‘l"" KN ‘l.. ..Q KIS R ."‘;\‘a"u W N M A u~. SUVA RN RN M e J.\‘.‘d‘.xt N) J‘.! X a X !l J~E|~J N ‘F' 2 . he! ~ . » !



- an s -

Gy A - e o S N Dy

i e o

i
1

OISR PURPLI I

REWSOAT

T O O O I N s LW s L . R R L LN A
where -
- 1 t—s z—z
h{t, z =—/ / K K h(s,z)dsdz,
( ) nJ0 JO ( n) (bn ) ( )
+ 1 I z~z 1 t—s
wt,z) = bgd,.ZIK - fo K( - )h(s,z)ds,

dn (v (5))2
1 t—s 1 (n) s
/; K( bn ) (Y'(ﬂ) (8))2 dM,- ( ))

(=)
z~z 1 sy n ol™(s
=gl SH(2) [ KE) 3 2
7z 2K (5)

and 7, = r/d,. Now let us treat each term in (5.14) separately. First, since h is continuous,

/01/01(11(t,z) — h(t,2))? dtdz — 0.

Secondly, since k is continuous and K is Lipschitz,

/IK(zbu )h(s z)dx—-——z (

=1

<T.‘.“£’, > K -+ (57)

b O(b . )+o(1)—+0

sup lA(t, 2) — hT(t 2)| < b—sup

n 4,2

) h(s,z,)

}+o(1)

Thirdly, using Lemma A.6 and the assumption that K has compact support,

sup EIhT(t,z) -h*(t,2) <
t,z

b‘dz sup [/

)]2 E|n n_aiV(s) 2
sup (s,2,) — i ¥ (5))2

ds sup [ZK(

O(b,)20 (bndn)?o(1) ~ 0.

b‘dz

Finally, using Lemma A.3,

s:ymzw (S w(E) [ () e [k )

™ (s))*
dn ) s

;“;s

n?

700 )O(b,,)o(

(—n—;—g) — 0.

o
:c.

®)

This completes the proof.
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