
= TC FILE Copy

Productivity Engineering in the UNtIQ Environment

0

f Performance Studies of Dynamic Load Balancing

___ in Distributed Systems

Technical Report

S. L. Graham
Principal Investigator

(415) 642-2059

"The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either exprewed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government."

Contract No. N00039-84-C-0089

August 7, 1984- August 6, 1987 D T IC a

E -ECTE

Arpa Order No. 4871 J 2

tUNIX is a trademark of AT&T Bell Laboratories

.pprod for po i q
Diabb I~~o

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5, MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Regents of the Universit (If applicable)
of California SPAWAR

6C ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Berkeley, California 94720 Space and Naval Warfare Systems CommandWashington, DC 20363-5100

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA I

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

* PERFORMANCE STUDIES OF DYNAMIC LOAD BALANCING IN DISTRIBUTED SYSTEMS

12. PERSONAL AUTHOR(S)
* Songnian Zhou
13a. TYPE OF REPORT 13b TIME COVERED 14. rlATV rc REPORT (Year, Month, Day) 1'5 PAGE COUNT
technical I FROM TO * October 1987 i l* 1

16 SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Enclosed in paper.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
*UNCLASSIFIED/JNLIMITED 0 SAME AS RPT. ODTIC USERS unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

DO FORM 1473, 4 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

WIM

Performance Studies

of Dynamic Load Balancing

in Distributed Systems

Songnian Zhou

p

Report No. UCB/CSD 87/376

October 1987
PROGRES Report No. 87.6

Computer Science Division (EECS)
University of California
Berkeley, California 94720

~|

Perform ance Studies of Dynamic

Load Balancing in Distributed Systems i

Copyright Q 1987

Songnian Zhou

p V

Performance Studies of Dynamic
Load Balancing in Distributed Systems

Songnian Zhou
- /

"Absf ract

Distributed systems are often characterized by uneven loads on hosts ad
other resources. In this thesis, the prob ems concerning dynamic load balanci g
in loosely-coupled distributed systems ale studied using trace-driven simulatcn,
implementation, and measurement. Iiformation about job CPU and -171
demands is collected from three producti pn systems and used as input to a simu-
lator that includes a representative er'U scheduling policy and considers the
message exchange and job transfer costs explicitly. A prototype load balancer is
implemented in the Berkeley UNIX and Sun/UNIX environments, and the
results of a large number of measurement experiments performed on six worksta-
tions are presented.

The quality of two families of load indices, one based on resource queue
length, the other on resource utilization, is evaluated in the context of dynamic
load balancing. The performances of seven algorithms using different load infor-
mation exchange and job placement strategies are compared. The factors that
affect load balancing performance, and the impacts of load balancing on indivi-
dual hosts and on each type of job are also quantitatively investigated. { '

Load balancing is found to reduce significantly the mean and standard devi-
ation of job response times, especially under heavy and/or unbalanced workload.
The performance is strongly dependent upon the load index; queue-length-based
indices perform better. Algorithms based on periodic or non-periodic load infor-
mation exchange perform similarly. Among the periodic algorithms, the central-
ized ones cut down the overhead, hence scale better. The reduction of the mean
response time increases with the number of hosts, but levels off beyond a few
tens of hosts. Load balancing is still very effective when a large portion of the
workload is immobile. All hosts, even those with light loads, benefit from load
balancing. Similarly, all types of jobs see improvements in their response times,
with larger jobs benefiting more. System instability is possible, but can be easily
avoided. Many of the above results are likely to be of general applicability due
to the excellent agreement among the simulation and measurement findings.
Our implementation work shows that transparent, flexible load balancing can be
achieved at low cost, without modifying the system kernel or the application N
programs.

I Vu I'~ . '

Acknowledgements

Ancient poets and philosophers in China liked to regard human lives as
dreams. Sometimes, dreams do come true, as in my pursuit of this degree. It
would not have been possible, however, without the help and encouragement of
numerous people.

I wish to express my deep gratitude to Domenico Ferrari, my research advi-
sor, for teaching me not only how to conduct scientific research, but also how to
be a researcher. During my graduate studies, Domenico has always encouraged
me to explore new problems, and has always been ready to provide guidance in
my wondering. Alan Jay Smith made many excellent suggestions for this disser-
tation. His influence on the approach and techniques used in this research is evi-
dent. Ronald Wolff put my work into a queueing network perspective, and
made a number of insightful observations.

The research environment at Berkeley was highly stimulating. My
numerous discussions with colleagues in the Progres group were very helpful in
the formulation, solution, and presentation of the research problems. David
Anderson, Riccardo Gusella, Joseph Pasquale, and Stuart Sechrest offered valu-
able comments on my work. Venkat Rangan and Harry Rubin made their load
balancing C shell available to me as the basis of the experimental load balancer.
Keith Sklower was most helpful in my implementation work in the Sun/UNIX
environment.

This work was partially sponsored by the Defense Advanced Research Pro-
ject Agency (DoD), Arpa Order No. 4871, monitored by Space and Naval War-
fare Systems Command under Contract No. N00039-84-C-0089, and by the
National Science Foundation under grant DMC-8503575. The Bell traces were
made available by Will Leland of the Bell Communications Laboratory. Dennis
Hall sponsored my trace collection efforts at the Lawrence Berkeley Laboratory.

Throughout the past trying years, my wife, Bing Wu, has provided constant
support and encouragement.

I dedicate this dissertation to my parents, Arluo Zhou and Reiqing Gu, who
taught me so many precious lessons in life. To them I owe eternal gratitude.

Table of Contents

A cknowledgem ents .. i

Table of Contents ... ii

List of Figures .. v

List of Tables ... vii

Chapter 1: Introduction .. 1

1.1. Load Balancing: the M otivation. ... I
1.2, Research Problems .. 3
1.3. The M ain Result of the Thesis .. 5
1.4. Organization of the Dissertation ... 5

Chapter 2: Load Balancing: A Survey ... 6

2.1. Early work: Static Algorithms .. 7
2.2. Analytic M odeling and Sim ulation 8
2.3. Trace-driven Sim ulation ... 11
2.4. Im plem entation .. 11
2.5. M easurem ent .. 12
2.8. Load Index .. 13
2.7. Sum m ary ... 14

Chapter 3: Trace-Driven Sim ulation ... 15

3.1. Overview ... 15
3.2. Experim ent Design .. 16

3.2.1. The Job Trace .. 16 For

3.2.2. M odel Structure ... 17 0
3.2.3. Overhead Cost Assumptions ... 19
3.2.4. Load and Perform ance M etrics ... 20 - -

3.3. Load Balancing Algorithms ... 21
3.4. Sim ulation Results 25

3.4.1. Com parison of the Algorithms .. 25)--

st ial
OCWYo

COP%
itSPCTf

. V U , 1K n U3NWVVVVWVWVW, .VN%-4V, VVV1,VU WNW

3.4.2. Effect of System Load ... 30
3.4.3. Parameter Sensitivity and Adaptive Load Balancing 30

3.4.4. Effect of Immobile Jobs 36

3.4.5. Effect of Overhead Costs ... 36

3.4.6. Impact on Individual Hosts ... 40

3.4.7. Impact on Each Job Class ... 45

3.4.8. System Instability ... 48

3. 5.Summ ary ... 51

Chapter 4: M easurement Studies .. 53

4.1. Overview ... 53

4.2. Design and Implementation .. 54

4.2.1. System Basics .. . 55

4.2.2. Algorithms ... 58

4.2.3. Overhead Assessment .. 59

4.3. Experiment Design
4.3.1. Perform ance Index .. 60

4.3.2. Experim ental Factors .. 61

4.3.3. Load Index ... 62

4.3.4. W orkload .. 63

4.4. Comparison of Load Indices .. 65

4.4.1. Canonical W orkload ... 65

4.4.2. M oderate, Balanced W orkload .. 67

4.5. Comparison of Algorithms .. 68

4.5.1. Basic Comparisons .. 68

4.5.2. Adjustable Parameters ... 69
4.6. Performance under Different W orkloads .. 72

4.6.1. Different Intensities .. 72
4.6.2. Different M ubilities ... 75

4.7. Effects on Individual Hosts and Job Types 76
4.7.1. Effects on Individual Hosts ... 77
4.7.2. Effects on Each Type of Jobs .. 81

4.8. Summary ... 81

Chapter 5: Load Balancing in Other Environments 84

5.1. Overview ... 84

5.2. W orkload Characterization ... 84
6.3. Simulations Driven by the Bell Traces .. 88

5.3.1. Comparison of the Algorithms .. 89
5.3.2. Effect of Immobile Jobs ... 91

iv

5.3.3. Impact on Individual Hosts 91
5.3.4. Impact on Each Job Class...904

5.4. Simulations Driven by the LBL Traces 95
5.5. Summary ... 96

Chapter 6: Final Remarks... 99

6.1. Conclusions ... 99
6.2. Future Work... 101

Bibliography ... 104

I

Ie

List of Figures

Figure 3.1. Structure of the system model used in the simulation 19
Figure 3.2a. Average response times with different system sizes (7-49) 26
Figure 3.2b. Average response times with different system sizes (1-7) 27

Figure 3.3. Average response times under different load levels 31

Figure 3.4. Effect of adjustable parameters, GLOBAL 32
Figure 3.5. Effect of adjustable parameters, LOWEST 33
Figure 3.5a Effect of adjustable parameters, RESERVE 34
Figure 3.6. Effect of immobile jobs ... 37
Figure 3.7. Effect of message exchange costs .. 38
Figure 3.8. Effect of job transfer costs ... 39
Figure 3.9. Host CPU utilizations of a 14 host System 41
Figure 3.10. Mean response times of individual hosts 42
Figure 3.11. Standard deviation of response times of individual hosts 43
Figure 3.12. Average queue lengths of individual hosts 44

Figure 3.13. The loads on sample hosts as a function of time 45
Figure 3.14. Average response times for several classes of jobs 46
Figure 3.15. Average response times for several sizes of jobs 47
Figure 3.16. Percentage of wrong job placements ... 49
Figure 3.17. Distribution of the number of h',sts with the least load. 51

Figure 4.1. Structure of the load balancer ... 57

Figure 4.2. Mean response time as a function of P .. 70
Figure 4.3. Mean response time as a function of T 71
Figure 4.4. Mean response time as a function of L. 73 %

Figure 4.5. The influence of immobile jobs, mean response time 76
Figure 4.6. The influence of immobile jobs: standard deviation 77
Figure 4.7. Loads on hosts, with various immobility factors 78
Figure 4.8a. The load on each host as a function of time, NoLB 79
Figure 4.8b. The load on each host as a function of time, GLOBAL 80

Figure 5.1. Distributions of jobs by their CPU demands 86
Figure 5.2. Cumulative distributions of job CPU time 88

Figure 5.3. Distributions of jobs by their file 1/0 .. 89
Figure 5.4. Average response times with different system sizes (Bell) 90

vi

Figure 5.5. Effect of immobile jobs (Bel) ... 92

Figure 5.6. Host CPU utilizations of a 14 host system (Bell) 93
Figure 5.7. Mean response times of individual hosts (Bell) 03
Figure 5.8. Standard deviation of response times of individual.J..ts (Bell).. 93

Figure 5.9. Average queue lengths of individual hosts (Bell) 03

Figure 5.10. Average response times for several classes of jobs (Bell) 94

Figure 5.11. Average response times for several sizes of jobs (Bell) 95

Figure 5.12. Average response times with different system sizes (LBL) 97

p..

p.

'C

vii

List of Tables

Table 1.1. A snapshot of load condition at Berkeley 2

Table 3.1. Basic statistics of the Berkeley data. ... 18

Table 3.2. Symbols used in Chapters 3 and 4, and their meanings 24
Table 3.3. Optimal parameter values under different system load levels 35

Table 4.1. Load balancing overhead measurements 60
Table 4.2. Experimental factors and their levels .. 61
Table 4.3. Commands used in scripts and their eligibilities 54

Table 4.4. Characterization of the workload levels .. 64
Table 4.5. Measured performance with various indices (<2H, 2M, 2L>) 66
Table 4.6. Measured performance with various indices (<6M>) 67
Table 4.7. Performance of the algorithms .. 68

Table 4.8. Performance of five hosts with heavy loads 74
Table 4.9. Performance of six hosts with moderate loads 74
Table 4.10. Performance of six hosts with light loads 74

Table 4.11. Average response time of each command type 82

Table 5.1. Basic Statistics of the Berkeley Data .. 87
Table 5.2. Basic Statistics of the Bell Data .. 87
Table 5.3. Basic Statistics of the LBL Data ... 87

'.5

S

Chapter 1

Introduction

1.1. Load Balancing: the Motivation

Distributed computer systems are becoming increasingly available because
of the rapid decrease in hardware costs and the advances in computer network-
ing technologies. An important advantage of distributed systems is the potential
for resource sharing, to provide the users with a rich collection of resources that
are usually unavailable or highly contended for in stand-alone systems. Exam-
pies of sharable resources are files, computing power, and printers. It is fre-
quently observed that, in a computing environment with a number of hosts con-
nected by networks, the hosts are often loaded very differently. Even if the
hosts are evenly loaded over long periods, such as half an hour or more, the
instantaneous loads are likely to be fluctuating conctantlyt. Table 1.1 shows a 'i

snapshot of the loading conditions of some of the hosts in the EECS Department A'
of the University of California, Berkeley. The hosts include VAX-II 780, 750,
785, and 8600 models running Berkeley UNIX 4.3 BSD:. The numbers on the
right provide a rough measure of the numbers of active jobs on the hosts, aver-
aged over the last 1, 5 and 15 minutes (the UNIX load averages). As can be
easily observed, some hosts are idle or almost idle, while others have many jobs
queued up and competing for resources.

Livny and Melman pointed out, using simple queueing analysis and assum-
ing job arrivals following a Poisson pattern, that in a multi-host system the pro-
bability of one of the hosts being idle while some other host has multiple jobs
queued up can be very high [Livny85]. Such imbalances in system load suggest

f Such observations, of course, are dependen.t on the system and the applications being run.
For instance, in a main-frame batch data processing environment, the loads might be even
over long periods of time. However, in a workstation-rich environment, which is becoming
more and more popular, the probability of a majority of the stations being idle or almost idle
is very high [Theimer85l.

f VAX is a trademark of Digital Equipment Corporation. UNIX is a trademark of AT&T
Bell Laboratories.

%|

2Y

Table 1.1. A Snapshot of Load Condition at Berkeley.

March 13th (Friday), 11:30 am, 1987, at Berkeley...

% ruptime

name status d+h:m users on load averages

cad up 5+14:56, 12 users, load 4.44, 5.21, 5.87
cartan up 1+18:57, 4 users, load 2.82, 2.48, 2.80
cgi up 21+13:16, 10 users, load 0.95, 0.94, 0.96
cogsci up 35+13:08, 5 users, load 0.26, 0.29, 0.48

cory up 2+02:44, 20 users load 7.11, 7.74, 8.11
csgw up 2+22:21, 0 users, load 0.00, 0.00, 0.01
degas down 0:55

ernie up 3:23, 55 users, load 10.88, 11.89, 11.37
eros up 13:32, 29 users, load 8.41, 6.70, 6.78
esvax up 4+04:49, 27 users, load 1.69, 1.30, 1.08
ji up 77+19:55, 11 users, load 0.59, 0.72, 0.66
matisse up 1+17:28, 0 users, load 0.00, 0.00, 0.01
medea up 2:06, 9 users, load 5.32, 5.02, 4.54
miro up 27+01:41, 4 users, load 2.56, 3.00, 3.34
monet up 10+17:07, 3 users, load 0.00, 0.04, 0.08
nova up 34+20:07, 0 users, load 0.11, 0.10, 0.10
okeeffe up 4+23:05, 7 users, load 0.00, 0.01, 0.01
renoir down 0:54
ucbarpa up 6+00:31, 28 users, load 8.40, 9.13, 9.05
ucbvax up 8+02:02, 1 user, load 2.18, 2.31, 2.62
vangogh up 2:55, 1 user, load 0.12, 0.11, 0.22

that performance can be improved by transferring jobs from the currently
heavily loaded hosts to the lightly loaded ones. This form of computing power
sharing, with the purpose of improving the performance of a distributed system
by redistributing the workload among the available hosts, is commonly called
load balancing, or load sharing.

t The term load balancing has sometimes been used to imply the objective of equalizing the
loads of the hosts, whereas load sharing simply means a redistribution of the workload. We
will use the term load balancing in the rest of this dissertation, but without the stronger con-
notation. The potential of load balancing in improving performance has also been pointed 6
out by Wolff [Wolff87l.

3

1.2. Research Problems

The sharing of computing resources in a centralized system is implicit --- all
user jobs are submitted to the single CPU, and they share the CPU according to
some CPU scheduling policy. In a distributed system, however, jobs usually
arrive at the various hosts independently, causing uneven loads on the hosts. To
balance the loads effectively, a number of research problems have to be solved.
Listed below are some of them.

1) How much performance improvement can be expected from load balanc-
ing?

Since load and job information may need to be exchanged among the hosts
to facilitate job transfer decisions, and jobs need to be transferred, load
balancing will cause overhead. Thus, there exists a tradeoff between cost
and benefit. The answer to this question depends on a number of factors,
such as the system overhead, the workload, and the algorithm used for load
balancing.

2) What algorithm to use?

Different strategies, or algorithms, can be used to exchange load and job
information, to decide which jobs should be transferred to remote hosts for
execution, and to which hosts such jobs should be sent. Different load
balancing algorithms are likely to produce varying performance. The qual-
ity of an algorithm is also dependent on the computing environment. It is
impossible to have one algorithm that is the "best" in all circumstances.
Hence, the characteristics of possible algorithms need to be understood.

3) What load index to use?

Generally speaking, jobs should be transferred from hosts with heavy load
to those with light load. However, this brings up the more fundamental
issue of how the load of a host should be measured, or what load index
should be used.

4) How does the system' workload affect load balancing performance?

Conceivably, the levels of congestion on the resources, the degree of the
workload unbalances, and those jobs that have to be executed locally all
have strong influence on performance. Moreover, the distributions of the
jobs' resource consumptions, and the job arrival pattern probably also have
a bearing on the performance. Thus, finding that load balancing is able to
improve performance on one workload does not mean that it is generally
beneficial. The interactions between workload and performance under load
balancing should be studied.

5) WhTat is the impact of load balancing on system behavior?

While the performance of hosts with heavy load may be improved by load
balancing, this may be achieved at the expense of those with light load. A

4

similar situation may arise among different types of jobs. Such uneven
effects may be undesirable. In a distributed system, the system state infor-
mation is also scattered at many locations. Hence, the information used in
load balancing is likely to be out of date, and there exists the possibility of
system instability when jobs are being transferred around.

In this dissertation, we seek answers to the above questions, and conduct experi-
ments to quantitatively assess the performance potential of load balancing.

Substantial work has been done on load balancing in the past years, taking
on a variety of forms. The general problem may be studied in different types of
computing environments, using different strategies, and at different levels. The
system may be loosely-coupled, with a number of functionally complete comput-
ers connected by one or more networks through which messages may be
transmitted and remote resources accessed, or may be tightly-coupled, with
several CPU-memory combinations connected by a bus to shared memory and
secondary storage. The resources to be shared may be of the same type and
capacity (homogeneous system), or of different types and/or capacities (hetero-
geneous system). The algorithm used for load balancing may require no infor-
mation, or only information about the individual jobs (static algorithm), or may
make job transfer decisions based on the current load situation (dynamic algo-
rithm). The algorithm may treat the resources as cooperating equals (distri-
buted algorithm), or employ some centralized mechanism to exchange load infor-
mation and/or make job placement decisions (centralized algorithm). The
transfer of a job may be initiated by the originating host (source-initiative algo-
rithm), or by the target host (server-initiative algorithm). The unit of execution
that is to be redistributed may range from complete jobs submitted by users, or
individual processes, or even smaller program modules. The units may also be
components of parallel combutations with specific communication requirements.
Finally, the transfer of a job may be restricted to be done prior to the start of its
execution (initial job placement), or may also be allowed during its execution
(process migration).

Obviously, with this myriad of available choices of the subdomains for load
balancing research, it is impossible to study them all in one single research effort.
To make the work manageable, we limited the scope of our research to loosely-
coupled distributed systems. The jobs were assumed to be sequential jobs as
opposed to parallel programs with multiple modules executing on a number of
hosts. Job transfers were restricted to be at the time of each job's arrival. Once
a job starts executing on a host, it will not be considered for migration. We
believe that the problem domain we address in this research represents the basic
one in load balancing, an~d the results from this research may be used as the
foundations for future explorations into other areas. At the end of this disserta-
tion, we will discuss the extensibility of our work, and point out directions for
future research.

p .

I ' , , , U ""

5

1.3. The Main Result of the Thesis

While a large number of issues are studied, and the results are multi-
dimensional, the main result of this research can be summarized as follows:

Simple dynamic load balancing algorithms using initial job placement
alone can improve performance significantly, without introducing
system instability.

1.4. Organization of the Dissertation

The approach used for this research is a combination of trace-driven simula-
tion and measurement based on an experimental implementation. Traces of job
records with job arrival times and resource consumptions were collected from
production a system, and used to drive a simulator that implements a number of
algorithms in a loosely-coupled distributed system environment. Guided by the
results of the simulation studies, an experimental load balancer was constructed
in an environment of diskless workstations with file servers, and measurements
were conducted using artificial workloads. The measurements verified many
aspects of the simulation results, and also allowed us to study a number of issues
unsuitable for simulation. With added confidence in simulation, job traces were
collected from other systems, and more simulation experiments were conducted
in an effort to extend the results, and to demonstrate their applicability in other
computing environments.

