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SENSOR CALCULUS

CONSIDERATIONS IN THE DESIGN OF DISTRIBUTED SYSTEMS FOR DETECTION,

DISCRIMINATION AND DECISION V
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Moula Cherikh, Tantalus, Inc. and Case-Western Reserve University

SUMMARY

A powerful new framework is presented for the analysis of distributed

detection networks, supported by a compact notation for the description of

complicated networks. The new methods are applicable to problems with any

number of threats, any number of messages, and any number of available actions.

As illustrations, the Sensor Calculus is applied to reveal some interesting features

of the case of two-fold threats, messages and possible actions. These features 9
include the occurrence of spontaneos symmetry breaking with identical sensors,

and the sub-optimality of deterministic tuning for fusion systems.
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FOREWORD

This report covers the first year of a three-year study of the application of optimal control

theory to the design of distributed sensor systems. The work is focused on the key links

between detection, discrimination and decision. Detection is an engineering/physics problem.

Discrimination is affected by softer considerations such as estimates of prior probabilities,

which depend on intelligence as well as engineering information. Decision involves even softer

estimates of the costs and values associated with various possible damage or loss. Thus the

Detection-Discrimination-Decision (D3 ) problem spans a range from hard facts to volatile

speculation.

Our work concentrates on building a rigorous framework in which hard data serve to define

an operating characteristic, and softer data are used to define the optimal tuning of a sensor

system. Improvements in detection and discrimination always carry price tags. In the D3

framework the benefits (in damage control) may be weighed against those costs, for best

system management.

The principal results of the first year's work are:

(1) Formalization of the concept of a detector operating characteristic (doc), in a form correct

for generalization to any number of possible threats, any number of available responses,

and any channel message carrying capacity.

(2) Development of a powerful and compact notation suitable for describing any network of

sensors and for determining its doc and, as appropriate, its optimal tuning. (The Sensor

Calculus). '
Using these tools we have established a number of significant specific results for the simplest

case (one threat, one response, and binary message schemes.) Among these results are:

(1) Spontaneous symmetry breaking. It is often found that when two identical sensors are used

to inform a fusion (decision) center, their optimal tunings are the same. We have

established, by specific examples, that this is not, in general, true. It can be the case

that symmetrical tuning is less effective than a suitable symmetry-breaking choice of
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tuning. This significantly increases the complexity of finding optimal solutions, but

permits improvement in overall performance of the detection network.

(2) Discontinuity of optimal tuning in fusion. We have established that, quite generally, in

fusion systems, the optimal tuning may be discontinuous as a function of the softer

parameters such as prior probabilities and estimated cost. This has serious implications

for optimal system design because the soft parameters are subject to significant change

after a system has been constructed. Every effort must be made to ensure that the likely

range of variability does not include tuning discontinuities. 0

(3) When a sensor communicates over a limited channel there is a loss of information. If one

sensor is better than another, should the better one send or receive the message over a

limited channel? Using the sensor calculus techniques we have established that there is

no general rule governing this. In some situations one alternative is better, and in other .

situations the other is better.

(4) The best achievable deterministic architecture will be significantly suboptimal in some

resource-constrained situations. This has serious implications for the allocation of

resources among interceptors and sensors. -

In all of this analysis the ability to move easily from a discrete to a continuous formulation

has enormously clarified our understanding of the problem. We are firmly convinced that

reliance on analytical approximations is an artificial and dangerous restriction in the study of

D3 problems.

Our plans for the second and third years of the project are to continue this line of research

by: (1) developing algorithms that will accomplish the basic operations of the sensor calculus

as efficiently as possible; (2) extending the results to the case of more than two possible states

of nature (as, for example, when there may be a variety of decoy threats); (3) extending the B

results to the case of more than two possible actions and/or messages between sensors; (4)

extending the formalism to deal with "call-back" systems in which some message combinations

may result in a polling of the sensors; (5) exploration of the implications of the maximum

entropy principle for scheduling such "call-backs". The overall goal of the research is to bring

the task of cc..kbining sensor characteristics to a highly automated state, so that the

r1'S
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consideration of alternative architectures will be reduced to "cook-book" calculations using the

calculus of sensors.
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Taggart, SDIO/CMO, Jason Goodfriend, Joshua Scharf and R. Barry Thomas at System

Planning Corporation, and Dr. RIabindar Madan at the Office of Naval Research.
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1. Introduction and Notation.

This report is par' of an ongoing effort to resolve the problem of detection,

discrimination and decision (D3 problem) into design of the Detection-Discrimination network

on the one hand, and discussion of the Decision aspects on the other. We find that the natural

link between these areas is given by a powerful construct termed the doc (for detector

operating characteristic.) The doc generalizes the notion of the ROC (Receiver Operating

Characteristic), which is the boundary of the doc in the familiar cases. The presentation is in

two main parts: the first deals with the Detection-Discrimination Network; the second deals

with the decision problem. We find that the doc plays a central role by (i) describing the

overall characteristics of the network for use in the decision problem and by (ii) providing the

necessary and sufficient information about each sensor to support solution of the problem of

optimal network design. A review of related literature is included as Appendix B. "

1. Notation.

In Part I we show how a sensor S can be fully characterized by a set of points M(S)

called the doc of S. We show how the doc is built up from the signal set Y using the response

functions A(y), ... fH(Y) corresponding to some exclusive and exhaustive list of alternate I:- ..

hypotheses about the world, h=1 .....,H. We show that the familiar ROC is, in some sense, the

boundary of the doc. We introduce the useful concepts of the full product of sensors S and S',

SOS' and of the M-fold restriction of a sensor, G(M)S. This latter concept is useful because -e

communication within sensor networks is constrained by the capacities of communication

channels.

.3 Definitions

Although our presentation will not be highly formal, we state here the definitions of

the key concepts of the sensor calculus.

A Sensor (S) consists of a signal set Y, which may be discrete or continuous, and a

collection of non-negative conditional probability measures defined on Y, dfl,...,dfH,

corresponding to the possible states of nature.
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The detector operating characteristic (doc), Z(S) is a set of points in an H-dimensional

linear vector space, consisting of all points of the form f1 (Y(t)),. fjH(Y(1)) where Y(t) is any

measurable subset of Y and fh(Y(f)) is the sum or integral of the measure f/ over the set Y(t).

The doc Z always lies within the closed unit hypercube in the positive orthant determined by %

the origin and the point E=(1,...). %

The boundary of the doc of S, !(S) is defined as ti set of extreme points of Z(S). A

point Pec is an extreme point if there exists a separating hyperplane, {z n.z-=c} such that 40

n.P--c, and n-z>c for all zd(S).

An M-fold restriction with tuning t, OA(M,t)S is defined in terms of its doc. The tuning

t defines a partition of Y into M sets {Y(m)} in-,... M" The doc M(5(M,t)S) is the discrete

set consisting of all the points AY(m)). This corresponds to using the sensor S to select one

from a set of M options, which may be actions or messages.

LA Eamples

To illustrate the notation we consider the networks shown in Figure 1. The

corresponding expressions in the calculus of sensors are: S

Figure la. %(2)f K(2)S 1  
%

Figure lb. %(2) ®,(2)f((22)$ 2 }}
Figure 1c. %(2)jS3 ® &(2){S 2®,&K(2)S1}

Figure Id.

i e l(2) (2)®S 3((2)LS2@ (2)SI}®{'%(2){S6&® '(2){'(2)S 4 ® (2)S 5 )}}I

The interior restrictions G,(2) represent a limitation of the communication channels to 0

two-fold signals. The final overall restriction GA(2) represents the fact that there are only two

courses of action available. The notation is easily generalized to admit other capacities. Note

that this description of a sensor or network, and the concept of a doc (like the concept of an

ROC) does not specify a particular tuning of the sensor. Similarly, the restriction operator 0

represents the whole range of possible choices for the restriction.
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Figure la. An example of "fusion" structure. Corresponding to the expression c%(2)S. there is a

Thx epwavynlin scnsor Sifrom which thecre comcs an arrowv representing a two-fold message.
Tewvlierepresents a signal yerY P The solid box represents thc sensor product of the two

restricted sensors.

Fir1bThfuinomesgsfo sesrIan2iscmie i s 21o routwi' h

S SSS
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Figure Id. A more complicated structure combining the reatures or iigures l1 and Ic throughi
a final fusion. 0
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In Part I1 we discuss how the optimal decision process for a set of alternative hypotheses H and

a set of possible actions At={1,2.... A} requires only the doc characterizing the network as a

whole. We show how problems with "complete knowledge" of the cost matrix V(a,h) and of

the prior probabilities P1,...PH are solved using the doc. We also describe the "Neyman-

Pearson" problem (NP), in which C and p are not needed, and show that it is solved by the .

boundary of the doc.

This fact, that the doc solves the NP and all possible Bayesian problems, is very

important, because the doc Z is completely determined by the hardware. It is a concrete

engineering characterization of the network. The costs, C(a,h), and the prior probabilities

P... PH are likely to be much softer. They do not originate in engineering constraints, and

may change rapidly.

1. Organization of this araer. Acknowledgments.

The organization of this paper is as follows. Section 2 contains some examples of the

doc Z(S), the full product ® and the k-fold restriction SR for cases in which the space of

signals, Y, is discrete. Section 3 gives examples for continuous signal sets. Section 4 presents

fundamental network considerations for the specific case H=2. Section 5 gives some specific

results for this case, including an example of spontaneous symmetry breaking, an example of a

non-convex doc, a counter-example for series structure and the optimization procedures for any

fixed topology, with either free or fixed combinative logic.

Part II begins with Section 6, which covers the use of the doc to solve both the ,

Neyman-Pearson and the Bayesian problems. Section 7 contains a discussion of the

discontinuities of system tuning parameters in the case of fusion, and the continuity of the best ,

achievable cost. Section 8 shows how resource constraints modify the decision process, and may

lead to a cost (performance gap) when only deterministic tunings are available. Section 9

illustrates the application of the doc and its boundary to the problem of team action.

The value of the doc lies in the fact that it permits a value-free comparison of

alternative architectures, however complicated. .
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2. Some discrete examples of the detector operating characteristic M(S).

Quite generally, the signal set and conditional probability distributions which define a

sensor can be described by a fundamental table of numbers.

YEY 1 2 3 4 5 6 ...

f (y) .1 .3

.4 .0 (1)

h, H (Y .1 .2 ...

The columns of the table are labeled by the elements of the signal set Y, which is taken,

throughout this section, to be discrete. Even when the physical reality is a continuous signal,

the practicalities of measurement will always force us to assign the observations to a finite

number of discrete bins. With this in mind we will often refer to the elements of the signal set

as "bins." The elements in each row represent the conditional probability that the observed

signal will have the indicated value, provided that the state of nature which labels the row is

indeed true. The elements in a row are called the "values of the response function

corresonding to the indicated state 2f nature." The row sums are 1, and the column sums

have no particular meaning. We will restrict our examples to the case in which the number of

possible states of the world H=2. We bear in mind, however, that the common usage of "0"
Sand "1" as the labels suggests an asymmetry among the hypotheses and the actions which does

not exist in general. (Although there will be at least one action which is "best" if a given state %

of nature prevails, the remaining actions may be "wrong" to differing degrees, and their

ordering will change according to which state of nature does indeed prevail.)
2,.,1 Speific Example 0 1

Consider a 4pecific concrete example S given by the fundamental table:

1 2, 3

$I= fl .6 .3 .1 (2)
fo = .1 3 .6

DS-069\ONR\CHAP-ALL.HXP Rev #3 Page 11 0,



For any sensor, the notion of "tuning" amounts to specifying the circumstances under

which a particular action (or signal, if the sensor is imbedded in a network) will be chosen. For

example, we may represent the set of signals leading to the action "a= ' " as Y(a=l), which is a

subset of Y. The corresponding probabilities to act, given the alternative states of nature "0"

and "1" are represented in the table of bin combinations:

Y(a=l): {0} {1} {2} {3} {1,2} {1,3) (2,3} {1,2,3}

h=(S) h=1 .0 .6 .3 .1 .9 .7 .4 1.0

h=O .0 .1 .3 .6 .4 .7 .9 1.0

(3)

The pair of conditional probabilities in any given column may be taken as the coordinates of a

point in a two-dimensional space. The dimensionality of the space is given not by the number

of actions, but by the number of hypotheses (H). We refer to this set of points in an abstract

space as the doc M(S). It contains all of the useful information in the table. The points in the

doc may each be labeled by the subsets to which they correspond.

We give two other examples to solidify the concept. Consider first the "broken

detector." A broken detector always gives the same signal, which we choose to be "3". In

talking about the case of only two actions, to which we now restrict ourselves, it is convenient

to describe "a=l" as "act" and "a=2" as "do nothing."

The fundamental table of the sensor is:

1 2 3
I1

SBROKEN=- f 1 .0 .0 1.0 (4)
f0 .0 .0 1.0

DS-069\ONR\CHAP-ALL.HXP Rev #3 Page 12
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The table of the doc becomes:

Y(a=l): {0} {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

Z(S)= h=1 .0 .0 .0 1. .0 1. 1. 1.

h=0 .0 .0 .0 1. .0 1. 1. 1.

(5)

There are only two distinct points in the doc. One point corresponds to all tunings in which the

set Y(a=l) contains the element "3" of the signal set. With this tuning we will "always act." 0

The other point corresponds to all other subsets of Y, and with this tuning we will "never act."

Se nsor ProductS

Consider a second detector whose bins are not necessarily the same as those of S1, with

fundamental table:
5 6;

s2 .8 .2(6).3 .7

We define the full product sensor, S1 &S2 by the product table. It represents all of the

information that can be given by the two sensors together, and has six bins which may be

labeled as 15, 16, 25, 26, 35 and 36. Quite generally, the rows of the fundamental table will be

the conditional joint probability distributions. If the two sensors are (stochastically)

independent the table for the full product is determined by the two individual tables.

Specifically we have: [15 16 25 26 35 36
$3= S1 0SNindep = .48 .12 .24 .06 .08 .02 (7)

.03 .07 .09 .21 .18 .42 S

In what follows & win assume stochastic independence throughout. Since there are 2x3 =6
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Figure 2. The detector operating characteristic (doc) Z for the product of two discrete sensors.
Each small square represents an achievable value of the two conditional probabilities. The
boundary S plays a central role in decision analysis. From the boundary one may reconstruct
the fundamental table of the product sensor.

