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ABSTRACT

The Mode-I fracture toughness of a brittle material reinforced by aligned brittle fibers is studied
theoretically. The fibers are assumed to slip relative to the matrix when a critical interface shear stress is reac'.ed,
and the toughening action of the fibers is presumed to be due to bridging of crack faces in the vicinity of the crack
front. The toughening due to the fiber reinforcement is related to basic parameters associated with the related

problem of steady-state matrix cracking in the presence of intact fibers. Bridge lengths at fracture and fracture

resistance curves are calculated. S T R R SRR S S J
-~ ‘ . . | ) Y . - * ' .
}
NOMENCLATURE
a fiber radius
c fiber volume fraction
E longitudinal composite Young's modulus, = cEf+ (1-¢)Ep

Ef, Em fiber, matrix Young's moduli

G, G fiber, matrix shear moduli

critical matrix energy-release-rate, = (1-vV2)K2m/Em
applied stress-intensity factor

critical matrix stress-intensity factor

W@ AANLY,

bridge length

&
L]

complementary energy, spring model
fiber breaking stress
strain energy, spring model

AR
,l,{‘l...-&- h

crack-face displacement
non-dimensional bridge length, Eq. (26)
modified toughening ratio, Eq. (19)
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A toughening ratio, K/Kp,

Vf, vm fiber, matrix Poisson's ratio

Cp, 01 reference stresses, Egs. (1-2)

Ocr critical stress, steady-state matrix cracking
T fiber-matrix interface shear resistance

INTRODUCTION

This paper addresses the problem of calculating the increase in the Mode I, plane-strain
fracture toughness of a brittle material when it is reinforced by long, aligned, brittle fibers, with
sliding between the fibers and the matrix suppressed only if the interface frictional shear is less
than some limiting siress. The configuration contemplated (Fig. 1) is an infinite domain containing
a semi-infinite crack that is bridged by intact fibers in the vicinity of the crack tip. The crack is
growing in a quasi-static, steady-state fashion, with simultaneous fracture of the matrix along the
crack front and failure of the fibers at the end of the bridged zone. This crack propagation is
imagined to occur under the imposition of a remote stress field that corresponds to an "applied"
stress concentration factor K, which is accordingly defined as the fracture toughness of the
composite material. The primary aim of the present study is to provide theoretical results for the
ioughening ratio A=K/K,, where K, is the fracture toughness of the unreinforced matrix material.
In addition, resistance curves will be produced, showing how an initially unbridged crack grows
into the matrix material as the applied K is increased towards its critical value.

The present results should be applicable to less idealized geometries if the conditions of
small-scale bridging are met, wherein the bridge length L is small relative to all other pertinent
dimensions, such as crack length and distance of the crack tip from the boundary. Work on the
toughening problem by MARSHALL and EVANS (1986) and MARSHALL and COX (1987)
considered configurations for which the small-scale assumption was not made. Besides its
emphasis on small-scale bridging, the present paper differs from these studies primarily in the way
the analysis and results are linked closely to basic parameters associated with steady-state matrix
cracking without fiber failure (BUDIANSKY, HUTCHINSON, and EVANS, 1986). The importance
of a statistical variation in fiber strength have recently been emphasized by THOULESS and EVANS
(1988), and the influence of residual stresses has been discussed by MARSHALL and EVANS
(1988), but these effects are not considered in the present paper, which is based upon the
preliminary analysis that was outlined by BUDIANSKY (1986).




