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SENSOR CALCULUS
CONSIDERATIONS IN THE DESIGN OF DISTRIBUTED SYSTEMS FOR DETECTION,
DISCRIMINATION AND DECISION
Paul B. Kantor, Tantalus, Inc.
Richard Blankenbecler, Consultant
Moula Cherikh, Tantalus, Inc. and Case-Western Reserve University

SUMMARY

A powerful new framework is presented for the analysis of distributed
detection networks, supported by a compact notation for the description of
complicated networks. The new methods are applicable to problems with any
number of threats, any number of messages, and any number of available actions.
As illustrations, the Sensor Calculus is applied to reveal some interesting features
of the case of two-fold threats, messages and possible actions. These features
include the occurrence of spontaneons symmetry breaking with identical sensors,

and the sub-optimality of deterministic tuning for fusion systems.
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i This report covers the first year of a three-year study of the application of optimal control =
theory to the design of distributed sensor systems. The work is focused on the key links . o "
; between detection, discrimination and decision. Detection is an engineering/physics problem. » 5
w8 )
Discrimination is affected by softer considerations such as estimates of prior probabilities, !:
which depend on intelligence as well as engineering information. Decision involves even softer ' i‘
)
estimates of the costs and values associated with various possible damage or loss. Thus the e :c'
N
; Detection-Discrimination-Decision (D3) problem spans a range from hard facts to volatile Hs ::
Y 5y
. +
i speculation. ,
Our work concentrates on building a rigorous framework in which hard data serve to define ' .
X an operating characteristic, and softer data are used to define the optimal tuning of a sensor " ::"
- 0
3 system. Improvements in detection and discrimination always carry price tags. In the D° - ;ﬁ
" N
) framework the benefits (in damage control) may be weighed against those costs, for best )
1
system management. v
\3
The principal results of the first year’s work are: QD ':
w0

X (1) Formalization of the concept of a detector operating characteristic (doc), in a form correct
for generalization to any number of possible threats, any number of available responses,

and any channel message carrying capacity. )

i
! (2) Development of a powerful and compact notation suitable for describing any network of - .:
b "

\ sensors and for determining its doc and, as appropriate, its optimal tuning. (The Sensor \
¢ Calculus). L 2

Using these tools we have established a number of significant specific results for the simplest ;o

: case (one threat, one response, and binary message schemes.) Among these results are: .

{ }
! (1) Spontaneous symmetry breaking. It is often found that when two identical sensors are used ® Al
X to inform a fusion (decision) center, their optimal tunings are the same. We have o (

' established, by specific examples, that this is not, in general, true. It can be the case )
that symmetrical tuning is less effective than a suitable symmetry-breaking choice of . :'

LYt

N
4 h It
; »
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tuning. This significantly increases the complexity of finding optimal solutions, but
permits improvement in overall performance of the detection network.

(2) Discontinuity of optimal tuning in fusion. We have established that, quite generally, in
fusion systems, the optimal tuning may be discontinuous as a function of the softer
parameters such as prior probabilities and estimated cost. This has serious implications
for optimal system design because the soft parameters are subject to significant change
after a system has been constructed. Every effort must be made to ensure that the likely
range of variability does not include tuning discontinuities.

(3) When a sensor communicates over a limited channel there is a loss of information. If one
sensor is better than another, should the better one send or receive the message over a
limited channel? Using the sensor calculus techniques we have established that there is
no general rile governing this. In some situations one alternative is better, and in other
situations the other is better.

(4) The best achievable deterministic architecture will be significantly suboptimal in some
resource-constrained situations. This has serious implications for the allocation of
resources among interceptors and sensors.

In all of this analysis the ability to move easily from a discrete to a continuous formulation
has enormously clarified our understanding of the problem. We are firmly convinced that
reliance on analytical approximations is an artificial and dangerous restriction in the study of
p3 problems.

Our plans for the second and third years of the project are to continue this line of research
by: (1) developing algorithms that will accomplish the basic operations of the sensor calculus
as efficiently as possible; (2) extending the results to the case of more than two possible states
of nature (as, for example, when there may be a variety of decoy threats); (3) extending the
results to the case of more than two possible actions and/or messages between sensors; (4)
extending the formalism to deal with “call-back™ systems in which some message combinations
may result in a polling of the sensors; (5) exploration of the implications of the maximum
entropy principle for scheduling such “call-backs”. The overall goal of the research is to bring

the task of cc.abining sensor characteristics to a highly automated state, so that the
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consideration of alternative architectures will be reduced to “cook-book” calculations using the

calculus of sensors.

Acknowledgements: It is a pleasure to acknowledge stimulating conversations with Dr. Keith
Taggart, SDIO/CMO, Jason Goodfriend, Joshua Scharf and R. Barry Thomas at System
Planning Corporation, and Dr. Rabindar Madan at the Office of Naval Research.
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1. Introduction and Notation.

This report is par: of an ongoing effort to resolve the problem of detection,
discrimination and decision (D3 problem) into design of the Detection-Discrimination network
on the one hand, and discussion of the Decision aspects on the other. We find that the natural
link between these areas is given by a powerful construct termed the doc (for detector
operating characteristic.) The doc generalizes the notion of the ROC (Receiver Operating
Characteristic), which is the boundary of the doc in the familiar cases. The presentation is in
two main parts: the first deals with the Detection-Discrimination Network; the second deals
with the decision problem. We find that the doc plays a central role by (i) describing the
overall characteristics of the network for use in the decision problem and by (ii) providing the
necessary and sufficient information about each sensor to support solution of the problem of
optimal network design. A review of related literature is included as Appendix B.

1.2 Notation.

In Part I we show how a sensor S can be fully characterized by a set of points D(S)
called the doc of S. We show how the doc is built up from the signal set Y using the response
functions fl(y), fH(y) corresponding to some exclusive and exhaustive list of alternate
hypotheses about the world, A=1,....,J. We show that the familiar ROC is, in some sense, the
boundary of the doc. We introduce the useful concepts of the full product of sensors S and s/,
S®S' and of the M-fold restriction of a sensor, m This latter concept is useful because

communication within sensor networks is constrained by the capacities of communication

channels.
1.3 Definitions

Although our presentction will not be highly formal, we state here the definitions of

the key concepts of the sensor calculus.

A Sensor (S) consists of a signal set Y, which may be discrete or continuous, and a
collection of non-negative conditional probability measures defined on Y, dfl,...,de,
corresponding to the possible states of nature.
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The detector operating characteristic (doc), D(S) is a set of points in an H-dimensional J :::
linear vector space, consisting of all points of the form fl(Y(t)),...,f H(Y(t)) where Y(t) is any i".l::
measurable subset of Y and f;(Y(3)) is the sum or integral of the measure f; over the set Y(t). : .!t::?
The doc D always lies within the closed unit hypercube in the positive orthant determined by o
' the origin and the point E=(1,...,1). : :%:l
3
The boundary of the doc of S, B(S) is defined as tu: set of extreme points of D(S). A LN
point PeD is an extreme point if there exists a separating hyperplane, {z: n.z=c} such that -."
n-P=¢, and n-z>¢ for all zeD(S). X :::
An M-fold restriction with tuning t, %(M,t)S is defined in terms of its doc. The tuning *a:é%
t defines a partition of Y into M sets {Y(m)} m=1,.. M The doc D(R(M,t)S) is the discrete t.,_
set consisting of all the points f{Y(m)). This corresponds to using the sensor S to select one °
from a set of M options, which may be actions or messages. if': 1
: L4 Examples ‘§ :g
To illustrate the notation we consider the networks shown in Figure 1. The 3}‘:_
corresponding expressions in the calculus of sensors are: @
5 Figure la.  R(2){R(25, 8R(2)S,) ;E '::
Figure 1b.  R(2){S;0R(2){R()5,0R(2)5,}} R
Figure 1c. m(z)}sam,@){sz@ml}} -?'o;
K)
Figure 1d. : 3‘.:':':
a(z){a(z){sgmmxs?@W)sl}}®{%(2){s6®%(2){m4®§<‘2)‘§5}}}} o3
: o
Vet
The interior restrictions R(2) represent a limitation of the communication channels to . .,,
. two-fold signals. The final overall restriction %(2) represents the fact that there are only two _ 0:
courses of action available. The notation is easily generalized to admit other capacities. Note ':
> that this description of a sensor or network, and the concept of a doc (like the concept of an P,u_,i
ROC) does not specify a particular tuning of the sensor. Similarly, the restriction operator 2 .\
represents the whole range of possible choices for the restriction. ES:‘E:
@ &
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Figure la. An example of “fusion” structure. Corresponding to the expression R(2)S. there is a
box representing sensor Si‘ from which there comes an arrow representing a two-fold message.
The wavy line represents a signal y(Yi. The solid box represents the sensor product of the two

restricted sensors.
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Figure lb. The fusion of messages {rom sensors 1 and 2 is combined in sensor product with the
full information from sensor 3, forming a series structure.

Figure lc. A pure series structure.
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In Part II we discuss how the optimal decision process for a set of alternative hypotheses H and

a set of possible actions A={1,2,... A} requires only the doc characterizing the network as a
whole. We show how problems with “complete knowledge” of the cost matrix C(a,h) and of
the prior probabilities pyr--Pp are solved using the doc. We also describe the “Neyman-
Pearson” problem (NP), in which C and p are not needed, and show that it is solved by the
boundary of the doc.

This fact, that the doc solves the NP and all possible Bayesian problems, is very
important, because the doc D is completely determined by the hardware. It is a concrete
engineering characterization of the network. The costs, C{e,h), and the prior probabilities
pps-Pg are likely to be much softer. They do not originate in engineering constraints, and
may change rapidly.

1.5 Organization of this paper. Acknowledgments.

The organization of this paper is as follows. Section 2 contains some examples of the
doc D(S), the full product ® and the k-fold restriction ® for cases in which the space of
signals, Y, is discrete. Section 3 gives examples for cuntinuous signal sets. Section 4 presents
fundamental network considerations for the specific case H=2. Section 5 gives some specific
results for this case, including an example of spontaneous symmetry breaking, an example of a
non-convex doc, a counter-example for series structure and the optimization procedures for any

fixed topology, with either free or fixed combinative logic.

Part II begins with Section 6, which covers the use of the doc to solve both the
Neyman-Pearson and the Bayesian problems. Section 7 contains a discussion of the
discontinuities of system tuning parameters in the case of fusion, and the continuity of the best
achievable cost. Section 8 shows how resource constraints modify the decision process, and may
lead to a cost (performance gap) when only deterministic tunings are available. Section 9

illustrates the application of the doc and its boundary to the problem of team action.

The value of the doc lies in the fact that it permits a value-free comparison of

alternative architectures, however complicated.
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2. Some discrete examples of the detector operating characteristic D(S).

Quite generally, the signal set and conditional probability distributions which define a
sensor can be described by a fundamental table of numbers,

yeY 1 2 3 4 5 6
fh=1(y) 1

fh=2 (v) 4 0 (1)

fh: H(!I) -1 2

The columns of the table are labeled by the elements of the signal set Y, which is taken,
throughout this section, to be discrete. Even when the physical reality is a continuous signal,
the practicalities of measurement will always force us to assign the observations to a finite
number of discrete bins. With this in mind we will often refer to the elements of the signal set
i as “bins.” The elements in each row represent the conditional probability that the observed
signal will have the indicated value, provided that the state of nature which labels the row is
indeed true. The elements in a row are called the “values of the response function
corresponding to the indicated state of pature.” The row sums are 1, and the column sums

have no particular meaning. We will restrict our examples to the case in which the number of

possible states of the world H=2. We bear in mind, however, that the common usage of “0”
and “1” as the labels suggests an asymmetry among the hypotheses and the actions which does
not exist in general. (Although there will be at least one action which is “best” if a given state
of nature prevails, the remaining actions may be “wrong” to differing degrees, and their
ordering will change according to which state of nature does indeed prevail.)

2.1 Specific Examples

Consider a specific concrete example S given by the fundamental table:

y = 1 2 3
s=| § = 6 3 1 (2)
fg = .1 3 6
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For any sensor, the notion of “tuning” amounts to specifying the circumstances under
which a particular action (or signal, if the sensor is imbedded in a network) will be chosen. For
example, we may represent the set of signals leading to the action “a=1” as Y{a=1), which is a
subset of Y. The corresponding probabilities to act, given the alternative states of nature “0”

and “1” are represented in the table of bin combinations:

Y(a=1): {0} {1} {2} {3y {12} {13} (23} {1,2,3}
D(S)=| h=1 0 6 3 1 9 7 4 1.0
h=0 0 1 3 6 4 7 9 1.0

3)

The pair of conditional probabilities in any given column may be taken as the coordinates of a
point in a two-dimensional space. The dimensionality of the space is given not by the number
of actions, but by the number of hypotheses (H). We refer to this set of points in an abstract
space as the doc D(S). It contains all of the useful information in the table. The points in the
doc may each be labeled by the subsets to which they correspond.

We give two other examples to solidify the concept. Consider first the “broken
detector.” A broken detector always gives the same signal, which we choose to be “3”. In
talking about the case of only two actions, to which we now restrict ourselves, it is convenient
to describe “a=1" as “act” and “a=2" as “do nothing.”

The fundamental table of the sensor is:

y = 1 2 3
SeROKEN = £ = 0 0 10 )
fo = .0 0 1.0
DS-069\ONR\CHAP-ALL.HXP Rev #3 Page 12
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The table of the doc becomes:

Y(a=1): {0} {1} {2} {3 {12} {13} {23} {1,2,3}
9(S)=] b=l 0 0 .0 1. 0 1. 1. 1.
h=0 .0 .0 0 1. .0 1. 1. 1.
()
There are only two distinct points in the doc. One point corresponds to all tunings in which the
set Y(a=1) contains the element “3” of the signal set. With this tuning we will “always act.”
The other point corresponds to all other subsets of Y, and with this tuning we will “never act.”

2.2 Sensor Product ST

Consider a second detector whose bins are not necessarily the same as those of S, with

fundamental table:

. %.'.‘
(X3
"l

,“
i

STy
ekt
RS

We define the full product sensor, SI®S2 by the product table. It represents all of the
information that can be given by the two sensors together, and has six bins which may be

labeled as 15, 16, 25, 26, 35 and 36. Quite generally, the rows of the fundamental table will be :;:s;.:
)

O0)

h:::u::f
QAN
independent the table for the full product is determined by the two individual tables. ::::'.:::
ot

the conditional joint probability distributions. If the two sensors are (stochastically)

Specifically we have:

S3= 51 ®Sofindep=

In what follows we will agsume stochastic independence throughout. Since there are 2x3=6
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Figure 2. The detector operating characteristic (doc) D for the product of two discrete sensors.
Each small square represents an achievable value of the two conditional probabilities. The

boundary B plays a central role in decision analysis. From the boundary one may reconstruct W%
the fundamental table of the product sensor.