The DOC for the product sensor

DOC of SISS2
I'

0.9 0
0 00

0.8 0 00

0.7 - 0"
0 0

0.6 0 00o 0 0 0
0.5 0 a

0 0 0

0.4 -00 0 0~
0 00
V 0.5 000

0 00

0.1 0 0 0 c0
00

0 0.2 0.4 0.6 0.8

Coed probabilt of foa* alarm
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bins in the product detector, there are 26=64 points in the table of bin combinations which

defines the doc. The resulting doc M(S3 ) is shown in Figure 2. The fundamental table of the

sensor may be reconstructed from the difference vectors formed along the upper boundary,

which are suggested by the light line in Figure 2. This line is, in fact, the ROC for this system,

except that, since the system and its doc are discrete, only the vertices are realizable in a

deterministic system.

Note that the doc of a sensor product must always contain the doc of either of the

factors because one sensor may be tuned to the point (1,1), in which case the products are all

possible tunings of the other sensor. The product procedure can be followed in the case of a

continuous signal set, by binning to any desired degree of approximation, in order to produce a

standard discrete representation of the doc of a continuous system.

23Restriction 2f Sensors%()

When a sensor communicates through a finite network channel it may not be able to

pass on all of the available information. It must code the observed signal ycY into some M-fold

message. To do this the signal set Y is decomposed into a union of non-overlapping subsets

Y(m=1), Y(m=2), ...Y(m=M). Each such partition represents a "tuning" of the sensor. In

general the channel capacity (M) is less than the total number of bins. For example, with

M=2, and the sensor S1I®S 2 there are 64 tunings, corresponding to the points in the doc.

Among them is the totally uninformative choice Y(m=l)={25, 26}, which lies on the principal

diagonal of the unit square containing the doe. There are also 5 maximally informative

possibilities:

Y(m=l)={15}, {15,25}, {15,25,16}, {15,25,16,35}, and {15,25,16,35,26}.

Further discussion is postponed to Part II. We represent any one of the possible tunings by the

general expression W(2)S 3. For example, one specific tuning is: -%(2:{15,25})$3, whose doc is

shown in Figure 3.
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Figure 3. A restriction of the sensor of Figure 2. The points of the original doc are shown for

reference. The doc of the restricted sensor, which has only two messages, consists of the four

solid squares.