° 3
s
ES STEADY-STATE MATRIX CRACKING
DS,
N
{ ' We review here results found by BUDIANSKY, HUTCHINSON, and EVANS (BHE) for the
" stress Oy associated with steady matrix cracking (Fig. 2). In the absence of initial stresses, O¢r is
:.": given in Fig. 3 in terms of the reference stresses 6 and o) defined by
N
N 1/4
: 6c’E; G 12
o5 OOIE = B 2 aE
- (1= E(1+v ) m )
: and
sl
1N
173
. 6c2E a d Gy, 1/3
G =
1 (1—¢)EE, aE @)
I -
» "
) >
" where
i 1/4
® B 2(1—)®
L
'
T The ratio 61/0g plays a key role as a non-dimensional parameter that characterizes the frictional
( shear strength of the fiber-matrix interface. For T — 0, 61/6¢9 — 0, and then ©¢ — ©3; thus, ©7is
; . the critical stress for matrix cracking when there is extensive interface slip between the matrix and
S the bridging fibers. On the other hand, for /6 > 31/3 there is no interface slip during steady-
-:-_ state matrix cracking, and in this case G¢r = Gp.
) For 61/6q < 31/3, the curve in Fig. 3 was described parametrically in BHE by
: °cr_z(3)3 _"_(_ﬂ_)
- G 3\6) ° %o \Y*+3Y-1 @)
_‘ for 1 < Y < oo, This provides the implicit equation
-
...’ 3
.. O¢r 1{ Oc Y O1 ¥ 10 6
- 5 ) "3 5 \%) " 7s) T
~ 1 1 0 0 (5) For
._ for O¢r. -
I:: If the fibers remain intact after the matrix is fully cracked, the composite may continue to | g
- resist additional stress, as shown schematically by the idealized stress-strain relation in Fig. 4. The . __ |
-f;' ultimate composite strength is then approximately Gmax= ¢S, where S is the breaking stress of the —
6 fibers. Citrriutions
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SPRING MODEL; EQUIVALENT NONLINEAR SPRING STIFFNESS

The steady-state matrix cracking problem of Fig. 2 may be modeled by the configuration
shown in Fig. 5a, wherein crack-bridging springs of zero initial length are imagined to emerge
continuously from the crack tip as the crack grows. The stress G in the springs will be assumed to
depend on the the crack opening 8=2v (Fig. 6) in such a way as to make the matrix cracking stress
of the model the same as that of the fibrous composite. In establishing this equivalence, the crack-
tip energy-release-rate Gy, in the model problem will be modified by the factor (1-c) in order to
simulate the reduction in crack area associated with the presence of fibers. Once the appropriate
spring characteristics are thereby deduced from the BHE results for steady-state matrix cracking,
we will be able to use the spring model to study the toughening problem (Fig. 1).

By setting the modified crack-tip energy-release-rate equal to the difference between the far
upstream and downstream potential energies per unit length, we get the condition

ocr
0,9(0) — Jo 0dd = (1—<)G ©

governing the critical matrix-cracking stress of the model problem. Alternatively, we can write the
J-integral (RICE. 1968)

Sop BuB
J= J JO Uquﬁaan - GaB —a;-na ds=0

around the path shown in Fig. 5b to get the same result, if, again, we multiply the contribution
from the small circle around the crack tip by the factor (1-c). Eq. (6) is equivalent to

@)

Qo) :
(1-¢)G,, ®)
where (see Fig. 6) Q is the complementary energy function
[¢)
Q(o) =J. &do .
0 )

Note, for future reference, that the strain energy

o]
V(o) =J cdd
0 (10




is related to Q(c) by
V(o) = 0Q'(0) - Q(0). (1)

We now demand that the cracking criterion (8) give the BHE results for o.;. In the slipping-fiber
case, we equate the left-hand sides of (5) and (8) to get

QO (oc,] 106,)( )“ 1(01 ¢
<G, +3(ol o) 27 0_0)'

& (12)
S0
;:‘::i In the no-slip case, the cracking criterion may be written as (G¢/6g)2 = 1, and comparison of this
i with (8) gives
:." :" Q(ocr) ( Ocr )2

N ——=— ]
:\r (I—C)Gm Ty (13)
o
'::.“ (The validity of these identifications is corroborated by the fact that the right-hand sides of both

(12) and (13) are indeed proportional to 1/Gp,.) We can now write a general formula for Q(co) by
noting that the no-slip condition for fibers (Eq. (27) of BHE) may be expressed as

o 1("1)3
—<
Gy ~ 3\ 0

in terms of the smeared-out fiber stresses © at the crack face. Accordingly, the complementary
energy function for the springs is

