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ABSTRACT

The evolution of tweed microstructure upon aging a
53Cu45Mn2Al alloy was studied in the transmission electron
microscope (TEM). Characteristic {110} tweed contrast
develops after the alloy is aged for 4 hours or longer at
400 C, which apparently is just within the miscibility gap,
and is then cooled to room temperature. The microstructure
evolved is proposed to consist of a small proportion of Mn-
rich regions in a Cu-rich matrix. As the phase separation
proceeds, the Neel temperature and the FCC-to-FCT transition
temperature both rise within these Mn-rich domains, and as a
result they begin to display incipient lattice instabili-
ties when observed at room temperature. This takes the form
of a "flickering" effect in the TEM image. The flickering
consists of consistent and repetitive contrast variations at
specific locations 1in the microstructure. The significance
of these microstructural features to damping is discussed.
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I. INTRODUCTION

A. GENERAL

The reduction of noise and vibration is of critical
interest to the U. S. Navy. This is because noise and
vibration can 1lead to several undesirable effects,
including:

* Potential hearing loss and/or impaired performance
of personnel.

* Reduced performance or misalignment of critical elec-
tronics and other equipment.

* Shortened fatigue life of equipment.

* Increased detection ranges of surface ships and
submarines.

Three possible practical approaches for noise and vibra-
tion control are:

1. Isolation - the reduction of energy_ transmission
between the sources (moving parts) and the surface
that can radiate the energy.

2. Structural dissipation - attenuation of the energy
soxgewhere in the structure by the use of isolatiodn
pads.

3. Material dissipation - components are made of alloys
or composites which have high damping capacity.

The first two of these, isolation and structural dis-
sipation, are the approaches generally used 1in current
engineering practice. Although these methods are effective,
they have their drawbacks (e.g., the increased weight and
space necessary to accomodate the materials used for
isolation or dissipation). '

Therefore, this thesis is part of an ongoing research
program at the Naval Postgraduate School to determine the
damping characteristics of existing commercial alloys and to
discover the microstructural mechanisms of damping. An
understanding of these mechanisms should contribute to an
ability to select alloys with the potential for high
damping, or even to design of alloys from their basic
properties.
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B. BACKGROUND

Any system possessing mass and elasticity is capable of

vibration. Damping is the property of a material which
describes how rapidly these vibrations decay once excited
within the material. All materials exhibit some degree of

vibrational damping, but most structural alloys exhibit poor
damping capacity at the amplitude of stress associated with
vibration and noise emission. The specific damping capacity
(SDC) of most structural materials is quite low (i.e. less
than 1%). A summary of SDC, yield strength and density is
provided in Table 1 for selected structural materials and
some high damping alloys. Gray cast iron, which has been
considered an unusually effective energy absorbing struc-
tural metallic material, actually has a SDC value in the
range of 5% to 10%. However, several high damping "quiet"
alloys have damping capacities of 25% to 50%.

Although several alloy systems have been shown to
exhibit high damping capacity, each of these alloy systems
has demonstrated some drawback. For example:

* High cost _due to the limited production of required
base materials for alloy production.
* Poor resistance to corrosion in a marine environment.

* Aging effects, (reduced, damping with time) at the
désired operating conditions.

* Difficulty in machining or casting the alloy.

Y BSERIR e TeRTESE IR She cenping capecity while
Consequently, research is being done to design alloys that
eliminate some or all of these drawbacks.

When considering the mechanisms of damping in materials,
the basic idea 1is that in order to have damping, some
features in the microstructure have to move. Some examples
of moveable features are:
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TABLE 1

DAMPING CHARACTERISTICS OF SELECTED METALS
AT ROOM TEMPERATURE [Ref. 1: p. 203]

Metal ?g? Yleld igffﬁ?th ggyg;ii
Magnesium (wrought) 49 26 1.74
Cu-Mn alloys (Incramute, 40 45 7.5
Sonoston)
Ni-Ti alloy (Nitinol) 40 25 6.45
Fe-Cr-Al alloy (Silentalloy) 40 40 7.4
High-C gray iron 19 25 7.7
Nickel (pure) 18 9 8.9
Iron (pure) 16 10 7.86
Martensitic stainless 8 85 7.7
steel
Gray cast iron 6 25 7.8
SAP (aluminum powder) 5 20 2.55
Low-carbon steel 4 50 7.86
Ferritic stainless steel 3 45 7.75
Malleable, modular cast 2 50 7.8
irons
Medium-carbon steels 1 60 7.86
Austenitic stainless steel 1 35 7.8
1100 Aluminum 0.3 5 2.71
Aluminum alloy 2024-T4 <0.2 47 2.77
Nickel-based superalloys <0.2 Range 8.5
Titanium alloys <0.2 Range 4.5
Brasses, bronzes <0.2 Range 8.5
3

d
L9,

- Ry P S TS ~ P SR NN ) A AL TR D TR R TR A N A R 1% 1% N y
XA AN 0...!' A, ah! Wy ) G20 Ca Ui it Clo 2o M L Cp o oy 0 = X



‘

oy

&

R rdii
e

oA I N

- > BN .

-~
3

Ve e e e

e

)

'S

LT

Ao

L0

. A A A A A AL A A e A
A. Ny ‘. .~. " .‘ -‘ N ’ -l. ~ ‘ ~.‘ - » ..- .lh a I.

& - : ™ X E, . v \J . » \J » \s \J &
AV a¥yab i ath ata oty T WA M LA M MU M TG MG M R N M Y e et Rt gt L T A AT T W

* Atoms (e,;g., stress induced movement of carbon or
nitrogen 1in 1iron).

Point Defects.
Dislocations.

Grain Boundaries.

Twin boundaries.

Magnetic domain boundaries.

* % * ¥ * *

Interphase boundaries.

While all of these features provide some damping, some are
better than others. Twin boundaries, magnetic domain boun-
daries and interphase bocundaries seem to provide the best
damping mechanisms. Certain variables of the imposed
vibration, such as frequeucy, strain amplitude and number of
cycles, can also influence the degree of damping [Ref. 2].