The DOC for the product sensor

DOC of SI@S2

~~~0.9 n,
0.11
0.7

000
0. 0
0.6-

00

C ~0.5 0

o 0

& -3

0.6 0
00

0.2 00

I--
00 9'U0 0.2040.0
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3. Some continuous examples.

We have already remarked that it is practically necessary to replace a quantity that is

'in principle" continuous by a finite set of discrete bins. In other cases it is convenient to

approximate something that is fundamentally discrete as being essentially continuous. We now

consider the extension of the concepts of the doc M(S), the full product 0, and the n-fold

restriction ,(n) to cases in which the signal set Y is continuous.

31 TheC s 2f exponential resn functions.

The case of exponential response functions is particularly tractable, and will be pursued until

its simplicity proves to be an embarrassment. The signal set Y=[O,oo]. The response functions

are f1 (y)=e-Y and f 0 (g)=ne-n y . The set of points in the doc is precisely the allowed region of

our previous paper [Blankenbecler and Kantor88]. Referring to the previous section, we see that 0
even in the discrete case the set of points in the doc quickly becomes very dense. We may

readily find the boundary (in the case of only two hypotheses) by ordering the points of Y in

decreasing order of the ratio fl(y)/fO(y). This provides a parametric representation of the

boundary of the doc, which is sufficient for further numerical calculation.

If we call the parameter involved "z," a suitable choice is given by

Y(m=l;z)=[1/z,oo]. Using "F,D" to represent points on the boundary we have at once:

FO(Y(m=l;z))=nf C5 1 dy =efIz (8)

1/Z

and 0

Fl(Y(m=l;z))= f e -dy=e' /z (9)
lz S

In this case a simple analytic relation describes the upper boundary of the doc:

FI(F0 ) =F 0
n  (n>1) (10)

We may represent all of the salient features of this problem in a family of three related

graphs, as shown in Figure 4. The first figure shows the response functions on any convenient

scale, as a function of y, or a transformed label. 'he third figure shows the upper boundary
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Figure 4. Aspects of a sensor with continuous signal set. The response function, the upperboundary of the doc, and the map from the boundary to trigger regions in the signal set areshown for the exponential model of the text.
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3 of the doc D(.). The lower boundary is determined by the symmetry of the doc under the

transformation F-*(1-F) and D---(1-D), the relabeling of actions. We adopt here the

convenient notations:

F= Fo(Y(z)) (11)

D=FI(Y(z)) (12)

corresponding to the notion that f0 represents a "false alarm," while A represents a "true

detection event." The middle part of the figure shows the translation of any particular

operating point on the boundary of the doc into a corresponding 'trigger region" Y(z). The

parameter z itself need never be made explicit.

Corresponding to the fact that, for a discrete system, permuting the columns of the

fundamental table does not change the doc, there are an infinity of transformations of the

response functions which will leave the doc unchanged in the continuous signal case. A simple

example is given by the Rayleigh distributions:

fl(w)=2nwe-nv2 (13) 0

and 
2

fO(w) =2we"
. (14)

The transformation y=u2; dy=2wdw shows that these two sets of response functions, the 0

Rayleigh and the exponential, have exactly the same integrals over corresponding regions in

their respective signal sets, and hence will have the same doc.

There is very little difficulty in principle in extending the parametric representation to

any computable forms for f0 and fl. A more complex example, on the signal set Y--[-oo,oo] 1%

is:

(15) C.

,(Y) +(2(0( 250)/2(2)2 -(y-300)2/ 2 (2 0)2I
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and

f2() e=-(L.1/3)e +(1/3)e "(P 250) 2 /2( 4 0 )2 +(1/3)e (y300)2/2(40)2]

(16)

The doc has been calculated numerically by ordering unit bins centered at y= 150,...350, as

described above. It is shown in Figure 5. Note that the trigger regions may be quite complex,

because the response functions do not have a monotone likelihood property with respect to the

label or variable "".

It may be shown that, provided the ratios of the response function do not vary too

rapidly, the doc M corresponding to any fundamental table whose signal space is continuous

will be a convex set. That is, there will not be any isolated extreme points, or holes within the

boundary M. This property is useful in studying the fundamental operations of the sensor

calculus.

Sr
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Figure 5. A complex sensor with continuous signal set. The response functions, upper boundary

of the doc: (the ROC) and the map to trigger regions are shown for compound ovcrlapping

Gaussians. The solid line on the lower left graph is the trigger region corresponding to the
point PeS
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3.3 Standard Forms for Sensor Tables

We have mentioned that different sensors may have the same do. It is therefore useful

to introduce the notion of a standard doe. This may be done in two ways. One leads to a

continuous signal set, and may be useful for conceptual purposes. The other leads to a discrete

signal set, which is essential for calculation. We suppose that the upper boundary Q3+ of the ,

doc is given in the form D(F). The derivative D'(P) may be shown to exist, from the right, for ,, ,
"

all F<1.

Continuous Standard Form:

Y=[-D(O),l] (17)

1 0 <o (18)foY'- 1 0<Y<l 0

and

D'(y)f)- (19)A

Define the auxiliary function:

fatz(8)= min F. (20)
D'(F)<tan,

For n=1 to N:

Fn =fau ( n r/(2 N)) - fauz(( n- 1)i/(2 N)) .  (21)

Dn= D{faz(ni/(2N)}- D{fauz((n-l)i/(2N))}. (22)

This construction divides the continuous interval ftorn 0 to 1 into portions over which the slope

of the boundary of the doc changes by a fixed amount, r/2N. This construction makes use of

the convexity of the do and, hence, the fact that its boundary has a monotonically changing N

SH. Re #g,,.
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slope. (Technically, as we draw the doc, the upper boundary is concave, and the lower

boundary is convex.]

3. Te Full Sensor Product:

As a simple example we form the full sensor product of two identical sensors with

exponential response. This is the same as having all the information from two such sensors

before making a decision. Or, it can be regarded as making two successive (independent)

observations with the same instrument, before reaching a decison.

We introduce the transparent notation:

s = (23)
C ny

to represent the sensor with Y=[O,oo] and with the response functions indicated. We see that. _

the full sensor product has the representation: I

S®S= d(z,y) = 2&(z ) (24) .

-A =2e -n(z+ y)

The obvious parametrization for determination of the boundary of the doc is t=z+ y. The

corresponding trigger regions are of the form Y(t 0 )=[to,oo]. The element of integration .

becomes tdi, with the results:

D(t)=(1+t)e-  (25)

F(t)=(1 +nt)j "n (26)

A general recursive formula is given by:

Dt, O= Dk 1() + -L.t-e k= 1,2,... (27)
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Figure 6. The full sensor product. The upper boundary of the doc, 4 + is shown for the two
and rhiee-fold product of the exponential sensor with itself. Note that there are diminishing
returns in the continued improvement that repeated measurement represents.
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nk-ik-1 i (28)

with:

D0 (t)=F0 ()=0. (29)

Although we generally cannot express D(F) in closed form, there is no difficulty in preparing

graphs, or performing further calculations on the basis of these formulae and results. Examples 0

showing the upper boundary S + of the doc for the two-fold and three-fold sensor product for WIN

the exponential case are shown in Figure 6.

It is reasonable to suppose that if two sensors have the same doc, the doc of their

product with other sensors will not depend on the specific representation {Y,d(y),f(y) that is S

used. The reader may verify this by repeating the preceeding calculation, replacing either or

both of the sensor descriptions by the Rayleigh form.

.%
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4. Fundamental Network Elements

The fundamental operations that go to build up a network have already been defined:

the communication restriction %(M)S and the full sensor product SOS. There are some basic

topologies which it is instructive to examine in detail, both to illustrate the calculational

techniques, and to sharpen our intuition.

4.1 Smific nd General Restrictions 9,(M.t)S And % M,

We recall that S®T produces a new composite s r, with its associated doc, which is

always (in a sense to be made clear in Section 6) at least as good as either S or T. On the other

hand, for any particular tuning t, %(M,t)S is a sensor which is, in general, not as good as S,

because it has only an M-fold output. The tuning t determines the meaning of that output. It

is logically equivalent to a decomposition of the signal set into a set of nonoverlapping subsets

Y(m=l), ... ,Y(m=k), but, in practice, t may be represented in a variety of ways. In particular,

when we want to determine the boundary 3 of a compound doc 2(SOT), we need only

consider extreme points of the constituent docs. When their signal sets Y(S) and Y(T) are

suitably continuous the boundary is a continuous set, containing all the extreme points. When p

the signal sets are discrete, the "boundary" is the set of extreme points.

Note that the simpler expression %(2)S represents a more complex object than

?,(2,t)S since it is a set:

K(2)S={'(2,t)S: t a possible tuning of S} (30)

,milarly: 5'

f(/ )S@ 8(/)T-'{s , tc( . (31) ,€.

Thus the elements of the set %J(k)SO '( T are labelled by two tunings: one for S and

one for T. In the examples of this paper those tunings are represented by real numbers in the

unit interval, corresponding to the probability of a *false alarm." This representation of the -

tuning is possible when there are only two hypotheses and only two actions or messages.

Any element s@i e W(k)S®!,(O)T is itself a sensor, and it has a signal set with kxl

points, which are labelled by the messages coming from S and T, under the tunings selected.
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When an action a=1,2, ...,A is to be selected from a set A the compound sensor sot must itself

be tuned. Such a tuning is a decomposition of Y(s®t) into A non-overlapping subsets. In the

examples of this paper A=2 and the decomposition is specified by giving the set Y(a=l)

which, by complementation, specifies the set Y(a=2).

_4_ Binary Messages

In the special case of binary messages me{0,1} it is natural to call the tuning of sot a

LOGIC. The signal set is Y(set)={00,01,10,11}. There are 24--15 non-empty subsets in

the doc 2)(s@t). Each such subset corresponds to a logical expression. For example {01,10}

corresponds to [m(s)=1 or m(t)=1 but not both], which could be expressed as the exclusive or:

XOR(s,t).

Corresponding to a given logic there is a fundamental polynomial which appears in

each row of the table characterizing the sensor system. It is defined in terms of the binary

patterns m=(ml,.. .m2 ) appearing in the logic:
r mi, ,(1-mi)

Qt'G1C(Xl"'"Xn)-- I1mLOGIC '(32

Here n is the number of independent sensors for which a fusion center has been used.

This particular form depends both on the fact that only two complementary trigger sets arise

at any sensor (because of the two-fold messages), and the fact that 1 can be written as the

power z.

There is an important set of inequalities restricting the LOGICS that can be extreme

points of M(s®t). We recall that the elements of the table defining set are products for

stochastically independent sensors. In the special case of two-fold messages we may simplify the

notation, using:

ds=d(Y(m(s)= 1)=Prob(m(s)= 1 given h= 1) (33)

fs=AJY(m(s)=1)=Prob(m(s)=1 given h=O), (34)
with similar expression for the sensor t.

We also set:
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1-. (35) t

Then the fundamental table describing s®t has as its columns all triples of the form:

m(s)m(t)

s m s TsiWS dt at
f s m s TIf rs ft m t rtt (36)

The doc M has elements corresponding to all possible sums of these expressions.

Without loss of generality we may suppose that Y(m = 1) is chosen so that

ds> 1-ds = 7 (37)Ts- -1--Ts =fs •

with a similar relation for Y(m(t)=1). 04

It is easy to see that if a "trigger region" contains the point m(s)m(t)... m(n) and does

not contain all the points mI(s)m(t)...m'(n) for which any m> the corresponding m, then it

is not an extreme point of the upper boundary $+ doe of the composite sensor.

We sketch the proof for the case of two-fold signals. A corresponding result may be

proven for -fold signals in the same way. The statement is empty if the region is {11}.
Otherwise, suppose that for sensor t, the trigger region contains some point with m(t)=0. We
need only show that the corresponding point in the doe is inside the convex hull of the doe.

Without loss of generality we need only consider cases lying in the triangle d>f. We decompose

the given point into:

(f,d)=(IA+fo, dA+do) (38)
where (fo do) is the vector in the doe space corresponding to the point with m(t)=0 in the

signal set. Let (f1, dl) represent the vector in doe space corresponding to the same point in the

signal set, but with m(t)=-1. We show that (fd) is not an extreme point of the doe M by

showing that is lies below the line joining the points A (fA, dA) and
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B (fA +so +fl, dA + do + dj). To prove this we note that the f-coordinate of

(f/(fO +fl))A+(f 0/(f 0 +f))B isf, while the d-coordinate is:

dA j lf (do + dl) (39)

=dA+ O+(do +f dl/f,) (40)

2!dA + f (do+fdo1fo) (41)

=dA +do=d. (42)

The set of LOGICS is further reduced by the observation that every sensor must play a

role. For example, the doc of any logic that is independent of the message from sensor S is

contained within the doc formed by multiplying the corresponding polynomial QLOGIC by

zs m s . For, we could freeze sensor S to the "ON" position and recover QLOGIC" When a logic

is independent of the message from sensor S it involves zS only in the form zS + -- 1. For

example, with two sensors the logic {10,11} corresponds to Q(x)=z8Ys+ 5 z=z 8 . Its doc is

contained within the doc of either {11}=Y(AND), or {01,10,11}=Y(OR).

Of course the degenerate cases Y={0} and Y={00,01,10,11} are equivalent to having

no detector at all, and need not be considered. They correspond to the BROKEN doc:

These three principles are the only ones that we know for reducing the set of possible

logics. Detailed examples are given in [Cherikh88; Thesis CWRU] where the relation between

these rules and a Lagrange multiplier formalism for definition of the boundary of the doc is

developed.
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SpcfcDsrpin f2-fold -mfol fusion.

Using these rules we find that the cases to be considered are:

(i) Product combination of two sensors: %(2)SI®%(2)$2:

LOGIC=ll) AND

-=01,10,11) OR (43)

(ii) Product combination of three sensors: K I 0 S 2 0 S(2)$3

LOGIC = 1111} AND

- {011,101,110} MAJORITY RULE or 2 OUT-OF 3

= {O11,100,101,110,111} 1 OR (2 AND 3)

plus two cyclic permutations.

=- f101,110,111} 1 AND (2 OR 3)

plus two cyclic permutations.

=- 0O1,010,011,100,101,110,111} OR. (44)

The specific computations needed to trace the extreme points of the doc can always be

written as:

D(F)= Q maz QLOGIc(ds,d). (45)
QLOGIC sff)t< F

Since the function Dr(Fr) is monotonically increasing for r=s or t, the weak

inequality constraint may always be replaced by equality if the doc set is continuous. Thus, for

two detectors in this "fusion" situation the optimization involves a search over one variable,

For three detectors it involves a search over two variables.

When one of two sensors is directly accessible, and the other is only accessible over a k-
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fold channel we call the structure "series." The corresponding doc is represented by

We say that sensor S2 is "downstream" from sensor S1 . Each point in the doc of(&)IS2 .  esyta esrS

the combined system is achievable as the product of one or more pairs of points in the doc of

S2 and some member of t 1" Let us examine the structure of such pairs.

For any particular choice of the "tuning" of S1 the doc of (72)S1 is a set of four

points: (0,0), (f1,dj(f1 )) and their reflections under (fd)---(1-fl-d). The only non-trivial choice

of a trigger set is Y(m=l)-e.(f1 ,dj) and Y(m=0)--(1-fj,1-dj). The values of (fl,dj) can

range over the entire M(S1 ). Similarly, the points in the doc of S2 can range over M(S2 ).

On the one hand, the doc 2) of the series case is a restriction of the doc M) for the full

sensor product. We consider first the discrete case, with both signal sets having 3 elements.

Y1 ={1,2,31 and Y2 ={4,5,6}. The signal set of S10S2 is {14,15,16,24,25,26,34,35,36}, which

has 9 points. The doc will consist of 29=512 points. The signal set of S(2)S 1 0S 2 is somewhat

more complicated. There are several possibilities for the signal from %(2)S1, depending upon

the particular tuning, which we denote as '(2;t)S. They are {0,123}, {1,23}, {2,13}, 112,3} (4

possibilities in all, as their complements provide the remainder of the 23=8 total range of

possibilities.) However, these possibilities are not simultaneously available! When a specific

tuning is made for the first sensor, one of these possibilities is available and the others are not.

Thus there are only 2x3=6 elements in the Y of the series system, and not 9. Finally, if we are

interested in finding the extreme points of the doc, one of the possible combinations, {2,13},

will not be of interest because it is not an extreme point in the doc of of S1.

One way to visualize the relation between 1$(2)SlOS2 and SI ®S 2 is to form a table

of the possible subsets of the product signal set. For the full sensor product, every element of

the product set may be independently included in the trigger set. For the restricted product • ]

(2)S1@52, for every element in %(2)S 1 the elements of S2 may be chosen independently,

and vice versa. But this means that the elements of S1 must be assigned to two subsets once

and for all, prior to the formation of the trigger set. Thus, the candidates to be on the

boundary 8 of the doe )(C(2)S 1@S 2 ) correspond to the following points in the signal set Y: •