(14)

3
2
c c _1(0
(S —_c<
Q(o) (0'0) (1-)Gpy for o = 3(0’0) (15a)
-
3 4 6 3
b [(o 1o(01) 1(0 3 1(01)
-':-\‘ _[(Cl) + 30'1(0'0) 27(00) ](I_C)Gm for GCp 23 Go ’ (15b)
“ From (11), the strain energy function is
e 2 3
A lo} o 1( O
~ = = —_—< | —
__::_: V(o) (00) (1—)Gp, for S 3( 00) (162)
o s\ 1(oY c _1(0; ’
e =2 =] + 5= —>=l=1.
o [2(01) ¥ 27(00) ](H)Gm 5, 3(00) (16b)
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fiber strength. Now define the modified toughening ratio

I
3
Py 6
ot
W
(This last equation for V corrects errors in Eq. (28) of BUDIANSKY (1986)). Finally, the stress-
displacement relation for the springs is given by v = 8/2 = Q'(5)/2, whence
c (o 3
v={Z|1-0)G, for — < —(—‘)
0.2 Gy 3 Og
0 (17a)
3 3
30> 10 c
{5——3' + g—:}(l—c)Gm for O’g 2 %(;1') .
Si "G ° ° (17b)
FRACTURE TOUGHNESS
We now contemplate the configuration in Fig. 1, and model it with that shown in Fig. 7a,
wherein the semi-infinite crack is partially bridged by springs possessing the properties that we
have just established. Far from the crack tip the material is regarded as homogeneous but
orthotropic, and subjected to the far-field stress state
K
Cap = —faﬂ(e)

V2rr (17)
where fop(0) = 1, and the angular distribution function fap(0) = fop(-0) is appropriate for the
particular orthotropy of the composite. Thus K is an "applied” Mode-I stress-intensity factor,
while the stress-intensity factor along the crack edge in the matrix material is assumed equal to Kp,.
Now write the modified J-integral around the path in Fig. 7b to get

o 2.2 2.2

(I-v)K®  (1=c)(1-VviKE,

= +V[o(L)]

.:::.' AE Enm (18)
?.; where the constant A takes into account the orthotropy of the composite, and, as before, the (1-¢)
.r‘ factor reflects the fact that fibers interrupt the crack front. Note that the first term on the right is the
f~ . . . .
T same as (1-¢)Gm. If we now assert that the bridged configuration propagates steadily, with
.‘_f‘_j simultaneous matrix fracture and "last" fiber failure, we can set 6(L) equal to ¢S, where S is the
®

K/K,,

JAAEE, 19)

A

and use the formulas (16) for V in (18). Then we get
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A= [1+(CS)( 1)] for C—S-s-l-(-—l)
6,)\0o/ | 1 3\0g
6112 2
cS 1(0 ¢S _1(0y
[“2( )* zv(oo)] o 523(z)
and this gives the curves in Fig. 8, showing A vs. ¢S/01 for 61/6g = 0,1,2. An estimate for the

orthotropy factor A in the definition (19) of the modified toughening ratio A is given in Appendix
A.

(20a)

(20b)

These results may be rewritten to show A as a function of (cS/0¢y) in the form

[ cS 2712 (01/(50)3
A—_H( ) (0'0) ] for O 3(0¢/Op) (21a)
cS 3 Ger 3 172
(o_cr) (EO-) 1(0; ) (G,/00)°
= l+2———(ol )3 + '2—7(0_—0) for —3(0'(;1—/0'0)
L Co (21b)

wherein (6¢/G0), given in Fig. 3, in turn depends on 61/6g. Thus, the toughening has been
related directly to the ratio of the fiber strength to the theoretical stress for steady-state matrix
cracking. Curves showing A vs. ¢S/O¢r for (61/60)3 = 0, 1, 2, 3, and oo are given in Fig. 9.
Recall that in the case of steady-state matrix cracking, the post-cracking strength Gmax of the
composite is approximately equal to ¢S, assuming cS>G¢r. Accordingly, the abscissa in Fig. 9
may be interpreted as Gmax/Ocr for ¢S/G¢r >1.