%
=2

The DOC for the product sensor )
DOC of $10S2 o

Cond probability of respones

0 0.2 0.4 0.6 0.8 1 -
Cond probability of false olarm i

=

v
ol
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bins in the product detector, there are 26=64 points in the table of bin combinations which :::‘::::.:.:::
defines the doc. The resulting doc ‘.D(S3) is shown in Figure 2. The fundamental table of the ":'.}g::"»
sensor may be reconstructed from the difference vectors formed along the upper boundary, ﬁ]i:i
which are suggested by the light line in Figure 2. This line is, in fact, the ROC for this system, r .::‘::":
except that, since the system and its doc are discrete, only the vertices are realizable in a ,&::i'::
deterministic system. b,
Note that the doc of a sensor product must always contain the doc of either of the ::'.':::
factors because one sensor may be tuned to the point (1,1), in which case the products are all :::::::,:f{
possible tunings of the other sensor. The product procedure can be followed in the case of a ‘;‘:‘;;":
continuous signal set, by binning to any desired degree of approximation, in order to produce a """!'
standard discrete representation of the doc of a continuous system. ,-‘:,_:_ .;_,
. AR
2.3 Restriction of Sensors R(M)S :?:E(
When a sensor communicates through a finite network channel it may not be able to )
pass on all of the available information. It must code the observed signal yeY into some M-fold '{‘ ::I;."‘;?i
message. To do this the signal set Y is decomposed into a union of non-overlapping subsets 'E:E::EE;
Y(m=1), Y(m=2), ...Y(m=M). Each such partition represents a “tuning” of the sensor. In . !:!::.:’
general the channel capacity (M) is less than the total number of bins. For example, with )
M=2, and the sensor SI®S2 there are 64 tunings, corresponding to the points in the doc. ‘9‘;:‘1‘:»
Among them is the totally uninformative choice Y(m=1)={25, 26}, which lies on the principal fc!"'tﬁ:v:
diagonal of the unit square containing the doc. There are also 5 maximally informative !:-;33:::3;?
possibilities: phece .
Y(m=1)={15}, {15,25}, {15,25,16}, {15,25,16,35}, and {15,25,16,35,26}. "‘ :.'1‘
Further discussion is postponed to Part II. We represent any one of the possible tunings by the ; "J; .:E
general expression ‘E!T(_2)_S'3. For example, one specific tuning is: ?Pm:;, whose doc is :\4.*- ‘
shown in Figure 3. '-\'{z'&
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Figure 3. A restriction of the sensor of Figure 2. The points of the original doc are shown for

) ;
i reference. The doc of the restricted sensor, which has only two messages, consists of the four )Q‘» ::
N solid squares. v
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) 3. Some continuous examples. :::3‘:.
‘} We have already remarked that it is practically necessary to replace a quantity that is (‘r\é
“in principle” continuous by a finite set of discrete bins. In other cases it is convenient to LA
approximate something that is fundamentally discrete as being essentially continuous. We now ::.;,':

consider the extension of the concepts of the doc D(S), the full product ®, and the n-fold ) ':.‘:t;

restriction P(n) to cases in which the signal set Y is continuous. ’ ‘:::,:::“:

3.1 The case of exponential response functions. - ' ."af‘.

The case of exponential response functions is particularly tractable, and will be pursued until l:;‘.n:

its simplicity proves to be an embarrassment. The signal set Y=[0,00]. The response functions 1::::::::‘

are fl(y)=e-y and fo(y)=nc.ny. The set of points in the doc is precisely the allowed region of E:::E:;::}

our previous paper [Blankenbecler and Kantor88]. Referring to the previous section, we see that ey

even in the discrete case the set of points in the doc quickly becomes very dense. We may .:::::

readily find the boundary (in the case of only two hypotheses) by ordering the points of Y in ) t:é::?i:

decreasing order of the ratio fl(y)/ fo(y). This provides a parametric representation of the &:::E::,

boundary of the doc, which is sufficiect for further numerical calculation. -!! A

If we call the parameter involved “z,” a suitable choice is given by ':;t?‘g:
Y(m=1;2)=(1/2,00]. Using “F,D” to represent points on the boundary we have at once: . .':‘5

%0 Ui

Fo(Y(m=Li2))=n [ Wiy =M* ) Y

e T

Wty

e Vi i
Fy(Y(m=1;2))= J Vay=c?, (9) :..:3::',31

1/z p .t l ,

In this case a simple analytic relation describes the upper boundary of the doc: N 'i":g‘.:‘

AR =R" (2D 1) 3R

2.

2
G
..J!":

We may represent all of the salient features of this problem in a family of three related

graphs, a8 shown in Figure 4. The first figure shows the response functions on any convenient

L ]
ol

scale, as a function of g, or a transformed label. The third figure shows the upper boundary

A
=P

N
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Figure 4. Aspects of a sensor with continuous signal set. The response function, the upper
] boundary of the doc, and the map from the boundary to trigger regions in the signal set are
,‘ shown for the exponential model of the text.
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8% of the doc D(.). The lower boundary is determined by the symmetry of the doc under the
transformation F—(1—F) and D—(1—D), the relabeling of actions. We adopt here the
convenient notations:
F=F(Y(2) (11)
D=F,(Y(2)) (12)
corresponding to the notion that fO represents a “false alarm,” while fl represents a “true
detection event.” The middle part of the figure shows the translation of any particular
operating point on the boundary of the doc into a corresponding “trigger region” Y(z). The
parameter 2 itself need never be made explicit.
3.2 Equjvalent Sensors

Corresponding to the fact that, for a discrete system, permuting the columns of the
fundamental table does not change the doc, there are an infinity of transformations of the
response functions which will leave the doc unchanged in the continuous signal case. A simple

example is given by the Rayleigh distributions:

fl(w)=2nwe'"w2 (13)

and

fo(w)=2wc'"’2. (14)

The transformation y= wz; dy=2wdw shows that these two sets of response functions, the
Rayleigh and the exponential, have exactly the same integrals over corresponding regions in

their respective signal sets, and hence will have the same doc.

There is very little difficulty in principle in extending the parametric representation to
any computable forms for fo and fl‘ A more complex example, on the signal set Y=[—o0,00]
is:

(15)

-(#-200)2/2(20)?

f 1(y)=201121r[(1/3)c

-(3-250)%/2(20)?

2 2
+(1/3)e +(1/3)e'(’*3°°) /2(20) :l
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and ) “
2 2 2 2 2 2

o=zl (1) PR 1HA0? (1) (5 BOP/HAO? )y o 3007/2(40) ]

as o

The doc has been calculated numerically by ordering unit bins centered at y=150,...350, as
described above. It is shown in Figure 5. Note that the trigger regions may be quite complex,

because the response functions do not have a monotone likelihood property with respect to the
label or variable “y”.

It may be shown that, provided the ratios of the response function do not vary too o
rapidly, the doc D corresponding to any fundamental table whose signal space is continuous
will be a convex set. That is, there will not be any isolated extreme points, or holes within the =

boundary 8. This property is useful in studying the fundamental operations of the sensor ) o
calculus.
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Figure 5. A complex sensor with continuous signal set. The response functions, upper boundary Jre
of the doc (the ROC) and the map to trigger regions arec shown for compound overlapping ah

Gaussians, The solid line on the lower left graph is the trigger region corresponding to the
point PeBT.
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3.3 Standard Forms for Sensor Tables e 3 ;
We have mentioned that different sensors may have the same doc. It is therefore useful X g

to introduce the notion of a standard doc. This may be done in two ways. One leads to a

continuous signal set, and may be useful for conceptual purposes. The other leads to a discrete

signal set, which is essential for calculation. We suppose that the upper boundary B of the ' NI
b,
doc is given in the form D(F). The derivative D/(F) may be shown to exist, from the right, for ¥u \,»
all F<1. b
@
Conti Standard Form: x o::::'
Y=[0(0),1] an I
2 i
y<0 o “f
= 18 A3
ww={ — 1) i
E;Z
[, \i
a-nd . e A _
Al
1 D(0)<y<0 LS
- -y— ) X
fi(v)= ' (19) R
D'(y) 0<y<1 s
s
v WH
Di Stapdard F (N points): ﬁ"
Define the auxiliary function: " ;& '
fouz(8)= min  F. (20) - &
D'(F)<tand S
R W,
For n=1 to N: :}. ':
< )
Fp=fauz(nx/(2N))—fauz((n-1)x/(2N)). (21) "R
@
D =D{fauz(ne/(2N)) } ~ D{ faus((n-1)7/(2N)) }. (22) w3
W
RSN
This construction divides the continuous interval from 0 to 1 into portions over which the siope *-R
of the boundary of the doc changes by a fixed amount, »/2N. This construction makes use of 3
the convexity of the doc and, hence, the fact that its boundary has a monotonically changing AN ‘:-‘
o
- '.f“
CEOAS
L%
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slope. [Technically, as we draw the doc, the upper boundary is concave, and the lower

boundary is convex.]

3.4 The Full Sensor Product: R

As a simple example we form the full sensor product of two identical sensors with T

exponential response. This is the same as having all the information from two such sensors
before making a decision. Or, it can be regarded as making two successive (independent)

observations with the same instrument, before reaching a decison.

We introduce the transparent notation:
Y =[0,00]
S=| d=¢¥
f=ne id

to represent the sensor with Y=[0,00] and with the response functions indicated. We see that

the full sensor product has the representation:

[0,00]1'[0,00]
s@S=| d(zy)=c Y (24)

j(z,y):nzc.n(ﬂ-y)

The obvious parametrization for determination of the boundary of the doc is t=z+y. The
corresponding trigger regions are of the form Y(tg)=[ty,0]. The element of integration
becomes tdt, with the results:
D(H)=(1+t)e?t (25)
F)=(1+nt)e™ (26)

A general recursive formula is given by:

D ‘D 1y
=Dy O+ e
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Figure 6. The full sensor product. The upper boundary of the doc, 8% is shown for the two
and thiee-fold product of the exponential sensor with itself. Note that there are diminishing
returns in the continued improvement that repeated measurement represents.
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LR 1 28 N :g:e:!
Fk(t)=Fk.1(t)+Wl)—!e (28) 000N

with: _ .

Dy(t)=Fy(t)=0. @9) - o

Although we generally cannot express D(F) in closed form, there is no difficulty in preparing

graphs, or performing further calculations on the basis of these formulae and results. Examples - '
R

showing the upper boundary B~ of the doc for the two-fold and three-fold sensor product for g:&fﬁ
the exponential case are shown in Figure 6. %:\2:-

R A
It is reasonable to suppose that if two sensors have the same doc, the doc of their RSANEY
@
product with other sensors will not depend on the specific representation {Y,d(y),j(y)} that is R

used. The reader may verify this by repeating the preceeding calculation, replacing either or

o

o

both of the sensor descriptions by the Rayleigh form.

e

X b
-
-

X

-~ J
S
e

5% T Jo
2
254

DS-069\ONR\CHAP-ALL.HXP Rev #3 Page 25 o

FW W ~ 3 W W L% 1% R S R LIA T AN TYL N ) ’ LR ) " LY B YN ] WP N TR T VA A T -"(-1!“.-¢
it WS, IO M T St Lt YAl A AR A T o N v.,l‘p. » * b X " A ™ QU RARWY



PN

W

8 8 87

O R YOI TN PN U PO PO TOM LY YO O R T PR RN N P I WOUURUTWOWL VU, PR OV W WO

4. Fundamental Network Elements

The fundamental operations that go to build up a network have already been defined:
the communication restriction R(M)S and the full sensor product S®S. There are some basic
topologies which it is instructive to examine in detail, both to illustrate the calculational
techniques, and to sharpen our intuition.

We recall that S®T produces a new composite sensor, with its associated doc, which is
always (in a sense to be made clear in Section 6) at least as good as either S'or T. On the other
hand, for any particular tuning t, m is a seusor which is, in general, not as good as S,
because it has only an M-fold output. The tuning t determines the meaning of that output. It
is logically equivalent to a decomposition of the signal set into a set of nonoverlapping subsets
Y(m=1),...,Y(m=k), but, in practice, t may be represeuted in a variety of ways. In particular,
when we want to determine the boundary B of a compound doc D(S®T), we need only
consider extreme points of the constituent docs. When their signal sets Y(S) and Y(T) are
suitably continuous the boundary is a continuous set, containing all the extreme points. When

the signal sets are discrete, the “boundary” is the set of extreme points.

Note that the simpler expression %(2)S represents a more complex object than

R(2,t)S since it is a set:

a.(z)—s={a,‘ (2,05 : t a possible tuning of s} (30)
.milarly:
RBSeRMT ={s0t: scR (B3, teH()T T}. (31)

Thus the elements of the set R(k)S®R (1) T are labelled by two tunings: one for S and
one for T. In the examples of this paper those tunings are represented by real numbers in the
unit interval, corresponding to the probability of a “false alarm.” This representation of the

tuning is possible when there are only two hypotheses and only two actions or messages.

Any element s®t ¢ Ro(k)S@R() T is itself a sensor, and it has a signal set with kx!
points, which are labelled by the messages coming from S and T, under the tunings selected.
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When an action a=1,2,...,A is to be selected from a set A the compound sensor s®t must itself
be tuned. Such a tuning is a decomposition of Y(s®t) into A non-overlapping subsets. In the
examples of this paper A=2 and the decomposition is specified by giving the set Y(a=1)
which, by complementation, specifies the set Y(a=2).

4.2 Binary Messages

In the special case of binary messages me{0,1} it is natural to call the tuning of s®t a
LOGIC. The signal set is Y(s®t)={00,01,10,11}. There are 2t _1=15 non-empty subsets in
the doc D(s®t). Each such subset corresponds to a logical expression. For example {01,10}
corresponds to [m(s)=1 or m(t)=1 but not both], which could be expressed as the exclusive or:
XOR(s,t).

Corresponding to a given logic there is a fundamental polynomial which appears in

each row of the table characterizing the sensor system. It is defined in terms of the binary

patterns m=(m1,---m2) appearing in the logic:
B m (1-m))
QLoclc(Xl,""xn)=; Ix 'ax) (32)

méeLOGIC =]

Here n is the number of independent sensors for which a fusion center has been used.
This particular form depends both on the fact that only two complementary trigger sets arise
at any sensor (because of the two-fold messages), and the fact that 1 can be written as the

power 20,

There is an important set of inequalities restricting the LOGICS that can be extreme
points of D(s®t). We recall that the elements of the table defining s®t are products for
stochastically independent sensors. In the special case of two-fold messages we may simplify the

notation, using:
dg=d(Y(m(s)=1)=Prob(m(s)=1 given h=1) (33)

fs=RY(m(s)=1)=Prob(m(s)=1 given h=0), (34)
with similar expression for the sensor t.

We also set:
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F=]-—-z. (35)
Then the fundamental table describing s®t has as its columns all triples of the form:
m(s)m(t)

dsms a;ﬁrs dtmt a-itﬁ‘ (36)
fsms f;m; ftmt Ft t

iy

The doc D has elements corresponding to all possible sums of these expressions.

Without loss of generality we may suppose that Y(m=1) is chosen so that

dg. 1—dg _ dg .
21, - T (37)

with a similar relation for Y(m(t)=1).

It is easy to see that if a “trigger region” contains the point m(s)m(t)...m(n) and does
not contain all the points m’(s)m’(t)...m’(n) for which any m’> the corresponding m, then it
is not an extreme point of the upper boundary 87 doc of the composite sensor.