1. Metallurqgy of the Cu-Mn Alloy System

The present reseach was focused on the characteris-
tics of a specific high damping alloy, 53Cu-45Mn-2Al (weight
%). It was previously shown [Ref. 3] that this alloy devel-
ops a "tweed" microstructure after aging. However, the
process of microstructural evolution of the tweed and the
exact mechanisms of damping in this alloy have not been
determined. It was to these questions that the present
research was addressed.

A brief review of some of the features of the Cu-Mn
alloy system, as well as the possible origins of a tweed
type microstructure,will be presented in order to introduce
the potential microstuctural damping mechanisms.

The Cu-Mn binary alloy system displays a broad
single-phase region at elevated temperature [Ref. 4].
This FCC gamma (y) phase is shown in the Cu-Mn phase dia-
gram, Figure 1.1. When an FCC 1q-phase alloy is rapidly
cooled, the alloy first undergoes an antiferromagnetic
ordering [Refs. 5,6,7,8,9,10]. The initiation of antiferro-
magnetism is associated with a concentration dependent
temperature, the Neel temperature (Ty), which increases with
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Figure 1.1 Phase Diagram of Copper-Manganese

Binary System.
increasing Mn content and has been carefully determined by
previous workers [Refs. 6,10). At this critical temperature
the atomic magnetic dipoles of adjacent Mn atoms become
aligned in an antiparallel manner. Domains are formed with
mismatcnes of the antiferromagnetic alignment at the domain
boundaries [Ref. 11: p. 473].
zero net magnetisn. Figure 1.2

between Ty and Mn content.

This arrangement results in

shows the relationship

Closely coincident with the antiferromagnetic order-
the alloy transforms from the FCC y-phase to a metas-
table twinned FCT structure [Refs. 6,12,13,14,15]) which may
be regarded as quasi-martensitic (that is, a shear transfor-
mation with very low lattice strain).

ing,

The temperature of
the FCC-to-FCT transition for solution heat treated and
quenched alloys, which may be called the martensite start

(Ms) temperature, varies appoximately linearly with Mn
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Figure 1.2 Neel Temperature (Ty) Vs. Mn
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Alloys [Ref. 16].

content. The Ms temperature increases with increasing Mn
content [Refs. 5,6,12], as is shown on Figure 1.3.

As a result of the composition-dependence of Ty and
Ms, the transition temperature for the FCC-to-FCT transfor-
mation falls below room temperature when the Mn content is
reduced to about 82% Mn. Therefore, quenched alloys of <82%
Mn, which have been solution heat treated in the y-single
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Figure 1.3 The FCC-to-FCT Transformation
in Cu-Mn Alloys [Ref. 12].

phase region, remain as FCC at room temperature. For alloys
>82% Mn, the FCC +-phase transforms to the twinned FCT
structure.

Another important characteristic of Cu-Mn alloys is
the existence of a miscibility gap, although there is some
uncertainty about its exact 1location [Refs. 16,17,18].
This miscibility gap is shown on Figure 1.4, along with the
plot of the Ty and Ms temperatures. When held within the
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miscibility gap, an alloy separates into Mn-rich and cCu-
rich regions [Refs. 5,19,21,22]. Although equilibrium a-Mn
precipitates will ultimately form, the effects of interest

occur at relatively early aging times where a fine-scale

composition modulation initially develops. This apparently
creates localized Mn-rich regions wherein antiferromagnetic
ordering and quasi-martensite formation may occur when
quenched to room temperature. These transitions can occur
because Ty and the Ms temperature are effectively raised
within these Mn-rich regions, so that quenching to room
temperature may give rise to the FCC-to-FCT transformation.
Thus, alloys between 50% and 82% Mn may transform from FCC-
to-FCT upon quenching to room temperature after aging for
various times between 300 C to 600 C [Refs. 20,21,23). This
is explained by the existence of the miscibility gap which
leads to decomposition of the FCC phase upon aging.

Several workers [Refs. 3,20] have concluded, from
x-ray investigation, that the FCC-to-FCT transformation does
not occur for alloys of <50 at. % (approximately 46.4 wt. %)
Mn. For example, Reskusich and Perkins [Ref. 3] demons-
trated that the 53Cu-45Mn-2Al1 alloy lacked indication of the
FCC-to-FCT transformation, but presented a tweed appearance
as damping increased to a maximum and then decreased.

2. Damping Mechanisms in Cu-Mn alloys

In unaged Mn rich Cu-Mn alloys, a twinned FCT micro-
structure is believed to be the source of damping [Refs.
21,23,24,25]}. Hedley [Ref. 21] stated that the energy
absorption takes place by at least two mechanisms:

1. A frictional term due to the microtwin boundary
moving though the lattice.

2. The energy involved in the  reversible rotation of
magnetic moments assosciated with each Mn ion.

There are at 1least two other mechanisms that should be
considered in more detail, and which formed a focus of the
present reseach. One of these 1is the role of the premar-
tensitic tweed structure. The other 1is the possible
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importance of the FCC-to-FCT transformation as a result of

stress-induction under vibrational conditions.
3. Tweed Structure

The term "tweed" is a generic term for a particular
sort of diffraction contrast in TEM images. This typically
consists of irregular lines of contrast lying approximately
along traces of (110) planes of a cubic parent phase, form-
ing a kind of cross-hatched pattern. The lines of contrast
obey extinction rules which are consistent with them being
due to <110> shear distortions of the (110} planes [Refs.
26,27].

There are numerous systems in which tweed microstruc-
tures are observed, and a variety of origins of the shear
distortions which are one of the two basic conditions that
must be satisfied for this type of contrast to develope.
The conditions are:

1. A soqurce of finely distributed centers of asymmetric
strain.

2. An elastically anisotropic matrix phase.
In different systems the strain centers may be:
G-P zones [Ref. 26].

Fine precipitates [Ref. 28].
Ordered domains [Ref. 29].

Domains in which there is an incipient lattice tran-
sition which distorts the lattice [Ref. 30].

For many cubic 1lattices, the existence of certain soft

* ¥ * *

elastic constants often provides a matrix phase which is
particularly susceptible to shear distortions of the type
{110}<110> [Ref. 31)]. In order to excite this distortion,
based on the <110> transverse phonon mode, the straining
centers distributed in the matrix must be asymmetric. If
they are symmetric, they are more 1likely to excite the
typical soft <100> 1longitudinal mode, the distortions of
which lead to {100) contrast traces rather than the typical
{110) contrast traces of a true tweed microstructure [Ref.
32].