In the limiting case 61/0g — 0, O¢r = Gp, and the modified toughening ratio is simply

A=[ 1 ‘;‘z) ]”2

(22)

(For all finite 61/ > 31/3, we still have 6 = G¢, but then (22) holds only for ¢S/cg <(61/00)3/3;

for larger values of cS/og frictional sliding will occur before fracture, even if it is absent during
steady matrix cracking.)

For 61/6¢9 — 0, in which case G¢r = 61, we have
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A= [1+2(CS) ] .
1 (23)

.
B

~qn AU ;

_-j Fig. 8 shows that this approximation remains quite accurate for moderately high values of 01,0y.
> Note that Figs. 3 and 9 show that for decreasing frictional resistance t, and hence lower o1,
-"_‘a‘_ . . .

W the steady-state matrix-cracking stress O¢r goes down, but the fracture toughness increases. The
s

curves in Fig. 9 would appear to imply an inherent limitation on the amount of toughening that
could reasonably be expected from a well-designed composite. Fracture toughness is an increasing
function of the ratio Gmax/O¢r associated with matrix cracking and failure in uniaxial tension. Since

it is unlikely that values much larger than 2 for this ratio would be considered desirable,

1y, -
',ru

' toughening ratios around 4 may be the most one might seek.
..-'
o TOUGHENING VS. BRIDGE LENGTH; RESISTANCE CURVES
\:: :
.- " To calculate the size of the bridged zone when fracture occurs we have to set up and solve
o an integral equation for the stress in the intact fibers along the crack faces. For this purpose we
_,.\,; contemplate the spring model of Fig. 7a, and note that the crack opening displacement v(x) is given
!',‘_'n‘
.»:3 by
2
| oo VR~ da-vi b &wr) i
R v(x) = ———VX — —_— |dx
:*:: V2t AE " mAE 0 V [x—x'| (24)
e
I where the first term represents the displacement due to the far-field loading, and the second term is
», ' the crack-closing effect of the spring stresses. The orthotropy factor A, the same one that appears
3 'j:::: in the J-integral (18), correctly modifies standard formulas for crack-face displacement in isotropic
» ,_‘Z::-f materials (e.g. TADA et al., 1985). Equating the displacements in the bridged zone to those given
N :j::. by the constitutive relations (17) found for the springs provides the integral equation
e
-.:_‘_~: 4( l—an)K \/._ 4(1—\’3“) LO’( ) '\/;-F‘v/?)d ,
ey X - x)log] — |dx
- V2r AE TAE Jo VIx=x/|
o 3
‘-. (1-c)(1-v2)K2, (x) _1(O
v = o(x) for = < o
:: G%Em 0 0
e
N 2\12 3 3
o~ _1=00VKE 3% | 101} o 000 1(01)
2 - E 273 T 6.4 oo  3\oy)
-r'. m L o) Op 0 0 25)
"
< |
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It is shown in Appendix B how this integral equation, suitably non-dimensionalized, was solved

simultaneously with the J-integral relation (18) to provide results for the modified toughening ratio
A as a function of the non-dimensional bridge length

s iE_m(&)zL

TAE(1-eZ\K, /) ™ (26)
Fig. 10 shows curves thereby calculated for A vs. a, for (61/0p)3 = 0, 2, . Remarkably, the
introduction of the theoretical steady-state matrix-cracking stress Oy into the definition (26) for the
non-dimensional bridge length has made the results come out nearly the same over the full range of
composite parameters.

With A given by Eq. (21) (or Fig. 9), these results provide the bridge length L
corresponding to propagation of the cracked configuration of Fig. 1, with simultaneous matrix
fracture and fiber failure at the end of the bridged zone. However, the curves of Fig. 10 have
another interpretation as resistance curves , in the following sense. Suppose a pre-existent,
unbridged crack in the composite, cutting through both fibers and matrix, is subjected to a
gradually increasing far-field K, and re-define A in Fig. 10 in terms of this current value of K. As
K increases, the crack will advance into the matrix material, and crack-bridging fibers will remain
intact as long as A remains below its critical value for final fracture of the composite. If we now
redefine L as the amount of matrix crack growth that occurs before overall composite fracture, the
relation between the current values of K and L is given by the curves of Fig. 10.