We sketch the proof for the case of two-fold signals. A corresponding result may be
proven for k-fold signals in the same way. The statement is empty if the region is {11}.
Otherwise, suppose that for sensor t, the trigger region contains some point with m()=0. We
need only show that the corresponding point in the doc is inside the convex hull of the doc.
Without loss of generality we need only consider cases lying in the triangle d>f. We decompose
the given point into:

hd)=(fy+fy dy+dy) ' (38)
where (f, dj) is the vector in the doc space corresponding to the point with m(f)=0 in the
signal set. Let (fl, dl) represent the vector in doc space corresponding to the same point in the
signal set, but with m(f)=1. We show that (f,d) is not an extreme point of the doc D by
showing that is lies below the line joining the points A=(f A,d A) and
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B=(f,+fy+f.d4+dy+d;). To prove this we note that the fcoordinate of ! " u'l::
/Uy +F A+ U/ Uy +£,)) B s J, while the d-coordinate is: RN

f o
Wit d) @ =
=d, +7(%(d0 +f1d1/H) (40) o ‘:::‘:!i:f

WKANY
24y +70L£}i("0 +hi/fy) (41) | .‘:::"4-,':

i

TR

a0
The set of LOGICS is further reduced by the observation that every sensor must play a :::::::;3'
- 9,00 ¥4
role. For example, the doc of any logic that is independent of the message from sensor S is ::::3:‘5:::
LN
contained within the doc formed by multiplying the corresponding polynomial Qroaic bY {:t:f:g.i't

zy s For, we could freeze sensor S to the “ON” position and recover QLOGIC‘ When a logic

£,
L
-

.f.'
e
42

is independent of the message from sensor S it involves zg only in the form zg+Zg=1. For

example, with two sensors the logic {10,11} corresponds to Kz)=125T;+ 152y =175. Its doc is E‘W '
ity

contained within the doc of either {11}=Y(AND), or {01,10,11}=Y(OR). !,‘,g
Of course the degenerate cases Y={0} and Y={00,01,10,11} are equivalent to having ‘r:i'.:

\

no detector at all, and need not be considered. They correspond to the BROKEN doc: %}\2.::

"

m:{(0,0),(l,l)}. :..:.'.s
a':l::'.lf

These three principles are the only ones that we know for reducing the set of possible - . '

logics. Detailed examples are given in [Cherikh88; Thesis CWRU] where the relation between X ‘nm
these rules and a Lagrange multiplier formalism for definition of the boundary of the doc is 'Q. ,‘::E
developed. &)& ':‘.\'e
LS )

L)% ] 4

V. 3y

.-;:;-',,:.
L
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LN
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4.3 Specific Descriptions of 2-fold and 3-fold fusion,

Using these rules we find that the cases to be considered are:

(i) Product combination of two sensors: %(2)S; @R(2)8y:
LOGIC={11} AND

={01,10,11} OR (43)
(ii) Product combination of three sensors: %(2)Sl®%i 2)S9 @ R(2)S5:

LOGIC = {111} AND
= {011,101,110} MAJORITY RULE or 2 OUT-OF 3
= {011,100,101,110,111} 1 OR (2 AND 3)

plus two cyclic permutations.
= {101,110,111} 1 AND (2 OR 3)
plus two cyclic permutations.

= {001,010,011,100,101,110,111} OR. (44)

The specific computations needed to trace the extreme points of the doc can always be

written as:

D(F)= QLoc|c(ds,d¢)- (45)

maz
QLoaic Usfy)<F

Since the function Dp(Fy) is monotonically increasing for r=s or f, the weak
inequality constraint may always be replaced by equality if the doc set is continuous. Thus, for
two detectors in this “fusion” situation the optimization involves a search over one variable,

For three detectors it involves a search over two variables.

4.4 Series Stryctures:

When one of two sensors is directly accessible, and the other is only accessible over a k-
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fold channel we call the structure “series.” The corresponding doc is represented by

R(k)S, ®Sy. We say that sensor Sq is “downstream” from sensor S;. Each point in the doc of
the combined system is achievable as the product of one or more pairs of points in the doc of

S2 and some member of %22581. Let us examine the structure of such pairs.

For any particular choice of the “tuning” of S, the doc of ml is a set of four
points: (0,0), (f;,d;(f;)) and their reflections under (f,d) — (1-f,1-d). The only non-trivial choice
of a trigger set is Y(m=1)—(f;,d;) and Y(m=0)—(1-f;,1—d,). The values of (f,,d;) can
range over the entire D(S,). Similarly, the points in the doc of Sy can range over D(S,).

On the one hand, the doc D of the series case is a restriction of the doc D for the full
sensor product. We consider first the discrete case, with both signal sets having 3 elements.
Y;={1,2,3} and Y,={4,5,6}. The signal set of S; ®S, is {14,15,16,24,25,26,34,35,36}, which
has 9 points. The doc will consist of 22 =512 points. The signal set of %(2)S, ®S, is somewhat
more complicated. There are several possibilities for the signal from %(2)S,, depending upon
the particular tuning, which we denote as ®(2;t)S. They are {0,123}, {1,23}, {2,13}, {12,3} (4
possibilities in all, as their complements provide the remainder of the 2338 total range of
possibilities.) However, these possibilities are not simultaneously available! When a specific
tuning is made for the first sensor, one of these possibilities is available and the others are not.
Thus there are only 2x3=6 elements in the Y of the series system, and not 9. Finally, if we are
interested in finding the extreme points of the doc, one of the possible combinations, {2,13},

will not be of interest because it is not an extreme point in the doc of of Sl'

One way to visualize the relation between —9:(2_)§1®S2 and S, ®8S, is to form a table
of the possible subsets of the product signal set. For the full sensor product, every element of
the product set may be independently included in the trigger set. For the restricted product
?JI:_(Z-)'-S"1 ®52, for every element in %(—2)81 the elements of 52 may be chosen independently,
and vice versa. But this means that the elements of S| must be assigned to two subsets once
and for all, prior to the formation of the trigger set. Thus, the candidates to be on the
boundary B of the doc 9(§T2)§1 ®8,) correspond to the following points in the signal set Y:
{14,15,16,234,235,236} or {124,125,126,34,35,36}
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Since only one of these possibilities may be realized at a time, one could not choose the tuning

{14,1245}. The upstream sensor cannot distinguish “2” from “1” and also from “3”, because it

communicates via a 2-fold channel.
4.5 Comparison of the series structure to fusion.

Although the series structure has a more limited signal set (and, hence, a restricted doc
D) than the full sensor product, it is expected to be more general than the fusion structure
R(2)S®R(2)T. This may be verified by writing out explicitly the elements of the signal set for
the 4 non-trivial possibilities of (s®t)eF(2)S®F(2)T. They are:

{14,156,234,2356}
{145,16,2345,236}
{124,1256,34,356}

{1245,126,345,36}. (46)
The first two of these are contained within the first of the series possibilities. The remainder
are contained within the second. Note that what appears as an elementary possibility in the
fusion structure, such as “1245” (that is: S says 1 or 2 and T says 4 or 5) is a composite in the

series structure, being the union of the elements 124 and 125.

4.6 Computation of a Series doc D(R(2)S; ®Sy) in the continuous case.

The series configuration can be thought of as a union of docs, corresponding to a set

of sensor products:
R(2)S,®S59 = {s@Szz seB(2,t)S for some tuning t.}. (47

The structure of the specific elements of the doc is a little tricky. In general, the
elements of se(2,t)S; are of the form shown in Eq. 48:
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D, (t))

F,(t) Fi(ty)

That is, there are only two points, and each row has, as its coordinates, some point on the
boundary B(S,) of the doc D(S;)- The elements of s®S, are sums of products with one factor
drawn from this table and the other drawn from the table of SZ’ We may write this sensor in

general as a table (we suppress the row containing the labels):

Di() Dyt X do(y;)  do(3g)

(49)
Fi(ty) Fi(Y) 5H(y) f5(v9)

The elements of the boundary B of the doc D are included among all possible sums

over subsets of these products. Any such sum may be written as the sum of two terms:

d(Y)=; Dy(1))do(y) + D Di{%)dy(3) (50)
Ye¥ g erb
and
ﬂY)=Z Fi()h(y) + Z Fi(4)f5(9) (51)
yCYa yCYb

To find the extreme points we need ouly consider extreme choices for the sums; that is,
we need only consider subsets Ya,b which are the trigger sets for points on the upper boundary
(F(t),D(t)) for some value of t, the tuning of detector S,. Since there are two sums involved,
there are two tunings, which we may denote as toa and top- Hence the extreme points of the

doc for the series case will have the form:
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DO 4‘ 2 O

F(Y)=F(t;)Fg(ty,) +F(E) Faltoy)- (53)

We may see explicitly that the doc of the series case contains that of the two-fold
fusion system. In the latter, one of the sets Y and Yb will be either the empty set or the full
signal set. For example, when top =0 the expression reduces to a point in the boundary of

AND(%(2)S, \ B 2)S,).
while when t5, =1 it reduces to a point in the boundary of OR(%R(2)S; ,%(2)S,).

All the other special cases can be shown to lie within the docs corresponding to either
the AND or the OR logic for the fusion case. This confirms that when the second sensor gives
up the freedom to let its tuning depend on the signal received from the first sensor, its power is
reduced to that of the situation in which each sensor must set its tunings without knowledge of

the signal from the other.

4.7 The puzzle of three-fold fusion.

In the case of three detectors we have found that there are 9 non-dominated LOGICS.
Three of these are symmetric. The remaining ones form two familes, each of which is closed
and transitive under permutations of the three sensors. We can demonstrate, by explicit

example that any of the 9 rules may be needed in the general case.

When the three sensors are identical we have not found any cases in which the non-
symmetric rules are needed to determine the boundary of the doc. Thus we are led to speculate
that perhaps, when all three sensors are the same, only the three symmetric rules are needed to
find the extreme points of the doc. However, the argument “symmetric sensors, therefore
symmetric solutions” is a dangerous one, as shown in Section 5.1. Thus this question remains

open.
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5. Specific network results.
5.1 Spontaneous symmmetry breaking.

In many cases where the two sensors whoee signals are combined at a fusion center are
themselves identical, we have found that the optimal tunings of the individual sensors are
themselves the same for every tuning of the overall system. This kind of symmetry makes
calculations much faster, particularly as one advances to systems with more than two sensors
or more than two messages per channel. One may invest considerable energy in the effort to
prove that this symmetry holds quite generally, but the efforts are doomed to failure because

counter-examples exist.

We exhibit such a counter-example here. The reader will note that the degree of
difference between the performance of the system with optimal tunings of the indivudal
sensors, and the performance with suboptimal, symmetric tunings, is not large. Thus it may be
possible to prove that symmetric tunings represent a heuristic for tuning which comes within
some provable discrepancy of the best possible tuning.

The Counter-example.

Consider the sensor defined by the following fundamental table:

d 375 537 .088
S= (54)
f 250 390 360

The upper boundary of the doc corresponding to the continuous version of this sensor

is given by linear interpolation between the points:

+ 0 375 912 1.0
B = (55)
0 25 .64 1.0

By direct calculation one finds that the symmetric tunings for the AND and OR logic
at F=.64 are in fact both lower than .912, and so surely lower than the best that can be
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Figure 7.1 Spontancous symmetry breaking. ‘The lower curve is the baundary of the doc when
both scnsors are tuned to the same value. The upper curve s achieved by
restriction, giving full fusion of the sensors.
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Figure 7.2 Detail ot spontancous symmetry breaking. The largest difference is of the order of
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achieved with a fusion system. That difference is shown in Figure 7.1,7.2.

5.2 Nog-convexity of the doc for fusion systems.

As we shall discuss in detail in Section 6-8, the convexity of the doc D for a detector
system plays an important role in the solution of decision problems, whether they are
characterized in terms of acceptable error rates or by a cost matrix relating actions and
hypotheses. Since the solution of any decision problem involves optimization over the doc 9, it
is made easier if that region is convex. However, the doc defined by a fusion system is shaped
by the fact that the action of fusion corresponds to a discrete sensor, with only 4 points in its
doc. For a fusion system, even though the distributed sensors have continuous signal set, and
continuous doe, the fusion center itself has a discrete signal set, corresponding to finitely many
logics. Examination of the boundary of the doc in example cases shows that the doc is actually
the union of several convex sets. Although the intersection of convex sets will also be convex,
the union, in general, will not. So it is not surprising to see that there are small regions of non-

convexity in the doc of the fusion system. An example is shown in Figure 8.1.

This corresponds to the fusion of two sensors each having the table:

d= 4 .6 0

S= 56
i= 0 .6 4 (56)

This structure means that each of the sensors can send any of three signals. The first is
an unambiguous identification of the desired event; the third is an unambiguous rejection of it,
and the middle signal is perfectly ambiguous. As shown in Figure 8.2, there is a substantial
dimple in the area where the boundaries of the docs for the two LOGICs cross. The depth of
this dimple can be measured in “natural units” corresponding to distance in the Euclidean
metric on the doc set. It is approximately 6%. We have calculated the depth of the dimple for
all choices of sensor having the general form used here, expressed as a function of the degree of

overlap of the response functions. In this case the overlap is 60%, which is close to the location

of the maximum. If ¢ denotes the area of overlap, the depth of the dimple may be shown, by
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Figure 8. Non-convexity of the fusion doc. The individual sensors ecach have doc boundaries
corresponding to the curve labeled DOC. The fusion of two sensors with binary messages has
the boundary labelled MAX DOC. There is a clear “dimple” or non-convex region at the point
where the LOGIC changes.

Two identical detectors in fusion
DOC and OVERALL (MAX) DOC

1

09 =

0.8 MAX 0OC
°
2 07 -
5 A
a
°
< 0.6 -
L
-]
2 0.5 -
2
° 0.4 -
a
2
8 0.3 - Do

92 -

0.1 4

0 Ll 1 L v L] T 1 T T

0 0.2 0.4 0.6 0.8
Cond probability of false clorm
DS-069\ONR\CHAP-ALL.IXP Rev #3 Page 38
. C --.----.-~_“_ oty ST AL F AP . o T Tu r
DOt NS e ey S ey e L e e e e

P.(

e AT N,



KIS U TAT N T L N S S e e

Figure 8.2 Nonconvexity of the doc in fusion. A fairly extreme case nccurs when there is a 60%

chance that cach of the sensors will give a completely ambiguous signal ycY. The dimple is
approximately 6%.

Figure 8.3 Nonconvexity as a function of ambiguity. The depth of the dimple, measured as

Euclidean distance in the doc space, is given as a function of the conditional probability of the
ambiguous signal {rom the component detectors.
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GAP—E T+e (57) O
0
: 5
which achieves its maximum at: & A
"
ALY
e=({5—1)/2=0.618... (58) ey ”';
]
- o
One expects that non-convexity will be the rule for fusion systems, unless a single logic o,
dominates all of the others, and this example of a typical model of sensor imperfection suggests x b
v Iﬂ
that the effects may be substantial. (See also Figures 8.2 and 8.3) ‘ ;
5.3 The series topologv. -
In general, the simplest series structure is represented by %(2)S;®S,. One sensor i "
sends a binary signal to another. One natural question is whether, if one sensor is definitely g ":"‘
better than the other, the good sensor should be placed “upstrcam” or “downstream.” As we "
discuss in Section 6, a sensor S is definitely better than another S’ if and only if the doc D(S) =
hy
includes the D(S'). We illustrate some of the complexity of this problem with a simple finite A A
example. Let two sensors be described by the tables: . .z
%D o
o
G .40 .35 .15 .10 50 - N,
= ¢
. .25 25 25 25 (59) & &
s 3
and: bt
B
40 30 20 10 st
B = (60) N
25 .25 25 25 IS
S
T
It is readily verified that G is better than B in that sense. - o
There are three non-trivial reductions which may be applied in this case — combination ey 3\
'
RN
LY
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of the first two columns, the first three columns, and the last three columns. We may then Yt ‘.‘:0
J A
form the direct sensor product of the reductions of G with B, and vice versa. This yields a set _:3}\ .'::
of points which are the extreme points of the composite structure R(2)U®D. We use “U” to .;:::!{.
represent the “upstream detector” and “D” to represent the “downstream detector.” The -
= »
results are most easily seen in the graphs of Figures 9.1, 9.2, 9.3 which show the complete r;.%r Ryt

."
22

upper boundaries 87 of the two composite docs. These have been verified by direct calculation

. .,A
£OSKTs
e
K
)
oy

based on the piecewise linear formulation corresponding to the discrete sensors G and B. The
enlarged views show that in the neighboorthood of F=0.5 it is “better” to have the better i
sensor upstream, while in the neighborhood of F=0.625 it is better to have the poorer sensor :"

upstream. "

As with the case of the spontaneous symmetry breaking the effects are small, and we hiht,
do not know whether they can be shown to be small, in this sense, in every case. Of course it iy
must be remembered that differences on the doc graph are multiplied by some scale factor ) ':'

depending on the importance of the problem to which the sensor system is applied.
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:; Figure 9.1 Two sensors in serics. The individual scnsors have the upper boundaries 1, which is

Ky better, and 2, which is poorer. The two possible choices for which sensor is upstrcam yicld two

9_: composite docs, whose upper boundArics are close to cach other. e

i) Figure 9.2 Detail of Figurc 9.1. In the vicinity of 50% false alarm rate, the performance of the '
system with the better detector upstream is superior. »
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Figure 9.3 Detail of Figure 9.3. In the vicinity of 62.5% false alarm rate, the performance of 3\ vy
the system with the poorer detector upstream is superior. Possible tunings of the system with V‘ :i
the poorer detector upstream are labeled “)". There are six variant tunings of the two possible X
configurations, but several of them overlap in this small region. ‘,é'
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5.4 General procedures for the calculation of any network,

The ideas set forth in Sections 1-3 permit us to provide an algorithm for the discussion
of any network in which signals flow only one way, and there are no closed loops. We have
seen that such a network can be represented by some combination of the basic operations of
the sensor calculus, restriction ®(k) and full product ®. We confine ourselves to the case of

two hypotheses and two-fold signals.