10
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The "sharpness" of a tweed microstructure, that is
to say the degree of alignment and contrast, is therefore
dependent on the distribution, the nature and the magnitude
of the strain centers, as well as the degree of anisotropy
of the matrix phase. If any of these factors is deficient
(i.e. not enough strain centers, not enough asymmetric
distortion provided by each strain center, or insufficient
elastic anisotropy of the matrix), the typical {(110) aligned
tweed contrast will not be observed. In these "weak" cases
the image will simply present a "mottled" contrast. There-
fore, many "tweedy" alloys show a variation in the distinc-
tion of the tweed contrast as the distribution and strength
of the strain centers changes, for example, with aging
[Ref. 26], or upon cooling toward a temperature range of
lattice instability [Ref. 30j].

Cu-Mn alloys have been previously reported to dis-
play tweed contrast microstructures under certain contitions
of heat treatment and observation temperature [Refs.
15,16,23,33,34]. The present work with the 53Cu-45Mn-2Al
alloy provided a unique situation with regard to the develo-
pment of the tweed contrast, in that the response of the
lattice could be controlled quite closely by the aging
treatment. Also, subsequent changes on cooling pertained to
just a certain proportion of the microstructure, namely that

proportion which had achieved a composition during aging

which was sufficiently rich in Mn to enter a range of
lattice instability upon cooling to room temperature.

C. STATEMENT OF THE PROBLEM AND HYPOTHESES

The central problem is that in spite of the mass of
reseach that has been conducted on the Cu-Mn alloy systenm,
the exact mechanisms that cause high damping and/or tweed
contrast in aged, low Mn based, Cu-Mn alloys are unknown.

- r,. I I R A

As a result, no one knows how to optimize properties by
alloying and heat treatment for the development and main-
tenance of high damping.

-
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Although the exact reasons for the known effects of
time, cycling, deformation and temperature have not been
determined, there are several working hypotheses which can
be stated as a starting point to address the problemn.

1. Hypothesis One
The tweed contrast microstructure that is observed

in certain aged Cu-Mn alloys is due to either:

a. Distortion caused_ by the creation of a disper-
sion of Mn-enriched regions 1in a Cu-rich matrix;
or

b. Distortion due, to the FCC-to-FCT transformation
occuring within the Mn-enriched regions when
they are cooled below the local Neel tempera-
ture.

Question: Which, if either, of these mechanisms is

operative?
2. Hypothesis Two
Based on the fact that quite high damping can be

developed in aged Cu-Mn alloys, the mechanism of high damp-

P YL LG Pl

R -
et e

ing in aged Cu-Mn alloys must be associated with one or more
of the following:

a. Stress-induced transformation and twinning (FCC-
to-FCT).

b. Stress-jnduced movement of the FCT:FCT twin
boundaries.

c. Some sort of subtle fine-scale response within a
tweed microstructure.

Question: Which mechanisms provide high damping in

this alloy or can be eliminated from hypothesis two?
3. Hypothesis Three
In any case, damping is a function of prior heat
treatment (i.e., aging time and temperature). In general
terms, this must be because either:

a. Some critical feature is developed in the micro-
structure; or

b. The,6 ability to operate a critical mechanism is
optimized.

Question: Can detailed microstructural observations
point out the key feature of the mechanism?
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4. Hypothesis Four Yy,

N

In specific terms, creation of a "responsive" mater- 'f

t

ial must be 1linked in some way to optimization of the )
microstructure, and this must be keyed to the role of the g
Mn-enriched regions created during aging. These may play Q
one of the following roles: $
]

a. To rigger the formation of FCT plates upon

coolgngggfter the agﬁlxlg treatment. P P .

b. To trigger the formation of FCT plates when the ket

material is subjected to (cyclic) stresses. ey

c. Or , the Mn-enriched reqions, K themselves, or 4

regions nearby, absorb the vibrational energy
locally by some unknown mechanism.

Question: Is there observable evidence which may x
help to sort out the role of the Mn-enriched regions in the @
damping mechanism? ﬁ

5. Hypothesis Five

Because it is known from previous reports that high :‘

damping is not necessarily stable in aged Cu-Mn-based al- ﬁﬁ

Nt
loys, microstructural optimization by aging must be a ﬁ
delicate and subtle matter, and probably very fine scale. ,“

Question: Will the apparent subtlety and fine scale i

of certain aspects of the microstructural mechanism allow D
visual evidence to be collected?
6. Hypothesis Six

In this particular high damping alloy, there seems
to be a unique combination of conditioning requirements (for
the high damping) which involve both a replacive phase Yy
transformation step (involving a critical combination of
aging time and temperature) and a displacive step (involving

3‘
the operative transformation temperature upon gquenching). e
The aging step apparently has to do with balancing the ?'
competitive replacive phase transformations (i.e., equi- )
librium a-Mn phase formation, spinodal decomposition, and \
coarsening) . s
Question: How do the kinetics of the replacive i
phase transformations interact? V
)
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7. Hypothesis Seven
The effectiveness of the displacive step is keyed
to:
a. Prior heat treatment.

b. The  temperature to which the material is
quenched.

c. The percentage of the microstructure that Iis
transformed from FCC-to-FCT.

d. The _ability of the Cu-rich regions to coopera-
tively respond to shear.

Question: Can visual evidence be obtained to con-
firm the displacive response?

D. OBJECTIVE

The purpose of this research was to use transmission
electron microscopy to study the details of microstructural
changes which occur upon aging the 53Cu-45Mn-2Al1 alloy and
provide answers, insights or other information relevant to
answering the questiocns posed by the above hypotheses.
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II. EXPERIMENTAL PROCEDURES

The alloy examined was provided by 0Olin Metal Research
Laboratories in the form of 25mm thick plate. The alloy
composition was confirmed by Anamet Laboratories, Berkley,
California to be:

Cu Mn Al Zn Si Fe Cr Remain
w/0 53.1 44.8 1.61 0.1 0.08 0.06 0.05 0.2

Discs of 0.5mm thickness were sliced from 3mm diameter
rods of the material with a low-speed diamond wafering saw.
The discs were then hand sanded to a thickness of about
0.25mm. These specimens were solution heat treated at 800 C
for 2 hours in evacuated quartz tubes and water quenched.
Subsequently, specimens were aged at 400 C for various times
and water quenched once again. 1In order to prevent possible
room temperature aging [Refs. 23,35], specimens were stored
in a freezer at =~-22 C after each heat treatment stage, and
were not removed until it was time to prepare TEM specimens.

