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_PREFACE

This technical memorandum preserves an essentially complete manuscript
which was found among the papers of Dr. Rudolph Preisendorfer after his
untimely death. Only minimal editing of the manuscript has been done by Dr.
Curtis Mobley of the Joint Institute for the Study of the Atmosphere and
Ocean, University of Washingdon, Seattle, Wasgington. Dr. Mobley was
supported in this work by the Oceanic Biology Program of the Office of Naval

y

Research under contract number NOOQ14-87-K-0525,
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EIGENMATRIX REPRESENTATIONS OF RADIANCE DISTRIBUTIONS
. IN LAYERED NATURAL WATERS WITH WIND~ROUGHENED SURFACES

Rudolph W. Preisendorfer

ABSTRACT. This report develops analytic, closed-form solutions
for radiance distributions in natural waters such as lakes and
seas. The solutions are valid in layered water bodies for which
each layer has inherent optical properties (absorption and
scattering functions) which are independent of depth within that
layer. The water body is assumed free of ,internal light

sources. The effects of a wind-blown air+sea surface are
included. This work extends to the radiance level certain results
which were previously known to hold for irradiances. The
eigenmatrix formalism developed here is convenient for numerical
computation of rodiance distributions, given the inherent optical
properties of the water and the desired boundary conditions at the
water surface and bottom (the direct problem). Moreover, the
formalism suggests an algorithm for solving the inverse problem:
the determination of the inherent optical properties from
measurements of the radiance distribution within a water body.

1. INTRODUCTION
We develop here a method for solving the equation of transfer for
radiance in a piecewise homogeneous, source-free, plane parallel water body

with a wind-roughened air-water surface. The assumption of homogeneity within

J each layer of the medium allows a closed-form type of solution which views the s X
q radiance distribution at each depth within a layer as a linear combination of R
! WO
purely exponential elementary components which decrease or increase with ka?‘
depth. This mode of decomposition of the multi-directional light field has Esu_ 
1 the same simple visualizability as the classic two-flow irradiance model of QQ:;J
: the light field from which the theory of radiative transfer in stratified %E&fv
media began (cf. Schuster, 1905). Moreover the new representation allows \géags

explicit analytic and algebraic formulas to be developed for such basic

properties of the medium as the radiance reflectance and radiance

transmittance of the component layers, the radiance distribution within each ﬁﬁ;('
layer, and also the asymptotic radiance distribution evolving in an infinitely A,
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deep homogeneous lower layer of a medium. Numerical solutions are readily
forthcoming from such algebraic and analytic representations, and the boundary
conditions for a wind-ruffled air-water surface endow the model with an
ability to handle realistic reflectance and transmittance activity at the
surface.

The present study builds on an earlier work, Mobley and Preisendorfer
(1988), which describes in detail the so-called Natural Hydrosol Model (NHM)
for the computation of radiance distributions in natural waters with wind-
blown surfaces. (The NHM does not require the assumption of piecewise
homogeneity of the water body.) In the interests of brevity, we shall draw
freely from the results of this previous work; familiarity with Mobley and
Preisendorfer (1988) is therefore a prerequisite for the full understanding of
the present work. The essential feature of the NHM is the quad-averaging of
the radiance distribution over quadrilateral subsets of the unit sphere of
directions, and the exact splitting of the azimuthal structure of the quad-
averaged radiance distribution into spectral modes by harmonic analysis. This
double decomposition of the radiance distribution has the effect of reducing
the integrodifferential equation of transfer for radiance to a set of coupled
ordinary differential equations, one to each azimuthal spectral mode. From
this point on, the techniques of the linear interaction principle (cf.
Preisendorfer, 1976, vol. IV) can be applied to the family of differential
equations associated to each spectral mode.

In homogeneous media, the system matrices of each spectral family of
differential equations have depth-independent entries; this allows an
extremely useful algebraic decomposition of the system matrix into its

eigenvalues and eigenvectors in each homogeneous layer of the medium. The

eigenvalues of the system matrix turn out to be the desired exponential modes
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of decay, and the eigenvectors become the framework for the directional :;3$¢
structure of the radiance distributions. 'tér ;
For those who wish to see the ground from which the present eigenmatrix }fﬁﬁ
procedure has sprung, we include in Appendix A the differential equations of a&; ?
A A
the two-flow model of the irradiance field, the modern descendants of §gf~§
Schuster's (1905) equations. It is indicated how the classic two-flow model A;;:aﬁ
establishes an algebraic pattern that generalizes from the simple upward and Ef;ﬁ?s
downward decomposition of photon flows to the multitude of photon flows in the ) 4&%&%
present context. For those who are coming upon the notions of the linear ‘Iv.a
interaction principle and its associated invariant imbedding procedures for é§§;$
\
the first time, the exposition in Appendix A should perhaps be studied before ?%WME
going on to section 2, below. gﬁ}%;
Sections 2 through 5 merely restate various results which are rigorously p‘i"és

O
developed in Mobley and Preisendorfer (1988). The goal of this review is the §§}{g
local interaction principles as expressed in equation (5.16), along with the S?f;f
associated boundary conditions (5.18), (5.19) and (5.22). The real work of gg;§ 
this report then begins in §6. A high boint (at least for the author) in the ié?zg
present exposition comes in sections 7 and 8, where the physical meanings of :“\’3
the eigenvalues of the system matrices become clear, and where the ég?rj
eigenvectors of the system matrices are shown to give rise to linearly g:.'f;

o

independent pieces of the radiance distribution. The development continues

until the main goals of this work are reached in §16 and §l7.
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2. EQUATION OF TRANSFER AND BOUNDARY CONDITIONS
We begin with the equation of transfer for unpolarized spectral radiance,
N(y;g) (W-m—2-str=!-nm~!), in a source-free, non-fluorescing medium at

(dimensionless) optical depth y along direction §:

-y %; N(y3E) = =N(y3g) + w(y) [ N(y;g') p(y3g';E) da(g") (2.1)

x<y<z 3 £e€ef j u=cosé

Here = is the unit sphere of directi.ns and w(y) = s(y)/a(y) is the
scattering-to-attenuation ratio, or albedo of single scattering. s(y) (in
m~!) is the volume total scattering function, and a(y) (in m~!) is the volume
attenuation function. Hence the volume absorption function a(y) (in m=!) is
given by a(y) = a(y)-s(y). Moreover, p(y;£';£) (in str-!) is the phase
function and is related to the volume scattering function o(y;£';E) by

o(ysg'38) = s(y)p(y3E'sE) (m=! str-l), (2.2)

The phase function has the property

pysg'sg) da(g) =1 (2.3)

1} —y

for all £' in the unit sphere =. Hence p(y;£';g) may be viewed as the
prebability that a photon incident along ' at depth y is scattered into a
unit solid angle about £, on the condition that the photon is scattered. (For
a probabilistic interpretation of radiative transfer theory, see

Preisendorfer, 1965, Ch. XIII.)
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Figure 1 shows the geometric arrangement of the body X[x,z], x < z, of
the natural hydrosol, its upper boundary X[a,x], and its lower boundary
X[z,b]. In the present discussion X[a,x] is the infinitesimally thin average
plane of the random air-water surface. We imagine level a to be just above
and level x to be just below the surface. X{[z,b] can be either an
infinitesimally thin, opaque, matte reflecting bottom at a finite optical
depth z below x, or an optically infinitely deep, homogeneous medium below
depth z, with b = @, Both cases will be considered below.

The boundary conditions for (2.1) at the random upper air-water surface
are

N(asg) = [ N(x3g') tlx,a3g';E) da(g')

i
1] ——

N(a3g') ra,x3g';8) da(g') , g e = (2.4)

+
me—

N(x3g) =

i
tne—,

N(a3g') t(a,x38'58) da(g')

N(x3£') r(x,a38"';) dag') , € ¢ (2.5)

+
{1 t—y

Here =, and Z_ are the upper and lower hemispheres of =, respectively.

The r and t functions describe how radiance is on average reflected and
transmitted by the boundary surface. These are determined by a Monte Carlo
method as developed in Preisendorfer and Mobley (1985, 1986) and applied to
the Natural Hydrosol Model in Mobley and Preisendorfer (1988).

The boundary condition for (2.1) at the bottom level z is given by
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Figure l.--The geometric setting of the National Hydrosol Model in a plane
parallel medium with a wind-oriented coordinate system. The i vector is
in the downwind direction; the 1'J'k vectors form a right- handed
coordinate system. A direction § is specified by the polar angle 6,

0 £ 8 < n, and the azimuthal angle ¢, 0 < ¢ < 2.
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3. QUAD-AVERAGED EQUATION OF TRANSFER AND BOUNDARY CONDITIONS

The unit sphere = is shown in Fig. 2 partitioned into a set of quads
which includes as special cases a pair of polar caps. There are m quad zones
above and m quad zones below the equator, with each cap counting as a special
zone. Each hemisphere is divided into 2n azimuthal sectors. In Fig. 2, m =5
and 2n = 20.

A non~polar or regular quad Qv is indexed by a pair of integers u,v
where u = l,...,m-1 is the zonal index and v = 1,...,2n is the azimuthal
index. Regular quads qu have equal angular widths bp, = 8¢ = n/n and
arbitrary heights 8u,. Quad Q,, is centered at azimuth angle ¢, = (v-1)4¢ and
subtends a solid angle @, = A¢8u,. Polar caps are denoted by "Qm" and
subtend solid angles of size Q = ZnAum. It will be clear from the special
notation developed below which hemisphere (3, or Z_) a cap or quad is in.

The quad-averaged radiance over quad Q,, is defined by writing

N(ysu,v)

a1 g N(ysg) da(g) (3.1)

uv

o=l £ I N(y3u,s) dude

uv

Here we used an alternate description of § via its zenith (u = cosf) and
azimuth (¢) coordinates. When Q,, is in 2, or in _ we will write the
associated quad-averaged radiance as "N*(y;ju,v)" or "N (y;u,v)",

respectively. In each of these cases, u runs from 1 to m~! and v from 1 to 2n
for regular quads. The quad-averaged radiance over a polar cap, for which
u=mand v is undefined, is denoted by "N*(ysm,:)" or "N (y;m,:)".

The quad-averaged phase function is defined by writing

TV ; P R P A TRl S Ny O S N
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Figure 2.--An example partitioning of the unit sphere into quads and polar
caps, for the case of m = 5 and n = 10. The coordinate system and quad
indexing scheme is centered in the wind direction, Quad Qrs is shown in
the lower hemisphere of directioms, =_, and Q_, is shown in the upper
hemisphere, Z,.
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plyir,sfu,v) = @7l [ [ dude [ [ du'de’ p(ysu',e"5u,0) (3.2) :?:‘-S':

Observe that there are three special cases involving polar caps; these {

are denoted by s

p(ysm,-|u,v) (cap to quad)
p(ysr,s|m,+) (quad to cap) (3.3) ' o
p(ysm,-|m,+) (cap to cap) )

Applying the quad-averaging operation to (2.1) we find the desired quad-

o
NRans
averaged equation of transfer: Laligaliy

(e

-
.::
S

Ty
e

Q.
22,

“Hy gy Nrsu,v) = Nlysu,v) + wly) Y 1 N(ysr,s) plysir,ssu,v) (3.4) i
r s |

<z "

o

in 2, or E_ ':' 0";

]
A
<

Q

<

Here u, = %(u; + u;), where u; and u, are the lower and upper cosines of the é' ::.:
Q,y boundaries. u, can be positive or negative. The summation in (3.4) is '
over all quads. Equation (3.4) is a set of (m-1):2n + (m-1)-2n + 2 = o
4(m-1)n+2 coupled ordinary differential equations with the same number of i"::t
unknowns. h:'.‘
The quad-averaged forms of the surface boundary conditions (2.4) and

(2.5) are “lt
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E;i 0'0;
:: N(aju,v) = z } N(x3r,s) t(x,ajr,s|u,v) + ) z N(ajr,s) r(a,xjr,s|u,v) ‘,
e r s rs A
" in z . (3.5) "
qu in = . ASH
~": .
,‘:' “"l"
S N(x3u,v) = z z N(a; . ""'
B su, ajr,s) t(a,x3r,s|u,v) + Z 2 N(x3r,s) r(x,ajr,s|u,v) e,
4 rs rs R
¢ . - OO
qu in =_ (3.6) 0
W o
N "l‘
;:; s
::: where the four surface transfer functions t(a,x), r(x,a), t{(x,a), and r{a,x) -,
» ol
] R o
W are all defined following the general pattern l'.:!:
U
R o
)\ Pty
ko E(r,slu,v) = 070 [ [ dude [ [ du'de’ £Cu',0'5u,0) (3.7) Y
t".' . — qu Qr s .'l':
Ava Qrs9 qu in = a .‘.‘
[l ."
e o
% where "f(u',4'su,0)" denotes any of the four transfer functions in (2.4) or a‘::
Y 300
L (2.5). The bottom boundary condition in quad-averaged form is ":!:'.:
);' F
:." \‘%
i N(z3u,v) = § } N(z3r,s) r(z,bjr,s|u,v) (3.8) :.\h
:‘ r s LR
(A qu in 2, :q.::e
1%, 48,
::: 'i'i‘!'
::t‘ .t"‘:!"‘
:" \‘.":0
A “0.‘
..l .."f
iy, ¥ ‘.
o .
KA o
Rty ¢t
o nonY
A\ t:t ’
N ;\H §
N
w (
§ R
..l ‘n)‘\-
"o Ny
‘a' .‘.}' ]
Y
o ®
N ‘ﬂl\
‘;: e
o ,
l ' ‘
" , R
| ' ot
:;\‘ ]

() ~| .'. J N ‘\iu‘ﬁ J\' 'y x“q‘ 4" “- Moy \-\ """ .'.'. """" \ S R T T P N T T A TR Ve S - \\“
bty A M, RNTAAY . 3
. "..‘.. l 4 ..‘l. hl’ n h .".l. w“ '.\V.‘ f: ﬁ’\if.\’.' : ~ o :: :« .“‘ \.‘h\c. < ;:\‘.\h:::: . N'.‘:'\'c “:\’ % ;: a
R ':\ e ‘u’ .'I'.'l" N, fos A M-."' "'x'*' RGN AN VNN AC ?. v
< .