{14,15,16,234,235,236} or {124,125,126,34,35,36}
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Since only one of these possibilities may be realized at a time, one could not choose the tuning

{14,1245}. The upstream sensor cannot distinguish "2" from "1" and also from "3", because it

communicates via a 2-fold channel.

4. Comparison of the s structure IQ fusion.

Although the series structure has a more limited signal set (and, hence, a restricted doc F

M) than the full sensor product, it is expected to be more general than the fusion structure

3-2'-O1 (2)T. This may be verified by writing out explicitly the elements of the signal set for

the 4 non-trivial possibilities of (sOt) ®(2)S®'(2)T. They are: -1

{ 14,156,234,2356}

{ 145,16,2345,236}

{124,1256,34,356}

{1245,126,345,36}. (46) -

The first two of these are contained within the first of the series possibilities. The remainder

are contained within the second. Note that what appears as an elementary possibility in the

fusion structure, such as "1245" (that is: S says 1 or 2 and T says 4 or 5) is a composite in the

series structure, being the union of the elements 124 and 125.

4.6 Computation of a Series doc Z(%o(2)S 1 OS2 ) in the continuous case.

The series configuration can be thought of as a union of docs, corresponding to a set

of sensor products:

%(2)S I ® S2 = {s@S2: se%(2,t)S1 for some tuning t}. (47)

The structure of the specific elements of the doe is a little tricky. In general, the

elements of sc%(2,t)S1 are of the form shown in Eq. 48:
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m=l m=0

Dl(tl) 51t (48)

_' ti Fl(t

That is, there are only two points, and each row has, as its coordinates, some point on the

boundary B(SI) of the doc MD(SI). The elements of s®S2 are sums of products with one factor

drawn from this table and the other drawn from the table of S2 . We may write this sensor in

general as a table (we suppress the row containing the labels):

D1 (1) DI(tl) X d2(yl) d2(y 2 ) 1.. (49)
FI(y1  Fl(1I) ]'2 yl) f2(Y2) ...

The elements of the boundary 13 of the doe M are included among all possible sums _

over subsets of these products. Any such sum may be written as the sum of two terms: '-

d(Y) DI(tl)d2 (y) + E T;(Dd2 (W) (50)
Y eaYb

and

A )=" Fl(tl)f2(v) + E 1 2(') (51)
YcYa YCYb

To find the extreme points we need only consider extreme choices for the sums; that is,

we need only consider subsets Ya,b which are the trigger sets for points on the upper boundary

(F(t),D(t)) for some value of t, the tuning of detector S2. Since there are two sums involved,

there are two tunings, which we may denote as t2a and t2b. Hence the extreme points of the IF

doc for the series case will have the form:
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,.

D(Y) =Dl(tl)D2 (t2 a)+Dl(tl)D 2 (t2 b) (52)

F(Y) =Fl(t)F 2 (t2 a) +Fl(t1)F 2 (t 2b). (53)

We may see explicitly that the doc of the series case contains that of the two-fold

fusion system. In the latter, one of the sets Ya and Yb will be either the empty set or the full

signal set. For example, when t2b=0 the expression reduces to a point in the boundary of

AND(%(2)S 1 ,%72-- 2 ).

while when t2a =1 it reduces to a point in the boundary of OR(%(2)S1 ,%(2)S 2 ).

All the other special cases can be shown to lie within the docs corresponding to either

the AND or the OR logic for the fusion case. This confirms that when the second sensor gives

up the freedom to let its tuning depend on the signal received from the first sensor, its power is

reduced to that of the situation in which each sensor must set its tunings without knowledge of

the signal from the other.

4. The uglk of three-fold fusion,

In the case of three detectors we have found that there are 9 non-dominated LOGICS.

Three of these are symmetric. The remaining ones form two familes, each of which is closed

and transitive under permutations of the three sensors. We can demonstrate, by explicit

example that any of the 9 rules may be needed in the general case.

When the three sensors are identical we have not found any cases in which the non-

symmetric rules are needed to determine the boundary of the doe. Thus we are led to speculate
- .

that perhaps, when all three sensors are the same, only the three symmetric rules are needed to

find the extreme points of the doc. However, the argument "symmetric sensors, therefore

symmetric solutions" is a dangerous one, as shown in Section 5.1. Thus this question remains

open.
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5. Specific network results.

1 ontanus symmetry breaking

In many cases where the two sensors whose signals are combined at a fusion center are

themselves identical, we have found that the optimal tunings of the individual sensors are

themselves the same for every tuning of the overall system. This kind of symmetry makes

calculations much faster, particularly as one advances to systems with more than two sensors

or more than two messages per channel. One may invest considerable energy in the effort to

prove that this symmetry holds quite generally, but the efforts are doomed to failure because

counter-examples exist.

We exhibit such a counter-example here. The reader will note that the degree of

difference between the performance of the system with optimal tunings of the indivudal

sensors, and the performance with suboptimal, symmetric tunings, is not large. Thus it may be % %

possible to prove that symmetric tunings represent a heuristic for tuning which comes within N

some provable discrepancy of the best possible tuning.

The Counter-example.

Consider the sensor defined by the following fundamental table:

S= d .375 .537 .088 (4
f .250 .390 .360 (

The upper boundary of the doc corresponding to the continuous version of this sensor

is given by linear interpolation between the points:

I 0 .375 .912 1.0 (%

0 .25 .64 1.0 (55)

By direct calculation one finds that the symmetric tunings for the AND and OR logic

at F=.64 are in fact both lower than .912, and so surely lower than the best that can be
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Figure 7.1 SpontaneouM synnetry bre~king. The lower curvc is thr bho onary of th, do w en
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achieved with a fusion system. That difference is shown in Figure 7.1,7.2.

L.2 Non-convexity of the doc for fusion systems.

As we shall discuss in detail in Section 6-8, the convexity of the doc Z for a detector

system plays an important role in the solution of decision problems, whether they are

characterized in terms of acceptable error rates or by a cost matrix relating actions and

hypotheses. Since the solution of any decision problem involves optimization over the doc Z, it

is made easier if that region is convex. However, the doc defined by a fusion system is shaped

by the fact that the action of fusion corresponds to a discrete -sensor, with only 4 points in its

doc. For a fusion system, even though the distributed sensors have continuous signal set, and

continuous doc, the fusion center itself has a discrete signal set, corresponding to finitely many 0

logics. Examination of the boundary of the doc in example cases shows that the doc is actually

the union of several convex sets. Although the intersection of convex sets will also be convex,

the union, in general, will not. So it is not surprising to see that there are small regions of non-

convexity in the doc of the fusion system. An example is shown in Figure 8.1.

This corresponds to the fusion of two sensors each having the table:

d- .4 .6 0 i
S= (56)

f- 0 .6 .4 I
This structure means that each of the sensors can send any of three signals. The first is

an unambiguous identification of the desired event; the third is an unambiguous rejection of it,

and the middle signal is perfectly ambiguous. As shown in Figure 8.2, there is a substantial

dimple in the area where the boundaries of the docs for the two LOGICs cross. The depth of 0

this dimple can be measured in "natural units" corresponding to distance in the Euclidean

metric on the doc set. It is approximately 6%. We have calculated the depth of the dimple for

all choices of sensor having the general form used here, expressed as a function of the degree of

overlap of the response functions. In this case the overlap is 60%, which is close to the location

of the maximum. If e denotes tht area of overlap, the depth of the dimple may be shown, by
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Figure 8. Non-convexity of thle fusion doc. The individual sensors each have doc boundaries
corresponding to the curve labeled DOG. The fusion of two scnsors wvithi binary messages has
the boundary labelled MAX DOG. There is a clear "dimple" or non-convex region at thle point

4 where the LOGIC changes.

Two identical detectors in fusion
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Figure 8.2 Nonconvexity of the doc in fusion. A fairly extremne casc occurs whecn thiere is a 60%.' Z.
chance that each of the sensors will give a completely ambiguous signal yeY. The dimnple Is
approximiately G%.

Figure 8.3 Nonconvexity as a function of ambiguity. The depth of the dinmplc, invastrcd( ;L%
Euclidcan distance in the (bc space, is given as a function of thc coniditionial probability of the
ambiguous signal from thc component detectors.
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elementary geometry, to be: .

GAP=e- l-e (57)
---r2e

which achieves its maximum at:

e=(4- 1)/_=0.618... (58) "-~I

One expects that non-convexity will be the rule for fusion systems, unless a single logic

dominates all of the others, and this example of a typical model of sensor imperfection suggests

that the effects may be substantial. (See also Figures 8.2 and 8.3)

U eJI sries tonologv.

In general, the simplest series structure is represented by € (2)$1®&S. One sensor

sends a binary signal to another. One natural question is whether, if one sensor is definitely

better than the other, the good sensor should be placed "upstream" or "downstream." As we

discuss in Section 6, a sensor S is definitely better than another S' if and only if the doc Z(S) -

includes the Z(S'). We illustrate some of the complexity of this problem with a simple finite

example. Let two sensors be described by the tables:

.40 .35 .15 .10 1
G .25 .25 .25 .25 (59)

and:

.40 .30 .20 .10 ]B =

.25 .25 .25 .25 (6) N

It is readily verified that G is better than B in that sense.

There are three non-trivial reductions which may be applied in this case - combination .
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of the first two columns, the first three columns, and the last three columns. We may then

form the direct sensor product of the reductions of G with B, and vice versa. This yields a set

of points which are the extreme points of the composite structure %(2)U@D. We use "U" to

represent the "upstream detector" and "D" to represent the "downstream detector." The

results are most easily seen in the graphs of Figures 9.1, 9.2, 9.3 which show the complete

upper boundaries !B+ of the two composite docs. These have been verified by direct calculation

based on the piecewise linear formulation corresponding to the discrete sensors G and B. The

enlarged views show that in the neighboorhood of F=0.5 it is "better" to have the better

sensor upstream, while in the neighborhood of F-=0.625 it is better to have the poorer sensor

upstream.

As with the case of the spontaneous symmetry breaking the effects are small, and we

do not know whether they can be shown to be small, in this sense, in every case. Of course it

must be remembered that differences on the doc graph are multiplied by some scale factor

depending on the importance of the problem to which the sensor system is applied.
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Figure 9.1 Two sensors in serics. Thc idividual sensors ha~ve the upp~cr bomidaries 1, which is

better, and 2, which is poorcr. Thc two possible choices far which sensor is upstrcarn yield two

composite docs, whosc upper boundirics are close to each other.

Figure 9.2 Detail ot Figure 9.1. In the vicinity at 50% false alarm rate, the performance or thc

system with the better detector upstream is superior.
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IOOMt. D0C2 and DCC. of soch design

0. -

0.8 -)

0.7 -2

0.5

0.4

20.3

0.2

0.1

0~
0 0.2 0.4 0.8 0.8

0.81 0vraI DOC* in (.45..553

0.79

0.76

0.74 - ~

0.73

0.72 1
0.45 0.47 0.40 0.51 0.53 0."

Cand pobabft of fais, alarm

DS-6\ON'I\(,IIAI-AlI.Il P Rev #:3 Page 42



Figure 9.3 Detail of Figure 9.3. In the vicinity of 62.5% false alarm rate, the performance of 4A

the system with the poorer detector upstream is superior. Possible tunings of the system with
the poorer detector upstream are labeled ")". There are six variant tunings of the two possible
configurations, but several of them overlap in this small region.

Comparison of R(2)BxG and R(2)GxB
( for R(2)GxB ) for R(2)BxG
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5.4 General procedures for the calculation 2f anetwork,

The ideas set forth in Sections 1-3 permit us to provide an algorithm for the discussion

of any network in which signals flow only one way, and there are no closed loops. We have

seen that such a network can be represented by some combination of the basic operations of

the sensor calculus, restriction %(k) and full product ®. We confine ourselves to the case of

two hypotheses and two-fold signals.

The doc boundaries S of the root sensors may be given in either analytical form or

numerical form. Thereafter all calculations will produce numerical form. The result of any such

calculation can be thought of as a table enumerating the points of the boundary 6, and the

tunings of the component detectors that give rise to them. For example, when the operation is ' ,

a binary fusion ',(2,t 1 )S 1 6T(2,t2 )S2 the table contains entries:

F D t1 t2  LOGIC (61)

where t1 and t2 and LOGIC are the coordinates of the optimal solutions to the problem:

D=rmat mar QLOGIC(Dl(Fl(fl)), D2(F2(12))) (62)

subject to the conditions:

QLOGIC( Fl(iP, F2(t2)) =F (63)

and:

(F(tl), D1(tJ))C8(S1 ) (64)

In practice, for the case of two hypotheses and two actions, the value of Fi(ti) may be

used to represent the tuning as well. If, for reasons of economy, or reliability, the choice of

LOGIC is fixed thtn the table will only contain the values of (F,D,tl,t 2 ).

For the case of fusion of more than two sensors, the general form will be the same, but

the enumeration of LOGICs will be more complex.

For the series structure ,(2,tu)UOD the table is slightly more complicated, .

r
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containing:

F D tu tdi td2 (6)

where tu, tdl and td2 solve the problem:

=zmax DU(it)DD(dl)+[I1-DU(tu)j DD(td2) (67)D-- " dl, d0PW0

subject to the conditions

FU(tu)FD(tdl)+[I-Fu(tu)I FD(td2)<_F (68)

and:

SFU(tU), Du(tu)e!8(U) (69)
FD(Id 1), D D(tdl) eM(D) (70)

FD(td2), DD(td2 ))M(D) (71) 0

Such tables may be used to determine the doc boundary S for any composite into

which these composites enter as components. In the practical application of such a system all

the tables must be maintained available for use. The overall detector system boundary B is

used to determine the overall optimal tuning, as described in Sections 6-8. That tuning is then

looked up in the overall system tuning table to determine the optimal tunings of the major

subcomponents. This lookup process is iterated until the tuning of each fundamental sensor in

the network has been determined, as well as the tunings of the intermediate sensors.
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6.The link between decision making and the doc. .I/

LL. Bayesian Formulation.

In the Bayesian formulation a problem is described in terms of probabilities, actions

and hypotheses. In general there is a cost matrix C(a,h) defined for acA, the set of actions and

hcH, the set of hypotheses. In general one might permit the cost function to also depend on the

probability that each of the several hypotheses is true, in which case we might write it as

CQa,p), where p-(p(h-= ),...,p(h--B)). The probabilities have some specified values p0 prior to

the observation, and are updated to the values p, by the observations of the sensor network. In

the general case the cost may be a non-linear function of p. For example, the cost may increase

more rapidly as the leakage through a defensive system increases, and the number of survivors

decreases. Thus improvement in detection yields diminishing returns. In another setting,

improvement in detection will, in general, bring diminishing returns because the precision of a

measurement increases only as the square root of the number of detections.

We restrict ourselves in this paper to the customary engineering cost model, in which

the cost function is linear in the individual probabilities, and may be written as: V

Q =ap) E Cta,h)p(h). (72)
heH

In this case, the cost of choosing a given action may be expressed as:

EC(adA)=ZPyr a and h) C~a,h). (73)
eH

If the action a is taken whenever the signal y is in the trigger region Y(a), this

becomes:

ECa)=E po fh(Y(a))CQa,h). (74) -AH -*.., ..

Note further that, for this formulation, in which the expected cost is to be minimized %%.

without additional constraints, the cost matrix C(a,h) and the prior probability enter only in a
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single combination: W( a,h) =p° C( a,h). This can be thought of as a vector, labelled by a, whose

several components are indexed by h. With this perspective, the expected cost is simply the

inner product of the vector A(Y(a)), whose components are fh(Y(a)), and the vector W(a).

Thus solution of the Bayesian decision problem amounts to finding, for each a, the

tuning Y(a) which minimizes the overall expected cost. In the general case this will be

accomplished by assigning each element pY to that action a(y) for which W(a(y)) < W(a') for

all other actions a'. We concentrate on the case of exactly two hypotheses and two actions. In

this case we need only specify one trigger set, Y(a=I), with the other, Y(a:=O), defined by

complementation. Similarly, the space in which the vectors f and W lie has only two

dimensions. As in Section 4, we will refer to its axes as the frand d axes, corresponding to h=0

and h= 1 respectively. The components of fare (Jd).

It can be shown by direct calculation [Blankenbecler,Kantor88] that f& this case the

