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Abstract

Given the shortest Hamiltonian path (or tour) H® in an undirected
weighted graph, the sensitivity analysis problem consists in finding by how
much we can perturb each edge weight individually without changing the
optimality of H°,

The maximum increment and decrement of the edge weight that preserve the
optimality of H® is called edge tolerance with respect to the solution HO. &
method of computing lower bounds of edge tolerances based on solving the
sensitivity analysis problem for appropriate relaxations of the shortest
Hamiltonian path (tour) problem is presented.
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1. Introduction

> The problem considered in this paper belongs to so called sensitivity
analysis in combinatorial optimizatioﬁ’(see'e.g. [21). ~A‘:I‘his term is used for a
phase of solution procedure when an optimal solution of problem has been
already found and additional ecalculations are performed in order to

investigate, how this optimal solution depends on changes of problcms

| ~ u
- In this paper two well known (see e.g. {7]) combinatorial optimization

parameters. R .

problems are considered: the shortest Hamiltonian path problem in undirected
weighted graph and the symmetric traveling salesman problem. It is assumed
that an optimal solution of given problem is known. The goal of sensitivity
analysis consists in finding by how much we can perturb each edge weight
individually without changing the optimality of the solution. The maximum
increment and decrement of the edge weight that preserve the optimality of
solution are called the edge tolerances with respect to this solution.

In this paper, a method of computing lower bounds of the edge tolerances
with respect to the optimal solution of the shortest Hamiltonian path problem
and traveling salesman problem is described. The method is based on solving
the sensitivity analysis problem for appropriate relaxation of the original
optimizat@on prq@lem.y A general idea of this approach was presented in [8].

T R

In Ehis paper-we‘éive"a description of the approach and its microcomputer
implementation and we report preliminary results of computational experiments.

This paper is organized as follows. In section 2 we introduce a notation
and give some preliminary results concerning the relations between the
sensitivity analysis for the original problem and its relaxation. In section

3 we describe algorithms for performing a sensitivity analysis for problem

relaxations. A choice of appropriate relaxation of the original problem is
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discussed in sections 3 and 4. Section 4 contains also a description of ':
A]
implementation of the method and results of numerical experiments. ::3
)
bl
2. Notation and preliminary results \J
.‘C
Let G = (V,E,C) be an undirected weighted graph with a set of vertices !
V.= {1,...,n} and a set of edges E = {e,,...,e } cV xV. c « R ™7, ;'
— o
where R = Rvu (=}, is a matrix of edge weights. (If e = (i,j) ¢ E, then o
c¢(i,j) = =».) The subgraph (V,Q,C) of G will be identified with a set of its 4
)
edges Q and by 1(Q) = z c(e) we will denote a weight of the subgraph. 't:
eeQ "
Let H be the set of Hamiltonian paths in G with fixed ends in vertices .::
.(
1, n and let H denote the set of Hamiltonian tours in G. Two well known ‘E
; combinatorial problems: the shortest Hamiltonian path problem (SHPP) and the f
R
traveling salesman problem (SHTP) are formulated as follows X
U
V)
; min{1(H) : H « H} (SHPP) N
k) ‘r‘
>
min{1(H) : H <« ) (SHTP) =
"i
fe}
| X3
¥ {
In this paper the shortest Hamiltonian path problem will be mainly R
considered. The approach for the traveling salesman problem is similar; the ‘,'
differences are pointed out if necessary. e
B o
" Assume that H® is a (known) optimal solution of the SHPP in the graph G, -"‘;
i.e., )
X
, o _ . ] ‘
,. H” = arg min{1(H) : H « H} .
+
i The tolerance problem is formulated as follows: b
'\
l:
.6
§ ]
\
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e « E values c*(e), c~(e), such that H® is optimal

Given H®, find for

o for any perturbed graph G' = (V,E,C'), in which e'(i,j) = e(i,j) if ¥

(i,3) # e and c(e) - ¢ (e) < e'(e) < c(e) + c*(e).

The values c*(e), c¢™(e) are called upper and lower tolerances of the edge e with

respect to the optimal solution HO. Edge tolerances with respect to optimal

solution of the SHTP are defined in the same way.