' ARy w"n o

OO0 WM




RN R R AR N R NN R (R} ® 9,7 2t n® et Uat B2t BV a0 ta¥ 85t 0a% 90" Nat da¥ Ha¥ 037 U2 Wt (e lacobav 5 det 00t OaVasatotat 20 0g" Ua hst I URCY -..-'-'
()

Vi
§4 }*'%?k

4. QUAD-AVERAGED LOCAL INTERACTION PRINCIPLES ,I\:":'\..'

The quad-averaged equation of transfer (3.4) may be split into two 5{_&“'
statements, one for the upward radiances N*(yju,v) and one for the downward
radiances N (yju,v) at each level y, x < y < z. The isotropy of the volume Sakaﬁﬁ
scattering functions o(y3£';E), namely the property that its values depend Mot
only on £'-f and not §' and { separately, considerably simplifies the

N
structure of the transfer equation. Thus we can write ﬂ?* (4

(U]

s in E+ and qu in
"p*(y;r,slu,v)" for p(ysr,s|u,v) if (or
Q in Z_ and qu in I_ “p.

(4.1) Nty

Q__ 1in £, and qu in =_ NIty

"o (y3r,s|u,v)" for ply;r,s|u,v) if [or .ﬁé.fﬂ

Q in =_ and qu in

1]
g 4

+
Hence p+ and p respectively act like local transmittance and reflectance -’=ﬁ;§
functions in the body of the medium, relative to the horizontal plane of the Egﬂ

, P
equator of Z. We then find from (3.4) that rc‘pmm

+ + + "o als
N (ysu,v) = =N (y3u,v) + wly) } Y N (y;r,s) p-(ysr,sju,v) :{k "
r s WA A

(4.2) REREW

+
©
o.la

<

+wly) § § N (ysr,s) p (ysr,s|u,v) o

r s §
u=1l,c0.,m; v=10...,2n. Ry

This is a coupled pair of differential equation systems. The upward >
System is obtained by taking all upper signs together. This system describes i ﬂ,ﬂé
the evolution with optical depth y of the upward radiances N*(yju,v). The

downward system describes N (yju,v). The complete system (4.2) constitutes
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the local interaction principles or the local forms of the principles of grg,
AL

[y }- d

invariance. See Preisendorfer (1965, p. 103), H.O., Vol. III, p. 4, and Egéﬁq.

Vol. II, p. 295. The boundary conditions (3.5), (3.6), and (3.8) hold also !

for (4.2).
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S. SPECTRAL FORM OF THE QUAD-AVERAGED LOCAL INTERACTION PRINCIPLES :., '
: )
We next split the equation set (4.2) into smaller groupings of dependent ey
®
variables by means of Fourier polynomial analysis. This entails no loss of AtV

information of the radiance field but considerably facilitates the numerical &)

solution of the set (4.2).

For fixed y and u, Ni(y;u,v) is a function defined on the finite set

consisting of an even number of integers v = 1l,...,2n, corresponding to

azimuth angles ¢, = (v-1)4¢, as defined, above. We may then represent this Y,

v-dependence of Ni(y;u,v) by

Miyiu,v) = 3 (A ys in(
yiu,v) = gZo [A7(ys5u,2) cos(2¢v) + Aj(y5u,2) sin 2¢v)]

where

+ 2n +
A7(ysu32) = e7! 2 N (y3u,v) cos(24 )
' v=l v

£ = 0,00eyn

and

2n +

z N (ysu,v) sin(24 )
v

v=1

These Ag(y;u,l), p =1 or 2, are the radiance amplitudes for (harmonic) mode A

L. The factors e, and y, are given by
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Xy ,
“ §5 , o
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&y 2n if =0 or &=n ,':'::;':
) |‘0'v
E:"l ER. = (504) |. '::
ity
N “n 1f 2=1,...,n-1 ey
e: '.’
) 0 if =0 or 4&=n .o
";' - ||.";
R Y, = (5.5) l.:t.:'f
:: n if g=1,...,n-1 ':“.a:r
‘.: ! l:‘:'
& ]
Observe that vy, = ¢, = n over the range ¢ = 1,...,n-1. B
‘; Since ¢, = (v-1)n/n, we see that sin(%¢,) =0 for £ = 0 and & = n. Hence ,‘)'J-'A
,Q' r: .\
f,} we will define A%(y;u;o) = 0 and A%(y;u;n) =0 foru=1,...,m. Also note ‘-“,4
N .
that o
‘? -w~“
,:Q “‘3:,1
W * h 4 o
4 A (y3m;0) = N (y5m,-) ‘.‘.'5
\" ". o
3 (5.6) !
-‘! + ) .-
‘.' AT(y;m;!.) =0 , %=1l,...4n ':n’:.:e
. L (3]
3 i
“ :-)' ;
- and that £
'.
"
&
3, +
i"l A;(y;m;l) = 0 y 9.=0,...,n (507)
4
6:'
by Therefore all radiance amplitudes for the polar caps are zero, except for the
l"
? . . . . .
::' cosine amplitude for the zero azimuthal index, & = 0. Holding y, r, s, and u
4
o
fixed, we can represent the phase function, as a function of v, in Fourier
::', polynomial form:
o
I.'
N + 3 s
; p (ysr,slu,v) = § p (ysr,use) cost(o_-¢ ) (5.8)
~ 2=0
3 X £ysz
P ryu = lyeee,m 3§ s8,v =1,...,2n
\0
N where
s
e
:::l 16
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2n ’ >
a et
p(ysr,uje) = [EECOS(9.¢S)]‘1 z P (y,r s|u,v) cosl(cb -, ) (5.9) o
v=1 ..'
= 0y.004n :_,.::-:,
NS
.‘-5'»*@,
\..
The representation (5.8) takes its form by virtue of the isotropy of the BN
volume scattering function, noted above in sec. 4. T ’
ARGt
) >~
The Fourier representations of Ni(y;u,v) and pi(y;r,s|u,v) in (5.1) and ai:h(‘-‘
(5.8) are now substituted into (4.2). After rearrangements, and various ‘f’ ‘
definitions involving ﬁt(y;r,u;l) have been made, we arrive at three hd
L]
autonomous sets of equations over the range x < y < z. The first set is for
the zero-mode cosine amplitudes of the radiance distribution:
d b4 b 4 - ¥ A
E AT (y30) = AT(y30) 2(y30) + Al(y;0) 5(y;0) (5.10) ¢
where : "‘.
NN
* * : NG st
AT(y30) = [A7(y5150),...,A7(yim;0)] (5.11)
(¢
The remaining n cosine amplitudes are governed by by o
s
i
o)
d_ ¢ + . 7 R NG
(= Iy AT(y32) = A (y30) 2(ys5e) + AT(y;2) Bly;e) (5.12) S
.
where :&_.
s
s
+ + ‘\w‘.?\\“
A (y3e) = [AT(y3158),...,A4 (ysm-152)] (5.13) NS
\ L =1,...,n ?';\.h.)"
Pty
-
. . . ik
and finally the n-1 non-zero sine amplitudes are generated by the set .}tﬁ
'\ n
. ]
PP
RAGL L
‘a::‘:’:""
i
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LAGAY
"\\X\ 1 X) 3
d_,* * . z R AR
(= o A2(y3e) = A5(y30) 2(y30) + A;(y50) B(yse) (5.14) e
! iy
)x'-r.{
where - L4

W ",
+ * NSy
A,(y32) = [A5(y51580),...,A5(ysm=132)] (5.15) t'_{ ]
*

T XS
k 231 eee n-l \. g\‘.
T N
'«»?@
The matrices §(y3;2) and i(y;%) are either mxm or (m-1)x(m-1), as can be g"b\‘ ‘
fasely

inferred in each case from the number of components of the A‘g(y;ﬂ.) vectors, ‘%’ ’gtz
. — ' X o
LY U
p = 1,2, These matrices are fully defined in Mobley and Preisendorfer "i:"""
QLA

(AN AX)
(1988). What should be noted here is that i(y;j;%) is a local transmittance ':::‘.E::::::
ity ¢
. . gt
matrix in the sense that it propagates Ai(y;l) into Ag(y;l) over an s:::::;:::,
infinitesimal increment Ay of optical depth. p(ys%) acts as a local .\..‘
- ..' ‘.!.
reflectance matrix in the sense that it respectively converts A;(y;ﬂ.) into |":?:t€‘|5:'
) l.""‘

. . . . ) OWtA)
A‘;(y;l) over Ay. In this way the rising and descending streams of photons in ::::::‘::::
an infinitesimal layer X{y,y+Ay] of a medium X[x,z] feedback to each other and _1
Vol
generate the multiply scattered radiance field. "::::‘:::
a0l
() Oy
The preceding three autonomous sets of coupled differential equations all :s:“:'
A '

~ge AR N T T S B L N R AN T LTS LI
:Zl'.'l...::" " ‘C ) R AN )\:\:d\ Y
7..::"..‘.’ o ‘.“l?. A ) >‘ A .\ ’ ‘.- o..$ '\..“\
ORI R IR M N Sl .AY'. o " W

fall into the following general pattern

L4
-~

57

\
X OO
R ‘.‘t\:‘
g__ i ) - t . 2 . ¥ . ~ . h)l ‘.. f
P35 At = A(y3n) (y3n) + A(yse) B(yse) (5.16) \
x <ysz '-,\.-_«,'\'i
N
p=1,2 , 2 =0,...4n '7‘5,_‘.
.hA‘ Y
. N O
with RN RN
* + * his
A (y3e) = (A=(y3l32),...,A (y3q;32)] (5.17) ,
-pP p p u:\.‘, o
- e CA LS
q =m-1orm o ‘
e M
Oy
@
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Thus the amplitude vectors ét(y;z) in (5.16) are lxq and the matrices

i(y32) and $(y3;2) are qxq, where q is either m-1 or m, as the case may be,

i.e., depending on which of (5.10), (5.12), or (5.14) we are considering.

Once the three sets (5.10), (5.12), and (5.14) are solved we will have at
each depth y exactly enough amplitudes to construct the radiances Ni(y;u,v),
u=1l,.c0,mj v=1,,..,2n via (5.1). We will have for each flow (), n+l
cosine amplitude vectors é%(y;l), £ =0,...,n and n-1 sine amplitude vectors
é%(y;!), £ = 1l,.00yn-1, each with m-1 or m components, as needed.

The surface boundary conditions at X[a,x] that go with (5.16) are

A'(a3e) = 2 A (xsw) £ J(x,a5k]2) + Z A (a5i) & (a,x5k]2) (5.18)
P k=0 k=0

- n

A (x32) = A (x3k) c (a,xsk|2) + 2 AT(x3k) 2 (x,a,kll) (5.19)
-P k=0 -P k=0 -P

p=lor2 , 2=20,...,n, and k+2 even.

These are obtained by using the Fourier representations of each member of
(3.5) and (3.6) and reducing to the indicated forms in (5.18) and (5.19). The
azimuthal (¢-behavior) symmetries of the random wind-ruffled air water surface
are those of an ellipse (cf. Mobley and Preisendorfer, 1988), which among
other things require ép and ip to vanish when k+% is odd. Hence the sums in
(5.18) and (5.19) may be restricted to those values of k and & for which k+%
is even.

The entries of the four transfer matrices ip’ ép in (5.18) and (5.19) are
given in Mobley and Preisendorfer (1988). Observe that these are mxm

matrices, some of which have zeros in their mth rows or mth columns (see

Tables 1 and 2, Mobley and Preisendorfer, 1988). The essential point to note
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for later work (§l2, below) is that the amplitude vectors AB(x;k) and As(a;k) 23
a a RN
, . i
in (5.18) and (5.19) must be augmented to have m components, to be compatible .
. . e
with these surface transfer matrices. e
o
The lower boundary surface is usually less complex than the random air- :“,’;: :
™
water surface. We therefore postulate a directional isotropy of the surface b
Lin SA%)
at level z in X[x,z] in analogy to the isotropy of the phase function in A
'_i‘,,d -
-)1 Y
(5.8). Hence we shall represent the v-behavior of r(z,bjr,s|u,v) as _';:‘ >
AR
N,
=y
e °
r(z,bjr,s|u,v) = Z t(z,bjr,u|2) cosl(¢s°¢v) (5.20) T e
2=0 -
AR
ryu = lyeee,m 3 s8,v =1,...,2n F' “0,:
8 ql"g
0.!:1.‘
where Ry
:.c"'::'
Qe
\( l:
2n Aty o'
2(z,b3r,ulL) = [el cos(ms)]“ z r(z,bsr,s|u,v) cos(9.¢s) (5.21) VAN
v=1 - .
!: = 0,..0,“ '5, :;s“
WO
AR
» y |‘.
: o u’:::
With these definitions, (3.8) converts to spectral form as Wi
@
I Iy !“‘
‘\‘.\.
+ - . K '
ép(z”') = ép(z”’) £p(z,b;2) (5.22) ’:;2 y
*’ll’ ) q
p=1lor2and & =0,...,n et
@
x.'i'lt
G
ot
where the entries of £,(z,bj4) are defined in Mobley and Preisendorfer (1988) ::: v
Tanats
for the two main cases of interest: (1) a matte bottom and (2) an imaginary X
surface above an infinitely deep homogeneous layer. Observe that the -«}\_&
-
Rt
y azimuthal isotropy of X[z,b] allows the reflected amplitudes é;(z;l) in (5.22) 'f:
B,
AN
4 to be uncoupled from all other modes é;(z;k), k ¢ ¢, incident on X{z,b]. The }1‘ 5}
@
water surface X[a,x] is not azimuthally isotropic and so coupling takes place, \':‘.f\,
RS
as explicitly shown in (5.18) and (5.19). Soadnd
g et
..h ' §
20 SO ¢+,
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6. THE FUNDAMENTAL MATRIX FOR RADIANCE AMPLITUDES IN HOMOGENEQUS LAYERS e

We may now proceed to the main interest in this study, the solution of :;’;u
the ~quation set (5.16) when w(y) and p(y;£';E) in (3.4) and hence 5(y;2) and \...
i
y #(y:e) are independent of optical depth y in an arbitrary layer X[x,z] of a ﬁ#‘ﬁ
i,

s .. A
N natural hydrosol. The solution procedure we develop is independent of whether 'sp&
0 {000
- p =1 or 2 or what mode index £ = 0,...,n is of current interest. AT
Paig!

] v, \“
g According! we can until further notice drop both "p'" and "1" from the :QZ@
Ny e ML

" "‘A{"I“‘l
L notation in (5.16). (Both p and & will have to be reinstated in §l2, for ‘Q%T‘
[ ) ' Py {[_); d
. example, when boundary conditions (5.18) and (5.19) are to be used, and also Fé"
i 0,0
ey foy
1 when the final Fourier synthesis of Nt(y;u,v) in (5.1) is made). ﬁb&ﬁ
(RN
g 0:
N B!
A. sacic Local Interaction Principlies - !~\

de will, in accordance with the preceding notational convention, now work

.:‘I'Af‘l
ER Al
TEE

i
v To

with the following streamlined versions of (5.16) and (5.17): Rk

- }
x"(
o,

L 4%y = a%(y) 1+ AT () B (6.1)

d = - = =
S

[Ai(y;l),...,At(y;q)] ¢ .2) ,'
. ::‘\_n N

3

P}
a .