The doc boundaries B of the root sensors may be given in either analytical form or
numerical form. Thereafier all calculations will produce numerical form. The result of any such
calculation can be thought of as a table enumerating the points of the boundary B, and the
tunings of the component detectors that give rise to them. For example, when the operation is
a binary fusion m1)51®§(2,t2)52 the table contains entries:

F D 11 i2 LOGIC (61)
where 4 and 1y and LOGIC are the coordinates of the optimal solutions to the problem:

D= mgr.  paz Qoaic(Py(Fy(t)): Dy(Fy()) (62)

1'%

subject to the conditions:

QLoclc(Fl(ﬁ)v Fg(‘g)) =F (63)
and:

(Fy(tp), Dyty))eB(S)) (64)

(Fz(tz), D2(t2))cB(S2). (65)

In practice, for the case of two hypotheses and two actions, the value of F,(t;) may be
used to represent the tuning as well. If, for reasons of ecomomy, or reliability, the choice of

LOGIC is fixed then the table will only contain the values of (F,D,ty,ts).

For the case of fusion of more than two sensors, the general form will be the same, but

the enumeration of LOGICs will be more complex.

For the series structure %R(2,t,)U®D the table is slightly more complicated,
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containing:
F D ty |ty tyo
where ty, ty; and ty, solve the problem:
= Dy (ty) D (2 1—=Dy(ty)} Dt
D ty, 't':,f 4z y(ta)Dp(tay) +I vtk Dp(ty2)

subject to the conditions

Fy(ty)Fp(tq) +I1—-Fy(ty)] Fp(tg) <F
and:
Fy(ty), Dy(ty) JeB(0)
Fp(t41), Dp(tqs) JeB(D)
Fp(ta2)s Dplty2) JeB(D)

T2 48 8 Pa8 Sat £a0 Y2t 2% V4% A0°

(66)

(67)

(68)

(69)
(70)
(71)

Such tables may be used to determine the doc boundary B for any composite into

which these composites enter as components. In the practical application of such a system all

the tables must be maintained available for use. The overall detector system boundary B is

used to determine the overall optimal tuning, as described in Sections 6-8. That tuning is then

looked up in the overall system tuning table to determine the optimal tunings of the major

subcomponents. This lookup process is iterated until the tuning of each fundamental sensor in

the network has been determined, as well as the tunings of the intermediate sensors.
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6.The link between decision making and the doc.
6.1. Bavesian Formulation.

In the Bayesian formulation a problem is described in terms of probabilities, actions
and hypotheses. In general there is a cost matrix C(a,k) defined for aeA, the set of actions and
AeH, the set of hypotheses. In general one might permit the cost function to also depend on the
probability that each of the several hypotheses is true, in which case we might write it as
(\(a,p), where p=(p(h=1),...,p(h=H)). The probabilities have some specified values p° prior to
the observation, and are updated to the values p, by the observations of the sensor network. In
the general case the cost may be a non-linear function of p. For example, the cost may increase
more rapidly as the leakage through a defensive system increases, and the number of survivors
decreases. Thus improvement in detection yields diminishing returns. In another setting,
improvement in detection will, in general, bring diminishing returns because the precision of a

measurement increases only as the square root of the number of detections.

We restrict ourselves in this paper to the customary engineering cost model, in which

the cost function is linear in the individual probabilities, and may be written as:

Aap)=3 Aah)a(h). (72)
heH

In this case, the cost of choosing a given action may be expressed as:

EC(acR)=Y_ Pr(a and h)((a,h). (73)
heH

If the action a is taken whenever the signal y is in the trigger region Y(a), this
becomes:

EQW=3_ 7} f(¥(0)Cah (74)

Note further that, for this formulation, in which the expected cost is to be minimized

without additional constraints, the cost matrix C{a,h) and the prior probability enter only in a
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single combination: W{a,h)= ng(a,h). This can be thought of as a vector, labelled by a, whose
several components are indexed by A. With this perspective, the expected cost is simply the
inner product of the vector {Y(a)), whose components are f1(Y(a)), and the vector W{a).

Thus solution of the Bayesian decision problem amounts to finding, for each a, the
tuning Y(a) which minimizes the overall expected cost. In the general case this will be
accomplished by assigning each element yeY to that action a(y) for which W{(a(y))< W(a') for
all other actions a’. We concentrate on the case of exactly two hypotheses and two actions. In
this case we need only specify one trigger set, Y(a=1), with the other, Y(a=0), defined by
complementation. Similarly, the space in which the vectors f and W lie has only two
dimensions. As in Section 4, we will refer to its axes as the fand d axes, corresponding to A=0
and A=1 respectively. The components of fare (f,d).

It can be shown by direct calculation [Blankenbecler,Kantor88) that for this case the

expected cost depends only on certain differences, which may be thought of as the cost of two
kinds of error:

Clh=1)=((a=0,k=1)— C(1,1) (75)

and

A h=0)= C(a=1,h=0)— (0,0). (76)
We assume, without loss of generality, that both of these quantities are positive. (If they are
both negative we should relabel the actions. If they have opposite signs then one of the actions
is to be preferred whatever the state of nature, and no sensor system is needed.) This
particular simplification is unique to the case of two actions, in which the difference vector
R=W(a=1)—W(a=0) can be used to determine whether W(a=1)-y) $ W(a=0)-f().

By direct calculation we find that the expected cost may be rewritten as:

0
e=3" 3" M eh) (77)
A=1a=1
=f [Anvanany + PA(YO) X024 | (7o)
h=1
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= Y Wa)-AY(a) (79) .
a=l1 &
We use the fact that there are only two possible actions to write {Y(2))=E—-£fY(1)), {
. ' L n]
leading to 3
&
EC= W(0)- E+( W{1)— W(0))-AY(1)). E=(1,1) (H terms). (80)
Thus the problem of minimizing the expected cost is the same as minimizing the value bt
of the second dot product. This can be visualized as sweeping a hyperplane perpendicular to 3
R=W(1)—W(0) across the doc until it reaches an extreme point. When the dot product is as )
small as possible the corresponding choice of the tuning Y(a=1) is optimal. We show this
construction graphically. Note that the two terms of R are, using “f* for “0”, and recalling N
that a=0 means “do not act”: . o
Ry=p)C1,1)=p)CMe=0,1) k=1 (“a) (81) =
Rf=pgc(1,2)—ng(a.=0,2) h=2 (“P") (82) =
e

These represent the a priori risk associated with the two possible states of nature.
Presumably the first is negative and the second is positive. Their ratio determines the slope of )

the line that sweeps across the doc. For |R d|< Rf the line is nearly vertical, which favors a

-
tuning very close to (0,0). This is reasonable since the risk of an incorrect response (false ‘
"
alarm) is relatively great, inhibiting us from action. Conversely, when |R d|>Rf tunings close -
to (1,1) are preferred because a miss would be very costly. by
No matter what the nature of the doc — be it discrete or continuous — the solution .
to Bayesian problems will be found at the extreme points of the doc. If it is discrete these are %
A

isolated points, as in Figure 10.1. If it is continuous all the points of the boundary are extreme
points (Figure 10.2). Thus, in one way or another, everything that we need to know about the o
doc is contained in a “listing” of its extreme points. This may be given in closed analytic form
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Figure 10.1 Bayesian problems: Discrete case. The cost and prior probabilities determine a
direction, represented here by level lines. The solution to the problem is to move as far in that
direction as possible, without leaving the doc. As the direction rotates, the optimal tuning
remains “stuck” at a vertex of the doc, until it is ready to jump to another one.

Figure 10.2 Bayesian problems: Continuous case. When the boundary of the doc is continuous,
the level line for the optimal tuning rolls around the doc, and the tuning point changes
continuously.
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: (rarely), in a tabular form with interpolation rules, or by direct enumeration. ¥

i ¥

:. To sum up, the solution of any Bayesian problem is reduced to complete knowledge of Gl
A ?

by the boundary of the doc. Since the boundary of the doc also provides all the information !

» needed to carry out the operations of the sensor calculus, we consider an alternative way to S :

! characterize it. ' O

' o .

By . {

8.2 The Nevman Pearson Formulation. .

In general, the extreme points of the doc are all those points through which a :

-
L

hyperplane may be passed without including any interior points of the doc. In the general case

>

the interior points are all convex combinations of extreme points that are not themselves

P
i
LK

B extreme points. One way to enumerate the extreme points is to consider all possible Bayesian | )
::; problems, and find the solutions for each. Because the information about prior probabilities - 2
, and about costs enters only through a single ratio, this would be a highly redundant ' Y
1 enumeration. A more efficient approach is to consider all values of the determining ratio b '
LA n
, Yet another method is to trace out the extreme points by gradual relaxation of an o )
Y -
5 artificial constraint. This approach is familiar from statistics, where it defines the operating S h
:: characteristic of a test, and has given rise to the name “Receiver Operating Characteristic.” T
. Interestingly enough, this terminology has made its way back into statistics as well. 3
y " (Kraemer88, Swets72, Swets88]. The general theory of most powerful tests was developed by U
Neyman and Pearson [Neyman42] and so we refer to this approach as the Neyman-Pearson . :
L) D
A formulation of the optimal discrimination and decision problem. h
9
v Points on the boundary of the doc can be characterized as either:
y = maz d 83 R
ben (f,d)edoc, f<F (83) )
- .
B, or: .’ &
K D)= min . 84 h
p AD) (fid)edoc, d>D g (84) £
J ™
, &
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This approach has been used to provide independent proofs of the convexity of the doc, y \
and of the fact that the boundary is piecewise differentiable. [Cherikh88]. When the doc is ol "‘5
continuous, the function D(F) has a simple relation to the effective cost vectors W at the ..OQ.
optimum tuning. Since the tuning point t* is on the boundary we have: ot %
WA
(W(a=1)—W(a=2))-(F(t*),D(+*)) (85) N
. . . ..'a::'o‘
is a minimum, or: ":‘.:. 2
4
i * _ * _ Lyt
dt,,l:F(t )R —D(t*)|R dD_o. (86) o
- ""' y
or: ::"t'::'.
MR
F(*)R,=D(* e
()R =D/(£*)| R (87) e
f d eyt
NI
But D/(¢*)/F/(t*)=dD/dF| e (88) SRR
@
That is, the slope of the boundary D(F) at the tuning point, is given by Rf/lR dl' In b ,: \J
By
practice D/ (F) is often most easily found in the parametric form. Because the slope is itself . :}‘ y
() i
monotonically decreasing, many fast algorithms exist for finding the optimal tuning. :& 3
by
6.3 Constrained Optimization. E;‘-'\ Y
ana
The formulation just given, for the Neyman Pearson problem, represents the simplest ::-';:;
kind of constrained optimization. There are realistic situations in which another kind of :".R} X
constraint arises. Consider a situation in which there is an expected series of incidents, Pyigt.
‘l .-- \ )
numbering I in all. Suppose that the available budget of responses :s B, and that the prior Efc::‘
R,
probability is that a fraction ptl) will be “true events” corresponding to A=1, while a fraction 'j.f:
pg will be “non events” corresponding to A=2. Then when the system is tuned to the operating Baet
point (F(t*), D(i*)) the expected total number of responses will be:
ER=p) D(t*)+ pJ F(1*). (89)

If ER is less than B there is no problem. On the other hand, if the number of responses
exceeds the budget allowed then some fraction of the incidents will not, in fact, be responded
to. The effective performance in this case is reduced to (B/R)(F(t*),D(t*)). This point is a
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convex combination of the points (F(t*),D(t*)) and (0,0) and so is interior to the doc. It is e
therefore not optimal for any choice of the prior probabilities and cost information. Thus the
optimal tuning will be the tuning for which the expected number of responses is equal to the
budget. -

So, generally, the solution to the problem:

max W-f (90) g ‘-"7."
subject to the constraints: :
X

and pl-f<B/I (92)
will lead to a point which is on the boundary of the doc and, for some choices of the cost

matrix, also on the line given by po-f=B/I. -

If the doc is continuous this does not pose any problems. Every point on the boundary
of the doc is accessible by a suitable choice of the tuning Y(a). However, if the doc is discrete it ~
may happen that the intersection of the boundary (strictly speaking, of the convex hull of the
extreme points) with the constraint given by Equation (92) will not be a point of the doc. In

the most general analyses of optimal design of experiment [Blackwell54] this is dealt with by Lad
using a “mixed strategy.” Under a mixed strategy, points on the line connecting two elements o,
of the doc are achieved by using each of the corresponding strategies a fixed fraction of the

time, with random selection of which strategy is to be used at any given time.

For a single sensor one may implement such a random strategy by broadening the bins
into a continuum, and then choosing a tuning which effectively mixes the bins in fixed -

proportions. For example, the sensor described by the table:
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1 2 Al

Sy=| 75 .25 (93) by
25 .75 =

LR Sl
may be replaced by a sensor with continuous signal set Y =[0,1] and the response functions: ’ ‘:_.-{‘ 3

fo(y)=1. WA

_) 3 0< y<.25 XN
fl(Y)_{ 1/3 .25<y<1 (94)

The graph of the upper boundary of the doc is: .,

oY
M
D(F)= 3F 0< F<.25 (95) AL
—1 .15+(F-.25)/3 .25<F<l.

It is clear that this doc has no gaps in its boundary. In terms of the original sensor %
table, a tuning such as F=.5 corresponds to a mixture: g\t K]

(1/3)S,(tuned to Y(a)={1,2})+(2/3)51(tuned to Y(a)={1}) (96) :‘
with the false alarm rate: A

F= - oy
=(1/3)1+(2/3)(.25)=0.5 (97) f!\_:;

and the detection rate: A2

-
D=(1/3)1+(2/3)(.75)=5/6. (98) !
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7. Continuity and discontinuity in the behavior of network detector systems.

It has been noted elsewhere [Blankenbecler,Kantor88] that even for a simple model
problem, it may happen that the tuning of a fusion system jumps discontinuously when the
LOGIC changes from AND to OR. At the same time, it was observed that the optimal cost
corresponding to the best tuning does not exhibit a discontinuity. We are now in a position to
explain both of these phenomena, and to comment on their significance for the optimal design
of distributed systems.

First we note that, for a discrete sensor, there will be discontinuities of tuning, as the
line representing the constant value of the cost “rolls around” the boundary of the doc,
touching at the extreme points. However, the cost associated with the best tuning for a given
value of R is continuous as the direction of R varies. This is because, when R is such that
either of two tunings is optimal (i.e. the line of constaat R-f is an extreme edge of the doc)

then the cost associated with each of the the two tunings is the same.

Exactly the same phenomenon can occur when the doc D of a fusion system exhibits
non-convexity which, as we discussed in Section 5, is a general occurrence. We see that for a
certain critical value of the vectors W the extreme value of the cost will occur at two distinct
points on the boundary of the doc, corresponding to two different choices of the logic. With
simple fusion, as the difference vector R moves the optimal tuning will jump suddenly from the
value appropriate for the AND logic to that appropriate for the OR logic. The “cost” at the
minimum will not show any discontinuity because the distance between two parallel lines,
measured in any direction, is the same no matter where, along the parallel lines, the

measurement is taken.