Thin foils were prepared by a careful two stage process.
Following aging, each disc was lightly sanded to remove any
oxide layer that may have formed. The disc were then
dimpled in a lollipop holder by jet electropolishing with a
solution of 50% H3PO, and 50% H,0 at room temperature and a
current of about 580ma. Final thinning to perforation was
accomplished by holding the specimen with platinum tipped
tweezers and static electropolishing in a magnetically
stirred solution of H3PO, saturated with Cro; at 8v to 12v
and 20 C to 30 C. All thin foils were observed immediately
after electropolishing. Observation was carried out using a
JEOL-120CX transmission electron microscopy operated at
120kv. Further information on the procedures and equipment
set up used for preparation of thin foils is contained in
Appendix A.
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ITI. RESULTS AND DISCUSSION

For relatively short aging times (for example, less than
4 hours at 400 C), "mottled" contrast is observed in samples

subsequently quenched to room temperature, as seen in Figure

3.1. The fact that tweed contrast is not displayed indi-
cates that the conditions for tweed [Ref. 26] have not (yet)
been satisfied. That is, there are either not enough points

Figure 3.1 Mottled contrast in sample aged hrs.
at 400 C. Bright field imagée with g=002
Beam direction near <100>.

of asymmetric strain dispersed in the microstructure, and/or
the degree of asymmetric strain provided by each point is
not sufficient. At an aging temperature of 400 C, the
present alloy composition probably places the alloy inside
the Cu-rich side of the miscibility gap. Aging at this
temperature would therefore be expected to produce a disper-
sion of FCC Mn-enriched clusters in an FCC Cu-rich matrix.
The development of such a dispersion may in itself
16
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constitute the array of strain centers required to perturb
the matrix into a tweed contrast, but if the clusters
remained FCC, it is 1likely that the distortion would be
isotropic, and aligned contrast traces, if they developed,
would be (100}, not (110}. If, however, it is assumed that
the potential source of asymmetric straining points is the
distortion of the incipient FCC-to-FCT 1lattice transition
occurring within these Mn-enriched regions (such a distor-
tion would constitute the asymmetric straining points
required for a (110} tweed contrast), then it is apparent
that at these early times the phase separation in the FCC
solid solution has not yet produced sufficient numbers of
Mn-enriched regions or that perhaps these regions have not
yet achieved the degree of Mn enrichment required to undergo
a tetragonal distortion upon cooling to room temperature.
Aligned {110) tweed contrast was observed in all samples
aged 4 hours or longer at 400 C. An example is presented in
Figure 3.2. The image contrast has all the typical

Figure 3.2 Tweed contrast on sample aged 4 hrs
at 400 C. Dark field image with g=113.
Beam direction near <110>.
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characteristics of tweed which have been outlined by Tanner
[Ref. 26] and by Robertson and Wayman [Ref. 27]. For
example the expected image extinctions are observed: a
given set of the near-parallel striations within the tweed
becomes invisible if the operating g-vector is perpendicular
to the trace direction. Also, the observed spacing of the .
striations is a sensitive function of foil orientation.
Very slight tilting, while maintaining the same operating
reflection in a two beam condition, can significantly change
the apparent spacing of the striations. The observed spac-
ing is also a function of the degree of deviation from the
Bragg condition, as observation of the tweed near a bend
contour reveals, and of the effective extinction distance.
The effect on diffraction contrast of different g-vectors is
shown in Figure 3.3; in these two images, the FCC annealing
twin boundary may be used as a marker. While the analysis
has not been as thorough as that of Robertson and Wayman,

Figure 3.3 Area in sample aged 10 hrs. at 400 C, imaged
in bright field with two different near two
beam conditions; for both images the beam
direction is near <110>; (a) §=002, (b) g=220.

18
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the observations would seem to agree in every respect with
the "rules" which they outline for tweed contrast micro-
structures.

As aging was extended to longer times an enhancement of
the aligned contrast was observed, taking the form of bands
of darker contrast, as seen in Figure 3.4. This sort of
contrast, which is not uniform over the thin foil sample,
begins to be noticed for aging times of 8 hours or more at
400 C. This appears to be similar to observations made by
Shimizu and coworkers [Ref. 34)] during cooling of a Mn-rich
alloy (Mn-26 atomic % Cu). The present observation indi-
cates that even in the composition-segregated microstructure
of the aged alloy, an increasing lattice instability is
reflected by contrast which extends across both Mn-enriched
and Mn-poor regions. These bands may be interpreted as
regions in which the strain of the incipient FCC-to-FCT
lattice transformation 1is enhanced, eventually to lead to

Figure 3.4 Banded tweed contrast in sample
aged 8 hrs at 400 C. Bright field
image. Beam direction near <110>.
(Photo by Dr. M. H. Wu)
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the development of definite FCT lamellae [Ref. 34]. These
"tweed bands" obey the same extinction rules as the set of
tweed striations to which they are parallel, that is, they
become invisible when the operating g-vector is perpen-
dicular to the trace direction [Ref. 36]. This is consis-
tent with the general rules for tweed contrast outlined by
Robertson and Wayman [Ref. 27], and indicates that the
source of the banded contrast is strain of the same sense as

wt ey & VA TPy e M T T
-

that which creates the general tweed contrast. This leads

to the conclusion that the lattice instability is becoming
more pronounced.