expected cost depends only on certain differences, which may be thought of as the cost of two

kinds of error:

C(h= 1)= C(a=O,h= 1)- CK1,1) (75) S

and

C~i=O)= C~a=1,A=O)- C(O,O). (76)

We assume, without loss of generality, that both of these quantities are positive. (If they are

both negative we should relabel the actions. If they have opposite signs then one of the actions ?..
is to be preferred whatever the state of nature, and no sensor system is needed.) This

particular simplification is unique to the case of two actions, in which the difference vector

R-W(a=1)-W(a=O) can be used to determine whether W(a=1)-Jy) C W(a----0).)
>0

By direct calculation we find tha the expected cost may be rewritten as:

0
EC= phfk(Y(a))C(a,h) (7

-- [pOfh(Y(1))C(1,') + pOfl(Y(O))C(02,h)] (7.)
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0
= L W(a)-.Y(a)) (79)
a=1

We use the fact that there are only two possible actions to write AY(2))=E-JY(1)),

leading to

EC= W(0).E+( W(1)- W(O)) .Y(1)). E=(1,1) (H terms). (80)

Thus the problem of minimizing the expected cost is the same as minimizing the value

of the second dot product. This can be visualized as sweeping a hyperplane perpendicular to

R=W(1)-W(0) across the doc until it reaches an extreme point. When the dot product is as

small as possible the corresponding choice of the tuning Y(a=l) is optimal. We show this

construction graphically. Note that the two terms of R are, using "f for "0", and recalling

that a=O means "do not act": ; -

Rdp X1,1)-pC(a=0,l) h=1 ("d") (81)

f 0 1,)pC0 ,
R=pOC1,2)-pOa-O,2) h=2 ("f) (82)

These represent the a priori risk associated with the two possible states of nature.

Presumably the first is negative and the second is positive. Their ratio determines the slope of

the line that sweeps across the doc. For IRdlI.Rf the line is nearly vertical, which favors a--_

tuning very close to (0,0). This is reasonable since the risk of an incorrect response (false

alarm) is relatively great, inhibiting us from action. Conversely, when IRdI >R tunings close

to (1,1) are preferred because a miss would be very costly.

No matter what the nature of the doc - be it discrete or continuous - the solution

to Bayesian problems will be found at the extreme points of the doc. If it is discrete these are

isolated points, as in Figure 10.1. If it is continuous all the points of the boundary are extreme

points (Figure 10.2). Thus, in one way or another, everything that we need to know about the

doc is contained in a "listing" of its extreme points. This may be given in closed analytic form S

- 'N
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Figure 10.1 Bayesian problems: Discrete case. The cost and prior probabilities determine a

direction, represented here by level lines. The solution to the problem is to move as far in that
direction as possible, without leaving the doc. As the direction rotates, the optimal tuning

remains "stuck" at a vertex of the doc, until it is ready to jump to another one.

Figure 10.2 Bayesian problems: Continuous case. When the boundary of the doc is continuous,
the level line for the optimal tuning rolls around the doc, and the tuning point changes
c~ontinuously.
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(rarely), in a tabular form with interpolation rules, or by direct enumeration.

To sum up, the solution of any Bayesian problem is reduced to complete knowledge of ,0

the boundary of the doe. Since the boundary of the doc also provides all the information

needed to carry out the operations of the sensor calculus, we consider an alternative way to

characterize it.

L hM Nevmn Pearson Formulation,

In general, the extreme points of the doe are all those points through which a

hyperplane may be passed without including any interior points of the doc. In the general case

the interior points are all convex combinations of extreme points that are not themselves

extreme points. One way to enumerate the extreme points is to consider all possible Bayesian

problems, and find the solutions for each. Because the information about prior probabilities

and about costs enters only through a single ratio, this would be a highly redundant

enumeration. A more efficient approach is to consider all values of the determining ratio

R d/Rf I

Yet another method is to trace out the extreme points by gradual relaxation of an

artificial constraint. This approach is familiar from statistics, where it defines the operating

characteristic of a test, and has given rise to the name "Receiver Operating Characteristic."

Interestingly enough, this terminology has made its way back into statistics as well. 3
[Kraemer88, Swets72, Swets88]. The general theory of most powerful tests was developed by

Neyman and Pearson [Neyman42] and so we refer to this approach as the Neyman-Pearson

formulation of the optimal discrimination and decision problem.

Points on the boundary of the doc can be characterized as either:

DF) maz d (83)
(f,d)edoc, f<F

or:

mm . (84)
(J~d')edoc, d>D
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This approach has been used to provide independent proofs of the convexity of the doc,

and of the fact that the boundary is piecewise differentiable. [Cherikh88]. When the doc is V

continuous, the function D(F) has a simple relation to the effective cost vectors W at the

optimum tuning. Since the tuning point t* is on the boundary we have:

(W(a=l)-W(a=2)).(F(t*),D(t*)) (85)

is a minimum, or:

d [F(t*)R - DQ*)IR djO.(86)

or:

1(t*) Rf=D(*)IRdl. (87)

But D(t*)/F4(t*)=dD/dF1,*. (88)

That is, the slope of the boundary D(F) at the tuning point, is given by R/[R' In

practice D9(F) is often most easily found in the parametric form. Because the slope is itself

monotonically decreasing, many fast algorithms exist for finding the optimal tuning. V

SConstrained Optimization. .

The formulation just given, for the Neyman Pearson problem, represents the simplest . S.

kind of constrained optimization. There are realistic situations in which another kind of d"w

constraint arises. Consider a situation in which there is an expected series of incidents, S

numbering I in all. Suppose that the available budget of responses is B, and that the prior

probability is that a fraction p will be "true events" corresponding to h=1, while a fraction

p2 will be "non events" corresponding to h=2. Then when the system is tuned to the operating

point (F t*), D(?))the expected total number of responses will be:

ER-p 0 D(t*) + p2 F(t*). (89)

If ER is less than B there is no problem. On the other hand, if the number of responses %
exceeds the budget allowed then some fraction of the incidents will not, in fact, be responded

to. The effective performance in this case is reduced to (B/R)(F(t*),D(t*)). This point is a
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convex combination of the points (F(t*),D(t*)) and (0,0) and so is interior to the doc. It is '

therefore not optimal for any choice of the prior probabilities and cost information. Thus the,
optimal tuning will be the tuning for which the expected number of responses is equal to the
budget."-_,., ,,.

So, generally, the solution to the problem: .

max W-f (90) "". "

subject to the constraints:

fe doc (91) "

and pO.f<B/I (92) ., '

will lead to a point which is on the boundary of the doc and, for some choices of the cost

matrix, also on the line given by p0.f=B/I.

If the doc is continuous this does not pose any problems. Every point on the boundary''

of the doc is accessible by a suitable choice of the tuning Y(a). However, if the doc is discrete it,'

may happen that the intersection of the boundary (strictly speaking, of the convex hull of the

extreme points) with the constraint given by Equation (92) will not be a point of the doc. In
the most general analyses of optimal design of experiment [Blackwel154] this is dealt with by" '"

using a "mixed strategy." Under a mixed strategy, points on the line connecting two elements,. ,f:

of the doc are achieved by using each of the corresponding strategies a fixed fraction of the

time, with random selection of which strategy is to be used at any given time. €"'

For a single sensor one may implement such a random strategy by broadening the bins i.

into a continuum, and then choosing a tuning which effectively mixes the bins in fixed "'

proportions. For example, the sensor described by the table:

%,

DS-09\ON\CHP-AL.HXPRev#3 Pge 5 --

'K,-



.25 .75 :-I

may be replaced by a sensor with continuous signal set Y=[0,1] and the response functions: .

fl(y)=1 < <2
(94)

1/3 .25<y<1

T he graph of the upper boundary of the doc is:

D(F)= 3F 0 < F<.25 (95)S.75+(F-.25)/3 .25<F<1.

It is clear that this doc has no gaps in its boundary. In terms of the original sensor

table, a tuning such as F=.5 corresponds to a mixture:

(1/3)Sl(tuned to Y(a) = 1,2}) +(2/3)S1I(tuned to Y(a)={11) (96)

with the false alarm rate: :.

and the detection rate:.-cI,

D=(1/3)1 + (2/3)(.75)=5/6. (98)="'

UVe,

Ii 2
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7. Continuity and discontinuity in the behavior of network detector systems. .

It has been noted elsewhere [Blankenbecler,Kantor88] that even for a simple model

problem, it may happen that the tuning of a fusion system jumps discontinuously when the

LOGIC changes from AND to OR. At the same time, it was observed that the optimal cost

corresponding to the best tuning does not exhibit a discontinuity. We are now in a position to

explain both of these phenomena, and to comment on their significance for the optimal design

of distributed systems.

First we note that, for a discrete sensor, there will be discontinuities of tuning, as the

line representing the constant value of the cost "rolls around" the boundary of the doc,

touching at the extreme points. However, the cost associated with the best tuning for a given

value of R is continuous as the direction of R varies. This is because, when R is such that

either of two tunings is optimal (i.e. the line of constant R-f is an extreme edge of the doc)

then the cost associated with each of the the two tunings is the same.

Exactly the same phenomenon can occur when the doc M of a fusion system exhibits

non-convexity which, as we discussed in Section 5, is a general occurrence. We see that for a

certain critical value of the vectors W the extreme value of the cost will occur at two distinct

points on the boundary of the doc, corresponding to two different choices of the logic. With

simple fusion, as the difference vector R moves the optimal tuning will jump suddenly from the

value appropriate for the AND logic to that appropriate for the OR logic. The "cost" at the •

minimum will not show any discontinuity because the distance between two parallel lines,

measured in any direction, is the same no matter where, along the parallel lines, the

measurement is taken. s .

In practice, this could have very serious consequences. A network will, in general, be - S
tuned to our best present understanding of the costs and prior proabilities. If the general .

characteristics of the sensors are such that the optimum is at or near this point of %

discontinuity, then we are less confident than we would otherwise be that our tuning is the best

one. To take the worst case: suppose that we had to tune right at the ambigous point. We

must make a choice of LOGIC, and of the tuning of the individual sensors. If we select, for
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example, AND, and the actual situations (costs, priors) is such that the tangent line is a little

steeper than we think, everything is fine. We will be operating slightly above the optimium

tuning (F(t*), D(t*)), but not very much. However, if the tangent is slightly flatter, we will be

operating quite far from the optimal point, with corresponding loss in system performance. As

the slope of the tangent goes to zero the cost of wrong LOGIC falls to zero. The cost due to

being on the wrong lobe (that * choosing the wrong LOGIC) is not the same as the difference

between the two functions DAND(F) and DoR(F) measured at the same point F.

An example is given in Figures 11.1, 11.2, based upon the sensors described in the

imbedding model of [Blankenbecler, Kantor88]. The fundamental table is:

Y=0,] 1
n+1 -1 _ZeY) (99)[ fl() -rj-c (1Ir ) (9

The upper boundary S- may be given in closed form:

= n1 J/n (100)

In plotting the dependence of cost on the slope of R it is convenient to use a reduced •

measure of cost: J-f-IRd/Rf IL The true value of the difference in performance depends upon

the scale factor Rf, which may be extremely large. In figures 11.1 and 11.2 the independent

variable is the angle between the line of constant cost and the vertical axis. This angle

arctan(IRd/Rf 1) varies from 0 to v/2 as the optimal point sweeps around the upper boundary

of the doc.
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Figure 11.1 Optimal tuning in fusion. For the embedding model of Equations (99,100) the
optimal tuning is always symmetric. For two values of the parameters n and z we show that as
the direction of the cost minimization rotates, the tuning changes discontinuously, as the logic
changes from AND to OR. The tuning point jumps from one lobe of the boundary of the doc
to another.
Figure 11.2 Expected cost in fusion. For the same cases as in Figure 11.1, the expected cost,
measured in reduced units, does not show any discontinuity.
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Figure 11.3 Tuning and cost in fusion. The critical point corresponds to the line AB. When the
critical value is reached the tuning jumps from point A to point B, while the reduced cost, J,
does not jump.
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8. Resource constraints and mixed strategies.

We have seen in Section 7 that the finiteness of the set of LOGICs leads fusion systems

to exhibit some of the discontinuities of discrete systems. As might be expected, this problem

also affects the situation of constrained resources. We saw in Section 6 that, when resources are

constrained, the optimal tuning may correspond to a point which is not in the doc of a discrete

system. It can, in some cases, be achieved by a mixed tuning, or by a suitable broadening of

the signal set, which amounts to the same thing.

In the case of a fusion system, the problem manifests itself as shown in Figure 12. The

resource constraint passes through the "dimple" in the boundary of the doc. With mixed

strategy one could achieve the value corresponding to the point Q. With a pure strategy

(definite tuning) one cannot do better than the point P at which the two boundaries

(corresponding to the LOGICs AND and OR) meet. In dimensionless units, the added cost we

must bear is given by the depth of the dimple. The maximum perpendicular distance from the

boundary of the doc to the line segment forming the convex hull across the dimple is an upper

bound (in these absolute units) for the added loss due to the non-convexity of the full doc.

In response to this problem one might ask why we do not propose that a mixed

strategy be used, to avoid the added cost. The problem, it seems to us, is that mixed strategy

requires coordinated random retuning at each of the distributed sensors, as well as at the

fusion center. The communication costs of coordinating the retuning are likely to be higher

than the cost of adding to the communication capacity of the system itself, with corresponding

gain in system performance. Thus, in the design stages, one should avoid constructing fusion

systems for which the dimples in the overall system doc are likely to be in regions of operating

interest. L

I
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Figure 12. Resource constraints and fusion. Using an earlier example we show that the resource
constraint line may pass through the dimple of the doc for a fusion system, resulting in sub-
optimal performance.
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9. The problem of team action

In the preceeding sections we have concentrated on the case of two actions and two

hypotheses. Another problem of some interest [Tenney8l] is that in which there are only two

actions to be taken, but each of several agents may take them independently. This problem

may be discussed, with considerable complication, by using the language of updated

probabilities and likelihood thresholds. However, the same constructs that we have used above

also make it easy to discuss this problem. A

To fix notation for this section, let F represent the probability of false alarm and D(F)

represent the probaility of detection at a particular sensor. (In other words, we let F itself

stand for the general tuning variable t that defines the region Y(a=act)). With N different l

sensors there are, in fact, 2 N different actions, corresponding to which subset of the stations

"choose to act." We suppose that all of the stations have identical impact on the cost function,

so that the cost depends only on how many of the sensors act, and not on which ones they are.

Specializing further to the case of two stations we see that the cost matrix will have three

columns and two rows: .

C(a,h)
Number acigh--O

0 C(0,1) 0(0,0) X

1 C(1,1) C(1,0)

2 0(2 ,1) 0(2 ,0) (101)

We may reasonably suppose that C(0,1) is the largest cost element, and C(0,0) is the

lowest cost element. It is also clear that C(+I,0)>CO,0). It is almost certainly the case that

C(0,1)>C(2,0). That is, the cost of the disease is greater than the cost of the cure. Any further

assumptions are debatable, depending on the effectiveness of isolated action, the cost of "-

resources consumed in responding, and so forth. For example, if a single response is totally

effective then C(1,1)=C(1,0)=the cost of making one response, ;-d C(2,1)=C(2,0)>C(1,1)

because further resources are consumed unnecessarily. When a single response is not certain to ,
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be effective this inequality is likely to be reversed.

Let F- stand for the false alarm rate corresponding to the tuning of the jth sensor and

D stand for the corresponding probability of detection. The overall expected cost of this

tuning is then:

EG(FI,F2)=p°(G0,0)T + C(1,0)IF 1 T+ TF ]+C(2,0)F 1 F2)

The variables F 1 and F2 are free to range independently over the unit square in FIF 2

space. Our formulation of this problem is quite different from the treatment in sections 1-8.

We have not explicitly separated the problem into the determination of a doc and the selection

of an optimal point. The expected cost function here directly involves both the operating

