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robust, and minimize data storage requirements. Recently developed approaches
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computational disadvantages.

In this study, non-hierarchical clustering methods are combined with
computationally efficient algorithms such as those used to solve assignment and
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sonable estimate of the number of targets. Combined with a sequential estimation
filter such as the extended Kalman filter, the procedure can provide estimates of
a target’s state and state covariance after three observations and continuously

maintain updated target state estimates in real time.

vi

.....

-

-

L L e
-

22



R R R R R R RS R N R R R A AR IR A A U N U N w X M N RN B W P W R W W 3 XM P W X M T A RN AFL AL B WP W "
-
3 ~
)
v .
¢
e
]
X
. Empirical results based on 100 targets in ballistic trajectories have 'i
: . : . 0
: demonstrated this method’s effectiveness by properly clustering data with four p
y . . . N
: measurement attributes (range, range rate, azimuth, and elevation) in over 98 '
percent of the cases. Its robustness is manifested by the fact that these results
; apply to scenarios with 20 percent missing data and biases of up to one arc minute 3
D) 3
in the sensor attitude and 0.5 seconds in the sensor clock. And its capability to N
\}
track in real time is demonstrated with a duty cycle of less than five percent.
":
: ;
! 3
i "(
+
5 >
o’
¢33
¢ \
b )
¢ 4
i
) !
“'
3
: [
i
&
0)
%
r
[y \
" “‘I
\ ¢
A y
L/ ]
) P
?
o) t
- Accesaion Por ::
b— - - ")
NTIS GRA&I E .
lNrg;’:ié{ o DTIC TAB J ]
2 Unannounced i 4
; .- Justifigation. |
By . . —_ ‘
b._piqtrlbv_:‘?,i on/ B
/ vii Availlebtility Cales W,
Jh—' ) Avetl nou/or T '
, Dist | CSpeainl :E
) k
X /\ f O
| S 3

. e b e ——— >
) h




LN R R O A

L 00 !' 3 ‘».t'-.

Mt

T R T L T T O TR S O T s O W W

TEMPORAL CLUSTERING IN THE
MULTI-TARGET TRACKING
ENVIRONMENT

APPROVED BY
SUPERVISORY COMMITTEE:

:ﬁwj

ets e —ren

AV
/

L4

lllll

g T BSeRSoSoh

e

5

ta s

e m ey

N e

Pt

e B s s g P
.



-"";""’Q"B""ﬁ""\'.'t V.U"'I L ) ¢ "v e ", . 48" o ‘W TN 00 ¢ WU AN ol vy a e it atat  Buv g LN QI X UL R N NI N RN RS 4 ’:‘:

Copyright ©
by

LWL

AT

-

Thomas Sean Kelso

1988

NP R

\)

(3

AR

A Rd
.

oy

N,

4

i

*y -'?Z'nl’)[‘.’f -

.y
L

L A W IIR . '
el v S

)

w555

. Iy 2 Y AR AT TS PSR R A TR AU IR 1P | AP AP RV A "',','f'}’-ﬂ“--f# ({"f’u"f oo Cala Ca Tp iy
b S} l WL \" TN A NARE O Zatn Aty ,-.w MV AN I P VAN W ATATA 4



R R A R AR R A RN R N R R AN R A A I U A A A LA O U S LN LR U Y O Y N DY Y L O T T T O O O IO O O KO KX $.&

,A
AR

.

AN

.

5.

i e
WA

-

To my daughter, Shannon, who means the world to me.

A A A A

W AR R IR AP Ty 5 AT

2 2

(
X,

53

prol i 3':}

o o o

- o, d
AN

A 4

»

A A P R R N VAT TN S N R N Rl S W Tl W R N N Vg Sl ¥ T Wl Ve W LTSN VR W Tl Wt Sull SRIC Wl Sl Sl el Vol Wl ol %)
R L e e e S e e A ey

5



R R R A AR A R R R M R R R T N R R JUPOT O PR PO R IO T T o O MO T TR AU U PO TURIUR L UK PN A .'.‘

;
o
-}
'.'L
.
b
:.
TEMPORAL CLUSTERING IN THE o
MULTI-TARGET TRACKING s
ENVIRONMENT by
o
by
l{z
THOMAS SEAN KELSO, B.S., M.B.A., M.S. &
.
5
™
¢ '
DISSERTATION E,v
Presented to the Faculty of the Graduate School of 4}'.‘
The University of Texas at Austin i
in Partial Fulfillment )
of the Requirements '
for the Degree of '.,’

DOCTOR OF PHILOSOPHY

PEEIEEE™

]
S
THE UNIVERSITY OF TEXAS AT AUSTIN .
August 1988 o
b
)
W
J
"

[N
™) Y 3
WS TRNER N

SR L LT TR " T L A L T T L P en R DAL L LG PRI "h (U T ™ TR R
X Lnla o AN Wl nko.,o. . B WANE AN N AT ._“0.0 A WG



-

B,

T T R o T T e T T e S T ™ X T MK YO X R T XN W XU ,‘:“
::.

)

?

.f

Ry

)
Acknowledgments e
)

As the culmination of almost a dozen years of graduate education, the ;
completion of this dissertation marks a major milestone in my life. But while I've . :
invested considerable effort and made many personal sacrifices, this achievement '"'
would not have been possible without the help of many others, both old friends :’;
and new colleagues. In particular, I'd like to thank Dr. Melba Crawford for the .,‘
opportunity to work with her on this challenging project and for all her time and .::
encouragement. I'd also like to thank her for persuading me to learn and use TpX P,
and IATEX; their use has been an immense help in simplifying the mechanics of ,:
producing this dissertation, allowing me to concentrate more fully on its content.
Thanks also go to Stuart H. Smith, with whom I worked very closely on the ‘
initial development of the simulation and other support software. I've learned ‘
much from our collaboration and know that his personal efforts were instrumental W
to the overall success of this endeavor. Special thanks are extended to Laura &
Schofield and Mary Kay Hamill; their constant support and encouragement were a
continual source of strength, especially when circumstances seemed their bleakest. '
And, finally, I'd like to thank the Lord God, without whose love and ever watchful 0
guidance I know I would never have made it so far and accomplished so much. ‘
THOMAS SEAN KELSO 3

The University of Texas at Austin ;
August 1988 :;
By

:}‘
T
3
X
5 A
B
| g
3

-------

N,
- - R M A o, o h e O R0 15, 2D 0™ 0 0 T 1t ot o A T
Iy O g A A T A R L T S I G T L W D o R T R ol et ;".l."h"a"



B T T R R T T YT ¥ v R AT X
*

X
b

b
s

:
A
<3

)
TEMPORAL CLUSTERING IN THE )

5

MULTI-TARGET TRACKING

ENVIRONMENT %
Rt
oy
Och
Publication No. Al

N
Thomas Sean Kelso, Ph.D. l::
The University of Texas at Austin, 1988 hi:
W
Supervising Professors: Melba Crawford N

Thomas Feo 3

3
]
v

In multi-target tracking problems such as those found in high-energy
particle physics, fluid mechanics, and ballistic missile defense, the common ob- R
jective is to separate the data into observations associated with individual targets "
and to use this data to estimate the targets’ trajectories. In defense related ap- \ 4
]

plications, it is necessary to have algorithms which are computationally efficient, o
robust, and minimize data storage requirements. Recently developed approaches : "»
in the field of multi-target tracking, however, have been shown to have significant "
computational disadvantages. t

~
In this study, non-hierarchical clustering methods are combined with ‘F
computationally efficient algorithms such as those used to solve assignment and ;\
quadratic programming problems to provide an integrated procedure which is f

computationally efficient, minimizes data storage requirements, and gives a rea-
sonable estimate of the number of targets. Combined with a sequential estimation
filter such as the extended Kalman filter, the procedure can provide estimates of

a target’s state and state covariance after three observations and continuously

S oA S

maintain updated target state estimates in real time.
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Empirical results based on 100 targets in ballistic trajectories have
demonstrated this method’s effectiveness by properly clustering data with four

\ measurement attributes (range, range rate, azimuth, and elevation) in over 98

percent of the cases. Its robustness is manifested by the fact that these results
apply to scenarios with 20 percent missing data and biases of up to one arc minute s
in the sensor attitude and 0.5 seconds in the sensor clock. And its capability to 3

track in real time is demonstrated with a duty cycle of less than five percent. )
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Chapter 1 '
o
\
Background 5
)
1.1 Introduction o:
Today, many applications require the tracking of a large set of uniden- Y )
tified targets. Among these are applications in high-energy particle physics, fluid ::‘:ﬁ
mechanics, and ballistic missile defense. Crucial to the concept of a space-based %:::
ballistic missile defense under the proposed Strategic Defense Initiative (SDI) is :e:s
the development of a system with the capability to detect, classify, and predict ‘
the motion of a large number of unidentified targets. Composed of orbiting sen- _ﬁ
sor platforms and linked through the Command, Control, Communications, and ::
Intelligence (C*I) element, this system must not only be able to handle multi- :;
ple targets, but also to integrate the combined data from multiple sensors. This 3
data must be combined in such a way as to present a realistic picture of the "..Si
scenario underway so that limited resources may be directed in an appropriate hat
response. Because the time for such a response in an Intercontinental Ballistic ;
Missile (ICBM) attack scenario is so short, efficient, robust, and accurate algo- .
rithms capable of handling multi-target, multi-sensor data in real time are critical "‘
to achieving a successful ICBM defense. §:
3
h*
1.2 Problem Statement X
Nominally, this detection-estimation system will be comprised of two :h
elements. The first element is a constellation of observation satellites placed in "E
orbital configurations which allow suitable coverage of the areas of interest (the ~
ICBMs’ trajectories from their launch sites to the anticipated impact points). The -
satellites’ onboard sensors must be capable of providing time-tagged observations E W
of a number of attributes of the targets in its field-of-view. Typically, these ey
N
b
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attributes might include range and range-rate (for active sensors) and azimuth

and elevation (for both active and passive sensors).

In a typical ballistic missile defense scenario, these orbiting satellite sen-
sor platforms will survey the earth from altitudes of several thousand kilometers.
Upon launch of an ICBM attack, each sensor may detect as many as 100 tar-
gets within its field-of-view, and these targets will likely be closely spaced and
have similar attributes. Not only will there be uncertainty associated with the
measurements of the targets’ attributes due to sensor limitations, but some ob-
servations will be lost due to spurious measurements or unobservable conditions
relating to the sensor-target geometry. In addition, there will be uncertainties

associated with both the sensor attitude and sensor clock (position).

The second element of the detection-estimation system is the C3I site
where the data from various sensors is combined. This site might be a land-based
command center or a space-based battle station (perhaps even co-located with

one of the observation sensors).

Between these two system elements, four basic tasks must be accom-
plished:

¢ Separate the available data into tracks associated with individual targets,
o Correlate/combine tracks from various sensors,
e Estimate the targets’ state at some reference epoch, and

e Predict (track) the targets’ state at some future epoch.

The order in which these tasks are listed should not be taken to imply
a sequential relationship. In fact, how these tasks are performed will determine
the overall complexity of the multi-target, multi-sensor tracking problem. In
addition, just what processing is done and by which element is a question of
distributed estimation.

Further complicating an already difficult problem are uncertainties in
the numbers of targets visible at each sensor or jointly visible at any subset of

sensors, noisy and spurious measurements, and the nonlinear measurements and
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nonlinear dynamics of ballistic flight. Additional constraints may arise due to

the need to decentralize data processing to enhance survivability.

1.3 Multi-Target Tracking

As a result of the many complexities involved in the multi-target track-
ing problem, a wide range of methods have been developed in an attempt to
handle these four tasks and their associated difficulties. Research in multi-target

tracking has concentrated in four primary areas:

e Track initiation,
e Track maintenance,
e Sensor-to-sensor correlation, and

e Improved estimation methods.

These four areas correspond roughly to the four tasks performed by the detection-

estimation system.

Methods for handling track initiation and track maintenance often have
much in common and, as such, have actually been handled as different mani-
festations of the same problem. Historically, approaches to this problem can be

classed as Bayesian or non-Bayesian.

Initially, research focused on what are now known as non-Bayesian
methods. Led by the pioneering work of Sittler in 1964, these methods include
(1) tracking via data association, (2) track-split filtering, and (3) the maximum
likelihood method. In tracking via data association, Sittler [47] devised a method
whereby whenever more than one sensor measurement was observed in the neigh-
borhood of a predicted measurement, the current track was split. Trajectories
whose maximum likelihood function fell below a certain threshold were dropped
from further consideration. This method handles both track initiation and track

termination, as well as false alarms and missing measurements.

In 1975, Smith and Buechler (48] expanded on Sittler’s approach within

the framework of Kalman filtering (which was not in common use in 1964) for an

Bl
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application to radar tracking. In the track-splitting filter, Sittler’s concept of a
neighborhood was now a validation region which was derived from the innovation
covariance matrix obtained from the standard Kalman filter. However, both
Sittler’s method and that of Smith and Buechler were considered impractical
because the exponential growth in the number of trajectories would saturate the

memory and computational capability of even the largest computers.

Stein and Blackman [52] further modernized Sittler’s work in the devel-
opment of the maximum likelihood method. They used a suboptimal sequential
method which selected only the most likely assignment of targets and measure-
ments from each data set or scan, thereby mitigating the trajectory growth prob-
lem. Morefield [39] extended this approach by partitioning the data into mutually
exclusive and exhaustive sets of feasible tracks and formulating a 0-1 integer pro-
gram. While Morefield’s work put track initiation and maintenance on a more
solid theoretical basis, its application still has large computational and memory
requirements in a dense target environment.

Initial work with Bayesian approaches began with the nearest neighbor
filter. Sea [42], Singer and Stein [44], and Singer and Sea [45] used the nearest
neighbor of a predicted measurement and modified the Kalman filter to account
for the a priori probability that this measurement might be spurious (Bar-Shalom
(10]). However, it was discovered that this filter can easily lose the target in a
cluttered environment.

Work by Jaffer and Bar-Shalom [31] and Bar-Shalom and Jaffer [6] led to
the development of the probability data association filter (PDAF) by Bar-Shalom
(8], Bar-Shalom and Tse [7,9], and Bar-Shalom and Birmiwal [11]. A suboptimal
Bayesian approach, the PDAF sequentially incorporates clusters of measurements
into a track by attaching to each cluster an a posteriori probability of being
correct. This is important because the standard formulation of the Kalman filter
is optimal only when there is no possibility of incorrect assignments being made
to a track. As a result, estimates and covariances in the PDAF account for the
measurement origin uncertainty rather than being conditioned on the “accepted”
tracks being true. The primary limitation of the PDAF is that it only tracks a

single target in a multiple target or cluttered environment.
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More recently, the joint PDAF of Fortmann, Bar-Shalom, and Scheffé
[27], Chang and Bar-Shalom [18,19], and Chang, Chong, and Bar-Shalom [20] is
used to jointly compute the probabilities for all targets and measurements that
form a cluster. In it, posterior probabilities of the joint probability distribution
function are conditioned on all measurements up to the present, allowing multiple

targets (resolved or unresolved) to be tracked in a cluttered environment.

An optimal Bayesian approach was developed by Singer, Sea, and House-
wright [46] for a single target in a cluttered environment. The major difference
between the optimal Bayesian approach and the PDAF is that decomposition of
the state estimate is accomplished in terms of all combinations of measurements
from initial to present time rather than in terms of the latest measurements only.
That is, the state estimate is determined based upon all possible track histo-
ries for a given target. Again, the major difficulty with each of these last two

approaches is exponential memory growth.

In a multiple sensor environment, data from the various sensors must
somehow be combined to correlate targets sets which may be visible to sev-
eral sensors. Methods for sensor-to-sensor correlation attributed to Singer and
Kanyuck [43], Stein and Blackman [52], Bowman [14], and Chang and Youens
[16], are generally extensions of the maximum likelihood approaches used for the
track maintenance problem. There are two primary approaches to correlating
target sets from multiple sensors. The first is to map all observations from all
sensors into a common measurement space and apply any of the tracking methods
used for the single-sensor case. However, this approach will work only with mea-
surement sets which permit unambiguous mappings into a common measurement
space. The second approach is to form single-sensor tracks and then correlate the

tracks from various sensors via pattern recognition or matchings of target state
estimates.

Finally, because of the likelihood of imperfect correlation of observations
with clusters, it is necessary to develop tracking filters which incorporate these
correlation errors in the update of the error covariance matrix. The efforts of
Singer and Stein (44), Jaffer and Bar-Shalom [31], Singer and Sea [45], and Singer,
Sea, and Housewright [46] resulted in the development of filtering algorithms

which use the @ posteriori probability that an observation originated from a
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specific target in a dense multi-target environment. In addition, Tse, Larson, '
and Bar-Shalom [56] and Chang [15] considered the specific problem of estimation '::
with angles-only measurements. The particular set of measurements available can :l:
play a significant role in both choosing the most appropriate tracking method ::f
and developing the tracking filter due to problems of marginal observability. The
angles-only case is particularly difficult in this respect. ’
-
1.4 Clustering .
In an attempt to mitigate some of the computational complexity of the ﬁ
algorithms discussed in the previous section, recent investigators have examined '.::
the application of a broad range of methods from the classification field (Tapley
et al. [53,54], Balakrishnan et al. [4]). These methods are collectively known as )
clustering methods. :§
The first definitive results in clustering were produced by Sokal and S:E

Sneath [50] and refined by Sneath and Sokal [49] in the field of numerical taxon- o

omy. While these references are devoted primarily to the biological sciences, the

approach applies to all types of clustering. The clustering algorithms presented :.%
in these and subsequent references by Anderberg [2] and Romesburg [41] all share )
a common framework. S
First, the data to be clustered is standardized based on some figure A
of merit which considers the relative importance of the various types of mea- :
surements. Once this standardization is completed, a similarity or dissimilarity R
coefficient is computed between each pair of measurements. The resulting matrix iy
is known as a resemblance matrix. There are many methods for computing its ; :
coefficients. Typically, these coefficients are metrics such as Euclidean or average :'
Euclidean distance in the measurement (attribute) space. Although other types ;’
¥

of coeflicients exist, they are not appropriate to this endeavor because of their

-

inability to discriminate the types of clusters encountered in the multi-target

tracking problem (those with additive or proportional translations).

Given the resemblance matrix, there are two approaches to forming

clusters: hierarchical and non-hierarchical. The earliest approaches to clustering

4> IS AL A
-y

involved hierarchical clustering, wherein clusters are “built up” from the data un-
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til one large cluster is formed. The most common of the many methods available » Y
involve linking clusters through the use of either weighted or unweighted pair- ::4'
group procedures using arithmetic averages (WPGMA or UPGMA). In these ':'%
methods, links are developed based on the smallest (weighted or unweighted) h :
average of all the distances! between the points in a pair of clusters. 1
Other common methods include the single linkage, compicte linkage, :4,

and centroid methods. Single linkage builds clusters through association of the ,.u.
shortest distance between the closest points in any two clusters while complete o
linkage builds clusters based on association of the shortest distance between the Ny
farthest points in any two clusters. Single linkage may be thought of as a “near- ::::‘
est neighbor” approach whereas complete linkage is a “strongest association” ::::
approach. Centroid methods offer a compromise between these two extremes, T
building linkages based on the shortest. distance between the centroids of existing 1
clusters. Of the hierarchical methods discussed, the single linkage method is the .::f
most appropriate for the multi-target tracking problem because of its tendency :E:&
to form clusters which are chains of data points (a feature which is normally S
considered a drawback to this method).
The tree formed by any of these clustering methods, which shows how \ ':“
the clusters are linked and at what level, is known as a phenogram or dendro- .‘\'\-'
gram. In Figure 1.1, the phenogram shows four objects and how they are related. al
The level at which objects are linked together represents their similarity, with the ::

-

lowest links indicating the strongest similarities. To complete the hierarchical ap-

-

proach the phenogram must be “split” at some level to decide how many clusters

ey

i
-

exist, a requirement key to the multi-target tracking problem where the number
of targets is unknown. Depending on what level the phenogram in Figure 1.1 is
split, will determine how many distinct clusters exist. Splitting at Level 1 yields

four clusters while splitting at Level 2 yields only two.

¥

[ 1o Th ol s
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In hierarchical clustering methods, a data set of n observations yields n

nested classifications ranging from one cluster with n observations to n clusters

with one observation each. Non-hierarchical methods, on the other hand, cluster .:::.
{
R

]

!The term distance is used in this discussion to imply a similarity or dissimilarity coefficient.
Smaller distances refer to similar coefficients while larger distances refer to the opposite. (Y
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Figure 1.1: Sample Phenogram '..:
)
observations into k clusters, where k is either specified a priori or is determined H
)
as part of the method used (Anderberg [2]). These methods enjoy an advantage ::::
o)
over hierarchical methods since it is not necessary for them to store the similarity !,::
0
matrix or even the data set since the data is typically processed serially. It is, &
therefore, possible to cluster much larger data sets with non-hierarchical methods. =
4]
The majority of non-hierarchical clustering methods involve the use of }:'

seed points. There are many ways of seeding clusters. MacQueen [36] suggested

IS

choosing the first k observations as seeds while McRae {37] chose k random obser-

»
vations. Forgy [26] partitioned the data into k mutually exclusive and exhaustive L
fy
sets and used the set centroids as the seed points. A more intuitively appealing X
approach was used by Astrahan (3] wherein “densities” were calculated for each Y
-~
data point and the points with the k£ highest “densities” were selected as seeds. a
In a similar approach, Ball and Hall [5] chose the first seed as the centroid of the L
data set. Additional seed points were added while processing the data if they :' i
were more than some set distance from all existing seed points. AL :'
R
Once the seed points have been determined, clusters are built around »
o~
"‘.'
o
™
5
o
S
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them. Forgy’s method [26] and Jancey’s variant [32] assign observations to the
closest seed while MacQueen’s k-means method [36] assigns observations to the
cluster with the nearest centroid. Usually the clustering is reapplied after gen-
erating new seed points based on the current partition, such as the new cluster

centroids, and repeated until some convergence criterion is satisfied.

MacQueen [36] and Wishart (Anderberg [2]) developed methods which
permit variable numbers of clusters. In these methods, clusters are merged if
their seeds are within some pre-specified distance of each other. New clusters
are formed when observations are found to be beyond some (usually different)
distance from the existing cluster seed points or centroids. As with the fixed

number of clusters methods, the process is repeated until convergence.

Finally, many authors have developed methods which propose criteria
for evaluating whether movements of individual observations result in an overall
improvement of a partition (Anderberg [2], Spath (51]). These criteria are based
on multivariate statistical analysis techniques, such as linear discriminant analysis

and multivariate analysis of variance. The principal criteria used are:

e Minimize trace W,
e Minimize |W|/|T| or maximize |T|/|W|,
e Maximize the largest eigenvalue of W~!B, and

e Maximize the trace of W-1B,

where T is the total scatter matrix, W is the within cluster scatter matrix, and
B is the between cluster scatter matrix. It can be shown that the three matrices
satisfy the relation T = B + W (Anderberg [2]). These criteria are generally

applied to the non-hierarchical methods discussed above as tests of convergence.

None of the currently employed clustering methods are designed to ex-
plicitly handle temporal data. Historically, clustering methods were developed to
segregate data into distinct classifications. Because the desire is to group those
observations which are most similar, the algorithms in use tend to generate hyper-

spherical clusters in the attribute space. As applied to the multi-target tracking
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problem, however, this tendency to form hyperspherical clusters is a major limi- -
tation. Due to the temporal dimension, observations associated with the correct .E:::

cluster will form tracks, not hyperspheres. This result, therefore, necessitates the :.:E:

development of new clustering methods which explicitly account for the temporal i
dimension in order to be useful in the multi-target tracking problem. q.';:

5

1.5 Current Approach ..;':L
Due to the inherent complexities of the multi-target tracking problem, .

it is a formidable task to develop an algorithm which can be shown to be optimal :':::.:

and possess the following characteristics, o
¢ Perform both track initiation and track maintenance and
.

e Permit processing of data in real time while minimizing Eg:'

o8

— Computational complexity and Lf

— Data storage requirements. ;; g

3

The last two sub-objectives are important not only in achieving real time per- i 3

formance but also in simplifying the processing component of the space-based :
Sensor. @
A heuristic method is developed which combines the most attractive P:‘::

features of the non-hierarchical clustering approaches with the track initiation :

and track maintenance approaches suggested in references [38,39] (Morefield), j:,-

[16] (Chang and Youens), [17] (Chang and Tabaczynski), and [13] (Blackman). __.,q \

In fact, Blackman [13] addresses the idea of combining these features in the ‘(':?‘
track maintenance phase, but does not provide a workable track initiation process ;.:

capable of handling large numbers of targets in ballistic trajectories. Without "E
track initiation, track maintenance cannot be performed. -.