The organization of this dissertation reflects the stages of our research
effort, and the deepening and expansion of our results. In Chapter 2, we conduct
a comprehensive survey of the research on load balancing done prior and con-
current to our work. Chapter 3 discusses our simulation studies. The design
and implementation of our load balancer, as well as the measurement experi-
ments performed on it, are presented in Chapter 4. Comparative studies in
other computing environments are discussed in Chapter 5. Finally, the major
results of our work are summarized in Chapter 6, and future directions of
research are discussed.

11111 W il

Chapter 2

Load Balancing Research: A Survey

As an area of research, load balancing has received considerable attention
since the early days of distributed systems in the 1970s. A sizable body of litera-
ture has accumulated, consisting of studies based on a number of different
assumptions about the types of computing environment and workload, as well as
the performance optimization objectives. In this chapter, we survey research on
load balancing to date, in order to provide a comprehensive, though not all-
encompassing, view of the field, and to put our work in perspective.

There are several ways to organize such a survey. To classify the various
contributions, we can use the type of computing environment (e.g., a multipro-
cessor or a network of independent hosts), or the type(s) of hosts (homogeneous
or heterogeneous, or, in queueing theory terminology, symmetric or asymmetric).
A survey can also be organized according to the way a job is transferred: initial
job placement versus process migration, or to the party that initiates a job
transfer: source-initiative versus server-initiative. A combination of the above
classifications may also be used. A close look at the literature, however, reveals
an evolution in the approach and solution techniques used. The earlier work
mainly studied static algorithms using mathematical programming and proba-
bilistic methods. Analytic solutions of queueing network models and simulation
were then introduced to study both static and dynamic algorithms. Trace-
driven simulation technique has only recently been adopted. A number of load
balancing systems have been implemented, but few measurement studies on
them have been conducted.

We will follow the evolution in the approach, and use, in our survey, the
last of the classification methods mentioned above. Although we are mostly
interested in performance issues in load balancing, this survey is intended for
load balancing in general, hence design and implementation work will also be
discussed. In the following sections, each approach mentioned above will be dis-
cussed in detail, and the existing work surveyed. This is followed by a survey of
the load indices that have been used.

q I

7

2.1. Early Work: Static Algorithms

The algorithm adopted for load balancing is closely related to the type and
amount of load and job information assumed to be known to the decision-
making module(s). In static load balancing, no dynamic load information is
used, and the assignments of the jobs to the processing hosts are made a priori
using job information (e.g., arrival time, and amounts of resources needed), or
probabilistically. Static balancing of workloads with user accounts has been IL
attempted by system administrators for a long time. User accounts are assigned
to the available machines in such a way that the workload generated by the
users is balanced in the long run. Such a method is simple and potentially
effective, but is severely limited by administrative considerations (e.g., the stu-
dents in one class need to be assigned to the same machine), and often results in
situations in which some of the machines are heavily congested, while others stay
almost idle (refer to Table 1.1). Periodic reassignments of the user accounts may
also be necessary as the user demands change.

Static load balancing may be done at a finer level, that is, at the job level.
Ni and Abani proposed a random splitting algorithm that computes a routing
probability matrix and distributes the arriving jobs among all the hosts accord-
ing to the probabilities in the matrix [Ni8la]. Assuming the jobs' arrival times
and their resource consumption patterns are known in advance, this algorithm
attempts to minimize the average response time of all the jobs. Due to the non-
deterministic nature of the algorithm, temporal congestions may develop in some
hosts. Attempts to avoid such congestions lead to cyclic splitting algorithms
that distribute incoming jobs to the available servers according to some cyclic
schedule [Agrawala8l] [Yum8l].

Hua considered a static heuristic for job scheduling that attempts to balance
the I/O loads as well as the CPU loads of the hosts, and cluster interacting
processes on the same host to reduce communication overhead [Hua85]. The
heuristic consists of two phases. In the first phase, an initial allocation of the
jobs is determined as a starting point for the second phase, in which successive
improvements are made using an iterative exchange method.

A different load balancing problem is that of task assignment in a distri-
buted system. A program is viewed as a collection of modules that require
different types of resources, and communicate among themselves sequentially -

the output of one module is sent as input to another module. No two modules,
however, are to execute in parallel. The computing environment is assumed to
be a collection of heterogeneous processors. The execution cost of each module
on each of the processors is assumed to be known, so is the communication cost
between each pair of the modules if placed on two different processors. The
problem is to place the modules on the processors so that the total execution and
inter-module communication cost of the job is minimized.

- K X

Stone studied the case of two homogeneous processors by transforming it
into a network flow maximization problem [Stone77]. An optimal module place-
ment scheme corresponds to a minimum cutset of a network, which can be
efficiently computed using the Ford-Fulkerson method or one of its derivatives.
The general N processor assignment can be similarly formulated, but no efficient
solution method is known.

Stone's solution of the two-processor static module assignment problem has
been extended in several directions. In [Stone78], a critical load factor is shown
to exist in a two-processor system such that, when the load factor for a module
crosses its critical value due a change in the processor's load, its optimal assign-
ment shifts from one processor to the other. The same problem with a memory
constraint on one of the two processors is studied in [Rao79]. Bokhari studied
the dynamic reassignment of program modules in a two-processor system based
on the observation of the "phased execution" of a program [Bokhari79]. In addi-
tion to the execution and communication costs, the relocation and memory
residency costs of the modules are considered. The algorithm is still static, how-
ever, because the reassignments are calculated before the execution starts.
Despite some attempts to extend the results above, only the case of two proces-
sor systems has been solved so far.

The work on static load balancing generated considerable interest in load
balancing research, but suffered the following three drawbacks.

1) Due to their static nature, static algorithms cannot respond to short-term
fluctuations in a workload. As a result, the performance improvement
potential of load balancing is not fully realized, as the loads of the hosts
may be seriously unbalanced at times, although the loads over a long period
is balanced.

2) They often assume too much job information to be implementable. The
arrival time and execution cost of each job or module may be needed to
compute the optimal placement schedule.

3) Even when the information is available, intensive computation may be
involved in obtaining the optimum schedule.

These drawbacks led to the research on dynamic load balancing, in which
the current system load is considered in determining job placements.

2.2. Analytic Modeling and Simulation 09
Because of the drawbacks of static algorithms mentioned above, much of

the interest in load balancing research has shifted to dynamic algorithms that
consider the current load conditions in making job transfer decisions. A large
number of algorithms have been proposed, mostly heuristic in nature, as the
optimum solution often requires future knowledge and is computationally inten-
sive. Since it is impossible to survey all of them, we will discuss some of the

. S .5. -. 5-.

representative ones in the following sections.

The most widely used approach for studying dynamic algorithms is analytic
modeling and simulation. For analytic modeling, the computer system is
modeled as a queueing network with job arrivals and their resource consump-
tions following certain probabilistic patterns. Queueing network solution tech-
niques are used to compute performance measures [Chow77) IChow79]
[Eager86a] [Eager86b] [Lee86] [Wang85]. Due to the limitations of the solution
techniques, simulation is often resorted to for approximate solutions IHsu3I
[Livny82] [Ni85] [Stankovic84].

Livny and Melman point out that, in a system of multiple M/M/i servers,
the probability of some server being idle, while some other server has multiple
jobs queued up (idle-waiting state) can be very high; hence, load balancing is
likely to improve performance (Livny82]. Three practical algorithms are pro-
posed and studied using simulation. However, the results are strongly affected
by the unreasonably high communication channel utilization caused by the
extremely small job sizes (the mean CPU time is 30 milliseconds). Empirical
research has shown that the network load due to load balancing is not likely to
saturate a local area network like an Ethernet [Lazowska861.

Eager, Lazowska and Zahorjan studied three dynamic algorithms
[Eager86b]. When a job arrives at a host with a load above a given threshold,
either the job is sent to a randomly-selected host, or a few of the remote hosts
are probed, and the job is sent to a host among the probed ones that has a light
load. The system is modeled as multiple M/M/1 servers connected by a net-
work. Not only are the hosts assumed to be homogeneous (with the same pro-
cessing rate), but the arrival rate and mean service time of the jobs at each host
are also assumed to be the same. While the job transfer cost is considered (in
terms of CPU time spent), the cost of exchanging load information is ignored.
To solve the model, an approximate analytic method is used that is shown to be
asymptotically accurate with regard to the number of hosts. The authors con-
clude that fairly simple algorithms can improve the average response time
significantly, while more complicated ones are not likely to provide much further
benefit. In another paper, the same authors compare source-initiative and
server-initiative algorithms, and point out that, with initial job placement alone,
the former class of algorithms offer better performance [Eager86a]. If the system
is under very heavy load, and the cost of migrating an executing job is not much
higher than that of transferring an arriving job, a server-initiative algorithm
may perform well. A similar server-initiative algorithm without any assumptions
about the network's topology is analyzed by Ni et al. [Ni851.

Since collecting load information used by a dynamic algorithm incurs over-
head, the algorithm may have to use out-of-date information in job placement
decisions. This may cause system instability. Algorithms trying to avoid or

I
10

reduce instability have been proposed, mainly using some randomization scheme
to avoid multiple source hosts selecting the same host for job transfer. Hsu and
Liu proposed algorithms in which the destination host is selected using a proba-
bility vector much in the same way as in the static, nondeterministic algorithms,
except that the values in the vector are computed periodically using recent load
information [Hsu86].

In studies based on the queueing network modeling approach, the workload
is represented by probability distributions. The most widely used job arrival
pattern is Poisson, while the amounts of resources demanded by the jobs (e.g.,
CPU time) are assumed to follow an exponential distribution. Due to the limita-
tions of analytic solution techniques, the model's complexity has to be kept quite
low, and approximation may be unavoidable. To study more sophisticated algo-
rithms and/or more realistic models of the system, simulation is often resorted
to. However, the workload model still remains a probabilistic one.

Measurement studies of the workloads being processed by production sys-
tems, performed by this author and others, show that many of the workload
assumptions made in the past are far from reality ([Leland86], [Cabrera861, and
Chapter 5). For example, the distribution of the amount of CPU time consumed
by jobs and that of the number of I/O operations are usually highly skewed,
with a ratio between the standard deviation and mean of between 4 and 40.
Hence, the popular exponential distribution, which has a ratio value 1, is a very
poor representation of CPU and I/O resource consumptions. In Chapter 5,
measurement data from three different computing environments will be
presented, and evidence will be given that the performance of load balancing is
strongly dependent upon the job resource demand distributions. Unfortunately,
to the author's knowledge, few researchers in the past have taken the time to
verify that their workload model reflected, at least to some extent, reality, or to
provide some argument for their assumptions - the Poisson-exponential model
has become the default workload model. Measurements also show that workload
in production systems are often nonstationary, with bursty job arrivals and con-
stantly fluctuating loads [Zhou87a]. Consequently, the steady state results of the
modeling studies may not be trustworthy.

It is intuitive that realistic workload assumptions are crucial for the results
to be reliable; indeed load balancing is based on exploiting the dynamics of the
workload. On the other hand, simple analytic and simulation studies have shed
light on a number of fundamental properties of load balancing. A promising
approach, then, seems to be retaining the queueing network model for the sys-
tem, but adopting more realistic workload models. Trace-driven simulation is ,
such an approach. It should be pointed out that the difference between stochas-
tic simulation and trace-driven simulation is in the method the workload is
represented, not in the degree of system complexity that can be simulated.
Indeed, a stochastic simulator can be easily modified to read in job traces instead

11

of generating jobs using probability distributions [Ferrari781.

2.3. Trace-driven Simulation

Instead of having to make assumptions about the workload, ard trying to
justify them, a job trace may be collected from a production systen, to drive a
simulator, or to be used to produce probabilistic models. While the criticism can
be made that the data collected from a particular system may be lirmited in its
applicability to other systems, it is equally valid to say that the simple proba-
bilistic assumptions may not represent any workload well. Instead of starting
with assumptions unsupported by empirical data, it seems more reliable to start
with measurement data from a particular system, and try to assess the general-
ity of the results derived from them. If necessary, data from other environments
should be collected, and the results compared.

Besides the advantage that any simulation has of being able to handle
greater system complexity, trace-driven simulation uses measurement data to
represent the workload. Few studies of load balancing using this approach have
been reported in the literature. Leland and Ott conducted a trace-driven simu-
lation study of load balancing using data collected from VAX-11 machines run-
ning Berkeley UNIX [Leland86]. Both initial job placement and process migra-
tion were studied, and significant improvements in the average job response time
were observed.

2.4. Implementation

Ultimately, the purpose of all the modeling and simulation studies should be
to provide guidance in the design and implementation of load balancers in com-
puter systems. A number of load balancing implementations have been reported
in the literature [Hwang82] [.Hagmann86] [Bershad85] [Ezzat86J. In almost all of
them, a special syntax for command submission has been introduced to inform
the system that the command is eligible for load balancing. In some cases, a spe-
cially constructed version of an applications program is needed for its remote
execution. The operating system had to be changed in many cases in order to
make remote execution possible.

The earliest implementation known to the author was done at Purdue
University in a UNIX environment [Hwang82]t. Special versions of compilers,
assemblers, and text processing programs were constructed that called a system
scheduling routine, rze, to determine a "lightly loaded" destination host for exe-
cution. A modified form of the UNIX load averaget, with considerations for the
heterogeneity of the machines in the network, was used as the load index.

f Both the AT&T Bell Laboratories and the Berkeley versions of UNIX were present in the
system

_1Pxgr:IF vpv I~~-L T X xA xj~xII A .TW LX %pw r V W V1M 11 W '.& VV~ W11 ,.. V- .. X

12

Bershad implemented a load balancer for the Berkeley UNIX 4.2 BSD
operating system [Bershad85]. Like the Purdue system, only a few programs
with large CPU time demands ("CPU hogs") were considered, and the program

and data files had to be explicitly moved to the execution host due to the lack of

a distributed file system. System servers (daemons, in UNIX terminology) were

used to exchange and maintain load information represented by load averages,
and to create remote jobs upon user requests.

The Process Server implemented at Xerox PARC was targeted for a works-
tation environment [Hagmann86]. A collection of personal workstations are sup-
ported by Process Servers that may be permanently dedicated compute servers

or workstations donated by their owners when they are not using them. A cen-
tral agent (the Controller) is used to collect load information and perform job
placements for the entire system. Each command has to be modified to make its
remote execution possible.

A load balancer for the NEST system of AT&T Bell Laboratories has
recently been described [Ezzat86]. The load balancer is implemented on a
number of workstations connected by an Ethernet-like local network. The name
of a special program, rexec, must be used as a prefix to any command string to
be executed remotely. Rezec obtains the hosts' loads, measured by their respec-
tive normalized response times, and transfers the command to the most lightly

loaded one. Care was taken to use the code for a command and to create tem-
porary files on the execution host (rather than on the initial host) as much as
possible, in order to improve performance.

A load balancer consists of two parts: the mechanism for remote execution,
and the policy module that collects load information and makes job placements.
While the above systems have both parts, a number of distributed operating sys-

tems implemented remote a execution facility (either non-preemptive or preemp-
tive or both) without specifying the system policy module. Examples are

DEMOS/MP [Powel183], LOCUS [Walker83], Eden [Almes85], and the V System
[Theimer85]. See (Harbus86] for a comprehensive survey of remote execution
mechanisms.

2.5. Measurement

The most reliable, but also the most laborious way to study load balancing
performance is to observe a load balancer in operation by measurement. This
approach does not in principle suffer from the errors -introduced in modeling and
simulation. However, measurement requires the availability of a load balancer
and a realistic workload running on it. To make the experiments repeatable, an

t The load average in UNIX is an estimate of the number of "active" processes in the sys-
tem, averaged over a given period, e.g., 1 minute.

13

artificial workload, instead of a natural one, may have to be used. Moreover,
the results may be biased towards the particular system and workload being

observed, just like in trace-driven simulation.

Although a number of load balancers exist, very little measurement of their
performance has been done. Ezzat drove the NEST system with a set of
artificial workload and evaluated the performance of one algorithm, as well as

the effect of creating temporary files on the execution host rather than on the
originating host fEzzat86J. The overhead of load balancing was measured by a

few researchers (e.g., [Hagmann86]).

2.6. Load Index

In order for load balancing to be effective, some quantitative measure of the
loads on the hosts, or a load index, is necessary. Intuitively, the higher the
value of the index, the heavier the load on the host, hence the less desirable it is

to transfer jobs to it. Although simple in concept, a good load index, one that
reflects a host's load accurately, is very difficult to obtain. This is mainly due to
the complexity of a computer (with multiple resources), and the drastically

different resource demand patterns of the various jobs.

A wide variety of load indices have been explicitly or implicitly mentioned
in the literature, mostly in descriptions of load balancing schemes. For example,
in most of the studies using queueing network analysis, as well as in some other
studies, the CPU queue length was used as the load index [Chow79] [Eager86a]
[Eager86b [Lee86] [Livny82] [Wang85] [Zhou86]. Some other authors used the
CPU utilization [Alonso86] [Ezzat86]. Other possibilities include the normalized

response time J-Iwang82J (defined as the ratio between the response time of a
process on a loaded machine and its response time on the same machine when it
is emptyt, the remaining processing time of all the jobs running on a host, the
processing time accumulated by the active processes [Hac86], and the total pro-
cessing time of the active processes [Leland86]. Functions of the above simple
variables have also been used [Ezzat86] [Ferrari86l. In a number of studies in

which reducing job response time was the objective of load balancing, the

estimated response time was used as the load index [Bryant8l] [Carey85]. Per-
formance improvements were often reported using the indices discussed above
However, since no systematic and comprehensive comparisons between the

indices have been made, their relative merits remain unclear. We note with
regret that, in most cases, the authors did not even provide an intuitive (not to
speak of a scientific) justification for their choice of the load index.

f The normalized response time varies with the process in a system with multiple classes of
jobs, but a single-class system has usually been assumed.

14

Thie first systematic attempt to study the load indices to be used in load
balancing was made in [Ferrmri86]. Based on mean value analysis, a linear combi-
nation of resource queue lngths was proposed as a load index. In that linear
combination, the coefficien. of a resource queue length is the amount of service
time that the particular job being considered requires from that resource. Thus,
if an incoming job requires Si seconds of service from resource ri, and the queue
length of resource ri is qj, then the load index 1i of the host, as perceived by this
job, is

NZi-- si X q5
ii = 1's~q

where N is the total number of resources in the host for which there is queueing.
This index was evaluated with measurement experiments under a production
time-sharing workload [Zhou87a].

Ferrari's index is response time oriented, and job dependent. Instead of a
unique value at a particular moment in time, the load of a host differs for
different jobs because of their varying resource demands, which are assumed to
be known upon the job's arrival. This assumption enables us to predict the
response time of a job more accurately, hence to make better load balancing
decision. However, while we have found some simple relationships between the
arguments of a job (e.g., the text file to be formatted, or the source program to
be compiled) and the job's resource demands, the assumption that the demands
of a job are known in advance may be too strong in many cases.

2.7. Summary
In this chapter, we surveyed research on load balancing according to the

approach and solution technique used, and discussed the characteristics of the
approaches. The survey shows that most of the attention has been paid to ana-
lytic modeling and simulation studies based on queueing network models, while
trace-driven simulation and measurement have been largely ignored. This is
unfortunate because, while the former methods provided some fundamental
insights into the behavior of load balancing, they are not suitable for more quan-
titative studies due to their highly abstract and simplistic assumptions about the
system and its workload. This observation led to the decision to use trace-
driven simulation and measurement as the primary methods of research in our
work. To identify those results that are not particular to a specific system,
workloads from several computing environments are used in simulation, and the
simulation and measurement results are compared. These studies are discussed
in the following chapters.

U6
a-% IVV%-1 1.N N

Chapter 3

Trace-Driven Simulation

3.1. Overview

In this chapter, we study dynamic load balancing using a trace-driven simu-

lation approach. Job traces collecte "rom a production machine are used to
drive a program that simulates a loostly-co~pled distributed system consisting of

number of hosts connected by a networV supporting broadcast, and supported

by a d'sributed file system. A number of representative load balancing algo-

rithms are dutned and studied in detail. The costs of message exchange and job
transfer are considered so that performance comparison between the algorithms

can be made on an equal basis. Our objective, however, is not to select the best
algorithm, but rather to study the characteristics of various approaches to load
information exchange and job placement. We are interested in the effects o,
load balancing performance of such factors as the system's size (in terms of the

number of hosts in the system), the level of system load (as defined in the next
section), the values of the tunable parameters of the algorithms, the immobile

jobs (jobs that have to be executed locally), and the costs of messages and job
transfers. We also want to study the behavior of the system under load balanc-
ing, specifically, the impact of load balancing on individual hosts with varying

levels of load as well as on different types of jobs (big versus small, transferred
versus non-transferred), and the instability that may be caused by load balanc-

ing.

The important results from this study include the following:

" Under moderate load (e.g., average CPU utilization of 60%), a load balanc-
ing scheme using any reasonable algorithm can improve the mean of job
response times by 30-60%, and make them much more predictable.

* Algorithms using periodic and non-periodic information policies provide

comparable performances.

* For the periodic information policies, the centralized algcrithms impose less
overhead on the system than the distributed ones, hence can support larger
systems.