He

{He H: e £ H} 2

The following proposition expresses the edge tolerances c*(e), ¢ (e), e « E,

f by auxiliary optimization problems over sets He, He. (We will assume that if

a minimization problem is infeasible, then its optimal value is equal to =).

Proposition 1. If e &« H®, then c¢ (e) = = and A

2*(e) = min{l(H) : H « H®)} - 1(HO). (1)

If e # H°, then c*(e) = = and )

¢ (e) = min{l(H) : H « H} - 1(H°). (2)

. - . o - o o R TS - . R
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Proof. Consider an edge e « HO. It is obvious that any decrement of the iy
weight c(e) does not change the optimality of H°, so c (e) = =. If the }
weight of e increases and the weights of all other edges remain unchanged, 5’
then weights of all Hamiltonian paths belonging to iie also increase in the § 
same way, but weights of paths in H® are still the same. Therefore H° :g
remains optimal as long as the increase of the weight of e is not greater than ;f
the difference between the weight of the shortest Hamiltonian path in H® and ;
the value 1(H®). The proof of the second part of Proposition 1 is analogous. ;ﬁ
: 3§

4

Similar fact may be proved for edge tolerances in the SHTP. d
Proposition 1 suggests that a calculation of edge tolerances may be a 5:
difficult task, because in order to find the tolerances for a particular edge, :2
one has to know the optimal value of an auxiliary optimization problem, which ;'
is in general as difficult as the original SHPP (unless this value is a by- *;
product of solving the original problem). Another explanation of difficulty ?é
05

)

of this sensitivity analysis arises from the observation that the tolerance

problem is closely connected to a problem of finding adjacent vertices in the

ﬂ.‘e-‘.-:- '

SHPP or the SHTP polytope, which is known to be NP-hard [7]. 'r

The goal of this paper is to propose an approach which allows to compute ;}

o

in an efficient way lower bounds of edge tolerances, i.e., values d*(e), %ﬁ
d“(e), e «E, satisfying the conditions d*(e) < c*(e), d7(e) < c7(e), ;‘

e ¢ E. Such lower bounds are also of practical value, because they imply fv

that for particular edge e, the solution H®° remains still optimal if the it

weight of e belongs to an interval [c(e) - d~(e), c(e) + d*(e)]. Calculation };
of lower bounds seems to be much easier than calculation of edge tolerances, E
because in order to find c*(e), c”(e) one must, in fact, exploit necessary and t;

e A

~
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: sufficient conditions of the optimality of H®. To calculate d*(e), d”(e) it
is enough to have only some sufficient optimality conditions for H®. The

notion of necessary and sufficient optimality conditions in seldom the case in

- .y -

combinatorial optimization, whereas sufficient optimality conditions are
provided by different relaxations of the original problem and related dual
{ problems. The choice of appropriate relaxation is discussed in sections 4 and

5. In this paper as a relaxation of the SHPP, the shortest spanning tree

- - A

problem (SSTP) is chosen, and to calculate bounds of edge tolerances for the

SHTP, the shortest 1-tree problem (S1TP) is used (see e.g. [7]).

. -

Let us consider a pair of problems - the SHPP and the SSTP - and let

) -
]

v(SHPP), v(SSTP) denote its optimal values, i.e.,

) v{(SHPP)

min{l(H) : H « H},

) v(SSTP)

min{l(T) : T &« T},

where T is a set of spanning trees in G. Usually, the SSTP is not a good
relaxation of the SHPP (if we measure a quality of relaxation by the
difference between the optimal values of both problems). But it is well known
that this difference may be significantly reduced (see e.g. [7], Chapter 10)
by appropriate modification of edge weights. This modification consists in
q replacement of the original edge weights ¢(i,j), (i,j) « E, by values

cP(i,j) defined as follows:

cP(i,3) = e(i,d) + p(i) + p(J) (3)

L]
*

-
]

Y "t . ” "oy - ) "o U W X q . . mm .v
9,1%20%5 159, 8% M 5% 670, 00 A% €70, 000, % 075 0, 70 000,00, 0 a0 0%, 00 1 V00 W, S VR 0 e, A% 0 A VI A T e 0 AT I e S R BTSN Y,



RN X

) s ar a2

where p(i), p(j), 1i,j eV, are elements of so called penalty vector

P = (p(‘l),...,p(n))T <« R”. Denote by CP modified edge weight matrix and let
GP = (V,E,CP). The weight of subgraph Q in GP will be denoted by 1P(Q). It
is well known that the such modification of the graph does not change the set
of optimal solutions of the SHPP. The following proposition states that this

is also true for edge tolerances. The same facts hold also for the SHTP.