To demonstrate the effectiveness of this heuristic approach, the method :E

developed is specifically tailored to the ballistic missile defense problem with tar- “
gets (ICBMs) in flight above a spherical earth with no atmosphere. Orbiting '

satellite sensors surveying the ICBM attack provide time-tagged observations of ,.i

5
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each target’s range, range rate, azimuth, and elevation. Additional details regard-
ing the simulation design and modeling assumptions are provided in Chapter 4

and Appendix A.

While the track initiation process marks the beginning of a track’s life
cycle, the temporal clustering process itself begins with the track maintenance

phase. As seen in Figure 1.2, the temporal clustering process begins by reading

Read Observation Frame

............ I R

Track Maintenance

Forecast Existing Clusters

!

Calculate Assignment Costs

i

Perform Cluster Assignments

¢

Terminate/Update Clusters E

D e T T Y NP P g g gy --

Track Initiation

Select Feasible Tracks

'

g Select “Best” Tracks

!

Initiate New Ciusters

Figure 1.2: Temporal Clustering Process

in the data from the current observation frame and then forecasting all existing
clusters to the current observation time. The costs of associating each new ob-
servation with a predicted observation corresponding to each existing cluster are
calculated and observations satisfying the gating criteria are assigned to clusters

to minimize the total overall association costs. Each cluster receiving a new ub-
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servation has its state estimate updated while clusters not receiving observations
are considered for termination. Finally, all remaining observations are passed
to the track initiation procedure for evaluation in determining feasible sets of

observations to initiate new tracks.

In Chapter 2, the various components making up the track maintenance
process of assigning observations from the current observation frame to existing
clusters will be discussed. The process of deciding how and when to terminate a

track is also addressed here.

Then, in Chapter 3, an effective means for performing track initiation
is developed. Chapter 4 contains a discussion of the specific simulation scenarios
examined as well as an analysis of the results. Finally, conclusions are presented
in Chapter 5 together with a discussion of proposed extensions to the current

research.
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Chapter 2

Track Maintenance

Each observation frame read by the sensor, yields a set of observation
vectore consisting of the observation time and each object’s range, range rate,
azimmth, and elevation relative to the sensor. This set of vectors does not neces-
sarily contain obsersations of all the targets in the sensor’s field-of-view. This is
due to observubility problem  ising from sensor characteristics and/or defects or
as a result of the sensor-‘arget geowetry. In addition, there may be observations
which do not correspond io any paysical target, but are again the result of sensor
characteristics and the observation environment. Many of these spurious mea-
surements can be eliminated by pre-processing the data to remove inconsistent

observations in light of the sensor characteristics.

Since the track maintenance process is restricted to dealing with only
those observations recorded by the sensor, it must be capable of : igning ob-
servations to existing clusters so that inappropriate assignments are disallowed
without eliminating correct assignments. This capability is necessary to prevent
making assignments to a track when observations are missing from that track. It
must also be able to continue existing tracks which do not receive an assignment

until such time as track termination is deemed appropriate.

2.1 Forecasting

To decide whether an observation should be considered for assignment
to an existing cluster, the “closeness” of each observation to each cluster must
first be determined. To do so, however, both the observation and the cluster must
be evaluated in the same space and at the same epoch. In the problem under

consideration, two spaces are used: the attribute space and the state space.

13

T e Y SR e

O st X e

£ 20 e L L L

(ot 2% 20



N X R AR R A R AN A VRN T R O e R R R N A W WO, U R T O R A R O R K T O D O TR DY Y T VX Y

7
;
14 :
In this study, the attribute space is a four-dimensional spherical coor- i
dinate space centered on the satellite sensor. The direction of its primary axis
is fixed and points toward the vernal equinox. The four dimensions are the four ;
attributes measured for each target: range, range rate, azimuth, and elevation. by
An object’s state is some set of physical characteristics which, together P
) with a knowledge of the state transition rules, allows predictions of the state at ::
any future time. For this study, the state space is a six-dimensional inertial Carte- ,"¢
sian coordinate space centered at the center of mass of the Earth. The direction A
of its primary axis also points toward the vernal equinox. This coordinate system %
is referred to as the Earth Centered Inertial (ECI) coordinate system. The six é:j
dimensions of this space consist of three rectangular position components and “::
three rectangular velocity components. i
The cheice of this state space is possible because the motion of a target \
in a conservative force field (one which can be described completely by a poten- . ¢
tial) can be fully described given that target’s position and velocity. The case un- .‘:
der examination includes only gravitational effects and excludes non-conservative ; !
forces such as thrust and drag, and is, therefore, a conservative system. v
The use of the state space has several advantages over that of the at- :?%
tribute space in the temporal clustering process. Data storage is minimized be- :::
cause knowledge of a target can be maintained in a single state vector rather than 3
a track of observations. Methods for efficiently tracking targets in the state space, .
such as the Kalman filter, are readily available. And, for this study, estimates :.:
in the state space can be easily and unambiguously mapped into the attribute )
space while the converse is not true. )
To begin the process of assigning observations to clusters, therefore, >
d each cluster’s state vector is projected to some common observation epoch and ":
! then mapped into the attribute space. Not only is it necessary to forecast the Ny
state vector to the observation epoch, however, but the associated state covariance ;
matrix to be used to gate the observations must also be forecast to that epoch and E
both the state and state covariance matrix must be mapped into the atiribute )
space for direct comparison with the observations. As seen in Figure 2.1, the 3
mapped state covariance can be used to form a confidence interval around the '
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projccted state estimate. Two tracks are shown together with their estimated
states and gates. Only observations (hollow circles) falling within a gate are
considered for possible assignment to an existing track. In this example, one
observation could be assigned to either Track A or B, one observation could be

assigned only to Track B, and one observation could be assigned to neither.

Track B

Figure 2.1: Gating Process

The original state covariance matrix is determined when the initial state estimate

is formed and is described in detail in Section 3.3.1.

2.1.1 XKalman Filter

A natural method for forecasting the cluster state vector is provided by
the Kalman filter. Not only does the Kalman filter provide a recursive means of
propagating the state estimate and state covariance matrix but it also provides an
optimal means for updating the same with the current observation. The Kalman
filter, as developed in Kalman [33] and Kalman and Bucy [34], assumes that
discrete states are linearly related via a state transition matrix and that discrete

observations are linearly related to the current state. That is

Sk+1 = B(tes1,te)Sk + ug (2.1)
O = HyS + wy, (2:2)

where
E[u] =0 Elu;ul] = Qi

Elujwf] =o0. (2.3)
E[wi =0  E[w;wl] = Ribe !
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Here Sy is the target state at time tx, ®(tk41,%k) is the state transition matrix "
which governs how S changes from time ¢ to k41, and u; is a white noise process. :"
O, is the measurement for the target at time t, H, is the measurement transform ; ¥
matrix which governs how the state S; and the measurement O, are related, and ]
w), is another, independent, white noise process. Both Qi and R, are assumed )
diagonal matrices and ;i is the Kronecker delta. A
e : . : hy
The optimality criterion is that the estimate be a minimum variance N
unbiased estimate of the true state. That is b
L ATyl R
Minimize E[&;R;'é;] (2.4) .:‘.
igtel
N (N
subject to  E[Sg] = Sk, (2.5) ."'
o
where F
&, = (O — HiSy). (2.6) "::
_ l':‘
Assuming prior estimates of the state Sy and the state error covariance :e:
P,, the resulting minimum variance unbiased estimate is ’
Sy = Sk + Ki(Ox — HiSy), (2.7) §
where A
K; = PkH{(HkPkH{ + Rk)—l. (28) :ﬂ
The updated state error covariance then becomes &
. _ ]
P, = (I - KiHy)P; (2.9)
and the state and state error covariance matrix are propagated according to N
& A X
Skt1 = ®(tes1, tk)Sk (2.10) .:“
_ N 4
Pier = B(tian, t)Pr®(tier, th) + Qi (2.11) '
5
Unfortunately, for a target in a ballistic trajectory, neither the dynamics sl
™
nor the measurements are linear. However, the system can be linearized through f::“'
the application of Taylor series expansions. ;’
h
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2.1.2 Extended Kalman Filter

For a system with nonlinear dynamics and nonlinear measurements, the

standard model of Equations 2.1 and 2.2 becomes

S = f(S,t) + u(t) (2.12)
O = h(S,t) + w(t) (2.13)
with the covariance properties of u(t) and w(t) unchanged. Equation 2.12 is the
differential equation describing how the system dynamics affect the state, S, and

Equation 2.13 describes the specific relationship between the observation and the

state over time.

Given some nominal reference trajectory S*(t), the true trajectory may

be written as
S(t) = S*(¢) + s(?) (2.14)
so that Equations 2.12 and 2.13 become

S*+5 = f(S" +s,t) +u(?) (2.15)
O = h(S" +s,t) + w(t). (2.16)

Assuming s to be small, f and h may be approximated with Taylor

series expansions, so

L £\*
S*+s = f(S*t) + (Z—S) s+ -+ u(t) (2.17)

h *
O = h(S*,t) + (g—s) s+ -+ w(t), (2.18)

where
§* = £(S",1), (2.19)
of\" of oh\"™ oh

(%) = 55 |s_s (55) =35 lsse (2:20)
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Retaining only first-order terms, a linearized model in s results as
: af\"
$ = (%) s+ u(t) (2.21)
o= oh s+ w(t) =0 —h(S",t) (2.22)
Js
or, defining
of\” oh\"
A(t) = (6_8) and H= (%) , (2.23)
then
s = A(t)s + u(t) (2.24)
o = Hs + w(t). (2.25)

Standard algorithms for implementing the Kalman filter can be used,
with the only difference being that the nominal state vector, S*, and the state
covariance matrix, ®(¢x,1,%;), are updated through the use of a numerical inte-
gration routine between time steps, with

§* = £(S*,1) B(t,tp_1) = A(t)B(L, L5 1)
and (2.26)
S.(tk—l) = Sl:—l Q(tk—lytk—l) = I

This implementation is known as the linearized Kalman filter.

Frequently it is desirable to use the current estimated trajectory in
place of the nominal reference trajectory since, under stable conditions, a better
estimate will result. The process of updating the reference trajectory with the
latest estimate of the true trajectory is known as rectification. Using rectification,

the reference trajectory is updated as
S:=8; +5 (2.27)

for each new measurement. This rectified linearized Kalman filter is more com-
monly known as the Extended Kalman Filter (EKF) and is the filter of choice

for most astrodynamical tracking problems.
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2.1.3 State Propagation

At time t;, the state vector, Sy, consists of the target’s position, ry, and

velocity, ¥, (or vi), in ECI coordinates

Sk = (Tky Yy Zkr Tk, Yty k)7 - (2.28)

The observation vector, Oy, is

Oy = (pks pr ak, €x) s (2.29)

where pj is the range from the sensor to the target, pi is the range rate, ay is
the target’s azimuth, and ¢, is the target’s elevation.

Given estimates for S,, and P,, at some time t,, prior to the time of
the current observation, the method to be used to forecast the target state and
covariance to the current observation time, t,, can be developed using the specific
dynamical model for this investigation.

As shown in Equation 2.26, the target state estimate, S, is updated

through numerical-integration of
S = f(S,1) (2.30)

with initial conditions

S(tm) = Sm (2.31)

to the current observation time, t,. The specific function f(S,t) depends on the
system dynamics. In general, for a target in ballistic flight,

S = G(r,t) + D(r,v,t) + 2% + R(t). (2.32)

Each term on the right-hand-side of Equation 2.32 represents a force per unit
mass (i.e., acceleration) on the target. G(r,t) is the combined gravitational
acceleration on the target due to the earth, sun, and moon, D(r, v, ) is the effect
of atmospheric drag, T(t) is the target’s thrust, M(t) is the target’s mass, and
R(t) is the acceleration due to all unmodeled forces. For this study, the target is

subjected only to the gravitational acceleration of a spherical earth.
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For such a target in a two-body orbit, the standard second-order differ- 4
ential equation is . =:
> p!‘ [ )
S= ) (233) Il':'
T n ..
which, when expressed in the first-order form of Equation 2.12 gives ha
vt
s £8.0) = (5,95 BT _BY _pz\T ~
S_f(svt)_‘ (xaysz’_r3v_r3a_r3) (234) I
_ ]
and can be integrated, using the initial condition S(t,,) = S,., from t,, to ¢,. “
Equation 2.34 results from differentiating Equation 2.28 and applying Equa- .‘
tion 2.33. it
ion ) :.".::
Propagating the state covariance, P, is a bit more difficult. From :;‘:::
Equation 2.11, ‘.::“
P, = B(to, t)Pr (ko) 1) + Q, (2.35) 3
where the white noise process u is assumed to be homoscedastic and known. E .
Otherwise adaptive filtering techniques are necessary to adaptively compute Q.. NG
But, ®(t,,t,,) itself must be numerically integrated, according to Equation 2.26 ;{
and the specific form of A(t) must be evaluated. ",
N,
Letting S = (r,v)T and applying the definition of A(t) from Equa- f"
tion 2.23, phl
afr\"  (oS\’ fr f e
A ===]| ===} = , 2.36 '
) (as) (as) ( et ) (236) e,
where t::-
oi i
r -
£, = Fre 0, (2.37) :.'
. L
or .
frv = 53— =1, . oGy
5v I (2.38) ::‘\':
2 zy zz !
(1-3(5) =(F) -»(F) ‘
av 7 Y v\? yz
fur = 3. = T - — - - - -— s .
nl (@) 1) (%) | en 2
Tz Yz z\? hy
= (F) () -0 0) R
ov [
d f, = —=0. .
an T 0 (2.40) :
y
oy
VN
L
2
; O

O] O W L N D Y e RO O Y 2 W PR NN Y R T TR Wt b
R I L T Y 1 M U T P Y M A G T At N e N N R SN N AR I



R R AR S R R R A R R R N R R I R AT TR o™ T K RN R R X I I WS

i

9] i
s
s

Therefore, the system of equations to be integrated is
61"r é‘ru 01 ®,, &, -
) ) = (2.41) by
Q‘Uf’ QVU fvf 0 QUT QW R

rr = Py, (2.42) oy
rv = vi (243) .::
vr — furﬁr, (244) )

vy — furQrv (245) ﬁ::

or

subject to

er(tma tm) = Qw(tmatm) =1 (246) "

and Q"’(t""tm) = Qvf(tm,tm) =0 (2.47) ‘:‘

So, to find P,, ®(¢,,t,) is integrated according to Equations 2.42 through 2.47 \
and Equation 2.35 is applied. P -

With S, and P, the state estimate and its covariance must now be ~
mapped into the attribute space for use in completing the cluster assignment

process. Pt

ool

2.1.4 Mapping Into the Attribute Space

o ~ h
Given the target state, S, = (r,,%,)7, and the sensor state, S,, = N
(Foss Tos)T, the transformation from the state space into the attribute space is

. N
given by o
T !
P, = (pozv poyapoz) =Ty — I'ps (248) :} :

po = (:bo.ra poy, p.oz)T = l"o - f'o, (249) »

»
po = ||l (2.50) >3
. .. -

o = Po Py (2.51) =

A
a, = tan™! (&1> (2.52) ey
Poz -
¢
Y
!
W

»
)
K‘:
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€, = tan™! (po_z) , (2.53)

[

where 9, = \/poz? + poy? (2.54)

and p, is the unit vector along the range vector, p,. These transformations are
based upon the sensor-target geometry depicted in Figure 2.2 and a standard
transformation of rectangular coordinates of the state space into the spherical

coordinate system of the attribute space.

_ Target

Sensor

Figure 2.2: Sensor-Target Geometry

The vector of estimated observations at the current observation time,
t,, 1s designated by (5,,, where

()0 = (poa p'mameo)T = ()o(go)- (255)

~

More properly, O, should be considered to be a function of the uncertain param-

eters r, and r,, with r.,, r,,, and ¢, treated as constants.

Using a Taylor series expansion and retaining only first-order terms, the

state estimate can be shown to be an unbiased estimate. That is

E[0,] = E[0,(S.)] (2.56)

=E [Oa(uso) + <?9(g):) (So — uso)J (2.57)
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A 80,\" - 00,\"
= ~ - — 2.
E|[O.(ng,)| + E ( as,,) so] E ( aso) uso} (2.58)
A 80,\" . = 30,\"
- Oulus)+ (35) B8~ (52) ws. (2.59)
= ()0(“50)’ (2.60)
where . R
800) a0,
=2 ==2| =H,. (2.61)
(aso aSo S":”So
Now, to find the state covariance matrix, a Taylor series expansion is again ap-
plied, so
0, — E[0,] = O,(ps,) + Ho(S. — ps,) + - -- — E[O,] (2:62)
= H,(S, - Mg )+ (2.63)

and, retaining only first-order terms,

2, = E[(0, - E[0,})(0, - E[0,))7] (2.64)
= E [(Hu(S, - ng,))(Ho(S, — ps,))] (2.65)
= E [(Hy(S, — pg,)(5. - ng,)THT| (2.66)
= H,E [(S, — ps )(S. — ps,)7] H. (2.67)
But
E (8. - ps,)(8. ~ ps,)"] (2.68)

is merely the state covariance matrix, P,. So, the estimated attribute covariance
matrix, Z,, can be written

g, = H,P,HT. (2.69)

Actually, &, = max(H,P,HT, R) is used, where R is the observation covariance
matrix. This prevents the estimated error associated with the observation from

becoming smaller than the known error of the sensor.
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Also, since pg_ is not known, the reference state, S3, is used instead, so

a0
HO = ?0 . 2.70
aSo S,,:S; ( )
In particular,
(D= Poy Pox 0 0 0 )
po po po
l-’ozpo - Poz/.’o ﬁoypo - Poypo ﬁzpo - Poz/’o _Po_:z: Bﬁ Pﬁ
2 2 2
H, = ”; Z° Po Po Po Po 1 (271
oy or
_E 50—2 0 0 0 0
PozPoz PoyPoz Qo
— PozPor _PeyPor Lo 0 o0 0
\ [ Po’ 00 % /

Once reasonable estimates of O, and £, have been determined, they

can be used to gate the new observations.

2.2 Cluster Assignment

Now, each actual observation is compared to each predicted observation
and the “cost” of association (i.e., the cost of assigning an actual observation to
an existing cluster) is computed. This cost is based upon the Euclidean metric
in the attribute space. Because of the disparate scales of the various attributes,
each attribute of the observations is standardized by subtracting the attribute

minimum and dividing by the attribute range.

To minimize the likelihood of infeasible associations, actual observations
which fall outside the predicted observations’ gates are assigned an arbitrarily
large cost. These gates are derived from the diagonal elements of the attribute
covariance matrix, éo. While the use of simple rectangular gates based on the
diagonal covariance elements may be conservative (depending upon the relative
magnitude of the off-diagonal terms), it is shown empirically to work quite well.
An association is considered to be infeasible if any single attribute of an ob-
servation is outside the predicted attribute’s 6-0 confidence interval or if any

two attributes are outside the corresponding predicted attributes’ 3-o confidence

intervals.
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The rationale for using a two-step voting process for determining wheth- :.,.

er an association is infeasible or not is based upon the probability of Type I and }:ﬂ
Type II errors. In all the simulation scenarios run to date, each incorrect associ-
ation resulted in at least one attribute being far outside the predicted attribute’s :::':
3-0 confidence interval, therefore making the probability of a false association Mo
(Type II error), even at the 6-0 confidence level, quite small. ‘;2
And while the probability of denying a correct association (Type I error) i:’.

at the 3-0 confidence level is small, the likelihood of such an occurrence over the é: Y
life of the scenario must be considered. The probability of a Type I error is ('.
equal to the probability that one or more observation attributes fall outside their el
gates, or one minus the probability that none fall outside their gates. If p is the ':::',
probability that a single observation attribute is within its 3-o gate and ¢ = 1 —p, :“::‘
and n is the number of attributes, then the probability of disallowing a correct ';s
assignment is ':'::
P(gating error) = 1 — (g)p"qo =1-p". (2.72) :ég

[N

Applying Equation 2.72 to a typical 100-target scenario with four attribute types, ,5
1.08 Type I errors would be expected in each observation frame, resulting in a E:
lost observation. By requiring that two attributes (out of four) be outside the }.:"'
3-0 confidence interval the probability of a Type I error is reduced considerably !(:
(by a factor of 250). 4 4
Once the costs of association have been computed, an assignment can ,.:::

be made of actual observations to existing clusters so that the total cost of these y ‘f
associations is a minimum. First, obvious assignments are made where only W
one assignment is possible. Then, since the remaining numbers of clusters and N
observations will likely be unequal, d'\mmy clusters or observations are formed ':‘:,
with association costs set to an arbitr. - iy large value. The remaining assignment ::::C
is then solved (in this case using the Hungarian algorithm [40]), and all clusters 7
receiving legitimate assignments are updated via the EKF as shown in Section 2.4. _:
All clusters for which no observation can feasibly be assigned are consid- E::

ered to have missed an observation and are annotated to indicate this. Obviously, ;
no updating of this cluster’s state or state covariance is possible. Finally, all re- ‘.J‘
maining unassigned observations are then passed to the track initiation algorithm "y
o )
N

:

e
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discusscd in Chapter 3.

2.3 Track Termination

Conditions for terminating a cluster are now considered. Target tracks
may require termination because they have reached their impact point, been de-
stroyed, become obscured by the earth’s surface or atmosphere, or simply because

they exit the sensor’s field-of-view.

In the scenarios investigated in this study, all observation frames are
recorded at equally spaced intervals and all observations in the same frame have
the same time tag, it makes sense to terminate a cluster after some pre-specified
number of missing observations. There are several practical reasons for so doing.
First, there is no point (computationally) in continuing to propagate a cluster
which has either disappeared or been terminated due to a Type I error. After
some period of time it must be accepted that the target is no longer being tracked.
With fixed time interval observation frames a maximum number of consecutive

missing observations can be used as a limit.

Another reason for not propagating clusters indefiuitely relates to the
increased probability of Type II errors. As a cluster is propagated without up-
dating its state and state covariance, the state covariances will grow, making it
more and more likely that a false association will result. This limitation could
lead to another criterion for terminating a cluster. That is, the cluster could be
terminated when the state covariance elements exceed certain bounds. The main
drawback to this criterion, however, is that the magnitude of the covariance el-
ements are highly dependent upon the sensor-target geometry, so determination
of the bounds would be subjective.

In using the consecutive missing observations limit as a criterion for
terminating a cluster, the likelihood of incorrectly terminating an active cluster
due to a chance occurrence of the limit being exceeded must be considered. To
do this, an upper bound on the likelihood of an observation being missing must
be estimated. If the maximum number of missing observatiors allowed is n and
the probability of an observation being missing is ¢ (assuming equally likely and

independent events), and p = 1—g¢, then the probability of incorrectly terminating
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a cluster is

P(false termination) = (n ;- 1)poq"+l = ¢, (2.73)

For a 100-target scenario with 5-second data intervals covering the first
six minutes of an ICBM launch, the following number of false terminations based

upon chance are expected:

Maximum Probability of Missing
Missing 005 | 010 | 0.20

1 365.00 | 730.00 | 1460.00
18.00 72.00 | 288.00
0.89 7.10 11.20
0.04 0.70 2.21
0.00 0.07 0.44
0.00 0.01 0.09
0.00 0.00 0.02

~J| |G WD

Table 2.1: Expected Number of False Terminations

Other criteria for terminating clusters could consider whether the target
was predicted to be beyond the field-of-view of the sensor, below the surface of
the earth, or beyond the earth’s horizon. However, these considerations are not

presently implemented in the simulation.