) Another observation with increasing aging is a change
! from stress-induced slip to stress-induced lattice transfor-
)

: mation. At early aging times, occasional stress concen-

y tration points in the form of notches at the edge of the
thin foil perforation, were observed to induce slip bands in

the FCC matrix phase, as seen in Figure 3.5a. This

p -

{ Figure 3.5 (a) Slip trace i je‘.améale aged 2hrs at 400 C.
: rlght ield; g=1 eam direction near <110>
Twins in sample aged 16 hrs at 400 C.
ark field; g=020; Beam direction near <100>.
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indicates that the FCC phase at this point is relatively
stable, not prone to stress-induced lattice transformation.
At longer aging times, say 14 hrs, stacks of parallel twins
begin to form, as seen in Figure 3.5b. The ability to
produce these features also appears to reach a maximum as
aging proceeds, for example around 16 to 22 hours for aging
at 400 C, which happens to correspond to the condition for
maximum damping capacity in this alloy [Ref. 3,36]. These
static twins represent a further stage of lattice instabil-
ity of the aged FCC matrix phase. Vintaykin and coworkers
[Ref. 37] have quantified the critical shear stresses for
slip and twinning in certain binary alloys. Their findings
may be interpreted as indicating that the formation of the
twinned FCT condition, that is the quasi-martensitic state,
reflects a relative decrease in resistance to twinning
relative to slip, which is consistent with our observations
on the present aged alloy.

In the course of examination of the tweed microstructure
over a range of aging conditions, a unigque and remarkable
observation was made, one which has not previously been
reported in connection with Cu-Mn or any other tweedy alloy.
It was noticed that certain tiny areas within the tweed
contrast were not completely static. Rather, as the tweed
was observed on the viewing screen at sufficient magnifica-
tion (say 40,000X or so), certain specific points within it
were observed to "flicker". This effect was not observed in
samples at early aging times, when the structure displayed
simply a "mottled" contrast, but only after the aligned
tweed traces became defined.

The "flickering" effect consists of spatially consistent
and repetitive contrast variations, that is, only certain
points flicker, and the contrast variation is always very
much the same in nature (although the frequency is not
constant). The regions that flicker are on the scale of the
tweed spacing, around 10 to 20 nm. Upon close examination,
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it is apparent that the contrast variations are not of an N'
"on-off" nature, but rather involve short movements or ::
rotations of lines of contrast on about this scale, as seen ot

in Figure 3.6. As there are a great many of these regions

2l

active on the viewing screen at any one time, it is not easy
to make a complete quantitative characterization of the

.‘\
.'i
activity. It also presents certain problems in photographic -‘
recording by the usual timed exposure methods, but videotape )
Fat
recordings have been made. The most successful method for i
isolating the sites and the character of the contrast shifts i
has been the use of weak beam dark field imaging techniques, B
as exemplified by Figure 3.6a, where a very specific geomet- a.
ric form can be seen, which includes a distict V-shaped b
feature. E
It must be emphasized that the dynamic nature of the :j
flickering image has quite a different character than the =
phenomenon which has been termed "shimmering"” in various :
W
‘l
".
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Figure 3.6 &a) Flickering regions, aged 10 hrs.at 400 C.
eak Beam; g=222. Beam direction near <110>.
(b) Schematic of a variety of flickering
morphologies which are observed.
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alloy systems [Refs. 38,39,40]. A detailed model for the
origin of this unusual effect has not yet been developed,
but it is apparent that the underlying cause of the contrast
variation is a subtle degree of lattice distortion in quite
small regions of the microstructure, these presumably being
the Mn-enriched regions resulting from the phase separation.
The initial impression is that the flickering contrast is a
manifestation of quite small sections of crystal, probably
less than 10nm in size, flipping a tetragonal distortion
from one c-axis orientation to another. This would be
consistent with the Mn-enriched regions having entered a
pre-transformation range wherein the lattice begins to mimic
the incipient FCC-to-FCT quasi-martensitic transformation.
This is a notion which is in accordance with recent ideas,
such as presented by Barsch [Ref. 41], Krumhansl [Ref. 42],
Tanner ([Ref. 43] and others, regarding the very common
development of incommensurate lattice structures in a "pre-
martensitic" temperature range, creating lattice distortions
which effectively anticipate the martensitic transformation
which may follow [Ref. 30].

The only previous report found of a dynamic TEM image
contrast effect similar to the present observations was in
connection with the creation and annihilation of omega
domains in a Ti-Mo alloy [Ref. 44]. For Cu-Mn alloys,
evidence does exist that the phonon spectra is appropriate
for the display of pre-martensitic effects of this kind
(Ref. 45]. It is therefore proposed that the flickering
contrast effect reported here is a manifestation of the
incipient FCC-to-FCT lattice transition which occurs in
quite small regions of appropriate composition in the aged
microstructure. It would also seem that in view of the
present observations, it may be unreasonable to rule out the
possiblity that in certain pre-martensitic alloys the
phenomenon of "shimmering" is simply a denser concentration
of the wuniquely 1localized (because of <the composition
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variations in the parent phase) distortional events that 0
here are termed "flickering".

The flickering activity varies systematically with
aging, and there are a number of indications that coupling . &:
can occur between neiéhboring regions of distortion, thus W,
progressing another step along the path toward FCT marten- . 0
site. One of these observations is that at relatively short

aging times (4 to 8 hours at 400 C) the localized flickers g%
often erupt into linear "flashes" along one of the (110) ‘ﬁ
traces in the tweed, with a length of perhaps 10 to 20 tweed j
spacings (some 100's of nm). These miniature plate-like ]
features repeatedly form and revert. If it is assumed that g?
this sort of event originates in one or more Mn-enriched m:
regions, then it is apparent that the lattice transition, f&
once it has initiated, is able to propagate across a dis-
tance which must be longer than the wavelength of the com- aﬁ
position modulation. This may be possible if at early times g&
the dispersion of Mn-enriched regions consist of small but ) Jﬁ
quite closely spaced regions, allowing a coupling of the [d
distortions which develop in each of them. This is consis- ?;
tent with x-ray diffraction result reported by Vintaykin and - yﬁ
coworkers [Ref. 46] for aged Cu-Mn-Ge alloys, which indi- éi
cated that there is a modulation of the FCT c-parameter ’
corresponding to a composition modulation in the parent fﬁ
phase. J
It is also noticed that at longer aging time (greater é:
than about 8 hours), when the dispersion of the Mn-enriched gs
regions is Kknown by neutron studies to coarsen rapidly Yy
[Ref. 47]), flicker sites become confined to a size of about ﬁu
20 to 40nm; the linear "flashes" into and out of the small Ef
{110} plates are not seen at all. This suggests that the g
lattice distortion of a given region is not able to trigger *%
a neighboring region, at least not on an obviously coopera- ET
tive manner, unless the unstable regions are close enough . o
together. ‘
e
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In the present study, a static indication of cooperative
interaction between the distortional centers which underlie
the tweed contrast was previously discussed. This is the
aligned contrast taking the form of bands of darker contrast
seen in Figure 3.4. It therefore seems that the general
sequence of observed morphologies as the lattice instability