S 3
-
-

7
e

7,

s

A

IA

X <y

R S I

- - . . . +
Thus o and i are qxq matrices with constant entries and A~(y) at each depth y R

- o
PR 2% DA 8 351

are lxq vectors. We may further simplify the system (6.1) and (6.2) by

writing

a!
.
&,

£
-

Aly) = [AT(y), AT(p)] (1x2q) (6.3)

and

%y
DTS 0 R T Ny
W P M W
L A% 2%
Agp‘ S A
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(2q9x2q) (6.4) l.."

1=

"
|o» |
| o

so that (6.1) and (6.2) become the following version of the local interaction ...::l
o

principles: fy o 0'«,:.:.:

Aly) = A(y) k (6.5) n:’. ""‘
4'0"!":::'!
< Y <z Ivt) l.' !‘

B. The Constructive Definition of M(x,y) .\j& '
Equation (6.5) can be integrated at once either numerically or PO
formally. We shall concentrate here on the former. Numerically, one would ‘s":“:-,/‘
’ e
choose an initial 1x2q vector A(x) and then march (6.5) down from level x to %’;&;
any level y, x <y £ z, in the given medium X{x,z]. There are many such -
initial vectors A(x) from which one may start. For example, one may have ::_-,._‘
measured the radiances Ni(x;u,v), u=l,.e.,mj v =1,,..,2n at level x just o) ,'f

below the surface. From these radiances one can find éi(x) as shown in (5.2)

0]
£
s

and (5.3); whence A(x). Then the amplitude A(y) is found by integrating

,
Ry
S .

(6.5), with A(x) as initial vector, down to any desired depth y, x < y < z.

T

Pa

Zs
@

“w_)

There is one important set of initial vectors A(x), however, that leads

" ,\ )’l }\
O
e
T

v
%

to the general solution of (6.5). This is the set of 2q, lx2q initial vectors

'v
l’".l"-
“r
v T
e
s-’

'S
« hy

stacked vertically to form the 2qx2q matrix:

«

,

100 00
010 . 0o
M(x,x) = : : =£2q (6.6)
000 10
000 01
22
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where £2q is a 2qx2q identity matrix. Thus the initial 1lx2q vectors form the it
2q rows of the matrix M(x,x). fﬁﬂud
Let gj(y) be the 1x2q vector solution of (6.5) for the initial 1lx2q e

vector gj(x) = [0ye0e9ly¢04,0] where all components are zero except that in )

place j, 1 £ j £ 2q. Thus gj(y) satisfies (6.5): ey

Write a.'

M(x,y) = (2qx2q) (6.7)

Then clearly a}c “

;";, ﬂ(x’y) = E(X!Y) K (6.8) "‘"&. N

and OGERIN

)id
Pd »
g

v i
[V

M(x,x) =1

I, (6.9)

Y N
i
3
'.i'
-

-'l','
"’

; A

)

[}

P

pd
545

The 2qx2q matrix M(x,y) in (6.7) is the fundamental matrix of the system of N
differential equations (6.5). The importance of this system rests in the fact
“*
. - f X
that if A(x) is any 1lx2q vector, then the depth dependent lx2q vector PR TS

A(y) = A(x) M(x,y) is the solution of (6.5) with initial value A(x). This pﬁr %
r 0
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follows formally on multiplying (6.8) from the left by A(x) and reducing the
result to (6.5). The mathematical reason for this remarkable property is that
the 2q vectors gj(y) defined above are linearly independent for each y,

x <y < z. Therefore any solution m(y) of (6.5) at some y is a vector in the
space spanned by the gj(y) (cf. Coddington and Levinson, 1955, pp. 68, 69).

Thus we have the mapping property of M(x,y):

Ay) = A(x) M(x,y) (6.10)

x €Sy<z

This mapping property also can be written down for the fundamental

solution M(y,z) of (6.5) for which M(y,y) = I, and where M(y,z) is obtained

q

by integrating (6.8) starting from level y. The associated mapping property
is then A(y) M(y,z) = A(z). Combining this with (6.10), noting that we have
also A(z) = A(x) M(x,z), and letting A(x) be arbitrary, we obtain the group

property of M(x,z):

M(x,z) = M(x,y) M(y,z) (6.11)

X Sy < z.
Setting x = z in (6.11), the inverse of M(x,y) is found to be

M(y,x) = u-1(x,y) (6.12)

x <y <z

One may for example determine M(y,x) by integration, on starting at level y

and integrating (6.5) upward from y to x. This would result in an associated

T
-

it
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~ 0 ’

e .
- x’)(_-z. -\x:'
SRl
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£
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X
. . . e . o
mapping property for M(y,x) with initial amplitude A(y). Alternately, one may NSV
- - oy
Py
invert M(x,y) by algebraic or numerical means to find M(y,x). Thus M~!(x,y) J:J” A
. L J
has the physical interpretation of the mapping operator M(y,x), i.e., from q;&qyk
- MO
, . a0y
level y to level x < y. rrom our observations above on the vector space ngﬁ‘
N
aspects of M(x,y) it is clear that M~!(x,y) exists in all natural hydrosols N ;
where 5(y;%) and i(y;%) vary continuously with y. Since constant functions ) .
- - A" ?
.'E’~"¢,>
are continuous, this result holds also here. ?Exﬁ”
N
n"‘:"()i
)
c. Exponential Representations of l‘_l(x,y)
The preceding definition of M(x,y) is the constructive definition, the
one that will at once yield numerical values for the amplitude vectors A(y).
L4

It can be used even when § and i depend on y. There is, however, a formal
definition of M(x,y) that is of great heuristic value; indeed it will lead us
to the eigenmatrix representation of A(y), the central formula of the present
study. This is the definition that starts from (6.8) and visualizes M(x,y) as
given by the same kind of formula found in the theory of the scalar-valued

exponential function. Thus let us write

M(x,y) = exp[k(y-x)] (6.13)

and ) :-Sf

@ Ej(y-x)j :‘}"‘i W8
—_— (6.14) N

exp[k(y-x)] ~
o ¥

The operations in each term of the series (6.14) are numerically possible and -"'?"'1:'

'~
convergence of the infinite series can be established. Hence in principle the o
exponential of the matrix X(y-x) is computable arbitrarily accurately. It is )
easy to verify (just as in elementary calculus) that .o‘é
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B %; exp[K(y-x)] = exp[k(y-x)]K (6.15)

Hence M(x,y), as given in (6.13), satisfies (6.8). When using the exponential

form (6.13) for M(x,y), the mapping and group properties are immediately

verified formally (e.g., exp[k(z-y)] exp[k(y-x)] = exp(k(z-x)]).

D. Eigenmatrix Form of M(x,y)

The operations in (6.14) would be considerably simpler if kX were a

diagonal matrix. Suppose for the moment we can reduce K to diagonal form «x.

That is, suppose we can find a 2qx2q invertible matrix E such that

(2qx2q)

diaglk,,ee.,x ] (2qx2q) (6.17)

q’Kq#l""’KZq

Then directly from (6.14) we deduce that

M(x,y) = exp{k(y-x)]

o\ ; o
) o kI (y=x)d R
Y = g[ - JE-1 e

o

LSENY
o MO
o = E exp(x(y-x)]E~! (2qx2q) (6.18) s
2 ACR

DR

L

5 where explx(y-x)] = diag[exprl(y-x),...,exprzq(y-x)] (2qx2q) (6.19) ‘:\ﬁm
) : ':
) - af
K oA
LA - (4
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In this case, then, exp[K(y-x)] can be evaluated numerically quite readily,
provided we know the 2qx2q matrix E and the 2q numbers Kj,j = 1,..0042q. By h AL

(6.16) E and the k; are the eigenstructures of k. That is, from (6.16), we ,:..u'
q0.0‘~
have SRR

1=

E=E« . (6.20) l':::'d"i

which requires that E = [e; --- §2q] be thought of as a matrix NN

Sq sq+l

made up of 2qxl vectors e., j = 1,...,2q, each of which satisfies the y

j,

eigenvector equation : .;.g'.o,::t'
Ke.=«x. e, , j=1,.00.,2q (6.21) Y .l"\

From this we see that K3 is the eigenvalue of K associated with the

eigenvector e; of X. This fact about the e; and <3 is central to the present ,
W)

study. We shall next reapproach (6.20) from a more physical direction. This !:'s:‘:\‘l,
.
will allow us to see the eigenstructures g5 and Ky as arising from the local AT

reflectance and local transmittance matrices comprising K in (6.4). .ﬁ.:.’\.
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7. PHYSICAL BASIS OF THE EIGENMATRIX REPRESENTATION OF THE FUNDAMENTAL
SOLUZ.ON

We return to the setting of (6.18) and (6.20) to provide a physical basis
for these formulas. In particular we may ask: what is the physical basis for
the diagonal matrix « in (6.19) and for the vectors Ej forming £? Further,

what physical reason may be given for the invertibility of E?

A, A Natural Basis for the Radiance Amplitude Vectors

If one plots the natural logarithm of N(yj3u,v), for fixed u,v, as a
function of depth y, in a deep homogeneous natural water body, one sees the
curve become essentially straight from some depth y, downward. There is a
depth y, for which this is uniformly true for all u,v, u =1,...,m;
v=1,...,2n. Now, if the medium is homogeneous and infinitely deep and since
(6.5) is a linear system, there is the intuitive suggestion that perhaps there
may be some linear combination of the observable vectors A(y) that decays (or
grows) precisely exponentially with degth y; and conversely, these purely
exponentially decaying and exponentially growing functions may perhaps be
linearly combined to yield A(y). To see where this leads, let us postulate

the existence of 2q distinct exponential functions in y, over the range

x <y <2z, of the form

LR £,
Bj(y) z Bj(x) exp[mj(y x)] (7.1)

i=1,0000q

where x?, j=1,.0.,q are 2q distinct real numbers.* They are just as general

* Recall that y in the body of this study is optical depth, so that y = ag,
where ¢ is the associated+geomecric depth and a is the volume attenuation
coefficient. Hence the <= are dimensionless. They correspond to physical

. . . I{+
attenuation coefficients 3 = an}.

-fn-‘.;
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as the x. in (6.17), and in fact we can pair «: with <t for j=1l,...,q, and '“ﬂﬁﬂ%

J J ] “ar ?
K3 with m} for j = q+1,...,q. Hence N ”gﬁﬁ
R ‘.
l.|
‘:‘I‘..!'l..
+ b"l.z
4 g3(y) = «f B.(y) (7.2) i
dy J J ) ':':3:'::":
]
§= b SR
. ‘;J s
We can assemble these functions into the 1 x q vectors corresponding to Q&Z :
I
Ai(y), by writing Q‘i.:!..o
"‘"‘
b3 k4 * 5*
B(y) = (B{(y),enn B (y)] (1xq) (7.3)

and into the lx2q vector

B(y) = (8" (y), B (y)] (1x2q) (7.4) «..'u
corresponding to A(y). Thus (7.1) may be written as

Et(y) = _B_t(x) exp[ﬁt(y-x)] (7.5) "

where Pt
- -

"

&4 5L

+ + + R\
K™ = diag['cf,--..ral (gxq) (7.6) NS

'
*

P
3
¢
-

FA

)
.,

L

and moreover,

R ar S o N
2

]
-

B(y) = B(x) exp(x(y-x)] (1.1

e
@ =
I @
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where

K = diag[5+,£.] (2qx2q) (7.8)

Furthermore (7.2) can be written as SR

+ + + OO0
FEW =8 (7.9) Srdny

or more compactly still as )

4 B(y) = B(y) « (7.10) T,

dy - f"

1.
p 3 Vo P
e

Let us now return to (7.1) and observe that the 2q functions of y, B%(y), OGN
L j=1,.e.4q, over the depth range of y in X{x,z], are linearly independent. et
This follows at once from the fact that the K% are pairwise distinct and a ;5%}
direct appeal to the definition of linear independence of functions over a k\a
common domain (cf. Courant, 1936, p. 439). The set of all linear combinations N
of the B?(y) therefore forms a 2q dimensional vector space of functions on

X[x,z]}. We assume that each radiance amplitude At(y;u), for fixed u, is in

such a space. (This assumption will be verified later.) Then we may write ﬁQQﬁ*}

q AN

+t S e -t :
a;m £+ T B3y £ (7.11) TN

q

+
A (y3u) = )
=1 J=1
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where the f;t(u) and f}i(u) are suitable coefficients, to be determined.

(d
Equation (7.11) may be placed into vector form if we write Y :_"'.'of

..
[f;*(l),...,f;*(q)] (1xq) (7.12) A *ﬁJ“i

and Ko

£t [fgt(l),...,fgt(q)] (1xq) (7.13) KuS

over the index range j = 1,...,q. Then (7.11) becomes

LD
Fa)
Lot s
L 8
¢
&

+ + ++
A~ . .
A~ (y) ‘ BJ(y) _f_J + 2

B (y) £.° (7.14)
j=1 =1 3 T

2@

L
Te, t,
¥
T

.',‘: ;
AR A
"

l,, 1Y

L S
i)

-
LAES

-

XD
:I »
o
LA

(,,;,;
Aty
>

In matrix form, this is

]
dl

2/

e B

-

[A"(y), A (9] = (B (p), 871 | £ £ (7.15)

7

b e I 1
oL

P

P
P

1™

[}

+
I"l:l

|
SR

s

F"V"' . 3
or h“& ﬁ:’.

A
Aly) =B(y) £ (7.16) Sl

where ma l.