.. w-q ,,lq~w~ ~W~. ~ ~ *x

16

" With initial job placements alone, server-initiative algorithms are likely to
perform worse than their source-initiative counterparts.

* Greater performance improvement can be gained by increasing the system
size, but the improvement levels off beyond a few tens of hosts.

* Load balancing can still be highly effective when up to half of the jobs that
would otherwise be eligible for load balancing must be executed locally.

" Load balancing has a beneficial effect on the performance of every host,
even of those originally with light loads.

* Load balancing reduces mean job response time under a wide range of mes-
sage and job transfer overhead assumptions.

* Large jobs benefit substantially from load balancing, while small jobs do not
suffer much as a result of the load balancing overhead. The performance
gains of remotely executed jobs are slightly lower than, but comparable to,
those of jobs similar in size (in terms of CPU times consumed), but executed
locally.

Our study also provides insighis into the choice of a load balancing algorithm
under different system environments and load conditions.

In the next section, we describe the system we simulate and the structure of
the model. We also discuss the load and performance indices we use. Section
3.3 describes the algorithms that we study in the simulation. The simulation
results are presented and analyzed in Section 3.4. Some concluding remarks are
made in Section 3.5.

3.2. Experiment Design

We first describe the job traces and the simulation model used in our exper-
iments. The overhead costs are then discussed. Finally, we specify the load and
performance metrics we use.

3.2.1. The Job Traces

A distinguishing feature of our study is the use of job traces instead of pro-
bability distributions to describe the arrival times and resource demands of the
jobsf. We traced a production VAX-11/780 system running Berkeley UNLX 4.3
BSD, Ucbarpa, to collect job traces consisting of tuples of the format

<job arrival time, CPU time demand, number of di8k I/O'a>.

t In a UNIX system, a job corresponds to a command line input by a user, and one or, occa-
sionally, multiple procesees are created to carry out the job. A trace consists of all the
processes executed during the session. We will not insist on the distinction between job and
process, i.e., we assume that each process in a trace represents a separate job.

------------.

17

The machine supported research and routine computing load of graduate stu-
dents, staff members, and secretaries. Typical types of jobs included program
compilation, text formatting, and mail handling. The machine also had a
printer daemon running on it. Previous measurement studies conducted by the
author [Zhou87a] show that the CPU is the most contended resource in the type
of time-sharing systems from which the job traces were derived. There is usu-
ally plenty of main memory, hence little paging and almost no forced process
swapping occur. The networking subsystem is not heavily loaded either. There-
fore, we consider only CPU and disk I/O in our model.

Heterogeneity, either architectural or configurational, complicates the load
balancing problem, and is a deviation from the primary concerns of this
research. Therefore, we concentrate on homogeneous systems. In fact, to insure
homogeneity and to ease the trace collection effort, sessions of job traces were
collected on the same host for a number of days to represent a number of hosts
connected by a networkt.

The selection of simulation session length is important because the boun-
dary effects caused by jobs started before the session begins and by those finish-
ing after the session ends may significantly affect the accuracy of the results. On
the other hand, longer sessions involve greater effort in trace collection and
simulation. We chose the length of each session to be four hours. Typically,
about 6000 processes are created on each host during this period. Even so, some 9

of the processes executing during a session are not included. Such processes are
m n', system services that are started at system boot time and run until the
s _rM goes down, and a few very long jobs, e.g., the user command interpreter.
'1 .Jugb small in number, they can represent a significant portion of CPU time
consumption. As a result, the simulated CPU utilization during the sessions is
lower than in reality, typically by 5-15 percent.

We collected the traces of 49 sessions, all of which during normal working
hours, and representing moderate to heavy workload. In all the simulation
experiments described in this chapter, each host in the system is fed with the
trace of a different session. Table 3.1 shows some basic statistics about the
trace data.

3.2.2. Model Structure

The simulation model is of the event-driven type (Ferrari78], and its struc-_0
ture is shown in Figure 3.1. We adopt a foreground-background round-robin
scheduling policy for the CPU. The time quantum is 100 milliseconds, the same
as that used in the Berkeley UNIX system from which the trace was derived.

S
t It is recognized that, by so doing, the possible temporal correlations between the loads of
the various hosts are lost.

18

Table 3.1. Basic statistics of the Berkeley data.

Total duration: 196 hrs (49 sessions of 4 hrs each)

Total number of jobs: 297,595

Job inter-arrival time: mean= 2.371 s, SD= 6.270 s

Job execution time: mean= 1.492 s, SD= 19.14 s

Number of file I/Os per job: mean=18.23, SD= 81.43

Average CPU utilization: 62.9% (from observed jobs)

Average response time (NoLB): 5.38 s
Average CPU queue length (NoLB): 2.03

When a job arrives, either from a user terminal or from another host, it is put
into the foreground queue. When a job uses up its current quantum, or comes
back from a disk, it is put to the tail of the foreground or background queue
depending on the CPU time it has accumulated: the foreground queue if the
time is less than 500 milliseconds, the background queue otherwise. Processes in
the background queue will be scheduled for execution only if the foreground
queue is empty. Since about 60-65% of the jobs have execution times below 500
milliseconds, they will stay in the foreground queue, thus receiving priority ser-
vice. While the CPU scheduling policies in computer systems are usually more
complicated, we feel that the above policy captures their essential features, and
may be considered representative of reality. Since the level of contention at the
disks is usually low under normal operating conditions in the type of system we
measured [Zhou87a], we model them as infinite servers causing only processing
delays, but no queuing delays. I/O operations are assumed to be evenly spread
throughout the execution of each jobt, and each disk I/O is assumed to take 30
milliseconds, a figure based on measurement results.

A communication network permits message passing and job transfers
between the hosts. Since we are most interested in load balancing in local distri-
buted systems, we assume that the underlying network supports broadcast (e.g.,
Ethernet). (This is only necessary for some of the algorithms we study.) We also
assume the existence of dedicated file servers so that the costs of accessing the
program and data files are roughly the same for all of the hosts. As a result, the

t Recording the times of the I/O operations during job execution would greatly complicate
our trace collection effort and the model construction and simulation, without providing
significant benefit, in terms of model accuracy, since the disks are not the points of conten-
tion.

I]

19

F 100 ma quantum

placement 1 4
B 500 ma limit

80 ma, evenly dit'edD 1,)Disks Hosti

Networks
I I I

III I I

I I I I '1
III I

'Host 1: :Host 2' .. fost N
II I I I

I I I

Figure 3.1. Structure of the system model used in the simulation.

files do not have to be moved with the jobs to be transferred. This assumption
holds well in a diskless workstation environment, but not so well if the hosts
holding the files are also used for processing. Client file caching further compli-
cates the cost assumptions [Nelson87]. Since our trace data is derived from a
time-sharing system without the support of a distributed file system, we are
unable to simulate the contention at the file servers, and we also do not have
measurement data on remote file accesses. The uniform cost of 30 milliseconds
for an I/O operation is therefore a rough approximation.

3.2.3. Overhead Cost Assumptions

There are basically two types of overhead costs involved in dynamic load
balancing. First, current loads of the hosts have to be measured and messages
exchanged to make them known to the decision makers. Secondly, placement
decisions need to be made and jobs transferred between the hosts. CPU time

20

and network bandwidth are consumed for these purposes. The second type of
overhead also directly introduces extra delays in the jobs involved. (So is the
first type if load information is acquired while the job to be placed is waiting, as
is the case with a number of algorithms to be studied.) It has been experimen-
tally observed that, in most current installations, local area networks, such as
the Ethernet, usually have plenty of bandwidth, and the performance effects of
the delay in the network are small compared to the CPU cost of executing the
communication protocols [Lazowska86l. Consequently, we only consider CPU
time overhead in this study. We assume that message exchange and job transfer
have preemptive priority over job execution. Based on measurements from our
experimental implementations of load balancing in VAX/UNIX and Sun/UNIX
environments (see Chapter 4), we assume that computing the current load and
sending the value to the other hosts takes 20 milliseconds of CPU time, while
receiving load information and processing it takes 10 milliseconds. A job
transfer is assumed to take 100 milliseconds of CPU time for both the sending
and the receiving host, and to cause a 200 millisecond delay to the job being
transferred. Also, we assume that the cost of a job transfer is independent of
the type and size of the job because only the command line is transferred, and
the program and data files are loaded from a file server.

It should be pointed out that the above cost assumptions are approximate;
the actual costs in terms of the CPU times spent and the job delays introduced
are sensitive to the load conditions of the hosts and of the network involved.
They are also dependent on the implementation of the underlying system, as
well as on the sizes of the messages. In Section 3.4.5, we study the effects of the
overhead assumptions on load balancing performance by varying the message
and job transfer costs.

3.2.4. Load and Performance Metrics

In order to evaluate the performances of various load balancing algorithms,
we need a number of metrics. First, it is important to characterize the load on
the whole system, as the performance of load balancing algorithms depends on
the system's load. We choose the average CPU utilization of all the hosts over
the entire session as the load level since it represents the level of contention for
the most critical resources in the system.

We are also interested in a load indez that we can use to measure the
current load on each of the hosts, and to make job placements. Ferrari pointed
out, using mean value analysis, that a linear combination of the resource queue
lengths in a computer system can be an excellent predictor of job response time,
with the coefficients being the estimated resource consumptions of the job [Fer-
rari85]. In a previous measurement study [Zhou87a], we found that a time aver-
age of the CPU queue length has a correlation of nearly I with the job response
times of CPU-intensive jobs in a CPU-bound host, hence suggests itself as a good

21

load index. We use the CPU queue length, i.e., the sum of the foreground and
background queue lengths, as our load index. In this chapter, when we say "the
load of a host", we mean its current CPU queue length. More elaborate load
indices based on the contentions at a number of resources, and on a smoothing
algorithm, will be introduced and compared, using measurements, in the next
chapter.

To measure and compare the effectiveness of load balancing algorithms, we
need to define a performance index. We choose the mean job response time
because decreasing the job response time is our primary objective of load balanc-
ing. We will also use the standard deviation (SD) of the response times of all the
jobs to measure the variability of the job response times.

3.3. Load Balancing Algorithms

Two broad categories of load balancing algorithms are commonly recog-
nized. In source-initiative algorithms, the hosts where jobs arrive take the ini-
tiative to transfer the jobs, whereas, in server-initiative algorithms, hosts able
and willing to receive transferred jobs go out to find such jobs. Server-initiative
algorithms are best supported by process migration because, in that case, jobs
may be transferred upon servers' requests [Eager86a]. We studied one server-
initiative algorithm based on job reservation, in addition to six source-initiative
algorithms.

A load balancing algorithm consists of three components.

(1) The information policy specifies the amount of load and job information
made available to the job placement decision maker(s), and the way by
which the information is distributed.

(2) The transfer policy determines the eligibility of a job for load balancing
based on the job and the loads of the hosts.

(3) The placement policy decides, for eligible jobs, the hosts to which the jobs
should be transferred.

The above three component policies of a load balancing algorithm are not
isolated from each other, but interact in various ways: the placement policy util-
izes the load information supplied by the information policy, and acts only on
the jobs determined to be eligible by the transfer policy. Because of the large
number of options for each component policy, it is impossible to study all possi-
ble policy combinations in this chapter. Instead, we shall concentrate on the
information policies and some of the related placement policies, while keeping
the other aspects of the scheme fixed.

Seven algorithms were simulated and studied. For ease of comparison, we
based the transfer policy of all the algorithms on the host load threshold T and
the job execution time threshold Tcpjt. When the local load is at or below T1,

f Notice that TcpU is different from the 500 milliseconds threshold for local CPU scheduling.

22

all jobs are processed locally. Otherwise, all the jobs arriving at that host and
with execution time above TC¢j are eligible for load balancing. Although job
execution times are difficult to predict, it is possible to classify the jobs into two
rough categories: "big" jobs which are worth considering for load balancing, and
"small" jobs not to be considered. Our study of jobs submitted over 30 days
show that such a classification can be made with a high success rate simply by
looking at the job names. For example, a text processing job will almost cer-
tainly take over 1 second of CPU time, whereas a directory checking operation is
clearly not worth considering for load balancing. Moreover, estimation errors
can be easily tolerated, as long as they are not too frequent. This is supported
by one of the results of this research: the performance of the load balancing
algorithms is quite robust with regard to the job threshold TCpj (see Section
3.4.3). In the measurements to be described in Chapter 4, this assumption about
Tcpu will inevitably be dropped.

The following algorithms were studied:

GLOBAL

Every P seconds, one of the hosts, designated as the load information
center (LIC), receives load updates from all the other hosts and assembles
them into a load vector, which is then broadcast to all the other hosts. If
the load of a host is the same as that sent out the last time, however, no
update needs to be sent to the LIC. This applies to the next algorithm,
DISTED, as well.

The placement policy of the GLOBAL algorithm, as well as that of
DISTED, is as follows. The local version of the load vector is searched for
a host with the lowest load, and, if this load is lower than that of the local
host by At or more, the job is sent to that host. If there are several hosts
with the same shortest queue length, one of them is selected arbitrarily.

DISTED

Instead of reporting the local load to a centralized LIC as in GLOBAL, each
host broadcasts its load periodically for the other hosts to update their
locally maintained load vector.

CENTRAL

In the above two algorithms, placement decisions are made by each host
using the local version of the load vector. In the CENTRAL algorithm, the
LIC acts as a central scheduler for all the hosts, in addition to receiving
load information from the other hosts periodically. When a host de-: es

t The optimal value for A depends on the workload. In our simulation, one was the best
value for A in most cases.

23

that a job is eligible for load balancing, it sends a request to the LIC,
together with the current value of its load. The LIC selects a host with the
shortest queue length and informs the originating host to send the job there.
Meanwhile, it increments its version of the destination host's load by 1.
This algorithm is used in the Process Server [Hagmann88].

For the above three algorithms, it is assumed that the loads of all the hosts
are known to the placement decision maker(s), with some delay. The algorithms
below use less system state information, and thus have smaller overhead costs.

RANDOM

This algorithm uses only local load information. When a job is found to be
eligible for load balancing, it is sent to a randomly selected host.

THRHLD

A number of randomly selected hosts, up to a limit Lp (probing limit), are
polled when an eligible job arrives, and the job is transferred to the first
host whose load is below load threshold T. If no such host is found, the job
is processed locally.

LOWEST

This is similar to THRHLD except that, instead of using a threshold for the
placement, a fixed number of hosts LP are polled and the most lightly
loaded host is selected. The probing stops if an empty host is found.

RESERVE

This is a server-initiative algorithm based on job reservation. Upon depar-
ture of a job, the local load is checked. If the load is below T, the host
probes other hosts to register up to R reservations at R hosts with loads
above T. The outstanding reservations at a host are stored in a stack so
that, when a job eligible for load balancing arrives, the top reservation on
the stack is used, so the job is sent to the host that made the most recent
reservation. If the host's load falls below T, all its reservations are can-
celed. A modification to this basic scheme is for the sender host to probe
the potential server host, and to send a job there only if the server is indeed
still lightly loaded. Measurements show that this modification yields slight
improvement in performance.

Leland and Ott studied an algorithm similar to DISTED using trace-driven
simulation [Leland86. The algorithms THRHLD and LOWEST above are ident-
ical to the ones studied by Eager et at [Eager86b]. However, we use a trace-
driven simulation method to evaluate them, and we compare them to those algo-
rithms that use a load vector. The algorithms above make placement decisions
on the basis of various amounts of system state information. Since we consider
the overhead costs of load balancing explicitly, a direct assessment of the
appropriate amount of load information for load balancing can be made.

.S

24

For comparison, we also simulated three boundary cases of load balancing:

NoLB

No load balancing is attempted; all arriving jobs are processed locally.

NoCOST

This is the unrealizable case in which the current CPU queue lengths of all
the hosts are known to the transfer decision makers at no cost (in terms of
CPU time and job delay), and the transfers of jobs are also assumed to be
costless.

PartCOST

This is the partly-ideal case in which perfect load information is assumed to
be known at no cost, but job transfer costs are considered.

The performance of all the algorithms can be expected to be between those of
NoLB and NoCOST.

It is recognized that there exist other algorithms that can potentially pro-
duce good performance. The above seven algorithms were chosen because they
represent a reasonably large collection of algorithms, and are implementable.
Both server- and source-initiative algorithms are included, and different
approaches to load information exchange (periodic versus on-demand) and to job
placement (system-wide selection, subset, and random) are represented.

For ease of reference, we list the symbols used in this and the next chapter,
together with their meanings, in Table 3.2.

Table 3.2. Symbols used in Chapters 3 and 4, and their meanings.

symbol meaning used In

T local load threshold simulation, measurement

TOPJ job execution time threshold simulation

p load exchange period simulation, measurement

host probing limit simulation, measurement
R job reservation limit simulation

A minimum load delta for job transfer simulation, measurement

N number of hosts in the system simulation, measurement

T averaging interval for load index measurement

E CPU execution time required by a job simulation, measurement

" immobility factor simulation, measurement

i"

25

3.4. Simulation Results

Simulation runs with various system sizes and load levels were executed. S

To make the performance comparison between the algorithms meaningful, a
large number of simulation runs were conducted for each system and algorithm,
with different adjustable parameter values (e.g., T, TCFp-, and LP), and the best
response time was selected. In this way, the comparison is between the best
achievable performances of different algorithms, and it is hoped that they reveal
the quality of the algorithms. The results of the simulation experiments are
presented in the following sections. We first compare the performances of the
seven algorithms, then study the effects that system scale, load level, parameter
values, immobile jobs, and overhead costs have on those performances, and the
impact of load balancing on the performances of individual hosts and job classes.
Finally, the potential problem of system instability introduced by load balancing
is discussed.

3.4.1. Comparison of the Algorithms

The average response times of the seven algorithms and of the three boun-
dary cases in systems containing 2, 4, 6, 7, 14, 21, 28, 35, 42, and 49 hosts are
shown in Figure 3.2, with Figure 3.2a showing the upper range, 7-49, and Figure
3.2b the lower range, 2-7. To make the comparison between systems of different
sizes meaningful, the system load levels are selected to be within a narrow range
(see the load level numbers at the top of Figure 3.2), and the response times are
normalized with respect to that of NoLB. Since we had a total of 49 sessions of
traces, systems with smaller number of hosts (e.g., 7, 14, and 21) were simulated
using several sets of traces. The results were found to be close to each other,
and the average values were used in Figure 3.2.

The first observation in Figure 3.2 is that all the algorithms provide sub-
stantial performance improvements over the NoLB case (whose normalized
response time is 1.0). The four best performing algorithms, GLOBAL,
THRHLD, LOWEST, and CENTRAL have response times within a narrow •
range.

The comparison between GLOBAL and DISTED is highly instructive. Since
they are the same, except for their information policies, the significant perfor-
mance difference reveals the advantages of using a global agent as a relay point
for load information exchange. Assume that there are N hosts in the system,
and let the update period be P seconds, and the CPU time costs of sending and
receiving a message plus related processing be M,nd and M,,,, respectively.
For GLOBAL, the overhead, in terms of the percentage of CPU time spent on
load information exchanges, is

(N- 1) X M. + M,, d

CLIC = X 100%

26

Load Level:

61.9% 60.707 63.1% 63.7% 62.5% 62.6% 62.7%
0.70-

R0.65-
e

8 RANDOM 8

n 0.60-
Se DISTED X

T
m

r GLOBAL 0

m l0.50-,
4 ThHD

LOWEOST 0

NoCOST 0
0.40.

7 14 21 28 35 42 49%
Number of Hosts

Figure 3.2a. Average response times with different system sizes
(7-49 hosts; normalized against the NoLB case).

for the LIC, and

forth oherhots M,.d + Mr'Mt x 100%

for he the hots.Except for the LIC, the message overhead is independent of
the system size N. In contrast, for the DISTED algorithm, the message over-
head for every host is

(N-1) X Me,, + M'.d

CX 100%I
- ~** .*~*~. -~' - .. v *-- ~ ~~s .~ '%P.

27

Load Level:Lod L65.7% 62.8% 60.8% 61.9%C

R
e

p 0.90
o
n
s V

e 0.80\

Ti
m
e 0.70

RANDOMU('p.

nI RESERVE A
0 DISTED x
r 0.60 GLOBALO
m THRHLD V
a '. -4-NRLLOWEST 0

PartCOST+
Z 0.50-
e NoCOSTO
d)

0.40
1 2 3 4 5 6 7

Number of Hosts

Figure 3.2b. Average response times with different system sizes
(2-7 hosts; normalized against the NoLB case).

because, during each interval of duration P, every host has to process the mes- IN
sages broadcast by every other host. (Due to the policy of not sending out the
local load information if it is the same as last time, the actual overheads of
GLOBAL and DISTED are lower than presented here, typically by 40-70/, but
the order analysis here is still valid.) Compared to GLOBAL, DISTED does not
have a central point of failure and an extra level of indirection in the distribu-
tion of load information, but the overhead is higher for every host, and grows
linearly with the system size. This is reflected in the rising curve for DISTED.
Since the availability consideration is not important, for reasons to be discussed,

NI

28

the GLOBAL algorithm appears more attractive than DISTED.

One somewhat surprising result from Figure 3.2 is that the two drastically

different algorithms, GLOBAL and LOWEST, provide almost identical response

times under a wide range of system sizes. The GLOBAL algorithm uses more

extensive system state information in an effort to make optimal transfer deci-

sions. To achieve this, load information is exchanged at a high frequency, thus

incurring high overhead. In the simulation runs, the value of P that provides

the best performance for GLOBAL is between 0.75 and 3 seconds. At such a

high frequency, 1-3% of the CPU time in every host is spent exchanging load

information. The THRHLD and LOWEST algorithms, on the other hand, do

not attempt to select the globally "best" host for job transfer, but rather only

select the least loaded among a small group (up to LP) of randomly picked hosts.