characteristic and the priors and cost parameters. Thus there will be a separate problem to

solve for each choice of the parameters. However, the problem of determining the two doc

boundary functions represented by D1 (FI) and D2 (F 2 ) can be solved once and for all. They

can be incorporated as subroutines in an overall optimization progrum to find the minimum

cost tuning. The Kuhn-Tucker conditions of this optimization problem are the coupled

equations of [Tenney8l].

An alternative way of thinking of this problem is to note that it is a specific restriction

of the case of the unrestricted product of the sensors, with four possible actions. The restriction

is that the trigger regions in the combined signal set must have a simple product form '

Y=YlXY2 . (See also [Sadjadi].)

-'.

%'I"
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10. Summary and Conclusions.

We have seen that the concept of the doc - a convex set whose boundary, in the

simple case of binary hypotheses is the familiar Receiver Operating Characteristic - provides

a useful unifying foundation for the discussion of both discrete and continuous sensor systems

in a common language. This is particularly important because continuous approximations to

discrete systems are a convenient way of achieving mixed strategies (See Section 8) while

discrete approximations to continuous situations represent the realities of signal binning. We

have made every effort to develop the language and notation in a way that will survive

transition to the case of more than two actions or more than two hypotheses. Although this

complicates the discussion of some of the most familiar cases, we believe that it is worth the

effort.

We have shown that the doc 2)(S), and the set of its extreme points + (S),

represented by D(F) provide all the information needed to solve any Bayesian problem, for

either coordinated or team action. We have further introduced a powerful notation for the

calculus of sensors, built on the two fundamental operations of full sensor product S ®T and

the M-fold restriction representing either messaging or action, %R (M)S. .

Using this machinery we have found a number of "negative results" contradicting

certain plausible beliefs about basic properties of networks. Specifically, we have shown that:

(1) The fact that sensors are identical, and that their messages are combined in a

symmetrical fashion at a fusion center does not imply that the best tuning for the individual

sensors is symmetrical itself. An example is given in Section 5.1. -

(2) When one sensor is definitely better than anoth r (that is, its doc completely

contains that of the poorer sensor) it is not necessarily the case that it is better to combine full

information from the better sensor with a restricted message from the poorer. Nor is the reverse "

the case. An example is given in Section 5.3 in which the doc's for both possible architectures "

are calculated, and it is shown that neither contains the other.

(3) When signals from several sources are to be combined to determine an action there .
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may be discontinuities in the optimal tuning, corresponding to the fact that the tuning of the

fusion center itself is a discrete selection from a set of several possible LOGICs.

(4) Even though the optimal tuning for each of the sensors in a network will be a

deterministic tuning (corresponding to a point on the boundary of its own doc), it is not the

case that deterministic tuning of the network as a whole is always optimal. We show, by

example, that when there are resource limitations, as well as cost criteria, the best possible

deterministic fusion system may still be suboptimal.

Our results confirm the view that the development of an optimal architecture based

on distributed sensors is a difficult problem. We have shown, by example, how one may

construct the boundary of the doc for a complex system and may, once an optimal tuning t*

for the whole network has been chosen, "climb back" up the structure to determine the optimal S

tunings of all of the constituent sensors.

There are two important directions for immediate exploration. One is to find the most %

efficient possible algorithms for implementing the sensor calculus. We have been using straight-

forward grid search to test various preconceptions about symmetry and dominance. S

Particularly because symmetrical solutions are not generally optimal, the calculation for large

numbers of sensors may become prohibitive, unless better algorithms can be found.

The second important direction is to establish bounds on the magnitude of the sub-

optimality represented by our various examples. For example, if it could be shown that

symmetric solutions are always within .5% of the optimal tunings in fusion, then it might, in -k

many cases, be acceptable to use the suboptimal symmetrical tuning with substantial %,k

computational savings. Similarly, if it could be shown that one series arrangement is always

superior to another to within a similar small difference, it might be acceptable to eliminate the

opposite architecture from consideration.

k%
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DISTRIBUTED DETECTOR SYSTEMS AS A PROBLEM IN (N)
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Summary Our work has many points of contact with previous work.
We utilize a Lagrangian formulation to deal with the

In this paper, optimal control theory is applied to the optimization problem involving equality and inequality con-
design of decentralized sensor systems. Lagrange inequality straints. Three problems are presented in detail, involving the
multipliers are used to determine the optimal design param- cases of exponential response functions, special sums of expo-
ster. Several models of possible response functions are fully nentials, and block functions. We trace the behavior of the
discussed as examples of our technique. system tuning and the optimal cost as a function of the detec-

tor discrimination.
1. Introduction and Definition of the Problem This paper is the first of a series whose goal is to clarify

There are many situations in science and engineering in the relations between topics in distributed detection, optimal
which information is gathered from a variety of sensors and control, and experimental design, thereby leading to a more
must be abstracted or summarized for future processing in or- intuitive or "physical' understanding of the problems of dis-
der to comply with communication, storage, or processing con- tributed detection and sensing.
straints. The simplest example is the qaae in which a binary 1.1 General Introduction
decision must be made based upon information sources that
are constrained to transmit a binary signal. Examples include There are two possible states (of the world) H0 and Hi.
data from devices monitoring the performance of a power net- The prior probabilities of these two states are p0 and pl, where
work, data from an array of elementary particle detectors, the
coordination of radar or infrared signals, and so on. P0 = pW.o(HO) (1)

In general, the communication restrictions may be lifted Pi = pri,(H)
with some increase in cost; thus the examples under discussion There are two possible courses of action ("measures") denoted
represent a special case. As we shall see, even this simple case by mo and m.
(two alternative states, two possible actions, two-fold signals, The assumed eoat function is C(m, H), where
and two detectors) presents challenging problems of analysis.
Discussions have been given by Srinivasan for more than two C(toHo) C(moHI) ul + wo, (2)
detectors' and with applications to a specific choice of the de- C(mi,Ho) = uo + wo C l(ml,H) - ul
tector characteristics. 2  The expectation value of the cost function is to be minimized

Discussion of a case with distributed action is given by Ten- over the various design parameters, those in the response func-
ney and Sandell.3 A discussion for specific (series) topologies tions and those in the probability functions. As will become
is given by Ekchian and Tenneyl. 4 Related problems have been clear later in our discussion, the separate cost parameters uo
discussed by Chair and Varshney,6 by Reibman and Nolte,G and ul do not matter when the expected cost is minimized;
and by Sadjadi.1  the minimum depends only on a ratio involving the differencesin the cost for a given H,, namely w,0o and o,.

Quite generally, the performance of an entire network isht ge , l a

summarized by four probabilities p,.(y, H), of which only two The essential point is that for the case of only two possible
are independent. (Here, H = Ho, Hi represents two hypothesis states of the world, the preferred action is determined by a

about the world and V = It, y represents two possible actions single real number, determined by the posterior odds for the

or determinations. This notation will be made more precise Hi. This is true because, using linear cost theory, the informa-

shortly.) tion in Eq. (2) is summarized by the intersection point of two
straight lines; one describes the cost of action mi as a function

Several problems may be formulated, including of p0 while the other describes the cost of action m,.
(i) min p, (yl,o) subject to p(yo,H,) <_ p°.
(ii) main p,(p,H,) subjct to p,(y 1,Ho) < p1.. Properties of the Integrator

(iii) min Apr(yi, Ho) + Bp, (yo, HI). For our model we choose a fusion structure in which signals
are processed locally at each detector, with messages fed to a

The first and second problems correspond to setting ac- single integrator
ceptable error rates; the third arises when there is a tradeoff

btenthe two types of error. The coefficients A, B may be
psitive or negative. The problem is to design an inti.,ator C and tune the

The physical characteristics of an individual detector sensors (A, B). Each of the two sensors detects some signal
constrain the achievable values of pt(yi, Ho) and p,(y0, HI). (y) and sends the central integrator a signal wi. In general,

t The design of a network is then a selection from among a Idis- these signals need not be binary. The integrator then chooses
crete set of topologies, with each topology tuned to give its action mo or mi, and this choice is determined by the fusion
best possible performance. The tuning is a constrained opti- rules. The rules for both the sensors and the integrator are to
mization, with the constraints determined by the achievable be chosen so that the expected cost is minimized.
values of p, (yi,Ho) and p, (yo,HI). The integrator's actions are completely described by a

matrix (with two adjustable parameters) that describes the
'Work supported by the Department of Energy, contract probability of choosing measure mo, given the signals u, r

DE-ACO3-76SFOO515. from detector i = a, b. This matrix will be denoted by %N.,.
tSupported in part by the Office of Naval Research, contract p(tn iu.,ub), where

N00014-47-C--0605.- '
N 0 8C05Submitted to Transattion. on Aerospace and Electronic Sy tems I
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and this then implies for A,
p(mo[0,O) = 1 p(mo[ll) = o (3) A = f dvf'(Y)(

p11,o 11, 0) =s dA~oll = 0

or, in an alternative matrix notation, A
t of 0 = 1 Similar relations hold for b and B. If the response functionsis -6=1 have interlaced maxima, then the region R (and R) may be

p(molul = U 1 0 (4) disconnected.
The probability of choosing mi must be the complement, As R expands, clearly A contracts. For any fixed value ofelement by element, a there is a maximum and a minimum possible value for A.

If the response functions fo(y) and fl(y) overlap, which is the
p(mi[ ul = 1 - p(mo1u) . (5) general and expected case, then these limits on the value of A

We exclude the possibility of a third course of action. The have important consequences.
design parameters g and d are to be fixed by the optimization; The possible values A for a fixed value of a, are traversed
they define the rule to follow when the two detectors disagree. as the region R is varied. It is clear that to make A as large as
If the two detectors are identical, then we expect that d = g possible for a given value of a, R should contain those points
and that they will be 0 or 1 depending on the costs and the whose contribution to A would be as small as possible (i.e., the
details of the sensitivities of the detectors. ratio fi/fo small) while the complement contains those points

1.S Definition of the Detectors with large values of this ratio. This is the familiar likelihood
ratio threshold rule.

Now consider the detectors in more detail. Each detector, If a goes to 1, then A goes to zero. Also, if A is 1, then a
labeled a or b, produces a single "meter reading yi, (i = a, b), must vanish. This follows trivially from the unit normalization
in response to the state of nature. The probabilities, pd (y, H), of the response functions.
that the value of the reading is i for the state of the environ- Finally, note that an ideal detector with perfect discrimi-
ment H for each detector is nation has response functions that satisfy fo(y) x fJ (y) = 0 for

Detector- a b all y. In this case, the values of a and A are independent. We
p,(y; Ho) fol(i) Ao (iY) will return to this limiting case shortly.
p8(7/; H) J 1(y) J',(Y) 3 2. The Cost Function

The quantity y must now be converted to a yes or no signal
(u = 0 or u = 1). The expected value of the cost function is

The effect of the decision process at each detector may be (C) E C(mi,Hi)pj.,(Hi)p(mjHi) , (10)
summarized completely by a table giving the decision strategy
or probability of response pi(u; H) for each of the detectors. where p(mH) is directly expressed in terms of the detector
For detector a: properties, and we assume that the signals received by the

H0  HI detectors are stochastically independent:

pu(u,;H) = -- 0( a 1 -A) (6) p(mi]Hj) = E p(m"&iu.,u6)p(u.IH)p(uIHj) . (11)

while for detector b: Using the explicit form of the cost matrix, Eq. (2), (10) can be
H0  Hi expressed as

pb(ub; H)= :::=(0 b 1-E) . (7) (C) = lvoi p(volHI)pi+wiop(milHo)po+uopo+uipi.

Additive constants do not matter in the minimization; the
1.4 Design Parameters last two terms are fixed, and are the cost for an ideal system.

Therefore, the full set of parameters to be determined by For such a system with perfect discrimination, the off-diagonal

optimization is probabilities p(molHi) and p(miHo) both vanish since A =
I - a. The cost must be a minimum:

g,d a, A, b,B . Mi. = UOPO+U1p• (13)
The first two describe the operation of the 'integrator" that The quantity that we want to minimize is the additional cost
processes the two signals I" f the sensor stations to form the due to imperfections in the system; this has the form
output decision m. The last four describe the operation of
the "sensors" - they take the detected signals, apply their (6C) - (C) - (C).i. (14)
respective detection criteria, and form their individual output M Wo p(mo[Hi) pi + wio p(mi [Ho) po %
signals i;.

Note that the position of the minimum will depend on the1.5 Properties of the Detectors ratio
W o o (1)

A generalized detector uses the rule: if the signal y is in the W - 1
region R, then the signal uO is sent to the integrator. Similarly, which is the relative expected cost of being wrong if the state
if the signal i in the complement of R, i.e., if y e A, then ul of the environment is HO (and responding with ml) compared
is sent. to the cost of being wrong if it is H, (and responding with m0 ).

If the external state is indeed HO, then the response func- The magnitude of the minimum cost will depend multiplica- &
tion of the detector is Jo(y), but if it is H1 , the detector re- tively on the factor wol pl..
sponds with fj (y) [see the table below Eq. (5)]. It is convenient to rewrite the cost function as

For any choice of R, the detection probability [see Eq. (6)] J = (6C) /(w01 p), (16)is Sr-

f = [, () J = p(moIH) + W[1 - p(maIHo)l (17)

R The minimization of the expected value of the cost is equivalent
to minimizing J.
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Some interesting limits on J can now be determined. The similar argument holds for d and U. The result can be ex-
perfect detector has J = 0. lt i amusing to note that a detec- presed as
tor that is al s wrong ha J = I + W. (One would then use #(-T)
such a detector "backward.") A more interesting case follows = (25)
from noting that if W is sufficiently small, i.e., the cost "oi0 (of d - *(-U) ,

erroneously choosing mi) is small, then a good strategy is to al- and the minimum of J , becomes
ways choose ml. This implies that p(moIHI) = p(molHo) =0, J,, = W + IS + TU(-T) + U #(-U)j. (26)and J = W (and V = d -f 0). If, on the other hand, W is Nt hti "o aih hr sfuul ~ yi h

larger than 1, then one wants to always choose m; in this mnimumof J, even though g and d ou not determined.
limit, J = 1 (and g = d = I). The final cost for this limit-
ing case may be expressed in terms of the step function O(z) The variables left to consider are a,A, and b,B. Each of
(#(z) = 1,z > 0,0(z) = 0,z < 0) these variables has a restricted range, so inequality multipliers

3.M = WO(1 - W) + 0(W - 1) will again be used. As was noted before, the possible values
(18) of A are limited by the form of the response function and thed - U(W - 1). value ofa . This can be expressed asthe statement that for any

This result arises in another way. If the response functions are choice of the region R, with a given by (8), one must have
the same, Io(y) = fi(i), then no discrimination is possible, A.-,(a) < A(R) < Aura) (27)
and we find A = 1 - a. Using this relation in the probabilities, - (
we find the above result by choosing the obvious optimum. Of course, similar restrictions apply to B.

The general optimization problem consists of choosing the These inequalities can be treated as above. Write the vari-
design parameters so the expected cost lies as far below 3w ational functional in the form
as possible and as close to the idealcase, J 0, as possible. J..,. = - F - f (28)
We now turn to a general discussion of the problem of finding where
extrema when the constraints define a connected subset of the F a A (A - Am ,,) (Amex - A) + ,5, (B - Bm,,,) (Bma - B) ,
real line for each variable. (29)

3. General Mlnim!zation with Inequalities and 1-f! a~ - a) + Pbi- b). (30)
Using the form of the probabilities defined in Eqs. (6) and Again, the Lagrnge inequality multipliers aA, ,* and 0

(7), one finds the explicit expressions must be zero if their associated variable is inside the allowed