In practice, this could have very serious consequences. A network will, in general, be
tuned to our best present understanding of the costs and prior proabilities. If the general
characteristics of the sensors are such that the optimum is at or near this point of
discontinuity, then we are less confident than we would otherwise be that our tuning is the best
one. To take the worst case: suppose that we had to tune right at the ambigous point. We

must make a choice of LOGIC, and of the tuning of the individual sensors. If we select, for
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example, AND, and the actual situations (costs, priors) is such that the tangent line is a little
steeper than we think, everything is fine. We will be operating slightly above the optimium
tuning (F(t*), D(t*)), but not very much. However, if the tangent is slightly flatter, we will be
operating quite far from the optimal point, with corresponding loss in system performance. As
the slope of the tangent goes to zero the cost of wrong LOGIC falls to zero. The cost due to
being on the wrong lobe (that is, choosing the wrong LOGIC) is not the same as the difference
between the two functions D 4 ypy(F) and D (F) measured at the same point F.

An example is given in Figures 11.1, 11.2, based upon the sensors described in the
imbedding model of [Blankenbecler, Kantor88]. The fundamental table is:
Y =[0,00]
A=Y (99)

fo(!l)=“¢."y

The upper boundary gt may be given in closed form:
— n+l /n
an=T (1) (100)

In plotting the dependence of cost on the slope of R it is convenient to use a reduced
measure of cost: J=f—|R d/ Rfll. The true value of the difference in performance depends upon
the scale factor Rf’ which may be extremely large. In figures 11.1 and 11.2 the independent
variable is the angle between the line of constant cost and the vertical axis. This angle
arctan(|R ;/ Rfl) varies from 0 to x/2 as the optimal point sweeps around the upper boundary
of the doc.
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Figure 11.1 Optimal tuning in fusion. For the embedding modecl of Equations (99,100) the
optimal tuning is always symmetric. For two values of the parameters n and z we show that as
the direction of the cost minimization rotates, the tuning changes discontinuously, as the logic
changes from AND to OR. The tuning point jumps from one lobe of the boundary of the doc

to another,.

Figure 11.2 Expected cost in fusion. For the samec cases as in Figure 11.1, the expected cost,
measured in reduced units, does not show any discontinuity.

Optimal symmaetric tunings Fl=F2

J + [Ra/RM
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Figure 11.3 Tuning and cost in fusion. The critical point corresponds to the line AB. When the
critical value is reached the tuning jumps from point A to point B, while the reduced cost, J,
does not jump. e

Two identical detectors in fusion
DOC and OVERALL (MAX) DOC

Cond probabllity of response

T

0.4

-r

0.6
Cond probability of false alarm
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8. Resource constraints and mixed strategies. ol :E:'.
We have seen in Section 7 that the finiteness of the set of LOGICs leads fusion systems &% ::':‘
to exhibit some of the discontinuities of discrete systems. As might be expected, this problem .
also affects the situation of constrained resources. We saw in Section 6 that, when resources are = "&:
constrained, the optimal tuning may correspond to a point which is not in the doc of a discrete & :::
system. It can, in some cases, be achieved by a mixed tuning, or by a suitable broadening of P '5:
the signal set, which amounts to the same thing. o
In the case of a fusion system, the problem manifests itself as shown in Figure 12. The ::f
resource constraint passes through the “dimple” in the boundary of the doc. With mixed '::E
strategy one could achieve the value corresponding to the point Q. With a pure strategy @ :é%:
(definite tuning) one cannot do better than the point P at which the two boundaries o »
(corresponding to the LOGICs AND and OR) meet. In dimensionless units, the added cost we . f.
must bear is given by the depth of the dimple. The maximum perpendicular distance from the N4 P
boundary of the doc to the line segment forming the convex hull across the dimple is an upper o ‘:::.
bound (in these absolute units) for the added loss due to the non-convexity of the full doc. ‘i
In response to this problem one might ask why we do not propose that a mixed ';.V :"
strategy be used, to avoid the added cost. The problem, it seems to us, is that mixed strategy 'l;
requires coordinated random retuning at each of the distributed sensors, as well as at the Lol '::

fusion center. The communication costs of coordinating the retuning are likely to be higher

than the cost of adding to the communication capacity of the system itself, with corresponding

o
A
gain in system performance. Thus, in the design stages, one should avoid constructing fusion
e
systems for which the dimples in the overall system doc are likely to be in regions of operating >
interest.
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Figure 12. Resource constraints and fusion. Using an earlier example we show that the resource

constraint line may pass through the dimple of the doc for a fusion system, resulting in sub-
optimal performance.

Fusion for two overlapping sensors
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& 9. The problem of team action Y :;
K v
v In the preceeding sections we have concentrated on the case of two actions and two A :
4 .g
)

hypotheses. Another problem of some interest [Tenney81] is that in which there are only two

L

actions to be taken, but each of several agents may take them independently. This preblem

K may be discussed, with considerable complication, by using the language of updated o
probabilities and likelihood thresholds. However, the same constructs that we have used above AR
D

‘ also make it easy to discuss this problem. 3

To fix notation for this section, let F represent the probability of false alarm and D(F)
represent the probaility of detection at a particular sensor. (In other words, we let F itself
stand for the general tuning variable t that defines the regior Y(a=act)). With N different

R

e 070 " on e

-

sensors there are, in fact, 9N different actions, corresponding to which subset of the stations

)
; “choose to act.” We suppose that all of the stations have identical impact on the cost function, “
B w0
-,: so that the cost depends only on how many of the sensors act, and not on which ones they are. :
¥ -
: Specializing further to the case of two stations we see that the cost matrix will have three L o
! columns and two rows: 5 :
\ .
1 o
! C(a,h) R,
1) . {)‘- \
. Number acting h=1 h=0 '
Cc(0,1) C(0,0) - N
™
' 1 C(1,1) ¢€(1,0) ~
) .
\ 2 Cc(2,1) C(2,0) (101) 2 :
D - : .
' We may reasonably suppose that C(0,1) is the largest cost element, and C(0,0) is the \ '
; lowest cost element. It is also clear that C(j+1,0)>C(j,0). It is almost certainly the case that -
N
. C(0,1)>C(2,0). That is, the cost of the disease is greater than the cost of the cure. Any further X ; '
,
: assumptions are debatable, depending on the effectiveness of isolated action, the cost of X :
N resources consumed in responding, and so forth. For example, if a single response is totally . '
effective then C(1,1)=C(1,0)=the cost of making one response, ~nd C(2,1)=C(2,0)>C(1,1) - _
g
¥ because further resources are consumed unnecessarily. When a single response is not certain to 2 l‘:i
‘ .
- f )
4 S
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be effective this inequality is likely to be reversed.

Let Fj stand for the false alarm rate corresponding to the tuning of the jm sensor and
Dj stand for the corresponding probability of detection. The overall expected cost of this

tuning is then:
EC(FI,F2)=pg(C(o,0)F;F5+C(1,0)[F1F§+ Fy Fyl+C(2,0) F) Fy)
+)( Q0,1 D Dy + AL (D, Dy + D Dyl+0(2:1)D; D, ) (102)

The variables Fl- and F2 are free to range independently over the unit square in FI’F2
space. Our formulation of this problem is quite different from the treatment in sections 1-8.
We have not explicitly separated the problem into the determination of a doc and the selection
of an optimal point. The expected cost function here directly involves both the operating
characteristic and the priors and cost parameters. Thus there will be a separate problem to
solve for each choice of the parameters. However, the problem of determining the two doc
boundary functions represented by D,(F,) and Dy(Fy) can be solved once and for all. They
can be incorporated as subroutines in an overall optimization program to find the minimum
cost tuning. The Kuhn-Tucker conditions of this optimization problem are the coupled

equations of [Tenney81].

An alternative way of thinking of this problem is to note that it is a specific restriction
of the case of the unrestricted product of the sensors, with four possible actions. The restriction

is that the trigger regions in the combined signal set must have a simple product form
Y=Y xY,. (See also [Sadjadi].)
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10. Summary and Conclusions.

We have seen that the concept of the doc — a convex set whose boundary, in the
simple case of binary hypotheses is the familiar Receiver Operating Characteristic — provides
a useful unifying foundation for the discussion of both discrete and continuous sensor systems
in a common language. This is particularly important because continuous approximations to
discrete systems are a convenient way of achieving mixed strategies (See Section 8) while
discrete approximations to continuous situations represent the realities of signal binning. We
have made every effort to develop the language and notation in a way that will survive
transition to the case of more than two actions or more than two hypotheses. Although this
complicates the discussion of some of the most familiar cases, we believe that it is worth the

effort.

We have shown that the doc D(S), and the set of its extreme points SB+(S),
represented by ID(F) provide all the information needed to solve any Bayesian problem, for
either coordinated or team action. We have further introduced a powerful notation for the
calculus of sensors, built on the two fundamental operations of full sensor product S®T and

the M-fold restriction representing either messaging or action, ®(M)S.

Using this machinery we have found a number of “negative results” contradicting

certain plausible beliefs about basic properties of networks. Specifically, we have shown that:

(1) The fact that sensors are identical, and that their messages are combined in a
symmetrical fashion at a fusion center does not imply that the best tuning for the individual

sensors is symmetrical itself. An example is given in Section 5.1.

(2) When one sensor is definitely better than anothor (that is, its doc completely
contains that of the poorer sensor) it is not necessarily the case that it is better to combine full
information from the better sensor with a restricted message from the poorer. Nor is the reverse

the case. An example is given in Section 5.3 in which the doc’s for both possible architectures

are calculated, and it is shown that neither contains the other.

{(3) When signals from several sources are to be combined to determine an action there
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may be discontinuities in the optimal tuning, corresponding to the fact that the tuning of the

fusion center itself is a discrete selection from a set of several possible LOGICs.

(4) Even though the optimal tuning for each of the sensors in a network will be a
deterministic tuning (corresponding to a point on the boundary of its own doc), it is not the
case that deterministic tuning of the network as a whole is always optimal. We show, by
example, that when there are resource limitations, as well as cost criteria, the best possible

deterministic fusion system may still be suboptimal.

Our results confirm the view that the development of an optimal architecture based
on distributed sensors is a difficult problem. We have shown, by example, how one may
construct the boundary of the doc for a complex system and may, once an optimal tuning t*
for the whole network has been chosen, “climb back” up the structure to determine the optimal

tunings of all of the constituent sensors.

There are two important directions for immediate exploration. One is to find the most
efficient possible algorithms for implementing the sensor calculus. We have been using straight-
forward grid search to test various preconceptions about symmetry and dominance.
Particularly because symmetrical solutions are not generally optimal, the calculation for large

numbers of sensors may become prohibitive, unless better algorithms can be found.

The second important direction is to establish bounds on the magnitude of the sub-
optimality represented by our various examples. For example, if it could be shown that
symmetric solutions are always within .5% of the optimal tunings in fusion, then it might, in
many cases, be acceptable to use the suboptimal symmetrical tuning with substantial
computational savings. Similarly, if it could be shown that one series arrangement is always
superior to another to within a similar small difference, it might be acceptable to eliminate the

opposite architecture from consideration.
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DISTRIBUTED DETECTOR SYSTEMS AS A PROBLEM IN
OPTIMIZATION WITH NONLINEAR CONSTRAINTS

R. BLANKENBECLER®
Stanford Linear Accelerator Center,
Stanford University, Stanford, California 94305

and

PAUL B. KANTOR!
Tantalus, Inc., 3257 Ormond Road, Cleveland, Ohio 44118

Summary

In this paper, optimal control theory is applied to the
design of decentralized sensor systems. Lagrange inequality
multipliers are used to determine the optimal design param-
eters. Several models of possible response functions are fully
discussed as examples of our technique.

1. Introduction and Definition of the Problem

There are many situations in science and engineering in
which information is gathered from a variety of sensors and
must be abstracted or summarized for future processing in or-
der to comply with communication, storage, or processing con-
straints. The simplest example is the case in which a binary
decision must be made based upon information sources that
are constrained to transmit a binary signal. Examples include
data from devices monitoring the performance of a power net-
work, data from an array of elementary particle detectors, the
coordination of radar or infrared signals, and so on.

In general, the communication restrictions may be lifted
with some increase in cost; thus the examples under discussion
represent a special case. As we shall see, even this simple case
(two alternative states, two possible actions, two-fold signals,
and two detectors) presents challenging problems of analysis.
Discussions have been given by Srinivasan for more than two
detectors! and with applications to a specific choice of the de-
tector characteristics.?

Discussion of a case with distributed action is given by Ten-
ney and Sandell.’ A discussion for specific (series) topologies
is given by Ekchian and Tenneyl.* Related problems have been
discussed by Chair and Varshney,® by Reibman and Nolte,°
and by Sadjadi.?

Quite generally, the performance of an entire network is
summarized by four probabilities p,(y, H), of which only two
are independent. (Here, H = Hy, H; represents two hypothesis
about the world and y = yo, 11 represents two possible actions
or determinations. This notation will be made more precise
shortly.)

Several problems may be formulated, including
(i) min py(w1, Ho) subject to p,(s0, H1) < 55,
(ii) min py(yo, Hy) subject to pr(v1. Ho) < pj.
(hi) min A”(yh HO) + Bp'(yo' El)‘

The first and second problems correspond to setting ac-
ceptable error rates; the third arises when there is a tradeoff
between the two types of error. The coefficients A, B may be
positive or negative.

The physical characteristics of an individual detector
constrain the achievable values of py(31, Ho) and p.(po, H1).
The design of a network is then a selection from among a dis-
crete set of topologies, with each topology tuned to give its
best possible performance. The tuning is a constrained opti-
mization, with the constraints determined by the achievable
values of p,(y1, Ho) and p,(yo, H1).

‘Work supported by the Department of Energy, contract
DE-AC03-7T6SF00515.

1’Sum:aoﬂ.eel in part by the Office of Naval Research, contract
NOOO14-87-C-0605.

Our work has many points of contact with previous work.
We utilize a Lagrangian formulation to deal with the
optimization problem involving equality and inequality con-
straints. Three problems are presented in detail, involving the
cases of exponential response functions, special sums of expo-
nentiais, and block functions. We trace the behavior of the
system tuning and the optimal cost as a function of the detec-
tor discrimination.

This paper is the first of a series whose goal is to clarify
the relations between topics in distributed detection, optimal
control, and experimental design, thereby leading to a more
intuitive or “physical” understanding of the problems of dis-
tributed detection and sensing.

1.1 General Introduction

There are two possible states (of the world) Ho and H;.
The prior probabilities of these two states are pg and p;, where

Po = Prior(Ho) 1)
P = prier(H1) -
There are two possible courses of action (“measures”) denoted
by mo and m,. -
The assumed cost function is C(m, H), where
C(mo, Ho) = uo C(mo, Hy) = w1 + wny
C(my, Ho) = ug + wyo C(my, Hy) = uy .

The expectation value of the cost function is to be minimized
over the various design parameters, those in the response func-
tions and those in the probability functions. As will become
clear later in our discussion, the separate cost parameters uo
and u; do not matter when the expected cost is minimized;
the minimum depends only on a ratio involving the differences
in the cost for a given H, namely wjo and wp;.

The essential point is that for the case of only two possible
states of the world, the preferred action is determined by a
single real number, determined by the posterior odds for the
H;. This is true because, using linear cost theory, the informa-
tion in Eq. (2) is summarised by the intersection point of two
straight lines; one describes the cost of action mg as a function
of po while the other describes the cost of action m;.

1.2 Properties of the Integrator

(@)

For our model we choose a fusion structure in which signals
are processed locally at each detector, with messages fed to a
single integrator
A— C+~—~B.