It is noteworthy that reduction of the frictional resistance 1, and hence O, will result in
increased matrix cracking and bridge lengths before and at final fracture .
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CONCLUDING REMARKS
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The fracture toughness of brittle materials reinforced by aligned brittle fibers has been
related simply to parameters associated with the steady-state matrix cracking of such materials. In
each of these processes the fiber-matrix interface shear resistance plays an important role, with
opposite effects: decreasing shear strength increases the toughness but lowers the matrix cracking
resistance. This is consistent with the fact that low interface friction may result in large amounts of
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matrix cracking associated with the fracture resistance curves of the composite. The effects of
various other physical and geometrical parameters may be assessed with the help of the formulas
and curves that have been presented.
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( ORTHOTROPIC FACTOR A
fl
o Consider an orthotropic material, isotropic in planes normal to the xj-axis. The energy
B _\-:,
L release rate Gy associated with a mode I crack in the x3-x3 plane is related to the stress intensity
‘ Y
_ factor K] by (TADA et al 1985)
-
oS G = CKf (A1)
1O
e where C is defined in terms of compliances Ajj by

- 12
A AnAx Ay 2A10+ Ags
. €= \/ 2 Ap M) Ap (A2)

e The compliances may be expressed in terms of conventional elastic constants E, E, G, v and v
°
“ defined by
B -
1
::::'\ g = 0'1/5 s Eg=— VO'I/E for Gy=0C3= 0;
N r v T
'-"'\ €2=62/E s €3=—V02/E for 0]=C3=0 s
-\.-.
.‘--.: and le = 012/0.
- For plane-strain cracks
A
) 1 2= v 1 2 1
‘ = =(1- Ap= - = V), Apy= = (1 =V, Ag= = A
An= g1 -VEE), Ap g (1+79), Ay E( V), Ass= g (A3)
RS
-
.f“ In th~ J-integral expression (18) C is represented by (l—vfn)/AEm and therefore
. 2
£% 1-v
* A=—o=" (Ad)
" CE,
[} '\:‘.'
e For aligned fibers the <lastic constants E, E, G, v and V may be estimated on the basis of the self-
e.s consistent model (HILL, 1965) in terms of En, Ef, v, vfand ¢. For ve= vy = 1/4, the
V:ﬁ:j:.' consequent dependence of A on c is plotted for various values of Ef/Em > 1 in Figure 11.
! ‘-::.
°
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APPENDIX B

INTEGRAL EQUATION SOLUTION

The substitutions

(Bla)

oa)z
= L (Blb)

into the integral equation (25) give

@ Vs + Vt r3
Vs - 1 ( )d =p? <
S JO g(t) log — t =p" g(s), g(s) < Wirn (B2a)

3py >
= -2.(%) A2 gz(s) + ol = otherwise (B2b)

where
r= 0'1/0'0, U= O’c,/O’O.

Making the same substitutions (B1) into (18) gives

3
AP -1 = 22A%%) o) € — B3a
H'A g (o) g(a) Waimm (B3a)
3 6 3
_ 4@-(E)A33a+r_, )2 — B3b
- g’() 55 g(a) Warm (B3b)

An alternative expression for A that can be shown to be consistent with (18) and the integral

equation (25) follows from the relation (TADA et 21, 1985)

L
Vl—cKm = K - .\/zj 2(x—)dx,
TJo X

namely,

o -1
e - es] ®o
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The solution of the integral equation (B2) follows the set-up developed in BUDIANSKY,

AMAZIGO, and EVANS (198R). Differentiate the equation with respect to s to get

o
1 1 t g(t) _ 2,
o3 i e e P B
VIA 4 ,
= Tk g(s) g'(s), 525 (BSb)

where s satisfies

= . B6

To satisfy the original equation (B2) we have to enforce it at one point in addition to satisfying