I
"
| l’u
l"lgl"'l
DI
z,.';j
LS,
2

and where At
@
. RY
-..":‘_f&j,.' .
N
ST
\:' "
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K ++ +3 ,
g £ £ 2
) ++ + “f~i
f: F~~ = . , F-; = . (7.17) 1".:::‘
. - : = . ]
" g . ':::::;
—q —q Y

2
2‘ In this way we have physically motivated the 2q x 2q depth independent mapping
Y
t
" F of the exponential basis vector B(y) into the observable radiance amplitude
a vector A(y) at each y, x <y < z.
% The preceding mapping can also be postulated to go in the reverse
3l
KX direction. Analogously to (7.11) we may now assume the existence of suitable
? coefficients egt(u) and egt(u), to be determined, so that
0
&
B q q
K +
& Bi(y) = J A'(ysw) e )+ ] A(y3u) e *(w) (7.18)
g J u=l u=]l
)
. .
" j=1lyeceyq , x <y < 2.
t
)
i
ﬁﬂ Following the pattern in (7.12) and (7.13) but noting the difference in
‘v
:f running-index variables in each case, we can write, with j = l,...,q,
[}
y
. ++ + +
{ e (u) = [e]T (), un,e (W)
P 4
% (7.19)
) -+ -+ -+
3 R YN CR COPPPRL N CY)
.3 Then (7.18) takes its vector form

]

q q

0 + ++ - -
e B(y) = J a'(y3u) () ¢ T AT(y3u) e (W) (7.20)
1 u=l u=l
.
N
1)
iy In matrix form this is
-
x
5
o
N
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E E
(B*(y), B°(p)] = (a%(y), A () | _,  __ (7.21)
E E
i.e.,
B(y) = A(y) & (7.22)
where
++ +-
E E
E =
— -+ -
E E
and where
PS¢y (1)
g = : , BT = : . (7.23)
E;i(q) E?;(q)

On comparing (7.10) and (7.22) we see that

F = E! (7.26)

provided E-! exists. Before looking into the matter of the existence of E-!,

we derive from (7.16) and (7.22) the two results of immediate interest.

B. Thé Eigenstructure Equation
Let us suppose there is a mapping E (as in (7.22)) of an arbitrary

snlution vector A(y) of (6.5) into a vector of the form B(y) governed by

(7.10). Then, on the one hand we have
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B(y) = B(y)c = A(y)E x (7.25)

QID-
<

On the other hand, by (6.5) and (7.22)
Iy [A(y) E] = A(y)x E = — B(y) (7.26)

Thus we find, on comparing (7.25) and (7.26), that E and « must necessarily

satisfy the relation

=

E=Ec«x (7.27)

which shows that E and k must be the eigenstructures of X. Thus E and k are
determined solely by the local reflectances and transmittances of the

medium. This is the first result.

C. The Eigenrepresentation of M(x,y)

The connection between the fundamental solution M(x,y) and the
eigenstructures E and x of K is the second result, and may be established as
follows. By the mapping property (6.10), along with the connections (7.7) and

(7.16), we have, for any A(x):
A(x) M(x,y) = A(y) = B(y) F = B(x) exp[x(y-x)]F (7.28)
By (7.22) for the case of y = x, we can replace B(x) by A(x)E to find

A(x) M(x,y) = A(x) E exp(x(y-x)]F
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Since A(x) is arbitrary, we have the desired connection: e P

H(x,y) = E explx(y-x)IF (7.29) o

Thus we see the linear combination coefficients in (7.11) and (7.18) are B!
connected directly with the eigenvectors of X, while the growth and decay
rates <§ of the B%(y) are the eigenvalues of K. These are the desired “u ¢£
physical interpretations of E and « in (7.27).
We can now work backwards to construct the desired solution of (6.5):
) From knowledge of K we can solve the algebraic problem (7.27) to find the ~$$

matrices E and x. From k we can construct the B(y) by (7.7), and from Wil

F = E-1 we can construct the amplitudes A(y) = B(y)F. By (7.28), (7.29), and

et e ¥t
re
o~

A 8,

: (6.18) we see that indeed A(y) is a solution of (6.5) with Xk = E

=

E~l. Thus

AR
v ";ﬁ_",,
el

(7.29) is the fundamental matrix solution yielding the desired radiance

IR A

,
1@

amplitude vectors A(y) = A(x) M(x,y) at each y in X[x,z], and associated

o

LY

initial amplitude A(x). After some further work on the transport formulation

j of this problem, we can translate the final results of the preceding steps s

into simple, elegant formulas (cf. (9.23) along with (16.2) and (16.3)). AR
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8. PHYSICAL FEATURES OF THE EIGENMATRIX AND ITS EIGENVALUES
The decomposition of the radiance field intc an upward (+) and a downward
(~) set of flows imparts special properties to the eigenstructures E and x of
the system matrix K in (6.4). By exploiting our physical image of this two-
flow decomposition, we can go considerably further than standard differential

equation procedures in solving the system (6.5).

A, Two-Flow Partition of E; first form
Our first action will be to re-partition the matricial set of eigenvector
solutions e. ir (6.20):

]

(2qx2q) (8.1la)

associated with the eigenvalues

K ,...’K , K
! Q" q*

lgool,K

2q

Going by the pattern (7.21), let us split each e; in (8.1a) into two qxl

column vectors. Thus let us write




This is simply another way of arranging the coefficients eﬁi(u)

e%‘(u) in (7.18). The reason for this rearrangement will now become

B. Reversal Property of Eigenvectors and Eigenvalues

Suppose e; is a 2qx1 vector of the form (8.2) with eigenvalue «
The reverse gg of e.

3 e is defined as

J=1l,.00,q.

m
w
(]

and

clear.

j,

(8.4)

Here Q is the 2qx2q reversal matrix. Next observe by straightforward

computation that Q has the properties

and

Now let e: be an eigenvector of K with associated eigenvalue K]

J

definition

>
)
n
A

] = lyeea,q

(8.5)

(8.6)

(8.7)

. Then by

(8.8)
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Multiplying (8.8) by Q on the left and using (8.5) we find

L NS
x
22

RS L
y a2 <%

IR,
” % .
¥ }‘Q'

ek

K
g

We conclude that if (gj, zj) is an eigenpair of K, then so also is

(g%, ~«:)y j = 1l,.¢.5q. From this we see that the eigenvalues <3 of K come in

]

signed pairs Kir “Kpo j=1,..0,q. If we re-index these eigenvalues so that

in (8.1b), Kieq = 7K; for j = 1,...,q, then it follows that in (8.1la),

£j+q

j=1,..0,q

= g% for j =1,...,q. Hence in (8.2) and (8.3) we deduce that, for

)

(8.10a)

™

e

(8.10b)

In this way we see how the isotropy of the volume scattering function allows a

simplification of the double-direction superscripts of the eigenvectors.
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c. Two-Flow Partition of E; second form
By (8.10), we may now write E in (8.la) as

+ -
E £

1ty
"

- +
E E

In other words, the reverse symmetry of X implies that in (7.22),

++ - +

- . -

The specific display of the eigenvector partitions in E is then

e . oo e+ : e- .o e- <+ : -
& & £

- ' -q ~ E ,E

£ = - - = TNV

- - s + E | g
e, .. eq : e, . eq - [
where
* * + T .
Ej = [ej(l),...,ej(q)] ’ J = lyee0,q (qx1)

bt

3 is qxl.

and where "T" denotes transpose, so each e

D. Two Basic Physical Features of the Radiance Field

AN A T e UMV VU U VU WUV W U LWL oY

(8.11)

(8.12a)

(8.12b)

(8.13)

We now use some of our intuition about light fields in natural and

laboratory waters to infer informally some physically plausible properties

about the eigenstructures of the system matrix K in (6.4), as are expected to
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" hold in such media. In optically deep source-free homogeneous media X[x,z] :_,. ":«
B *, 4
with positive absorption coefficient, a > 0 (at some arbitrary fixed ’ 5
®
! wavelength), we expect that ) ,:':.
X ’
i “}
o “hl‘
L] f."
) . . . - . + - }ﬂﬁﬁ'
(i) sStarting at level x with input A"(x,u) and zero input A" (z,u), A" (yju) Jﬁél
) for each fixed u eventually decays exponentially with increasing depth gﬁaﬁi
oy
i . AN "o
¥ y. Conversely, starting at level z, with input A*(z3u) and zero input by ?}
4 Ja®
A (x3u), A*(yj;u) for each fixed u eventually decays with decreasing depth MG,
. @
. TYIRR
] 7 S
iy
(ii) Each of the + and -~ modes of decay in (i) has q degrees of freedom at and ﬁ“nv
. !
¢ near the respective initial boundary. [For example, the sun can be 4&#@3
o
: systematically raised above the horizon while we are at level x. For o
t
- RS
each sun position, A (x) is then seen to take on a particular orientation “‘:q
- { C':.O.Q.&
Sy
3 in its q dimensional vector space. Hence the full gq~dimensionality of ‘ﬁ@ﬁ&
. . . . [ag @
| A(y) for y near x must be employed to cover this wide range of incident ¥§\5[
! LR et
; . A
. radiances.] ::Jﬁ&g
D ??E, 3
! Now without loss of generality we may arrange the non-negative members of GG
9o
" the set of 2q eigenvalues txj, j = 1l,e4.4q into ascending order: g?%cg'
AR
: K] € kg € oo < <q* From (i) we deduce that «, must be positive: «,; > 0. ,:\}Z}‘
. Fad
K From (ii) we deduce that the q eigenvalues <3 must be distinct, so that LS
-2
0 <k, €kp; € »-- < Kq" Next, from linear algebra we know that the pairwise {ff;r'
- o
: distinctness of the 2q eigenvalues K of k implies the linear independence of -}:?ih
3 — <y
b Nt
the set of 2q eigenvectors e; of K (cf. Franklin, 1968, p. 73), so that E has k}$¢$,
o
: an inverse E-! = F. Statement (ii) actually implies a stronger property of E, $$5$~'
i + . - - NN
by virtue of (7.20): the set of vectors LICRRELM and the set ej,...,e  are kﬁ*ﬁ?'
: '\-"“'-r"
each linearly independent. Hence (E*)‘1 and (E7)-! must exist on physical NI

grounds.
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While the preceding properties (i), (ii) and their consequences are not 2 A e
c"':
offered as mathematical theorems, the reader may perhaps agree that for a real "::4::‘:::'
®
plane~parallel homogeneous optical medium with a > 0 drawn at random, the vy .:,.:’
) I.'O'q
- . . . .
probability is zero that the preceding assertions about E and K are not "::5::;:::2
- - Woh e
A NWOLN]
true. Indeed, we can reverse the matter as follows. We can say that a choice 'J':ufno:::n'
of a(y,\) and o(y3£';£,1) for a homogeneous medium is realistic provided § = 0 P
" )
and provided the associated eigenvalues ilcj, j=1,...,q are such that E';‘t :",:E
ittt
0 <k; € +0v < Kq’ for all wavelengths, all azimuthal modes, and all choices :_'.::::'.:h
) e
of q. The resultant model is then a realistic model, by definition. It would “""'
NA
appear that a necessary and sufficient condition for a model to be realistic “o‘s.:.z
L] .‘
. "
is that a(y,2) and o(y;£';£,)) yield the inequalities s(y,\) > 0 and . gi:s‘!
@
aly,r) - s(y,r) = a(y,r) > 0 for all y and A. S‘J{:
SRS
Sl
U AM)
E. Inversion of E by Partitioning ".!':!o:
.
It will be useful to find explicit expressions for the inverse F of E W
- g . *"\(' (3
g
defined in (7.24). Our discussion in paragraph D above showed that on 3 2-‘:
L
' e")
physical grounds the existence of E-! is practically certain. Let us , ":::'
e
partition the 2q x 2q matrix F analogously to £ in (8.11), so that )
— — ) A
e Sl
=1 o=l \‘.2&\ 0
. ! : YW O
1 : ) ~ —.
- ] -~ N i:-'
I—g“ ' F £ f :":j:i
Fo=lomoaisoo) o [ 3l (29x29) (8.14) N
Lp | F £ ' f) NN
Y - y = APy
! : Nl
- e
£, f by "
[ = | =] *@’\
S
+ + + ‘*ﬁ.;:.t
where £° = (£2(1),...,£2(q)] L)
=] J ] TR
Then by definition, requiring )J‘ "
-"' R ~P~
-‘,‘«'p LN,
h"\)l 4
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+
£
E-
yields
+ +
FE
-
FE
whence
E‘:
and
+
E:

Alternately, by

*
E
§-
yields
+ +
EF
-+
EF
whence
+
E:
and
£—=

.‘:"-'_\"\', "
o -'r\.__-s s Sl S A R
PN S SN

Batal, "atyt USSR R W R
§8
- + -
F E E I 0
- - - —q —q
F E E 0 I
= - = =4 =q
+FE =1
- = -q
+FE =0
- —-q
- E'E (D)
(£" - £ g1
definition, requiring
- + -
E F F I O
- - - —-q -q
E FoF 0 I
- - - —q —q
+EF =1
- = -q
+£F =0
- = -q
~(g)-1 E'F
(7 - E°(g)-1 g7)
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Therefore, to find E-!, i.e. to find E‘t, we may invert the smaller h,
matrices E't and their algebraic combinations as indicated in (8.18) and (8.19)

or in (8.24) and (8.25). i
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9. REPRESENTATION OF THE FUNDAMENTAL MATRIX BY EIGENSTRUCTURES Wt
A. Decomposing the Fundamental Matrix A0
The fundamental matrix M(x,y) in the mapping rule (6.10) and in (7.29)

can be given a more useful representation provided we partition it in the form '0,.':-'

M, . (x,y) M, _(x,y) )
(2qx2q) (9.1) S
4_ (x,y) M__(x,y) i

M(x,y)

- -
11

Then by (7.29) and (8.13) we have !

(x,y) E+-(x’Y) E E

(9.2) e
M_,(x,y) #__(x,y) E §_+ ok (y=x) - + |'|.n

LI

- e . g

- o) Qﬁ

where ¢ = diag[ncl,...,rq], and where the < now have their indexing as in ot ‘
§8D. From this, we find the representations of the qxq submatrices of AR
M(x,y): b

+ eE(y-x) e E- e-ﬁ(y-x) o (9.3) !w

1]
tm

|

§*+(x,y)

T eklymx) g gt oelymx) o (9.4)

]
Itn

3 !_*(x,y) it

MU S (9.5) e

h
I

5§¢(x,y) -

T ey ooy E S (9.6) NG

M _(x,y) =

t
I

Clearly ::..v N
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§*+(x,x) M__(x,x)

(9.7) f%vé
-~

Q_l+_(x,x) = g_+(x,x) =

Jdo
ééé

Observe that M(x,y) depends only on the difference y-x of initial and o
final depths in the homogeneous medium X[x,z]. For small depth differences
y-x, the submatrices in (9.3)-(9.6) are, to first order in (y-x), "

M, (x,y) = = (y-x) (9.3a)

I
-q e

)
M_, (x,y) = = g(y=-x) (9.4a) fzg'ﬂ¢

M, _(x,y) = g(y-x) (9.5a) ®

¢
2 lom '
M__(x,y) =1 + i(y-x) (9.6a) ;:;:v’(

These follow from the fact that, for small y-x, (6.14) is, to first order, by

M(x,y) = qu + K(y-x) R

i"'
B. Interchange Rule for M(x,y) Ségﬁ‘%

In a medium such as the present one where we have isotropy of scattering A

and homogeneity of inherent properties with depth, we should expect some

useful symmetries of M(x,y). For example, isotropy has reduced our

considerations to g* and §- instead of the four matrices §++,...,§_ .