The problem is to design an int ,"ator C and tune the
sensors (A, B). Each of the two sensors detects some signal
(y) and sends the central integrator a signal u;. In general,
these signals need not be binary. The integrator then chooses
sction mo or m,, and this choice is determined by the fusion
rules. The rules for both the sensors and the integrator are to
be chosen s0 that the expected cost is minimised.

The integrator’s actions are completely described by a
matrix (with two adjustable parameters) that describes the
probability of choosing measure my, given the signals u;
from detector + = a,b. This matrix will be denoted by
P(m!'lul’ u.)v where
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P(mol0,0) =1  p(mol0,1) = ¢
p(mo|1,0) = p(mo[1,1) = 0
or, in an alternative matrix notation,

3

uyy=0 uy =1
=220 Y 8 ) W

The probability of choosing m; must be the complement,
element by element,

pmald) = 1= p(mold) . (5)
We exclude the possibility of a third course of action. The
design parameters g and d are to be fixed by the optimization;
they define the rule to follow when the two detectors disagree.
If the two detectors are identical, then we expect that d = ¢
and that they will be 0 or 1 depending on the costs and the
details of the sensitivities of the detectors.

1.8 Definition of the Detectors

Now consider the detectors in more detail. Each detector,
labeled a or 4, produces a single “meter reading” y;, (5 = a,b),
in response to the state of nature. The probabilities, ps(y, H),
that the value of the reading is y for the state of the environ-
ment H for each detector is

Detector— a b
pa(viHo)  f3(v) PO
pa(vi H1)  fR(v) ) .

The quantity y must now be converted to a yes or no signal
(u=00ru=1).

The effect of the decision process at each detector may be
summarized completely by a table giving the decision strategy
or probability of response p;(u; H) for each of the detectors.
For detector a:

Hy Hy
meat= 220(,2 14Y) @
while for detector b:
’ Hy Hy
mesi) = B23(;%, 157). )

1.4 Design Parameters

Therefore, the full set of parameters to be determined by

optimization is
g.d a,A,b,B .

The first two describe the operation of the “integrator” that
processes the two signals < _f the sensor stations to form the
output decision m. The last four describe the operation of
the “sensors” — they take the detected signals, apply their
respective detection criteria, and form their individual output
signals <.
1.5 Properties of the Detectors

A generalized detector uses the rule: if the signal y is in the
region R, then the signal u; is sent to the integrator. Similarly,
if the signal ¢ in the complement of R, i.e., if ye R, then u;
is sent.

If the external state is indeed Hg, then the response func-
tion of the detector is fo(y), but if it is H;, the detector re-
sponds with f{(y) [see the table below Eq. (5)].

For any choice of R, the detection probability [see Eq. (6)) J = (6C) /[(war ;) , (16)
8 or
= / dy f8(y) (8) J = p(mo|Hh) + W1 - p(ma| Ho)] - (17)
The minimization of the expected value of the cost is equivalent
R to minimizing J.
A-2
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and this then implies for A, “ ) 2

= [ausiw). © . B

& k:‘

Similar relations hoid for b and B. If the response functions :

have interlaced maxima, then the region R (and R) may be Ll

disconnected. W
As R expands, clearly R contracts. For any fixed value of [

a there is a maximum and a minimum possible value for A. .

If the response functions fo(y) and fi(y) overlap, which is the .

general and expected case, then these limits on the value of A 5

have important consequences. by "

The possible values A for a fixed value of a, are traversed 3

a8 the region R is varied. It is clear that to make A as large as 0!

poasible for a given value of a, R should contain those points .

whose contribution to A would be as small as possible (i.e., the
ratio fi/fo small) while the complement contains those points
with large values of this ratio. This is the familiar likelihood
ratio threshold rule.

If a goes to 1, then A goes to zero. Also, if Ais 1, thena
must vanish. This follows trivially from the unit normalization
of the response functions.

Finally, note that an ideal detector with perfect discrimi-
nation has response functions that satisfy fo(y) x fi(y) = 0 for

all y. In this case, the values of 2 and A are independent. We
will return to this limiting case shortly.

3. The Cost Function

The expected value of the cost function is
(€) = 3 C(mi, By)prior (Hj)p(milH;) ,
W
where p(m|H) is directly expressed in terms of the detector

properties, and we assume that the signals received by the
detectors are stochastically independent:

(10)

pimilH) = 3 p(milua, ws)p(ual ;) p(wilHy) . (11)
L 79 1Y
Using the explicit form of the cost matrix, Eq. (2}, (10) can be

expressed as

(C) = wor p(mo|H1) pr + wro p(mu|Ho) po + uo po +w1 P(x -)

12

Additive constants do not matter in the minimization; the

Jast two terms are fixed, and are the cost for an ideal system.

For such a system with perfect discrimination, the off-diagonal

probabilities p(mo|H;) and p(m;|Ho) both vanish since A =
1 — a. The cost must be a minimum:

(Clmin = YoPo+U1P: . (13)

The quantity that we want to minimize is the additional cost

due to imperfections in the system; this has the form

(6C) = (C) = (Clpmin
= wo1 p(molH1) ;1 + w10 p(rm|Ho) po -

Note that the position of the minimum will depend on the
ratio

(14)

W = Y10 Po . (18)
wo ft
which is the relative expected cost of being wrong if the state
of the environment is Ho (and responding with m;) compared
to the cost of being wrong if it is H; (and responding with mo).
The magnitude of the minimum cost will depend multiplica-
tively on the factor wg p;.

It is convenient to rewrite the cost function as

¢
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Some interesting limits on J can now be determined. The
perfact detector has J = 0. It is amusing to note that a detec-
tor that is always wrong has J = 1 + W, (One would then use
such a detector “backward.”) A more interesting case follows
from noting that if W is sufficiently small, i.e., the cost wyp (of
erroneously choosing m; ) is small, then a good strategy is to al-
ways choose m;. This implies that p(mo|H)) = p(mo|Ho) = 0,
and J = W (and g = d = 0). I, on the other hand, W is
larger than 1, then one wants to always choose my; in this
limit, J = 1 (and g = d = 1). The final cost for this limit-
ing case may be expressed in terms of the step function #(z)
(6(z) =1,z > 0,8(z) =0,z < 0)

Jnes = WO(1 - W)+ 8(W — 1) as)
g=d=8W-1).
This result arises in another way. If the response functions are
the same, fo(y) = fi(v), then no discrimination is possible,
and we find A = 1~ a. Using this relation in the probabilities,
we find the above result by choosing the obvious optimum.

The general optimization problem consists of choosing the
design parameters so the expected cost lies as far below Jmqs
as possible and as close to the ideal case, J = 0, as possible.
We now turn to a general discussion of the problem of finding
extrema when the constraints define a connected subset of the
real line for each variable.

8. Genera! Minimization with Inequalities

Using the form of the probabilities defined in Eqs. (6) and
(7), one finds the explicit expressions
p(molH1) = 1-p(mi|Hy),
= (1-A)(1~-B)+¢g(1—-A)B+dA(1~-B),

(19)
and

1 - p(rm1|Ho) ,
ab+ga(l ~b)+d(1~a)b.

Using Eqs. (19) and (20), the minimisation problem can be
re-cast explicitly as .

p(mol o) )

J =W+[S+9T+dU], (21)
where

S = (1-A)(1-B)-Wab

T = (1-A)B-Wa(1-0b) (22)

U= AQ1-B)-W(l1-a),
and all the variables must satisfy inequality constraints. A
complete mathematical treatment for problems of this type
can be found in the excellent book by Hestenes.® A reference
that discusses such variational problems in a language perhaps
more familiar to physicists and engineers is available.?

To minimize J, in the case that the variables g and d occur
linearly in J, but have a restricted range from sero to one, it
is convenient to form the variational functional Jye,, where

Joor = J —19(1 —g) - 6d(1-d) . (23)
The optimum will be & saddle point in (v, ) versus (g,d). In
this case J is a linear function of g and d, hence the extrema will
occur at the endpoints. The Lagran-+ inequality multipliers
~ and § must be sero if their associated variable g or d is
inside the allowed range, and non-negative if they are on the
boundary.® As usual, the derivative with respect to g must
vanish at the minimum and this yields the condition
0=T-~401-2). (24)
This takes the place of paired Kuhn-Tucker conditions for
g > 0and g < 1. I T is nonsero, which is the typical case, then
the minimum must be on the boundary (4 cannot be sero). If
T is positive, then g vanishes; if negative, then g is unity. A
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similar argument holds for d and U. The result can be ex-
pressed as

g = -T)
¢ = 0-0), (@)
and the minimum of J,q, becomes
IJn = W+ (S+To-T)+U-U)] . (26)

Note that if T or U vanish, there is no uncertainty in the
minimum of J, even though g and d are not determined.

The variables left to consider are a, A, and b, B. Each of
theae variables has a restricted range, so inequality muitipliers
will again be used. As was noted before, the possible values
of A are limited by the form of the response function and the
value of a. This can be expressed as the statement that for any
choice of the region R, with a given by (8}, one must have

Amin(0) < A(R) < Amas(a) - (27)
Of course, similar restrictions apply to B.

These inequalities can be treated as above. Write the vari-
ational functional in the form
J,"=Jm—F‘f, (28)
where

F = as(A— Apin)(Ames — A) + 8B (B — Bmin)(Bmae — B),
(29)

and

f = aa(l-a)+8b1-1). (30)
Again, the Lagrange inequality multipliers a4,0p5,a and 38
muat be sero if their associated variable is inside the allowed
range and non-negative if they are on the boundary.

Now the variation with respect to A yields
Zaa(d- Aw) = -5,
where Ay, = (Amu + Am)/z

It is a straightforward task, though somewhat tedious, to
discuss the general case. First note that the above equation
becomes

2a4(A~Ajr) = +(1-B)+BO(-T)-(1-B)#(-U) . (32)
Since the right-hand side is never negative, a, cannot vanish,
and hence A must be at its boundary. Since a4 must aiso be
non-negative, it follows that A must be above A,,,. Repeating
the same argument for B we find that

A= Am(@) ,
These are computable functions of a and b given the response
functions of the detectors. They correspond to the so-called
Receiver Operating Characteristic used in several of the pa-
pers cited above. We shall term these functions the DOC, or
Detector Operating Characteristic, and they will play a funda-
mental roie in our analysis.

The next stage is to vary & and b within their allowed range
to achieve the overall minimum. One can anticipate that there
may be symmetric (¢ = b) and nonsymmetric minima; which
particular one is the giobal minima must be determined from
s more detailed examination using the explicit forms for the
response functions. This will be carried out in the explicit
examples discussed in the next section. First let us discuss the
boundary behavior in a and b.

Double boundary: The boundary region in which both vari-
ables are at Eﬁle'u' limits consists of four terms. They will be
denoted by L(a,}), where a and 5 can take on the values zero
or one.

L{0,0): For this case, A= B =1,and Jyy = W forall W.

(31)

(33)
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L(1,0) and L(0,1): For these cases, A = 0B = 1, or the re-
verse,and [S=0=U,T =1~ W and g = §(W - 1)]

Jn = W+(1-W)e(W-1), (34)
the Jmaz discussed earlier,
L{l,lz: For this limit, A= B =0,
Jn =1. (35)

Therefore, the minimum of Jm on this double boundary is al-
ways given by Eq. (34) which amounts to setting the detectors
to always signal oppositely. Now let us turn to the single vari-
able boundaries.

Single doundary: This boundary region is symmetric in both
variables and gence we need only treat the case in which b is
at its limits while a is in the interior. The reversed situation
will yield the same minima. These will be denoted as:

L(a,0): For this case, B = 1, and § = U = 0. The quantity
T is not zero, with

Jm = “’4‘T0(—13

T =1-A-Wa.

As noted, A should be equal to its maximum value for a fixed

value of a in order to achieve the minimum value of T, as was

shown earlier. The limit cases of a = 0 and a = 1 are on

the double boundary. Any minimum for a in the interior must
satisfy

(36)

aT(ﬂ) - aAmg (a) -
da da
=0.

Since Amaz(a) is a decreasing function of a, there will in general
be a solution in this region if W is in an appropriate range. This
could yield a smaller minimum than that given by the double
boundary result, Eq. (34); however, for this case, we haveg = 1
and d is not determined, but its value does not matter since
U = 0 and one can arbitrarily choose d = 1 also.

L{a,1 ) For this situation, B=0=Tand S=1~- A~ Wa,
with U =1-W -~ S. If U is positive, then J, = 1, while if
it is negative, then J; = W 4+ S. Both these cases have arisen
before, and there are no new minima of Jy,.

v (37)

Interior: In the interior region, the inequality multipliers must
vanish and the standard variational equations become symmet-
ric in form. One can safely assume that there will be minima
in this region, but whether any is the global minimum requires
detailed study. Note that generaily there will be (local) minima
with T(and/or U) both positive and negative with the corre-
sponding limiting values of g (and d). Since this is a standard
well-discussed variational problem, further general treatment
here is not necessary. Let us now turn to a exhaustive discus-
sion of some explicit examples.

4. Exponential Response Functions

Consider a detector with response functions given by
" Jo = nl exp{—nly}
h = Aexp{-2y}.

We will assume that n is greater than one without any loes
of generality, so that the likelihood ratio (fy/fo) is leas than
one for y < z, where Az = (¢nn)/(n — 1). Using the above
argument, to achieve the extrema of A for these monotonic
response functions, the region R must be either the range below
or the range above some point z whose value will be determined
by the optimization process.!°

(38)

Therefore, it is easy to see that there are two cases to

AR ORI IR A U A AT WA U LN S -'..\

g 0%y @Ya 8Y8 0% 0 070 0 g 0% 0 g 470,000, 0% 0 " 8 g 0"

Case | Case II
R 0<y<z: z<y<oo
R z<y<oo 0<y<z
a 1 — exp{—nAiz} exp{—niz}
A exp{—Az} 1 - exp{-Aiz)
A (1 -a)t/» 1-al/n,

Thus, A must lie in the region
1-a/*<A<(1-a)¥/", (39)
and its position in this interval is determined by the particular
choice of the region R. Similar relations hold for b and B.
As an example, consider the case n = 2, and then the

feasible region for A as a function of a is labeled F in the
graph shown in Fig. 1.

—1

Q

2-88 5952A

Fig. 1. The allowed region of A is plotted for
.n =2 as a function of a and labeled F.

Figure 2 shows the graph for the value n = 4.

2-88

595,42

Fig. 2. Same as Fig. 1 but with n =4,

We see that as n increases, the allowed region increases to
eventually include all values of A between gero and one.

4.1 Ezplicit Minimization

Using the general results derived in the previous chapter,
we have A and B at their maximum allowed vaiues:

= —a\l/n
discuss: A (1-a) (40)
B = (1-4/".
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find no point where J was below the value at the symmetric
minimum given above.

Note that as a function of W = wip po/wos 71, the largest
fractional improvement in cost is achievable when W = 1, This
is precisely the case in which the prior choice of action is a
matter of indifference, that is,

YWp+tuip+wnp = vopo+wopo+uim .  (54)
This is intuitively reasonable, as one expects the information
from the sensor to be the most valuable in this case.

§. Invariant Imbedding

We now consider a detector whose reaponse functiona allow
superior discrimination between the two possible states of the
environment and contains the previous example as a special
case. The general form that allows a smooth limit back to the
previous model is

fo = n) exp{—-niy}
n+1
h = e St exp{-Ay} [1 - z exp{-nAy}} .
For values of £ near 1 this allows the improved separation be-
tween fo and f; since the former is large at y = O while the
latter is small there. On the other hand, for z equal to gero,
this is the model of the previous section.
It will again be assumed that n is greater than 1, and
proceeding as before we find:

(s5)

Caee [ Case 1
: O<ys<sz z<y< oo
R zSysoo 0<y<z
i 1 - exp{~-naz} exp{—niz}
A arhs eroaa)
x {n+ 1~z exp{~niz}]

1- axt=z op(-23)

X [n+ 1~ 2 exp{—niz}]
L s SRR TN

Thus, A must [ie in the region

cam 1+ 209 | a2
1-a [1+n+1—z]‘A‘(l a) 1+n+l-—z .