Although the time it takes to poll the hosts directly increases the response time
of the waiting job, more up-to-date load information is used for job placement.

A main reason GLOBAL is not able to perform better than LOWEST is that
there exists a fundamental contradiction between the need to frequently update
the load vector at each host due to the rapid fluctuations in load and the low

utilization of the load vectors. -If the exchange period is 1.0 second, and the rate

at which transfer decisions are made by a host is one job every 10 seconds, then
90% of the load exchanges are wasted. THRHLD and LOWEST have lower

overhead, do not require broadcast, and are completely distributed, thus more

reliable.

It is interesting to note in Figure 3.2 that CENTRAL provides the best per-

formance among the seven algorithms, even in a system of 49 hosts. It has been
widely assumed that, in distributed systems, centralized solutions are undesirable

because they tend to create performance bottlenecks and single points of failure.

Such a view, however, may be too simplistic if unqualified. The best solution is
environment and problem dependent. For load balancing, if the interprocessor

communication is relatively efficient (such as in this chapter), and the system

scale is limited (up to 50-100 hosts), the centralized approach to load information

distribution and job placement may be simple and efficient. The cost of job

placements is reduced for all the hosts except the LIC, as they now only need to
send local load information and placement requests to the LIC, rather than
maintaining system-wide load information and performing placements them-

selves. For the LIC, we observed that up to 35% of its CPU time may be spent
for load balancing functions supporting a system of 49 hosts. (Notice, again,
that a message with load information is sent to the LIC only if there has been
significant change in load; consequently, the overhead is cut -ibstantially.)

Although this is a high overhead for this host, it is a small price to pay for the
whole system. In return, excellent placement decisions based on up-to-date

information are achieved. This explains why the performance of CENTRAL is

slightly better than those of THRHLD and LOWEST, which only attempt to

29

select a host from a small subset of the hosts. Since a file server has frequent
interactions with otler hosts, it may be used as the LIC. This was done in the
Process Server [Hagmann86].

For many distributed applications, availability is crucial, hence a central-

ized solution is not appropriate. This is not the case with load balancing, how-
ever. If the LIC goes down, some other host can quickly detect the condition
and take over its role. The loss of load information is not a serious problem
because load information becomes obsolete in a short while anyway. The brief
interval during which load balancing is unavailable should be easily tolerable
because load balancing is not an essential system service such as the naming ser-
vice; its absence should in no way interfere with system operations. In fact, an

implementation using essentially the CENTRAL algorithm has been reported to
provide effective load balancing [Hagmann86]. In that environment, inter-host

communication is extremely fast, and the global scheduler is claimed to be able
to process 1000 requests per second.

The only server-initiative algorithm, RESERVE, exhibits a performance

somewhat worse than its source-initiative counterpart, TRHILD. This is partly

due to the restriction of initial job placement. When a host's load becomes low,
it can only make reservations at hosts with higher loads. A reserved job takes

an unknown amount of time to arrive, and, by that time, the server host may be
already heavily loaded. Because of this low realization rate of the reservations,
the number of reservations allowed, R, is an important parameter. Allowing

only one reservation yields performance significantly worse than that shown in

Figure 3.2, which corresponds to R equal to 5 (see Section 3.4.3 for more detail).

S(alability is an important issue in load balancing. In Figure 3.2, the nega-

tive slopes of all the algorithms except DISTED suggest the presence of

economies of scale. As the number of hosts in the system increases, the probabil-
ity of fiDding a lightly loaded host increases, and the average response time can
be expected to decrease. This is most obvious for the NoCOST case, where the

overhead costs are not considered. For the realizable algorithms, the overhead
may increase with the system size, making the increase in system size a mixed

blessing. Therefore, the scalability of an algorithm is an important property. It
is not surprising that the scalability of RANDOM, THRHLD, LOWEST, and

RESERVE is very good. (Their curves are almost parallel to that of NoCOST.)
This is because the number of hosts polled by the algorithms for job placement

or reservation is independent of system size. The scalability of the centralized

algorithms, GLOBAL and CENTRAL, however, is also very good, at least up to
49 hosts. In contrast, DISTED scales quite badly. We can see two conflicting
factors in action. On the one hand, an increase in system size makes it easier to

find a lightly loaded host. On the other hand, the message overhead per host
grows linearly with syste,. size. The composite effect is a moderately rising

curve for the normalized response time.

C--V--w vc - - ~1~~*~.7 a

30

It is interesting to observe that, as the number of hosts increases beyond 28,
the normalized mean response time improves very little. Therefore, an algo-
rithm with a scalability of up to a few tens, or at most a few hundreds of hosts,
seems sufficient. Beyond that point, it makes more sense to implement load
balancing in clusters and perform inter-cluster load balancing using longer-term
load information. This observation further enhances the value of algorithms
such as CENTRAL and GLOBAL.

3.4.2. Effect of System Load

Figure 3.3 shows the average response times of a system of 28 hosts with
some of the load balancing algorithms described in the last section, and under
varying load levels. Since job traces are used to drive the model, we cannot con-
trol the load level of the system. However, it is essential to observe the perfor-
mance of the algorithms under various load conditions. We achieved this by
multiplying the job interarrival times by a factor. Thus, we were able to gen-
erate a number of points for each algorithm. Although the job stream was
altered, the job characteristics (i.e., execution time, number of I/0) remained
the same. We feel that such a modification to the job stream, u8ed within a
limited range, is unlikely to introduce significant distortions in the resultst.

We observe in Figure 3.3 that, while load balancing improves the average
response time throughout the range of system load levels, such improvement
increases with the system's load. With a load level of 70% or over, some of the
hosts are heavily congested, and the job response times without load balancing
increase sharply. When load balancing is turned on, however, the whole system
handles the load smoothly, causing only a moderate rise in the job response
times. This characteristic is highly desirable because load balancing is most
needed when the system's load is heavy. In Figure 3.3, the relative rankings of
the algorithms remain thc same throughout the loading range. The most
promising algorithms, GLOBAL, THRHLD, LOWEST, and CENTRAL are very
close to each other as in Figure 3.2.

3.4.3. Parameter Sensitivity and Adaptive Load Balancing
Once the load balancing algorithm is selected, the performance of a load

balancer is still sensitive to the specific parameter values adopted. In this sec-
tion, we assess the degree of such sensitivity. The adjustable parameters depend
on the algorithm. For all of the algorithms, we have a local load threshold T

t Two other choices were to multiply the job execution times by a factor, and to use different
job streams. However, they both would have altered the job characteristics and introduced
more changes to the workload than the method we used, thus making the comparison of per-
formances under different workload levels less meaningful.

8.0

7.0 1 NoLB U

M
e
a

. DISTED X

e 5.0S /GLOBAL C3•

p THRHLD V
0
n 4.0 L 0
S -CENTRAL 8

e
T 3.0. PartCOST +

m NoCOST

e 2.0

(
S 1.0

45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0

Average Host Utilization (%)
Figure 3.3. Average response times under different load levels (28 Hosts).

and a job threshold T¢pr. In addition, for the periodic information policies, we
have the load exchange period P, whereas, for the non-periodic policies, we have
the probe limit LP. Since it is impractical to explore the effects of all the param-
eters for all algorithms and systems, we present only a few of them here.

Figure 3.4 shows the performance of the GLOBAL algorithm under various
values of P and Tcpj, with T fixed at 0. We can see that P has a strong
influence on performance. When P is too short (e.g., 0.35 second), the overhead
is so high that, even though the load information on which the transfer decisions
are based is very up to date, the performance suffers. On the other hand, if P is

32

4.6 Tcpu=3.0 s *

M. Tcpu=2.0 s

M 4.4- Tcpu=1.0 s
e Tcpu=0.5 s
a/
n 4---" Tcpu=0.25 s

e

P 4.0
0 '
n /

S//
e 3.8 - /

t//i ,0,~ :
m 3.6-

(
S) 3.4

3.2 1 . .
0 1 2 3 4 5 6

Load Exchange Period P (s)
Figure 3.4. Effect of adjustable parameters on load balancing performance

(GLOBAL, 14 hosts; NoLB: average response time: 7.46s, utilization: 72.37). ')

too long (e.g., 10 seconds), the load information is so out of date that frequent
mistakes are made in job placements, that is, jobs are often sent to hosts with
equal or higher load than the local host.

In contrast, performance seems to be quite insensitive to the value of TCpj:
the average response time with TcI U being 1.0 second is close to those with TCpj

being 0.5 or 2.0 seconds (Figure 3.4). This observation supports our earlier claim
that only an approximate separation between large and small jobs is necessary to
achieve good performance. Looking more closely at the job threshold, we again

-I

33

4.0- Tcpu=3.0 s
A . Tcpu=2.0 s

M 3.9" Y Tcpu=1.0 s
e Tcpu=0.5 s

3.8 + Tcpu=0.25 s +
n
R 3.7/

e
s 3 .6 ,I
0
n 3 .5 .
S
e / 2

t 34

e

(3.2-

3.1-

3.0
1 3 5 7 9 11 13

Probe Limit Lp
Figure 3.5. Effect of adjustable parameters on load balancing performance

(LOWEST, 28 hosts; NoLB: average response time: 8.15s, utilization: 72.6%).

observe a pattern similar to that of load threshold T: when TCpj is too high
(e.g., 3 seconds), the full potential of load balancing is not realized, whereas,
when it is too low (e.g., 0.25 seconds), the overhead of job transfers outweighs
the benefit, and performance becomes worse. There is also an interaction
between the two parameters; when the P is lengthened, the corresponding
optimal value of Tcpj increases. Figures 3.5 and 3,aprovide similar information
for LOWEST and RESERVE. As we pointed out in Section 3.4.1, allowing only
one reservation in RESERVE would yield performance significantly worse than
that with multiple reservations.

F

34

5.0" A Tcpu=3.0 s
o Tcpu=2.0 s

4.8- * Tcpu-=1.0 s
M -- Tcpu=0.5 s
a 4.6- Tcpu=0.25 s
n

ep .4
s 4.2-
P
0
n 4.0-

e

t 3.8-
i

m 3.6-i -
e

3.4-

3.2

3.0 - , , , , , , , , , ,

0 1 2 3 4 5 6 7 8 9 10
Job Reservation Limit

Figure 3.5a Effect of adjustable parameters on load balancing performance
(RESERVE, 28 hosts; NoLB: average response time: 8.15s, utilization: 72.6%).

It is important to recognize that the combination of parameters that yields
the best performance is highly dependent on the system load level. Table 3.3
attempts to illustrate this. Generally speaking, the higher the load, the higher
the job threshold and the longer the exchange period should be. For LOWEST,
in increase in the probing limit may yield poorer performance when the load is
high.

The sensitivity of load balancing performance to the values of the parame-
ters of load balancing algorithms suggests that some form of adaptive load
balancing may be able to provide good performance when system load changes

35

Table 3.3. Optimal parameter Values under different system load levels (28 hosts).

Load Level (%) ' 48.1 56.2 63.3 72.6 79.1 85.1

GLOBAL

P 0.5 0.5 0.75 1.0 1.5 2.0

TCFU 0.4 0.5 0.5 0.75 1.0 1.5

DISTED

p 1.5 2.0 2.5 3.0 4.0 5.0

TcP, 0.4 0.5 0.75 1.0 1.5 2.0

LOWEST

LP 13 11 9 9 5 3

TCFU 0.4 0.5 1.0 1.0 1.5 2.5

(The numbers are approximate, as only a sparsely allocated set of operating
points in the multi-dimensional parameter space were tested for each algorithm.)

widely. Under adaptive load balancing, the system load is constantly monitored,
and changes in algorithms and/or adjustable parameters are made automatically
as the load changes so that the system is always operating at, or close to, its
optimal point. Supporting multiple algorithms may involve complicated imple-
mentation. Furthermore, for the most promising algorithms, GLOBAL, CEN-
TRAL, and LOWEST, the performance differentials are quite small. Conse-
quently, th gain from switching algorithms is probably insignificant, and there-
fore not worth the effort. However, this is not, and cannot be, a general state-
ment: for environments different from ours, and for algorithms other than the
ones we studied, using different algorithms under different loads might turn out
to be quite advantageous.

In contrast to algorithmic change, parameter adjustments are much simpler,
and capable of significantly improving performance when the system load fluctu-
ates widely. Here, we need a system-wide mechanism that monitors load condi-
tions and makes adjustment decisions. GLOBAL and CENTRAL are the most
appropriate algorithms for this purpose. The LIC periodically receives load
information from all the hosts, and can use such information to deduce the sys-
tem state. It can then send to the hosts the parameter values they should use.
In a heterogeneous system, the values could conceivably differ from host to host.

S.

36

3.4.4. Effect of Immobile Jobs

Throughout our studies so far, we have assumed that the jobs are mobile,
that is, they can be executed on any host in the system with exactly the same
results. Although this assumption holds for a large subset of the jobs, we do
observe that some of the jobs are in reality immobile. Examples include jobs
that perform local services and/or require local resources, such as system dae-
mons, login processes, mail and message handling programs, and so on. There
are also highly interactive jobs, such as command interpreters and editors, for
which remote execution is likely to result in poor performance due to network
latencies. Any implementation of load balancing must take these immobile jobs
into consideration. We define the immobility factor to be the percentage of the
eligible jobs that have to be executed locallyt. By varying the value of the
immobility factor, the effect of immobile jobs may be studied. For a system of
28 hosts with an average CPU utilization of 63.7%, the results are shown in Fig-
ure 3.6.

The concave shapes of the curves are encouraging, as they indicate that
effective load balancing is still possible even if a significant proportion of the eli-
gible jobs are immobile. For an immobility factor of 0.6, the mean response
time is only slightly higher than that for the case in which all jobs are mobile
(i.e., when the immobility factor is 0). This observation is not surprising because
load balancing is achieved by transferring only a fraction of the eligible jobs any-
way. (Typically, 50-70% of the eligible jobs, or about 10-20% of all the jobs,
were actually transferred in the simulation experiments.) Consequently, even
though many of the eligible jobs are immobile, the rest of them can still produce
most of the performance benefits due to the balancing effect.

3.4.5. Effect of Overhead Costs

Throughout this chapter, we used the overhead assumptions discussed in
Section 3.2.3 for the costs of sending/receiving messages, and transferring jobs.
These assumptions are based on measurements performed in the systems we
simulated, hence are reasonable reflections of reality. On the other hand, it is
important to assess the sensitivity of the results in this chapter to these over-
head assumptions. By doing this, we can have a better understanding about
how well the results would apply in environments with different overhead costs
(e.g., the environment at the Lawrence Berkeley Laboratory to be discussed in
Chapter 5).

t In our simulator, we mark the eligible jobs mobile/immobile when they arrive, using the
immobility factor as the corresponding probability. Hence, statistically, the average execu-
tion times of the mobile and immobile jobs are the same, as we assume a single class of jobs.

37

6.0

M 5.5
e
a
n 5.0 *NoLB

R
e
s 4.5
P
0
s 4.0"
e

e GLOBALT/.5 LOWEST .
1

m
e e 3.0-

) 2.5

2.0...

0.0 0.2 0.4 0.6 0.8 1.0

Immobility Factor
Figure 3.6. Effect of immobile jobs (Tc,=1.0 s).

We vary the overhead assumptions along two dimensions: the cost of
sending/receiving a message and of the associated processing, and the cost of
transferring a job. The normalized mean response times of all the jobs are plot-
ted in Figures 3.7 and 3.8 along these two dimensions. All the response times
are the best achievable ones, as described at the beginning of Section 3.4.

Since RANDOM, PartCOST, and NoCOST do not exchange load informa-
tion explicitly, their corresponding curves are flat; all the curves for the other
algorithms, however, show a positive slope (Figure 3.7). This agrees well with
our intuition that performance would degrade as message overhead increases.

38

0.65

R DISTED X
e

0.601b RANDOM 8

0 RESERVE A
n
s
e 0.55- GLOBAL0

T i .: LOWEST 0

m I CENTRAL#
e 0.50

n
0. + + PartCOST+
r 0.45-m
a
1 0 NoCOSTO

z 0.40
e
d)

0.35

5 10 20 30 40 Send
2.5 5 10 15 20 Receive

Message Cost (ins)

Figure 3.7. Effect of message exchange costs on mean response time.

On the other hand, it is remarkable that, even when sending a message costs 40
ms and receiving a message costs 20 ms, the performances of the four best-
performing algorithms, GLOBAL, THRHLD, LOWEST, and CENTRAL, do not
suffer much degradation; note also that their curves are almost in parallel to
each other. The curve for DISTED, in contrast, exhibits a steeper slope,
reflecting the greater dependency of DISTED upon the message exchanges.
Throughout the range of message overhead considered, the relative rankings of
the algorithms, except DISTED and RANDOM, stayed the same, and are similar
to those shown in Figure 3.2.I b

R • % ,% m. ~v~ .. ~w~

* - . ,M . IL 4M I

39

0.70'

R RANDOM 8

e
p 0.65
0

DISTED X

e 0.60'
RESERVE A

T GLOBAL 0i
m THRHLD 7
e 0.55 LOWEST 0
(CENTRAL*

n

r 0.50

m
al
i
Z 0.45
e
d

$) NoCOST 0~

0.401 , '
50 100 200 300 400

Job Transfer Cost (is)
Figure 3.8. Effect of job transfer costs on mean response time.

The job transfer cost used in Figure 3.8 refers to the CPU processing time
for each of the sending and receiving hosts. The total delay to the transferred
job is assumed to be twice as much. We can draw observations from Figure 3.8
similar to those from Figure 3.7, except that all the realizable algorithms
degrade at about -the same rate now, as all of them have to incur job transfer
costs.

From the above discussion, we conclude that load balancing performance is
quite insensitive to the overhead assumptions, as long as the overheads are not
too high. Our comparisons of the perfo-mances of the algorithms remain valid

* V. R

t

40

under quite different overhead assumptions. It should be pointed out that the
reasonably good performances of the algorithms under high overhead assump-
tions were achieved by adjusting the values of the parameters. Typically, the
load exchange period was lengthened, the load and job thresholds increased, and
the number of hosts to be probed reduced.

3.4.6. Impact on Individual Hosts

In the above sections, we compared the performance of a number of algo-
rithms, and studied the effects that system scale, load level, parameter values,
and immobile jobs have on load balancing. We now study the impact of load
balancing on individual hosts and job classes. We fix the system under study to
be one with 14 hosts and CPU utilizations as shown in Figure 3.9.

Previous studies of load balancing have frequently assumed that the hosts in
the system are subjected -to the same level of load [Eager86a] [Eager86b]
[Livny82] [Wang85]. (E.g., the job arrival rates and the processing rates of all
the hosts were assumed to be the same.) However, this is usually not the case in
production environments. It is very interesting to study the effect of load
balancing on the individual hosts, especially those originally with light loads. At
the beginning of this research, we conjectured that, while load balancing may
improve both the performance of the system and that of the heavily loaded
hosts, the lightly loaded ones would suffer degradation in their performance
because additional jobs are transferred to them. We were, therefore, pleasantly
surprised by the simulation results. The average response times of the individual
hosts, with and without load balancing, are shown in Figure 3.10t. (Note that
the averages in Figures 3.10 and 3.11 are for jobs that originated at a particular
host, rather than for those that were executed at the host. In other words, they
are the user-perceived mean response times.) As can be observed, the perfor-
mances of all hosts generally improved, with the hosts under heavy loads show-
ing greater improvements. Figure 3.10 clearly demonstrates the power of
dynamic load balancing: system performance may be greatly improved by taking
advantage of the temporal differences among the hosts' loadings, and even hosts
with lighter loads may benefit as congestions on them, though infrequent, can be
relieved by other hosts. It should be pointed out that the above observation is
valid only within a limited range of host CPU utilization. The 14 hosts used in
Figure 3.10 have CPU utilizations between 50% and 75%. Some other simula-
tion experiments we ran showed the mean response time of a very lightly loaded
host increasing moderately under load balancing. This is also the case for some
of the measurements presented in the next chapter.

f Host I is used as the LIC for all the experiments with GLOBAL described in this chapter.
'N

41

0.80"

0.75-

C
P
U 0.70

U
ti
1 0.65-i _
Z .

a
t
i 0.60

n

0.55

1 21114 51278 6 4 10 91 33

Host Number
Figure 3.9. Host CPU utilizations of a 14 host system

(sorted by host CPU utilization; average utilization with NoLB: 63.3%).

Another beneficial effect of load balancing is that it makes the response

times more predictable. In many environments, this is even more important than
the reduction in the mean response time. Figure 3.11 provides a direct measure
of this effect: while the average response time is cut by a factor of 1.5 to 2, its
standard deviation is cut by a factor of 2 to 4. The values in Figures 3.10 and
3.11 were observed when the system was moderately loaded (the utilization for
the NoLB case is 63.3%), and with moderate imbalances in host loads. The
improvements in the mean and standard deviation of response time were found
to be more drastic when the system load level was higher, and/or the host loads

42

11.0 mean
5.18 U NoLB

10.0 2.74 '--X DISTED
M 2.65 3-8 GLOBALS9.0 2.63 O---O LOWEST

a . 2.20 -0NoCOST

n 8.0-
R
e 7.0-
S

p
0 6.0-
n
S
e 5.0-

T 4.0-
1
m
e 3.0

2.0

1.0

0.01
11 7 i 4 2 121456 13 10i9 A 6

Host Number
Figure 3.10. Mean response times of individual hosts

(utilization with NoLB: 63.3%).

more imbalanced (see Sections 3.4.2, 4.5.1, and 4.6.1).