becomes increasingly manifested is: '"mottled", "tweed",

"tweed bands", and finally FCT twins. The flickering )

activity apparently reaches a peak during the tweedy stages. xf'
A complicating factor in the aging of these alloys is Q{

that phase separation in the FCC solid solution within the
miscibility gap is inherently in kinetic competition with P
the long-range diffusional reaction to form the equilibrium

a-Mn phase. This essentially pure Mn phase was observed to E&
form as particles which are quite large relative to the )
tweed spacing. When this occurs, the a~-Mn particles may be ;ﬁ;
expected to naturally drain off Mn from the rest of the ',:E
microstructure, leading to a decrease in the amplitude of
any fluctuation in Mn composition. This would then in turn ®
be reflected in a lesser degree of lattice instability, that N
is, a lesser tendency for the FCC-to-FCT transition, as well  !
as a decrease in the demonstration of any possible precursor ‘E

events to it, such as flickering. :
At an aging temperature of 400 C, the 53Cu-45Mn-2Al k;
alloy was indeed in the process of forming observable _l;
amounts of a-Mn over the very range of aging time (8 to 24 :ﬂs
hours) where a tweed contrast microstructure was becoming ;ﬁ
more defined, a distict tendency to form stress-induced ﬁﬁ
4

twins was being demonstrated, and the damping capacity was
rising to a maximum value. Therefore, an attempt was made 4
to produce an aged condition in which the microstructure
demonstrates a tweed contrast, but contains few, if any, a-
Mn particles. This was achieved, for example, for samples !
aged 10 hours at 450 C, and it is revealing to compare the ﬁ
microstructure of this condition, shown in Figures 3.7 and

25 o

e
oY

A A

IO
K 3 M Y c AT

- W R R R N T o N SN Ny T R T e R N Sl T Nl S 6 gt Sl WY ¥y
Y WA .c.-. et o ot o e R o L N PN P 2 M4



A T N AT AR TR R AR R VTV P WU MU NN Y RS XA NN WA WA R R R A R R N T N N L T R N N WY IR N YA A RO O ooy

3.8, as well as the flickering activity, with microstruc-

o By

tures in which a-Mn particles are present and apparently
acting as Mn sinks.

o,

:
-

-

One feature of the tweed microstructure seen in
Figure 3.7 which is different than, say, that of Figure 3.2,
is a less defined pattern of (110} tweed traces. Close
examination of Figure 3.8, reveals that is because the
features underlying (and causing) the tweed contrast are
somewhat larger and not so finely dispersed. The most vivid N
features seen in Figure 3.8 are the small sets of zig-zag x
patterns. These are localized, presumably to the most Mn- )
enriched regions, and the most distinct groups of this sort 0
were not observed to be flickering. It is therefore assumed
that they represent static groups of self-accommodating FCT
units. They are very reminiscent in form, but much smaller
in size, to the type of self-accommodating martensite plate kN
groups which are well-known to form for many thermoelastic \
martensites [Ref. 48]. The V-shapes within these groups
seem to be pointing along one or the other of the two
obvious (110} tweed traces 1in this <100> beam direction
image. The obvious indication is that the habit plane
traces of the V-shaped crystals in these zig-zag groups are
clustered fairly closely around one of the {110} parent
phase planes, and in fact seem to be symmetrically disposed
with respect to these parent planes.

5L

-

» -
-

)
- e 4

L2

Surrounding these zig-zag groups in the tweed contrast
microstructure were numerous strongly flickering regions.

g -
-4

The contrast variation in a given region exhibited a consis-
tent pattern which often consisted of abrupt rotations of
approximately 90 degrees of a small zig-zag group or a short
line (or pair of lines) of contrast. For example, the V-
points in a zig-zag group, or the alignment of the short
lines of contrast, would suddenly switch back and forth from
pointing along one or the other of the two orthogonal (110}
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Figure 3.7 Tweed microstructure in sample_aged
10 hours at 450 C. Brlght ield image.
Beam direction near <100>.

Figure 3.8 Static and flickering zigqfigu?rou

in a sample aged 10 hrs. a C.

Beam direction near <100>.




tweed traces. The static zig-zag groups and the strength
and distinction of the flickering contrast were not seen in
some other quite well-defined tweed microstructures. It is
concluded that this is due to the relative effects of the
competitive long-range diffusional nucleation and growth
kinetics of the formation of the equilibrium a-Mn phase.
Supporting evidence that the zig-zag groups are FCT
units can be obtained from the selected area diffraction
pattern (SADP) presented in Figure 3.9a. Splitting of the
002 and 022 diffraction spots indicate the presence of the
FCT phase. Although this SADP was taken from alloy aged for
10 hours at 450 C, Figure 3.9b shows evidence that the FCT
phase also exist in the alloy aged at 400 C, where these
same diffraction spot have elongated but not split. This is
consistent with the fact that the underlying microstructure
is not as well defined. The Cu-Mn alloy system is analagous
to the Fe-Pd, Fe-Pt and In-rich alloy systems [Refs.
49,50,51} and it has been shown by previous workers

Figure 3.9 ia; SADP from sample aged 10 hrs
b) SADP from sample aged 12 hrs
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[Refs. 12,21,23) that the lattice parameter varies as a
function of temperature. That is, the degree of tetra-
gonality increases gradually with decreasing temperature at
a given composition. In the present alloy the composition
most 1likely varies from Mn-enriched region to Mn-enriched
region, although there is an average composition and a
limiting composition which all regions are trying to reach.
Since the Neel temperature and FCC-to-FCT transition temper-
ature are therefore different in each region, it is logical
to assume that there is also a variation of tetragonality
within the regions, hence the elongated diffraction spot.
As more and more Mn-enriched regions reach the 1limiting
composition, then the tetragonality of the structure
approaches a limiting value and the diffraction spot splits.