2.4 Track Update

Once an assignment has been made between the existing clusters and
the observations at the current observation time, t,, the state for each cluster is

ready to be updated. Using the linearized versions of Equations 2.7, 2.8, and 2.9,

8, = 8, + K,(0, — H,5,) (2.74)
and P, = (I- K,H,)P,, (2.75)

where
K, =P HI(HP.HT + R)™. (2.76)
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Again, R is used rather than R, in Equation 2.76 under an assumption that the
white noise process w(t) is homoscedastic. And, because the Extended Kalman
Filter is being used, §, = 0, thus, Equation 2.74 becomes (assuming rectification
occurs at each state update)

8, = K,0,, (2.77)

where

0, = 0, — O, (2.78)

The final item needed is the measurement transform matrix, H, from

Equation 2.71. Evaluating H, at S, and forming K, according to Equation 2.76,

s, = K,o0,, (2.79)
S, =S, +5,, (2.80)
and P, = (I-K,H,)P,. (2.81)

While the implementation discussed above is theoretically correct, mod-
ification of the EKF is often necessary to prevent filter divergence. One of the
primary causes of filter divergence is associated with errors which occur in the
computation of the state error covariance matrix [55,25]. In particular, round-
off errors in the calculation of this matrix can cause it to become non-positive

semi-definite—a theoretical impossibility.

In this investigation, the standard EKF formulation was found to suffer
from just this type of filter divergence. The state error covariance matrix immedi-
ately became non-symmetric and non-positive semi-definite during the first filter

update. This result was due to the extremely poor conditioning of the matrix
M = HPH” 4+ R, (2.82)

which must be inverted in Equation 2.76 as part of the EKF procedure. As a
result, the EKF is re-formulated to take advantage of an approach which main-
tains the natural symmetry and positive semi-definiteness of the state covariance

matrix.
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2.4.1 Matrix Square Root

Since the a priori state error covariance matrix P is a symmetric positive

semi-definite matrix, it can be written as
P=wWT, (2.83)

where W is the matrix square root of P. Such a square root can easily be found
using Cholesky’s Decomposition Algorithm [55]. Given the n x n elements of P,
the elements of W may be found using the following procedure
For:=1,2,...,n
Wi =\ Pi— > W,
k=1
Forj=:141,...,n
P - ZVViijk

Wi = k;T;;- : (2.85)

The resulting matrix is a lower-triangular square root matrix. The state error

covariance update can now be reformulated using W instead of P to ensure that

P remains symmetric and positive semi-definite.

2.4.2 Covariance Update Reformulation

From Equations 2.75 and 2.76, the state error covariance update equa-

tion is
P=(1-KH)P (2.86)

where

K = PHT(HPHT + R). (2.87)
Equivalently,
P =P - PHT(HPH? + R)"'HP. (2.88)
Substituting WWT for P and WWT7 for P yields

WWT = WWT - WWTHT(HWWTHT + R)"'"HWWT.
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Letting F = WTHT and M = FTF + R, then Equation 2.89 becomes
WWT = W(I - FM'FT)W7, (2.90)

Expressing (I — FM~'FT) as AA7, then
WWT = WAATWT (2.91)

or

W = WA. (2.92)
The state error covariance update is found by first computing
W = P: (2.93)

using Cholesky’s Decomposition Algorithm, then forming

F = WTHT (2.94)
M=FIF+R (2.95)
A = (I-FMF7)} (2.96)
and W = WA, (2.97)

Since FTF + R is symmetric, symmetric inverse routines can be used to calculate
ML
Obviously, P = WWT and

§ =5+ K(o — Hs), (2.98)
where
K =WFM!, (2.99)
which for the EKF becomes
5 = Ko. (2.100)

This method ensures that P remains symmetric and positive semi-defi-
nite as expected.
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Chapter 3 :'?‘
]
. . . .':"
Track Initiation 2
2
\]
Once the track maintenance process has been completed, the remaining .5
unassigned observations are passed to the track initiation algorithm. These unas- {
signed observations are most likely the result of new targets which may appear )
o
in the sensor field-of-view because they were just launched, were just deployed as :14:‘
.b
a multiple independently-targeted reentry vehicle (MIRV), entered the sensor’s ::::"
h
field-of-view, or emerged from L.ing obscured by the earth’s surface or atmo- -
sphere. 3
The goal of this process is to form an initial estimate of a cluster’s state . ‘::
and state covariance using the minimum number of observations. Examination ‘Ef
of various orbit determination techniques in {12,24,29.30] has shown Laplace’s 'i
method, using three observations of a target’s range, range rate, azimuth, and "
elevation, to be the most appropriate method for determining an initial state es- 3
)
timate in this study. How this method is applied will be shown in Section 3.3.1. N
However, since three consecutive observations cannot be guaranteed, the unas- i \
signed data must be stored in a buffer to permit forming the necessary combina- \ )
tions of observations. ?
1Y
As in the track termination process, the likelihood of missing an ob- ; ;
pd
servation will determine the size of the buffer required. If a buffer covering the _
last m observation frames is used, the probability of failing to correctly initiate a ‘i
. . ‘
cluster will be the probability that at most one observation of the target associ- !
ated with that cluster occurs in the last m — 1 observation frames given that an t"\
observation has been detected in the first observation frame. That is,
\
. m—1\ o ma m—=1Y\ s ‘ﬁ-
P(initiation failure) = L + P (3.1) g
Y
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where p is the probability of detecting an observation and ¢ =1 — p. g,q
As with the track termination process, the expected number of failures ::
to initiate a cluster for various buffer sizes and probabilities of missing data is W
summarized below in Table 3.1. The table assumes a 100-target scenario. 2
w2
Buffer || Probability of Missing )
Size || 0.05 | 0.10 | 0.20 b
3 | 9.75]17.00] 36.00 2
1 0.73 | 2.80 | 10.41 %
5 0.05| 0.37 2.72 W
6 0.00 | 0.05| 0.67 .3,
7 0.00 | 0.01 0.16 ::;:
L
Table 3.1: Expected Number of Track Initiation Failures [\(
3
Once the size of the track initiation buffer is determined, the track &_
initiation process can be analyzed. Since the objective in this process is to form .
observation triples which can be assessed for suitability, it is desirable to form all ay
feasible triples and select among these for the “best” overall assignment. 'E
3.1 Problem Formulation &
To find the “best” overall assignment for the track initiation problem ‘h:
requires that the problem to be solved be defined specifically as well as in what il
sense the solution is best. Briefly, the problem is to form triples of observations N
(tracks) such that no observation is included in more than one track and that the ! i,
system dynamics are not violated. But there must be some means for assessing ‘!‘_:
the “cost” of associating an observation with a track. Then, the problem becomes -','
to choose a set of tracks which minimize this association cost subject to the v
restriction that no observation be used in more than one track and that no system
dynamics be violated. " '
A measure of the quality of the tracks of targets in ballistic trajectories Q
is a function of the total specific energy, £. High quality is associated with low ':
values of £. The designers of an ICBM booster are faced with providing a system o
3
¥
3
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for delivering nuclear warheads to their targets for the minimum cost. Since
the cost is energy, it is reasonable to assume that each warhead will follow a low
energy trajectory to its designated impact point. Combining this assumption with
the fact that a ballistic trajectory is a minimum energy path in the gravitational
potential results in the conclusion that any misgrouping of observations into a
track will require a higher energy orbit. Therefore, if one pair of observations
defines an orbit and a second pair defines a similar orbit (with the mid-point
observation common to each pair) there should be no change in energy between
the two orbits if the three observations are properly grouped (in a conservative
force field). Since imperfect measurements are involved, the assumption is that

this change is smallest for properly grouped observations than otherwise.

The resulting problem can be formulated as a binary quadratic program.
Consider m observation frames and n, unassigned observations in each frame
p=12,...,m. Observation ¢ in frame p is linked with observation ; in frame
¢ if and only if the variable z;,;, = 1, otherwise, z;,;, = 0. The cost associated
with a given observation triple (p;,q;,7«) (i.e., the ith observation from frame p,
the jth observation from frame ¢, and the kth observation from frame r), cijokr,
is equal to the specific energy of the orbit defined by the observation triple if the

system dynamics are satisfied, and equal to infinity otherwise.
Problem BQP (Binary Quadratic Program)
m—2m—-1 m Tp Ng n,

Minimize Z Z Z Z Z Zciqueriququkr (32)

p=1 ¢>p r>q i=1 j=1 k=1

np Ny
subject to Zx,-qu - Zx]-qk, =0, p=12,....m—2 (3.3)
i=1 k=1

J=12,. 1 g
"p
D Tipig <1, p=12,...,m—2 (3.4)
=1 ‘I=P+17 3m_1
1=12,...,n,
Tiq
D inie <1, p=12...,m-2 (3.5)
i=1 g=p+1,....m—1
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2 Tigkr S 1, g=p+1,....m—-1 (3.6 ‘:

J:l r = q + 1, ,m w u‘
k= 17 21 'z _

&%/

Tipjq» Tjqkr bInary, p=12,...,m—2 (3.7) ’
g=p+1,...,m-1 ]

r=gq + 11 , M :‘:

t=1,2,...,n, 0'14‘

W'
7] =1,2,. 1 Mg ﬁ‘

k=1,2,...,n, ooF

L84

Equation 3.3 (conservation of flow) ensures that if observation g; is paired with k}:
3

some observation p;, then it is also paired with some observation ry, thus guar- “'

anteeing that a triple is always formed. And Equations 3.3 through 3.7 ensure

that each observation is assigned to at most one track, and vice versa.

0
Since integer programs can be difficult to solve efficiently and quadratic :'
gt
integer programs even more so, the problem is reformulated into a binary linear )
program by setting Py
Yipjgkr = TipjgTiqkr- (3.8) |;_

This variable ensures that only observation triples are formed. That is, obser- iy
vation ¢ in frame p, observation j in frame ¢, and observation k in frame r are 3{
linked if and only if the variable y;pjokr = 1, otherwise, yipiqrr = 0. "
Problem BLP (Binary Linear Program) 0:!:,:
m—~-2m-=1 m MNp Nq n, :::

Minimize 2 Z Z Z Z Eciqukryiqukr (39) ll:::f

p=1 g>p r>q i=1 j=1 k=1 o
ﬂp .

subject to Y Yipigkr < 1, p=1,2,...,m—2 (3.10) 3
=1 g=p+1,....m—1

J=1 ¥
k=12,...,n,
ng :‘
Zyiqukr <1, r=12,....m—2 (3.11) .:
=1 q=p+1,...,m—-l ht‘
r=q+1,...,m \{::
t=1,2,...,ny »
k=1,2,...,n, ;
o
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p=12,...,.m-2 (3.12)
g=p+1,....m—-1
r=q+1,...,m

=1,2,...,n,
p=12,...,m—2 (3.13)
g=p+1,...,.m—1
r=q+1,....,m
t=1,2,...,n,
J=12,...,n,
k=1,2,...,n,.

Lemma 1 Formulations BQP and BLP are equivalent.

PROOF: The objective functions of both programs are equivalent by the definition

of Yip;qkr- To complete the proof, any solution to either formulation must be shown

to satisfy the constraints of the other.

All feasible solutions to BQP satisfy BLP:

Multiplying both sides of Equation 3.4 by z,4, and applying Equation
3.8 proves that Equation 3.10 is satisfied. From Equation 3.3,

np Ny
Zmim'q = ijqkr,
=1 k=1

nr
which implies Zz,-qkr <1,
k=1

p=12,....m—2 (3.14)
gq=p+1,....m-1
r=g
j=1

g=p+1,....m—1 (3.15)
r=q+1,....m
I=12,...,n,

Again, multiplying both sides of Equation 3.15 by z,,;, and applying Equation
3.8 proves that Equation 3.12 is satisfied. Finally, Equation 3.11 is shown to be

satisfied by noting that

Ng
inqu <1
Jj=1

o
patd i

o R N AT A AT NN R Y
-e o Cedi -8 S ol 2 o o

p=12,....m—2 (3.16)
g=p+1,....m-—1
t=1,2,...,n,
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ﬂ.q ﬂ.q
Z.’L','quz = Z.’L‘,'qu, P = 1,2, ceey M — 2 (317)
j=1 j=1 g=p+1,....m—-1
i=1,2,...,n,
g ]
Zx.-m-qquk, S Z.Z’,'qu2, pP= 1, 2, vyt — 2 (318)
j=1 j=1 g=p+1,....m—-1

All feasible solutions to BLP satisfy BQP:

Since all variables are binary, any feasible solution of Equation 3.8 can

be adjusted to satisfy

Tipjq = Tiqkr, p= 1,2,...,m-2 (319)
g=p+1,....,m-1

t=1,2,...,n,
J=1L2,...,n4
k=1,2,...,n,

such that there is no change in the objective function (Equation 3.2). Therefore,
from Equation 3.10,

"p

D ZipiaTiakr <1, p=12,....m—2  (3.20)

=1 q=p+1,....m—1
r=gq+1,...,m
1=12,...,ng
k=1,2,...,n,

np np np

Zzim’qqukr =Z-"3iqu2=2$iqua p=12,.... m-2 (3.21)

i=1 i=1 i=1 g=p+1,....m—1
r=q+1,...,m
1=12,...,n4
k=1,2,...,n,,

showing Equation 3.4 to be satisfied. Applying this same technique to Equations
3.11 and 3.12 proves Equations 3.5, 3.6, and 3.15 to be satisfied. And, combining
Equations 3.4 and 3.15 with Equation 3.19 shows Equation 3.3 to be satisfied, as

well. Therefore, the two problem formulations are equivalent. O
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3.2 Problem Reduction '

One approach to solving the track initiation problem would be to form

all possible triples. However, the computational load for large problems would be ]
extensive, regardless of the method used to solve the binary linear program. To :
help visualize the size of such a problem, consider a track initiation buffer of m ’
frames with the number of unassigned observations in frame p equal to n,. Then '-‘-’
the number of possible triples is ]

m-2m-1 m

2 2 2 mpnan, (3.22) o

p=1 g>p r>q .::
]
which has a worst-case complexity of O(m3n?®), where n is the number of actual :'E:
targets. For a 100-target scenario with a buffer of seven observation frames, ot
such an explicit enumeration would involve 35,000,000 combinations. In practice, ?:_
however, most of the unassigned observations will be assigned to clusters within f.
the first three or four observation frames. This conclusion results from applying o
the probability of a successful track initiation, by
m )
P(successful initiation) = Z(m) i, (3.23) X
i=3\? h
where p is the probability of a successful detection and ¢ = 1 — p, to various '.
buffer sizes and probabilities of missing data. Results for 100 targets are shown ;‘ \
in Table 3.2. But even under these conditions, startup could require in excess .,
of 1,000,000 combinations be examined. Therefore, the track initiation process '
W
N
Buffer || Probability of Missing L
Size 005 | 0.10 [ 0.20 A
3 85.74 | 72.90 | 51.20 "
4 98.60 | 94.77 | 81.92 =
5 99.88 | 99.14 | 94.21 >
6 99.99 | 99.87 | 98.30 ' .
7 [ 100.00 | 99.98 [ 99.53 :
Table 3.2: Expected Number of Clusters Initiated E
J
is begun by first reducing the number of allowable arcs based upon the system v
Ay
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dynamics. A three-step process is used which begins by forming gates around
each observation to limit which observations can be linked (Section 3.2.1). For
each allowable pair of linked observations, a preliminary estimate of the specific
energy of the orbit defined by that pair is determined and evaluated for feasibility
subject to the system dynamics and assumed booster characteristics (Section
3.2.2). Then, pairs sharing a common mid-point are linked to form observation
triples and initial orbits are determined (Section 3.3.1). Each triple is further
evaluated to ensure that it remains feasible in terms of the system dynamics
and assumed booster characteristics (energy). Finally, from the remaining set of

feasible triples, the binary linear program defined on page 34 is solved (Section
3.4).

3.2.1 Single Observation Gating

The goal of this section is to determine which pairs of observations may
feasibly be linked subject to system dynamical constraints. To accomplish this
goal, estimates of p;, p;, aj, and €; and a gate for each estimate are calculated
given a single observation at time t; consisting of p;, g;, @;, and ;. These estimates
and gates are formed for every observation such that ¢; < t, to assess links with
observations in each observation frame where t; < ¢;. Actually, this process
is much simpler than it might first appear since the targets being tracked are
assumed to be acted upon only by the gravity of a spherical earth. Defining the
ECI vector to the target as r, the ECI vector to the sensor as r,, and the range
vector from the sensor to the target as p, then the three vectors are related by

the equation

}
r=p+r (3.24) -
p+r, : )
as seen in Figure 2.2. ]
The range vector, p,, can be estimated from a single observation as v
)
COS E; COS @ A
A . “u
pi = pip; = pi | cosgisina; |, (3.25) ™
sin 1oh -
'.
A . . . . ,,
where p; is the unit range vector. Therefore, the sensor position, r;, can be )
estimated. And, since the only acceleration acting on either the target or the N
‘l {
o
1] .‘
A
LY
’ Y
]
Y
\
A G TR T L A P Y v T v A 1 v r A A A A G AT A G AR AR AN )



sensor is assumed to be due to the earth’s gravity,

. p .
r=-——3r and Py, = — Ty,
T Tis

of a Taylor series expansion as

.2

. uTJ'
l‘j=l‘,'+l‘,‘1'j,'+l'.‘—2 +-,

for those estimates.

Now, by definition

pi = llp;ll = /#; - P;,

where

p; =T; —Tj,.

39

(3.26)

Now, the target’s position at time ¢; can be estimated through the use

(3.27)

where 7;; = t; — t;., While not enough information to estimate r; is available, it

is possible to make approximations to provide reasonable estimates and bounds

(3.28)

(3.29)

Since the sensor’s state at ¢; is known, p; can be expressed (truncating the Taylor

series expansion after the acceleration term) as

.
. v J‘
p; = Ti+Ii7; + Ty

= Ar; 4 ;7 — rjs,

2
= (1~ ATl
= (1-22)

— rja

where

Therefore,

pi* = p; - p; = (Ari + EiTji — 15,) - (Ari + Fimji — 1j5),

which, when expanded, yields

pj2 = A2(l’,' . I‘,') + 2ATJ','(P,' . f‘,‘) + Tj,'z(l",‘ . l‘,) — QA(I',‘ . l'j,)

- 2Tj,’(l.‘,' . I‘J‘,) + I Ty

= (Ar)® 4 (vimi)? — 2A(r; - v5,) + 1% + 2r5(Ari — 1) - F

(3.30)
(3.31)

(3.32)

(3.33)

(3.34)
(3.35)
(3.36)

= (Ari)® + (nmi)® = 2A(ri - 15,) + 75, + 2756]| Ary — 1, |v; cos B.(3.37)
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The estimate of p; is completed by making some approximations for the
terms depending on r;. Although the direction of the velocity vector is not known,
its magnitude can be estimated in the problem under consideration. This result
is due to the fact that the target is assumed to be operating in a conservative
force field and, therefore, its energy is a constant. If the maximum velocity at
burnout is assumed to be v, and it is also assumed that burnout occurs close
to the earth’s surface where ry, is approximately the earth’s radius, then the

maximum specific energy is

_ vb02 __i
£= -k (3.38)

and the velocity at any subsequent time, such as t;, is given by

m=J2@+£) (3.39)

The only term still not known is the value of B, the angle between
(Ar; —r;,) and r;. The angle 8 can be approximated, however, by noting that in
extreme cases 3 = 3 £ f3,, where J; is the angle between (Ar; —r;,) and p; and

B, is the angle between p; and ¥;. Therefore,

-1 (Ar; — l'js) - p;
- WV T Tys) " P 40
A= o an e (3.40)
and A
<1 T p;
B2 = cos ‘———”iﬁ : (3.41)

Although f; can be calculated directly, to calculate 3, it should be
noted that r;- p; is simply the target velocity along the line of sight, vy, and that

Uiy = (P, + 1) - P; = pi +Tiy P, (342)
Therefore,

1 Pi + s Py

DA

B2 = cos

(3.43)

From this development, the remaining uncertainty in the calculation
of p; results from not knowing the relative direction of the components of the
sensor and target velocity normal to the line of sight. The extreme values of 3

correspond to an assumption that these components are coplanar and in either
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the same or opposite directions. Therefore, the larger of 5, and ; is used as the
nominal value and the smaller to determine the bounds for the value of p;. That
is

ﬂ = ma'x(ﬂla ﬂZ) + min(ﬂla 132) (344)

Now, to estimate p;,

p; = Pj- p; = |lp;li cos j, (3.45)

where ~; is the angle between p,; and p,. Since p; and p; are known, estimate
can be completed if the angle between p; and p; can be deter. .-=d. Designating

this angle as 0, the distance between p; and p; is

op = \/pgz + p;j2 — 2pipj cos . (3.46)

However, the angle v; is approximately the angle between ép and p; and since

pi® = 80 + p;® — 26pp; cos v;, (3.47)
then
8 + pi® — pi’
- 48
COS 7; 260, (3.48)
_ pi® — pip; cos 6 (3.49)
opp;
Approximating p; as (8p/7;:),
2 __ 5. /]
py = B PibiCO8 (3.50)
P;Tji
and @ can be found by noting that
sinf = d—‘L, (3.51)
Pi

where d, is the distance traveled perpendicular to the line of sight between ¢;

/p2 —d 2
VAT T 4T (3.52)

P;

and t;. Therefore,

cosf =

N L G T e eV o e R A
dl 0 - B . 0 - - v » N . N ~ ! & A B g e i . - B
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‘ h
3 '
. and P
! . Pt —pnfpt—d.? ,
_ p; = — . (3.53) g
: P;Tsi ;

To calculate d, , the velocities and accelerations of both the target and

-

the sensor perpendicular to the line of sight are needed. Since v; has already been

4 ‘
::: estimated and v;, is known, ';
iy 4
: v, = \/'U,'z - ’U,'"2 (354) ¢
3y # N
N = \ﬁ (E+2) = (it i oy (3.55) :
i§ |
Kl and vy, = vie? — (Fis - ;)% (3.56)
3 .
;. Therefore, the maximum relative velocity perpendicular to the line of sight is 3
‘.‘ ﬁi_L = viJ_ + vi.!_L (3'57) .
¥ 1
. SO :
=2 (64 L) = Gt i p 4 ol — G P (35) :
: : 4
; The approximate maximum distance moved perpendicular to the line :
of sight will then be
2 ]
. o Ty
dma:t_L = Pi, Tji + pi_L_J2_a (359)
Q
X where p;, is the relative acceleration perpendicular to the line of sight. And since 5
) pi = - = —5r+ Lo, (3.60)
. then d
. pio = 1B = (B b (3.61) 3
The minimum distance moved perpendicular to the line of sight will result when
: 2
- T )
4 dmin_,_ = I’U,’_L hd ‘U,'.,L| - prJQ_ . (362) ‘
The value of p; will, therefore, be bounded by the variance in the estimates of p;
j' and d,, with a nominal value based on the average of dnin, and dpaz, - .S
b )
o W
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0
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Unfortunately, the azimuth and elevatioun at time ¢; cannot be estimated
using a single observation since the target velocity vector cannot be fully esti-
mated. Therefore, it is assumed that the new azimuth and elevation, o; and
€;, are in the neighborhood of the previous azimuth and elevation, ¢; and ¢;
(i.e., aj = a; and €; = ¢;), and only the gates for these measurements will be
determined.

The maximum angular change, 0,,,., will have components in both az-
imuth and elevation. However, since there is no way of knowing exactly which
direction the target is moving ,,,, is used as the gate for both the azimuth and
the elevation, resulting in a somewhat conservative estimate. Caution must also
be used in calculating éa when ¢ ~ +7 since a small change of 0,0, will yield
corresponding large changes in éa. In fact, the relationship for the maximum

change in a for a given 8, is

b = Imaz (3.63)
COS &;
and
be = 0,0z (3.64)

Each observation in an observation frame is assessed in this manner to
determine an estimate and gate for each observation in the succeeding observa-
tion frames. Once this process is completed, each observation in the succeeding
observation frames is compared to the estimate and gate for that frame. This
process is O(m?n?)). If the observation satisfies the gating criteria, the pairing

is considered for addition to a list of allowable pairs.