Proposition 2. Edge tolerances c*(e), ¢“(e), e e E, are the same for any

modified graph GP = (V,E,CP), p « R".

Proof. This is a simple consequence of Proposition 1. It is easy to see that

for p s R" the value d(H',H") = 1P(H') - 1P(H") does not depend on p for any

H', H" e H. But according to (1) and (2), if c¢'(e), ¢ (e) < =, then
c*(e) = d(H®,HO), e s E, and c™(e) = d(Hg,H°), e « E\H°, where
H® = arg min (1(H) : H « H®}, H, = arg min{1(H) : H < H}. If for some

e s H°, c*(e) == or for e « E\HO, ¢ (e) = », this means that corresponding
set H® or H, is empty; which, obviously does not depend on the vector p.

a

Let p e R" be arbitrary penalty vector and define A(p) to be equal to

the difference between the optimal values of the SHPP and the SSTP in GP.

Moreover, let TP be the optimal solution of the SSTP for GP and define

t;(e,Tp) (t;(e,Tp)), e « E, be an upper (lower) tolerance of e with respect

to TP regarded as an optimal solution of the SSTP in GP, 1i.e.,

t;(e,Tp) (t;(e,Tp)) is equal to the maximum increment {(decrement) of the

weight of e, which does not change the optimality of TP. Then the following

fact hold:

ORI DO AN DR
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Lemma 1: For p s R” and e < H%TPu (E\H®) n (E\TP)

c*(e)

v

t;(e,Tp) - a(p) (4)
and

c (e)

\%

t;(e,’l‘p) - a(p) (5)

Proof. We will prove only (4); the proof of (5) is analogous. If e« E\HO,

then c'(e) = » and (U4) holds. Assume then that e e H°nTP and let
tg = min(IP(T) : T « T% | (6)

where Tz (T e T: e # T}. Using the same arguments as in the proof of

Proposition 1 it is easy to show that
t¥(e,™P) = t& - 1P(TP) (7)
p p
From Propositions 1 and 2
c*(e) = 17 - 1°(H) (8)
where 13 = min{1P(H) : H « H®)} (9)

The problem (6) is a relaxation of the problem (9), which implies that

e
p

e

1° 2 tp and now from (7) and (8) we have

D R e AV 1 T TR R o T VTR T SO P

W

M



c*(e) 2 t; (e,™P) + 1P(TP) - 1P(W°) - t;(e,Tp) - a(p) 0

An analogue of Lemma 1 may be also proved for the SHTP and the S1TP as its
relaxation.
Some comments concerning Lemma 1 are necessary. Two special cases have

to be considered:

CASE 1° - when there exists a penalty vector p* & R" such that

a(p*) = 0;

CASE  2° - when there is so called duality gap A > 0, where

4 = inf{a(p) : p & R"}.

*
In the Case 19, H® - arg min{1P (T) : "« T} and from Lemma 1 we have

the following inequalities for e e E:

c*(e)

v

t;*(e,Ho) (10)
e (e) 2 s;,(e,u°) (1)

In section 3 we will show that bounds for c¢*(e), c (e) provided by the

inequalities (10), (11) may be slightly improved, because in the Case 1°
stronger inequalities hold:
c*(e) 2 t;,(e,Ho) + min{t;,(u,Ho): u « Ho\(e}) (12)
cT(e) 2 t7(e,H%) + min{t7, (u,H%): u « E\HO\(e}} (13)
Topr p* "7 T

.

Gty 3
K a

M e e ey N T N e

gl e

oy
o

I N

K A

v,,{((“.( -’xj l"l

Pt d



- S b n

Ry
-’

-
-"-.'

e D
o e w X

COLX 14

Pt

-
..-

TR I o O e - u a¥aate el vag tal 01g"

9

In order to use inequalities (10), (11) or (12) (13) to calculate lower bounds
for the edge tolerances c+(e), c (e), e« E, in the Case 19 two problems

have to be solved:
(i) a penalty vector p* e R" satisfying A(p*) = 0 must be found;

(ii) edge tolerances t;*(e,Ho), t;*(e,Ho), e « E, for tne SSTP in cP*

have to be calculated.