The term load balancing has in it the implicit meaning of equalizing the
I, loads of the participating hosts. Though this is not our direct objective, the

equalizing effect of the algorithms studied in this chapter can be clearly seen in

Figure 3.12. This was observed to be more pronounced with GLOBAL and
DISTED than with THRHLD and LOWEST because of the attempt of the
former two algorithms at system-wide optimization.

ILI

43

g0 std. dev. (134.82),,
45.72 NoLB
14.39 GLOBAL

80" 16.00 o-*- LOWEST
13.21 NoCOST

S 70
t
a
n 60-

a
r
d 50"

D
e 40 /
V I

a 30"
t

0 20n

10"- - -

0 ' **

4 1 11 2 12 7 13 510 3 1489 6

Host Number
Figure 3.11. Standard deviation of response times of individual hosts

(utilization with NoLB: 63.3%).

While balancing the hosts' loads over long periods (half an hour or over) is

definitely desirable, it is perhaps more important to balance the loads over short
periods, such as one minute. We sampled the CPU queue length of each host

every second in this 14-host system, and computed the 30 second averages. Fig-
ure 3.13 shows the load index values of the most and least loaded hosts, with

and without load balancing, over time. With NoLB, the hosts' loads fluctuate
widely. With GLOBAL, however, the curves of all the hosts become very similar

to each other. Although there still exist fluctuations, they are at a lower level, %
and of much smaller magnitudes. It should be pointed out that the ability of

44

3.5- mean
2.04 G- NoLB
0.95 x - DISTED

3.0 0.91 GLOBAL
A 0.90 o--o LOWEST
e 0.73 - NoCOST
r 2.5-
a 0

g
e
Q 2.0-

u 0
e u1.5" -
e

L
e V
nl 1 . 0

h 0.5-

0.0

1 2 11 147 5 12 4 1013 3 96 8
Host Number

Figure 3.12. Average queue lengths of individual hosts under different load
balancing algorithms (utilization without load balancing: 63.3%).

load balancing to reduce temporal load fluctuations heavily depends on the
workload. The trace data we used are characterized by a large number of small

jobs (about 1500 processes/hour/host, with average execution time of about 1.5
seconds). Hence, the snoothing effect is strong. In contrast, in the measurement
study of load balancing to be presented in the next chapter, we used a workload
with large jobs, and the smoothing effect was found to be limited.

.. ~

45

6.0 NoLB, Host 2

7.0 NoLB, H 13

A 7.0

T A
6.0 '60

o .4.0

3.0 1.

Time (minute) 0o (soe 100

8.0 GLOBAL, Host 2 8.o0 GLOBAL, Host 13

7.0 7.0'

AS

A.0 A

V *.0

r 0r

•N
1.0 1 01

0 5.0 6.0

3.0 G20 G
1.0 4.0

.0, 6.0

L L

5.0 %:,

L 40 (m,,so so 4.0 0 20 ' . -1o 0

(Minute)

Figure 3.13. The loads on sample hosts as a function of time.

3.4.7. Impact on Each Job Class

It may be expected that load balancing has varying influences on jobs of
different classes and sizes. We divide all the jobs into two large categories: BIG-

-those with execution times above the job threshold, T¢cpu , and SMLALL--those
with execution times at or below Tcpu,. For BIG jobs, we further divide them
into Remote---those transferred to other hosts for execution, and Local---those

I.
t~I

46

executed locally. Figure 3.14 shows the average response times of each class of

jobs, with NoLB and GLOBAL.

20.0-

18.0

R 16.0
e
s 14.0
p
0
n 12.0 - BIG, Remote; GLOBAL
S
e

10.01
T 0
i

m 8.0
e

(6.0- 0 BIG, Local; GLOBAL

4.0 SMALL; NoLB

2.0 - SMALL; GLOBAL

0.0
7 14 21 28 35 42 49

Number of Hosts
Figure 3.14. Average response times for several classes of jobs

(28 hosts; GLOBAL, T1=1.0, T¢/qJ=1.0s; utilizations same as in Figure 3.2).

As can be observed, the average response times of SMALL jobs under NoLB
and GLOBAL are almost the same, whereas for BIG jobs the response time is
roughly halved under GLOBAL. The average response time for Remote jobs is

moderately higher than that for Local jobs, partly due to the placement and
transfer overhead, and partly due to the fact that jobs tend to be transferred
when system load is higher, thus causing higher response times. It is

- "" . - . %- .% ' , " %- , *,, *' , "N. . .

47

1.2

N
0- X0.1<=E<0.5

r 1.0- E<O.1
m

i

z 0.8. + 0.5< = E <1 .0
e
d

e". - - e ---.--- o 1.0<=E<5.0s
0 - ---- 5.0<=E<20
n 0.4 E>=100
e 20< E< 100e

T
i 0.2m
e

0.(1 1 ',,,r;

7 14 21. 28 35 42 49
Number of Hosts

Figure 3.15, Average response times for several sizes of jobs
(28 hosts; GLOBAL, T=1.0, Tcprj=1.Os; utilizations same as in Figure 3.2).

remarkable, however, that the Remote and Local jobs have comparable response
times, implying that a user will not be penalized or rewarded much by having a
job executed locally or remotely. The above comparisons are consistent
throughout the range of system sizes. Simulations using other algorithms yielded
similar results.

Figure 3.15 provides a more detailed picture of the performance "

improvement/degradation caused by load balancing to jobs with execution
times, E, falling within each of the seven ranges. The average response times
are normalized with respect to those with NoLB. The very small jobs (E <
0.5s) suffer slightly. Such jobs are never transferred, and stay in the foreground