p(mo)H) = I - p(mijHI), range and ron-negative if they are on the boundary.

= (1-A)(1-B)+g(1-A)B+dA(1-B), Now the variation with respect to A yields
and 2 A(A-A,.) = - --- , (31)

p(inolHo) --- 1 -p(mdlo),
e(m1-i 86)+d(1-a)b (2o) where A,., - (Amm + A.)/12.

+ It in a straightforward task, though somewhat tedious, to
Using Eqs. (19) and (20), the minimization problem can be discuss the general case. First note that the above equation
re-cast explicitly as becomes

we J W+IS+gT+dU1 (21) 2a(A-A..) = +(i-B)+B#(-T)-(1-B)9(-U). (32)
where Since the right-hand side is never negative, CA cannot vanish,

S = (1 - A)(1 - B) - Wab and hence A must be at its boundary. Since CA must also be
T = (1 - A)B - Wa(l - b) (22) non-negative, it follows that A must be above A.,. Repeating

U = A(1 - B) - W(1 - )b, the same argument for B we find that

and all the variables must satisfy inequality constraints. A A = A.a(a), (33)
complete mathematical treatment for problems of this type B = B,.(b) .(3

can be found in the excellent book by Hetenes. s A reference These are computable functions of a and b given the response
that discusses such variational problems in a language perhaps functions of the detectors. They correspond to the so-called
more familiar to physicists and engineers is available.' Receiver Operating Characteristic used in several of the pa- 0

To mfrmize J, in the case that the variables g and d occur pes cited above. We shall term these functions the DOC, or
linearly in J, but have a restricted range from sero to one, it Detector Operating Characteristic, and they will play a funda-
is convenient to form the variational functional J,,, where mental role in our analysis.

J . M J - -yg(1 -g) - 6d(1 - d). (23) The next stage is to vary a and b within their allowed range
The optimum will be a saddle point in (-y, 5) versus (#, d). In to achieve the overall minimum. One can anticipate that there '
this case J is a linear function of g and d, hence the extrema will may be symmetric (a = b) and nonsymmetric minima; which
occur at the ndpoints. The Lagran-P inequality multipliers particular one is the global minima must be determined from
-Y and 6 must be zero if their associated variable g or d is a more detailed examination using the explicit forms for the
inside the allowed range, and non-negative if they are on the response functions. This will be carried out in the explicit
boundary.' As usual, the derivative with respect to g must examples discussed in the next section. First let us discuss the
vanish at the minimum and this yields the condition boundary behavior in a and b.-

0 = T- -y(1 - 2j). (24) Double bound : The boundary region in which both vari-
This takes the place of paired Kuhn-Tucker conditions for as are at teir limits consists of four terms. They will be S
g _ 0 and g :5 1. If T is nonzero, which is the typical case, then denoted by L(a,b), where a and b can take on the values zerothe minimum must be on the boundary (-y cannot be sero). If or one.
T is positive, then g vanishes; if negative, then g is unity. A LOO:For this case, A=B9= 1, and Jm--W forall W.
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L,)andLOX: For thesecases, A = OB = 1, orthere. Cat I Case II-

verse,Tnd [S=O= U,T= I-W ad g= O(W - l)] R 0 S z z 5 Y : oo
J. = W + (1- W)O(W -1), (34) i z:y5 oo O 0 0: Y:5 z

the Jz discussed earlier. 1 - exp{-nAz} exp{-nAz}
For this limit, A - B = 0, A exp{-Az} 1 - exp{-Ax}

A (1 - a)1/'  1 - .
J, fi I.(35) Thus, A must le in the region

Therefore, the minimum of J. on this double boundary is al- 1 - a <A:5 (1 - a)'/9 (39)
ways given by Eq. (34) which amounts to setting the detectors
to always signal oppositely. Now let us turn to the single vari. and its position in this interval is determined by the particular
able boundaries, choice of the region R. Similar relations hold for b and B.

As an example, consider the case n = 2, and then the
Single boundaVy: This boundary region is symmetric in both feasible region for A as a function of a is labeled F in the
variables and hence we need only treat the case in which b is graph shown in Fig. 1.
at its limits while a is in the interior. The reversed situation
will yield the same minima. These will be denoted as:

L,, For this case, B = 1, and S = U = 0. The quantity
T is n o t z e r o , w it h . =(

J,,= W +TG(-T) (6

T = 1-A-Wa.
As noted, A should be equal to its maximum value for a fixed
value of a in order to achieve the minimum value of T, as was
shown earlier. The limit cases of a = 0 and a = 1 are on F
the double boundary. Any minimum for a in the interior must
satisfy

T(a) (A,,..() w
a - a - (37) -

0.

Since A.. (a) is a decreasing function of a, there will in general
bea solution in this region if W is in an appropriate range. This . _ _ _ _ _ _

could yield a smaller minimum than that given by the double o
boundary result, Eq. (34); however, for this case, we have g = 1 2-88 5952 A 1

and d is not determined, but its value does not matter since Fig. 1. The allowed region of A is plotted for
U = 0 and one can arbitrarily choose d = 1 also. n = 2 a a function of a and labeled F.

j[EI) For this situation, B = 0 = T and S = 1 - A - Wa, Figure 2 shows the graph for the value n = 4.
with U = I - W - S. If U is positive, then J" = 1, while if
it is negative, then J, = W + S. Both these caes have arisen
before, and there are no new minima of Jm.

Interior: In the interior region, the inequality multipliers must
vanish and the standard variational equations become symmet-
ric in form. One can safely assume that there will be minima
in this region, but whether any is the global minimum requires
detailed study. Note that generally there will be (local) minima
with T(and/or U) both positive and negative with the corre- A
sponding limiting values of g (and d). Since this is a standard F
well-discussed variational problem, further general treatment I)
here is not necessary. Let us now turn to a exhaustive discus-
sion of some explicit examples.

4. Exponential Response Functions

Consider a detector with response functions given by

ao nA exp{-nAy} (38) a *

Ii A exp{-A ). 2-88

We will assume that n is greater than one without any los Fig. 2. Same as Fig. 1 but with n = 4. "

of generality, so that the likelihood ratio (,al/o) is less than We see that as n increases, the allowed region increases to
one for y _5 z, where Az = (inn)/(n - 1). Using the above eventually include all values of A between zero and one.
argument, to achieve the extrema of A for these monotonic
response functions, the region R must be either the range below 4.1 Ekplicit Minimization
or the range above some point x whose value will be determined
by the optimization process."0  Using the general results derived in the previous chapter,we have A and B at their maximum allowed values: ANLi

Therefore, it is easy to see that there are two cases to A (1 - a) /  v
discuss: B (1- a),/n (40)

B = (-b) / "
A- 4



find no point where J was below the value at the symmetric The columns are the same as in the previous table. Note that
minimum given above, the parameters for the minimum (for n = 2) shows a definite

Note that as a function of W . "0 po/uiol p, the jump as W passes through the value vs 0.265. At this point,
fractional improvement in cost is achievable when W t 1. This e optimum values of g and d change from zero to one; in fact,.
is precisely the case in which the prior choice of action is a we find that g = d = O(W - Wo), where Wo m 0.265.
matter of indifference, that is, On the other hand, for n - 4, the quantities T and U are

o P0 + us + lP, =t +O PC + wo 0 Po + us Pi• (54) always positive, so that g = d = 0. There does not appear to
This is intuitively reasonable, as one expects the information be a discontinuity in a. S
from the sensor to be the most valuable in this cae. At the discontinuity, the cost varies smoothly. This is in-

5. Invariant Imbedding tuitively reasonable, since cost is, ultimately, determined by
the position of some tangent hyperplane, along a normal to

We now consider a detector whose response functions allow the feasible region, which is connected. However, the jump
superior discrimination between the two possible states of the in design parameters could have serious consequences because
environment and contains the previous example an a special a small variation in the (frequently subjective) data summa-
case. The general form that allows a smooth limit back to the rized by the parameter W could require a complete change of
previous model is the system parameters g and d. This phenomena has impor-

fo = nA exp{-nAy} tant implications for the design of constant false alarm rate
= +1 - (55) systems, which will be discussed elsewhere."

1-n + I -6. A Step Function Example
For values of z near 1 this allows the improved separation be-:c
tween f and ft since the former is large at y = 0 while the We now consider a detector whose response functions, in
latter is small there. On the other hand, for z equal to zero, a certain limit, allow a clean discrimination between the two
this is the model of the previous section. possible states of the environment. In that limit, A -. I does

It will again be assumed that n is greater than 1, and not force a to zero. We will assume simple "square" response
proceeding as before we find: functions for ease of presentation. The response functions are

Case aI chosen to be zero for y! > 3 and, of course, normalized.
R 0 < V5 z z oo Proceeding as before we fnd for Case 1, 0 < y < z:

5 ZV<oo O<V<Z For the range OSzSl 15 z<S_2 25z<3 <

a 1 - exp{-nAz) exp{-nAz) .
A n + - exp-Az) Io(z) (I- Ao) A0 0

x [n + I -a ex(-Azl h Wz 0 A, (I - A0)

x~+-zx{a~) (1 -Ao)Z I 1+ A(z -2) 1
x[+I p-nz) A 1 I -A,(z -1) (1-A,)(3-x)

A (I [1+ 1  zf.-0 Asi'lar table can be evaluated for CaseII, x< y < 3. If
(1- a) 1+ + -/ + either A0 or Al vanish, then this describes an ideal detector

Thus, A must lie in the region sstem.
thusZ( - ) z We need the value of A., for a fixed value of a which is

(56) •
Its position in this interval is determined by the particular while the minimum value is
choice of the region R. Similar relations hold for b and B. t = .
Note that the allowed region of A increases as z increases from Amn (,o - a)9(A0 - a). (58)

zero to one.
To provide maximum contrast with the previous model we The feasible region for A as a function of a , labeled F in

will present data for the value z = 1. For this case, the interior the graph (Fig. 3), is bounded by straight lines:
symmetric minimum exists for all W values. An interesting In the limit that either Ao or A vanishes, the allowed region
new behavior is found in this model for small enough W and for A cover, the unit square.
n; the minimum cost occurs for g = d = 0, as before, but as Imyi
W increases, these design parameters flip to g = d = 1. The It is a simple matter to analyze this problem for the mini- _lAnBu
value of a at the minimum jumps diseontinuouuly. mum J corresponding to the maximum allowed A and B values

n = 2 n= 4as given above. Consider the cases:
W a J J/JMO a J J/JM. 1. A = B = 1, and a = b = (1 -Ao). For these values, T Jo,

0.1 0.46 0.088 .38 0.70 0.068 .6 and U are negative and J = WA"
-

0.2 0.58 0.160 .30 0.80 0.111 .56 2. A = B = (7 - A) and a = b =i . For this case T and U
0.25 0.63 0.191 .764 0.82 0.128 .51 are now positive and J = All.
0.26 0.64 0.197 .758 0.828 0.131 .4 Thus the fins expressed
0.27 0.24 0.197 .752 0.832 0.134 .49T result can be as
0.3 0.26 0.22 .733 0.84 0.143 .48 J = min(WAc'o, A1 1
0.5 0.35 0.31 .62 0.89 0.191 .38 g = d = f(At - Xo'W)
1.0 0.50 0.47 .47 0.94 0.258 .27 (59) .
1.5 0.60 0.56 .56 0.96 0.316 .32 a = b = 1-Ao(Al -,AoW) 5
2.0 0.68 0.63 .63 0.27 0.35 .35 A = B = I- At,(A0 W- A2)
4.0 0.79 0.77 .77 0.985 0.44 .44
6.0 0.85 0.83 .83 0.990 0.49 .49 The limit of perfect discrimination, A0 and/or A, going to zero,
8.0 0.88 0.87 .87 0.993 0.52 .52 can be easily discussed from the above results.

10.0 0.90 0.89 .89 0.994 0.55 .55
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Varying J, with respect to a and b and introducing inequality which is positive definite. Therefore, the T and U terms do
multipliers a and # to keep thee variables between zero and not contribute to this minimum because g = d = 0.
one, we find the conditions Using the equation for A, we find at the minimum

na(I - 2a) = A'-(I - B) - nWb (41) J.r(I,') = W + (1 - A) 2 - W(1 - A%)2 . (51)
n#(1 - 26) - B'-%(I - A) - nWo This is smaller than the minimum arising from the boundary.

whose solution should contain all relevant minima. Let us ex- To see this, study the difference of Eq. (44) and Eq. (51)amine the boundary and interior minima in that order. Recall for sufficiently large W (so that the former exists). If W is
that n 2! 1 in the following discussion, and we have assumed eliminated between Eqs. (46) and (43), the result is '.
for the moment that T and U are positive. This will be proven I -A
shortly for our solutions. Ao = A(A),, (52)
Boundary: The double boundary region has been discussed in which shows that Ao = A(A) > A. The difference becomes

general and the result is a minimum of the form (a = 0,b = 1 1

or a = 1,b = 0) J.(Bnd) - J,(Int) [11 -( - A)'] - (1)A-"--
J, = W + (1 -W) *(I - W) = J. (42) 1 (53)

AO) For this single boundary problem, the task is to find n -

the minimum of T, where T 1 1 - A.., - Wa. The result is For large W this difference approaches zero as (n - 1)/(n2W). ,.

with p = 1/(n - 1) For all values of nW larger than one it is a simple matter to
1 P show that it is positive (a numerical proof is easiest).

A0 =(43 Some sample numerical results are:

ao = I o (43) n = 2 n = 4
-n W "n W a J W aJ-W ,

For A0 to be less than one, nW > 1. The value of T at this 0-1 0.00 .000 000 -0.00
minimum is negative, and 1.0 0.00 -0.000 0.00 -0.00

J,,(Bnd) = I - - Ao. (44) 1.1 0.120 -0.0001 0.082 -0.0000
n 1.2 0.218 -0.0009 0.150 -0.0O0

If nW is slightly larger than one, nW = 1 + e, then it is esy 1.3 0.299 -0.0026 0.210 -0.0003
to see that to lowest order 1.4 0.367 -0.0054 0.261 -0.0007

C3 1.6 0.475 -0.0144 0.346 .-0.0018
J.(Bnd) - . 2(n - 1) (45) 1.8 0.556 -0.0278 0.413 -0.0036

2.0 0.618 -0.0451 0.467 -0.0061
Forthiscase, B =0 T and U- 1-W-S. IfU is 3.0 0.791 -0.175 0.636 -0.0260

negative, then the minimum of J,. is 1. If it is positive, then 4.0 0.S6 -0.348 0.725 -0.091
S must be minimized, and this is just the problem discussed 6.0 0.930 -0.757 0.815 -0.131
above. 8.0 0.957 -1.203 0.862 -0.219

In summary, J. ha a minimum on the boundary given by 10.0 0.971 .1.669 0.890 -0.315
Eq. (42) or Eq. (44), depending on the value of nW. 12.0 0.979 -2.144 0.909 -0.417

16.0 0.987 -3.117 0.933 -0.629

n :In the interior region, the inequality multipliers a Recall that g = d = 0 for this global minimum. Therefore, "InQ th neirrgoteieult utpir feither detector signals 1, one should make the choice m1 for
and 0 must vanish and Eqs. (41) become symmetric in form.
Thus there is a symmetric solution with a = b and A = B. any value of W.
Unsymmetric solutions will be searched for later. In the gym- Perhaps it is more understandable to present this data in
metric case, the equation for the optimal probability A is another format: 2 ,n=2 nt4

wn WAs-'(I - As) = (I - A), (46) W . J/J., a J J/J.,,
which does not have an analytic solution for general n. The
limiting behavior of the solution is easily extracted. For large 0.25 0.250 0.250 1.0 0.725 0.195 .78
W, A approaches zero, and a approaches one with the behavior 0.4 0.475 0.38 .97 0.827 0.252 .63
[recall that p = 1/(n - 1)] 0.5 0.618 0.455 .91 0.862 0.281 .56

0.75 0.791 0.575 .77 0.909 0.333 .44
A Y , 1.0 0.S6 0.652 .65 0.933 0.371 .37

1 (47) 1.5 0.930 0.743 .74 0.957 0.423 .42
The 2.0 0.957 0.797 .80 0.969 0.459 .46a- Ix w/ +2...5 0.971 0.31 .93 0.,76 0.486 .49 ",'

3.0 0.979 0.856 .86 0.980 0.508 .51This is similar to one of the boundary solutions. The minimum 4.0 0.987 0.883 .88 0.986 0.541 .54of J in this limit has the form 5.0 0.992 0.909 .91 0.989 0.567 .57

J , 1 ---2 A +... (48) 6.0 0.994 0.923 .92 0.991 0.586 .59
n 8.0 0.997 0.941 .94 0.994 0.616 .62

Let us now discuss small values of W. Note that as W 10.0 0.998 0.952 .95 0.995 0.639 .64
decreases, a decreases. The value of W where a vanishes is The column labeled J/J. give the ratio of the minimum S

W(a =0 ) I/ns. (49) J to the quantity J,,s. defined in (18). Again, for this global
For values of W smaller than this value, there is no interior minimum, g = d = 0.
symmetric solution. At this critical value, S = 0. Finally, note 4.2 Global Minimum
that for this symmetric solution, T = U, and using the above
equations, As a check that the symmetric minimum is indeed the

T = (n - I)W&Am , (50) global minimum, we have evaluated J throughout the allowed
region of the six variables g,d and a,A,b,B. We could
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a detailed explanation of the critical value at which this jump -
occurs. The third model studied also has such a discontinuity,
and permitted a continuous transition to the state of complete , .
information (perfect discrimination). In this cue, the cost de-

1 X0  pends on the deie of ambiguity in a quadratic manner.

Finally, in all cases, we found that the best cost is achieved
with a symmetric choice of parameters for the individual detec-

1 -X tors. We do not yet have a general characterization of response
functions for which this is always the cae regardless of costs
and prior probabilities.

A F The problem considered here is not only of theoretical in-

terest, but has many practical applications ranging from opti-
mal design of complex particle detector systems to the design

X of seismic and warning systems.
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APPENDIX B

REVIEW OF SOME RELATED RESULTS

-A
:.-=

Tenney and Sandell [1981) discussed team action in the case of binary
hypotheses and binary actions for two stations. They selected a particular form for
the cost function, established that the optimum signalling/action rule is a likelihood
ratio test, and presented coupled equations determining the likelihood ratio thresholds'
Numerical examples are given, showing the complexity of the problem, for several
choices of the detector response functions f(ylh). The cost function is described by a
single parameter, the cost of having both stations miss. Of course, as this parameter
becomes large, the optimal solution is to have both stations act oppositely, no matter
what the signal.

Ekchian and Tenney [1982] extend the analysis to more general topologies.
They note that the number of regions into which each station divides the space of
received signals depends on how many signals it may emit, and the number of such