A solution of problem (ii) is described in section 3. A method of solving the
problem (i) is discussed in section 4.

In the Case 2° bounds for c*(e), ¢~(e) obtained from Lemma 1 are weaker,
because A(p) > 0 for any p e R". Moreover, Lemma 1 does not provide
bounds for edges belonging to (Ho\Tp) U (Tp\Ho). In section 3 we will prove
a theorem which specifies bounds for c*(e), c”(e) in this case, but they still
may be weak. Thus, to calculate bounds for edge tolerances in the Case 2° it
is required to find a penalty vector p, for which A(E) is possibly small and
the cardinality of the set H°\T5 is small as well. This problem is discussed

in section 4.

3. Edge tolerances for shortest spanning tree and 1-tree

The problem of calculating edge tolera.uces of the shortest spanning tree
has been addressed in several papers (see e.g. [1, 3, 12]). In this section
we review at first some fundamental facts on which sensitivity analysis for
the shortest spanning tree is based. Next we discuss in detail
implementations of algorithms for finding edge tolerance with respect to
special spanning tree which is also a Hamiltonian path. We close this section
by proving some useful result concerning relations between edge tolerances and

lengths of spanning trees.

--------
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G Let T be the shortest spanning tree in G = (V,E,C). The following ]
. Ry

[12]) formulates necessary and sufficient

well known proposition (see e.g.

optimality conditions for 10,

Proposition 3. 10 is the shortest spanning tree in G if and only if for any
0 v

e & E\T

c(e) 2 c(w) for w « U(e) (14)

o> e i -
o

where U(e) is a subset of edges belonging to the unique path in 70 joining the ;

-

ends of e. a

Denote for e e T0 ?

W(e) = (W e E\T0 e e UW}

The following fact is a straightforward consequence of Proposition 3:

Proposition 4. If e e TO, then t (e) = » and

-
n - o o

t*(e) = minf{e(w) : w & W(e)} - c(e) (16)

If e E\TO, then t*(e) = » and

t (e) = c(e) - max{c(u) : u s U(e)}

0

Proposition 4 provides a method of computing edge tolerances with respect

3
; to TO by finding minimum weight edge belonging to W(e) for any e & TO and 2

.........................
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maximum weight edge in U(e) for any e ¢ TO. This may be done simultaneously
by using an auxiliary graph ([11]) called transmuter. A transmuter is a
directed acyclic graph which contains, one vertex v(e') of in-degree zero for

0 and

any e' s TO, one vertex v(e") of out-degree zero for any e" & E\T
arbitrary number of additional vertices. Moreover, in a transmuter there
exists a path from vertex v(e') to vertex v(e") if and only if e" < W(e').
It was shown in [10] that for given spanning tree T in G a transmuter
containing O(m a(m,n)) vertices can be constructed in O(m a(m,n)) time
(where a(m,n) is a functional inverse of Ackerman's function [10]). Given a
transmuter, a labeling procedure was described in [12] to compute all edge
tolerances in O0(m a(m,n)) time using O(m) space. It is the best known
complexity of algorithm for finding all edge tolerances with respect to
general shortest spanning tree, although there is some doubt, whether
complicated data structures used may lead to a computationally efficient
procedure (see [10]).

In (3] simpler data structures were proposed to compute all edge
tolerances for (general) shortest spanning tree in O(m log n) time using O(m)
space.

In [9] two methods which may be used to compute edge tolerances were
described: the first has time and space complexity O(n2), the second has
running time O(mn) and requires 0(m) space.

Any of the methods mentioned above may be used to calculate edge
tolerances with respect to the shortest spanning tree in the Case 2° (see

section 2). But in the Case 19, T0 is a particular spanning tree which is

also a path and more efficient algorithms may be proposed.

0 0

Let T  be the shortest spanning tree in G = (V,E,C). Assume that T
is also a Hamiltonian path in G and, moreover, the vertices of G are numbered

in such a way, that 10 - {(1,2), (2,3),..., (n=1,n)}.