A considerable amount of computation, however, is obviated by observing
(cf. (6.12)) that M~!(x,y) = M(y,x). The latter matrix is readily evaluated
by observing from (9.3)-(9.6) that its four submatrices are related to those

of M(x,y) by

s | s Py T P 3% LV I R R S e
My ‘ﬁQﬁvfw“x*x’Qﬁx“\ﬁ\jﬁf%ﬂﬂf*hs; .
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u,,(y,x) = #__(x,y) (9.9)
M_(y,x) =4 (x,y) (9.10)
M, (y,x) = M_ (x,y) (9.11)
M__(y,x) = M (x,y) (9.12)

These four statements constitute the interchange rule for M(x,y) on X[x,z].

It holds quite generally and does not depend on isotropy or homogeneity.
However, when homogeneity is taken into account, we can find M(z,y) without
further computation beyond M(x,y). The matrix M(z,y) is used for upward
evolving light fields, while M(x,y) is used for downward evolving light
fields, as we shall see, below. As for evaluating M(z,y), suppose z-y = y-x,
then ¥(z,y) = 4~1(y,z) = 84~1(x,y) = M(y,x). The latter follows from M(x,y) by

the interchange rule.

c. The Downward and Upward Evolving Radiance Amplitudes

From (6.10) and (9.1) we can write the mapping rule as

>

”~~
<

St
]

AT(x) M, (x,y) + AT(x) H_ (x,y) (9.13)

>

~
~

~
1]

AT M, _(x,y) + AT(x) H__(x,y) (9.14)

This is for the downward evolving light field starting from level x in X[x,z],
x < z. This may be reduced to the numerical level by explicitly writing out

the components of ¥  (x,y),...,M__(x,y). Thus from (9.3)-(9.6) and (8.13) we

have
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4 q

M, (xy) = ] el <) £+ ] et -5 (y=x)
j=1 J J j:l J
d q

HoGxy) = §oer ST g et e
j=1 J J j:l J
d q

H, (x,y) = ] e’ &< 3(y7x) £.+ ) et x5 (y=x)
j=1 J J j:l J
d q

4 (x,y) = ] e; eKj(y-X) £.+ ) e ‘Kj(Y'x)
j=1 ] J j:l .]

el et maty

‘B ., oy

(9.15)

(9.16)

(9.17)

(9.18)

Next, the initial condition for the radiance amplitude at level x is handled

by writing, for j = l,...,q,

at(x) = A%(x) &'
J - =)

and

m
s od
~
»
~
®
+
>
~
»
~
®

a.(x) (= A(x) eB)
J - =)

a?(x) are scalars of the form

q

) (a%(x5u) et(u) + A (x5u) e (u)]
u=1 J J

at(x)
J
and
q

z [A+(x;u) e.(u) + A (x3u) ef(u)]
u=1 ] ]

a.(x)
]

for j = 1,...,q.

Thus (9.13) and (9.14) in scalar form are

P B G I e P S e A e T I T T e )
> \» -\f At & " D AR . DAL N

S 2

(9.19)

(9.20)

Observe that Ai(x), being a lxq matrix, and g?, being a qx1 matrix, imply that

(9.21)

(9.22)

Vo §¥, .-...- '} .'
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3 q q _ I.NH‘-'
A*(ysu) = ) a;(x) e‘j(y"‘) fjf(u) ) a;(x) e"‘j(y"‘) £5(u) (9.23) w."ix .‘

which describes the downward evolving light field starting at level x in
X{x,2]. This may be used repeatedly in a given medium by simply changing the v
initial amplitudes a'j-]"(x), j=1,ee0,q9. Recall that (9.23) holds for a
particular sine or cosine amplitude Ap(y;u;!.) with £ a particular azimuthal . ®
mode index; p = 1,2 and ¢ = 0,...,n, and with q = m-1 or m. ::3

The upward evolving light field starting at level z in X{x,z] may be .:',:‘t:

found similarly. Thus from the mapping property for M(z,y), °®

AT(y) = aT(2) M, (2,y) + AT(2) u_ (z2,y) (9.24) ot

AT(y) = A"(2) M, _(z,y) + A7(2) H__(z,y) (9.25) \E:

"x" with "z" we obtain

If in (9.13) and (9.14) we replace all occurrences of T
(9.24) and (9.25). Hence the present counterpart for (9.23) is found by ':V'
replacing all occurrences of "x'" with "z" in (9.23). Equation (9.23) oS,

accordingly represents the general solution of the radiance amplitude equation Padn %y
(6.5). For numerical values we would need the <3 and the e along with the i._-f'.,}’_
initial amplitudes A(x). If A(x) is not given empirically, then it must »e Cote i
found theoretically from the initial radiance amplitude é(a) incident at level N

a on the air-water surface. For this we need the global interaction L LN

principles and various of their consequent laws governing the reflectances and :"-,k

&
)

transmittances of sub-layers of X{x,z]. i
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10. GLOBAL INTERACTION PRINCIPLES

The global interaction principles allow us to correctly include boundary
conditions into the fundamental solution procedure.

By following the developments in §6c of Mobley and Preisendorfer (1988),
or in §7.4 of H.0., Vol. IV, we may derive from the fundamental solution two
sets of global interaction principles for the radiance amplitudes in X[x,z].
First the downward evolution set: for a subslab X[x,y] of X[x,z], x £y < z,

we have

AT(x) = AT(y) T(y,x) + AT(x) R(x,y) (10.1)

AT(y) = A%(y) R(y,x) + A" (x) T(x,y) (10.2)

These statements, while written explicitly for ingside the water body part
X{x,z) of X[a,b] = X[a,x] U X[x,z) U X[z,b], actually can be phrased for any
subslab of X{a,b) by replacing x and y by other depth variables in the range
[a,b]. For subslabs X[x,y] the water body itself, we can evaluate the Rand T

matrices as follows, using the fundamental matrix:

R(y,x) M;l(x,y) §+_(x,y) (10.3)

+

T(x,y) = 4__(x,y) - #__(x,y) u7l(x,y) ¥ __(x,y) (10.4)

and
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‘ T(y,x) = H=1(x,y) (10.5) 2
A = -4+ .
) : )
' R(x,y) = -g_#(x,y) ﬂ_l;i(x,y) (10.6) ,.-.-
!.' .“- "‘:
1 W
X s
§ .
:’. Then the upward evolution set for a subslab X[y,z] of X[x,z], x <y £ z, is N
" o
1 —
,; + + - _’,"‘.
A A (y) = A (2) T(z,y) + A (y) R(y,2z) (10.7) R
y R
- - ,.-':i-
> A7(2) = A%(2) R(z,y) + A (y) I(y,2) (10.8) i
X
1
":'.n Once again, these statements can be extended to any subslab of X[a,b] by
)
'.: suitable replacement of y,z in (10.7) and (10.8) by other depth variables. In
2 the case of the water body X[x,z] itself, the R and T matrices are given by
8
s
3 R(y,2) = M71(z,y) H_ (2,9) (10.9)
0 T(z,y) = M, (z,y) -, _(z,y) H=i(z,y) #_ (z,y) (10.10)
v and
R
; -
o T(y,z) = ¥-1(z,y) (10.11) 'j::ixu
¥y ‘_-_':5,
e
Py R(z,y) = -g*_(z,y) M-1(z,y) (10.12) AJ
\ \.‘_:_'\'.:. +
l :_,::J.
L) LA.:\:', )
A,L As a consequence of the homogeneity and isotropy of the medium X(x,z], we ::‘.'-:
™ find from the interchange rule and the above M-representations of R and T that TN
s = - ::l‘-'.\f.
.. A
~ NN
3 A
] A
o
$ DR
' _:51‘\ |
C‘ ‘~\ .\
Y d
. 50 N
N
B AT AT T T AT T AT T TN T PR R ) oo e A A o I’.-’
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v

R(x,y)

R(y,x) (= R(0,y~x)) (10.13)

T(x,y) = I(y,x) (= T(0,y~-x)) (10.14)
In other words there is no polarity of the medium (cf. Preisendorfer, 1965,
p. 216). This cuts in half the number of R and T matrices needed to find the
light field in X[x,z].

We observe that when y-x is small, the various reflectances and
transmittances in (10.3)-(10.6) and in (10.9)-(10.12) take the following

forms, to first order in y-x:

R(y,x) = R(x,y) = §(y-x) (10.15)

T(y,x) = T(x,y) lq + (y-x) (10.16)
These follow at once by using (9.3a-9.6a) in the cited formulas and, after

reducing them algebraically, retaining only terms to first order in y-x.
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11. THE R-INFINITY FORMULA AND SOME APPLICATIONS

The reflectance matrix for an infinitely deep homogeneous layer X[x,=]

o xn ey e},

plays a central role in the present study of the light field. We shall now
derive an expression for this reflectance and draw some conclusions about the
light field.

Now, from (10.6) we have an expression for R(x,y), the reflectance of the
finitely deep layer X[x,y] in X[x,»]. On letting y+», using (9.3), (9.4) and

recalling that «,>0, we have

]
T
'oC*

.‘
ot e

s
S

'
3
25l

R_ = lim R(x,y) = lim -¥__(x,y) M7l(x,y) = ~£ (")~

-{ X
R
e Lt

y-’ﬂ! y-bm

and in like manner, from (10.3), (9.3), and (9.5), we find

- -

T

s o I m T LY
L
PRIES

lim R(y,x) = lim #71(x,y) M, _(x,y) = (F)-1F" (11.2)
y-bm y’@
R

—D

?&T’%? v

.
;

~
L

7
EXS

where the last equality comes from (8.17). Hence

”

L]
‘.I‘
o

_\'.?<

"y X

bl
x
5

2

R, = ~E ()1 = (F1)1 F (qxq) (11.3)

. P + + .
The physical significance of R, , E~ and F~ comes out on rearranging

(11.3) into the forms

+
R,

+

E R,

In vector form these read
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e = -R e (l1l.4a)
—-J —® =]
- +
f.=£f. R 11.5
£, = £, R, ( a)

for j = 1,...,q. Thus we see that R_ maps the "disembodied" flow §+ into F°,
and also §+ into -E-. Of course the main interpretation of R, is obtained
from (10.7) on letting z+=, It is clear by homogeneity and from (10.5) that

as z»», T(z,y) + Qq, and so in X[x,»], we have

A'(y) = AT () R, (11.6)

X Sy<w
If we explicitly identify the entries of R via

R_(1,1) --- R_(1,q)

R_= : : (11.7)

R (q,1) --- R _(q,q)

g .
{‘3"3:“

SEAAR
AL,

o
-&‘

5

:1,.
P
To:

A

') -
-
o
el

5
”

‘-
=
]
=

- .'.::"‘.
then (ll.4a) and (11.5a) state o ‘\ﬁﬂ
a .w g
"-_).‘-'
Ayleii )
q o
- + T RN
e.(r) = - z Rm(r,u) e.(u) ’ r=1,...,9q (11.8) G\(?r:f
] u=l ] Ity
_ o, i
£.(u) = ] f£.(r) R_(r,u) R u=1,...,q (11.9) CN A
] r=1 3 _,
AN
RN
where we have used the component relation defined in (8.13) and (8.14). :J\nyj
Wt
L] 3
Another useful set of relations comes from opening up (7.27): iﬂﬁ*‘
[
nNInoy
51:..'\'*“!' ¢
b 8'\' '\.‘ ()
‘b"\ o .::
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‘a A

‘1
M t‘! :.‘
i §l1 AN
5:) L._\.-A.
A‘F * :“.
KX e
X . - . - :;}
-t B |E E EE |[x © 2
" = (11.10) Gt
¥ = + = + Wt
a 5 | |& E EE | |{0-x A
- 3 ".".-
i .'"“t';:.'
< - . '
:o where x = diag[nl,...,xq]. Thus we obtain two independent statements. The ‘::;"::
: (
:" i 1 L) "'Q:
Wy first is Sy
X ) »
o )
9 Ry
) - .l\..)-“’
?ﬁ" -3 E'+ + 0 E = §+ < (11.11) :;‘\.F
z.' T T .“‘
e '
) ]
R whence ,;:i.:"::t
:’: ‘l" M
) ey
'!: t:':$
I'g
4 BR +%=-£ « () (11.12) -
. 2 = = ==z
Y .
0.' w"'
h.:‘ * . ." "
::l The second is X ':
8! 0 )
:': \." !
LN ) ,.
- E +BE =-E «x (11.13) o
; - T -7 et
) . l
‘ L} l‘- :'
9 .' \ ¢
Y \".
N, whence DLLY,
3 ®
W : ‘-
Yy _ AN
N TR +p=-E x (B')! (11.14) Pt
R 1hrR- L s o
0} o
W8
. ®
; Eliminating « from (11.12) and (11.14), by using (11.1), we find el
A P
' 2
\ ; p T T B = . 5 X
0 RIBR, + 2]+ (2R +5]l=0 (11.15) o
5. \
KONy
4 i n
or equivalently ‘-:\:-'
Y ..\. -
3 =%
. o)
R 6 R +(5wj_+jgm)+g~gq (11.16)
‘.\l
N
o
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This formula shows how R is determined as the solution of a matrix quadratic MO0
equation for R_ in terms of the local reflectance and transmittance AN
matrices. uﬂa

The R, formula (11.3) may be used to simplify the expressions for f_"+ in ::
(8.19) and (8.25): TR

+ + -

.E,_' ]_1 = (£+)-1[£ - R:]-l (11.17) \) .'Q

I
]
Ity
+

i
]
ity
+
o
]
m
o

= (E")-1[1 - R2]-1 R_ (11.18) n ‘g

These results allow the factoring of M(x,y) i~to a product of four basic ] ®

matrices. Thus (9.2) becomes :"Q.'-F-\\\..,

M(x,y) = ®

1o, || g e 0 (1210 0

L]

R,

R I 0 gt s (g%)- 0 (I-R2]-! I v

R, 1

(11.19)