(B5) for s in (0,a). Enforcing the integral equation at s = o gives

o
\/E+\/T) 3/p Tig
- JO g(t) log( — dt 5(-—) AVZ gXa) + TN (B7)
We now let H
(s)
= — B8
g(s) NS (B8)
in {B5) to obtain
“Ht
32§32 t—(-:-dt = uWs[2sH'(s) - Hs), s <sg (B9a)
0 1=
= 3V2A 3 H(s) [2sH'(s) — H(s)], s 2§ (B9b)
r
It is convenient to write
H(s) = C(s/o) + f(s) (B10)
where C = Yog(a), and f(0) = f(a) = 0. Then
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0 .
O -
s R O PR FOWEE
( 0 t—s (04 S
s
‘ \f’k‘ 2 S
o 1} \/?[—C+2sf '(s)-f(s)] , s <§g (B11a)
e «
L™ =
NN 3rrg\2
) l 3\/7/\(%) [(a) C{C+20f '(s)} + f {2sf '(s) — f(s)} ] , $28p (B11b)
‘ :::
o A Now let
WO
P s = 5 (1-cos ) (B12)
Tt
;-. and expand f in the Fourier series
\: N
&\ f(s) = z a, sin (n0). (B13)
’_. 1
¥ . We note that
- N
= 0
i Jo f—_sdt = nzl‘ a, cos (nB).
) We now substitute the above into (B11), multiply the resulting equation by sin(m6) and integrate
' over [0,a] to get
3 N 3 o
e B_,(6,) C + 3«/7,\(%) D_(8y) C*+ z En(80) 2, + 3«/3/\(%) CZ nF (6 2,
=1 n=1
e JN N ’
-'.:-' + 3‘/_2-1\(%) ZZGmnj(eo) anaj = (13/2 Am’ m=1,..,N (B14)
._, n=1 j=l.
::E: where l
) |
S Bp(60) = 2% (Ap +Qp) + Vo p? Hy(8p), ‘
' E_.(08p) = 02t Kyy + 21 0 m Lyp(8g) — u¥V & Upgy(8p).
,’. Gmpj(00) = 1l Spajm(B0) + 5ign(i—n) Sjpym(80) ] = Tpm(Bp),  n#j
\ = 2SZn,m(eo) - Tnnm(eo)’ n=j
L
o
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m(—l)“‘“( S )

A =
® 4m3-1 4m2—9

1
D, 1 > cos 8g —

=53t 16 cos 26p + =

1
3 48 cos 36y,

103 1

3 1 1
D, = - 107 = 7 08 8o+ g cos 290-—ﬁcos 360+ & °os 49,

1 m l{ cos (m+1)6,
§m _4] 4 m+ 1 +
cos (m—2)60]
m-2 ’

cos (m—-l)GO]
m-1

8m Em

cos (m+2)0,

m+2 m>2

+3 6o+ [
8mCOSII‘lO 16

1 .
3 (Voem + sign(m-n) Vip_p), for m#n
Fin =
1
3 Voo form=n

3{ sin (m+1/2)0,
-3 —

sin (m—l/Z)GO] 1[ sin (m+3/2)0,
m+ 1/2 8 -

sin (m—3/2)0,
m-1/2 m+ 3/2 ’

m-—3/2

+ +
8 2 (r1—1/2)2——m2 (n+3/2)2—m (n—3/2)2—m2

m(-1)™™" [ 3 3 1 1 }
- - =+ ,
(n+1/2)°—m

1
Sej = 3 (Rig = Riyy).

cos (j+m-n)8,
j+m-n

cos (m+n—j)8,
m+n-j

1( cos (n+j—m)B,
3 n+j+m

cos (n+j+m)6, )
n+j-m

2njm( ynHm . . :
+ 52 3 7 33 , forn#j+morj#n+morm# j+n
n+J+m 2(nj+Jm+mn)

1 (: cos (2j6p)  cos (2n6y)
— - + -_—
8 j n m

j n m

8

m=j+n

cos (2m90)] 1(1 1 1)’

and similar expressions for n = j + m and j = n + m obtained by cyclic

permutation of j, n and m.