division rules (which they call thresholds, for the binary case) is equal to the total
number of signal combinations that can be received from all the other stations. They
propose that an extension of the dynamic programming concept can be applied to the
analysis of tree-like topologies.

Chair and Varshney [1986) turn to the fusion question, and discuss the optimum
fusion rule, for a binary hypothesis-binary action situation, with binary signals.
Essentially they compute the updated conditional probability that either hypothesis is
true, given the signals from the stations, and their known response characteristics.
Although there are some notational problems with the paper, the result is correct.

Kushner and Pacut [1982] opened the discussion of the remeasurement problem,
which is the simplest example of what we call the "call-back" problem. There are two
stations, which can communicate with each other, in either direction. At each station,
remeasurement* can reduce the probability of error, but it has some cost. They
formulate the..problem of deciding when it is appropriate, given the signal from the
other station, to remeasure before proceeding to action. The capacity of the
information channel is not clearly defined, as transmission of the full posterior
probability, which they assume, might be as costly as transmission of the full signal (y)
received. Again, the computations are quite complex, even for the simple exponential
response function.

Srinivasan [1986] provided explicit formulas for the relation among system
operating characteristics and those of the distributed sensors, and noted that the
optimal tuning for the sensors depends on the choice of the fusion rule. Performance
characteristics are given for systems of 2 and three detectors with slow Raleigh
fading (equivalent to the case of exponential distributions of signals), and it is noted S
that the optimal rule for 2 detectors is BOTH (called "AND"). Srinivasan, Sharma and
Malik [1986) apply the methods to 2, 3 and 4 detectors for the case of Swerling
targets, and provide (semi-log) plots of the optimal performance of those systems. They
note that the performance comes quite close to that of a one-sensor system receiving
the same amount of information. Due to some technical assumptions, the plots that
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they present for 3 and four detector systems do not make this clear. [They assume
that repeat pulses of the same amplitude are received at the single site.]

Sadjadi [1986] has extended the discussion to any number of stations and
hypotheses, with the number of actions equal to the number of hypotheses. The ideal
decision rules would fuse the data from all stations, to arrive at a grand updated
probability estimate, but each station must act in ignorance of the others. Thus the
space of received signals (Y , .... yN) is sliced by hyperplanes parallel to the axes,
representing the thresholds 1'or the individual stations. Each station has as many
thresholds (defined in terms of the likelihood ratios) as are needed to label the
hypotheses. That is, for any signal received, one and only one of the hypotheses will
have a posterior probability larger than any of the other hypotheses. The effect of
the other stations is indirect, through the fact that they all know the form of the
common cost function.

Cu [1987] has discussed a related problem, where he shows that a nominator-
detector scheme can lower computational costs, by screening unlikely candidates using

a low cost test ["sensor"]. He assumes, however, that, for cases which are not rejects,
the nominator sensor passes full information to the second detector.

Schwartz and Pelkowitz [1987] have considered the problem of minimizing the
time to reach a decision, for a given fixed False Alarm Rate (FAR). This work is not
directly relevant to what we have studied up until now, but will be relevant to the
question of call-back strategies, discussed below.

Reibman and Nolte [1987] have done some model calculations for a three
detector system, using shifted generalized Gaussian distributions to represent the
sensor response to the alternative hypotheses (that is, constant signal in generalized
Gaussian noise). They correctly establish that the system in which the fusion rule and
the sensor tunings are jointly optimized is superior to any system in which either of
those is fixed a priori. They do not solve the optimization problem directly, as we do,
but use coupled equations which must hold at the optimum. They find that the optimal
tuning for the cases considered is symmetric, but do not know whether that is a
general rule or an accident. [We have established (see below) that it is NOT a general
rule]

Additional recent works are cited in the references.

F'.4 Our Own Related Work ,

F.4.1. Experimental Design

Our own thinking is strongly influenced by the work of the statistician
Blackwell [1957] on the optimal design of experiments. The analogy is clear. An
optimal experiment minimizes the chance of mistaking the hypothesis. An optimal
detection system minimizes the "cost" of mislabelling the state of the world. Blackwell
was able to show, by a sophisticated application of the theory of two-person zero-sum
games, that it is possible for one experimental design to completely dominate another.
That is, no ma..er what the cost function, and no matter what the prior probabilities,
the expected cost of following the better design is lower than the expected cost of
following the other.
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This is an enormously important result, because, in real applications, estimates
of the cost function and the prior probabilities are little more than political and
social guesswork. Hence, the possibility of establishing the superiority of a design,
independent of the costs and probabilities, is extremely valuable. Blackwell's result is
given in terms of a necessary and sufficient condition on the convex hull of the 0
vectors representing the joint probabilities of actions and hypotheses, when the prior
probabilities are all equal.

In our own preliminary work the ideas of Blackwell have a direct
interpretation. We determine the contour of possible values of (F,M), given the
response functions f(ylh). This contour is exactly the envelope of the various convex
hulls defined by various choices of threshold. In particular, Blackwell's theorem states
that any operating point (F,M) in the interior of the allowed region, is dominated, by a
point on the boundary of the region. [We had obtained this result directly, using the
linearity of the cost function.] Further, from the necessity part of Blackwell's
theorem, it follows that none of the operating points on the boundary of the allowed
region completely dominates any of the other points on that boundary. It may, further,
be shown that any given choice of the cost matrix determines an operating point, or
line, on the conxev hull of that boundary.

In the proposed work we will develop these relations fully, with particular
attention to two situations in which it seems likely that dominance may occur:

* comparison of topologies and signal sets
* evaluation of call-back strategies.

In a call-back strategy, each station has the option of either proceeding to
signal/act, or calling back to one or more of those stations from which it receives
signals, to ask for a more detailed report. It seems likely that the optimal
development of call-back strategies will involve the maximum entropy principle. In
particular, each station will form estimates of what the others are likely to say, based ...or

on assumptions of randomness, but subject to the signals they have already
transmitted. The MEP is the best known technique for implementing this concept of
constrained randomness. It has been applied to the analogous problem of information .

retrieval in databases, by Kantor [1985] and by Kantor and Lee [1986].

F.4.2 Related work on the Maximum Entropy Principle

The Maximum Entropy Principle (MEP) is a mathematical technique [Jaynes .. - .

1957a,1957b] for making and/or facilitating decisions in the presence of probabilistic
information and constraints. [Smith, ed. 1982,83,84,85,86] A priori probabilities or prior
information can also be included [Johnson and Shore 1983]. Applications of the MEP
approach include such abstract topics as "good null hypothesis" in statistics,
computerized "expert systems" [Cheeseman 1983], the processing of seismic data [Burg
1975], the inversion of data in geologic problems [Rietsch 1977], the enhancing of
blurred photographs for astronomical and law enforcement uses [Gull and Daniel 1978],
and finally to the construction of the quantum mechanical density matrix from realistic
(non-ideal) data [Blankenbecler and Partovi 1985].

One of us has explored the application of the MEP to the problem of -

retrieving "relevant documents" from a very large data base [Kantor 1984]. Every
document may be described by one or more descriptors ("keywords e while- onstraints
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take the form of "probabilities of relevance" or "expected values.-! For example, the
system may be told that "keyword A" carries a 70% chance of relevance, and so on.
The system then gathers information about the co-occurrence of various combinations
of keywords, such as "A and B but not C." The MEP uniquely determines the chance
of relevance for each such combination, given the constraints on co-occurrence, and
the prior estimates of properties as described above.

We have established that this information is sufficient to optimize the data
retrieval process when costs are measured by any reasonable combination of man and ,

machine time, and have given a general procedure for dealing with the problem of
inconsistent prior estimates [Kantor and Lee 1986, 1987a].

The most important features of the MEP approach are the following:
1. Probabilistic information and constraint are accepted at all stages.
2. The alternatives among which a choice is to be made are presented in a

well-determined rank order.
3. The calculations are completed in "real time."
4. The output of this procedure, a rank-ordering, could serve as input for

another level of decision making, i.e. formulating appropriate action.

These characteristics justify examination of the potential of the MEP as a
decision tool in a more general context. It is clearly important for any logic or
decision making system to be able to accept probabilistic information and rank-order
alternatives in real time.

The relevance of the MEP to the DSS problem goes beyond these
generalities. The detailed operation of a distributed system should allow for two-way
messages between the various stations. The communication structure can be
represented as a matrix, whose rows and columns are labeled by the various stations.

N The entry at the intersection of Row I and column J describes the set of signals that
Station 3 may send to Station I. This description includes an enumeration of the
signals - "1", "2", and so on, and a specification of the corresponding regions in the 4"
y-space which trigger those various signals, depending, as we have noted, on the
signals input to Station J from its neighbors.

In published work, the signals flow only one way. In particular, there are no I
"interrogatory signals" by which station J may ask Station I to elaborate on its report.
Such elaboration is clearly possible if, for example, a continuous variable (y) has been
replaced by a simple discrete signal u selected from U(J,I). The decision to request an
elaboration is exactly parallel to the decision to "request a document." It must be
based on an estimation of the probability that the elaborated signal will improve
decision making sufficiently to offset the added cost and delay. The work by Kushner
and Pacut cited above is similar in spirit, but considered only remeasurement at a
single station.

Thus, it seems likely that the optimizing characteristics of an MEP rank
ordering will carry over to the DSS arena. We plan to study this aspect of the
problem after detailed examination of a variety of optimal control models. 9
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APPENDIX C

2. Project Goals

The anticipated payoff of both stage one and stage two of the research is:

1. a simplification in the design and comparison of distributed sensor systems

2. an improvement in the operational effectiveness of such systems

3. a major reduction in programming complexity, leading to higher reliability

at lower cost.

The detailed goal is to examine the optimal design and decision strategy to be

used with distributed sensors. Particular attention will be given to the notion of

a dominant system design (in the sense of Blackwell), to the non-linear problems

of optimal parameter (threshold) determination, and finally to the potential of i

the Maximum Entropy Principle as an optimizing tool.

3. Proposed Research

General observations.

Every sensor of a distributed network receives a vector of signals (y and

processes them to produce a much simpler vector of signals (it), whose compo-

nents may be binary data or other summary data (such as velocity and position

estimates). These summaries are not to be considered as only facts about the

situation observed by the sensor. They are also 'generalized keywords' describing

the full set of information (y available at the sensor.

Any communicating station may evaluate those keywords (i), in the light of S

other information available to it, and decide to request a more detailed report

about the original data (y-). In this way, a sophisticated problem of optimal
information retrieval is imbedded in the problem of designing a distributed sensor

* system.

The planned research involves three major areas, all bearing on the central

problem of optimal design of distributed sensor systems. They are outlined below

(in subsections 3.1,3.2,and 3.3).
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3.1 Detailed analysis of model problems.

The invariant imbedding technique is a powerful tool for determining how

the properties found in model problems depend on the structure of the problem.

Invariant imbedding is illustrated in the attached paper by Blankenbecler and

Kantor. In this particular application we have used it to elucidate the effect of

ambiguous signals on overall system performance. We are able to continously

vary from a problem where the report from each detector is unambiguous, to one

where they are ambiguous to any desired degree.

In our analysis so far we find that (numerically, and in some models, ana-

lytically) the optimum operating point is the same for both of the detectors in

a simple fusion system. It remains to establish whether this symmetry between

the detectors is universally valid and, if so, why.

It also seems intuitively clear that increasing the size of the signal set should

improve system performance. We will use models of the type already discussed to

see whether this intuitive relation is supported by Blackwell's theorem. This will

also lay the foundations for considering the trade-offs between communication

costs and system performance. 3

Representative problems are:

1. What is the corresponding full solution for 3 identical detectors? Is the

best rule for integration of signals always majority rule? S

2. In the two detector case, what improvements result when the detectors are

not identical. How do the thresholds vary?

3.2 Network topology and Blackwell dominance.

*Networks may be described by the matrices of possible signals, mentioned

above, and the signal/action rules by which each station selects a signal or action.

The most general station receives input from the world at large, receives signals

from one or more other stations, emits signals to one or more other stations, and ,. i

may also take action. The possibilities may be represented as follows:
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A - B means A sends a signal to B

A indicates that A receives external information

C means that C takes action

A == B means that B signals to A and

A can request elaboration from B.
S

With this notation the problem of Tenney and Sandell is:

A B

There is no overt communication.

The problem discussed by Kantor and Blankenbecler [attached] is:

A -C +--B

All other models summarized above can be similarly represented.

A typical question about topology is to compare: '.0

System I A -C -B
0

System I A -B -C 1

In system II, C is masked from A by B (unless B uses an enlarged signal

set.) Intuitively, therefore, the performance of System II should never be better

than that of System I. Blackwell's Theorem establishes a necessary and sufficient

condition on the Blackwell vectors, if this dominance prevails. Model calculations

and imbedding techniques will be applied to explore this relationship.

3.3 Call-back and information-seeking structures.

The work by Kushner and Pacut, described above, assumed that each station

transmits a sufficient statistic, (its own estimate of the posterior probability'. In

the other models, a bare minimum signal is usually assumed. The situation has

some conceptual similarity to the problem of sample size in quality control. If

every item is examined, one gets the best possible result, but the cost is too S

high; sampling is therefore used. Furthermore it is well known that fixed block -

sampling does not perform as well as sequential sampling, in which the decision

to sample further is based (in a Bayesian analysis) on the data obtained to date.
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Given this analogy, we expect to be able to show that call back systems

dominate non-call-back systems with the same size signal sets, and are more

efficient than systems in which all the information obtainable by call-back is

transmitted whether or not ;t is requested.

Example systems for this problem are:

System III A -- B versus 0

System IV A ==B .

The Maximum Entropy Principle is a powerful technique for optimal retrieval

of information, and we expect that it will apply to distributed sensors. To apply

it we must consider:

1. What are the effective probabilistic constraints implied by available infor- .

mation on the physical characteristics of the threat environment?

2. What is the computational complexity of the optimization problem, and

can it be solved in real time, given state-of-the-art computational power?

Does it admit a high degree of parallel processing, especially for multiple

targets?
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