L~

~~~~~~~~~~~~~~- 
Fiue31 

rvdsa 

oedtie 

itreo 

h 
efrac



48

queue throughout their lives, so load balancing cannot reduce the competition
among themselves. At the same time, load information exchanges and job place-
ments have higher priority, causing them to wait. For all the rest of the jobs,
however, the response times improve substantially, with bigger jobs showing
greater improvements.

3.4.8. System Instability

The problem of the instability that may be introduced by load balancing is
of major concern to the researchers in this field. It is feared that, because of the
delay in load information exchange, several hosts may transfer jobs to a once
lightly loaded host, and cause it to become overloaded. After the load informa-
tion is updated, some other host(s) may in turn become the new victim(s). We
call such phenomenon host overloading. Another form of instability is job
thrashing, in which jobs are transferred too many times (or even for an
indefinite number of times, as analytically shown in [Eager86b] for an algorithm
similar to RANDOM) in an attempt to find an optimal host for job execution.
Host overloading causes performance degradation because of unstable and
uneven load distribution among the hosts, whereas, for job thrashing, degrada-
tion is mainly due to excessive job transfer overhead. Since we are mostly con-
cerned with algorithms that transfer jobs only once, we will study only the host
overloading problem here.

We consider a job transfer to be wrong if the destination host's CPU queue
length is equal to or greater than that of the originating host. There is a distinc-
tion between transferring a job wrongly and collectively overloading a host; the
former by itself will only increase the particular job's response time, whereas the
latter will potentially cause system-wide performance degradation, due to the
aggravated effects of the individual wrong transfers. This problem could be seri-
ous because usually the transferred jobs are big. To measure the level of host
overloading occurring in a system directly is not easy; instead, we define the host
overloading factor Tr to be the percentage of wrong job transfers over all
transfers, which may be regarded as a pessimistic approximation of the level of
host overloading:

number of wrong transfers 100%
total number of transfers

There are a number of factors that affect the rate at which wrong transfers
are made. First, the staleness of load information has a deciding effect. The
staler the information, the more the jobs that are transferred wrongly. There-
fore, the non-periodic information policies that collect load information on
demand are less susceptible to host overloading than the periodic policies.
Another important factor is the rate at which jobs that are candidates for
transfer arrive. This depends on the system load level and the job threshold. I



49

The higher the load and the lower the job threshold, the larger the percentage of
eligible jobs. To verify our intuitive argument, we calculated 'r in simulation
experiments for the GLOBAL algorithm using various values of the load
exchange period, P, and the job threshold, TCp. Since it is difficult to consider
three factors all changing at the same time, we fixed the system load level at
79%. Such a system-wide utilization is high, and host overloading may be
expected to be quite serious. The results are shown in Figure 3.16, and agree
with our reasoning above.

0 Tcpu = 3.0 s
0.40 .. Tcpu - 2.0 s

V Tcpu 1.0 s
0.35 Tcpu = 0.5 s

0.35 +-+ Tcpu 0.25 s

0
V 0.30-
e
r P1 / /

ao 0.25" ,i
d!i

' 0.20"n i
g /Ii

F 0.15" , /
/ /

a /
c / /
0 0.10"

r /

0.05" "

0.00 S

0.35 0.5 1.0 2.5 5.0 10.0
Load Exchange Period (s)

Figure 3.16. Percentage of wrong job placements for GLOBAL under
various load exchange periods and job thresholds.

(number of hosts: 14, average utilization: 79%)

IS



50

Besides the load update frequency and the job threshold, the system scale
also affects host overloading, but to a lesser degree. It is important to know the
number of hosts with the least load. For the algorithms studied in this chapter,
placement decisions are based on the instantaneous CPU queue lengths of the
hosts. Since there may be more than one host with the same shortest queue
length, the transferred workload could be shared by them, thereby reducing
overloading. A larger system size makes such situation more probable. On the
other hand, in a larger system, there are also more sources of transferred jobs.
To study quantitatively the number of hosts with the least load as a function of
system size and load update period, we recorded the load vector at a high fre-
quency during a simulation experiment for GLOBAL, and counted the number
of hosts with the least number of jobs at their CPU's. The actual shortest queue
length is unimportant because we are only concerned with the relative distribu-
tion here. Figure 3.17 shows the distributions for systems with 14 and 28 hosts,
and the exchange period fixed at 5 seconds. For shorter exchange periods, the
means of the number of hosts with the least load are slightly lower. We find
that the probability of having only one or two hosts with the least load is non-
negligible; hence host overloading can occur. Consider the following case of
heavy load: for a system with 14 hosts and a load level of 80%, the total rate at
which jobs are transferred by the GLOBAL algorithm using a job threshold of
1.0 second is in the range of 1-2 jobs/second. This means that, if we update the
load information every 5 seconds, 5-10 jobs may be transferred to the single host
that used to have the least load! This range is reduced to 1-2 jobs if the
exchange period is 1.0 second, and even lower if the system load is not at such a
high level. Hence, we see that whether host overloading occurs depends pri-
marily on the system load level and the load exchange period.

From the above discussion, we can conclude that host overloading is possi-
ble with load balancing, especially when the system is heavily loaded, and stale
load information is used for job placements. However, it seemb to be easily
avoidable by a number of simple measures, such as adjusting the algorithm's
parameter values, and using algorithms that are less susceptible to it (e.g.,
THRHLD, LOWEST, and CENTRAL). The algorithms we studied show vary-
ing susceptibility to host overloading. GLOBAL and DISTED are the most sus-
ceptible ones, because they rely on locally maintained load information for job
placements. In contrast, CENTRAL is much less susceptible because the LIC
updates its load vector when job placements are made (see Section 3.3).
THRHLD and LOWEST use host probing, hence rarely make wrong job
transfers. An argument based on probability can be used to show that RAN-
DOM is unlikely to cause severe host overloading. Even with GLOBAL, the
average response times from simulation experiments corresponding to those in
Figure 3.16 show that host overloading does not have as disastrous effects on sys-
tem performance as we feared: very good performance can be achieved even



24.0.

22.0.

Pe 20.0.r 14 hosts; load level: 79%

C 18.0 mean: 3.2
e
n
t 16.0.
a b
g 14.0
e
0 12.0. 28 hosts; load level: 79%
f mean: 5.3

10.0

I
n 8.0
t
e
r 6.0
v

a 4.01

2.0

0.0.

0 12 3 4 5 7 0 10 11 12 13 14 15 1 17 18 10

Number of hosts with least load
Figure 3.17. Dis-ribution of the number of hosts with the least load

(P = S os, TcpV = 1.0 s).

when there exists light overloading (T < 10%).

3.5. Summary

In this chapter, we studied dynamic load balancing using a simulation
model driven by job traces collected from a production system. We simulated a
representative CPU scheduling policy, and we considered explicitly the costs of
load information exchange and job transfers. Because of the use of live system
data, we believe that the results of our simulation are more reliable than those

S..



52

from analytic models or simulations driven by probability distributions. On the
other hand, we realize that our results may be biased towards a particular type
of computing environment.

Seven load balancing algorithms were studied. We found that, under
moderate system load, load balancing can reduce the average response time of
all the jobs by 30-60%, and make them much more predictable. Algorithms
using periodic and non-periodic information policies yield comparable perfor-
mance; for the periodic load information policies, the centralized approach has
much less overhead than the distributed approach, and, therefore, performs
better and is more scalable. The only server-initiative algorithm we experi-
mented with showed worse performance than the source-initiative algorithms,
partially due to the restriction to initial job placement.

Some of the factors that affect load balancing performance were studied.
We observed significant but. limited economies of scale: performance improves as
the number of hosts in the system increases, but, beyond a few tens of hosts, lit-
tle further improvement results. Consequently, an algorithm with a scalability
of up to 50-100 hosts seems to be sufficient. We found that performance
improvement is greater under heavier system load, and that the adjustable
parameters of the algorithms have varying effects on performance, suggesting
that adaptive load balancing has potential. The impact of immobile jobs on load
balancing was found to be less serious than the immobility factor might suggest:
most of the performance gains are still retained even when up to 50% of the jobs
eligible for remote execution are immobile. The performance of load balancing
is found to be quite insensitive to the assumptions about the message and job
transfer costs. The relative performances of the algorithms also stay the same
under a wide range of overhead assumptions.

Load balancing has a profound impact on the system's behavior. In our
simulations, the performances of all hosts, even those originally with lighter
loads, improve under effective load balancing. This is somewhat counterintui-
tive, but very encouraging: by cooperating with each other, no one loses. We
also observed a strong tendency of load balancing to equalize the loads, both
long-term and short-term, of the individual hosts, While big jobs benefit more
from load balancing, the response times of small jobs increase only slightly. For
jobs of similar sizes, those transferred tend to have slightly longer response
times. The problem of system instability due to several hosts sending jobs to the
same host was studied. We found that such host overloading is possible, but can
be effectively alleviated by using up-to-date load information in placement
decision-making.

IL



53

Chapter 4

Measurement Studies
@

4.1. Overview

The trace-driven simulation studies in Chapter 3 revealed some important
properties of load balancing, and those of a number of algorithms. While the
results are interesting and encouraging, we realize that the simple structure of
the model and the simple representation of the jobs are bound to introduce
errors in the results. Moreover, since only data from a particular environment
were used in simulation, the results may be biased. In this and the next chapter,
we will study load balancing in other environments and/or with other
approaches in order to confirm and extend the previous results.

In this chapter, the design and implementation of a prototype load balancer
in a loosely-coupled distributed system is discussed; furthermore, the results of a
large number of measurement experiments performed on the system under the
artificial workloads we constructed using frequently executed system commands
are presented. The influence on the system's performance of the load balancing
algorithms, as well as of the values of their adjustable parameters, and of the
various types of workloads, is evaluated. The impacts of load balancing on the
performance of individual hosts and on each type of job are also quantitatively
investigated using measurement.

Our purposes in implementing a prototype load balancer and performing
measurements on it were several-fold. First, we were interested in investigating
the feasibility of load balancing, particularly in a UNIX environment. We
wanted to experiment with various load indices proposed in the literature, in
order to identify one or a family of load indices suitable for load balancing. We
wanted to study, in a more realistic setting, the problems we had studied using
simulation, in order to validate our results, and to use the simulator, with more
confidence, in exploring parts of the design space unreachable by our measure-
ments. We also wanted to assess quantitatively the amount of overhead intro-
duced by the load information exchange and the job transfers between the hosts. S
Finally, we hoped to learn from our experimental implementation how to design
a production load balancing system.0

V N M 'W N " .

* ~- * * '~.- .~p.. -~ -''~ 'I.',~h'~ \V' V V~ *~~ ~ vZ*



54

The important results of our measurement studies include the following:

" transparent, flexible load balancing at the job level can be achieved at a low
cost, and without modifying either the system kernel or any of the existing
application programs;

" load balancing is capable of substantially reducing the mean of the process
response times (up to 30-40%), and their standard deviation (up to 40-50%),
especially when the system is heavily loaded, and/or the instantaneous loads
on the hosts are appreciably unbalanced;

* a number of "reasonable" load balancing algorithms using periodic load

information exchange or acquiring such information on demand produce
comparable performance improvements;

* load balancing can still be highly effective when only a small fraction of the
workload (down to 20%, in terms of CPU time consumption) can be exe-

cuted remotely;

" the relative (percentage) reduction in response time is uniform across all
classes of jobs, mobile or immobile, large or small;

* load balancing at the job level has limited ability to reduce the temporal
fluctuations in the load, mainly due to the generation of multiple processes
by some single jobs;

The rest of the chapter is organized as follows. The design and implemen-
tation problems we dealt with are discussed in Section 4.2. In Section 4.3, we

describe the design of the measurement experiments, including the artificial
workloads we constructed. The results of the experiments are presented in Sec-
tions 4.4, 4.5, 4.6, and 4.7, with Section 4.4 comparing a number of load indices,
Section 4.5 comparing the algorithms used for load balancing and assessing the
importance of their adjustable parameters, Section 4.6 studying the effects of the
workload on load balancing performance, and Section 4.7 discussing the impact

of load balancing on individual hosts and job types. The major results are sum-
marized in Section 4.8.

4.2. Design and Implementation

While the primary concerns of this dissertation are the performance issues
that arise in load balancing, we are also very interested in studying the design
and implementation of a load balancer. Such studies ensure that our perfor-
mance work is of practical significance. The load balancer built as a result of
our studies served as the basis of our measurements. The basic design and
implementation of our prototype load balancer is presented in this section, fol-
lowed by a description of the load balancing algorithms we have implemented
and studied, and by some results of our overhead measurements.

. - #. "- " .'"" " " '".'..e " ' 4 : . " "%" " ., "".., ". e'''. . N.- ".,



55

4.2.1. System Basics

In Chapter 2, we surveyed the existing work on load balancing implementa- 9
tion and on remote execution facilities. While these load balancers have pro-
vided much knowledge about load balancing design and implementation, the
requirements of our research were quite different from the ones of those systems.
In designing our load balancer, we felt the following characteristics to be highly
desirable:

1) transparency: no special syntax should be introduced, unless the user has
some specific requirements; the placement of a job should be done automati-
cally on the basis of the system's load conditions and the job's resource
demands;

2) no or little change to the system kernelt: the cost of installing and main-
taining the load balancer should be minimized;

3) no modifications to commands and applications: the code of no existing
command should have to be modified to adapt it to load balancing;

4) general applicability: we are interested in considering all types of jobs, at
least in principle, rather than only a specific category, e.g., text processing
commands; also, the design should not assume any specific system architec-
ture; the same design should be suitable for time-sharing systems and com-
pute servers, as well as personal workstations, provided that certain basic
requirements are met, namely, a communication system and the availability
of a distributed file system.

Like the designers of the other load balancers, we were also concerned with
the overhead of load balancing; the remote execution of a job should not incur
high overhead in terms of extra processing or elapsed time delay. Since our
implementation is experimental in nature, we are less concerned with issues such
as remote process management and control, and user interface facilities.

There are two basic issues in the design of a load balancing system. The
policy issue is concerned with the algorithm used to determine which jobs or
processes should be executed remotely, and where. The mechanism issue is con- %
cerned with the physical facilities to be used for remote execution, i.e., with the
way a job is transferred to a remote host and its results sent back. Before these

two issues can be studied, however, we have to decide the level at which load
balancing takes place. There are several choices. At the job, or command, 0

level, the user interface can be changed so that some of the jobs submitted by

f In our implementation, we had to add a small amount of code to the system kernel to gen-
erate and maintain the load index used by the load balancing algorithms, and to provide
enough precision for our measurements. No functional change, however, was made to the
kernel.

-.-. ' ' " " * . . . . . . . . . . . . . ..• .. . . .-.- . . .. ,.-...- .. .. ''. -' .'- *.-".-.-' ,



5 6

the user may be redirected to some remote host for execution. Alternatively,
load balancing can be done at the process level. In that case, the process
management module of the system kernel must be modified to identify processes
to be executed remotely. A third choice is to modify individual applications and
incorporate remote execution facilities there [Johnston86]. However, considering
our requirements discussed above, the second and third approaches are to be
ruled out.

After the level of load balancing is determined, we still have to decide
whether the jobs or processes are to be transferred during their execution (pro-
cess migration), or only at start-up time (initial placement). Process migration
has been suggested by a number of researchers as potentially more capable of
improving system performance [Leland86] [Cabrera86]. On the other hand, it is
also likely to incur higher overhead, and is very difficult to implement in such
systems as UNIX. In addition, since we decided to do load balancing at the job
level, and multiple processes may be created by a single job, we would have to
consider the interactions between the processes explicitly. These considerations
led us to restrict ourselves to initial job placement in our experimental load
balancer.

Our implementation is based on a modified C shellt implemented at Berke-
ley by Venkat Rangan and Harry Rubin for the Berkeley UNIX 4.3 BSD system
running on VAX machines [Joy83] [McKusick85]. This modified C shell inter-
cepts user commands and executes certain types of commands remotely when
the local host is heavily loaded, using the rezec daemon available in the system.
The structure of our system is depicted in Figure 4.1t. At startup time, the C-
shell reads in a configuration file that specifies a list of names of jobs that are eli-
gible for remote execution*. When an eligible job is submitted by the user to
the C-shell, the C-shell contacts a Load Information Manager (LIM), a software
module that constantly monitors the loads of the hosts in the system and per-
forms job placements. If the initial host is heavily loaded, while some other
hosts are not, one of the remote hosts is selected as the destination for the job.
In any case, the placement decision is returned to the C-shell. For remote execu-
tion, the C-shell contacts the Load Balance Manager (LBM)** on the destina-
tion host, which starts up an R-shell (i.e., creates a process running the R-shell

t C shell is the name of the command interpreter in the Berkeley UNIX operating system
[Joy80.

t To distinguish our modified C shell from the standard one, we call it C-ahell. The R-:hCli,
to be described below, shares the same software with C-shell, but is only to receive remote
jobs and execute them.

* This list is part or the context of each user, just like command aliases, and may be dynami-
cally modified by the user to suit his or her needs.



57 'hI

LIM

R-shell
creation

Host B

plae ent Ct~~n

Us er C-shell eiil
Jobs "l3.0 b eo

list
LBM

Host A

Figure 4.1. Structure of load balancing implementation.

program) and establishes a stream connection between it and the home C-shell.
The command line is transmitted over this connection to the R-shell after the
user's identity has been authenticated, and an appropriate user environment has
been set up there. Access control to files and other resources in the system is
automatically enforced as the R-shell assumes the same user identity as that of
the home C-shell. Since starting an R-shell is an expensive operation, as we will
see below, we keep such a shell alive after the execution of the first job so that if
a later command from the same user login session is placed on the -ame host, we
do not have to go through the same process described above. Th,, R-shells on

* Note that there is one LIM and one LBM on each host.

ON-



58

remote hosts act as agents for the home C-shell, and are terminated when the
home C-shell exits. This scheme has the potential problem of a proliferation of
R-shells. However, the code segments of all C-shells and R-shells on each host
are shared, so that, when an R-shell is not active, almost no resources are con-
sumed by it.

Thus, our load balancing system design is at the job level, and stresses a
clear separation of policy from mechanism. The collection and management of

load information, and the job placement decision-making are performed by the
LINVs, one on each host, and cooperating among themselves in ways dictated by
the load balancing algorithm. Only the initial filtering of jobs by their names is
performed in the C-shell to avoid querying the LIM too frequently, and to allow
personalized selection of jobs. The load balancing mechanism, on the other
hand, is provided by the LBM on each host, with the cooperation of the C-shell
and R-shell. The separation between policy and mechanism makes it easy to
experiment with different algorithms, as only the LIM needs to be changed. In
fact, the LIM software can be constructed so that the load balancing algorithm
may be changed dynamically as the system's size and load change.

We assume that the distributed system includes a distributed file system

supported by one or more file servers. Consequently, the program and data files
of a job do not have to be fetched from the originating host, but from a file

server, no matter where the job is executed. Thus, we assume that the cost of
accessing the files is the same for all hosts. While this is true for diskless works-

tations supported by file servers, the location of the program and data is an
important factor to consider in systems where files are scattered on a number of
hosts (which are not dedicated file servers). We decided not to consider this
problem in order to concentrate on the issues we are most concerned with now.

Two slightly different implementations were built, one for the Sun/UNiX
system, one for the Berkeley UNIX 4.3 BSD system. While the first is fully
operational, and was used for the measurements, the second is not because a dis-

tributed file system is not supported by the operating system yet.

4.2.2. Algorithms

A large number of algorithms have been proposed in the literature (see
[Wang85] for a taxonomy). The problem domain we are concerned with in this

research (i.e., initial job placement in a loosely-coupled network environment for
general-purpose computing, with distributed job submissions), and our desire to
implement the algorithms make many of the proposed algorithms unsuitable.
While all of the seven algorithms studied in Chapter 3 could be implemented, we

selected five of the more representative ones, GLOBAL, DISTED, CENTRAL,
RANDOM, and LOWEST, for implementation. In addition, the NoLB case is
used for comparison. Instead of repeating the descriptions of the algorithms in



Section 3.3, we will only mention the adaptations that were necessary for their

implementation.

The LIMs on the hosts exchange load information among themselves accord-
ing to the algorithm adopted. For example, in GLOBAL and CENTRAL, one of

them is designated as the master (just as the LIC in the simulation), and collects

load information from every host. In CENTRAL, the master also makes all the
job placements. When the non-periodic algorithm LOWEST is used, however,
the LIM on the host where a job just arrived will probe a few other hosts.

For the common job transfer policy, we still use the local load threshold T,

but not the job execution time threshold Tcpu, as, in reality, it is not known

upon the job's arrival. Instead, the list of job types eligible for load balancing in
the configuration file is consulted. This may be regarded as a very rough
approximation of the job threshold, and is certainly much more realistic.

Some refinements to the basic algorithms have been implemented. For
example, in the periodic algorithms, the local load is sent out only if the new
value of the load index is significantly different from the previous one reported.

This is found to reduce the. message traffic by 50-70%, without affecting the
quality of the job placements much. This observation agrees with a similar one

made in simulation (see Section 3.4.1). The local load is not reported if it stays
above an upper threshold T.. However, the local load is reported once in a
while even if the it has not changed much, so that other hosts will not assume

that this host is unavailable.

For the meanings of the symbols representing the parameters of the algo-

rithms and other quantities, please refer back to Table 3.2.

4.2.3. Overhead Assessment

We measured the aaditional CPU processing and job delays due to load

balancing, that is, to the exchanges of load information, the job placements, and
the remote executions. Table 4.1 shows some of the results for Sun-2 worksta-
tions with 2 MB of memory and a 3Com Ethernet board. Note that all times in Sp
the table are real time delays averaged over a few hundred to a few thousand
repetitions. The numbers differ somewhat from those used in the simulation
because the latter were obtained in a VAX time-sharing environment. The
measurements were taken on empty hosts. When the system is loaded, the
delays become longer and their variance increases. For locally executed jobs, the

average overhead is very low, typically 5-10 milliseconds, and is mainly due to
searching the job list in the C-shell, and, if the job name is on the list, to query-
ing the LIM. The delay due to a LIM query plus the overhead of remote execu-

tion is highly variable, depending on the loads of source and destination hosts.
On the average, it is a few hundred milliseconds. This assumes that an R-shell 5

has a',ready been set up on the destination host. Otherwise, several seconds of



60

Table 4.1. Load balancing overhead measurements.

extract load info. from kernel and send out a message (500 bytes) 14.5 ms

receive a load message and store it into load vector (500 bytes) 5.7 ms

placement request by C-shell to LIM (round-trip)

to local LIM 23.8 ms

to remote LIM (for CENTRAL) 52.9 ms

remote job execution overhead (incl. placement by local LIM,

assuming R-shell already set up) 325 ms

start an R-shell (setup) 5s

additional delay may be incurred. Overall, the overhead of load balancing seems
to be quite low. With an exchange period of 3 seconds, load information updates
cost from one to a few percent of Sun-2 CPU time. The delay due to remote
execution is hardly perceivable by an interactive user, and is very small com-
pared to the average job response time, which is of the order of a few tens of
seconds.

4.3. Experiment Design

4.3.1. Performance Index

As in our simulation studies, the mean response time of all the jobs exe-
cuted during a measurement session, supplemented by the standard deviation of
the job response times, seems to be an appropriate performance index. However,
the response times of jobs executed remotely in the background turned out to be
difficult to obtain in our implementation. Instead, we made use of the system
accounting facility to obtain the response times of all the processes executed
during a measurement session, and used the mean process response time as our
performance index. For the execution of most of the jobs, only one process is
created, so the two indices are the same, except for the command line processing
in the C-shell, which is not accounted for in the process response time. For a
few commands (namely, cc, lint, and ditroff in our artificial workload), how-
ever, several processes are created, and their response times are all considered in
computing the mean. The overhead of load balancing is accounted for by
measuring it during each experiment run and adding it to the process response
times.



81O

4.3.2. Experimental Factors

We identify four major factors that affect the performance of a load balanc-
ing system. First, load indices that capture the current load conditions and are
capable of predicting host load in the near future are of crucial importance. A