(56)
Its position in this interval is determined by the particular
choice of the region R. Similar relations hold for b and B.
Note that the allowed region of A increases as z increases from
zero to one.

To provide maximum contrast with the previous model we
will present data for the value z = 1. For this case, the interior
symmetric minimum exists for all W values. An interesting
new behavior is found in this model for small enough W and
n; the minimum cost occurs for g = d = 0, as before, but as
W increases, these design parameters flip to g = d = 1. The
value of a at the minimum jumps discontinuously.

n=2 n=4

w » J J/Jmes 'y J I/ mas
0.1 0.48 0.088 .38 0.70 0.088 .68
0.2 0.58 0.160 .80 0.80 0.111 .58
025 063 0.191 .764 0.82 0.128 .51
0.26 064 0.197 .758 0.828 0.131 .504
0.27 0.24 0.203 .752 0.832 0.134 .496
0.3 0.26 0.22 733 0.84 0.143 .48
0.5 0.35 0.31 .82 0.89 0.191 .38
1.0 0.50 0.47 .47 0.94 0.288 .27
1.5 0.60 0.56 .56 0.96 0316 .32
2.0 0.68 0.63 .83 0.97 0.35 .35
4.0 0.79 0.77 1 0.985 0.44 44
8.0 0.85 0.83 .83 0900 049 49
8.0 0.88 0.87 .87 0.993 0.52 .52
10.0 0.90 0.89 .89 0994 0.55 .55
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The columns are the same as in the previous table. Note that @

the parameters for the minimum (for n = 2) shows a definite
jump as W passes through the value = 0.265. At this point,
the optimum values of g and d change from zero to one; in fact,
we find that g = d = §(W ~ W), where Wy ~ 0.265.

On the other hand, for n = 4, the quantities T and U are ,{j-.i
always positive, so that g = d = 0. There does not appear to Al
be a discontinuity in a. e

At the discontinuity, the cost varies smoothly. This is in- W ‘0:-
tuitively reasonable, since cost is, ultimately, determined by hhy!
the pasition of some tangent hyperplane, along & normal to .:‘.{.0:'.!
the feasible region, which is connected. However, the jump :..l'.'l‘
in design parameters could have serious consequences because .l,o.":|:":
a small variation in the (frequently subjective) data summa- eV
rized by the parameter W could require a complete change of R
the system parameters g and d. This phenomena has impor- KO
tant implications for the design of constant false alarm rate ‘f ' A
systems, which will be discussed elsewhere.!! N ﬁ»f :

6. A Step Function Example z:;' n‘
MU

We now consider a detector whose response functions, in R
a certain limit, allow a clean discrimination between the two AN
poesible states of the environment. In that limit, A — 1 does :. "o‘t"g
not force a to tero. We will assume simple “square” response l:“ A
functions for ease of presentation. The response functions are :‘t:.. g:
chosen to be zero for y > 3 and, of course, normalized. ‘ :::.l,:. X

Proceeding as before we find for Case I, 0 <y < z: e

Fortherange 0<z<1 1252 2<2<3 Y
:‘:,ﬁ’\.l_-
T
fo(2) (1- o) %o o el
Ni(z) ] A (1-x) RVl
b
| gty
a (1=~ o)z 1+Xk(z-2) 1 gxf
A 1 1-M(z-1) (1-A)(3-2) . P
A similar table can be evaluated for Case II, z < y < 3. If ;‘;.;,-;
either Ap or A; vanish, then this describes an ideal detector M)
Yo'yt
system. '$ .‘:‘.’
We need the value of Amas, for a fixed value of a which is ",:.0::
: 0
Amez =1— %(a — 1+ Xo)8(a =1+ Ao}, (s7) 0‘:‘1:'.‘
while the minimum value is x .t
1 b ' ")
Amin = il‘(4\0 - G)O(Ao - G) . (58) et 0’:
% R
The feasible region for A as a function of a , labeled F in pd;i-\.
the graph (Fig. 3), is bounded by straight lines: %

In the limit that either Ao or A; vanishes, the allowed region
for A covers the unit square. AN
It is a simple matter to analyze this problem for the mini- » ,3’3‘ '

mum J corresponding to the maximum allowed A and B values
as given above. Consider the cases:

1l.A=B=1,and a = b = (1 - Ao). For these values, T ;.':'_:‘_
and U are negative and J = W),?. e
2.A=B=("-\)anda=>b=1. For thiscase T and U r}.
are now positive and J = )3, e )
Thus the final result can be expressed as ’ A 0:
J = min[Wi?, A% .‘ |'¢:'
g = d =00 -2'W) (59) X
a=b= I—M‘(Alz—ko’W) .
A=B=1-M40AW-XJ). .\_,'Q’.
The limit of perfect discrimination, Aq and/or A; going to zero, '\‘.ﬂ. X
can be easily discussed from the above results. "



Varying Jm with respect to ¢ and b and introducing inequality
multipliers @ and § to keep these variables between sero and
one, we find the conditions

na(l—2a) = A'""(1 -~ B) - nWd
nB(1 —2b) = B'""(1 - A) - nWa

whose solution should contain all relevant minima. Let us ex-
amine the boundary and interior minima in that order. Recall
that n > 1 in the following discussion, and we have assumed
for the moment that T and I/ ure positive. This will be proven
shortly for our solutions.

Boundary: The double boundary region has been discussed in
general and the result is & minimum of the form (a = 0,6 =1
ora=1,b=0)

Jn = W+(1-W)0(1-W) = Jpes - (42)
L(a,ol: For this single boundary problem, the task is to find

the minimum of T, where T = 1 — Apmgs — Wa. The result is
with p =1/(n - 1)

(41)

1
Ao=("v7)'

" Ao (43)
% =1-Tw:

For Ag to be less than one, nW > 1. The value of T at this
minimum is negative, and

Jn(Bnd) = 1- "-—;-3 Ao . (44)

If nW is slightly larger than one, naW = 1 + ¢, then it is easy
to see that to lowest order

Im(Bnd) ~ Jmes - (45)

3
2(n-1)°
L(a,ll: Forthiscase, B=0=Tand U=1-W-S. IfUis
negative, then the minimum of Jm is 1. If it is positive, then
S must be minimized, and this is just the problem discussed
above.

In summary, J,m has a minimum on the boundary given by
Eq. (42) or Eqg. (44), depending on the value of nW.

Interior; In the interior region, the inequality multipliers o
and § must vanish and Egs. (41) become symmetric in form.
Thus there is a symmetric solution with a = b and A = B.
Unsymmetric solutions will be searched for later. In the sym-
metric case, the equation for the optimal probability A is

WA (1-A") = (1-4), (46)
which does not have an analytic solution for general n. The
limiting behavior of the solution is easily extracted. For large

W, A approaches sero, and a approaches one with the behavior
[recall that p =1/(n - 1)]

A= (n—:v-)'+ :

1 i+p
021—(;‘Wﬂ) + .00

This is similar to one of the boundary solutions. The minimum
of J in this limit has the form

n
J = 1—2;—__—1A+.... (48)

(47)

Let us now discuss small values of W. Note that as W
decreases, a decreases. The value of W where a vanishes is

W(a=0)=1/n?. (49)
For values of W smaller than this value, there is no interior
symmetric solution. At this critical value, § = 0. Finally, note

that for this symmetric solution, T = U, and using the above
equations,

T = (n-1)Waa*, (50)

Ay

-----

which is positive definite. Therefore, the T and U terms do
not contribute to this minimum because g = d = 0.

Using the equation for A, we find at the minimum
Jm(Int) = W+ (1 - A)? ~W(1 - 4", (51)
This is smaller than the minimum arising from the boundary.

To see this, study the difference of Eq. (44) and Eq. (51)
for sufficiently large W (so that the former exists). If W is
eliminated between Eqgs. (46) and (43), the result is

1-4
4 = ACZEY, (52)
which shows that Ag = Ag(A) > A. The difference becomes

In(Brd) = In(Int) = [1- (1= 4] - (1)}~

_ (53)
- Ay -2t

For large W this difference approaches zero as (n — 1)/(r?W).

For all values of nW larger than one it is a simple matter to

show that it is positive (a numerical proof is easiest).

Some sample numerical results are:

n=2 n=4
n*w a J-w s J-w
0-1 0.00 -0.000 0.00 -0.00
1.0 0.00 -0.000 0.00 -0.00
1.1 0.120 <0.0001 0.082 -0.0000
1.2 0.218 -0.0009 0.150 «0.0001
1.3 0.200  -0.0026 0.210  -0.0003
1.4 0.367 -0.0054 0.261 -0.0007
1.8 0.475  -0.0144 0.346  .0.0018
1.8 0.556 «0.0278 0.413 -0.0038
2.0 0.618 <0.0431 0.487 -0.0061
3.0 0.791 0.175 0.636 -0.0260
4.0 0.866 <0.348 0.725 -0.091
6.0 0.930 ~0.787 0.815 -0.131
8.0 0.957 ~1.203 0.862 -0.219
10.0 0.971 ~1.869 0.890 -0.315
120 0.979 «2.144 0.909 -0.417
16.0 0.987 -3.117 0.933 -0.620

Recal] that g = d = 0 for this global minimum. Therefore,
if either detector signals 1, one should make the choice m; for
any value of W.

Perhaps it is more understandable to present this data in
another format:

n=2 n=4
w [ J I/ Jmar 'y J I/ Imae
0.25 0.250 0.250 1.0 0.725 0.195 .78
0.4 0475 0.386 .97 0.827 0.252 .63
0.5 0.618 0455 .01 0862 0.281 .58
075 0701 057 .77 0909 0.333 .44
1.0 0.868 0652 .65 0933 0371 .37
1.5 0930 0.743 .74 0957 0423 42
20 0957 0.797 .80 0969 0459 .46
25 0971 0.831 .83 0976 0486 .49
3.0 0979 043856 .88 0.080. 0.508 .51
4.0 0987 0.883 .88 0988 0541 .54
5.0 0992 0909 91 0989 0.567 .57
6.0 0904 00928 .02 0991 0.586 .59
8.0 0.997 0041 04 0904 0616 .82
10.0 0988 0952 .96 0905 0639 .64

The column labeled J/Jmqe gives the ratio of the minimum
J to the quantity Jmas defined in (18). Aguin, for this global
minimum,g =d= 0.
4-2 Global Minimum

As a check that the symmetric minimum is indeed the
global minimum, we have evaluated J throughout the allowed
region of the six variables g,d and a,A,b,B. We could
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The proof that the above minimum is indeed a global min-
imum follows simply by letting a and b deviate from the above

values while keeping A and B as close to their optimum values i S : ®
as allowed by the constraint. For W small enough we have: 1. g.roscrml;vzgg), e:;?lc‘;l‘df a:;r ::t:;tz;;sg)hwg,eﬂ:ﬁ ‘_’:}:{;‘-
a=b=1-X(1+¢ R. Srinivasan, Signal Processing (Netherlands) 11, Rl
A=DB=1 (60) Vol. 4, pp. 319-327 (1986). . -;3-,,‘
(S+T +U)min = -W(1=20%) . 2. R. S_rinivn;;n, IP Sl}nnnn ula:élE\g ;{dik'GDer‘bu“\? lD; :: P
It now follows for any positive ¢ that ;c;t:’;‘i; f;;:g) argets, roc. (GB) 133, Vol. 7, RS
S+T+ -_ i = 3 2_ ) ) = ,.
(S+T+U) (S+T+U)"",' W Ao’l(1+e) -1 2 0. (61) 3. R. R. Tenney and N. R. Sandell, Detection With Dis- e
For a and b larger than their optimum values, the constraints tributed Sensors, IEEE Transactions on Aerospace and N sl
on A and B come into play and Electronic Systems 17, Vol. 4, pp. 501-509 (1981), and ‘\ﬁ:i‘
a=b=1-x(1-¢ (62) 17, Vol. 5, p. 736 (1981). N o
“
A=B=1-xe 4. L. K. Ekchian and R. R. Tenney, Recursive Solution of N
and we find Distributed Detection/Communication Problemas, Proc. of RLELy
(S+T+U) - (S + T+ U)pmin = t.l.le 1983 American Control Conference, Vol. 3, San Fran- ~
3 2 2 cisco, CA, pp. 1338-1339. PN
2e0 (1= 1)+ (M2 -Wa?) 1 - (1 - a)?) (3) . . L o,
> 5. Z. Chair and P. K. Varshney, Optimal Data Fusion in ‘:'-"-j"-
20 Multiple Detector Systems, IEEE Transactions on Aero- \w‘,‘* .
if (M? — Wo?) is nositive (and if ¢ is positive, of course). g;;;) and Electronic Systems 33, Vol. 1, pp. 98-101 t;:l \
When W grows so that (1! — Wig?) becomes negative, o . ) S
one should repeat the above procedure around the values ¢ = 6. ; 'l;‘;:::bm‘; 'b“'.irl;;:"dgd“’ ,ospt:,'::..pégf.;'?ﬂﬂ .0
b=1and A = B =1-); to prove the giobal nature of the er nee ensor . vS ’ Vol RS
minimum in this region. Alternatively, one may argue that the actions on Aer?pu:e and Electronic Systems 33, Vol. 1, 5e5
feasible region is defined, in this case, by hyperplanes, so that PP- 24-30 (1967). S
the minimum must occur at a vertex, as given above. 7. F. A. Sadjadi, Hypothesis Testing in a Distributed En- AN,
vironment, IEEE Transactions on Aerospace and Elec- A
7. Summary tronic Systems 33, Vol. 2, pp. 134-137 (1986). Y,
We find that the problem of optimal design, with fusion 8. M. R. Heatenes, Caleulus of Variations and Optimal Con- o
and ;ietect:;; tuning, is difficult but tractable. Our simpie ex- trol Theory (New York, Wiley, 1966). A
amples yield some insight into how the best achievable cost 9. M. Einhorn and R. Blankenbecler, Bounds on Scattering Pty
varies between its bounds and how that best cost depends on Amplitudes, Annals of Physics 67, 480 (1971). e
the prior distribution and the cost function itself. 10. The k b that the likelihood Y
. . . . . R e key point here is that the like ratio is & mono- A
By utilising the technique of invariant imbedding, that is tonic function of z, so R is an interval including one AN
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a detailed explanation of the critical value at which this jump P .
‘ occurs. The third model studied also has such a discontinuity, hy Qgeity:
- Y and permitted a continuous transition to the state of complete -,\:',-\ )
information (perfect discrimination). In this case, the cost de- pavies;
pends on the degree of ambiguity in a quadratic manner. }.;“J.;'.‘ ,

- Finally, in all cases, we found that the best cost is achieved R

with a symmetric choice of parameters for the individual detec- e ®

tors. We do not yet have a general characterization of response A

r_ A functions for which this is slways the case regardless of costs et
A and prior probabilities. " *:’,
F The problem considered here is not only of theoretical in- “t::z
- . terest, but has many practical applications ranging from opti- ".h.,
mal design of complex particle detector systems to the design ’!:0‘,!.!