3.2.2 Dual Observation Gating

Before being admitted to the list of allowable pairs, a dual observation
estimate is formed to determine the energy of the orbit defined by that pair.
Since there is some assumed maximum energy which can be achieved based upon
the known (or inferred) booster characteristics, any orbit satisfying this energy
restriction is considered allowable and the pair is added to the list. In the em-
pirical results to be presented later, only links between two observations of the

same target are likely, and the number of pairs formed appears to be O(n).
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Because only the energy estimate is required and it is constant for a
given orbit, the estimates for r,, and r,, can be determined for any time ¢,,. In
this section, therefore, two complete observations of range, range rate, azimuth,
and elevation at times t, and ¢; will be used to determine r,, and r,, so the energy
and its error may be estimated.

Recalling
COS €; COS O
p; = pip; = p; | cosg;sing; i=1,2 (3.65)
sin &;
and
ri = p; + I, (366)

The range vectors r; and r; can be expressed using Taylor series expansions at

some common epoch t,, as

. 1. .
ri=r, + o Tim + '2'1‘,,.L‘I',',n2 + ... 1= 1,2 (367)
Since
f=_—Lp (3.68)
3
and the acceleration vector at time ¢, can be expressed using Lagrange interpo-
lation as
Poo= M2 4 mig (3.69)
T12 21
= Bmp _Dmg (3.70)
™ Ta21

a system of two equations with two unknowns results

v 2
r FmTim
I Tim Tm 1= 2
. = . . | (3.71)
1 T2m l'm rmTZm
r — ——
2
which, when solved for r,, and r,, yields
Tam _Tlm . i;mTlmz
T T2 T21 1 2
. = . , |- (3.72)
rm 1 1 mTom
T21 ™1 2
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From this estimate of the state, the specific energy of the trajectory

between these two observations can be estimated according to ::.f
.l

g tm _H (3.73) k.?

m — 2 rm. : ’k

To determine the error bounds on this estimate of £,,, the same approach as used o
to determine =, in Section 2.1.4 is applied. In this case, :,
_ !

Emn = En(Sm) (3.74) A

.

and %‘1
S,. = Sn(9), (3.13) ;:;:.

where €2 is the observation set required for the state estimate and may be written
T =

Q= (piapivaiaeia Siaati) . (376) -

w3

2

For the sake of analysis, the sensor states, S;,, and the times of the N

observations, t;, are again assumed to be known exactly. The only uncertainty
is associated with the measurement of the observation attributes p;, p;, a;, and
g;. It is further assumed that each attribute type is independently normally

distributed and homoscedastic. That is

£

pi ~ N(ppis0,), (3.77) f
pi ~ N(ps,05), (3.78)
a; ~ N(pa;,0a), (3.79)

and & ~ N(pe,,0.). (3.80)

Then, applying a Taylor series expansion and retaining only first-order

g S e o T et R N AR A gt

A
-

terms, it can be shown that
P, =J.R3,.7, . (3.81)

where X
_ 9%

Y

25,

~ 3.82
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Knowing P,., this same approach can be applied to £,(Sy) to show ]

that \
0e? = EnP,E,T, (3.84) e

0 o. } 0':':

where wh
(3.85) 2

For this specific estimate, where ’:h'

r, = 122 (1 - LTlmT2m> r, — Zlﬂ (1 — %Tlm‘r2m) ro, (386)

T21 7'13 721 r2

. 1 1
r, = — (1 - %TlmTZm) ry — — (1 - %TlmTZ’m) ry, (387)

T21 T2 T21 ™

R L ]
.—..’-.cf:ni

b
-

then

or,, Oor,, ©or, or, Oor, Or, Or, Or,

Bpl 6p1 8a1 861 6,02 aPQ aaz 862

I, = , (3.88)
or,, or, or, or, Oor, Ot, Or, Or,
Opy 0py Oay 0Oey 0Op; 0py Oay ey

> x

- K

,‘ ) .",’(\"'A"“( - A}W“’ o 2@

where

Jar,, Tom p ) or, 3 or,
5. = 1-— mi2m | 97 e NIm12m 5 .89
I T21 [( 7‘137.l ik Ip * 7‘157'l T\ n (3.89)

'3
27027

Tam , 3 .
= 2 [(1 - %TlmTZm) P1 + ;'ﬂs'r]mTZm(rl . Pl)ﬁ] (390)
1 1

T21

10

- -0 (3.91)
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%—fﬁ = Z’: [(1 - 3T1mT2m) g;l + fﬂ TimT2m (1‘1 gl:l‘) 1'1] (3.92)

= plr—i'lﬁ [(1 - 1371m12m) gzi + 3 ~=TimT2m (rl 3_b1) rl] (3.93)

ST SN

= p Tz: [(1 - larlm-rzm) aﬁ: + f:;flmsz (rl 5:11) rl] (3.95)

%;L:- = —Z;f:— [(1 — ;:—37'1,,,7'2,") %3 + f:; TimT2m (1'2 g:) 1'2] (3.96)

- _1:2_’:- [(1 - 153 Tlm”'m) by + gf—sﬁm‘fzm(rz . i’z)r2] (3.97)

%:f —0 (3.98)

-g%:— = —:'ITT [(1 - ;%Tm”zm) g:z + e —=TimT2m (rz . %) rz} (3.99)

= -2 [(1 — Lotintin) 22 4+ Lo (1'2 : g—c’::) 1‘2] (3.100)

ng';' = _7:7': [(1 - ;%TlmTZm) g: + Sus’flm"'zm (r2 . g—:) r2] (3.101)

= _pz%': [(1 - r“?nmrzm) g’e’j + f"s TimT2m (r2 : %) 1'2](3.102)

(?‘T": = —%1 [(1 - rillngmsz) % + %Tlm72m (rl ‘ g—:‘) 1'1] (3.103)

1 I 3u .

= T [(1 - r_la'TlmT2m) P+ " — TimT2m(F1 'pl)rl] (3.104)

?9:: —0 (3.105)
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' 1 d 3 d »
é‘ﬂ = - (1 - LTlngm) ‘i + _uTlngm ry- i r (3106) ) 'i::
0oy T21 3 @, ry® Oy ::::l’
y
L. di o
= —1%11‘ [(1 - ::_37-lm‘r2m) ‘% + 5 TimTom (1'1 : —p—i) rl] (3.107) _:';,'
or, 1 I or,  3u ory q.;:'of
a_gl — —;2—1 [(1 —_ r—lngngm> _C—l + r_l'grlmTZ’m r €1 r; (3108) :fl::'
'l.:"

ap 3u ap el

= _% [(1 - 3TlmT2m> _E_: + $71m7-2m (rl . &Tl) 1'1] (3109) s'

Tt

or,, 1 ( I ) or; 3u ( arg) ] R
— = — {1l - —=TimTom | — + —=TimTom |2 = | T 3.110 g
0p2 T [ r dpz 2 e ’ 9p2 ’ ( ) ]

IR
- - -

1 . .3 . ‘
= — (1 —_ LaTlme'n) p2 + '—ngTlngm(rz . P2)r2] (3.111) .\
T21 T2 T2 Ty
N
or !
=T _9 3.112 oS
92 ( ) }:$
9 ory 3 9 2
.m 1 WY
AL (l - TlmT2m) 2y e (P2 52 | 1 (3.113) .
802 T21 3 aag 1"25 6a2 f
r 3‘ a,\ h -'
=P (1 _ 3T1,,,Tz,,,) 2P e (12 222 )| (3.114) ]
T | 2 Oay Oay ; A
oY
al"m 1 [ 81‘2 3# 61’2 @
-— = —|{1- m )— ——TimTom | T2 57— | T 3.115 L
3¢, AN r23T1 T2m 92, + 1'25T1 2 2 Bz, 2 ( ) :‘;:
h)
_ o,
0p, 3 op 2
= -p—2 (1 —_ 3T1mT2‘m> ﬂ + —l:Tlngn (l‘2 i &) ry (3116) :"‘:\
T2 | 2 €y T2 O, Ky
o
and NN
o HEm  PYm  PEm . . o)
Em - (— Tm3 T Tms T Tm3 Emo Yms zm) (3117) :’"?‘
The resulting estimates of £, and og are now used to assess the feasi- :::'
bility of the observation pair. If P
g
o ]
gm < gmaz + 30‘5, (3118) :
N
’\'-
then the observation pair is added to the list of allowable pairs. R
L
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3.3 Track Selection ;.E,
Once the list of allowable pairs is formed, the list of allowable triples %
is developed. To link two pairs of observations to form a triple, each pair must ,::.:3
share a common observation. Therefore, to form a link, the second observation N
of the first pair must be the same as the first observation of the second pair. The _ﬁ\ \
list of pairs not ending in the current observation frame is evaluated for linkage .“fj"
with pairs in succeeding observation frames sharing a common mid-point and for (_,
each of these triples an initial estimate is computed. Once again, the energy of }‘."
the orbit is evaluated as an additional check to determine if the triple is feasible. t “‘:
If it is, the calculated state and state covariance are stored and the triple is added Yo
to the list of allowable triples. ::
If only O(n) triples are considered, then it is possible to limit the com- . !
plexity of this phase to O(n) by judicious application of indexing. This is due :3.‘;!
to the fact that the list of allowable pairs need be traversed only once and since :::i
it 1s known that the starting observation of the second pair is the same as the '.:EE
ending observation of the first pair. Knowing the index of the second pair in the “ '
list of allowable pairs and recalling the assumption that only one pair is likely for )
a given observation permits each triple to be formed directly. Eg '
-
B
3.3.1 [Initial Estimate @
Given that an observation triple is formed, estimates of the target posi- 'i: ’
tion and velocity, r,, and r,,, at some time ¢,, < t, are now calculated using three Ev;“
observations, along with £,, and o¢ as was done in Section 3.2.2. If the calculated 9%
specific energy satisfies the energy restriction of Equation 3.118, the observation ::
triple will be added to a list of allowable triples for subsequent consideration as a $ ‘.
new track when the binary linear program of Section 3.1 is solved in Section 3.4. é::'
Proceeding with Laplace’s method, the position vector, r,,, may be k
written ‘«
Tm = PmPm + Tims, (3.119) ot

and the velocity vector, 1,,, is found by taking the derivative of Equation 3.119,
giving
P = PmPm + PmPum + Frms- (3.120)
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The only term not directly available from the sensor measurement set is ;)m, .-t‘
A
the time rate of change of the unit range vector. This term can be estimated, Ry,
however, by using Lagrange interpolation to find an expression for the unit range - ‘f
vector
N Tm2Tm3 . Tm1Tm3 . Tm1Tm2 .
= P+ + , 3.121 :
p T12T13 ! T217T23 P2 732731 Ps ( ) 2
which, when differentiated with respect to t,, yields .2
a T, + 7 a Tm +Tmn Tm +Tm a 4
S LY N UG SRLL LS (3.122) S
T12T13 T217T23 732731 ) -
Moreover, if t,, = ¢, ;:‘
i Tii o Tji — T21 .4 To1 . n
Pr=——L—p + L—p, + ——p,, (3.123) )
T21731 T21T3i TjiT31 '2‘
everything needed to calculate the initial state estimate is available. It is not :
necessary for ¢,, to equal one of the discrete observation times, although, if it did ¥
~
not, it would also be necessary to apply Lagrange interpolation to find estimates Y
of p.., Pmy Pmy 'ms, and Fns. Therefore, it is simpler computationally to select !
the central observation time as the reference ~poch.
Proceeding as in Section 3.2.2, the final feasibility check is performed %
on the observation triple using the energy restriction of Equation 3.118. That is, :‘.
&; and o¢ are computed by forming ot
P, = I,R1,T, (3.124) i
where A
Or; Or, Or, Or §
sz 6p2 60,‘ 66,' x4
J; = . (3.125) )
_62 al'g arg al'g ‘:
aP2 apz 6(1,' 86.' t
and v
(a,,OOOOOOO\ ‘o
0o, 0 0 0 0 0 O )
0 0 oo, 0 0 0 0 O i
= 0 0 0 oo 0 0 0 O 4
R=10 00 00,0 0 0 (3.126) 3
0 0 0 0 0 o 0 O ,
0 0 0 0 0 0 o O )
\0 0 0 0 0 0 0 o.) o
'
*a
:t-.
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Specifically,
al'z " :\'
dps P (3.127) }'
61'2 )
— =0 3.128
o (3.128) _
W
61‘2 aﬁz ‘."
— =10 pp—2 0 . By
Oao; ( P2 Jay (3.129) Iy
or, ap, -
—~=1o0 bl . [ ]
66,' ( P2 662 0 (3 130) o
. N
al'g N .
—s = 3.131
or,
— = 3.132
ap2 p2 ( )
) ( 6;’2 op, 6;72 aﬁ;’z ) N
— = ) 3.133
aai P2 0a1 p26a2 + P2 6a2 P2 803 ( ) :’
ary ( 9p, 9p, 0P, 352 ) j
— = ) , 3.134 4
O¢; P2 0eq P2 Oe, tp Oeq & O3 ( ) o
where E?:
EYS — COS &; sin a; E#'
a—p—'- = COS €; COS Q; (3.135)
o 0 [
o
. — sin g; cos a; 2
6[) t i )
—t = | —sing;sing; (3.136) "
Oe; COSE; i
aﬁz T3 0Py ':
= 137
0oy Ty Ta Oy (3 13 ) 2
8;72 T23 ai’l ;::\
Oey B T T3 O, (3'138) -
by _ Tii— 1 Oy e
Bag - T21TJ'.' 6(12 (3139) g:\:
. >
L i = o1 OF i
[ _ 75 721 0P, (3.140) »
882 T Tji 662 ‘;
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by _ ™ 0Oby (3.141)

603 T;iT31 003

9p, ™ 0ps
= . 3.142
863 T;jiT31 863 ( )

Then, the specific energy of the observation triple is
2
Um H
m = — — 3.143
& 2 T'm ( )
and its variance is

oe? = E,PLE,T. (3.144)

If the calculated energy, £,,, satisfies Equation 3.118, the observation triple is
added to the list of allowable triples and the final stage of the track initiation

process is performed.

3.4 Cluster Initiation

With the set of allowable groups of observations to initiate clusters
determined, the groups which provide the “best” overall assignment must now
be chosen. To begin with, since a rather thorough examination of each triple
has been performed, it can be concluded that each triple satisfies the physical
constraints of the system dynamics and assumed booster characteristics, and
therefore, the final solution should maximize the number of triples selected. And
maximization of the total number of tracks initiated is ensured, because the total
specific energy is being minimized and the specific energy of a ballistic orbit
is negative. Selection is still subject to the overall assignment being feasible,

however. That is, no observation can belong to more than one triple.

Therefore, if the initial list of triples is feasible, the assignment is com-
plete and a new cluster is initiated for each triple. If the overall assignment is
infeasible, however, one or more triples must be removed until the assignment
is feasible. Since this process may result in more than one feasible solution, a

means of discriminating among these to select the “best” one is also required.

Using the specific energy of the estimated orbits as the discriminant as

developed in the binary linear program of Section 3.1, the set of clusters with
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the minimum total specific energy is defined to be the “best” solution. Such
a discriminant is possible because targets on ballistic trajectories follow mini-
mum energy paths through the geopotential. Any misgrouping of observations is

assumed to result in a higher energy orbit.

To actually determine the optimal cluster assignments, the initial set
of observation triples is evaluated for feasibility. If it is not feasible, a branch-
and-bound procedure [28] is initiated which performs a depth-first-search for the
optimal solution. One cluster is removed from consideration at each level and
a branch is fathomed when it becomes feasible. The feasible solution with the
lowest total specific energy is designated as the optimal solution and a cluster is
initiated for each active triple. The worst-case complexity for this last phase is
O(2") if the entire branch-and-bound tree must be searched.

Through the multi-step elimination process the original binary linear
program, of size O(m>n®), is seen empirically to be reduced to O(m?n?) by de-
termining which triples are dynamically feasible. The final process of selecting
the optimal solution is expected to require O(2") time in the worst case for either

approach.

Once the track initiation process is complete, all new clusters are added
to the current list of clusters to be updated through the track maintenance process

and their observations are removed from the pool of unassigned observations.
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Chapter 4 o
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. )
Analysis of Results 5.
2
o)
-_C:
4.1 Simulation Scenarios i
3
To demonstrate the effectiveness of the method described in the last ®
two chapters, five scenarios are developed. These scenarios are based upon the h"

following assumptions:

XL
o B

e Launch points are randomly generated in the area 60°-70° East longitude,
50°-60° North latitude, an area covering known Soviet ICBM fields,

e 100 targets,

e

¢ Impact points are randomly generated in the area 80°-120° West longitude,

e

30°-50° North latitude, an area covering most of the continental United - o
~
States, .,:
o
e Each missile has identical characteristics, quantified by an instantaneous M
Qo value of 0.90 at launch, 4
oyl
0¥
¢ Launch occurs randomly over the first 30 seconds of the scenario, and i:
o A spherical rotating earth with no atmosphere, S
e
|
o Simulation begins at 04:25:07 UTC 16 July 1986. =
o
et y
These scenarios assume that an ICBM attack is being observec from a single =N
ICBM field which normally contains 50--100 ICBMs geographically dispersed to .
prevent multiple ICBMs from being destroyed in a single strike. The value of e
@b, was based upon data for existing Soviet ICBMs for which a ballistic missile :.“'
)
-.' (
" {
. -
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defense is being contemplated!. From [12], knowing the maximum free-flight .;
range angle, ¥, 5":‘
2sin(¥/2 ™,

Qu = 22n/2) (4.1) ot
1 + sin(¥/2) o

Each scenario uses the same launch points and launch times and pairs _—\

the launch points with impact points from a fixed set of 100 impact points. The 5_&'*‘
scenarios differ in which impact points are assigned to a given launch point. The f\.
trajectories typical of these scenarios are illustrated in Figure 4.1 which shows a g,_
polar view of the complete trajectories of all 100 targets used in Scenario 1. _‘
)
The sensors viewing the launch scenarios are placed in modified Molniya n {

orbits which allow all targets to remain in view of the sensors for the duration :.\ﬂ\
n! '
of each of the five scenarios. The specific orbital elements used are given in )

Table 4.1, n
Incli- | Ascending | Argument | Mean Eccen- Mean :-" ]

Sensor || nation Node of Perigee | Anomaly tricity Motion Y

1 85.0000 70.0000 | 281.3211 | 132.4823 | 0.3689374 | 8.065369 -7_?-_—_
2 85.0000 | 140.0000 | 281.3211 | 132.4823 | 0.3689374 | 8.065369 ;::.

3 85.0000 | 210.0000 | 281.3211 | 132.4823 | 0.3689374 | 8.065369 f.\:

4 85.0000 | 350.0000 | 281.3211 | 132.4823 | 0.3689374 | 8.065369 :‘f

iy

.>

: : gy

Table 4.1: Sensor Orbital Elements x

Data from each sensor is provided at five-second intervals for the first

s
six minutes of each attack scenario. This six-minute period covers the boost &;i'
phase and post-boost phase prior to reentry vehicle deployment. This period is —-_
of particular interest in an SDI scenario because it is easier to destroy the targets
before reentry vehicle deployment due to the smaller number and larger sizes of E:.-‘_:_'.:
the targets. ‘.

Figures 4.2 through 4.5 illustrate the complexity of the problem. These .E_f,-;:
figures give a good indication of the high densitics of the targets being tracked. E:.::
N

1 Aviation Week & Space Technology, March 14, 1988, page 153.
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They also show large numbers of target crossings and similar tracks which typi-
cally cause the most difficulties for multi-target tracking algorithms. Each figure
presents the view from one of the four sensors for the first six minutes of the
ICBM attack in Scenario 1. All 100 targets are present in each view. At the
bottom of each figure, the information pertaining to the sensor vantage point is
displayed, showing the latitude and longitude of the satellite sub-point along with

the altitude of the satellite above the earth’s surface and the simulation time of

that position.

/6.0 N S0.6 E 7287.5 km  0.00 sec

Figure 4.2: View from Sensor 1—Scenario 1
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Figure 4.3: View from Sensor 2—Scenario 1
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76.0 N 129.4 W 7287.5 km 0.00 sec

Figure 4.4: View from Sensor 3—Scenario 1
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76.0 N 10.6 E 7287.5 km 0.00 sec

Figure 4.5: View from Sensor 4—Scenario 1
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Four variance sets and four levels of missing data were considered during

'.{l‘f

the course of this investigation to examine the effects of high and low quality data.

A2

The scenario variances are listed in Table 4.2. The four levels of missing data are
0, 5, 10, and 20 percent.

W
Variances Iy .:
Variance Range Range Rate Azimuth | Elevation o
Set (meters)? | (meters/second)? | (radians)? | (radians)? Oy
1 10.0 1.0 10~7 10~7 e
2 10.0 1.0 10-° 10-°
3 10.0 1.0 10~° 10-° g_
4 10.0 1.0 10~1° 1010 i

M\

®
Table 4.2: Scenario Variances -';"
To evaluate the performance of the temporal clustering algorithm, two _-»F :
sets of variances and levels of missing data are used. The first case, representing ; '
expected values for the measurement variances and levels of missing data, uses o~
Variance Set 3 and 5 percent missing data, while the second case, representing [-:
worst-case values, uses Variance Set 1 and 20 percent missing data. '..‘_
.
4.2 Discussion of Results E::.'
The temporal clustering procedure described in the previous two chap- ::':\.
ters is implemented in Pascal on the Cray X-MP/24 at The University of Texas R
at Austin’s Center for High Performance Computing. A listing of the code used :::
is included in Appendix B. Before the code can be run, however, determinations j:E )
of the size of the track initiation buffer and the maximum number of missing ob- t:':
servations for track termination are necessary. Based upon the results presented ::?,
in Table 3.1 on page 32 and Table 2.1 on page 27, a track initiation buffer of seven 73
observation frames and a maximum of five consecutive missing observations was ",E
selected as a termination criterion for the maximum value of 20 percent missing :::‘_:
data, since the expected number of track initiation failures and false terminations Ay
over the life of each of the scenarios investigated is less than one. o
".:
o
e
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Tables 4.3 and 4.4 are summaries of the results of the twenty simulation
runs (five scenarios with four sensors each) used to investigate the performance
of the temporal clustering algorithm for both the expected and worst-case values

of measurement noise and missing data.

Scenario/ Perfect Unassigned Errors
Sensor Clusters | Targets | Observations | Termination | Gating | Observations
1/1 100 100 0 0 0 6582/6944
1/2 100 99 1 0 0 6588/6944
1/3 100 100 0 0 0 6591/6944
1/4 100 100 0 0 0 6647/6944
2/1 100 99 1 0 0 6582/6944
2/2 100 99 1 0 0 6588/6944
2/3 100 100 0 0 0 6591/6944
2/4 100 100 0 0 0 6647/6944
3/1 100 99 1 0 0 6582/6944
3/2 100 99 1 0 0 6588,/6944
3/3 100 100 0 0 0 6591,/6944
3/4 100 100 0 0 0 6647/6944
4/1 100 99 1 0 0 6582/6944
4/2 100 99 1 0 0 6588/6944
4/3 100 100 0 0 0 6591,/6944
4/4 100 100 0 0 0 6647/6944
5/1 100 100 0 0 0 6582/6944
5/2 100 99 1 0 0 6588,/6944
5/3 100 100 0 0 0 6591/6944
5/4 100 100 0 0 0 6647/6944
| Total I 2000 T 1992 T 8 | o0 | o ] 132040/13888(ﬂ

Table 4.3: Summary of Results—Nominal Values

The first column of the table indicates the scenario number and sensor
number of the observations. The next two columns show the number of perfect
clusters and perfectly clustered targets for each run. A cluster is considered
perfect if all of its observations are from a single target. No imperfect clusters
were encountered in any of the runs examined. A iarget is considered perfectly

clustered if all of its observations are contained in a single cluster.