- - - . , , A - - . . -
OAT AR A SONAN (LA XA -.C..Q.'C. ’ ._O.“O."l.!" S "‘ .I'odl.o.l..,i.n O 2 S e D A T e X e N M o e

V2 §% A'a 2%,
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o P
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Then sets U(e), W(e), e « E, appearing in Proposition 4 are defined as

follows:
For e« E\T?, i.e., e = (k,1), k=1,...,n-2, l=k+2,...,n,

U(e) = {(i,i+1) =k < i ¢ 1-1} (18)
For e« T, i.e., e = (i,i+1), iz1,...,n-1,

W(e) = {(k,1) : 1 < k< i, i+1 <1 < n, (k,1) # (i,i+1)} (19)
Figure 1 illustrates subsets of elements of edge weight matrix C for .hich

appropriate minima and maxima must be calculated according to formulae (16),

(17) and (18), (19).

j
L, 2, 1 n 1, 2 ! n
L | (k.1
e = (k,
K )
i i
U(e)
0-1 e = Git) -

n n

. n

] j=i+1

Fig. 1
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If the graph G is dense, i.e., m = e(nz), then the following simple

X ]
' L]
X labeling algorithms may be used to calculate edge tolerances .
X t*(e),t7(e), e « E, in 0(n2) time using O(n2) space. Let w(i,j) «R 1,
.
. .
; be labels defined for i = 0,1,...,n, J = 1,...,n,n+1, g
' (]
: Algorithm for calculating t'(e), e « T0 ‘
A n
: Step 1 (Initialization) for i=1 to n-1 do w(i,n+1): = =; o
) ]
‘ 3
* for J:=2 to n do w(0,]):==; 3
: d
¢
A Step 2 (Labeling) for i:=1 to n-2 do 4
Y
& for j:=n downto i+2 do w(i,Jj):= min{w(i-1,j), e(i,J), w(i,j+1)}; "
¢ ]
Y ¢
) Step 3  (Calculation of tolerances) for i:=1 to n-1 do !
‘3
K £*(1,i+1) = min{w(i-1,1i+1), w(i,i+2)} - e(i,i+1). ¢
3 '
b 0 N
; Algorithm for calculating t™(e), e & E\T 3
. o
: Step 1 (Initialization) for i:=1 to n-1 do w(i,i+1):=c(i,i+1); .
¥ ¢
) .l
‘: Step 2 (Labeling and calculation of tolerances) S
)
4 b
:: for 1:=2 to n-1 do “
[N )
for j:=1 to n-i do 3
1 .
j begin w(J,j+i):= min{w(j,J+i-1), w(j+1,3+i)}; )
_ E7(J, J+i) =W, Joid-c( g, J+1) '
. end ‘
i If the graph is sparse, then more efficient algorithms may be used to
x calculate edge tolerances with respect to 70,
)
]
L]
¢ :
'. N
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Consider at first the problem of calculating

max{c(u) : u « U(k,1)} (20)
where U(k,1) is given by (18). In order to solve (20) for all (k,l) « E\T0
efficiently let us store elements of set U = {e(i,i+l), i=1,...,n-1} using a
data structure called a symmetric heap (see [6]). A symmetric heap SH(U) is a
directed binary tree containing one vertex for any element of the set U. The
vertex v(i), i=1,...,n-1, of SH(U) has a label c(i,i+1) and the following
properties are satisfied for any k,1=1,...,n-1, k £ 1:

If c(k,k+1) < e(1,1+1), then there is a path in SH(U) from the vertex
v(1l) to the vertex v(k) and, moreover, if k < 1, then v(k) belongs to the left
subtree of v(1l), otherwise v(k) belongs to the right subtree of v(1l).

A symmetric heap SH(U) may be constructed in O(n) steps and, as it was
observed in [6], any particular problem (20) for given k,1 is equivalent to
calculating the nearest common ancestor of vertices v(k), v(1-1) in SH(U).
But this problem may be solved in O(1) time (see [U4]) if a preprocessing
requiring O(n) time has been performed. This means, that all lower tolerances

t (e), e s E\TO, may be calculated in O(m) time and O(m) space.