The comparison between the microstructures aged at 400 C
and 450 C leads to the proposal that the formation of the
equilibrim phase a-Mn is in some way associated with the
decrease in damping which occurs upon extended aging at
temperatures within the misciblility gap. Two separate
processes are believed to contribute to this effect: (1) the
draining of Mn from the Mn-enriched regions as the a-Mn
forms and, (2) interference with the formation and propaga-
tion of the FCT microstructure. It is not clear at this
point whether the a-Mn forms within the Mn-enriched regions

or on the boundaries of these regions, or at both types of
locations.
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IV. CONCLUSIONS o

- !

It has been shown that tweed contrast microstructure is '?
observed after the alloy is aged for about 4 hours at 400 C. ] if
It is most likely that this contrast is due to the FCC-to- L
FCT transformation occuring within the Mn-enriched regions )
as indicated by a change from stress-induced slip to stress- :i
induced transformation, evidence of FCT microstructure from A
the selected area diffraction patterns and the flickering :A
phenomenon. y:
Damping is most likely caused by stress-induced trans- hé
formation and twinning and stress-induced movement of twin %&
boundaries. It is also possible that damping is associated it
with the flickering phenomenon, as the lattice cycles back ﬁ‘
and forth between different c-axes. Although these mechan- 7
isms have been observed, there is insufficient data to ;

-5

positively rank their relative importance. The impression
is that the stress~-induced phase transformation, which seems
to be most readily accomplished around 14-16 hours aging
time, is most likely of prime importance. Since a rela-

RS Al

tively large increase in damping is achieved at just about

g -‘

these aging times, other mechanisms may be of lesser impor-
tance.

2
The flickering phenomenon appears to be a prime example 5}

of a premartensitic effect where the parent phase (in this ;
case FCC Mn-enriched regions) prepares itself by developing =
periodic, incommensurate displacement patterns that mimic Eﬁ
the new product phase structure (in this case twinned FCT). fk
P

Finally, based upon the preceding discussion, the
following aging sequence for this alloy is proposed:

a. Nucleation of Mn-enriched regions occurs very quickly
(approximately within the first 10 minutes of aging
time) (Ref. 47].




b. For times less than about 4 hours, the Mn-enriched oA

'\ !
regions grow in size. During this period, there are FJ
either not enough regions to produce the strain neces-

sary for tweed microstructure or the regions have not '.::
reached sufficient Mn-enrichment to support transition 3k
to FCT. E;':“
c. For times greater <than about 4 hours but less than -
about 8 hours, some of the Mn-enriched regions are in E%
a premartensitic condition and form an unstable FCT. ! f
The spacing between regions is still relatively close, héﬁ
such that a Mn-enriched region can "trigger" a cooper-
ative transformation with several other Mn-enriched ??ﬂ
regions. ﬁi
d. For times of about 8 hours or 1longer, a coarsening §§3
process has reduced the number of Mn-enriched regions ﬁ‘
and increased their average separation distance such 5Zf
that an obvious cooperative transformation can no ]
longer take place. ~
e. For times of about 14 hours or longer, some of the Mn- ;
enriched regions have attained a Mn-enrichment such ;;;
that the localized Neel temperature is above room RAdy
temperature and these regions can form a stable FCT ;&
phase. The alloy is prone to stess-induced transfor- s
mation for aging times from 14 to about 22 hours:
these are the aging times where the highest damping "\
occurs. ;\
f. Beyond 22 hours, the damping decreases. This appears :
to be the point where formation of the equilibrium i&;
a-Mn begins to drain Mn from the Mn-enriched regions ﬁﬂ'
and possibly interfere physically with the damping 3%‘
mechanisnms. ”‘.“
]
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V. RECOMMENDATIONS FOR FURTHER STUDY

The following recommendations for further research are By

The flickering phenomenon needs further investigation. ) 2]
Research using a heating and cooling stage on the TEM
will aid in further characterizing this feature. This
phenomenon appears to provide a rare opportunity to 3
look further into premartensitic effects and in par-
ticular movement of the lattice. This research may
require the use of HREM. K
Further studies involving other heat treatments would G
be benificial. For example, a study in which the oA
alloy is aged for 10 hours and the temperature is
varied by 10 C to 20 C for each heat treatment over a
range from 350 C to 600 C could be conducted and
damping could be correlated with the microstructural
changes.

[V T g g W T L
Bl .

Additional investigation of room temperature aging is
required. All previous research has been done on

R R LS

beams that have been optimally aged to produce peak
damping. Question: what are the characteristics of
material that has been, for example, underaged, but
that still provides usable damping (i.e., 20-30%)? 3
Studies on the effects of further alloying (e.g., Ga,
Ge) on damping and room temperature aging should be
conducted. y
An investigation into the <«crrosion characteristics o
and methods of protection )f the alloy should be 9
conducted. Question: can this alloy be cathodically Iy
protected without adverse effects to other components - )
within a system?
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APPENDIX A .

g

ELECTROPOLISHING 53CU45MN2AL ALLOY .:::

(s

.& *

The highly different electrochemical potentials for Cu, ‘::‘

Mn and Al (-0.521v, +1.18v and +1.66v respectively) make

electropolishing of this alloy difficult at best. The i:
aluminum has been specifically added to the alloy to produce 2:
a corrosion inhibiting surface layer. The difficulty in ﬁ:'«
electropolishing increases with alloy aging time as a result : '
of forming the Cu-rich and Mn-rich areas as previously i
discussed and of precipitation of a-Mn particles. Pre- :’:::
ferential etching at grain boundaries and particles is a ";
problem with the electrolyte used, but does not prevent ":
getting good thin foils for aging times less than 28 hours. "..
Thin foils were not obtained for samples aged 64 hours. :,g.
Many variables influence the results in electropolish- 'o.‘
ing, including the following [Ref. 52: p. 119]: "
* Surface area of the specimen. ,fi

* Orientation of sample and cathode. .f

* Choice of cathode material. .':":

* Anode to cathode spacing. '

* Electrolyte age and temperature. b

*  Flow or stirring rate. N |

* Current density and voltage. .'