On average, each run in the nominal case contained less than one imper-

fectly clustered target, resulting from a single observation being excluded from
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Scenario/ Perfect Unassigned Errors
Sensor || Clusters | Targets | Observations | Termination | Gating | Observations
1/1 102 97 1 1 1 5556/6944
1/2 101 99 0 0 1 5568 /6944
1/3 101 99 0 1 0 5536/6044
1/4 101 98 2 0 1 5561/6944
2/1 102 97 1 1 1 5556 /6944
2/2 102 08 0 0 2 55686944
2/3 101 99 0 1 0 5536,/6944
2/4 101 98 2 0 1 5561/6944
3/1 102 97 1 1 1 5556 /6944
3/2 101 99 0 0 1 5568 /6944
3/3 101 99 0 1 0 5536 /6944
3/4 101 98 2 0 1 5561/6944
4/1 102 97 1 1 1 5556/6944
4/2 102 98 0 0 2 5568 /6944
4/3 101 99 0 1 0 5536/6944
4/4 101 98 2 0 1 5561/6944
5/1 102 96 2 1 1 5556/6944
5/2 101 99 0 0 1 5568/6944
5/3 101 99 0 1 0 5536/6944
5/4 101 98 2 0 1 5561/6944
[ Total || 2027 | 1962 | 16 | 10 | 17 ] 111105/138880 |

Table 4.4: Summary of Results—Extreme Values

a gate either during the track maintenance or track initiation phase. The fre-
quency of occurrence is shown in column four of Table 4.3. However, all clusters
developed were perfect. Considering the large number of target measurements
observed (132,040) in the twenty cases evaluated, losing only eight observations

is an exceptional performance.

Using the worst-case values, each run averages one split cluster and
two improperly clustered targets, still quite good performance. These failures
result from one of three causes and their frequencies are shown in columns 4-6 of
Table 4.4. The first cause is the result of an observation not being assigned to any
cluster. In five cases, two observations were lost during the track initiation process
because of a failure to obtain three observations in the seven-frame track initiation
buffer. Each of these failures could have been avoided by simply expanding

the size of the buffer but the increased computational complexity and storage
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overhead may not merit such a change. This result is not unexpected based on
the numbers in Table 3.1.

Additionally, one observation of a target was not included in any cluster
because the problem reduction phase of the track initiation process incorrectly
eliminated it from consideration in a feasible track based upon system dynamics.
The remaining five unassigned observations were the result of correct assignments
being discarded during the track maintenance process because they failed the
gating criteria.

The other reasons for incorrectly clustered targets are due to track ter-
mination as the result of a termination or gating error. A termination error occurs
when a track is terminated because more than the maximum number of missing
observations occurred. Again, this type of failure could be avoided by increasing
the maximum number of missing observations with a corresponding trade-off in
computational cost. Increasing the buffer size to eight observation frames would,

therefore, have eliminated ten tracking errors.

A gating error occurs when a track is terminated because the estimate
of a target’s state is sufficiently far from the true state to prevent the correct
observations from falling within the observation gates. All seventeen gating errors
occurred immediately after track initiation during the EKF stabilization phase.
These gating errors could be reduced (or effectively eliminated) through either
reduced measurement noise (improved sensor characteristics) or improved orbit
determination procedures. This conclusion is supported by the total lack of gating

errors in the cases using nominal values of measurement noise and missing data.

And, as expected, lower measurement noise results in better estimates of
the target state. The effect of various levels of measurement noise on the estimates
of target position and velocity are illustrated in Figures 4.6 and 4.7. Each figure
shows the difference between the true and estimated position or velocity for the
four levels of measurement noise considered. All data is for Scenario 1, Sensor 1,
Cluster 1.

As a final test of the robustness of the temporal clustering algorithms,
biases were introduced into the sensor attitude and, independently, in the sensor

clock and applied to the worst-case runs. An attitude bias is possible due to
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Figure 4.7: Velocity Error Due to Measurement Noise

N ST R e A I T N T Ny N A S N NP I e S IV I I R O o S S T W W e e e T T T Y T T W

R e

W ~f~\“\-: hEHTY
Nati) h

S

ST @

® =2

)
x

X

v f
(X T A

5 NN @ I

h PP

Fr;

NNt |
BRI b

A m -
»

ﬂ. :..(“{;. {\f 1’5'1’ @

- -1: ::x' r.::":. 2

>

i{ 5(

S @



R A U B 2 LU

BAEAC AP -'--;'--_‘ ‘:'- S ~'..‘-- L T S T .‘- - ‘_n.-_-\_. ~--._- TNt TR T
»

66

precessional and nutational effects of the sensor platform during the course of
its orbit. A constant bias of up to 60 arc seconds results in only two additional
unassigned observations in the twenty runs considered, both failures in the track
initiation process. These biases are much larger than one would expect in prac-
tice, since the slowly varying effects would be expected to be small and daily
observation of the sensor platform attitude by ground personnel would allow the

development of models to remove most of the remaining bias.

A clock bias would result in the sensor thinking it was in a position dif-
ferent from that indicated by its onboard ephemeris. Typically, with the atomic
clocks available on most satellites these biases would be on the order of mi-
croseconds or, at worst, milliseconds. Yet, the temporal clustering algorithms
performed exactly as shown in Table 4.4 with biases of up to 0.5 seconds, far

above any bias which could reasonably be expected.

While the temporal clustering algorithm performs admirably even un-
der these adverse conditions of attitude and clock biases, the effects on the state
estimate and state covariance are considerably degraded, as can be seen in Fig-
ures 4.8 through 4.11. Each figure shows the difference between the true and
estimated position or velocity for various levels of bias. All data is for Scenario 1,
Sensor 1, Cluster 1. Obviously, while the algorithms perform well under these cir-
cumstances, it is highly desirable to reduce the sensor biases as much as possible

to attain the high degree of accuracy necessary to direct a proper response.
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. ',
Conclusions 2y
=
The temporal clustering algorithm developed in Chapters 2 and 3 does :_‘;;.
2
indeed accomplish the initial objectives that it ~
,')\“»
e Perform both track initiation end track maintenance and ("Jé:{
A
i
e Permit processing of data in real time while minimizing Y
. o
— Computational complexity and e
e
— Data storage requirements. N
e
Through prudent application of existing solution techniques in astrodyn-iaics, e
mathematical programming, numerical analysis, and statistical estimation, an e
integrated solution is developed which is not only capable of performing both :-:::‘
L\‘l
track initiation and track maintenance, but also improves on previous work in P
.
the fields of multi-target tracking and clustering to effectively track large numbers )
. . d
of targets in real time. &‘v:._
In fact, the duty cycle for each run (the ratio of the total execution o
time to the elapsed scenario time) is only 4.4 percent. Execution time for all runs Q:,;,
S
averages 15.9 CPU seconds per run. The portion of that time spent in each mejor ; ‘
procedure discussed in Figure 1.2 is provided in Table 5.1. Considering that only o
17.5 percent of of the total execution time is taken up by algorithms of complexity ':_'-
worse than O(n) and 76.7 percent is devoted to algorithms which are vectorizable f—:'.:
and capable of being run in parallel, the timing results are quite impressive. ;’
In fact, empirical results from runs with 20, 50, and 100 targets showed the i-\::
complexity of Perform Cluster Assignmnents and Perform Track Initiation to be ::'_:
L
only O(n?) and O{n), respectively. ‘.-e:'.:-'
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Percent Total
Procedure Execution Time | Complexity g,
1) Read Observation Frames 5.8 O(k) L"‘
2) Forecast Existing Clusters 47.5 O(n)
3) Calculate Assignment Costs 6.5 O(n?)
4) Perform Cluster Assignments 8.5 O(n3)
5) Update Clusters 29.2 O(n)
6) Perform Track Initiation 2.5 o(2™)
Table 5.1: Timing Results
It should be cautioned, however, that these timing results apply only
to the specific case investigated in this study. Any combination of measurement [
types and system dynamics which does not permit a significant reduction in the
size of the binary linear program (as was done in Section 3.2) may not be able
to satisfy the requirement that the problem be solved in real time. In such ;"
circumstances, more sophisticated methods of solving the binary linear program P _
may be implemented to reduce the computational complexity, although there is "
no guarantee that these improved techniques will allow real time processing in F ’
all cases.

The limitations due to computational complexity and data storage re-
quirements are reduced through the judicious application of existing algorithms
for filtering (the Extended Kalman filter), assignment (the Hungarian method),

7;1' Ce {

Yy Byt

o

and quadratic programming (branch-and-bound) while taking full advantage of

the temporal component of the data and system dynamics. And, as seen in Sec-

el -
'l.

PR S
;{')'-.'v‘i“\;

tion 2.3 and at the beginning of Chapter 3, additional reductions in complexity

and data storage requirements are possible if the missing data rate is kept small.

A most remarkable feature of the temporal clustering algorithm is its

ability to function well when faced with low data rates and high levels of both

SN K@

missing data and measurement noise. Even in the runs examined using the worst-

L )

case variances (Variance Set 1) and 20 percent missing data, the temporal clus-
tering algorithm successfully clustered nearly 100 percent of the over 110,000

observations available. And for tracks with four or more observations all but 10
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out of 2000 targets were tracked correctly throughout the scenarios, and those
were the result of exceeding the size of the track termination buffer—something
which can be avoided by simply increasing the size of the buffer by one frame.
And even the addition of biases in the sensor attitude or clock to levels well in
excess of those which can be reasonably expected failed to significantly affect the

performance of the algorithm.

5.1 Future Research

There remain areas in which the temporal clustering algorithm can be
improved or the scope of its application broadened. More attention can be applied
to improving the overall efficiency of the tracking process through the applica-
tion of state-of-the-art filters such as those discussed by Kaminski, Bryson, and
Schmidt [35] and Verhaegen and Van Dooren [57] or simplification of the filters
through the application of constant gain Kalman filters as discussed by Blackman
(13].

In addition, significant advantage can be gained by exploiting the par-
allel structure of many existing computers and the application of pipelining as
discussed by Allen, Kurien, and Washburn [1]. For example, considerable im-
provement in processing time can be achieved by developing a parallel structure
capable of independently tracking each target, especially since massively parallel
architectures with 65,536 processors exist today. This is particularly true consid-
ering that over 75 percent of the total execution time for the temporal clustering
procedure is used by the forecasting and state update algorithms. These func-
tions can easily be performed on separate parallel processors for each cluster.
Use of vector processing is also helpful when integrating the large state and state

covariance vectors in the forecasting algorithm.

And while the case presented assumes a spherical earth with no drag
and no thrust, the method can be readily extended to cases using higher order
gravitational potentials and atmospheric drag by simply reformulating the fil-
ter and track initiation gating process to specifically account for these effects.
And, depending upon the specific system dynamics. it may also be necessary to

choose another cost coefficient for the objective function of the binary linear pro-
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0
. gram. Reformulation to account for other measurement combinations, such as :
:’. the angles-only case, is possible, although preliminary investigations have shown 3
';' this case to be somewhat more complex due to marginal observability. Investiga- )
;' tions of vehicle thrust and maneuvering are certainly possible, as well, although 5
the reformulation will likely be considerably more difficult and require the use of Y
; Y adaptive filtering techniques. Additional investigations of algorithm performance :
' in the face of changing measurement covariance due to sensor degradation or '
f_ failure are also possible through the application of adaptive filtering. ]
g And, finally, the extension of this temporal clustering approach to the
\ broader issue of multi-sensor correlation should be straightforward. Although
:' issues of distributed processing [21,22,23] need to be examined in detail, it appears
b that once a cluster is established, its state estimate and state covariance matrix
. can be transmitted by each sensor to a central processor for correlation with data
from other sensors. Transmission of this minimal amount of data significantly
: reduces the bandwidth required for data exchange and the correlation process
3 can then apply gating and assignment procedures quite similar to those used in
F the single-sensor case.
& While the temporal clustering process as developed here is specifically
- tailored for a single application, prudent modification of the application-specific
portions should allow it to be applied to other ballistic tracking problems or even
those in the areas and fluid dynamics or particle physics.
"y
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Appendix A

Simulation Design

To permit realistic assessment of the approach presented here, some
means of providing a set of target measurements was necessary. To accomplish
this objective, a data generating program (GENDAT) was developed by the au-
thor and Stuart H. Smith. A flowchart of GENDAT is presented in Figure A.1.

GENDAT was designed to generate both the target and sensor states
using a Runge-Kutta 4(5) integrator and a user-provided force model. Input to

GENDAT begins by determining the booster characteristic thrust, Qs,, wiere

,0602 Tbo

o= T A.
Qs p (A.1)

and whether high or low trajectories are to be used for the targets. Then, the
launch time and the launch and impact points for each target are input. Finally,

the Keplerian orbital elements for each sensor are input.

An 1nitial state estimate is then determined for each target at its spec-
ified launch time by computing the trajectory necessary to reach the assigned
impact point from the designated launch point. Initial state estimates for the
sensors are also determined by converting the orbital elements at the initial sim-

ulation time.

Once all the initial states are calculated, GENDAT begins forming ob-
servations of each target from each sensor while the target is in view. Currently,
the target is in view if it has launched and not yet reached its impact point. No
additional considerations such as sensor field-of-view, sensor range, or obscura-
tion by the earth’s limb are yet implemented. Observations are calculated using

the transformation described in Section 2.1.4.
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Read Booster

Characteristics

]
4

Read Launch Time Read Sensor
Launch/Impact Points ‘1 l__ Orbital Elements

ﬂ A

Compute Initial
Target /Sensor States

+ Form Observations

!
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Measurement Noise

!

Output Measurements
Target /Sensor States

Integrate
Target/Sensor States

No Done? Yes @

Figure A.l: GENDAT Flowchart

For each measurement attribute, a Gaussian random variable is com-
puted to allow for expected measurement noise. These variables are N(0,1). In
addition, a single uniform random variable is also computed for use in simulating

the stochastic nature of detecting an observation.

The target and sensor states are output to separate files, the former
to be available for comparison with estimated target states, the latter to act
as the satellite ephemeris. The target measurements and associated random

variables are output to a third file. The separation of the true measurements from
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. the measurement noise allows the temporal clustering algorithm to incorporate
! differing measurement variances at runtime.

1

K After all observations are formed and the resulting data is output, the
k target and sensor states are integrated to the next observation time and the
K process is repeated until the simulation end time or all targets have reached their
t

: destinations.
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Appendix B

Program Listing

Program TCluster(tmdata,ssdata,tsdata,tcldata,trudata,csdata,input,output);

{
{
{

Author: TS Kelso

Original Version: 26 January 1987 }
Current Revision: 26 May 1988 }
{ Program Description: Program performs temporal clustering on time

(»#A+:R- *)

const

clusters
max_pairs
nest
block
nstack
nterms
attributes
bad

framel
max_prop
max_missed
Zero

big

mu

small

pPi
max._energy

type

span
atr_vector
obs_vector

state_vector
stacked_vector

successive data frames using an assignment from last
member of existing clusters to observations. Track
initiation performed using quadratic program. Assumes
range, range rate, azimuth, and elevation
measurements. }

{Maximum allowable clusters + 1}

{Maximum number of pairs in Perform_Cluster_Initiation}
{Elements in state vector}

{Axes in ECI coordinate system}

{Elements in stacked state vector = nest + nest~2}
{Maximum number of terms in estimates}

{Maximum number of possible measurement attributes}
{Metric value for bad assigmment = attributes + 1}
{Data required for initial estimate = framel..O}
{Maximum number of propagation intervals}

{Maximum number of missed gates allowed}

.OE-14; {Machine epsilon for real = double}
.CE+14;

.9860064E+14; {Geocentric gravitational parameter, m~3/s"2}

.0E-12; {RK78 integration control factor}
.1415926535897932;

.437E7; {Maximum specific energy, meters~2/second”2}

framel. .0

= array [0..attributes] of real;

array [1..attributes] of real;
array [1..nest] of real;
array [1..nstack] of real;
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.2] of obs_vector;

.¢lusters] of boolean;

.clusters] of integer;

.¢lusters] of atr_vector;
.nest,1..nterms] of real;
.nterms,1..nterms] of real;
.nest,1..nest] of real;
.attributes,1..nest] of real;
.nest,1..attributes] of real;
.attributes,i..attributes] of real;

[span] of state_vector;
[span] of obs_vector;
[1..clusters,1..clusters] of real;

limits = array
bvector = array
ivector = array
frame = array
J_matrix = array
ER_matrix = array
P_matrix = array
H_matrix = array
K_matrix = array
R_matrix = array
S_matrix = array
O_matrix = array
M_matrix = array
states = record
number : integer;
time : real;
values : state_vector;

end; {record}
measures = record

target,sensor : integer;
time : real;
obs,error : obs_vector;
missing : real;

end; {record}

var
EOI

sensor,sen_nr,max_target,

next_target,last_target,time

max_time,min_time,tbias,

step,missing_flag,missing limit
nr_unassigned,nr_obs,
nr_clusters,nr_active,nr_inactive :

frame_time
nr_missing,convert,
col_basis,row_basis

status,observation,targets

assigned
R,bias
span_limits
next

rkf

Sxs
Identity,Q_k
R_k
metric,ametric
Rvar

attr
est,gate

OO LW W LN G W W S e TR
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: boolean;

RTINS S ) D I %)
.'-, , A .n_ , Tybyg

{End of input}

: integer;

. real;

array [span] of integer;

: array [span] of real;

: ivector;

: array [span] of ivector;

: array [frame1l..1] of bvector;
: obs_vector,

: limits;

: atr_vector;

: array [1..59] of real;

: array [span)] of state_vector;
: P_matrix;

: R_matrix;

: M_matrix;

: array [1..3] of ER_matrix;

: array [span] of frame;

: array [1..clusters] of obs_vector;
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end; {for i}
end; {Procedure Init_Times}

Procedure Start_Timer(arg : integer);
begin
last[arg] := Second;
end; {Procedure Start_Timer}

Procedure Stop_Timer(arg : integer);

var

elapsed : real;
begin
elapsed := Second - last[arg];
totallarg] := totallarg] + elapsed;
timeslarg) := times[arg) + 1;

end; {Procedure Stop_Timer}

Procedure Report_Times(arg : integer);

var
i : integer;

begin

for i := 1 to arg do
begin

Write(i:2,’) *);
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)
Sx : array [1..clusters] of state_vector; ;
P : array [1..clusters] of P_matrix; .k
stan : array [span,1..clusters] of obs_vector; t
atr_limits : array [framel..1] of limits; :}
current_obs . measures; y
current_sensor,current_target : states; N
tmdata : file of measures; .t
ssdata,tsdata : file of states; :f
tcldata,trudata,csdata : text; A
times : array [0..9] of integer; )¢
last,total : array [0..9] of real; 2
{*t* Timing Functions ******t##*t###t#*t##**##****tt#*t##**#t##***#t#**##t***} ;“
Function Second : real; FORTRAN; 'é:
nﬁ
Procedure Init_Times; 1;
var
i : integer; !
begin I
for i := 1 to 9 do f}
begin W
last{i]l := 9.0; RY
total{i] := 0.0;
times[i] := 0; e
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case i of
1 : Writeln(’Input Data’);
: Writeln(’Forecast’);
: Writeln(’Calculate Metrics’);
: Writeln(’Perform Cluster Assignment’);
: Writeln(’Perform Cluster Initiation’);
: Writeln(’Update Estimates’);
end; {case}
Writeln(’ Elapsed time = ’,total[i]:7:4,
', Average time = ’,totall[il/times[i]:7:4,
', Percentage = ’,100*total[i]l/totall0]:4:1,°%’);
end; {for i}
Writeln(’ Total time
Writeln;
end; {Procedure Report_Times}

D5 WN

!, totall0]:7:4);
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{**+* Global routines #xkkkkrskskkadrhhshrbdhbbbseriibitbbhbhrhbbbaribbsbins}

Function IMin(argl,arg2 : integer) : integer;

begin

if argl < arg2 then
IMin := argl

else

IMin := arg2;
end; {Function IMin}

Function IMax(argl,arg2 : integer) : integer;

begin

if argl > arg2 then
IMax := argl

else

IMax := arg2;
end; {Function IMax}

Function RMin(argl,arg2 : real) : real;

begin

it argl < arg2 then
RMin := argi

else

RMin := arg2;
end; {Function RMin}

Function RMax({argl,arg2 : real) : real;

begin

if argl > arg2 then
RMax := argil

else

RMax := arg2;
end; {Function RMax}
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Procedure Increment(var arg : integer); A
begin )
arg := arg + 1; l'*
end; {Procedure Increment} Eﬁ
t
Procedure Decrement(var arg : integer); -
begin .
A
arg := arg - 1; o
end; {Procedure Decrement} ~:
¢
X3
Function Missing(target,sen : integer; o
time,val : real) : boolean; » )
begin q

Missing := (val < missing limit)
or (target > max_target) :
or (sen <> sensor) 4
or (time < min_time); v
end; {Function Missing} =

Procedure Echo_True_Data(target,sen : integer; -
time,val : real); I,
begin hos.
it (sen = sensor) ol
and (time >= min_time) 4
and (target <= max_target) then !:
begin -
while {target - last_target) > 1 do o,
begin 3
Write(trudata,’ ’); o

Increment(last_target);
end; {while}

Increment(last_target); :i
if val < missing_limit then NS
begin 9%

Write(trudata,0:4); A

end {if} »
else e
begin o
Write(trudata,target:4); ﬁ:
end; {else} '}f
end; {if} o
end; {Procedure Echo_True_Data} i‘
"
{#%% Initializations *#sskkssmsmmkddirhmkk stk ik dh ko gk Rk kokkkk } ::'
:_\
Procedure Init_Program,; {System Specific} .{:
var ¥
i,j,k,atr,var_set : integer; ;‘
filename : packed array[1..12] of char; "
b’
Y
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begin
{Select data file to cluster}
Readln(filename) ;
{Determine attribute and clock biases}
for i := 1 to attributes do
Readln(bias[i]);
Readln(tbias);
{Determine observation sensor}
sensor := Ord(filename[2]) - 0rd(’0’);
{Set variances}
var_set := Ord(filename[3]) - 0rd(’0’);
for i := 1 to attributes do
for j := 1 to attributes do
R_x[i,jl := 0.0;
R_k([1,1] := 10.0;

R_k[2,2] := 1.0;
R_k{3,3] := Exp(-(var_set+2)*Ln(10.0));
R_k[4,4] := Exp(-(var_set+2)*Ln(10.0));

for atr := 1 to attributes do
R[atr] := Sqrt(R_k[atr,atr]);
for i := 1 to 3 do
for j := 1 to nterms do
for k := 1 to nterms do
Rvarli,j,kx] := 0.0;
for atr := 1 to attributes do
begin
Rvar[1,atr,atr] := R_k[atr,atr];
Rvar(2,atr,atr] := R_k[atr,atr];
Rvar[2,atr+attributes,atr+attributes] := R_k[atr,atr]
end; {for atr}
Rvar([3,1,1] := R_k[1,1]);
Rvar[3,2,2] := R_k[2,2];
for i := 3 to 6 do
begin
Rvar[3,i,i] := R_k[3,3];
Rvar(3,i+3,i+3] := R_k[4,4];

end; {for i}
case filename[5] of {Determine number ~* targets}
'V’,’v’ : max_target := 5;
'X’,’x? : max_target := 10;
'T’,’t’ : max_target := 20;
'L’,’1’ : max_target := B50;
'C’,’¢’ : max_target := 100;

end; {case}
case filename[68] of {Determine time span}
'A’,’a’ : begin
min_time := £0.0;
max_time := 200.0;
end; {Case A}
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end; {case}

{Initialize input data file}
Connect(tmdata, ’TMDATA
Reset(tmdata);

{Initialize sensor input data file}
Connect(ssdata,’SSDATA
Reset(ssdata);

{Initialize target input data file}
Connect(tadata,’TSDATA
Reset(tsdata);

{Initialize cluster progress output file}
Connect(tcldata, 'TCLDATA ’);
Rewrite(tcldata);