poor load index may cause job transfers that do not contribute to balancing the
load of the system, and might even make things worse. Secondly, the algorithm
used for load balancing determines the cost of distributing load information, and
the quality of job transfers. Thirdly, the performance improvements due to load
balancing are dependent also on the workload the system is subjected to. The
workload will be characterized along two dimensions, which will be considered as
independent factors: that of its intensity, i.e., its magnitude, and that of its
mobility, i.e., the fraction of the workload (as defined in Section 4.6.2) that can
to be executed remotely. Lastly, the underlying implementation of the load
balancer certainly impacts load balancing performance, but since the implemen-
tation is fixed in our case, our measurement experiments only explore the
remaining dimensions. More specifically, we vary one factor at a time and study
its influence. A number of levels or values are assigned to each of the factors, as
listed in Table 4.2.

Table 4.2. Experimental factors and their levels.

Load index: CPU utilization;
instantaneous CPU queue length;
time-averaged CPU queue length;
linear combination of averaged CPU, paging/swapping,

and I/O queue length;
load average
(see Section 4.3.3)

Algorithm: NoLB, DISTED, GLOBAL, CENTRAL, LOWEST, RANDOM
each algorithm has a number of adjustable parameters

(see Section 4.2.2)

Workload canonical workload: <2H, 2M, 2L>;
intensity: balanced workloads: <5H>; <6M>; <6L>

(see Section 4.3.4)

Workload several values of the immobility factor 0
mobility: (see Section 4.6.2)

In the next two sections, the load indices and the types of workload will be
described.



62

4.3.3. Load Index
The survey of load indices in Section 2.6 shows that there are a large

number of possible indices, and, conceivably, load balancing performance is
affected by the load index. Since it is impossible to study all indices, we com-
pare two families of indices using measurement techniques. One family is based
on the utilization of the CPU. The other is that proposed by Ferrari, as a linear
combination of resource queue lengths. Since the amounts of resources required
by jobs are difficult to predict, we will only evaluate those indices whose
coefficients of the resource queue lengths are job independent, and only reflect
the relative importance of the resources (with respect to a "basket" of jobs).
For example, we can use unity as the coefficients to reduce the linear combina-
tion to the sum of the resource queue lengths, that is, in queueing modeling
terms, to "the number of jobs in the system."

The resource queues we considered are as follows:

1) CPU ready queue: the number of processes running, or loaded and ready to
run;

2) file I/O queue: the number of processes waiting for file I/O on disks to com-
plete;

3) paging/swapping I/O queue: the number of processes waiting for a page, or
being swapped in/out;

4) memory queue: the number of processes waiting for various types of
memory resources (e.g., buffer space, page table).

Our extensive measurements of production time-sharing workloads show
that the system load is changing quite rapidly [Zhou87a]. On top of a low-
frequency main component, there are a "number of high-frequency load com-
ponents that may be regarded as "noise" rather than useful information. Using
the instantaneous resource queue lengths may give excessive importance to such
noise, and lead to bad job transfer decisions. We used a smoothing algorithm to
compute the time-averaged queue length, and compared load balancing perfor-
mance using smoothed queue lengths to that of the same scheme using instan-
taneous queue lengths. Inside the kernel, we kept variables for the queue length
of each of the four resource types above. The length of each queue was sampled
every 10 milliseconds in the clock interrupt routine, and used to compute the
one-second average queue length, qi, over the 100 samples. Exponential smooth-
ing was then used, to compute the average queue length over the last T seconds:

= Qi...1 (1 + q e-T, i >1

Q 0 =0

By changing the value of T, the range of averaging can be adjusted. In our
measurements, the sum of the queue lengths of some or all of the four types of



63

resources, smoothed over 1, 4, 20 or 60 seconds, are used and their performances
compared.

4.3.4. Workload

The construction of workloads accounted for most of our efforts in the
design of the experiments. On the one hand, since a high degree of repeatability
of the experiments was felt to be absolutely necessary, we used artificial work-
loads. On the other hand, we wanted these workloads to represent real work-
loads reasonably well, so that we could have confidence in the realism of the
results. We traced a production VAX-11/780 machine running under the Berke-
ley UNIX 4.3BSD system [Joy83 [McKusick85] for an extended period of several

months, and analyzed the types and frequencies of the commands executed by
the system. On the basis of such an analysis, we selected a number of frequently
executed commands, as listed in Table 4.3, and used them to construct scripts,

i.e, streams of commands. To obtain various levels, or intensities, of load, such
as those characterizing multi-user systems, we ran a variable number of the jobs

in the background. Also, we simulated user think times by the "sleep" com-
mand. The scripts are classified into three levels: light (L), moderate (M), and
heavy (H), with a number of distinct scripts constructed for each level so that

hosts subjected to the same level of workload can use different scripts. The
ranges of CPU utilizations and mean load index values of the three levels of
scripts are shown in Table 4.4. Each script runs for about 30 minutes on a Sun-

2 workstation. Job and system performance statistics, such as resource
demands, response times, resource utilizations, and resource queue lengths, were
measured throughout each run.

A system workload is a combination of the host workloads. So, for a system
of six hosts, we define the canonical workload, intended to be a "typical" load-
ing situation, as <2H, 2M, 2L>, that is, two workstations driven by heavy
loads, two by moderate loads, and two by light loads. We also used more bal-

anced system workloads, e.g., <5H>, <6M>, and <6L>.

As in any measurement experiment, we must consider the variability of the
experimental environment, and, therefore, that of the measurement results. In

dynamic load balancing, the placement of each job may vary from one run of
the experiment to the next, because of the unavoidable variations in the timings

of the events. (This problem was further complicated in our experiments by the
fact that we had to share the file server and the network with other parts of the
research community. We tried to minimize this impact by running the experi-
ments during the night.) Thus, we repeated the same experiment a number of .
times (typically 6), and computed the mean and the 90% confidence interval (CI)
of the performance indices over these replications.



64

Table 4.3. Commands used in scripts and their eligibilities for remote execution.

cmd. elig. function ernd. elig. function

cat N view a file Is N directory listing

cc Y C compiler man Y manual page viewing

cp N file copying my N move a file

date N current time nroff Y text formater

df N file system usage ps N process checking

ditroff Y text formater pwd N current directory

du N disk usage rm N delete a file

egrep Y text pattern search sort N file sorting

eqn Y equation formater spell Y spelling checker

fgrep Y text pattern search tbl Y table formater

finger N user information troll Y text formater

grep Y text pattern search uptime N system uptime

grn Y graph printing users N list of current users

lint Y C program checker wc N word count in a file

lpq N printer queue check who N user information

Table 4.4. Characterization of the workload levels.

type CPU utilization average CPU queue

light 30-45% 0.3-0.7

moderate 60-70% 1.0-1.8
heavy 70-85% 1.8-3.0

"V

%I

-'V ~ -' 7 '~V " 1 ' ~'V~ W'V ~~j.' #-



65

4.4. Comparison of Load Indices
We shall study the indices and the averaging interval T by fixing the work--S

load at its canonical level, the algorithm to be GLOBAL, and the load exchange
interval P at 10 seconds. We shall then use the more balanced workload
<6M> to examine the interactions between load indices and workload.

4.4.1. Canonical Workload

Table 4.5 shows the performance of the experimental system under various
load indices. The numbers following the response time values indicate their 00%
confidence intervals.

We see in Table 4.5 that all the indices provide performance improvement, S
that is, they all contain some amount of current load information. The amount
of improvement, however, varies quite widely: from 20% to 40%. This means
that the performance of load balancing is indeed heavily dependent on the load
index used, and hence studying load indices is important. Comparing the two
families of indices, those based on resource queue lengths are able to perform
substantially better than those based on CPU utilization. This is probably
because, when a host is heavily loaded, its CPU utilization is likely to be close to
100%; thus, in that region, the exact load level cannot be reflected by the value
of the utilization. In contrast, queue lengths can directly reflect the amount of
contention for a resource under heavy load. As an example, both a resource
with an average queue length of 3 and one with a queue length of 6 probably
have utilizations close to 100%, while they are obviously very differently loaded.

Comparing the queue-length-based indices with each other, we notice that
the exponentially smoothed indices can perform better, but, if the averaging
period T is too long (e.g., T > 20 s), performance may even become worse. Ear-
lier in this chapter, we have pointed out that, by averaging the queue lengths,
the adverse effect of the high-frequency "noise" in the load can be reduced.
This is reflected by improved performance. However, since the system load is
changing all the time, averaging over too long a period will emphasize too much S

the past loads, which have little correlation with the future ones. The optimum
averaging interval is clearly dependent upon the dynamics of the workload: the
faster the load changes, the shorter the interval should be. In a measurement -
study of production workloads on a VAX-11/780 running Berkeley UNLX
4.2BSD [Zhou87a], we found that the average net change in CPU queue length
in 30 seconds was 2.31, when the average CPU queue length itself was 4.12.
This suggests that, in that environment, T should be substantially shorter than
30 seconds.

t All confidence intervals in the tables and figures of this chapter have been computed with a
90% confidence level.



*°.° wwi

66

Table 4.5. Measured performance with various indices. li

(Canonical workload, P = 10 s)

replication count: 6

total number of jobs per run: 501

total number of eligible jobs per run: 254 (50.7%)

total number of processes per run: 766 (1.53 processes/job)

average process execution time: 7.45 s

approximate average CPU utilization for NoLB case: 60%

Load Index Resp. Time Improv. Std. Dev. Improv.

NoLB (no load bal.) 53.3 *0.83 - 90.1

inst. CPU qi 35.0 ±:0.68 34.4% 46.7 46.7%

I s avg CPU q1 33.8 4-0.65 36.6% 45.8 49.2%

4 s avg CPU q1 33.1 -0.39 37.9% 42.3 48.7%

4 s CPU+I/O+Mem ql 32.2 ±0.45 39.6% 44.3 50.9%

20 s avg CPU q1 37.0 ±1.20 30.6% 51.8 42.6%

20s CPU+I/O+Mem qI 35.6 ±0.12 33.3% 49.1 45.6%

60 s avg CPU qI 39.7 1169 25.5% 54.1 40.0%

60s CPU+I/O+Mem q1 40.0 ±0.56 25.0% 56.2 37.6%

60 s UNIX load average 37.2 ±0.85 30.2% 54.9 39. I%

10 s CPU utilization 38.5 ±2.10 27.8% 55.4 38.5%

60 s CPU utilization 42.9 ±1.36 19.5% 87.6 25.0%

The performance difference between the cases in which indices based on

CPU queue length alone are used, and those in which indices consider I/O and

memory contention also, is not significant, suggesting that the CPU is the

predominant resource in our hosts. We found that the I/O and memory queue

lengths were generally much shorter than that of CPU; that is, the former

resources are much less contended for. It should be pointed out that our systems

support general computing in a research environment; with other types of



67

workload, e.g., database-oriented ones, the contention profile of the various
resource types may be substantially different. However, to achieve near-optimal
performance, we do not have to consider all the resources in the system, but
rather only those with significant contention. We also studied more general
forms of linear combinations of queue lengths by using coefficients other than
unity, but no significant changes in performance were observed. This, again, is
certainly due to the dominating influence of the CPU queue.

The load average shown in Table 4.5 has been used in a number of load
balancers constructed in the past in the UNIX environment (e.g., [Hwang82] and
[Bershad85]). This research shows that significant further improvement can be
obtained by using indices that more accurately reflect the current queueing at
the resources.

4.4.2. Moderate, Balanced Workload

The performances obtained using various indices under the more balanced
workload <6M> are shown in Table 4.6.

Table 4.6. Measured performance with various indices.

(<6M> workload, P = 10 s)

Load Index Resp. Time Improv. Std. Dev. Improv.

NoLB 49.5 ±0.27 - 72.4 -

inst. CPU ql 42.3 jO.79 14.5% 61.4 15.2%

4 s avg CPU ql 39.9 ±0.83 19.4% 54.0 25.4%

4 s CPU+I/O+Mem ql 36.5 ±0.91 26.3% 51.0 29.6%

20s CPU+I/O+Mem qI 45.2 ±0.89 8.7% 63.8 11.9%

60s CPU+I/O+Mem qI 47.1 ±1.34 4.9% 67.7 6.5%

60 s load average 47.9 ±1.12 3.2% 73.1 -1.0%

10 s CPU utilization 44.0 ±1.97 11.1% 60.9 15.9% /

60 s CPU utilization 48.6 ±1.34 1.8% 68.3 5.7%

Since the workload is now more balanced and moderate, the amount of improve-
ment in response time is not as much as that under the canonical workload;
however, the relative rankings of the indices are quite similar This suggests



68

that the above analyses of the qualities of the indices and the appropriate values
for T remain valid under a more balanced, moderate workload. It is worth not-
ing that, in this case, due to the smaller improvement, using a poor load index
(e.g., the load average or the 60 s CPU utilization) may yield little or no perfor-
mance improvement.

4.5. Comparison of Algorithms

We first compare the performances of the algorithms, then study the effects
of their adjustable parameters. For this and all the following sections, the load
index is fixed to be the sum of the CPU, file I/O, and the paging/swapping
queues.

4.5.1. Basic Comparisons

To compare the performances of the five algorithms described in Section
4.2.2, we applied each of them to a system of six Sun-2 workstations running the
canonical workload described in Section 4.3.4. For each of the algorithms, we
varied the adjustable parameters (considered as secondary factors), such as the
local load threshold T, the load exchange period P for the periodic policies, and
the probe limit L. for the non-periodic policy (LOWEST), in order to achieve
the best performance under that algorithm. For each algorithm, Table 4.7 shows
the mean response time and its 90% confidence interval, the percentage
improvement in response time relative to the NoLB case, the standard deviation
of the response times and its percentage improvement, and the values of the
adjustable parameters used in the run.

Table 4.7. Performance of the algorithms
(canonical workload; all times are in seconds).

Algorithm Resp. Time Improv. Std. Dev. Improv. Parameters

NoLB 53.3 ±0.83 - 90.1 - -

ISTED 36.4 ±0.09 31.7% 50.6 43.8% 1 lP=15, T1=0.8

LOBAL 32.6 ±0.67 38.9% 43.6 51.7% P=5, T=0.8

CENTRAL 33.7 ±0.54 36.8% 48.5 46.8% P=10, T=0.8

OWEST 31.8 ±0.37 40.3% 42.8 52.5% P,=4, T,=0.8

OM 39.9 ±1.21 25.2% 62.0 31.2% T=-.8



I

The first observation one can make about the results in Table 4.7 is that
load balancing can indeed improve system performance substantially. The
canonical workload was constructed to reflect a loading situation commonly
observed in production environments: some workstations are loaded, while others
are not. By transferring jobs from havily loaded hosts to lightly loaded ones,
the mean job response time can be improved. Comparing the improvements in
mean response time and those in the standard deviation of the response times,
we notice that the latter is reduced more substantially. This means that the job
response times are more predictable with load balancing than without.

'he performances of the algorithms, except those of RANDOM and
DISTED, are quite close to each other. For the periodic algorithms, the informa-
tion is ready when a job is to be placed, and the "best" host in the system is
selected. However, the periodic updates incur higher computation and commun-
ication overhead than the polling method used by LOWEST, and the load infor-
mation used for placements tends to be less current than that in LOWEST.
Comparing DISTED and GLOBAL, we see the adverse effect of the excess use of
broadcast messages, as the two algorithms are the same except that, in GLO-
BAL, a master is used to collect and distribute load information. As a result,
only the master has to handle N messages per period P, where N is the number
of hosts, while all the other hosts need only to send one message and receive one
during each period.

It should be pointed out that our measurement results and their analyses
are in excellent agreement with those from simulation (see Section 3.4.1), despite
the differences in computing environment and in workload, and the experimental
errors.

A complete evaluation of the qualities of the algorithms cannot be done
using a system of only six hosts. However, since our measurement results agree

well with those of our simulations, they may be viewed as validation of the
latter. Consequently, our simulator may be used, with more confidence, to
explore parts of the design space unreachable by measurement.

4.5.2. Adjustable Parameters

The performance of load balancing is dependent on the parameter values
used in the algorithms. While it is impractical to explore all the possible varia-
tions, or even to present here all the experiments we performed, we show the
effects of the three most important parameters, namely, the load exchange
period P, the local load threshold T, and the probe limit LP, on three of the

algorithms, GLOBAL, RANDOM, and LOWEST, respectively. For all cases, the
canonical workload is applied to the six-host system, and the brackets around
the data points show the 90% confidence intervals.



70

The mean process response times of GLOBAL using various values of P are
shown in Figure 4.2.

55.0"

GLOBAL

M Tr 0.8
e 50.0"
a
n

R
e 45.0-
S
p
0

s 40.0
e

t

m 35.0-
e

s 30.0.

25.0. , , , ,
3.0 5.0 10.0 20.0 40.0 60.0 oo (NoLB)

C..

Load Exchange Period (second)
Figure 4.2. Mean process response time under various load exchange periods P

(Canonical workload, GLOBAL, TL=0.8).

When the exchange rate is too high, the overhead outweighs the benefit of up-
to-date information. On the other hand, if the rate is too low, the information

may get too stale, and performance suffers. The optimal exchange rate is also
dependent on the workload. Specifically, the rate should be high if the job
arrival rate is high and the average resource demands of the jobs are low. This
is the case in our simulation studies for multi-user time-sharing systems. (The
optimal exchange period in Figure 3.4 is 3 seconds, instead of 5 seconds in Figure

ta

.................. z.



71

4.2.) Comparing Figure 4.2 to Figure 3.4, we found a similar pattern in the
curves. However, the simulation curves have steeper slopes, implying that per-
formance is more sensitive to P. This may be due to the higher rate at which
the load fluctuates in simulation. It is remarkable that substantial performance
gains are still achieved with an exchange period as long as 60 seconds. At that
point, host overloading inevitably occurs. The message here seems to be that a
load balancing system can tolerate a certain level of host overloading without
suffering substantial performance degradation.

47.0
M
e
a 46.0
n

R 45.0
e
S
P 44.0
0
n
s 43.0
e
T
i 42.0
I

e -

41.0(
e 40.0 RANDOM
C

0
n 39.0-

38.0
0.0 0.5 1.0 1.5 2.0 2.5

Local Load Threshold
rigure 4.3. Mean process response time under various local load thresholds Y

(Canonical workload, RANDOM).



72

Similarly, there are conflicting requirements for the local load threshold T.

On the one hand, a sufficient number of jobs have to be transferred between the
hosts in order to balance their loads. On the other hand, however, an excessive

amount of job transfers will increase system overhead, and may even cause
severe host overloading. This tradeoff is illustrated by Figure 4.3, which shows
the relationship between the mean response time and the local load threshold for
the RANDOM algorithm, which uses T as its sole parameter. Again, the
optimal threshold is dependent on the load level of the system. If all the hosts
are subjected to heavy workloads, T should be set relatively high to avoid
unproductive job transfers. As we observed in Figure 3.4, performance is not
very sensitive to T within a range. When T changes from 0.5 s to 2.0 s, the

mean response time stayed between 40 and 43 s.

We also studied the performance of LOWEST with various values of the
host probe limit Lp. The results are displayed in Figure 4.4, which shows a
minimum like those in Figures 4.2 and 4.3. Compared to Figure 3.5, perfor-
mance also improves as multiple hosts are probed, but the upward turning point
is lower in measurements, at 4 hosts. At this point, however, almost all the
hosts in the system are probed. With the two systems drastically different in
size (6 vs. 28), fine comparisons are difficult.

From Figures 4.2, 4.3, and 4.4, it is clear that the parameter values of the

algorithms should be dynamically and automatically adjusted as the system load
conditions change over time, in order to keep obtaining most of the performance
gains of load balancing. This supports the proposal of adaptive load balancing

mentioned in Chapter 3.

4.6. Performance under Different Workloads

The previous section compared the performances of the five chosen algo-
rithms us ing the canonical workload. In this section, we study load balancing
performance under different workloads. We first study workloads of different
intensities, then study those with different levels of mobility. The GLOB.L

algorithm, which demonstrated good performance, was chosen for this part of
the study.

4.6.1. Different Intensities

Tables 4.8, 4.9, and 4.10 show the values of the performance indices and
their improvements relative to the NoLB case when all hosts in the system are
subjected to heavy, moderate, and light load, respectively. Although the load
level is the same for all the hosts, separately constructed scripts are used so that
no synchronization effect wili occur.

For the canonical workload studie-d in the previous section, significant
differences in host loads over the entire run (long-term imbalances) exists, hence



73

40.0 -

39.0
M
e 38.0a

n

R 37.0
e

S 36.0
P
0
n 35.0
S
e

t 34.0-

m 33.0-
e

(32.0-
S

31.0

30.0 4 '10 1 2 3 4 5

Probe Limit
r igure 4.4. Mean process response time unuer various prooe jimits LP

(Canonical workload, LOWEST, T7=0.8).

the performance gains can be easily explained. For the workloads used in this '

section, however, the hosts are similarly loaded, yet sizable reductions in
response times are observed for the heavy and moderate workload cases. These
gains can only be attributed to the short-term host load imbalances. At any
particular point in time, some hosts are likely to be significantly less loaded than
others, hence transferring jobs to them will reduce the overall mean job response
time. The distinction between senders and receivers is not clear here; a host ..e
may be overloaded and transfer jobs out at one time, and underloaded later,
when it will receive jobs from other hosts.--NC,

isis



74

Table 4.8. Five hosts with heavy loads (P= 10.0 s, T1= 1.0).

Algorithm Resp. Time Improv. Std. Dev. Improv.

NoLB 87.0 ±2.03 - 121.4 -

GLOBAL 59.4 ±0.15 31.7% 75.9 37.5%

L

Table 4.9. Six hosts with moderate loads (P= 10.0 s, T= 0.8).

Algorithm Reap. Time Impro. Std. Dev. Improv.

NoB _49.5 ±0-27 - 72.4 -

GLOBAL 39.4 ±0.44 20.5% 57.5 20.6%

Table 4.10. Six hosts with light loads (P= 10.0 s, T1= 0.6).

Algorithm Reap. Time Impro. Std. Dev. Improv.

NoLB 28.7 ±0.65 - 38.7 -

GLOBAL 25.2 ±0.52 12.2% 31.4 18.9% 1

A comparison between the response time reductions in the three cases show
that the higher the system load, the greater performance improvement may be
expected. This agrees with our simulation results (see Figure 3.3), and is highly
desirable. Also, it should be noted that the reductions in the standard deviation
of the process response times when the hosts are evenly loaded are not as large'
as in the long-term unbalanced case discussed in Section 4.5.

The reader may have noticed that, while six workstations were used for the L
moderate and light workloads, only five have been used for the heavy workload. I
This is because in the latter case the file server was heavily congested by file
requests. In our experimental system, all the workstations get their files, and all
but two of the workstations do remote paging and swapping, from a single file P



75

server, which is also shared by other workstations, and is simply another Sun-2
workstation configured with disks. When the six workstations are active, the

load on the file server becomes higher than that on the workstations, even for
the moderate workload case. Under a heavy workload, the file server can be

overwhelmed by file access and paging requests, with its average load index
going up to 6 and over. Our experience agrees well with the results of a perfor-
mance study of diskless workstations by Lazowska et al., in which the authors
concluded that the file server's CPU tends to be the first resource in the system
to saturate [Lazowska86].

With the file server's CPU being the focus of contention, the system is no
longer correctly configured, and the potential benefits of load balancing are
overshadowed by the negative impact of a major 1/0 bottleneck. We conjec-
ture, therefore, that greater performance gains are possible if more powerful
and/or multiple file servers are provided. A load index value of 3 is considered
to represent a heavy load in our workstation environment, but may be con-
sidered quite normal in compute servers or time-sharing systems. With the pos-
sibly higher loads in those types of environment, the utility of load balancing
should be greater.

4.6.2. Different Mobilities

In Section 3.4.4, it was pointed out that some of the jobs have to be exe-
cuted locally (immobile jobs). The effects of these jobs are studied here with

measurement, and compared to the earlier simulation results. We use a slightly
different definition of the immobility factor here than that in simulation: 7 is
defined as the percentage of CPU time consumed by the immobile jobs over all
jobs. The impact of immobile jobs on the mean and variance of the job response
times are depicted in Figures 4.5 and 4.6.

The different values of the immobility factor shown in the graph were
obtained by changing the list of eligible jobs in the configuration file, as we can
easily measure the total amount of CPU times consumed by each type of jobs,
and compute their respective percentages of the total. Note that the canonical
workload used in all the previous sections corresponds to an immobility factor of
0.17. As we have observed in simulation, the curves are distinctly concave
upward. Even when the immobility factor is as high as 0.8 (i.e., 80% of the
workload is immobile), most of the performance gains of load balancing are still
retained. This seems to suggest that only a small percentage of the jobs need to
be transferred among the hosts to achieve effective load balancing. For a wide
range of immobility factor values and other adjustable parameters, we have

observed that only less than half of the eligible jobs are actually transferred.
Comparing the curve in Figure 4.5 to those in Figure 3.6 from simulation, we
notice a striking similarity in their shapes. Since the definition of the immobility
factor T that we use here includes all jobs, as opposed to only the eligible jobs as



76

55.0

52.5
M NoLB
e 50.0
a
n
R, 47.5-

e

s 45.0
p
0
n 42.5-
S GLOBAL
e 40.0- P = 10 sec

T- Tr=o.8
im 37.5-
e

( 35.0.

30.0 ,

0.0 0.2 0.4 0.6 0.8 1.0

Immobility Factor

Figure 4.5. The influence of immobile jobs: mean response time
vs. immobility factor (Canonical workload, GLOBAL).

the one used in simulation, the point at which performance starts to degrade
significantly corresponds to a higher value of T.

4.7. Effects on Individual Hosts and Job Types

In the above two sections, we have studied the influences of the two major
factors, namely, the algorithms and the workloads, on load balancing perfor-
mance. We go into more detailed studies in this section by examining the
impact of load balancing on the loading and performance of the individual hosts
and on the response times of each type of job.



77

95.0. S0oo

s 90.0
D 85.0 NoLB

f 80.0
R
e 75.0
S

Po 70.0
n

s 65.0e
GLOBAL 0

T 60.0 P -- 0sec

e 55.0 -=0-

S

50.0

) 45.0-

40.0- ' "

0.0 0.2 0.4 0.6 0.8 1.0

Immobility Factor
Figure 4.6. The influence of immobile jobs: standard deviation of

response times vs. immobility factor (Canonical workload, GLOBAL).

4.7.1. Effects on Individual Hosts

Although it is now clear that load balancing can improve system-wide per-
formance, its impact on the loading of individual hosts is equally important,
especially in a workstation environment. Figure 4.7 shows the average load
index value of each host throughout a run, and with different values of the
immobility factor T. We see a significant reduction in the loads of all the hosts
except those that were originally very lightly loaded. This is a confirmation of
the reduction in the average response times we observed, and is in agreement