Ay of seismic and warning systems. o
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APPENDIX B e
o
REVIEW OF SOME RELATED RESULTS NG
Pats
l".
-.:).5 \
:._'f-_
RNy
Tenney and Sandell [1981] discussed team action in the case of binary :.‘:"r«
hypotheses and binary actions for two stations, They selected a particular form for v "
the cost function, established that the optimum signalling/action rule is a likelihood -
ratio test, and presented coupled equations determining the likelihood ratioc thresholds. 'k
Numerical examples are given, showing the complexity of the problem, for several : j
choices of the detector response functions f(ylh). The cost function is described by a ;‘3:?
single parameter, the cost of having both stations miss. Of course, as this parameter ; )
becomes large, the optimal solution is to have both stations act oppositely, no matter ey
what the signal. S
Ekchian and Tenney [1982] extend the analysis to more general topologies. :,_)b-""
They note that the number of regions into which each station divides the space of N lu
received signals depends on how many signals it may emit, and the number of such r\ﬁﬁ- 1
division rules (which they call thresholds, for the binary case) is equal to the total ::_Q_‘-f‘
number of signal combinations that can be received from all the other stations. They - ‘.
propose that an extension of the dynamic programming concept can be applied to the
analysis of tree-like topologies. ) .l,\'.g
. u.\‘ >3
Chair and Varshney [1986] turn to the fusion question, and discuss the optimum :‘: Y
fusion rule, for a binary hypothesis-binary action situation, with binary signals. Behls
Essentially they compute the updated conditional probability that either hypothesis is e
true, given the signals from the stations, and their known response characteristics. o
Although there are some notational problems with the paper, the result is correct. '::.'\sé
Kushner and Pacut [1982] opened the discussion of the remeasurement problem, 3 ":o"
which is the simplest example of what we call the "call-back" problem. There are two "\",
stations, which can communicate with each other, in either direction. At each station, - .
remeasurement can reduce the probability of error, but it has some cost. They ,:-.}‘\;
formulate the .problem of deciding when it is sppropriate, given the signal from the oS
other station, to remeasure before proceeding to action. The capacity of the ,‘\:;-c;
information channel is not clearly defined, as transmission of the full posterior NN
probability, which they assume, might be as costly as transmission of the full signal (y) i‘r
received. Again, the computations are quite complex, even for the simple exponential ‘.
response function. TENK]
wh
Srinivasan [1986) provided explicit formulas for the relation among system Ny
operating characteristics and those of the distributed sensors, and noted that the o
optimal tuning for the sensors depends on the choice of the fusion rule. Performance :1

characteristics are given for systems of 2 and three detectors with slow Raleigh
fading (equivalent to the case of exponential distributions of signals), and it is noted
that the optimal rule for 2 detectors is BOTH (called "AND"). Srinivasan, Sharma and
Malik [1986) apply the methods to 2, 3 and 4 detectors for the case of Swerling
targets, and provide (semi-log) plots of the optimal performance of those systems. They
note that the performance comes quite close to that of a one-sensor system receiving
the same amount of information. Due to some technical assumptions, the plots that
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they present for 3 and four detector systems do not make this clear. [They assume
that repeat pulses of the same amplitude are received at the single site.]

Sadjadi [1986) has extended the discussion to any number of stations and
hypotheses, with the number of actions equal to the number of hypotheses. The ideal
decision rules would fuse the data from all stations, to arrive at a grand updated
probability estimate, but each station must act in ignorance of the others. Thus the
space of received signals (y,,....,y,,) i8 sliced by hyperplanes parallel to the axes,
representing the thresholds for the individual stations. Each station has as many
thresholds (defined in terms of the likelihood ratios) as are needed to label the
hypotheses. That is, for any signal received, one and only one of the hypotheses will
have a posterior probability larger than any of the other hypotheses. The effect of

the other stations is indirect, through the fact that they all know the form of the
common cost function.

C.wu [1987] has discussed a related problem, where he shows that a nominator-
detector scheme can lower computational costs, by screening unlikely candidates using
a low cost test ["sensor"). He assumes, however, that, for cases which are not rejects,
the nominator sensor passes full information to the second detector.

Schwartz and Pelkowitz [1987] have considered the problem of minimizing the
time to reach a decision, for a given fixed False Alarm Rate (FAR). This work is not
directly relevant to what we have studied up until now, but will be relevant to the
question of call-back strategies, discussed below.

Reibman and Nolte [1987] have done some model calculations for a -three
detector system, using shifted generalized Gaussian distributions to represent the
sensor response to the alternative hypotheses (that is, constant signal in generalized
Gaussian noise). They correctly establish that the system in which the fusion rule and
the sensor tunings are jointly optimized is superior to any system in which either of
those is fixed a priori. They do not solve the optimization problem directly, as we do,
but use coupled equations which must hold at the optimum. They find that the optimal
tuning for the cases considered is symmetric, but do not know whether that is a

general rule or an accident, [We have established (see below) that it is NOT a general
rule]

Additional recent works are cited in the references.
F.4 Our Own Related Work

F.4.1. Experimental Design

Our own thinking is strongly influenced by the work of the statistician
Blackwell [1957] on the optimal design of experiments. The analogy is clear. An
optimal experiment minimizes the chance of mistaking the hypothesis. An optimal
detection system minimizes the "cost" of mislabelling the state of the world. Blackwell
was able to show, by a sophisticated application of the theory of two-person zero-sum
games, that it is possible for one experimental design to completely dominate another.
That is, no ma..er what the cost function, and nn matter what the prior probabilities,

the expected cost of following the better design is lower than the expected cost of
following the other.

. ',— l: ',r\r"r Ry
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. This is an enormously important resuit, because, in real applications, estimates '.‘.‘
) of the cost function and the prior probabilities are little more than political and .‘:3. d
social guesswork. Hence, the possibility of establishing the superiority of a design, ‘}."* y
) independent of the costs and probabilities, is extremely valuable. Blackwell's result is K
given in terms of a necessary and sufficient condition on the convex hull of the "'
) vectors representing the joint probabilities of actions and hypotheses, when the prior ; y
probabilities are all equal. A
k¥
' In our own preliminary work the ideas of Blackwell have a direct "
b interpretation. We determine the contour of possible values of (F,M), given the "u'.:
response functions f(ylh). This contour is exactly the envelope of the various convex "8
) hulls defined by various choices of threshold. In particular, Blackwell's theorem states :; poy
that any operating point (F,M) in the interior of the allowed region, is dominated by a -Q”
) point on the boundary of the region. [We had obtained this result directly, using the R ":
linearity of the cost function.] Further, from the necessity part of Blackwell's 3
) theorem, it follows that none of the operating points on the boundary of the allowed i "“
region completely dominates any of the other points on that boundary. It may, further, =0
be shown that any given choice of the cost matrix determines an operating point, or \"g
line, on the conxev hull of that boundary. :

In the proposed work we will develop these relations fully, with particular

u,
attention to two situations in which it seems likely that dominance may occur: ‘(.\rﬁ
* comparison of topblogies and signal sets .}r:-.
* evaluation of call-back strategies. '..;
. o
In a call-back strategy, each station has the option of either proceeding to o
signal/act, or calling back to one or more of those stations from which it receives Pt \
signals, to ask for a more detailed report. It seems likely that the optimal ’ °
development of call-back strategies will involve the maximum entropy principle. In A
particular, each station will form estimates of what the others are likely to say, based :-:":-\.
on assumptions of randomness, but subject to the signals they have already PN
transmitted. The MEP is the best known technique for implementing this concept of gy
constrained randomness. It has been applied to the analogous problem of information P,
retrieval in databases, by Kantor [1985] and by Kantor and Lee [1986]. g
iy,
F.4.2 Related work on the Maximum Entropy Principle :._:':"‘“
-® ‘RJ:.:.
The Maximum Entropy Principle (MEP) is a mathematical technique [Jaynes \:: !

1957a,1957b] for making and/or facilitating decisions in the presence of probabilistic NN
information and constraints. [Smith, ed. 1982,83,84,85,86] A priori probabilities or prior vt
information can also be included [Johnson and Shore 1983]. Applications of the MEP
approach include such abstract topics as '"good null hypothesis" in statistics,
computerized "expert systems" [Cheeseman 1983], the processing of seismic data [Burg

x
A,

1975], the inversion of data in geologic problems [Rietsch 1977], the enhancing of :.-',':‘:
blurred photographs for astronomical and law enforcement uses [Gull and Daniel 1978], f,xj
and finally to the construction of the quantum mechanical density matrix from realistic ) ;
(non-ideal) data [Blankenbecler and Partovi 1985). e
AT
One of us has explored the application of the MEP to the problem of -:';t';
retrieving "relevant documents" from a very large data base [Kantor 1984]. Every RN
document may be described by one or more descriptors ("keywords") while constraints . :\f‘\.‘;
L
L
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take the form of "probabilities of relevance" or "expected values." For example, the
system may be told that "keyword A" carries a 70% chance of relevance, and so on.
The system then gathers information about the co-occurrence of various combinations
of keywords, such as "A and B but not C." The MEP uniquely determines the chance
of relevance for each such combination, given the constraints on co-occurrence, and
the prior estimates of properties as described above.

We have established that this information is sufficient to optimize the data
retrieval process when costs are measured by any reasonable combination of man and

machine time, and have given a general procedure for dealing with the problem of
inconsistent prior estimates [Kantor and Lee 1986, 1987al.

The most important features of the MEP approach are the following:
1. Probabilistic information and constraint are accepted at all stages.

2. The alternatives among which a choice is to be made are presented in a
well-determined rank order.

3. The calculations are completed in "real time."
4. The output of this procedure, a rank-ordering, could serve as input for
another level of decision making, i.e. formulating appropriate action.

These characteristics justify examination of the potential of the MEP as a
decision tool in a more general context. It is clearly important for any logic or

decision making system to be able to accept probabilistic information and rank-order
alternatives in real time.

The relevance of the MEP to the DSS problem goes beyond these
generalities., The detailed operation of a distributed system should allow for two-way
messages between the various stations. The communication structure can be
represented as a matrix, whose rows and columns are labeled by the various stations.
The entry at the intersection of Row I and column J describes the set of signals that
Station J may send to Station 1. This description includes an enumeration of the
signals - "1", "2", and so on, and a specification of the corresponding regions in the
y-space which trigger those various signals, depending, as we have noted, on the
signals input to Station J from its neighbors.

In published work, the signals flow only one way. In particular, there are no
"interrogatory signals" by which station J may ask Station I to elaborate on its report.
Such elaboration is clearly possible if, for example, a continuous variable (y) has been
replaced by a simple discrete signal u selected from U(J,I). The decision to request an
elaboration is exactly parallel to the decision to '"request a document." It must be
based on an estimation of the probability that the elaborated signal will improve
decision making sufficiently to offset the added cost and delay. The work by Kushner

and Pacut cited above is similar in spirit, but considered only remeasurement at a
single station.

Thus, it seems likely that the optimizing characteristics of an MEP rank nt
- ordering will carry over to the DSS arena. We plan to study this aspect of the
~o problem after detailed examination of a variety of optimal control models. L4
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2. Project Goals
- In
The anticipated payoff of both stage one and stage two of the research is: ;::"‘
‘p 1. a simplification in the design and comparison of distributed sensor systems %f 7
2. an improvement in the operational effectiveness of such systems o
. ‘ 3. a major reduction in programming complexity, leading to higher reliability ' :.i:
“ . at lower cost. ;:E
The detailed goal is to examine the optimal design and decision strategy to be .
used with distributed sensors. Particular attention will be given to the notion of y “1"
' a dominant system design (in the sense of Blackwell), to the non-linear problems ‘ x"‘
of optimal parameter (threshold) determination, and finally to the potential of ‘ ...e-
the Maximum Entropy Principle as an optimizing tool. e
N
’ 3. Proposed Research E;E:
: General observations. ';
. Every sensor of a distributed network receives a vector of signals () and E,,E}
’ processes them to produce a much simpler vector of signals (@), whose compo- :‘:-\.
s nents may be binary data or other summary data (such as velocity and position o,
estimates). These summaries are not to be considered as only facts about the 'ﬁ.gﬁ t

A

situation observed by the sensor. They are also ‘generalized keywords’ describing

o Ay

.
s

PR

Xy

the full set of information (§) available at the sensor.

)

Any communicating station may evaluate those keywords (%), in the light of "-“’\'-\.

other information available to it, and decide to request a more detailed report :E:&

about the original data (§). In this way, a sophisticated problem of optimal E,.:ﬁ

- information retrieval is imbedded in the problem of designing a distributed sensor ‘?:::',.
system. :;; ‘

Fa0

r The planned research involves three major areas, all bearing on the central :_}::

. problem of optimal design of distributed sensor systems. They are outlined below

(in subsections 3.1,3.2,and 3.3).
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3.1 Detailed analysis of model problems. ~

The invariant imbedding technique is a powerful tool for determining how
the properties found in model problems depend on the structure of the problem. D,
Invariant imbedding is illustrated in the attached paper by Blankenbecler and Pt
Kantor. In this particular application we have used it to elucidate the effect of
ambiguous signals on overall system performance. We are able to continously >
vary from a problem where the report from each detector is unambiguous, to one 4

where they are ambiguous to any desired degree.

In our analysis so far we find that (numerically, and in some models, ana- :
lytically) the optimum operating point is the same for both of the detectors in L)

a simple fusion system. It remains to establish whether this symmetry between

the detectors is universally valid and, if so, why.

It also seems intuitively clear that increasing the size of the signal set should

improve system performance. We will use models of the type already discussed to

F~ N
see whether this intuitive relation is supported by Blackwell’s theorem. This will )
e

also lay the foundations for considering the trade-offs between communication ~o
costs and system performance. 3
Representative problems are: Ny
1. What is the corresponding full solution for 3 identical detectors? Is the ~
best rule for integration of signals always majority rule? ()

2. In the two detector case, what improvements result when the detectors are
not identical. How do the thresholds vary?

P

3.2 Network topology and Blackwell dominance. s 3
Networks may be described by the matrices of possible signals, mentioned T a

.- A

above, and the signal/action rules by which each station selects a signal or action. N :‘

The most general station receives input from the world at large, receives signals
from one or more other stations, emits signals to one or more other stations, and

may also take action. The possibilities may be represented as follows:
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means A sends a signal to B

indicates that A receives external information
means that C takes action

means that B signals to A and

A can request elaboration from B .

With this notation the problem of Tenney and Sandell is:
A B

There is no overt communication.

The problem discussed by Kantor and Blankenbecler [attached] is:
A —C B

All other models summarized above can be similarly represented.

A typical question about topology is to compare:
System I A —C B
System II A —B —C

In system II, C is masked from A by B (unless B uses an enlarged signal
, set.) Intuitively, therefore, the performance of System II should never be better
than that of System I. Blackwell’s Theorem establishes a necessary and sufficient

condition on the Blackwell vectors, if this dominance prevails. Model calculations

and imb;dding techniques will be applied to explore this relationship. -E:':E:
3.3 Call-back and information-seeking structures. EE:‘-:
The work by Kushner and Pacut, described above, assumed that each station ;:.'.:” A
transmits a sufficient statistic, (its own estimate of the posterior probability). In E
the other models, a bare minimum signal is usually assumed. The situation has ?thk ]
some conceptual similarity to the problem of sample size in ‘quality control. If '.5'.‘" '
every item is examined, one gets the best possible result, but the cost is too ;.
high; sampling is therefore used. Furthermore it is well known that fixed block S
sampling does not perform as well as sequential sampling, in which the decision W
to sample further is based (in a Bayesian analysis) on the data obtained to date. n .:
- c-3 ?:
o
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Given this analogy, we expect to be able to show that call back systems
dominate non-call-back systems with the same size signal sets, and are more
efficient than systems in which all the information obtainable by call-back is

transmitted whether or not it is requested.

Example systems for this problem are:
System III A —B versus
System IV A <«<B

The Maximum Entropy Principle is a powerful technique for optimal retrieval
of information, and we expect that it will apply to distributed sensors. To apply

it we must consider:

1. What are the effective probabilistic constraints implied by available infor-

mation on the physical characteristics of the threat environment?

2. What is the computational complexity of the optimization problem, and
can it be solved in real time, given state-of-the-art computational power?
Does it admit a high degree of paraliel processing, especially for multiple

targets?
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