Writeln(tcldata, ’Clusters for attributes:
’Range, Range Rate, Azimuth, and Elevation’);
Writeln(tcldata);

{Initialize true observation output file}
Connect(trudata, 'TRUDATA ’);
Rewrite(trudata);

Writeln(trudata, 'Clusters for attributes:

’Range, Range Rate, Azimuth, and Elevation (True)’);

M NRENIN NN NI

1= 2500.
end; {Case E}

end; {Case B}

=

end; {Case C}

end; {Case D}

end; {Case F}
end; {case}
case filename[7] of {Determine missing data rate}
: missing limit :
: missing_limit :=
: misging_limit :=
. missing_limit :
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{Initialize cluster state output file}
Connect(csdata,’CSDATA °’);
Rewrite(csdata);
end; {Procedure Init_Program}

{*#+* State Derivative Functions/Procedures #*#¥skkkksskbshhkkbdhsbhhbikssks}

Procedure Deriv(tm : real;
FX : stacked_vector;
var DX : stacked_vector);
type
matrix = array [1..block,1..block] of real;
var
i,j,split : integer;
r,ri,r2i,r3i,m?,xr,yr,2zr,x3x,x3y,x3z,y3y,y32,23z : real;
fivr : matrix;
begin
{General factors}
r := Sqrt(Sqr(FX[1])+Sqr(FX[2])+Sqr(FX[3]));
ri := 1/r; r2i := Sqr(ri); mf := ~mu*r2i/r;
{State transition factors}
xr := FX[1]=*ri; yr := FX[2]*ri; zr := FX[3]*ri;
x3x := -3#Sqr(xr); y3y := -3#Sqr(yr); =3z := -3#3qr(zr);
X3y := -3%xr*yr; X3z := —3%xXI*2Zr; y3z := -3%yr*zr;
fvr[1,1] := mf*(1 : x3x);
fvr[1,2] := mf*x3y;
tvr[1,3] := mf*x3z;
fvr[2,1] := mf*x3y;
fvr[2,2] := mf*(1 +
fvr[2,3] := mf*y3z;
fvr[3,1] := mf*x3z;
fvr(3,2] := mf*y3z;
fvr[3,3] := mf*(1 +
{State derivatives}
for i := 1 to 3 do
begin
DX[i] := FX[i+3]; {Position derivatives}
DX[i+3] := mf*FX[i]; {Velocity derivatives}
end; {for i}
{State transition derivatives}
split := block*nest;
for i := 1 to split do
DX[nest+i] := FX[nest+split+i];
for i := 1 to block do
for j := 1 to nest do
DX[split+i*nest+j] := fvr[i,1]1+FX[ nest+j]
fvr[i,2]*FX[2+*nest+j]
fvr(i,3)*FX[3*nest+j];
end; {Procedure Deriv}
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{**+ Integration Functions/Procedures ##ssssksssrxsrissshsikihdsihihhrhbsss} ..
Procedure Initialize_RK78; fv
begin .l:::
rke[1] :=  2/27;  rkf[2] := 1/9; rkf[3] :=  1/36; iy
rxe[4] :=  1/12; rkt[5] := 1/6; rkf(6] :=  1/24; -~
rkt[7] := 1/8; rkf[8] := 5/12; rkf[9] := -25/16; -
J
rkt{10] := 1/2; rkt[11] := 1/20; rkf[12] := 1/5; -
rkf[13] := 1/4; rkf([14] := 5/6; rkf (18] := -25/108; ..:::
rk£[16] := 125/108; rkf{17] := 125/54; rk£[18] := -85/27; .,:t
rk[19] :=  1/6; rk£[20] :=  13/900; rkf([21] := 31/300; "
ret[22] := -2/9; rk£[23] :=  61/225; rxf[24] :=  2/3; %
rkf[26] := 67/90; rkt[26] := -53/6; rkt[27] := -107/9; Yo
rkf[28] := 704/45; rkt[29] := 1/3; rkf[30] := -1/12; !
rkf[31] := 23/108; rkf[32] := -19/60; rkt[33] := -91/108; P,
rkr([34] := 17/86; rkt[36] := 311/64; rkf[36] := -976/135; *::
rkf[37] := 45/164; rkf£(38] := 18/41; rk£([39] := 2133/4100; E’
rxf[40] := 45/82; rkf[41] := 2383/4100; rkf[42] := -341/164; &=
rk£[43] := -301/82; rkf[44] := 4496/1025; rkf([45] := 3/205; 2
rkf[46] := -3/41;  rk£[47) :=  -6/41;  rkf[48) := 33/164; 7t
rkf[{49] := 12/41; rkf[50] := -1777/4100; zrkf([51] := 2193/4100; ;J"
rkf[62] := 51/82; rkf£[53] := -341/164; rkf[54] := -289/82; :,'.c
rkf[55] := 4496/1025; rkf[56] := 9/280; rkf[57] := 41/840; A
rxf[58] :=  9/35;  rkf[59] :=  34/105; 4
end; {Procedure Initialize_RK78} g
=
Procedure RK78(var x : stacked_vector; ‘N‘
var t,dt : real; :-.
tout : real; rd
relerr,abserr : real; s
neqn : integer; Ay
var iflag : integer); =)
label 1,2,3; :::
const i},
bup = 2.821109907456E+12; ;
blo = 1.68151253906256E-11; Y
var ?
dtfix,dtfail : boolean; t
i,nrej,nrejt,nstp : integer; _\‘
dtold,delt,t0,rer,scale,ae,rte,te,xmag,pct ! real; :.i
10,11,£2,713,14,16,16,17,18,19,110,f11,£12,x0 : stacked_vector; W
begin ke
nrejt := 0; o
nstp := 0 :\-
it (abserr = 0) and (relerr = 0) then {Set flag if fixed step mode desired} M
dtfix := true .)-‘:
else A
dtfix := false; o
dtold := dt; 1
.zn
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1:dtfail := false;
nrej := 0;
{Reset step size if this will put t greater than toutl}
delt := tout - t;
if Abs{(dt) >= Abs(delt) then
dt := delt
else
if Abs(2#dt) >= Abs(delt) then
dt := delt/2;
if Abs(dt) >= 2.84E-14*Abs(t) then
begin
{First Evaluation}
t0 := t;
for i := 1 to neqn do
x0[i] := x[il;
Deriv(t,x,f0);
{Second Evaluation}
2: ¢t := t0 + rkf[1]=dt;
for i := 1 to negn do
x[i] := rkf[1)*f0[i]*dt + x0[i];
Deriv(t,x,f1);
{Third Evaluation}
t := t0 + rkf[2])*dt;

for i := 1 to neqn do
x[i] := (rkf[3]+f0[i] + rkt[4)*f1[i])*dt + x0[il;
Deriv(t,x,f2);

{Fourth Evaluation}
t := tO + rkf[5]xdt;
for i := 1 to neqn do
x[i] := (rxf[8)*f0[i] + rkt[7]*£2[i])*dt + x0[i];
Deriv(t,x,f3);
{Fifth Evaluation}
t := t0 + rkf(8]xdt;
for i := 1 to neqn do
x[i) := (rk2{8)*t0[i] +rkf[9]*(£2[i] - £3[i]))=*dt + x0[i];
Deriv(t,x,f4);
{Sixth Evaluation}
t := t0 + rkf[10]+dt;
for i := 1 to neqn do
x[i] := (rk2{11)*200i] + rkf[12]1+£4[i] + rk£[13]*£3[i])*dt + x0[il;
Deriv(t,x,f5);
{Seventh Evaluation}
t := t0 + rkf[14]«dt;
for i := 1 to neqn do
x[i] := (rkt[15]+20[i] + rkf[16]+*£3[i] + rkf[17]+25[i)
+ rxf[18]+14[i))+dt + x0[i];
Deriv(t,x,16);
{Eighth Evaluation}
t := t0 + rk2[19]sdt;

o ~ 0
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for i := 1 to negmn do
x[i) := (rk£[20)+f6[i] + rkf[21]*£0[i] + rkf[22]+15(i]
+ zkf[23]#£4[i])*dt + x0[i];
Deriv(t,x,£7);
{Ninth Evaluation}
t := t0 + rkr[24]+dt;
for i := 1 to neqn do
x{i] := (zkf[26])*f6[i] + 2%f0[i] + 3=£7[i] + rkf[28]+f2li}
+ rkf[27]*t5[i] + rkr[28]+f4[i])*dt + xO0[i]);
Deriv(t,x,18);
{Tenth Evaluation}
t := t0 + rkf[29])dt;
for i := 1 to neqn do
x[i] := (rxt[30]*£8[i] + rkf[31]*£3[i] + rkf[32]*f16[i] + rkf[33]*f0[i]
+ rkf(34]+£7[i] + rxf[35]*260i] + rkf[36]+f4[i])*dt + x0[i];
Deriv(t,x,£9);
{Eleventh Evaluation}
t = t0 + dt;
for 1 := 1 to neqn do
x[i] := (rxf[37)+£8[i] + rkf[38]+19[i] + rkf[39]1+*f6[i] + rkf[40]*£7[i]
+ rkf[41]+£0(i] + rke[42]«£3[i] + rkf[43]1*£5[i]
+ rkf[44]1+24[i])*dt + x0[i];
Deriv(t,x,£10);
{Twelfth Evaluation}
t := t0;
for i := 1 to neqn do
x[i] := (rxf[45)*(f0[i] - f6[i]) + rkt([46]1*(£7[i] - £8[i])
+ rkf[47)*(£6(i] - £9[i]))*dt + x0[i];
Deriv(t,x,f11);
{Thirteenth Evaluation}
t := t0 + dt;
for i := 1 to neqn do
x[i] := (xrkf[48]*18[i] + rkf[49]+*f9[i] + rkf[50])*£0[i] + rkf[51)*f6[i]

+ rkf[52]+27[i] + £110i] + rkf[5631*£3[i] + rkf[54]*f5[i]
+ rkt[65]+14[i])*at + x0[i]l;
Deriv(t,x,f£12);

{Compute state at t+dt}
for i := 1 to neqn do
x[i] := (rke[56])+(£8[i] + £9[i]) + rkf[57]+(£11[i] + £12[i])
+ rkf[68]+(26[i] + £7[i]) + rkf[59]*f5[i])=dt + x0[i];
if not dtfix then
begin {Compute max local truncation error}
rer := RMax(relerr,2.572E-13);
scale := 2/rer;
ae := scale * abserr + 1.0E-14;
rte := 0;
for i := 1 to negn do
begin
te := Abs(rkf[67]*(f0[i] + f£10[i] - £11[i] - £12([i]));
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o
xmag := Abs(x[i]) + Abs(x0[i]) + ae; ®
rte := RMax(rte,te/xmag); by "
end; {for i} l:.
rte := rte * scale; Pigh
if rte >= 1 then i
begin {Reject this step} -
dtfail := true; o
nrej := nrej + 1; =
nrejt := nrejt + 1; '::-"
if nrej >= 10 then o !
begin Nt
for i := 1 to neqn do "
x[i] := x0[i]; 1y,
t := t0; & ‘(
iflag := 7; :F/
Goto 3; LY
end {if} i
else
begin v
pet := 0.025; v‘
if rte < bup then vt
pct := 0.9/Sqrt(Sqrt(Sqrt(rte))); "
dt := pct * dt; ‘::u:
dtold := dt; s
Goto 2; ht
end; {else} o)
end; {if} !,. '
¢
end; {if not dtfix} A
{This step is acceptable - eighth order evaluation} ,'n‘ﬂ
t := t0 + dt;
nstp := nstp + 1; "4y
it Abs(tout-t) <= 1.0E-14 then !
begin l:
dt := dtold; N
iflag := 2; '\'
Goto 3; b
end; -,
if dtfix then !
Goto 1; '.‘c‘:
pet := 20; X
if rte > blo then o)
pct := 0.9/Sqrt(Sqrt(Sqrt(rte))); A
it dtfail then N
pct := RMin(pct,1.0); }: \
dt := dt * pct; 3::
dtold := dt; i~
Goto 1; JYOd
end; {if} “;‘
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{Check for too small a step size}
if Abs(delt) <= Abs(dt) then
begin {Extrapolatc}
Deriv(t,x,£0);
for i := 1 to negn do
x[i] := f0[i)*+dt + x[i];
t := t + dt;

dt := dtold;
iflag := 2;
end

iflag := 8;
3:end; {Procedure RK78}

Procedure Stack_Vector(x_vector :
Phi_matrix :
var x_stack :

else {Attempted to use too small a step size}

state_vector;
P_matrix;
stacked_vector);

var
i,j : integer;
begin
for i := 1 to nest do
x_stack[i] := x_vector[i];
for i := 1 to nest do
for j := 1 to nest do

end; {Procedure Stack_Vector}

Procedure Unstack_Vector(var x_vector :
var Phi_matrix :
x_stack :
var
i,j : integer;
begin
for i := 1 to nest do
x_vector[i] := x_stack([i];
for i := 1 to nest do
for j := 1 to nest do

end; {Procedure Unstack_Vector}

Procedure Get_Sensor;

var
time,result : integer;
step : real;
t : array [1..2] of real;
SSv : stacked_vector;
Phi : P_matrix;

s e v i S DL N R Sy \-_-“-.~--’"‘i"'l....‘-._"’.q"'
L5 .l ,uha n.n"n“nt. ' KaLaCar £ Calatl iy %Y

&

x_stack[nest#i+j] := Phi_matrix[i,jl;

state_vector;
P_matrix;
stacked_vector);

Phi_matrix[i,j] := x_stack[nest*i+jl;
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begin

for time := framel to -1 do
Sxs[time) := Sxs[time+1];
repeat

Read(ssdata,current_sensor);
until (current_sensor.time = frame_time[0])
and (current_sensor.number = sensor);
Sxs[0] := current_sensor.values;
Phi := Identity;
Stack_Vector(Sxs[0],Phi,SSV);
t[1] := 0.0; ¢t[2] := tbias; step := tbias;
RK78(SSV,t[1],step,t[2],small,zero,nstack,result);
Unstack_Vector(Sxs[0],Phi,SSV);
end; {Procedure Get_Sensor}

Procedure Get_Ubservations;

var

time,ntime,obs,atr : integer;
noise : real;

begin

{Shift previous data}

for time := framel to 0 do
begin
ntime := time + 1;
atr_limits[time] := atr_limits(ntime];
assigned[time] := assigned[ntime];
end; {for time}

for time := framei to -1 do
begin
ntime := time + 1;
nr_obs[time] := nr_obs[ntime];
nr_unassigned[time] := nr_unassigned{ntime];
nr_clusters[time] := nr_clusters[ntime];
nr_active[time] := nr_active[ntime];
nr_inactive[time] := nr_inactive[ntime];
attr[time] := attr[ntime];
status[time] := status[ntime];
targets[time] := targets[ntime];
observation[time] := observation[ntime];
frame_time[time] := frame_time[ntime];

end; {for time}

{Read new observations}

obs := {;
attr[0,obs] := next;
targets[0,obs] := next_target;
frame_time[0] := attr[0,obs,0];
repeat

EOI := EOF(tmdata);

Echo_True_Data(targets[0,obs],sen_nr,attr[0,obs,0] ,missing_flag);
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if not Missing(targets[0,obs],sen_nr,attr[0,obs,0] ,missing_flag) then
begin
for atr := 1 to attributes do
begin
atr_limits[0,1,atr] :
atr_limits[0,2,atr]
end; {for atr}
Increment{(obs);
end; {if not Missing}
if not EOI then
begin
Read(tmdata,current_obs);
targets[O,obs] := current _obs.target;
sen_nr := current_obs.sensor;
attr(0,obs,0] := current_obs.time;
for atr := 1 to attributes do
attr[0,obs,atr] := current_obs.obs[atr]
+ (bias[atr] + current_obs.error[atr])*R[atz];
missing _flag := current_obs.missing;
end; {if not EOI}
until (attr[0,obs,0] > frame_time[0]) or EDI;
last_target := 0;
EOI := EOI or (attr[0,obs,0] > max_time);
Writeln(trudata);
if not EOI then
begin
Write(trudata,attr[0,obs,0]:7:1);
next := attr{0,obs];
next_target := targets[0,obs];
end; {if not EOI}
nr_obs[0] := obs - 1;
nr_unassigned[0] := nr_obs[0];
nr_inactive[0] := nr_inactive[-1];
nr_active[0] := nr_activel[-1];
nr_clusters[0] := nr_active[0] + nr_inactive[0];
end; {Procedure Get_Observations}

RMin(atr_limits[0,1,atr],attr{0,obs,atr]);
RMax(atr_limits[0,2,atr],attr[0,obs,atr]);

Procedure Initialize_Clustering;

var
missed : boolean;
time,ntime,cluster,obs,atr : integer;
noise,ltime : real;
begin
{Initialize attribute minimums, maximums}
for atr := 1 to attributes do
begin
atr_limits(1,1,atr] := big;
atr_limits[1,2,atr] := -big;

end; {for atr}
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’ for obs := 1 to clusters do
s assigned{1,obs] := false;
" for time := 0 downto framei do
' begin
0 ntime := time + 1;
X atr_limits[time] := atr_limits[ntime];
\ assigned[time] := assigned[ntime];
! end; {for time}
{Initialize cluster status}
for time := framel to 0 do
begin
nr_clusters[time] := 0;
nr_unassigned[time] :=
nr_obs[time] := 0;
nr_active[time] := 0;
! nr_inactive[time] := 0;
£ targets[time,0] := 0; {* For missing observations *}
frame_time[time] := -1.0; {* For output buffering #*}
for cluster := 1 to clusters do
begin
observation(time,cluster] := 0;
status[time,cluster] := 0;
end; {for cluster}
end; {for time}
{Find first measurement}
. ltime := -1.0;
4 last_target := 0;
\ repeat
Read(tmdata,current_obs);
next_target := current_obs.target;
sen_nr := current_obs.sensor;
K next[0] := current_obs.time;
for atr := 1 to attributes do
next[atr] := current_obs.obs[atr]
3 + (bias[atr] + current_obs.error[atr])=*R[atx];
missing_flag := current_obs.missing;
it next[0] > ltime then {* Output true data *}
begin
1ltime := next{0];
: Writeln(trudata);
p Write(trudata,ltime:7:1);
end; {if}
missed := Missing(next_target,sen_nr,next[0],missing_flag);
if missed then
{ Echo_True_Data(next_target,sen_nr,ltime.missing_flag);
¥ until not missed;
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for time := 1 to 2 do K%
begin {Get minimum data frames minus 1 to start cluster} ey
Get_Observations; {Read remainder of observation frame} *;
Get_Sensor; {Read sensor state} $ﬁ
end; {for time} & ]

repeat {Read beginning of true target state data frame}

Read(tsdata,current_target); o
until (current_target.time = frame_time[0]); .
end; {Procedure Initialize_Clustering} ﬁ:

{##% Major Procedures #*ssiskssrksskddtashitkddaafikhhifhrahtkbetaismbhhren} i ’

xi
[

Procedure Input_Data; v
var 4$

time,obs,atr : integer; N
begin ’:
Start_Timer(1); {Timing} !
Get_Observations; .'
Get_Sensor;

{Calculate span minimums and maximums and scale factors} s
span_limits := atr_limits[framel]; .
for atr := 1 to attributes do "t

for time := framei+l to 0 do e

begin ; '
span_limits([1,atr] := RMin(span_limits[1,atr],atr_limits[time,1,atr]); £y
span_limits[2,atr] := RMax(span_limits[2,atr],atr_limits[time,2,atr]); i,
end; {for time} N

Stop_Timer(1); {Timing} N

end; {Procedure Input_Data} :‘3

{**+ Estimation Initialization Procedures #s*x*kskksxkskkkxsrkahbkhkkrrxkhhkks} :&.

¢

Procedure Initialize_Estimation; g::
var \:,

i,j : integer; éf
begin »

{Identity matrix} e
for i := 1 to nest do 5:f

begin "o

for j := 1 to nest do s

Identity[i,jl := 0.0; o

Identity[i,i] := 1.0;

: |
end; {for i} =

{State covariance} 3}
Q_k := Identity; o’
for i := 1 to nest do %;

Q_k[i,i] := 1.0; o
step := 10.0; ;¢
end; {Procedure Initialize_Estimation} 9
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{**+ Estimation Propagation Procedures sssssssssskkssssrsssdshhrhbsbtnnhhsis})

Function ArcTan2(num,den : real) : real;

var
answver : real;
begin
answer := ArcTan(num/den);

if den < 0 then
answer := answer + pi;
if answer > pi then
answer := answer - 2.0#pi;
ArcTan2 := ansver;
end; {Function ArcTan2}

Procedure Map_State(Xr : state_vector;
var Ov : obs_vector);

begin

Ov[1] := Sqrt(Sqr(Xr[1])+Sqr(Xr[2])+Sqr(xr[3]));

ov[2] := (Xr[1)*xr[4] + Xr[2)#Xxr[5] + Xr[3]*Xr(6]1)/0v(1];
Ov[3] := ArcTan2(Xr[2],Xr[1]);

Ov[4] := ArcTan(Xr[3]/Sqrt(Sqr(Xr[1]1)+sqr(xr[21)));

end; {Procedure Map_State}

Procedure Calculate_H(var B : H_matrix;
Xr : s.ate_vector;
var Ov : obs_vector);

var
i : integer;
rhoi,rhoi2,varrho,varrhoi,varrhoi2,rhoi2_vari : real;
begin

{Calculate coefficients}
Map_State(Xr,0Ov);
rhoi := 1/0v[1];
rhoi2 := Sqr(rhoi);
varrho := Sqrt(Sqr(Xr[1]) + Sqr(Xr[2]));
varrhoi := 1/varrho;
varrhoi2 := Sqr(varrhoi);
rhoi2_vari := rhoi2+varrhoi;
{Form H matrix}
for i := 1 to block do
begin
H[1,i] := Xr(i)*rhoi;
H[1,i+block] := 0.0;
H[2,i] := (Xr[i+blockl*0Ov[1] - Xr[i]*0Ov[2])#*rhoi2;
H[2,i+block] := H[1,i]);

H[3,i+block] := 0.0;
H[4,i+block] := 0.0;
end; {for i}

H[3,1] := -Xr([2]*varrhoi2;
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]
2
H[3,2] := Xr(1l#*varrhoi2; “’”
H(3,3] := 0.0; e
H(4,1] := -Xr[1]#Xr[3)*rhoi2_vari; o
H[4,2] := -Xr[2)*Xr[3]*rhoi2_vari; \:'s.
!‘ H(4,3] := varrho*rhoi2; ::
end; {Procedure Calculate_H} L
Procedure Map_State_to_Attribute_Space(Xv : state_vector; :"'\-
Pm : P_matrix; BN
var Ov,0P : obs_vector), :‘.N
var S
i,j,k : integer; Dl
Xr,SP : state_vector; 4
H,H_ P : H_matrix; t-::
M : R_matrix; -.:},
begin } x
for j := 1 to nest do ‘:"\-
xr{jl := xv[j] - sxs(0,j]; .“
Calculate_H(H,Xr,0v); -
for i := 1 to attributes do ::-:::
for j := 1 to nest do '*:'.::
begin Ry
B_P[i,j] := 0.0; Py
for k := 1 to nest do s
B_P[i,j] := H_P(i,j] + H[i,k]*Pm[k,j]; ;‘2-._
end; {for j} .-':_~
M := R_k; YA
for i := 1 to attributes do vy
for j := 1 to attributes do _'_:\
for k := 1 to nest do v
M[i,j] := M[i,j] + H_P[i,k]*H[j,X]; ol
for i := 1 to attributes do i
OP[i] := 3.0%sqrt(M[i,il); N
end; {Procedure Map_State_to_Attribute} .\:.:
Function ArcSin(arg : real) : real;
begin ;3_.
ArcSin := ArcTan(arg/Sqrt(1.0-Sqr(arg))); S
end; {Function ArcSin} O
Function ArcCos(arg : real) : real; '_-'.‘_:
begin -
ArcCos := pi/2.0 - ArcTan(arg/Sqrt(1.0-Sqr(arg))); r.q.;
end; {Function ArcCos} :.-:.-
S
Procedure Forecast; :.-;: t
var o
cluster,i,j,k,result : integer; il
t : array [1..2] of real; . 2
t:" ’
;-.:(-
l.f
L4
l." Y
X
e
;
'-
pi
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Ssy : stacked_vector;
Phi,Phi_P : P_matrix;
begin
Start_Timer(2); {Timing}
for cluster := 1 to nr_clusters{-1] do
it status[0,cluster] < O then
begin {Integrate state and state transition matrix}
Phi := Identity;
Stack_Vector(Sx[cluster],Phi,SSV);
t[1] := 0.0;
t[2] := frame_time[0] - frame_time[status[0,cluster]];
status[0,cluster] := -1;
RK78(SsV,t[1],step,t[2],small,zero,nstack,result);
Unstack_Vector(Sx[cluster],Phi,SSV);
{Propagate state covariance matrix}
for i := 1 to nest do
for j := 1 to nest do
begin
Phi_P[i,j] := 0.0;
for k := 1 to nest do
Phi_P[i,j] := Phi_P[i,j]l + Phili,k]*P[cluster,k,j];
end; {for j}
Plcluster] := Q_k;
for i := 1 to nest do
for j := 1 to nest do
for k := 1 to nest do
Plcluster,i,j] := P[cluster,i,j] + Phi_P[i,x]*Phil(j,k];
Map_State_to_Attribute_Space(Sx[cluster],P[cluster],
estcluster],gatel{cluster]);
end; {if}
Stop_Timer(2); {Timing}
end; {Procedure Forecast}