To calculate all upper tolerances t+(e), e s TO, a simple algorithm
requiring a sorting of values c(e), e c E\To, may be constructed and this
problem may be solved in O(n log m) time and O(m) space. But it is not known,
whether there is of linear complexity (O(m) time and space) algorithm to
calculate upper tolerances of edges in the Case 1°.

Edge tolerances with respect to the shortest 1-tree TO can be computed
in a similar way. An approach is based on simple Proposition 5 which is an

analog of Proposition 4 and which we will state without proof. Let TO be an

RS BN
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optimal solution of the S1TP in G = (V,E,C), i.e., TO = T, v {((1,k), (1,1},

where 'I‘1 is the shortest spanning tree in the graph G, = (V\{1}, E;, C)

obtained from G by removing the vertex 1, and (1,k), (1,1) are two shortest

P
-

edges incident to the vertex 1. By W;(e), U (e) we denote subsets of edges of !

- b

Gy defined for T, in the same way as the sets W(e), U(e) for 0.

K Proposition 5: If e « T,, then t7(e) = = and
{ !

\

[

t*(e) = min{c(w): w W,(e)} - e(e). 3

; If e < E\\T,, then t*(e) = = and t7(e) = c(e) - max{c(u): u « U,(e)}.

4
4
s (]
; If e « E} = E\ENN{(1,k), (1,1)}, then t*(e) = « and v
¢
)

1
t7(e) = c(e) - max{e(1,k), c(1,1)].

Furthermore, t™(1,k) = t7(1,1) = = and t*(1,k) = e(1,k) - min{c(e) : e « El}, . J

t*(1,1) = ¢(1,1) - min{c(e) : e « E}}. t

We will close this section by proving a result which establishes a

relation between the edge tolerances with respect to the shortest spanning

tree and the value of difference between the weights of the shortest spanning

tree and an arbitrary spanning tree.

Theorem 1. Let 10 be the shortest spanning tree in G and T be an arbitrary

spanning tree in G. Then

T - W) 2 max{ § (), T t7(q) (21) .
reTO\T qeT\1” |
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Proof. Consider two subsets of edges: R = TO\T and @ = T\T°. It is known
(see (5], Theorem 1), that there exists a bijection ¢ from R into Q, such
that for every edge r « R, Tr = To\{r} u {¢(r)} 1is a spanning tree in G
and c(w¥(r)) - c(r) 2 0. From the fact that T. is a spanning tree it
follows, that p(r) e W(r) and from (16) we have the 1inequality
t*(r) < e(v(r)) - c(r) and further ur - 110 = Yooleu(r)) -e(r)]

0 reR

> Z t*(r). Similarily, for every edge qeQ, T v {q}\{w'1(q)} is

re<R
also a spanning tree and this implies that w'1(q) s U{q). Now from
(17) we have t(q) < e(q) - c(w'1(q)) and finally (T) - l(TO) z

J le(q) - cv™ M@l 2 § t(a).
qeQ qsQ

As corollaries of Theorem 1 we obtain some properties of edge tolerances
with respect to the shortest Hamiltonian path, which were stated without proof
in section 2.

Let for some p < Rn, H® and TP be optimal solutions of the SHPP and the
SSTP in GP = (V,E,CP). As before, t;(e,Tp), t;(e,Tp), e « E, are edge
tolerances with respect to T° and c+(e), ¢ (e), e « E, are edge tolerances

with respect to H°.

Theorem 2. If A(p) = 0 and H® = TP, then for e « E
ct(e) 2 t;(e,Ho) + min {t;(u,Ho) : u < HO\{e}}

and

¢ (e)

v
cr
o |
—~~
o
= >
(]
e

+ min{t;(u,Ho) : u & E\H°\(e}}

got 4 u;
W
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e o v
-

Proof. If c'(e) < =, then according to (1) we have c*(e) = 1P(H®) - 1P(HO),
where H® = arg min (1P(H) : H « H®}. It is easy to see that |HO\H®| > 2.