.................................
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U = 1{ 1 1 cos (m-n+1/2)8, cos (m-n-1/2)0,
M4 min)-14 (m-n)*-1/4 m-n+1/2 m-n-1/2

cos (m+n+1/2)6;  cos (m+n-1/2)8,
m+n+12 m+n-172 ’

and

e0
Lon = I sin (6/2) tan (6/2) cos (n6) sin (m6) d6,
0

T
_ .5 1 + cos 9) .
Q, = J; sin “(6/2) log(--———-l_cose sin (m@) do,

n
_ 1-cos © n
R, = J-eo 0 [ cos (n6) — (-1) ]1d6,

Vk =

n _ 2
j (1—cos Oy . (x6)de,

9, Sin 0

were evaluated numerically in spite of the fact that the last two integrals can be evaluated

analytically in terms of finite series. 6 satisfies the equation (B6) with sg = (a/2)(1 - cos 69), that

is
N
3
1 Z . rva _
5(1 —cos 65) C+ £y a, sin(nBg) ~ 3\171\” sin (6y/2) = 0. (B15)

Substitution for g into (B7) using (B8), (B10), (B12) and (B13) gives

N
%(1 +2log2)C + 37—’%(%)3&3’2 c? +§ Pa, =1- E%_A o2, (B16)
where P, = jon cos (6/2) log l—gc;zi—r(‘é/—g/)z—) sin (n6) dO .
Equation (B3) relating C and A is
A2 -1 = 2p%a7iAC)? AC < ™Va/3V2p (B17a)
= aZn oAy +1%27, AC 2 N a/3V2p (B17b)
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f -:!:n

'v:h:
A0S while the alternative formula (B4) becomes

v,

W N -1
{

) A = l—C—nZan . (B18)
' ,‘x l
e

‘~"' For prescribed values of r = 61/6p and o the N+3 nonlinear equations (B14), (B15), (B16) and
ty

»] (B17) were solved by the Newton-Raphson iteration method for the N+3 unknowns C, ap,
P

»\.'_:-I n=1,.,N, A and 6¢g. The formula (B18) provided a check on the accuracy of the numerical
LSS

b-'.A'

.J:.:: scheme. For values of o presented in Fig. 10 the error in the value of A was less than 1%. For
( G1/00 — oo, 1 — 1 and equation (B2) becomes

\s - Ja Olog =V 4 = o)

o o B B ot B

N
o This is equivalent to the linear spring problem analyzed fully by BUDIANSKY, AMAZIGO, and

EVANS (1988) and ROSE (1987).
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Composite fracture; crack-bridging by aligned fibers in vicinity of crack tip.

Steady-state matrix cracking; intact fibers.
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Fig. 3 Theoretical results for matrix cracking stress G;.
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Fig. 4 Idealized stress-strain curve for aligned-fiber composite; matrix cracking at ¢ ~ Gy;

failure at G ~ Opax = CS.
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Fig. § (a) Spring model, steady matrix cracking.
(b) J-integral path.

= -
L4 LI I Y
Sy
Lo vty

L3 -. l"‘
LS G U N

s

N Oy N T T, R S S B B N T S T A RS S Y
n DS ..-'M. N !!!\'-!t‘n.i‘o. Tty e Lo VORI 'P"b““'“ NG

ot




L e U N TE T TN N TR Y Lo Sk o Ao VT RYK T IRT T W heaat a o

21

QL Y ryryy
e
M [l 94" .

.l" lx
1’ l. .

x
.

s
Pt
P

e
Q

250 )

-

-

>
E At
(o]

Y W

F )
N

FLARK

Fig. 6 Spring stress-stretch relation; V = strain energy; Q = complementary energy.
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(b) J-integral path.
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Modified toughening ratio A = ; abscissa = Omax/O¢r for ¢S > o
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Fig. 11 Orthotropy factor A vs. fiber concentration ¢; v = v = 1/4,
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