Procedure Calculate_Metrics;
label 1;
var
cluster,obs,atr,mrow,missed_gates : integer;
delta ! real;
factor : obs_vector;
nr_feasible : array [1..2] of ivector;
begin
Start_Timer(3); {Timing}
mrow := 0;
{Calculate standardization factors}
for atr := 1 to attributes do
begin
factor(atr] := span_limits[2,atr] -~ span_limits[1,atr];
it Abs(factorf[atr]) < zero then
factor([atr] := 1.0
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else
factor[atr] := 1.0/factor[atr];
end; {for atr}
{Initialize pre-assignment indices}
for cluster := 1 to clusters do
nr_feasible[1,cluster] := 0;
nr_feasible[2] := nr_feasible[1];
col_basis := nr_feasible[1];
row_basis := nr_feasiblel[1];
{Calculate metrics}
for cluster := 1 to nr_clusters[-1] do
if status[0,cluster] = -1 then
begin
Increment (mrow);
convertmrowl := cluster;
for obs := 1 to nr_obs{0] do
begin
metric[mrow,obs] := 0.0;
missed_gates := 0;
for atr := 1 to attributes do
begin
delta := Abs(est[cluster,atr] - attr[0,obs,atr]);
if delta > gate[cluster,atr] then
it (delta > 2.0#*gate[cluster,atr])
or (missed_gates >= max_missed) then
begin
metric[mrow,obs] := bad;
goto 1;
end {if missed}
else
Increment (missed_gates);
metric[mrow,obs] := metric[mrow,obs] + Sqr(factor[atr]l*delta);
end; {for atr}
1: if metriclmrow,obs] < bad then
begin
Increment (nr_feasible[1,mrow]);
Increment (nr_feasible[2,0bs]);

col_basis[mrow] := obs;
row_basis[obs] := mrow;
end; {if}

end; {for obs}
end; {if status}
{Check pre-assignment}
for cluster := 1 to mrow do
it (nr_feasible[1,cluster] > 1) or
(nr_feasible(2,col_basis[cluster]] > 1) then
col_basis[cluster] := 0;
for obs := 1 to nr_obs([0] do
it (nr_feasible[2,0bs] > 1) or
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)\
(nr_feasible[2,row_basis[obs]] > 1) then ’
row_basis[obs] := 0; ~d
{Assign dummy values, as necessary} : t‘f
for cluster := nr_clusters[-1]+1 to nr_obs[0])+nr_inactive[-1] do "
begin ,::
Increment(mrow);
convert[mrow] := cluster; :
status[0,cluster] := 0; {Dummy cluster} 'Qr
for obs := 1 to nr_obs[0] do "-'_i
metric[mrow,obs] := bad; o
end; {for cluster} =~ ]
for obs := nr_obs[0]+1 to nr_active[-1] do )
begin e;y
targets[0,0b8] := -1; {Dummy-observation} )
for cluster := i to mrow do ?:3:
metric[cluster,obs] := bad; ":!'.
end; {for obs} ;l:
Stop_Timer(3); {Timing} -
end; {Procedure Calculate_Metrics} X
{#** State Update Procedures #**&*sstsssusstaikarihhihtrsthhdsns bhrkkkabnns]} ‘l":
W B ]
Procedure Invert(M : R_matrix; 0
var MInv : R_matrix); =
label §; i’“
var l':"
i,j,k,1,irow,icol,11 : integer; $$
determ,pivot,hold,sum,t,ab,big : real; Nt
index : array[1..nest,1..3] of integer; e,
Procedure Swap(var a,b : real); =
var .
hold : real; :::
begin ’ :
hold := a; f
a = b; J
b := hold; y
end; {Procedure Swap} 3
{Gauss-Jordan inversion} W
begin o)
for i := 1 to attributes do K :
index[i,3] := 0; :; ;
determ := 1; bRk
for i := | to attributes do 93
begin {Search for largest element} Yy
big := 0; >
for j := 1 to attributes do N
begin Y
it index[j,3] <> 1 then i
begin ‘-,
%
o
i ..‘
L] ot
I
0,

3

;
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for k := 1 to attributes do
begin
if index[k,3] > 1 then
begin

goto 1;
end;
if index[Xx,3] < 1 then

if Abs(M[j,k]) > big then
begin
irow := j;
icol := k;
big := Abs(M[j,X]);

end; {if}
end; {for k}
end; {if}

end; {for j}
Increment(index[icol,3]);
index[i,1] := irow;
index[i,2] icol;

{Interchange rows to put pivot on diagonall}
it irow <> icol then

begin

determ := ~determ;

for 1 := 1 to attributes do

Swap(M[irow,1],M[icol,1]);
end; {if irow <> icol}
{Divide pivot row by pivot column}

pivot := Mlicol,icol];

determ := determ * pivot;

Mlicol,icol] := 1;

for 1 := 1 to attributes do
M(licol,1] := M[icol,1] / pivot;

{Reduce nonpivot rows}

for 11 := 1 to attributes do
begin

if 11 <> icol then

begin

t := M[11,icoll;

M[11,icol] := 0;

for 1 := 1 to attributes do

M[11,1] := M[11,1] - M[icol,1] * ¢;

end; {if 11 <> icol}
end; {for 11}
end; {for i}
{Interchange columns}
for i := 1 to attributes do
begin
1l := attributes - i + 1;
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if index[1,1] <> index[1,2] then
begin
irow := index[1,1];
icol := index[1,2);
for k := 1 to attributes do
swvap(M[k,irow] ,M[k,icoll);
end; {if index}
end; {for i}
for k := 1 to attributes do
if index[x,3] <> 1 then
begin
writeln(’ERROR: Matrix singular’);
goto 1;
end;
for i := 1 to attributes do
for j := 1 to attributes do
MInv[i,jl := M[i,jd;
1:end; {Procedure Invert}

Procedure Cholesky(M : P_matrix;
var S : P_matrix);
var
i,j,k : integer;
sum : real;
begin
for i := 1 to nest do
begin
for j := 1 to i-1 do
S[j,i] := 0.0;
sum := 0.0;
for k := 1 to i-1 do
sum := sum + Sqr(s(i,k]);
S[i,i] := Sqrt(M[i,i] - sum);
for j := i+l to nest do

begin
sum := 0.0;
for k := 1 to i-1 do

sum := sum + S[i,x]*S[j,k];
sfj,i] := (u{i,j] - sum)/s[i,il;
end; {for i}
end; {for i}
end; {Procedure Cholesky}

Procedure Update_Estimates;

var
cluster,i, j,k,obs : integer;
Oref,od : obs_vector;
dS,dsx : state_vector;
B : H_matrix;
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K_k,Fbar,F_K : K_matrix;

M, M1 : R_matrix;

Wbar,What,I_FMF,Lambda,Phat : P_matrix;
begin

Start_Timer(6);
for cluster := 1 to nr_clusters[0] do
it (status[0,cluster] = -1) and
(nr_missing[cluster] = 0) then
begin
{Calculate relative state vector}
for i := 1 to nest do
ds[i] := Sx[cluster,i] - Sxs[0,i];
{Calculate H}
Calculate_H(H,dS,Oref);
{Calculate W bar}
Cholesky(P[cluster],Wbar);
{Calculate F bar}
for i := 1 to nest do
for j := 1 to attributes do
begin
Fbarfi,jl := 0.0;

for k := i to nest do {Lower triangular multiplication}

Fbar[i,j] := Fbar[i,j] + Wbar[k,i}*H[j,k];
end; {for j}
{Calculate M matrix}
MI := R_k;
for i := 1 to attributes do
for j := 1 to attributes do
for k := 1 to nest do
MI{i,j] := MI[i,j] + Fbar(k,il+Fbar(k,j]l;
Invert(MI,M);
{Calculate Lambda matrix}
for i := 1 to nest do
for j := 1 to attributes do
begin
F_M[i,j] := 0.0;
for k := 1 to attributes do
F_M[i,j] := F_M[i,j] + Fbar([i,k]+M[k,]];
end; {for j}
I_FMNF := Identity;
for i := 1 to nest do
for j := 1 to nest do
for kX := 1 to attributes do
I_FMF[i,j] := I_FNF[i,j] ~ F_M[i,x]*Fbar(j,x];
Cholesky(I_FMF,Lambda);
{Calculate W hat}
for i := 1 to nest do
begin
for j :=1 to i do
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begin
What(i,j] := 0.0;
for k := 1 to i do
What[i,j] := what[i,j] + wbar([i,k]*Lambdalk,j];
end; {for j}
for j := i+1 to nest do
what([i,j] := 0.0;
end; {for i}
{Calculate P hat}
for i := 1 to nest do
for j := 1 to i do
begin
Phat[i,j] := 0.0;
for k := 1 to i do
Phat[i,j] := Phat[i,j] + What[i,kJ*What[j,k];
Phat[j,i] := Phatl[i,jl;
end; {for j}
{Calculate K matrix}
for i := 1 to nest do
for j := 1 to attributes do
begin
K_k[i,3] := 0.0;
for k := 1 to i do
K_k(i,jl := K_k[i,j] + Wbar(i,k1+F_M[k,jl;
end; {for j}
obs := observation[0,cluster];
for i := 1 to attributes do
od[i] := attr([0,obs,i] - Oref[i];
for i := 1 to nest do
begin
dsx[i] := 0.0;
for j := 1 to attributes do
dsx[i] := dsSx([i] + K_k[i,jl*od(j];
Sx[cluster,i] := Sx[cluster,i] + dSx[i]; {Rectify reference state}
end; {for i}
Plcluster] := Phat;
end; {if}
Stop_Timer(6); {Timing}
end; {Procedure Update_Estimates}

Procedure Assignment(n : integer; {Hungarian Method}
cost : M_matrix;
var ans : ivector);
label 1,2;
type
rvector = array [1..clusters] of real;
bvector = array [1..clusters] of boolean;
imatrix = array [1..clusters,1..clusters] of integer;
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var
i,j.k,m
delta : real;
alpha,beta,slack : rvector;
labels,exposed,nhbor,Q : ivector;
labeled : bvector;
mate :

: integer;

A : imatrix;
: integer);

Procedure Augment(v
begin
if labels[v]
begin
mate[1,v] exposed[v];
mate[2,exposed[v]] := v;
end {if}
else
begin
exposed[labels[v]] := mate[1,v];
mate[1,v] := exposediv];
mate[2,exposed[v]l] := v;
augment(labels[vl);
end; {else}
end; {Procedure Augment}
Function Modify : boolean;
label 1;
var
ij : integer;
thetai,theta2 : real;
begin
thetal := big;
for j := 1 ton do
it slack[j] > O then
thetal := RMin(thetal,slack[j]l)
theta2 := thetal/2;
for i := 1 to n do
if labeled[i] then
alpha(i] := alpha[i] + theta2
else
alpha(i] := alphali] - theta2;
for j := 1 to n do
it slack({j] = O then
betalj]l := beta[j] - theta2
else
beta[j] := betalj] + theta2;
for j := 1 to n do
if slack([jl > O then
begin
slack[j] := slack[j] - thetai;
if slack{jl = 0 then

0 then
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A
if mate[2,j] = O then i
begin X )
exposed [nhbor[jl] := j; !
augment (nhbor [j1); ':":'

Modity := true; 1

goto 1; 2]

end {if} 7y
else H'
begin ¥
labels[mate[2,3]] := nhbor([jl; N W
labeled{mate[2,j1] := true; .g
Qmate[2,j]] := 1; ‘
A[nhbor[j],mate[2,3i]] := 1; r;
end; {else} :".‘
end; {if} Y
Modify := false; g.:‘i":
1: end; {Function Modify} 1!
Function Q_not_empty(var index : integer) : boolean; R
begin Oty
index := 0; N
repeat X
Increment (index); )
until (Q[index] = 1) or (index = n); o
if (index = n) and (Q[index] = 0) then B
Q_not_empty := false v
else :- ‘
Q_not_empty := true; "
end; {Function Q_not_empty} o !
begin ;‘f‘

for i := 1 to n do
begin by
mate{1,i] := 0O; N
alphali] := 0; ;
labels([i] := O; . .:
end; {for i} '.
for j := 1 to n do

begin ..
mate[2,j] := 0; \.
betalj] := big; .‘|':
for i := 1 to n do H:::
betalj] := RMin(betaljl,cost[i,jl); o
end; {for j} )
{Repeat for n stages} 0
form := 1 to n do :
begin "“.l
for i := 1 to n do NG
for 3 := 1 to n do o
Afi,j] := 0; ®

for i := 1 to n do Ny

)
. ,
::?:E

v

®
o
o'

N . s WIS/ B #e

SAA ARG < A ; L e T R W L N LY
D N T P e R R P A A e e et et e s A S (S I et St L K]

5



IR T Tl T R T A T I AN L AT A N L S L Ll A A R R R R S L e A N I N M e W T O I o I YR IR o N A K R X N O VP

2
A
o
' 4
104 @;ﬁ
b
exposed[i] := 0; 9',
for j := 1 to n do 3;,
slack[j] := big; ol
for i :=1 ton do ieel
for j := 1 to n do ‘{
it cost[i,j] - alphalil ~ betaljl < zero then ,
if matel[2,j] = O then
begin ﬁ
exposed[i] := j; bt
end {if} s
else 8
begin f
Ali,mate(2,j1] := 1; o
end; {else} ;.:tt
{Construct auxiliary graph} QQ
for i := { to n do b&
begin &
QLil := 0; o
labeled[i] := false; !r
end; {for i} .
for i := 1 to n do ,.
it mate[1,i] = O then ot
begin
if exposed[i] <> O then
begin d
augment(i); z
goto 2; ,‘S
end; {if} $:§
QLil := 1; ;S.
labels[i] := 0; 2
labeled[i] := true; &
for k := 1 to n do .
begin NS

delta := cost[i,k] - alphali] - betal[k];
if delta < zero then
delta := 0.0;
if (0 <= delta) and (delta < slack[k]) then

sy Red R

begin :!

slack[k] := delta; Y

nhbor(k] := i; S

end; {if} gt

end; {for k} N

end;{if} ]

1: while Q_not_empty(i) do :fn
begin )

Qlil := 0; )

-
v

it exposed[i] <> O then
begin
augment (i) ;
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goto 2;
end;
for k := 1 to n do
begin
delta := cost[i,k] - alpha[i] - beta[k];
if delta < zero then
delta := 0.0;
if (0 <= delta) and (delta < slack(k]) then
begin
slack[k] := delta;
nhborfk] := i;
end; {if}
end; {for k}
for j := 1 to n do
it (A[i,j] = 1) and not labeled[j] then
begin
labels[j] := i;
labeled[j] := true;
Q3] := 1;
if exposed[j]l <> 0 then
begin
augment (j);
goto 2;
end; {if}
for k := 1 to n do
begin
delta := cost[j,k] - alpha(j]l - betalk];

if delta < zero then

delta := 0.0;

if (0 <= delta) and (delta < slack[k]) then
begin
slack[k] := delta;
nhbor (k] := j;
end; {it}

end; {for k}

end; {if}

end; {while}
if not Modify then
goto i;
2: end; {for m}
ans := mate(2];
end; {Procedure Assignment}

Procedure Perform_Cluster_Assignment;
var
cluster,obs,k,atr,size,

asize,col_index,row_index : integer;
brow,row_convert : ivector;
done : boolean;

j— o T B U B , o Rt A S ke VW N A '
TV AN T AT, SN W A WG o S Aahy ‘-' W%,

n P PN N Al a2l

» -’V',\' M \f
54 ol L) ) -

N BNYN AR W M e w A MNN

Y _
O

105

*

R w"y,

N

Y
27

® S

-‘ L 2

.

s @

\

'y

!

.;.'\\-" ..',&-' -’\.’\-‘\(.‘."—~\f!‘-\:",;\-\.(-\. \I‘__
PO N o Kl 899, -4 9. BV, AnlgXal



-

-

2 e,

e e

-
" "’

- -

Ly e

.
- - -’

T an

R N AL A IO M NN M

900 e

T R T

-0 A Y e % e e aa V"B aY  4av g 7 . 8 ol Qab gat

begin

Start_Timer(4);

size := IMax(nr_active[-1],nr_obs(0]);
{Pertorm pre-assignment packing}

row_index := 0;
asize := 0;
for cluster := 1 to size do
it col_basis[cluster] = 0 then
begin

Increment(asize);
Increment (row_index);
row_convert{row_index] := cluster;
col_index := 0;
for obs := 1 to size do
if row_basis[obs]) = O then
begin
Increment (col_index);
ametric[row_index,col_index] := metric[cluster,obs];
end; {if}
end; {if}
if asize > 0 then
begin
Assignment (asize,ametric,brow);
col_index := 0;
for obs := 1 to size do {Unpack solution}
if row_basis[obs] = 0 then
begin
Increment{col_index);
row_basis[obs] := row_convert[brow[col_index]];
end; {if}
end; {if}
brow := row_basis;
{Check for invalid assignments and assign targets to clusters}
for obs := 1 to size do
begin
cluster := convert[brow[obs]];
if metric[browl[obs],obs] < bad then
begin {Good assignment}
observation{0,cluster] := obs;
assigned[0,obs] := true;
Decrement (nr_unassigned[0]);
nr_missing[cluster] := 0;

end {if}
else
if status[0,cluster] = -1 then

begin {Missing assignment}
{Cluster has been propagated maximum number of times}
it nr_missing[cluster] >= max_prop then

begin {Terminate old cluster}
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status[0,cluster] := 0; X
Increment (nr_inactive[0]); -
Decrement(nr_active[0]); &*(
end {if} : "
else 2%
begin {Propagate old cluster}
Increment(nr_missingl[cluster]); ‘
observation{0,cluster] := 0; >
end; {else} ;'
end; {else} By
end; {for obs} i
Stop_Timer(4); {Timing} ;
end; {Procedure Perform_Cluster_Assignment} -
*n]
L]
Procedure Calculate_SP_Estimates(timel,obsl : integer; N
var est,gate : O_matrix); oy
type &:
vector = array [1..block] of real; c
var »
i,j,time2 : integer; :}
A,acc,acc_n,acc_p,acc_t2,Arrs, -
Arrs_dot_urho,Arrsv,b1,b2, Ny
beta_1,beta_2,beta_min,beta_max, ~
Cos_az,Cos_el,Cos_beta,Cos_beta_1, ~
Cos_beta_2,d,d1,d2,d3,dmax,dmin, %;
mu_factori,mu_factor2,ri_dot_rs2, o
rng_min,rng_max,Sin_az,Sin_el,Sqr_t21, N
t21,theta,vmag2,vsmag2,vs_dot_urho, :;:
=

rmag2,rmag3 : real;

n
rsmag?2 : array [1..2] of real; 2
urho,rvec : vector; ;

begin j

4

{Calculate unit range vector}

L 4
'y

Cos_az := Cos(attr[timei,obs1,3]); &\
Cos_el := Cos(attr[timel,obs1,4]); YT
Sin_az := Sin(attr[timel,obs1,3]); ;
Sin_el := Sin(attr(timel,obs1,4]); LG
urho(1] := Cos_el*Cos_az; o
urho(2] := Cos_elsSin_az; e
urho[3] := Sin_el; -:
{Compute magnitudes; dot products} it
rmag2 := 0.0; rsmag2[1] := 0.0; oS
vsmag2 := 0.0; vs_dot_urho := 0.0; N
for i := 1 to block do =y
begin {}
j =1 + block; t$
rvec[i] := attr[timel,obs1,1]*urho[i] + Sxs[timel,i]; 7
ﬁ rmag2 := rmag2 + Sqr(rvec[i]); ;
rsmag2[1] := rsmag2[1] + Sqr(Sxsl[timei1,il); o,
X
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vsmag2 := vsmag2 + Sqr(Sxs[timel,jl);
vs_dot_urho := vs_dot_urho + Sxs[time1,jl#*urho(il;
end; {for i}
vmag2 := 2.0¢(Max_Energy + mu/Sqrt(rmag2));
mu_factor! := -mu/(Sqrt(rmag2)srmag2);
mu_factor2 := -mu/(Sqrt(rsmag2[1])*rsmag2[1]);
acc_p := 0.0; acc_t2 := 0.0;

s b, @ YR ELE @

v
for i := 1 to block do N
begin g
acce = mu_factorisrvec{i] - mu_factor2#Sxs[timel,i]; {L'
acc_t2 := acc_t2 + Sqr(acc); ]
acc_p := acc_p + acc*urho[il; :
end; {for i} '
acc_n := Sqrt(acc_t2 - Sgqr(acc_p)); "
Cos_beta_1 := (attr(timeil,obs1,2] + vs_dot_urho)/Sqrt(vmag2); )
beta_1 := ArcCos(Cos_beta_1); 2
di := Sqrt(vmag2 - Sqr(attr[timei1,obs1,2] + vs_dot_urho)); Q
42 := Sqrt(vsmag2 - Sqr(vs_dot_urho));
for time2 := timei+l to 0 do '
begin G&
g N
{Calculate time interval} 4;
t21 := frame_time[time2] - frame_time[timel]; '
Sqr_t21 := 0.5sSqr(t21); l:,
{Compute magnitudes; dot products} .'
rsmag2[2] := 0.0; -
ri_dot_rs2 := 0.0; 35
for i := 1 to block do 2
begin :}
rsmag2(2] := rsmag2(2] + Sqr(Sxs[time2,i]); W
ri_dot_rs2 := ri_dot_rs2 + rvec[i]*Sxs[time2,i]; s
. ®
end; {for i} ~
A := 1.0 + mu_factor1*Sqr_t21; *‘
{Calculate accelerations; more dot products} V!
Arrs := 0.0; Arrs_dot_urho := 0.0; .
for i := 1 to block do 14

begin
Arrsv := Asrvec[i] - Sxsltime2,i];
Arrs Arrs + Sqr(Arrsv);

]
A,

Arrs_dot_urho := Arrs_dot_urho + Arrsv#urholi]; {k

end; {for i} Y

Arrs := Sqrt(Arrs); N
{Compute angle beta) .;
Cos_beta_2 := Arrs_dot_urho/Arrs; 5
Cos_beta := RMin(Cos_beta_1,Cos_beta_2); hX

beta_2 := ArcCos(Cos_beta_2); }"
beta_max := beta_1l + beta_2; o
beta_min := Abs(beta_1i ~ beta_2); i
{Calculate range estimate and gate} ."