Therefore M(x,y) is reducible to factors involving only the gqxq matrices «, §+

and R_. RINRAS
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12, SURFACE BOUNDARY CONDITION: AUGMENTED MATRIX FORM oy :'.:::q
P
The preceding discussion has shown that the solution (9.23) of (6.5) o::.g:':l
o
literally cannot leave the air-water surface at level x unless we know the et
~ l’.,l'
4
initial amplitude vector A(x) there. Our next main goal is to compute A(x). ::;o:::l
» 'I'
O]
This requires attention to be redirected toward the air-water surface boundary i d:::'.l
conditions (5.18) and (5.19). These conditions show that the £tP mode -:‘w .
-
- Yy
amplitudes A;(a;ﬂ.) and Ap(x;l) just above and below the surface are coupled to .‘.:.:...:"t‘
R
all other kP modes by virtue of their interaction with the directionally “.E"::'.f
. . @
anisotropic surface. Hence, to proceed, we must now reinstate the presence of ey
O
KOO
the p and % indexes in the notation. Since we must consider all the amplitude "&‘:‘::z
nodes simultaneously, we shall form a vector from them, as shown below. r .:‘.
Now recall that the number q of components of the lxq vector ép(y;l) ;_‘.-“T.i:
“"ﬂ-; X
. . Pay
depends on p and & (cf. (5.10)-(5.15)): q is either m-1 or m, as the case may :"‘.r" y
YD
t
be. For the present boundary condition calculations we can treat all these 0 »
. . . .. .9
special cases in a uniform manner by defining an augmented amplitude vector T
et
. o
ép(y;l) of m components for each £ = 0,...,n, regardless of whether p is 1l or e ”'
WOy
. gh !
2: Pt
'a"‘o‘i:n
koo b % Mg
AT(y32) = [AT(y3138),...,A (ysm3e)] (12.1) N
P P P A
e
= 1,25 8 = M
p- ’ ,9.—0,...,!1 9
.‘:<'-:-'.
N
PO
&S
The mth components of these augmented amplitude vectors are either zero or oS
L] J --\
LY
Nt(y;m,-), in accordance with (5.6) and (5.7). ®
AASS
We next collect these n+l augmented m-component vectors into one grand .:,. N
LS 4
h ALY,
m(n+1) component vector for each flow: Y ':.‘{d
g
SN
®
2 AN
N v
- ’,A‘
':r'}_a':.;’
".‘.'."‘
:f.\J'A A
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(y) = [

(y;O),...,éi(y;n)] (12.2)

The mxm matrices ﬁp(a,x;k|£), are now gathered up into one grand

m(n+l) x m(n+l) matrix of the form Ep(a,x), where we write

ép(a,x;0|0) oo ép(a,x;0|n)

t (a,x) = . . (12.3)
—p - -

ﬁp(a,x;nlo) oo ép(a,x;n|n)

]

where p = 1 or 2. The remaining three m(n+l) x m(n+1) surface transfer
matrices are constructed similarly. With these constructions (5.18) and

(5.19) become

a*(a) = AT (x) © (x,a) + A (a) £ (a,x) (12.4)
-P -~p -p -p -P

AT(x) = AT (x) £ (x,a) + A (a) £ (a,r) (12.5)
~p -p -P P ~p
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13. BOTTOM BOUNDARY CONDITION; AUGMENTED MATRIX FORM

Using the augmented m-component amplitude vectors é';(y;l) defined in

(12.1), we can reformulate bottom boundary condition (5.22) in the form

a%(z) = A7(z) & (z,b) (13.1)
=P =P -P

-

where é:'_,;(z) is now 1 x m(n+l) and Ep(z,b) is a m(n+l) x m(n+l) block diagonal

matrix of the form

t (z,b30) 0
L o
£ (z,p) = . (13.2)
Qm Ep( Zy b s )
for p = 1,2.
|
!
!
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14. IMBED RULES 5@-‘.5«.
SN

The imbed rules give the operators that yield the amplitudes at some "~"~"~' A
internal level y of a layer X[x,z] knowing the R and T matrices for the two ‘ Y,
sublayers X[x,y] and X[y,z] above and below the level y, x < y < z (cf. H.O., .",.ﬂ‘,
f'.L .

Vol. II, p. 297). 1In the present application of the imbed rule we are ittt
interested in finding the amplitudes ét(x) just below the air-water surface in A
X{a,b], a £ x €y £z <b, where X{a,x] is the upper surface boundary, X[x,y] ~
is the water body, and X[z,b] is the lower boundary (a matte surface or a half L}&AB‘:‘(
space). Given the incident amplitude é;(a) = [Q;(a;O),...,é;(a;n)], the ‘iﬁo“\‘:
XN

s

. . * b4 b 4 . ol
required amplitudes A7 (x) = [A (x30),...,A"(x3n)] are given by .‘::.,
)

~

]

~
]

A (a) T (a,x,b) 1 x m(n+l) (14.1) 'g';n:a

>
~
»
~
{1

- (N C"!l
A,(x) R (x,b) 1 x m(n+l) (14.2) :.%’."‘!ﬁ
W3

= ép(a) Rp(a,x,b) i

where the complete transmittance and complete reflectance operators are given M)

by N

T (a,x,b) = T (a,x) [I - R (x,b) R (x,a)]-! (14.3) SRR
-p -P - ~-pP P

R (a,x,b) = T (a,x,b) R (x,b) (14.4) DAt
-p P -P '
These follow from the boundary condition (12.5) and the global interaction
. . . NN
principles of §10 written for X[a,b] = X(a,x] U X[x,b]. In particular Tp(a,x) 1 .{\'\
\

takes the form ép(a,x), and gp(x,a) takes the form f_p(x,a), both of which are %\":
%

the m(n+l) x m(n+l) matrices defined in §l13, above. The matrix gp(x,b) is )

discussed in §l5, below. Observe that by the isotropy of X[x,z] and X(z,b], "f\‘.
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m-1 or m.

(14.2) may be uncoupled and written as n+l separate matrix equations for lxq

vectors and qxq matrices, q




15, UNION RULES
The union rules give the R and T matrices of the union X(x,b) of two
layers X(x,z) and X(z,b) (cf. H.O., Vol. IV, p. 30), knowing the R and T
matrices of the two layers. In the present case X(x,z) is the water body and
X(z,b) is its lower boundary. The required rules follow at once from bottom
boundary condition (13.1) and the global interaction principles of §l0 written
for X{x,b] = X[x,2z] U X{z,b]. They are

R (x,b) = R (x,z) + R (x,z,b) T (z,x) (15.1)
~P -P -P P

R (x,z,b) = T (x,2z) [I - R (z,b) R (z,x)]-! R (z,b) (15.2)
P P —-p ~-P P

In particular gp(z,b) takes the form of the m(n+l) x m(n+l) augmented block

diagonal matrix ﬁp(z,b) defined in (13.2), while the four matrices gp(x,z),

Ip(z,x) and gp(z,x), Ip(x,z) are m(n+l) x m(n+l) block diagonal matrices

th th

(augmented from (m-1) x (m-1) form by adding zeros in the m"" row and m
columns, if necessary) made up of the f-mode matrices associated with the

water body. For example we have

Ep(x,z;O) _O_m

R (x,z) = (15.3)
=P

Qm gp(x,z;n)

The mxm matrix gp(x,z;l), 2 =0,...40n, is given by (10.9), and, as noted, is
augmented to mxm, if necessary, for use in (15.3) with the augmented lxm
amplitude vectors in (12.1).

The remaining three augmented matrices of the

water body are assembled into block diagonal form similarly.
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Another application of the union rule, this time to the union of X[a,x] o
(the upper surface) and X[x,b] (the water body plus the lower boundary) yields Syl

the matrix needed to find the upward radiance amplitudes é;(a) emerging from R0t

the air-water surface of the hydrosol. The required rules follow from h ﬁ'ﬂé
_ .
. . : .. ' .
boundary conditions (12.4) and (12.5) and the global interaction principles of g ﬁhﬁ
§10 written for X[a,b] = X[a,x] U X[x,b]. The resultant union rules are PAPRY
NAEAYRS

-r::.a",.n_;
A
Y ’_:. i
b 0w e L)
gp(a,b) = gp(a,x) + gp(a,x,h) Ip(x,a) (15.4) .

o
-::;.:" q(
gp(a,x,b) = Ip(a,x) (r- gp(x,b) B_p(x,a)]‘l Ep(x,b) (15.5) $?$$$?
“&“dﬁd
s
AT,

Here Ep(a,x), zp(x,a) and gp(x,a), Ip(a,x) are the four m(n+l) x m(n+l) ®
(N
transfer matrices of the upper surface occurring in (12.4) and (12.5), while X ~§k§f
Y
Wy,
gp(x,b) is the matrix found in (15.1). nﬂ_‘ﬂh

The required upward emergent radiance amplitude ég(a) leaving X{a,b] are

given by
FS -
A (a) = A (a) R (a,b) 1 x m(n+l) (15.6)
~P ~P -P
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16. SOLUTION FOR A FINITELY DEEP MEDIUM

3( Having determined ég(x) via (l4.1) and (l4.2), we may now return to

o (9.23) and find numerical values of A¥(yju) (with p and % understood) at all

L)
e depths y in the homogeneous water body part X{x,z] of the complete medium
b,

¢ X[{a,b] = X{a,x] U X[x,2z] U X[(z,b]. Indeed, we may now explicitly evaluate the
. initial amplitudes a?(x) in terms of the two basic qxq reflectance matrices
0 R(x,b) and R_ of the medium X[a,b]. First observe that from (l1.4) we have
"
¥ e. = -R e j =1 (16.1)
=:: =j = £ ’ ] seee3q .
)
"

This, with the mode-uncoupled form of (14.2), allows us to rewrite (9.19) as

¥
2

Ay
13

;”i‘.ﬂ
rAe

at(x) = A%(x) et + AT(x) e
] - | - =]

&

A
AN
2

X

A (x) R(x,b) 3; - A (x) R_ g;

o

o

s
o2
h

5

A (x) [R(x,b) - Bm]g; (16.2)
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" St o o)

\ Moreover, (9.20) becomes

Pl Al
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ny:

-A"(x) R(x,b) R_ g; + A7 (x) e;

(4

-
*
s
.

A
'- ‘-
1}

-

a,(x)
]

'y

a 6
o
x
~r®

AT(x) [I - R(x,b) gm]g; (16.3)
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g
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'z,
e
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]

5
LAy
oy

where r and % are understood in (16.2) and (16.3). Hence if the optical

{

BNy
Ry f‘l

properties of the medium are known, A™(x) (= é;(x) obtained via (14.1)) will

SRR
a
"7,

be the only additional piece of information needed for a full solution.
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17. SOLUTION FOR AN INFINITELY DEEP MEDIUM A

E) 8

On letting z+= in (16.2) and (16.3) (so that also b+=) we can evaluate

" the amplitude coefficients a?(x) in (9.23) for the case of an infinitely deep e
) ) -?‘ \
( iy
: homogeneous medium X[x,»], a € x < 2z < b = =, Noting that z appears haiy
V o
v . . . - N . o
N implicitly in (16.2) and (16.3) via R(x,b) (cf. (15.1)) and recalling (1l.1), Y
; we find, for the limiting case z+=, that
R » + .
b aj(x) =0 , J=1l,.44,q (17.1)
and
5 +
N a.(x) = A (x) [I -~ R2] e, , J = l,e0a,q (17.2)
' J - - = )
. Thus (9.23) reduces in this case to the amplitudes with purely decaying modes:
[}
p q
+ - - - -
A A (y3u) = z a.(x) e Kj(y x) £7(u) (17.3)
2] ) j
J
¢ where p and 2 are understood.
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18. THE ASYMPTOTIC RADIANCE DISTRIBUTION 'ﬂ#

When y in (17.3) becomes large, the associated directional distribution f'fff

of the zero mode cosine radiance amplitudes takes a well-defined form, that of ?;‘ e
the so-called asymptotic radiance distribution. The basis for this is the
following. Recall that we have arranged the distinct, positive eigenvalues of ﬁﬁg‘
each mode % in ascending order: 0 < «;(2) < k,(2) < - < xq(l).
Numerical experiments with realistic models (cf. §8D) invariably yield xisg'ft

Ni u

the inequalities: 5g;hdg

x1(0) < «;(2) for all &=1,...,n. (18.1) Sy

bﬂl‘

Y
‘n} (3
® PR

Physically, this is interpreted as showing that locally high curvature and

[y
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f

‘r:\ 4
;h h S
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£ %
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asymmetry of the radiance distribution (thought of as a surface in three-

Pl A A

,

i

’

o5

dimensional space) tends to be smoothed and reduced as depth y increases. An

3

%
&‘.\-

5]
»
i

intuitive theoretical proof of (18.1) can be given along the lines developed

= ]
iy
l.-l
o
8"

’
<,
L2

in Preisendorfer (1959). Now let us multiply each side of (17.3) for the case

)
Z

p=1l, 2 =20, by e<1(0)(y=%) 414 then take the limit:

‘&?‘i

XY
A
)
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o

[
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-

At(w;u) z lim Af(y;u;O) eKl(O)(y—X) = a:(x;O) ff(u;O) (18.2)
yo

u=1l,...,m
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We call the set of numbers {Ai(m;l),...,Ai(m;m)} or any scalar multiple

%
S
) :i Ay

".l T
8
(%

’
»

. +
of this set the asymptotic radiance distribution (of order m). Thus A (=3u)
is defined via the zero mode (2=0) cosine radiance amplitude (p = 1) of the e,

radiance field. All other modes of the physical radiance distribution decay

at a greater depth rate than x,(0), by (18.1), and are lost on the way to ﬁi
R
y = », Hence ~he asymptotic radiance distribution is symmetrical about the ol
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vertical direction. The u-dependence of f7(u30) defines the zenith to nadir 4&% ¢
. Fot Y
shape of the asymptotic radiance distribution. As we have seen, f%(u;O) is _ !
@
determined solely by the mxm system matrix k(0) (for the zero®! azimuthal ﬁ“?\*
"I"'I .:
mode), which in turn is defined by the shape of the volume scattering g&ﬁsi
"l'l't
function. Observe that all directional information about the initial radiance ﬁ;ﬁkﬁ

. . . .t . . -
distribution via A7(x;0) has been lost in the formation of aj(x;0). Hence the
asymptotic radiance distribution is an inherent optical property of an

infinitely deep homogeneous medium.
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19. TWO-FLOW IRRADIANCE OBSERVABLES ASSOCIATED WITH THE ASYMPTOTIC RADIANCE s
DISTRIBUTION oy

The three main two-flow irradiance observables, namely the K(y,*), )
R(y,*), and D(y,*) quantities (H.0., Vol. V, p. 115~118), have specific values ﬁhf‘ W)

in an asymptotic radiance field. Observe that these quantities will be A

E;
=

o]

S
S

independent of y, and henceforth we shall denote their constant values,

respectively, by "K,", "R,", and "D,".

& L

First, at great depths K, = K_ = k, and the common value k_ is related to

<,(0) by ®

| o
k,(0) = k_/a (19.1) RO

.
Ml
.

" .

ot
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RS

a4

k- \.l

Hence, knowing «,(0) and a, we can deduce the asymptotic decay value (cf.