Obviously, H°, H® « T and now because H® is the shortest spanning tree in GP

3 ~
-l s

and e « HO\H®, from (21) we have cte) = 1P(H®) - 1P(H%)
> t;(e,Ho) + t;(u,Ho) for some u « HC\{e}. The proof of second part of

theorem is analogous. a )

e n i NI,
e P e

Theorem 3. If H® 4 TP, then for e « HO\TP

[ -
[ RN

e
- -

ct(e) 2 min{t;(q,Tp) : g « E\TP\{e}} - a(p) (22)

and for e e Tp\Ho

N '
L

) _ y
\ c (e) 2 min{tS(r,Tp) : r « TP\{e}} - a(p) (23) b
)

i ]
x '
) )
' Proof. We will prove only (22), because a proof of (23) is analogous.

» Consider e « HO\TP. If c*(e) ¢ =, then c*(e) = 1(H®) - 1(H°) and there R
L ‘

)

e
2

containing e. Moreover, l(TS) < 1(H%) and ct(e) 2 l(Tg) - 1(TP)

exists a spanning tree T which is the second shortest spanning tree not

+ (U(TP) - 1(H%)) = L(T3) - L(TP) - a(p). But TS\Tp must contain some

edge q & E\Tp\{e}. Now from (21) we have l(TS) - l(Tp) > t (q) which

[P LR )

implies (22). 0

>

Bounds for edge tolerances provided by Theorem 3 (and Lciwa 1) may be

o R
XN YV

weak. In particular cases, values of right-hand sides of inequalities (22),

-

(23) and (4), (5) may even be negative, which means that trivial bounds are

obtained. Thus, although any penalty vector may be used to calculate c*(e),

..d‘-“‘-
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¢ (e), it is desired to have a vector p which gives small (if possible - equal ::
]
to zero) values of A(p) and |H°\TP|. This problem is discussed in the next ‘)
' section. 4
] ,
¥
¥
4. Computing of penalties ol
[ To calculate lower bounds of edge tolerances with respect to H®, a X
)
penalty vector p is needed, for which A(p) and |H°\Tp| are as small as i
;
possible. If the duality gap A 1is equal to zero, then such vector may be i
)
k found as a solution of equation A(p) = 0 and this guarantees also that 3»
‘C
. |H°\Tp| = 0. Otherwise, one may try to solve this bicriteria problem by ,::-
E )
b choosing as a vector p such a feasible solution of equation A(p) = 4, for X
)
which |HO\TP| is minimal. i‘

To solve A(p) = 0 two attempts may be considered:

Mg

(i) The problem min{A(p) : p & R"} may be solved exploiting 0
4

properties of the function A(p) ( A(p) is convex, piece-wise ;.
linear function on R") by some subgradient type procedure. =

(

3

(ii) A feasible solution of 4(p) = 0 (if exists) may be calculated by £
finding a solution of the system of linear inequalities (24). :

-

|:l

The later approach was used in computer implementation and it will be :é
described in this section. ?-
v
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Define for a given graph G = (V,E,C), P(C) = {p & R":
(1) + p(J) - p(k) - p(k+1) > e(k,k+1) - e(i,])
for (i,j) «E, 1 =1, ,n=2
J = i+2, ,n (24)
k = i,...)-1}

Theorem 4. Let H® = {(1,2), (2,3),...,(n-1,n)}lbe an optimal solution of tne

SHPP in GP = (V,E,CP). Then 4a(p) = 0 if and only if p e P(C).

Proof. A(p) = 0 if and only if H° is also an optimal solution of the SSTP
in GP, i.e., if necessary and sufficient optimality conditions formulated in
Proposition 3 are satisfied. This means that for H® inequalities (14) must
hold for the graph GP. But for the spanning tree H® the sets U(e), W(e) are
given by (18) and (19), and now it is easy to check, that if the inequzlities
(14) are formulated for H® and the graph GP, then we obtain a system of
conditions defining P(C). a
The number S(G) of inequalities defining P(C) is of order O(mn). If

G = K, (complete graph with n vertices), then

(2k-1) [k(2k+1)-3] if n

S(Kn) 2k, k=1,2,...

wi—

and

[SST])¥]

S(Kn) k((k+1)(2k+1)-3] if n = 2k+1, k=1,2,...

0%
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Any vector p belonging to P(C) may be used as a penalty vector to compute

lower bounds of edge tolerances with respect to HO, although different vectors
lead, in general, to different values of these bounds. If P(C) = ¢, then it
means that there is a positive duality gap A.