bl := Sqr(A)srmag2 + Sqr(t21)+vmag2 - 2.0*A*r1 _dot_rs2 + rsmag2[2]; =
2\

'
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b2 := 2.0%t21#Arrs*Sqrt(vmag2);
est[time2,1] := Sqrt(bl + b2+*Cos_beta_1);
gate[time2,1] := Abs(Sqrt(bi + b2#Cos(beta_max)) - est[time2,1]);

gate[time2,1] := RMax(Abs(Sqrt(bi + b2+Cos(beta_min)) - est[time2,1]),

gate[time2,1]) + 3.0+R[1];

{Calculate range rate estimate and gate}

d3 := Sqr_t2i*acc_n;

dmex := t21%(d1+d2) + d43;

dmin := t21*Abs(d1-d2) - d3;

d := 0.6%*(dmax + dmin);

est[time2,2] := (Sqr(est[time2,1]) - attr[timel,obsi,1]

*Sqrt(Sqr(est[time2,1]) ~ Sqr(d)))/(est[time2,1]¥t21);

rng_min := est[time2,1] - gate[time2,1];
rng_max := est[time2,1] + gate[time2,1];
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gate[time2,2] := Abs((Sqr(rng_max) - attr[timel,obs1,1]*Sqrt(Sqr(rng_max)

- Sqr(dmax)))/(rng_max*t21) - est[time2,2]);

gate[time2,2] := RMax(Abs((Sqr(rng_max) - attr{timel,obsi,1]
*Sqrt (Sqr (rng_max) - Sqr(dmin)))/(rng_max+t21)
- est[time2,2]),gateltime2,2]);

gate[time2,2] := RMax(Abs((Sqr(rng_min) - attr[timei,obsi,1]
*Sqrt (Sqr(rng_min) - Sqr(dmax)))/(rng_min*t21)
- est[time2,2]),gate[time2,2]);

gate[time2,2] := RMax(Abs((Sqr(rng_min) - attr(timei,obsi,1]
*Sqrt (Sqr(rng_min) - Sqr(dmin)))/(rng_min*t21)
- est[time2,2]),gateltime2,2]) + 3.0*R[2];

gate[time2,2] := 1.3*gate[time2,2];

{Calculate azimuth and elevation gates}

est[time2,3] := attr[time1,o0bs1,3];

est[time2,4] := attr[timel,obs1,4];

theta := ArcSin(dmax/est[time2,1]);

gateltime2,3] := theta/Cos(attr[timel,obs1,4]) + 3.0*R[3];
gate[time2,4] := theta + 3.0*R[4];

end; {for time2}

end; {Procedure Calculate SP_Estimates}

Procedure Calculate_DP_Estimate(timel,obsi,

time2,0bs2 : integer;
var energy,delta_energy : real);

type

var

vector = array [1..block] of real;

cluster,i,j,k,time,atr : integer;

t,obs : array [1..2] of integer;
Cos_az,Cos_el,Sin_az,Sin_el,dti,r2,v2,rf : real;

state,Emat ,E_P : state_vector,
rmag2,rmag3,r_dot_urho : array [1..2] of real;
mu_factor : array [1..2,1..2) of real;
dt,tf : array [1..3] of real;
urho,rvec : array [1..2] of vector;
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r_dot_part
partial_urho
Jmat,J_R
Pmat
begin
t(1] timel;
t{2] := time2;
obs[1] := obsi;
obs{2] := obs2;
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: array [1..2,3..4] of real;

: array [1..2,3..4] of vector;
: J_matrix;

: P_matrix;

dt[3]) := frame_time[time2] - frame_time[timel];

dti = 1.0/dt[3];

dt{2] := 0.6+dt[3];

dt[1] := -dt[2];

t2[1] := de[1]l#dti;

t£[2] := dt([2]=dti;

for time := 1 to 2 do
begin
Cos_az := Cos(attr[t[timel],obs[time],3]);
Cos_el := Cos(attr{t[time],obs[time],4]);
Sin_az := Sin(attr[t[time],obs[time],3]);

Sin_el := Sin(attr[t[time],obs[time],4]);

urho[time, 1]
urho[time, 2]
urho[time, 3]

partial_urho[time,3,1]
partial_urho(time,3,2]

:= Cos_el*Cos_az;

Cos_el*Sin_az;
Sin_el;

-Cos_el*Sin_az;
Cosg_el*Cos_az;

partial_urho[time,3,3] := 0.0;

partial_urho[time,4,1]
partial_urho(time,4,2]
partial_urho[time,4,3]

rmag2[time]

r_dot_urho[time] := 0.0
r_dot_part{time,3] := 0.0;
r_dot_part[time,4] := 0

-Sin_el*Cos_az;
-Sin_el*Sin_az;
Cos_el;

0.0;

.05

for 1 := 1 to block do

begin

rvec[time,i]

rmag2[time]

:= attr[t[time],obs[time],1]*urho(time,i] + Sxs[t[time],i];
:= rmag2(time] + Sqr(rvec[time,il);

r_dot_urho[time] := r_dot_urho[time] + rvec[time,i]*urho(time,i];
for atr := 3 to 4 do
r_dot_part[time,atr] := r_dot_part(time,atr]

end; {for i}

rmag3[time]

+ rvec[time,i]*partial_urho[time,atr,il;

Sqrt(rmag2[time})*rmag2[time];

mu_tacter[time,1] := musdt[1]*dt[2]/(2.0%rmag3[time]);

mu_factor[time,2] :
mu_factor[time,1]

3.0%#mu_factor[time,1]/rmag2({time];
1.0 - mu_factor[time,1];

end; {for time}

r2 := 0.0; v2
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:= 0.0;
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Nl
for i := 1 to block do ?
begin g
j := i + block; '?
statefi] := tf£[2])smu_factor[1i,1]*rvec[1,i] a.:
- tf[1]*mu_factor([2,1]*rvec[2,i]; ‘2‘
r2 := r2 + Sqr(statel[i]); -
state[j] := dti*(mu_factor[2,1]#rvec[2,i] hy,
- mu_factor[i,1)*rvec(i,i]); &
v2 := v2 + Sqr(state(jl); :;
Jmat[i,1] := t£{2]*(mu_fractor[1,1]l+urhol1,i] M
+ mu_factor[1,2]*r_dot_urho{1]*rvec[1,il); i
Jmat(i,2] := 0.0; "
Jmat[i,B] := -tf£[1]*(mu_factor[2,1]*urho[2,i] S
+ mu_factor[2,2]*r_dot_urho[2]*rvec(2,i]); %‘
Jmat[i,8] := 0.0; o
Jmat[j,1] := -dti*(mu_factor([1,1]+*urhol(1,i] ;:
+ mu_factor[1,2] *r_dot_urho[1l*rvecl[1,i]); i
Jmat[j,2] := 0.0; :
Jmat[j,5] := dti#(mu_factor[2,1]+urho[2,i] ;
+ mu_tactor[2,2]*r_dot_urho[2]*rvec[2,il); .
Jmatfj,8] := 0.0; "*
for atr := 3 to 4 do '}
begin :ﬁ
Jmat[i,atr] := attr(timel,obs1,1]*tf[2] "
*(mu_factor[1,1]*partial_urhol[1,atr,i] -
+ mu_factor[1,2]*#r_dot_part[1,atr]*rvec[1,il); 3
Jmat[i,atr+4] := -attr[time2,obs2,1]*tf[1] ;’
*(mu_factor(2,1)*partial _urho[2,atr,i] i
+ mu_factor[2,2]#r_dot_part[2,atr]l*rvec([2,i]); Q
Jmat[j,atr] := -attr[timel,obsi,1]+dti i
*(mu_factor[1,1]*partial _urho[1,atr,i] o
+ mu_factor[1,2]+r_dot_part[1,atrl*rvecf1,i]); "
Jmat (j,atr+4] := attr(time2,obs2,1]*dti ~;
*(mu_factor[2,1]l*partial_urho[2,atr,i]

+ mu_factor[2,2]*r_dot_part[2,atr]l*rvec(2,i]); s
end; {for atr} ‘
end; {for i} X
energy := v2/2.0 - mu/Sqrt(r2); !
rf := mu/(r2#Sqrt(r2)); -
for i := 1 to block do N

begin "&

j := i + block;

Emat[i] := state[i]*rt;
Emat[j] := state[jl;
end; {for i}

P

for i := 1 to nest do \;
for j := 1 to nterms do I
begin ;
J_R[i,j]1 := 0.0; t
WX
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[ ]
for k := 1 to nterms do .
J_R[i,j3 := J_R[i,j] + Jmat[i,kx)*Rvar(2,k,j]; phh
end; {tor j} ‘::
for i := 1 to nest do ':::
for j := 1 to nest do 'qd
begin .
Pmat([i,j] := 0.0; ]
for k := 1 to nterms do ] §
Pmat[i,j] := Pmat[i,j] + J_R[i,kI*Jmat(j,k]; e,
end; {for j} oy,
for j := 1 to nest do "::
begin
E_P[j] := 0.0; -
for k := 1 to nest do g'::
E_P[j] := E_P[j] + Emat[k)+Pmat[k,jl; o)
end; {for j} ::::
delta_energy := 0.0; )
for j := 1 to nest do
delta_energy := delta_energy + E_P[j]l*Emat[j]; :,.,
end; {Procedure Calculate_DP_Estimate} ,%'
(
Procedure Calculate_TP_Estimate(timel,obsi, .::'
time2,0bs?2, :l‘;
time3,obs3 : integer; -"
var state : state_vector; £w
var Pmat : P_matrix; %
var energy,delta_energy : real);
type N
vector = array [1..block] of real; .
var ‘
cluster,i,j,k,time,atr : integer; Y3
t,obs : array [1..3] of integer; :'.:;
Cos_az,Cos_el,Sin_az,Sin_el,r2,v2,xrf : real; f‘::.f
Emat ,E_P : state_vector; ,‘:n:
rmag2,rmag3,r_dot_urho : array [1..3] of real; i
r_dot_part : array [1..3,3..4] of real; -
mu_factor : array [1..3,1..2] of real; R
drho : vector; b
dt,tf : array [1..3] of real; }:
urho,rvec : array [1..3] of vector; o
partial_urho : array [1..3,3..4] of vector; e
Jmat,J_R : J_matrix; '.
begin by
t(1] := time1l; ¢[2] := time2; t[3] := time3;
obs[1] := obst; obs[2] := obs2; obs[3] := obs3; Q
dt[1] := frame_time[time2] - frame_time[timel]; \
dt[2] := frame_time[time3] - frame_time[time2]; :*
dt[3] := dt[1] + de[2]; »
t£[1] := -dt[2]/(dt[1]*dt[3]); T,
2%
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t£[2] := (dt[2]-dt[1])/(at(1]1=dt[2]);

t£[3] := date(1]/(de(2]+dt[3]);

for time := 1 to 3 do
begin
Cos_az := Cos(attr[t{time],obs[time]l,3]);
Cos_el := Cos(attr[t[time],obs[time],4]);
Sin_az := Sin(attr[t[time],obs{time],3]);
Sin_el := Sin(attr[t[time],obs[timel,4]);
urho[time,1] := Cos_el*Cos_az;
urho[time,2] := Cos_el*Sin_az;
urho[time,3] := Sin_el;
partial_urho[time,3,1] := -Cos_el*Sin_az;
partial_urho[time,3,2] : Cos_el*Cos_az;
partial_urho(time,3,3] : 0.0;
partial_urho[time,4,1] := -Sin_el*Cos_az;
partial_urho(time,4,2] := -Sin_el*Sin_az;
partial_urho[time,4,3) := Cos_el;
end; {for time}

r2 := 0.0;

v2 := 0.0;

for i := 1 to block do

R s -

begin
j := i + block;
state[i] := attr[time2,obs2,1])*urho[2,i] + Sxs[time2,il;

-
n-A -

r2 := r2 + Sqr(statefil);
drho[i) := tf[1)*urho(1,i]l + t£[2]*urho[2,i] + tf[3]*urhol[3,il;
state[j] := attr[time2,obs2,2]*urho(2,i] + attr[time2,obs2,1]*drholi]
+ Sxs[time2,j];
v2 := v2 + Sqr(state[jl);
Jmat{i,1] := urho[2,il;
Jmat[i, 2] := 0.0;
Jmat{i,3] := 0.0;
Jmat[i, 4] := attr[time2,obs2,1]*partial_urho(2,3,i];
Jmat[i,8] := 0.0;
Jmat[i,8] := 0.0;
Jmat[i,7] := attr(time2,obs2,1]*partial_urho[2,4,i];
Jmat[i,8] := 0.0;
Jmat[j,1] := drholil;
Jmat[j,2] := urhol2,il;
for atr := 3 to 4 do
begin
k := 3*=(atr - 2);
Jmat[j,k] := attr[time2,obs2,1]*tf[1]#partial_urho[1,atr,i];
Jmat{j,k+1] := (attr[time2,0bs2,2] + attr[time2,obs2,1]+t£[2])
spartial_urho(2,atr,il;
Jmat[j,k+2] := attrltime2,obs2,1]+*tf[3]#partial_urhol3,atr,i]};
end; {for atr}
end; {for i}
enexgy := v2/2.0 - mu/Sqrt(r2);

")
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rf := mu/(r2#Sqrt(r2));

for i := 1 to block do
begin
j = i + block;
Emat[i] := state[i]#rf;
Emat[j] := state(j];
end; {for i}

{Form state covariance matrix}

for i := 1 to nest do
for j := 1 to nterms do
begin

J_R[i,j] := 0.0;

for k := 1 to nterms do
J_R[i,3]

end; {for j}

for i := 1 to nest do
for j := 1 to nest do

begin

Pmat[i,j] := 0.0;

for X := 1 to nterms do
Pmat[i,j]

end; {for j}
for j := 1 to nest do

begin

E_P[j] := 0.0;

for X := 1 to nest do
E_P[j]

end; {for j}
delta_energy := 0.0;
for j := 1 to nest do

label 1;
type
pairs = record
timel,obsl,time2,0bs2 :
end; {record}
triples = recoxrd

timel,0bs1,time2,0bs2,time3,0bs83 :

metric
end; {record}
var

move
time,obs,atr,ntime,start,stop,
count,ocountl,ocount?,cluster,
missed_gates,pointi,point2,arc
delta,specific_energy

R
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:= J_R[i,j] + Imat[i,k]*Rvar[3,k,j];

:= Pmat[i,j] + J_R[i,k]*Jmat[j,k];

:= E_P[j] + Emat[k]*Pmat[k,j];

delta_energy := delta_energy + E_P[jl*Emat[j];
end; {Procedure Calculate_TP_Estimate}

Procedure Perform_Cluster_Initiation;

integer;

integer;
: real;

: boolean;

i integer;
! real;
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active : bvector;
estimates,gates : O_matrix;
index,back_index, incident : array [span] of ivector;
pointer : array [framel..-1] of ivector;
pair : array [framei..-1,1..clusters] of pairs;
triple : array [1..clusters] of triples;

Procedure Solve_QP(arcs : integer;
var best : bvector);
var
i : integer;
mincost : real;
solution : bvector;
Function Feasible : boolean;

label 1;
var
result : boolean;
time,obs : integer;
begin

result := true;
for time := framei to 0 do
for obs := 1 to nr_unassigned[time] do
it incident[time,obs] > 1 then
begin
result := false;
goto 1;
end; {if}
1: Feasible := result;
end; {Function Feasible}
Procedure Search(j : integer;
¢ : real);
var
k : integer;
d : real;
begin
for k := j+1 to arcs do
begin
solution[k] := false;
with triple[k] do
begin
Decrement (incident [timel,back_index[timel,obs1]]);
Decrement(incident [time2,back_index[time2,0bs2]]);
Decrement (incident [time3,back_index[time3,0bs3]]);
d := ¢ -~ metric;
end; {with}
if not Feasible then
Search(k,d)
else
if d < mincost then
begin
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best := solution; 30
mincost := d; ’
end; {if} "
solution[x] := true; o
vwith triple(k] do .54:.
begin -
Increment(incident[timel,back_index[timel,obs1]]); "
Increment (incident [time2,back_index[time2,0bs2]]); ::’,
Increment (incident [time3,back_index[time3,obs3]]); ';.-
end; {with} 0,
end; {for} :-:-
end; {Procedure Search} 9
begin 7
solution := best; :,:‘
mincost := big; '.:0
if not Feasible then ’o:
Search(0,0); :::t
end; {Procedure Solve_QP} a
begin L#
Start_Timer(5); {Timing} e
for time := framel to 0 do {Index unassigned observations} ‘:’
begin ~
obs := 0; o :
for count := 1 to nr_unassigned[time] do .
begin ..
repeat NG
Increment(obs);
back_index[time,obs] := 0; >
until not assigned{time,obs]; "
index[time,count] := obs; L
back,_index[time,obs] := count; by
end; {for count} Ly
end; {for time} 2
for start := framel to -1 do {Determine possible pairr™ i
begin '
obs := 0; *EN
for ocountl := 1 to nr_unassigned[start] do =3
begin ";
pointer[start,ocounti] := obs + 1; ey
Calculate_SP_Estimates(start,index[start,ocounti], i
estimates,gates); ;:f
for stop := start+1 to O do
begin r
for ocount2 := 1 to nr_unassigned[stop] do ;"
begin l’
missed_gates := 0; "
for atr := 1 to attributes do :z
begin »
'.::
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delta := Abs(estimates[stop,atr]
~ attr[stop,index[stop,ocount2],atr]);
it delta > gates[stop,atr] then
it (delta > 2.0*gates[stop,atr])
or (missed_gates >= max_missed) then
goto 1
else
Increment(missed_gates);
end; {for atr}
Calculate_DP_Estimate(start,index[start,ocounti],
stop, index[stop,ocount2],
specific_energy,delta);
if specific_energy <= max_energy + 3.0#Sqrt(delta) then

begin

Increment(obs);

with pair[start,obs] do
begin
timel := start;
ohsl := index[start,ocounti];
time2 := stop;
obs2 := index[stop,ocount2];
end; {with}

end; {if}

1: end; {for ocount2}

end; {for stop}
end; {for ocounti}
pointer[start,nr_unassigned[start]+1] := obs + 1;
pointer[start,0] := obs;
end; {for start}
{Form all possible triples and calculate metric; eliminate infeasible triples}
for time := framel to 0 do
for obs := 1 to nr_unassigned[time] do
incident [time,obs] := 0;
count := O;

cluster := nr_clusters[0];
for start := frameli to -2 do
begin
for ocounti := 1 to pointer[start,0] do
begin

stop := pair[start,ocountl].time2;
if stop <> 0 then
begin
obs := back_index[stop,pair[start,ccounti].obs2];
pointi := pointer(stop,obs];
point2 := pointer[stop,obs+1];
for ocount2 := pointl to point2-1 do

begin
Increment(cluster);

e
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Calculate_TP_Estimate(start,pair[start,ocount1].obsi, .-
stop,pair[stop,ocount2] .obsi, &

pairlstop,ocount2] .time2, 5&

pair[stop,ocount2] .obs2, n!

Sx[cluster] ,P[cluster], hb
specific_energy,delta); )

if specific_energy <= max_energy + 3.0*Sqrt(delta) then ot

begin ]

Increment(count); T

nr_missing[cluster] := 0; el
with triple[count] do <
begin ‘“
timel = start; MY
obs1 = pair[start,ocount1].obsi; e,
time2 := stop; ﬁﬂ'
obs2 = pair([stop,ocount2].obsi; o,
time3 := pair[stop,ocount2].time2; ;
obs3 = pair[stop,ocount2].obs2; 5
metric := specific_energy; gw

Increment (incident[timel,back_index[time1,o0bs1]]); s

Increment (incident[time2,back_index[time2,0bs2]]1); (f¥

Increment (incident[time3,back_index[time3,obs3]]); y

active[count] := true; X
end; {with} Y
end; {if} ’L
end; {for ocount2} f:
end; {if} N
end; {for ocounti} AN
end; {for start} £

{Solve remaining quadratic program using implicit enumeration}
Solve_QP(count,active);
cluster := nr_clusters[0];
move := false;
for arc := 1 to count do
if active[arc] then

4

AT
Do T, T

begin :
Increment{cluster); €
nr_missing[cluster] := 0; o)
if move then -:,
begin e
Sx[cluster] := Sx[nr_clusters[~1]+arc]; F o
Plcluster] := P[nr_clusters[-1]+arc]; ;'
end; {if move)} o
with triplelarc] do "
begin t:;
assigned[timel,obs1] := true; :}.
Decrement(nr_unassigned[timel]); H$
observation[timel,cluster] := obsi; ;‘
assigned[time2,obs2] := true; -
)
u:‘
]
N
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Decrement(nr_unassigied[time2]);
observation[time2,cluster] := obs2;
assigned(time3,obs3] := true;
Decrement{nr_unassigned{time3]);
observation[time3,cluster] := obs3;
for time := timel to 0 do

begin

status[time,cluster] := time2 - 1;

Increment (nr_clusters[timel]);

Increment (nr_active[time]);

119

it (time <> timel) and (time <> time2) and (time <> time3) then

observation[time,cluster] := 0;
end; {for time}
end; {with}
end {if}
else

move := true;
Stop_Timer(5);
end; {Procedure Perform_Cluster_Initiation}

{Timing}

{*## Outputs t**####t##t####***#**#****#*####*#***#***##t####************t***}

Procedure Echo_Cluster_Assignment(time : integer);

var
cluster,count : integer;

begin

if frame_time[time] >= 0.0 then
begin
write(tcldata,frame_time[time]:7:1);
cluster := 0;
for count := 1 to nr_activeltime] do

repeat

Increment(cluster);
if status[time,cluster] < O then

Write(tcldata,targets[time,observation{time,cluster]]:4)
else
Write(tcldata,’ );
until status[time,cluster] < 0;
Writeln(tcldata);
end; {if}
end; {Procedure Echo_Cluster_Assignment}

Procedure Output_Cluster_Residuals;

var
count,cluster,target,i,j : integer;
position,velocity ! real;
Sxt : array [1..clusters] of state_vector;
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"
, begin A
b {Input target states for current observation frame}
?‘ repeat N
: Sxt[current_target.number] := current_target.values;
{ Read(tsdata,current_target); v
‘ until (current_target.time > frame_time[0]);
{Compare estimated to true target states} ]
cluster := 0; A
v for count := 1 to nr_active[0] do '
? repeat :
v Increment(cluster); N
£ if status[time,cluster] < O then '
- begin 1
| target := targets[0,observation[0,cluster]]; %
: pesition := 0.0; g
N velocity := 0.0; Wi
if target > O then )
begin
for i := 1 to block do Y
N begin L
¥ j =1 + block;
N position := position + Sqr(Sx[cluster,i] - Sxt[target,il); \
- velocity := velocity + Sqr(Sx[cluster,j] - Sxt[target,jl); -
A’ end; {for i}
', position := Sqrt(position);
J velocity := Sqrt(velocity);
L end; {if target > 0} 9
'

Write(csdata,cluster:4,target:4,frame_time[0]:7:1);
Writeln(csdata,position:11:1,velocity:7:1); K
end; {if status < 0}
until status[0,cluster] < 0; :
end; {Procedure Output_Cluster_Residuals}

{*#+ Main Program sxssskbishmkddhskbbhhdhihbtbt ik kahahhikrbissbrhnrhhhsstrss} "

P
-

BEGIN

e R e L T S 3
t

2 {** Perform Initializations #*#*}

o {ressnersarnhrcnsnsshnhbsensnnl .
) Init_Times; {Timing} .
3 Start_Timer(0); {Timing} .

Init_Program;
Initialize_RK78;
: Initialize_Estimation;
3 Initialize_Clustering;

-
- .
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{** Perform sequential clustering #+*}
{#rrnrnnsasrsrsrsaseessrhhhesrsseibs}
repeat
Input_Data;
Forecast;
Calculate_Metrics;
Perform_Cluster_Assignment;
Update_Estimates;
Perform_Cluster_lInitiation;
Echo_Cluster_Assignment(frame1);
Output_Cluster_Residuals;
until EOI;
e T T T T Ty
{#* End sequential clustering *+}
e P P T T Ty S
for time := framei+l to 0 do
Echo_Cluster_Assignment(time);
Stop_Timer(0);
Report_Times(6);

END.
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{Timing}
{Timing}
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