Y

1y
- -‘"- - .
P
Ay

N i)

H.0., Vol. V, pp. 244-248):
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[

k_ = ax,(0) (m=1) (19.2) e

«
P
3
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X
o

common to all radiometric magnitudes (scalar irradiance, radiance, etc.).

Further, we find o

Pd
LA

m m
} A (s u)|u |au ) fl(u;0)|uu|

R,z Rl =R =21 = U (19.3)
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§19

From these one finds the volume absorption coefficient (c¢cf. H.0., Vol. V,

p. 247):

k_(1-R_)

W (19.5)

a=
which can serve as a check on the computations. Recall that the whole problem
began with a and ¢ given, so that a = a-s, derived from the initially given
data, can be checked against a in (19.5), the end of a long chain of
arithmetic operations.

Inierestingly, from (19.1)-(19.4) we see that K(y,*), R(y,*), and D(y,*),
which are apparent optical properties for small depths y, attain the status of

inherent optical properties in the limit of arbitrarily great depth.
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20. INVERSE SOLUTION

In the present homogenéous setting we can determine the local reflectance
and transmittance matrices § and I for each azimuthal mode from observations
of the radiance distribution at various depths. We shall now give some
attention to this matter.

First of all observe that, by knowing ¢ and i from the inverse solution,
we can in effect estimate the quad-averaged volume scattering function values
sp(u',v'|u,v) for all distinct quad pairs Q,'y' and Q , in an adopted
decomposition of the unit sphere. Also estimable is a' = a - sp(u,v]u,v), the
observable value of the volume attenuation coefficient a (for a discussion of
this interesting phenomenon of the inaccessibility of a and hence p(a,vin,v),

see H.0., Vol. VI, p. 296). The smaller the solid angle subtense of Q the

uv’?
closer will a' be to the "true" value a. Hence a finite sequence of ever
finer Q,, partitions will allow a to be estimated as a limited value. Since
the p(u',v'|u,v) must add up to 1 as we sum over all Q,, for any fixed Q i
we can then estimate also s and p(u,v|u,v) from the inversion results § and
I. This then amounts to a practical recovery of a and o to within the degree
of accuracy governed by the fineness of the quad decomposition of the unit
sphere.

To start the inverse procedure, we obtain the radiance amplitude vectors
A(y) at various depths (to be specified below) from the given, observed
radiance distributions at those depths.

The following steps in the inverse procedure are based on some

observations in Preisendorfer (1968) which may be readily applied now that we

have the specific solution for A(y) available in the eigenmatrix form:
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§20
A(y) = A(x) M(x,y) = A(x) M(y-x) (20.1)
where .
M(y-x) = E exp[x(y-x)]} E-1. (20.2)

Since A(y) = [A*(y), A™(y)] and éi(y) are q-dimensional vectors, to
invert (20.1) we need 2q linearly independent observed amplitude vectors
é(yj), j=1,..,2q of the light field. These observations are spaced at
depths some constant interval Ay = Yie17Y; apart. Then by the mapping
property (6.10), for each j = 1l,...,q, we have

Aly;,)) = Aly;) E exp(xty] E7

+]1

é(yj) M(ay) . (20.3)

That the set of vectors é(yj), j =1,¢44,2q 18 in principle linearly
independent follows from the fact that the set of exponential functions
exp[ixj(y-x)], j=1,...,q, is linearly independent (recall the discussion
leading to (7.11)).

Next, write

Aly,)

. (2q x 2q) (20.4)
Aly, )
From what we have just observed A; is an invertible 2q x 2q matrix.
Furthermore write
Aly,)

(2q x 2q) £20.5)

é()'2q+1)

Then the set of relations (20.3) can be written
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A, = A4, #(ay) (20.6)
whence W f@
M(ay) = AT!A, (20.7) NI

We are next led to find the eigenvector matrix E and eigenvalue matrix r\Jﬁahk
=3 (e s

@
‘Kl,...,‘Kq], as follows. e~

x = diag[k|,ees,k Ay

q’
Evidently by inspection of (20.2), the eigenvectors of M(y-x) are already

+ + + . ay!
E- = [g;,...,ga], the eigenvectors of K. Next, suppose we order and then ~f.dq“l“

label the 2q eigenvalues of M(Ay) as follows: ,1.‘:;ﬁ
€ oo < Y; < Y: <1« YT < Y, < «eo0 <y < Y; (20.8) L“*'g*”
By (20.2) we expect that .
+
Y} = exp[inAy] ’ J = 1,.00,q (20.9)

Therefore, we write

+ +
K3 z *(ay)-! n 73 y 3= 1,..4,q (20.10)

Of course when working with actual data we will find that we don't exactly

have 1373 = 1, with the result that we will not exactly have KS = -KE. We

will then adjust the K§ found above so that we do obtain K with this symmetry

property. We accordingly set
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- <) 3= 1,eee,q (20.11)

The E are re-computed for these symmetrized Ky Once E and the K3y

j=1ly...,q have been so found, we can then go on to compute
K=ExE! (2q x 2q) (20.12)

which yields the two estimated qxq matrices s I, discussed above, for each
mode £ = 0,...,n; whence a and o.

As a check on the preceding procedure we can construct the amplitude
vectors é(yj), j=1,...,2q from the estimated K in (20.12) and compare with
the observed values. Note that the eigenstructure K? in (20.10) and the gt of
M(Ay) in (20.7) (before symmetrizing in (20.11)) will reproduce the observed
radiance amplitudes é(yj) in (20.5) exactly. Once the symmetrized < and
their associated gi matrices have been found, we will have in effect estimated
the system matrix K of the homogeneous medium, i.e., we will know the inherent
optical properties a and ¢ of the medium. Let g be the estimate. When new

incident light fields A'(x) come along, the associated new A(y), say A'(y), at

any depth y (and hence N(yju,v) at the depth y), can be obtained from the

mapping property A'(y) = A'(x) exp[&(y—x)].
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APPENDIX A

EIGENMATRIX THEORY OF THE TWO-FLOW IRRADIANCE MODEL

1. Introduction

The eigenmatrix theory of §7 has a simpler counterpart in the form of the
eigenanalysis of the two-flow irradiance model. We shall develop this simpler
version here, following the main developments of §7 along a parallel track, as
far as possible. It will be an instructive exercise on two counts: First,
the key qxq matrices gi and Ei will reduce to numbers (because now q = 1) and
so we will be able to see their physical constitution directlyj all formulas
can, if desired, be numerically evaluated by hand, and simple algebraic
operations reveal all the inner workings of the eigenmatrix theory. Hence the
present discussion can serve as an informative prerequisite to the main study
of §7. Second, the present model, despite its simplicity, is actually a bit
more complex in the sense that the local optical properties Ty and P4r which
are the present counterparts to the qxq matrices I, §, are in fact
anisotropic} that is, unlike the radiance case of §7, we must distinguish
between absorption and backscattering activities on the upward and downward

flows on the local level.

2, The Two-Flow Irradiance Equations
The form of the irradiance model we shall use is that developed in

Preisendorfer and Mobley (1984). At any geometric depth y, x <y < z,

4

5 ay

H(y,*) = t H(y,%) + o;H(y,i) (A2.1)

where 1, = ~la, + b
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We shall use the p, and b, notation interchangeably, according to the

momentary interpretation desired: local reflectance or local backscatter.

This model has four depth-independent parameters: the two distribution

factors D,, which describe the mean path length of ascending (+) and

descending (-) photons through a layer of unit thickness; and two inherent

optical properties, the volume absorption coefficient a and the mean

backscatter coefficient b. We shall work with realistic media (cf. §8D),

i.e., those for which a > 0, b > 0 and D, >D_ > 0.

The backscatter coefficient b is an inherent property in the following

sense. By definition, the general depth-dependent backscatter function b(y,*)

is

b(y,%) = H-1(y,) [ da(g) [ N(y3g') oly;g';6) da(g') (a2.2)

F +

In the two-flow irradiance model we may adopt an average radiance over Z, when

evaluating (A2.2). This radiance is a form of quad-averaged radiance, with

the quad replaced by =, or _. Thus in (A2.2) we may adopt radiances over =

I+

in the form

h(y,+)/2n if £ is in
N(y,g) = (A2.3)
h(y,~)/2n if £ is in

£}

Under this hypothesis, (A2.2) reduces to
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b(y,*) = D(y,*) b(y) (A2.4)

where we have written

B(y) 5-12—“ [ da(e) [ olyig'se) dag') (A2.5)
= 5+ .
or % [ aag) [ oly;e'se) da(g")

+ -

The isotropy of o at depth y implies that o(y3£';E) = o(y3£3E') for all €' and
£. Hence b(y) does not depend on the direction of the incident flow of
photons across the plane at level y, and so the alternate form of b(y) in
(A2.5) also ;haracterizes b(y). In either of the two formulas, observe that
we are finding a mean or average magnitude of the backward scatter of photons
across the horizontal plane at level y, x <y < z. Since b(y) in this sense
is independent of the direction of flow of the photons, it is an inherent
optical property under the hypothesis (A2.3). Note that when scattering is
spherically symmetric, i.e., when o(y3£';€) = s(y)/4n, then b(y) = s(y)/2,

i.e., b(y) is half the volume total scattering function s(y), as expected.

3. The Fundamental Solution of the Two-Flow Model

We may write (A2.1) in matrix form as

H(y) = H(y) K (A3.1)

where we have written
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[H(Yy+)v H(y,-)]

In this way we see (A3.1) as the irradiance counterpart to (6.5). Notice that
we now have 1 dependent on the upward (+) or downward (-) flow. Hence we do
not have the local isotropy that is present in (6.4).

Following the development in §6, we can write the fundamental solution of

(A3.1) as

x(x,y) = exp[k(y-x)]

where K is now the relatively simple 2x2 matrix in (A3.3). It has all the
properties of the 2q x 2q matrix M(x,y) of §6. In particulasr, the mapping

property holds:

H(y) = H(x) M(x,y)

We are in effect working with M(x,y) of §6 for the case q = 1. Keep in mind,
however, that the parallelism between the multimode theory and the present
irradiance theory is not exact, since (A2.1) exhibits anisotropy via the

property D, > D_ > 0.
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4. The EBigentheory of Two-Flow Irradiance Fields

The purely exponential basis functions B?(y) of (7.1) have their present

counterparts in two scalar-valued functions B(y,*), since we are in effect

s,
Y

S

F

working in the q = 1 case. Thus we postulate for the irradiance model two

STy

exponentially varying functions B(y,*) such that

Py

B(y,*) = B(x,*) exp[ki(y-x)]

o x <y <z ;-.«'_,w
e

For reasons which will become clear shortly, B(y,*) are the eigen-irradiances

of the medium. Linear combinations of these are to represent the observable

irradiance fields

SICA
§774. ..
[d

B(y,+) Eer * B(y,-) f_ (A4.2) ;:;}-

H(y,+) .

Y

H(Y9-)

B(y,+) f+_ + B(y,-) f__ .

where f,, and f_, are dimensionless constants. These equations may be placed

'y

in matrix form:

f ST

\ _. -

N o

[ oo

N > i: -

L AN

. H(y) = B(y) F (A4.3) NN
L

= 25
- - ...' .

X where we have written SOUN
[ e
N BACN

@
L B(y) = [B(y,+), B(y,-)] (1x2) (a4.4) A
- ‘ y

++

Y

(2x2) (as4.5)
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Conversely, we can represent the eigen-irradiances B(y,*) as linear

combinations of the observable irradiances H(y,#):

B(y,+) = H(y,+) e,, * H(y,=) e_, (a64.6)

B(y,=) = H(y,+) e _ + H(y,=) e__

where e,,, e,  are dimensionless constants. These equations may be written

more compactly as

B(y) = H(y) E (a4.7)

where we have written

rs  Cu-
E = (A4.8)
e, e__
Clearly
F = g1 (A4.9)

analogous to (7.24).

Corresponding to the law of change of H(y) in (A3.1), that for B(y) is,

by (A4.1),

(a4.10)
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k = diag(k ,k_] (2x2)

Observe that k, have units m~! because y is now geometric depth, rather than
optical depth as used in the body of this report. Geometric depth is adopted
here as the more natural depth, since the irradiance model does nost have the
volume attenuation coefficient a to readily convert geometric depth to optical
depth. (If it is still desired to work with y as optical depth in (A2.1) and
(A4.10), then a,, b, and k, must be divided by a.)

Following the procedure leading to (7.27) we now find, via (A3.1) and

(A4.10), in the present case that
KE=Ek, (a4.11)
which is the basic eigenstructure equation for the irradiance model.
Equation (A4.11) contains two eigenvector/eigenvalue statements. The
first may be written
= k (A4.12)

In component form this becomes

-1 e + 0 e =k e (A4.13)

The two unknowns e,, and e_, are determined by (A4.13) up to a common

+

factor. The first equation of (A4.13) suggests that we canr set
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A4
e, = ¢0, , e_, = cl(t+ + k*) (A4.14)
where ¢, = 1 m. Thus e, , has the magnitude of o, and 1s dimensionless.* The
second of (A4.13), with these values of e,, and e_, becomes
-(r* + k+) (r_ - k+) +o0_ =0 (A4.15)
We shall return to this equation in a moment.
The second eigenvector/eigenvalue equation in (A4.11) is
Ty Pa € €e-
= k_ (A4.16)
-o_ T_ e__ e__
In component form this is
-t, e _*tpo e _=ke (A6.17)
p_e,_ +1_e_ =k e _

The second of (A4.17) suggests that, on using the same c; as in (A4.14),

we set

(a4.18)

The first of (A4.17) yields (A4.15), but now with k_ instead of k,. Hence the

In all subsequent uses of (A4.14) and (A4.18), c, will not explicitly
appear, since its purpose is simply to make the e,,, ey dimensionless.
we had adopted optical depth y in (A2.1), the 1, and p, would be replaced
by the dimensionless quantities t,/a, p,/a and c, would not be needed at
this stage. - -

1t
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eigenvalues k, are governed by the quadratic equation

(k + r+)(k -t) + pp. =0 (A4.19)

or

k2 + (t+ -t )k + (p+0_ - t+t-) =0 (A4.20)

From this we see that the roots k, of (A4.19) satisfy the relations

+ - - +
= [D, - D_]la+hb] >0 (a4.21)
k+k_ = e, p_ T T T_
= -D,D_afa + 2b] < 0 (A4.22)
The roots themselves are given by
1
ky =Mt = 1) ¢ [(x, =t )2 = 4o,0_ - T, )10 (44.23)

L
((x_ - t,) * [(x, + )2 = 4o 0 17}

For realistic media (a > 0; see §8D) it follows from (A4.22) that k, and

k_ are nonzero and of opposite signs. From this we conclude that

k_ <0<k, (A4.24)
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Under most natural lighting conditions (light from a sunny or overcast sky

X

b

entering a lake or sea), D, > D_, and so from (A4.21) we have k, + k_ > 0; in

’
<
t:

other words |k_| < k,. Therefore, according to this model, in natural waters

s
fﬂi;;'
."

downwelling eigen-irradiance usually decays slower than upwelling eigen-

R
AT
Sy
RS

irradiance.
Moreover, if the medium exhibits back scattering, i.e., b > 0, then from ? ‘.ﬁ,‘

LV %
(A4.23) and recalling that t, are negative, we observe that l'f,::lrtﬁ

1 . .,'\,h
Li{(r+ +1_) + [(r+ + 1t )2 - 49*9_]1} <D (A4.25) ,;f-...:ﬁ

These inequalities yield the following physical interpretations about decay NN,

rates of the photon streams:

k <a +b and -k <a +b. (A4.26) o
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..:‘;;.3

©
-

|
~
Py

= (A4.27)
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=1 (A4.28)

+H
|

The combination p,o_ - 82 in (A4.28) is never zero in realistic

backscattering media; for we have by (A4.24) and (A4.25),
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A =pp - 62=26(k-k)>0 (44.29)

Unlike the isotropic setting of §7, the eigenvalues k, of (A4.11) are not
of equal magnitude; although, by (A4.22), they are of opposite sign. By
(A4.22) they will be of equal magnitude and we will have isotropy if 1, = t_,
i.e., if in (A2.1) we have D, = D_. This condition unfortunately is never
satisfied by irradiance fields in realistic mediaj and so we should retain
distinct values of D, and D_ in the present irradiance model. Occasionally,
however, (cf. Preisendorfer and Mobley, 1984, or H.0., Vol. V, p. 64) it is of
interest to consider the one-D case to explore potential symmetries, and
develop very simple light field models.