As a simple consequence of Theorem U4 we obtain the following fact:

Corollary 1. If for a given graph G there is zero duality gap A, then the
optimality of arbitrary Hamiltonian path may be verified in a polynominal

time.

Proof. It is an immediate consequence of the fact that P(C) is defined by
polynominal number of inequalities and its consistency may be checked in a
polynominal time by linear programming. 0

Similar facts (which we will give without proof) hold for the SHTP.

Define for G = (V,E,C), P(C) = {p « R":

p(k) - p(2) > e(1,2) - c¢(1,k) for k=3,...,n-1, (1,k) e E,
p(k) - p(n) > ec(1,n) - c(1,k) for k=3,...,n-1, (k,n) & E,
p(i) + p(J) - p(k) - p(k+1) > e(k,k+1) - c(i,])

for (i,§) « E, 1i=2,...,n-2,

J = i+2,...,n, k=i,...,j-1}
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Theorem 5. Let B° = {(1,2), (2,3),...,(n-1,n), (n,1)} be the shortest
Hamiltonian tour in GP = (V,E,CP). For H° to be the shortest 1-tree in GP it

is necessary and sufficient that p « P(C). 0

5. Implementation of the method and conclusions

The method of calculating lower bounds of edge tolerances for the SHPP
and the SHTP described in previous sections was implemented for IBM PC in
Turbo Pascal 3.0. In the step of computing of edge tolerances for spanning
trees and 1-trees simple 0(n?) labeling procedures mentioned in section 3 are
used. To calculate appropriate penalties an approach provided by Theorems 4

and 5 is used. Penalities are computed by solving linear programming problems

min{an: p & P(C)}

min{an: p s P(C)} (25)

Different objective vectors a e« R"

may be chosen and, usually, different
penalties as well as different lower bounds for edge tolerances are
obtained. In computational experiments a = (1,..,,1)T or a = (O,...,O)T was
mainly used. In the later case by solving (25) an existence of feasible
solution of equation A(p) = 0 is checked.

To solve (25) a simple specialized version of the revised simplex
algorithm was implemented. As problem (25) has only n variables and large

number of constraints (for example, for the SHPP in Kn, n = 40, the number of

constraints exceeds 10000), the dual problem for (25) is solved and column

-------
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generation technique is used. The computational experience is limited to
rather small sizes of problems. In Table 1 computation times in seconds for
IBM PC/XT with math-processor are reported. These times do not include input
and output of data. All test problems were randomly generated as planar
Euclidean SHTP.

In Table 1 n denotes the number of vertices, & 1is a density of graph,

P _p p . _ L . .
T2 Tmin' ‘max are respectively average, minimal and maximal times of
computing penalties (for 5 problems), rt is a time of computing edge
tolerances.
TABLE 1
n § rp p‘ p rt
a min max
10 1 2.6 0.5 4.3 0.1
10 0.3 1.2 0.3 1.8 0.1
25 1 121.6 58.8 177.5 0.7
25 0.3 48.9 40.6 49.8 0.7
40 1 1572 877 2523 1.9
4o 0.3 u21 316 47 1.9

An approach described in section 2 may be used with different relaxations

of original problem.

Let (P): min{f(x) : x « X} denote the criginal (primal) programming

problem and let x° be its optimal solution. Denote by (Rq) a relaxation of

(P) parameterized by some element q belonging to a specified set Q:

(Rq) v(q) = min{fq(x) I X e Xq}.
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(For example, in the approach described in this paper a role of parameter q is

played by the penalty vector p and Q = R"),

As a dual problem for (P) the following problem may be considered:

(D) q* = arg max v(q)
q<Q

The relaxation (Rq*) seems to be a good candidate to provide a

° by similar approach as used in this paper. In

sensitivity analysis for x
order to apply this approach one must be able to answer the following two

auxiliary questions:

(i) How to perform a sensitivity analysis for the problem (Rq*)?

(ii) How to find in an efficient way q%, if x® is given, i.e., how to

; solve the dual problem when the soluticn of primal is known?

In some cases an answer for the later question is obtained as an inexpensive
by-product of solving the original problem. This may be an important argument
for the choice of relaxation, because as numerical results reported in Table 1
show, in this approach almost all computing time may be spent on solving

problem (ii).
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