* Time. '.?

* Method of removing the specimen from electrolyte. ;-:‘;

* Washing procedures. f-f'

All of these variables must be closely controlled and logged '_-.:"
for future reproducibility. Experience has shown that even "‘
under the best circumstances, the success rate for good thin o

foil production on the aged alloy may be less than 30%. ::'{"

Samples were initially jet polished by the double jet :'V

technique using a Tenupol-2. Struers Metalog [Ref. 53] ". ’
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; provides a good discussion of this technique. Electro-
polishing was accomplished immediately following jet polish-
! ing. The equipment set up was as shown in Figure A.1l.

s CATHODIC LEAD —
-~ ANODIC LEAD
ALLIGATOR CLIPS

. PLATINUM TIPPED TWEEZERS
. ELECTROLYTE~_k 3 mm DISC SPECIMEN

BEAKER ———
\\

: VIEWING Q .
. POSITION —_—
STIRRING
D *7 AR

%

STAINLESS STEEL
STRIP CATHODE

. MAGNETIC
' STIRRER

DIRECTED
LIGHT
SOURCE

VYNNI

eta W s

Figure A.1 Equipment setup for electropolishing.

phoric acid to 40 C and adding Cr0O3 while stirring con-
tinuously. Cr0O; particles were left in the bottom of the
mixture even after cooling to maintain saturation. This

& The electrolyte solution was prepared by heating phos-

solution was usually prepared several days in advance of
X polishing.

The key to this procedure is in using tweezers (Pt-
tipped or stainless steel) to hold the specimen. The com-
bination of alloy, electrolyte and stir rate lead to the

g generation of many bubbles and a lollipop holder is ineffec-
tive under these conditions.
5 34

,
"lql

)
P o e WA Mkt s ST LT TR L
-."l.. ' . .l'. .I‘. 3 ’ A n, L-. . ; " Wy T,

2

AN

‘!

'\-'I

A AU J‘ 'U'w‘ J‘ /‘ {' "J‘_'J'\:J“‘.-(\;-f,;- ‘-l‘__ S




T T A ST S P AR AT TR S G TN R AR PO T R R PR PP OF SR PO W P Mo b W LY UV WM R N

FJ
3.

1.

2.
3.

4.

5.

6.

7.

8.

9.

s AN 1A te 4% 4t 4 taugta gty Saraty S AR Sl i Sal a7l

The detailed procedures used were as follows:

a.

b.

C.

d.

10.

Set, up the equipment as shown _in Fiqure A.l. The
stainless steel cathode is placed near the bottom of
the bgﬁkgr with a tab above the beaker edge to connect
as cathode.

Fill the beaker about two thirds full of electrolyte.

Fill a second beaker with distilled water for washing
the TEM specimen after perforation.

Fill two petrie dishes with, K acetone and one petrie
dish with methanol for the final rinse. Upon perfora-
tion, wash the TEM specimens as follows:

Upon removal from,K the electrolyte, first wash
the specimen in distilled water.

Place, the specimen in the first acetone bath for
one minute.

Next, plage the specimen in the second acetone bath
for oneée minute.

Finally, rinse the specimen in methanol for one
minute, and place on blotter paper to dry.

Using the tweezers,, rip, the specimen on an edge not
jet polished and cinch with a astic grlg. Cllg the
anode lead to the top of the tweezers. lthough the
voltages used are low, rubber gloves should bé used
and all other electrical safety precautions followed.

Turn on the magnetic stirrer. A setting of 7 to 8
was used on a scale of 10.

Turn on the light so that it can be seen at some point
to the side of the whirlpool and above the cathode.

Turn on the power sugply and adjust the voltage as
necessary. See Table A.1l.

Place the  tweezers in the solution with the TEM
specimen in the light path and out of the whirlpool.
Too high_a stirrer setting creates too many bubbles
and tod low a setting causes too long a time before
the specimen is perforated. Do not touch cathode with
the specimen or the tweezers.

Pull _the specimen out of the solution as soon as

any light 'is seen through the specimen. Wash the
specimen in the distilled water, disconnect the_ anode
lead and complete the rinses. Place on the blotter

paper to dry.

Adjustment of time, temperature, voltage/current or any of
the
results,

SR

y

-

other variables may be necessary to achieve good
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TABLE A.1
CONDITIONS USED FOR STATIC ELECTROPOLISH

Aged Condition Voltage (V) Temperature (C)

Solution Treated 7, 8, 9, 10 23
400 C 1 hr 7, 8, 9 22 -

2 hr 8, 9, 10 24

3 hr 7.5, 8 24

4 hr 7.2, 8, 9 24

6 hr 9, 11 23

8 hr 8, 9, 10, 12 23

10 hr 11, 12 24

12 hr 12, 12+ 24

14 hr 11, 12 20

16 hr 10, 10.5 30

10, 10.5 25

18 hr 10, 11.5 23

20 hr 9, 10 30

22 hr 10, 10.5 25

28 hr 11, 12 24

32 hr 9, 10.5 25

450 C 10 hr 11, 12 26

350 ¢ 10 hr 10, 11 30
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APPENDIX B

ADDITIONAL EFFECTS OF INTEREST IN 53CU45MN2AL ALLOY

The following features were seen but have not been
studied in detail. They are provided here as an aid to
follow-on researchers.

(1) An interesting feature seen in the TEM photographs is
the formation of both straight and wavy string-like
contrast images as shown in Figure B.la. Enlargement
of the photograph, as shown in Figure B.1lb, indicates
an image that seems to be composed of plate-like fea-
tures. The cause of this contrast is unknown and is
worthy of further investigation.

Figure B.1 String-like contrast in sample aged
at 400 C for 4 hrs. (a) 68K (b)J 194K

(2) Some SADP's have satellites and a ring pattern that
indicate the presence of an FCC structure with a
lattice parameter of 4.4A to 4.5A. This is most
likely MnO, which has a lattice parameter of 4.445
[Ref. 54].
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