We may summarize the preceding findings about the eigenmatrix E in the

form

E = = (A4.30)
e_, e___J § p_

F = = p-1 (A4.31)

5. Eigenmatrix Representation of the Two-Flow Model Fundamental Solution
We may now return to (A3.4) and write it in a form that is parallel to

(7.29):
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M(x,y) = E exp[k(y-x)]F (AS.1)

o
L 5""{‘

where E and F are given in (A4.30) and (A4.31), and k = diag[k,,k_], with k,
as defined in (A4.23). In more detail, we have from (A5.1) the following

scalar counterparts to (9.3)-(9.6):

M, (x,y) ks (y7x) £,, - (A5.2)

M_ (x,y) = ke (yx) £,, - (A5.3)
SR

B

k, (y=-x) " '.:c':

M+_(x,y) = e + f,_ (A5.4) *thr
i

M__(x,y) = e (y=x) £,_ (a5.5)

We will occasionally use the e, ,,...,f__ notation instead of the o,,$ notation

since the former notation acts as a useful mnemonic. However, for reference,
we also can write (A5.2)-(A5.5) in the form
k, (y=x) _ 42 ek-(y"‘)]/A

M++(x,y) lo,o_ e

u_ (x,y) = p_s[ee(y®) _ ke lymx)yy,

M,_(x,y) _D+5[ek+(y-x) - ek_(Y‘X)]/A

__(xyy) = -8z TR L o Gk Xy,

It 1s at once clear

M++(x,x) =M__(x,x) =

= M_+(x,x) =

[ g ok oF ok o
iz?&ﬁfﬁ‘
x, .
'y
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Moreover, M, _(x,y) and M_,(x,y) differ multiplicatively only by a constant

factor =p,_/p_ (= -b,/b_). Observe that the interchange rule (9.9)-(9.12) &Er W
holds here also. Y
When k,(y-x) is small, then to first order in k,(y-x) the quantities in W

(A5.6)-(A5.9) may be reduced, with the help of (A4.28) and (A4.29), to .ﬁﬁgﬁﬁﬁ

M, (x,y) =1~ r+(y-x) (A5.11) MY

M_, (x,y) = -o_(y=x) (A5.12)

EE

—

=

M,_(x,y) = o (y-x) (45.13)

t

2

e
)1

e
o

M__(x,y) =1+ t__(y-x) (a5.14)

i

These relations may be compared to (9.3a)-(S.6a). ®
I
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6. Reflectances and Transmittances for a Homogeneous Layer {ﬁﬁf_*:
AT A
NCE RNt
The formulas (10.3)-(10.6) that convert the fundamental operators P
SRR
My »-++,M__ to reflectances and transmittances R(y,x),...,T(y,x) of a water \*qg;' :
TGN
layer X(x,y] can be applied to the present scalar case also. Thus using WY ;.\’
it
AU
(A5.6)~(A5.9) in those earlier formulas, we find, for x < y < z, " ®
N ‘| V]
o,
¢ ..!.
- - - - o '
R(y,x) = -p*G[ek+(y x) _ ek_(y x)][p+p_ ek+(y x) _ 52 ek_(y x)]_1 (46.1) Q' ~$\&
TR
- - - o
T(x,y) = se'ks*kI(y=x) (o,0_ Kelymx) | g R (ymx) (A6.2) DTANN
-". -~q-"
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- - - - AN
R(x,y) = -p_s[ek+(y ) | kly x)][¢>+¢:t_ e lymx) |y K (y x)]'1 (A6.3) NN
@
- - w, %
T(y,x) = 8(o 0_ ek'f(y x) . g2 ek-(y x)]“ (A6.4) \?‘
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From these relations we can read off various important physical properties of

the optical medium. For example,

R(x,y)

(o_/0,) R(y,x) [=(D_/D,) R(y,x)] (A6.5)
and —

T(x,y) = e(k++k—)(y-X) T(y,x) = e(T—-T+)(y-X) T(y,x) (A6.6) 1Al
PN Ts

P Wi ¥ 3%y
The parenthetical statement holds if we adopt the assumption by = DiB, as in i'!?ﬂgﬂ
O:Q'o.!'o:l‘v‘
§A2 above. Thus we see that upward and downward slab transfer properties are gpssﬂzﬁ
it e,
WA
equal if and only if we have lighting isotropy (D, = D_), as observed ~#g“?$hﬁ

earlier. When k,(y-x) is small, (A6.1)-(A6.4) reduce, to first order in SRS
kt(y-x), to

TR

LI T I
R }

R(y,x) o+(y—x) (46.7)

e
‘I 5

Y Y ALY
SRR
<l

T(x,y) =1 + v_(y-x) (A6.8)

s
2y
-
S 3
P

7’
5

2

>,
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R(x,y) = o_(y-x) (A6.9)

x
%

T(y,x) = 1 + 1_(y=-x) (A6.10)

A
XX
5

LY

b d

T ™

s

When k,(y-x) is large, then

T(x,y) = B_%. k- (y=x) (A6.11)
+" -
T(y,x) « —— ek (yx) (A6.12)

In the limit of infinitely deep media, we find, from (A6.3), with the help of

(A4.27), (A4.30), and (A4.31) that
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R_(=) = Llim R(x,y) = ~6/p, = ~(x,+k,)/0, = (a,+b, = k,)/b, (46.13) o
y‘m .

-0_/(t_~k,) = b_[(a_+b_+k ) (A6.14) \.'N:.;ﬁ :

= - -1 = f=1
e_,e.3 £-Lf_, (A6.15) .
The last equality, (A6.15) (which stems from (A4.7)), shows the formal

. . . Bodaste e
connection with the radiance case, namely (11.3). The alternate formulas YA
(involving a4, by, kt) are model versions of exact relations; see H.O., qﬁF'W
Vol. V, p. 113, Furthermore, from (A6.1), again with the help of (44.26), :';a.

(A4.29), and (A4.30): sk; W,

e
ol
2

., hY
St T '
L,

e,
2
L4

g ’J‘

R (=) = lim R(y,x) = -8/p_
y-om

-(t_+k_)/p_ = (a_*+b_ - k_)/b_ (A6.16)

A

i

%
(XX

-0,/(t,-k_) = b /(a +b +k_) (46.17)

- -1 = §- o A

e el = fll £ _ (A6.18) NN
The last equality, (A6.18), as (A6.15), shows the formal connection with the ey
isotropic radiance case. Observe how (11.12) and (11.14) reduce to the - \45
present formulas if one momentarily allows isotropy in the preceding equations -ﬁ\\;

and relaxes the non-commutativity property of matrix multiplication in K

Bates
section 11 (think of the matrices as 1lxl). $£§E

7. Solution for a Finitely Deep Medium ﬁ“?&ﬁ:;

)

We now may assemble the pieces of the solution of (A2.1) for a light

PN
-

field in a finitely deep medium such as that shown in Fig. l. We assume given

the set of four irradiance reflectances and transmittances t(a,x), t(x,a),
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:: r(a,x), r(x,a) of the wind-blown surface X[a,x], as generated in Preisendorfer :{,’.E-,;
‘ - N
and Mobley (1985, 1986). The optical properties of the homogeneous water body tﬁ_‘c*'
b X(x,z] are specified by the D,, a, and b parameters in (A2.1). Finally, the o
X G
! reflectance R(z,b) of the bottom X{z,b] is assumed specified. Downward g"' z
Iy, - SO
¢ irradiance H(a,-) is incident on the upper surface X[a,x] and there are no 3 ‘
X other sources of flux on or in X[{a,b] = X{a,x] U X[(x,z] U X[z,b]. It is _ -
B hat
LY
required to find H(y,*) for all depths y, x <y < z, and also the emergent '_\-‘_’ii(f.
» R . tx\:n
irradiance H(a,+). b‘_{;.g"
We start with the mapping (A3.5). Using (A5.2)-(A5.5) we find, on .’
2o
rearranging the terms: R
) L
' Py
: o
H(y,#) = a*(x) 587X £ 4 a7(x) 00 %) ¢ (a7.1) 7t
] +i -_+.. ’;p" \}
A SN
<8 "‘-"‘-‘ A
p . q"%(.'§
A S
J where ::’:.¢
Pa Pt )Y
; oy
i + NN
" a (x) z H(x,+) e + H(x,=) e_, NS
: ‘ (47.2) G
: - R
a (x) = H(x,+) e, + H(x,=) e__
";".:i
Ry
Now consider the composite medium X[x,b] = X[x,z} U X[z,b] consisting of the :\:
. ~‘
water body X[x,z] and the reflecting lower boundary X[z,b]. Let us assign a i
. reflectance R(x,b) to X[x,b], which we will later show how to evaluate. For
13
: the present, the global interaction principle applied to X[x,b] yields the
: relation
3
H(x,+) = H(x,-) R(x,b) (A7.3)
)
b
)
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The amplitudes a¥(x) in (A7.1) and (A7.2) then reduce, with the help of o

(A6.15) and (A6.18), to NS,

at(x)

H(x,-) [R(x,b) - R_(=)] e,, (A7.4) W)

a (x) = H(x,=) [1 - R(x,b) R (=)] e__ (a7.5)

We therefore may evaluate H(y,*) at every level y in X[x,z], provided we know e S

H(x,-) and R(x,b) (cf. (16.2) and (16.3)). T e

3

4
=
=5

Now, by the scalar version of the union rule in §l15, for X[x,z] and

>
-+ 27

L,
2

- 8
’ R
XL
e

X[z,b] we have

o
Pé
o

R(x,b) = R(x,z) + R(x,z,b) T(z,x) (A7.6)

P,
<
22,

T

where

s
)

R(x,z,b) = T(x,z) {1 - R{z,b) R(z,x)]"! R(z,b) (A7.7)
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The quartet R(z,x), T(x,z), R(x,z), T(z,x) is found via (A6.1)-(A6.4), while
R(z,b) is given.
To find H(x,-), we use the scalar version of the imbed rule in §l&4 to

first of all determine

T(a,x,b) = t(a,x)[1 - R(x,b) r(x,a)]"! (A7.8) :5
R
e
I
where t(a,x) and r(x,a) are the air-water surface's downward irradiance ) ..
S
transmittance and upward irradiance reflectance, respectively. Then t}tft}”
ﬁj\ﬁ:ﬂ‘
oA
oAb
H(x,-) = H(a,-) T(a,x,b) (A7.9) ®
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The emergent flux H(a,+) at level a is given by the global interaction

principle applied to X(a,x]:

H(a,+) = H(a,-) r(a,x) + H(x,+) t(x,a) (a7.10)

where H(x,+) is given by (A7.3), and r{a,x) and t(x,a) are the remaining two
irradiance transfer coefficients for the air-water surface. This completes

the solution.

8. Soluticn for an Infinitely Deep Medium
In (A7.4) and (A7.5) set R{(x,b) = R_(=) (which is the limit, as z+=, of

R(x,b) in (A7.6)). Then for x < y < =, (A7.1) reduces to

H(y,2) = H(x,=)[1 - R_(«)R (=)] e__®-(Y™)¢_ (a8.1)
or simply

H(y,-) = H(x,-)ae"-(¥7%) (48.2)
and

H(y,+) = H(y,-) R_(=) (48.3)

where A is given in (A4.29) and R_(=) in (46.13). H(x,-) is given in (A7.9)

with b = =, and H(a,+) is given by (A7.10). Thus we find

H(x,=-) = H(a,-) t(a,x) [1 - R_(=) r(x,a)]"! (A8.4)

H(x,-) R_(=) (a8.5)

H(x,+)

and

VT W EN RV VYUY UNYY V‘QIF’: ::]

.y N
AN
PERSAS

()

A A AT
i AR
AR WA

l‘-
py )
?
nﬁiﬂ
A o
oz

L0
’
N
-

P
]
.;;“',

'l 3 '. v
'i'.‘t".i
l'l{'li;
|

*

B AR
P4
. 8

]
P |
e
Pd

‘l‘l
<,
s S
] a l\l
F AP AP 4 &

[4

. 1]
“I
" T
¥

o
(4

)

‘.
o
;{s%

A,
qfﬁﬁ”ﬁy
LA

L%

3

« v '
~ % H A

P
7~

h
’
2

v ?
R A o B

h)
‘e




. e an ow i oB

- e

X

- - - I

4

R

¥
TR
:.O" "gh‘*\' :.p

) .’i ' L) () ) d
et XY

H(a,-) {r(a,x) + t(a,x) [l - R_(=) r(x,a)]"} R_(=) t(x,a)}

H(a,+)

H(a,-) R(a,=)

]

Here R(a,=)

applied to the union X[a,b] of X{a,x] and X(x,b], we have

R(a,b) = r(a,x) + t(a,x) [l - R(x,b) r(x,a)]"! R(x,b) t(x,a)
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(A8.6)

is the limit, as b + =, of R(a,b) where by the union rule (15.1)

(A8.7)
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