with Little's result, which states that the mean queue length and the mean



78

w

3.0-

*=1.0 (NoLB)
2.5-

A
V
e
r 2.0
a

a 0.81
e

L 1.5 0.57
0
a. 0.37
d

I 1.0
n I
d
e
x

0.5-

0.0.
1 2 3 4 5 6

Host Number
r igure 4.7. toaas on nosts, witn various immoniity tactors

(Canonical workload, GLOBAL, P= 10.0 s, T= 0.8).

queueing time has a linear relationship in any queueing system. We also notice a
strong equalization of the hosts' loads: as the immobility factor goes from 1.0
down to 0.17, the hosts' loads are compressed into a narrow range. Thus the
term "load balancing" is truly appropriate in our case, even though none of the
algorithms we studied takes equalizing loads as its explicit objective. The simi-
larity between Figures 4.7 and 3.10 is very easy to notice.

The fact that the loads of the hosts tend to become balanced on the average
does not necessarily mean that they are balanced during shorter intervals, which,



Y-O

however, would be highly desirable. Indeed, this is shown again not to be the

case by Figure 4.8, where the 20 second averaged sum of CPU, I/O, and memory

queue lengths (as a load index; see Table 4.5) is plotted as a function of the time

during a run.

NAB, Host 1 NoLD, Host 2 NoW., Host 3

L L to

3.0 1d3.

,a a
dd do•SL,

0 . .0

0.0 it S.  .,

to is 0- i to 0 a W a 0 a 0 5315 853_

T11m (-M-) Trm (Wan") Tm (e)

Figure 4.8a. The load on each host as a function of time, NoLB. t

Several comparisons may be made using the plots. Comparing the loads of
the hosts without load balancing, we see significant differences in loads. These

N 0



80

GLOBAL, Host 1 GLOBAL, Host 2to G O A ,Hs3GLOBAL, Host 3Ii
L L . I

to~ L td d&

1 2 .

L .0

a a 10 is 9. 801 0 a i0 A go a ID n 0 5 W 7a ID 26 31D

7b b) MM () =hot)

L& GLOBAL, Host 4 GLOBAL, Host 5 GLOBAL, Host 5

41& 4& 40,

L L L

d d I

10 .p 1.0

0.0 00 0.06

so10153535OD 0 5)I D 0 a5to153535U'm (-wn") 1 (wamm) 7ibm (WON)

Figure 4.8b. The load on each host as a function of time, GLOBAL.

differences are substantially reduced by load balancing. However, there still
exist load fluctuations in each host. Actually, the fluctuations are stronger than
those we observed in simulation (see Figure 3.11). Our load balancer operates at

the job level, and several processes may be created by a single job. As long as

those processes are treated as an inseparable group, temporal fluctuations in load

seem unavoidable. Since smoothing the hosts' load over time is highly desirable,
we conclude that load balancing at the job level using initial placement only has I

*p~I~~** -VI ~ V'U Ir 4 1 1~p~. ~ V V



0

the drawback of not being able to eliminate temporal fluctuations. On the other
hand, it is questionable whether the performance gains due to further reductions
in temporal load fluctuations provided by load balancing at a finer granularity
would more than offset the additional communication and computation over-
head. More research is called for here.

4.7.2. Effects on Each Type of Jobs

The conjecture could be made that, while the mobile jobs will generally
benefit from load balancing, the immobile jobs will not benefit much, or not at
all. Our measurements contradict this conjecture. Table 4.11 lists the mean
response times of each type of jobs executed during the runs with and without
load balancing. All times are in seconds, and the percentage improvements are
provided (in parenthesis) following the response times for the load balancing
case. As shown in Table 4.7, the average response time of all jobs changed from
53.3 s for NoLB to 32.6 s for GLOBAL, with an improvement of 38.9%.

The average response times of all types of jobs are reduced, and, with only
a few exceptions (cp, date and finger), the reductions are uniform across the
board. There is no clear difference in improvements between different classes of
jobs, big or small, mobile or immobile. While the response time of a job to be
transferred will improve because it will be executed on a more lightly loaded
host, those of the jobs already running on the initial host will also improve
because they will not have to compete with the newcomer.

4.8. Summary

In this chapter, we described the design and implementation of a load
balancer for a loosely-coupled distributed system, and presented some of the 0
results of a large number of measurement experiments performed on the system.
On the basis of our findings, we believe that transparent, flexible load balancing
at the job level can be achieved at low cost, and without modifying either the
system kernel or any of the existing application programs. Our design
emphasizes a clear separation between the mechanism and the policies for load
balancing, thereby allowing the particular load balancing algorithm, along with
its adjustable parameters (e.g., the load exchange period, the local load thres-
hold, and the probe limit) to be dynamically changed in response to changing
system load conditions.

Measurements show that load balancing can indeed significantly reduce the
mean process response time, and that the corresponding reduction in the stan-
dard deviation of process response times is even greater. Furthermore, the
improvements are largely uniform over all classes of jobs, big or small, mobile or
immobile, and most of the improvements can still be retained when up to 80%
of the workload cannot be transferred between the hosts. While we observed



82

Table 4.11. Average response time of each command type with and without LB

(Canonical workload, GLOBAL with T= 0.8, P= 5 s).

rmd elig. count NoLB LB md elig. count NoLB LB

at N 33 5.19 3.53 (32.0%) 8 N 53 52.7 30.3 (42.5%)

!c Y 54 89.1 53.8 (39.6%) nan Y 8 20.2 6.78 (66.4%)

p N 3 2.34 2.30 (1.7%) fnv N 2 3.61 1.72 (52.4%)

late N 22 1.81 1.46 (19.3%) roff Y 17 181 102 (43.7%)

If N 9 6.22 3.61 (42.0%) s N 23 22.5 14.1 (37.3%)

litroff Y 7 324 194 (40.1%) wd N 18 4.26 3.02 (29.1%)

lu N 6 82.6 55.1 (33.3%) rm N 0 -

egrep Y 7 22.1 6.07 (72.5%) sort N 30 105 66.8 (36.4%)

eqn Y 5 103 64.2 (37.8%) spell Y 45 117 73.6 (37.1%)

fgrep Y 10 19.2 11.9 (38.0%) tbi Y 2 109 55.9 (48.7%)

fnger N 95 92.6 80.4 (13.2%) roff Y 12 110 65.8 (40.2%)

Irep Y 3 12.1 6.56 (45.8%) ptime N 34 7.85 4.18 (46.8%)

,rn Y 7 277 158 (43.0%) rsers N 4 7.08 3.20 (54.8%)

'int Y 24 78.6 42.0 (46.6%) vc N 15 12.3 5.13 (58.3%)

pq N 12 29.8 15.2 (49.0%) vho N 11 4.78 2.29 (52.1%)

that load balancing has strong equalization effects on the individual hosts' loads

over the entire measurement runs, there still exist temporal fluctuations in host

loads. We attribute this drawback to the fact that several processes may be
created by a single job, and suggest that load balancing at a finer granularity be
studied to see whether this conjecture is correct, and whether such fluctuations
can be advantageously reduced.

Five load balancing algorithms were studied that used different methods to
distribute load information and to perform job placement. We found that the
algorithms using periodic load exchanges and those acquiring such information
on demand provide comparable performances. For the former class of

i

"d -. ~ P P P ;



F- -.. -
11 R T Mz W

83

algorithms, the use of a central agent to collect and distribute load information
reduces the computation and communication overhead, and hence provides
better performance. The centralized algorithms are also better suited for adap-
tive load balancing, in which the algorithm and/or its parameters may be
changed dynamically. On the other hand, distributed algorithms such as
LOWEST generally impose lower overhead, scale better, and are more reliable.
We also found that the performance of load balancing is, to various degrees, sen-
sitive to the algorithms' parameter values.

As well as load balancing algorithms and their parameters, workloads also
have a strong impact on performance. Generally speaking, the higher the load,
and the greater the imbalances in the hosts' loads (both long-and short-term),
the greater the performance improvements that may be expected. Short-term
imbalances can be as profitably exploited as long-term imbalances, as demon-
strated by the performance gains when all the hosts are subjected to similar lev-
els of loads.

In Sections 4.5, 4.6, and 4.7, we compared each aspect of our measurement
results to those in Section 3.4 from simulation, and found good agreements in
almost all cases. As the two independent studies use different approaches, work-
loads, and types of system, the results from measurements serve as strong sup-
port to our simulation approach and its findings.

Fi

V.,



84

Chapter 5

Load Balancing in Other Environments

5.1. Overview

The results of the simulation experiments reported in Chapter 3 and those
from measurements in Chapter 4 agree well in many aspects. In this chapter, we
drive the same type of simulator used in Chapter 3 with trace data from two
other computing environments, Bell Communications Laboratory and Lawrence
Berkeley Laboratory, to further test the generality of our findings. A compara-
tive study of the three workloads and their corresponding simulation results will
certainly extend and enhance our understanding of load balancing.

In the next section, we characterize the workloads from Berkeley, Bell, and
LBL by their job arrival, and CPU and I/O consumption patterns. While
interesting in itself, workload characterization also provides a basis for the expla-
nation of the performance differences among the systems. In Sections 5.3 and
5.4, simulation experiments using the Bell data and the LBL data are discussed.
Section 5.5 is a brief summary.

5.2. Workload Characterization

Our purpose for using multiple sets of traces in simulation is to identify
those observations common to all the systems, which are likely to be general pro-
perties of load balancing, rather than being peculiar to some system. Conse-

quently, the workloads should be chosen from environments as diverse as possi-
ble. Unfortunately, collecting traces from computer systems often involves a
substantial amount of effort.

Besides the Berkeley trace, we managed to collect or obtain traces with the
same format from two other environments. Like the Berkeley data, the Bell
data is from VAX-11/780 machines running Berkeley UNIX, but these machines
support research computing over a wider spectrum of topics, and in an industrial
settingt.

t Leland and Ott collected the data, and used it in their simulation work [Leland86.

pr~



85

The LBL data is from a cluster of five VAX-11/8650 machines running the
VMS operating system and sharing disks via a high speed bus. The 8850 proces-
sor is generally regarded as 4-5 times more powerful than a 780 processor, and,
also because of the large main memory of several hundred MB in each processor,
the LBL environment may be regarded as a bank of compute servers. The work-
load is a combination of daily computing and large-scale scientific computation,
simulation, and graphics applications in disciplines ranging from physics, to
chemistry, to astronomy. Measurements have been collected simultaneously
from all of the five machines. Simulated systems with size greater than five are
driven by traces from several days. It has been observed that, due to the very
large main memory size, the contention for the shared bus and the disk drives
were light, and the CPUs were definitely the system bottleneckst.

In Tables 5.1, 5.2, and 5.3, some basic statistics are provided for the three
environments. For ease of comparison, the Berkeley data are repeated from
Chapter 3. In all cases, the job resource demand distributions are far from
exponential, as pointed out in Chapter 2. The ratio between the standard devia-
tion of job CPU demands and their mean ranges from 6.1 in the Berkeley data
to 36 in the LBL data. The same ratio for file I/O ranges from 4.5 to g. Con-
sistently, the Bell data demonstrates greater skewness in resource demand distri-
butions than the Berkeley data, and the LBL data an even greater one. In the
former case, this is caused by the substantial number of big jobs commonly seen
in industrial environments. In the latter case, the high skewness results not only
from the very heavy jobs, but also from the greater power of the CPUs - the
daily computing jobs take very little time to finish.

To gain more detailed understanding of the job resource demand patterns,
we generated three groups of distributions from the three sets of traces. Figure
5.1 shows the cumulative distributions of the number of jobs with CPU demands
less than or equal to x from measurements in the three environments, compared
to the corresponding curves for an exponential distribution with the same mean.
In all three environments, there is a substantially larger portion of jobs with lit-
tie CPU demand compared to the exponential distribution, complemented by a
small number of CPU intensive jobs. For example, 60-83% of the jobs consume
less than half a second of CPU time, and only 3-7% of the jobs requires more
than 4 seconds, in all the traces. All three distributions are significantly different
from their exponential models, and especially the LBL data. This is consistent
with our observations earlier using their mean and standard deviation.

$ An informal experiment consisting of replacing magnetic disks with high speed electronic
disks yields little improvement in the response times of benchmark programs, thus supporting
our observation [Beals87].

i .. . ....



86

A more relevant measure than the proportion of jobs is probably the per-
centage of CPU resources consumed by small and big jobs. Figure 5.2 provides
a direct assessment.

- Measurement
- Exponential w/ same mean

1.0 ...... ....... ........ ............ ...

,09 0 .9 .......................... ...... .... . ....................
C.
U VB
m 0 .8 ....... -0....... ..............................
U

a 0 .7 ...... ....... t ....... ...... ....... ...... ...... ...... ......
t

v 0 .6 ............... ...... ...... ...... ....... ....... ..... ....eiV 0.6
e

D 0 5 . ...... ...... ... ... . i.... .............................
DO.5 ... ...

S
t 0 .4 ............... i .................. ......
ri ....... 0 .3.. ...... ....... '....... '...... ...... ....... .......'

u
i ... .... ... " . ..... ........... .- ... ... .......

0.2 ...
0

n 0.1 Berkl .............

-7-6-5-4-3-2- 0 1 2 3 4 5 6 7

Execution Time (power of 2)
Figure 5.1. Distributions of jobs by their CPU demands.

85-95% of the total CPU time is consumed by jobs requiring more than 1 second
of CPU time, or 10-25% of all the jobs. Obviously, considering only these jobs
will provide effective load balancing, without causing excess overhead.

Similar to job CPU demands, the three distributions of the number of file
I/O operations are also highly skewed (Figure 5.3).

IWO' NC A



87

Table 5.1. Basic Statistics of the Berkeley Data.

Total duration: 196 hrs (49 sessions of 4 hrs each)

Total number of jobs: 297,595

Job inter-arrival time: mean= 2.371 s, SD= 6.270 s

Job execution time: mean= 1.492 s, SD= 19.14 s

Number of file I/Os per job: mean=18.23, SD= 81.43

Average CPU utilization: 62.9%

Average response time (NoLB)- 5.38 s

Average CPU queue length (NoLB): 2.03

Table 5.2. Basic Statistics of the Bell Data.

Total duration: 1008 hrs (42 sessions of 24 hrs each)

Total number of jobs: 1,168,579

Job inter-arrival time: mean= 3.105 s, SD= 11.70 s

Job execution time: mean= 1.675 s, SD= 51.88 s

Number of file I/Os per job: mean=23.87, SD= 147.9

Average CPU utilization: 53.9%

Average response time (NoLB): 7.89 s

Average CPU queue length (NoLB): 2.28

Table 5.3. Basic Statistics of the LBL Data. I

Total duration: 960 hrs (40 sessions of 24 hrs each)

Total number of jobs: 592,661

Job inter-arrival time: mean= 5.831 s, SD= 73.91 s

Job execution time: mean= 2.702 s, SD= 98.33 s

Number of file I/Os per job: mean=58.83, SD= 527.9

Average CPU utilization: 46.3%

Average response time (NoLB): 6.56 s

Average CPU queue length (NoLB): 0.81

I



p

88

-Measurement

- Exponential w/ same mean1 0 .......... ......... .......... ; ......... ;- ............ .....
c o o . ... ...... . ........ ......... ......... .... ...

00. Berke~y;0. .........
C:

uBeley
I

a 0.7 . ........ ... -: ...................
t
i v~~ ~ 0 .........B .................................. ...................
V .6 LBL
e

D 0 .5 . .. .......... .. .. . ...... . .......... ......... .. ...... ....... ......... ...........

•: ....:.... i......... i......... ......... ;......... .........
t 0.4 ...
r

U
t

n 0 I . ...... ................ ........ " ......... ......... , ......... ......... .........i0.2-
0

0.0
-6 -4 -2 0 2 4 6 8 10 12 14 16

Execution Time (power of 2)
Figure 5.2. Cumulative distributions of CPU time consumed by jobs

of different sizes.

5.3. Simulations Driven by the Bell Traces
With an understanding of the similarities and differences in the three sets of

trace data, we are ready to discuss simulation experiments with the Bell and
LBL traces in this and the next section. For the Bell trace, the same system
model as that for Berkeley was used. A large set of experiments have been per-
formed, and the results were found to be in excellent agreement with those from
the Berkeley trace. To avoid unnecessary repetition, however, we choose to
present only some of the more interesting and possibly controversial results here.
The structure of the following subsections parallels those in Section 3.4, with



89

19.0 . . . . ..

N
U
m 17.0 . .

b
e
r 15.0

o Blell
f
o 13.0 LB........ B .. .... ...................... ..............

s 11.0....(0 .

o_w
r 7.0 .. .. .0

f Berkeley
.. .. ... ... .. .. .. .............. ................. .. .... ........

0 5.

3.0' 1 1 1
0 50 100 150 200 250 300 350 400

Number of Disk I/O
Figure 5.3. Distributions of jobs by their file I/O.

some subsections omitted.

5.3.1. Comparison of the Algorithms

Figure 5.4 shows the best achievable performances of the seven algorithms,
together with the three boundary cases for systems with 7, 14, 28, and 42 hosts
and under comparable levels of load. Since the networking environments are
similar for Berkeley and Bell (Ethernet type local area network), we used the
same overhead assumptions for the Bell systems as for the Berkeley ones. The
curious reader can easily verify the similarities between Figures 5.4 and 3.2.

l5%



11M 1
go

Load Level:

56.0% 55.1% 54.7% 53.3%
0.65

R
e
s 0.60. DISTED xP
o -

n
S 0.55 RANDOM-

T RESERVE Ai 0.50 '.N -a/ r:EV

m
e

GLOBALO

n .-- -q- THRHLDV0.40 LOWEST o
r

m Ca 0 .4 0 ........ E T e
S... . PartCOST+

Z 
- NoCOST*

e 0.35-
d

)L

0.30
7 14 21 28 35 42

Number of Hosts
Figure 5.4. Average response times with different system sizes

(Bell trace; normalized against the NoLB case).

The amount of performance improvement achievable with the Bell data is
approximately 5 percent more than that with the Berkeley data, although the
overall system load level, measured by the average CPU utilization, is lower.
This appears to contradict our earlier observation that improvement increases
with load level. A more careful examination, however, shows that the level of
resource contention in the Bell systems during the normal working hours is actu-
ally higher than that in the Berkeley system. Due to the 24 hour duration of the
session period, however, the overall load level is lower. The improvement, on
the other hand, is greater, as a large proportion of the jobs are executed during

'p ' p* ,'q'l~ ~P .p * ~ V .~



the heavy congestion periods.

The relative rankings of most of the algorithms in Figure 5.4 are the same
as in Figure 3.2. GLOBAL, THRHLD, LOWEST, and CENTRAL are still the
best performing algorithms, with improvements close to each other and not far
from that of NoCOST. RANDOM performs quite well considering its simplicity.
while RESERVE and DISTED yield performances significantly worse than those

of the best performing ones. The sharply rising curve of DISTED is especially
noticeable.

The scaling behavior of the algorithms again shows significant but limited
economies of scale, as in Figure 3.2. Even the points where the curves start to
flatten are very close - around 28 hosts. Two of the three centralized algo-
rithms, GLOBAL and CENTRAL, still demonstrate good scaling capability.

A shortcoming in the Berkeley trace is its relatively short 4-hour session
duration. Very long jobs may not be reflected, and possible temporal correlation
between the hosts' loadst may be lost. This problem is reduced in the Bell and
LBL traces, where all iobs started during the 24 hour period are included, and,
since all sessions start and finish at midnight, some recurrent system loading pat-
terns are captured. The similarities in the results for the Berkeley and the Bell
data seem to suggest that no significant error is introduced by the shorter ses-
sions of the Berkeley systems.

5.3.2. Effect of Immobile Jobs

We repeated the experiment in Section 3.4.4 using the Bell trace, and the
performance with different values of the immobility factor is shown in Figure
5.5. The striking similarities among the three corresponding plots in Chapters 3,
4, and 5 strongly suggest that the insensitivity of performance to the changes in
the fraction of immobile jobs is a fundamental property of load balancing. This
conclusion is also supported by the LBL data.

5.3.3. Impact on Individual Hosts

Again, experiments parallel to those in Section 3.4.6 were performed with a
system of fourteen hosts, so that the utilizations, the means and standard devia-
tions of the job response times, and the average CPU queue lengths of the hosts,
with and without load balancing could be compared. The results are shown in

Figures 5.6, 5.7, 5.8, and 5.0.

With the host CPU utilization with load balancing ranging from 45% to
70%, the average response time of every host is improved (Figure 5.7). Host 4

t For example, the loads or all hosts may increase shortly before the lunch hour, as people
submit long jobs before leaving.

- - ~ ~~c.M% -



92

9.0

M 8.0-
e No
a
n

R7.0
e
S
P 6.0
0
n
S
e 5 .0

m 4.0-e

) 3.0-
3.0 \*NoCOST

2.0,
0.0 0.2 0.4 0.6 0.8 1.0

Immobility Factor
Figure 5.5. Effect of immobile jobs (Bell trace; Tcpu=1.0 s).

experiences only a small improvement, although its utilization is relatively high.
Looking at its load more closely, we find that a number of very long jobs wereI executed on it sequentially, and that the competition for CPU was low (see its

average CPU queue length in Figure 5.9). Load balancing at the job level can-
not, and should not help much in this situation. This example also reveals the
inadequacy of the average CPU utilization as the only measure of load level.
The improvement in the standard deviation of job response times is less substan-
tial than in the Berkeley trace simulations and in the measurement results. The
comparison of the average CPU queue lengths with and without load balancing
yields no surprise: the values are reduced significantly, and fall into a very

. " , :... . p, " ,,, y, ,~ ~ ~~~~, ," ,1 , i .. . .



93

0.75 13.0
12.0- 0.15 W-H OW

0.70, 11.0 LBO GLOBAL
,: 10.0,

C a
p 0.65 R 9.0
U

U 1 .0.

o 7.0
i I

i s 6.0

3T 5.0

0.650 m 4.0

3.0

0.45 20

0.40 ........ ... 0.0 . . . . . .
6 2 10 1 9 7 112 3 1 11 4 6 14 a 10 7 14 412 3 13 11 1

Host Number Host Number

Figure 5.6. Host CPU Utilizations of a 14 Host System Figure 5.7. Mean response times or individual hosts
(sorted for NoLB; average utilization with NoLD: 56.1%). (sorted for NoLB; average utilization with NoLB: W5.1%).

'(415) 4.6.

std. dev. (415) IM 9-GNL
ISO 124 0-4 NoL 4.0- 3 o--NoLB

62.8 - GLOBAL A 0.9 = GLOBAL

S 1 0  V .5.
t r
a 14.

D~~ ~ 10 •.0 ,
d 

Is
p120 Q 2.5
d

D u 2.0
suo

L 1.5

3k40 h

0 VVV10.01........... ..............
0 7 2 10 12 3 13 14G Iil 1 4 4 91 0 7 5 2 12 13 3 3 6 1 11 14

Hot Number Host Number

Figure 5.S. Standard deviation o response times of individual hosts Figure 6.9. Average queue lengths of individual hosts
(sorted for NoLB; average utilization with NoLB: 56.1%). (sorted for NoLD; average utilization with NoLB: 45.1%).

narrow range. An examination of the time behaviors of the host loads show
reduced, but still existent fluctuations.

'C



5.3.4. Impact on Each Job Class
Just as we did in Section 3.4.7, the average response times of different kinds

of jobs were computed from simulations of a 28-host Bell system. The results
are shown in Figures 5.10 and 5.11. (In Figure 5.1.1, E represents the amount of
CPU time a job consumes.) The only difference between these plots and Figures
3.14 and 3.15 we can notice is that the performance difference between the
Remote and Local jobs is somewhat larger in the Bell system. The same reasons
provided in Section 3.4.7 can be used to explain that difference here.

32- A

28 - BIG; NoLB

' 24
eo

S

p
020n |,

e 16

S 8- BIG, Local; GLOBAL

4- SMALL; NoLB
V SMALL; GLOBAL

0
7 14 21 28 35 42

Number of Hosts
Figure 5.10. Average response times for several classes of jobs (Bell trace;

28 hosts; GLOBAL, T 1=.0, Tcpu=.Os; utilizations same as in Figure 5.4).



1.2-

N E<0.1

r 1.0i _ -- ... - .... .... X 0.1< --E < 0.5

ma.

0.8'
z
e .................... 0.5< -E < 1.0

R 0 "6

e
s .............. o 1.0< = E < 5.0

O E>=100
s 0.4--- - ------------ 5.0-<=E<20

e 20<=E< 100

T
i 0.2

m
e

0.0 , -

7 14 21 28 35 42

Number of Hosts

Figure 5.11. Average response times for several sizes of jobs (Bell trace; S
28 hosts; GLOBAL, T1=1.0, TCp==l.0s; utilizations same as in Figure 5.4).

5.4. Simulations Driven by the LBL Traces

The architecture of the system at Lawrence Berkeley Laboratory is quite
different from those of the Berkeley and Bell systems. In a Vax cluster, a
number of CPU-memory pairs are connected by a high speed bus to a pool of
disk drives. Such a configuration is sometimes referred to as a "closely-coupled"
distributed system, as it represents an intermediate solution between computers
connected by networks (loosely-coupled), and processors sharing main memory
(tightly-coupled). Due to bus contention, closely-coupled systems usually have

•!



limited scalability. Since we are not interested in a particular networking tech-
nology, we just assume that the hosts are connected by a fast communication S
medium, and ignore the contention problem on the network.

To simulate the LBL systems, the same simulator structure is used. How-
ever, the message and job transfer overhead is assumed to be less than that in
loosely-couple systems with VAX-11/780 type of machines, because the machines
at LBL are much more powerful, and communication is faster. Ideally, a load
balancer should be implemented, and the measured overhead used in the simula-
tions. Instead, we decided to just use rough estimates. As will be seen below, as
long as the costs are significantly lower than those assumed in our previous simu- -

lations, the actual overhead values do not affect the results much. We assume
that computing the local load and sending its value out costs 10 milliseconds,
and receiving a load value and storing it costs 5 milliseconds. Transferring a job
is assumed to consume 50 milliseconds of CPU time on each side, and a 100 mil-
liseconds total delay to the job.

Figure 5.12 shows the mean response times given by the various algorithms
in systems of 5, 10, 20, and 40 hosts. The amount of improvement achieved is
much less than those in the Berkeley and the Bell systems. This is consistent
with our earlier observations, as the load level in the LBL systems is significant
lower. With a CPU utilization of 469, and average queue length of 0.8, load
balancing is not much needed. Since the hosts are several times more powerful
than those in the Berkeley and the Bell systems, we observe a large number of
very small jobs. On the other hand, there are big simulation and scientific com-
putation jobs that run for hours, usually in sequence. Just as in the case of Host
4 in Section 5.3.3, load balancing cannot help much in this case.

Due to the low cost of overhead and the reduced room for performance
improvement, the differences between the performances of the algorithms are
greatly diminished (except for RANDOM). This suggests that, in a system with
fast interprocessor communication, reducing load balancing overhead is not as
important. This observation is stronger here than in Figures 3.7 and 3.8, where
the reductions (and increases) of message and job transfer costs are considered
separately. The way the load balancing algorithms scale is still the same as in
other systems, although less significant now.

Our observations of performance as a function of the immobility factor, of
individual hosts, and of different types of jobs using the LBL data yield results
similar to those provided by the Berkeley and Bell traces. %

~11
5.5. Summary

The studies of load balancing performance using trace data from Berkeley
performed in Chapter 3 were repeated for the Bell and LBL systems. Although
the results varied due to the differences in the systems and their workloads, the



lW. 1 N !.aLI. ' . ,, . .M : ; .7..R ; IiXIXW V # ~ ~ ~ l, . DU ( (

07

Load Level:

45.5%45.25% 44.4% 46.7% 45.9%
~~~1.00 4! =-

R
e 0.954 NoLBE8
S
P RANDOMB

0
nI 0.90-
IS
e

T 0.85 "IGUWV
LOWESTO DISTED x

m~~

n

o 0.75-r

a
S0.70- T

z NoCOST*
e 0.65-
d

5 10 15 20 25 30 35 40

Number of Hosts

Figure 5.12. Average response times with different system sizes
(LBL trace; normalized against the NoLB case).

basic conclusions remained unchanged. Load balancing was found to produce

performance improvements in all cases. The algorithms behaved similarly in all

three sets of simulations. The effects on load balancing of the immobility factor,

and those of load balancing on individual hosts and job types, were observed to
be similar in all three environments.

1*

II

Chapter 6

Final Remarks

6.1. Conclusions
In the previous chapters, dynamic load balancing has been studied in a

number of different computing environments, using a combination of trace-
driven simulation, experimental implementation, and measurements. While
great caution is called for in attempting to generalize the observations made in
case studies, the agreements found in the results from different systems and/or
using different research approaches lead us to the belief that man.' of our
findings are not merely properties of a particular system, but rather have more
general applicability.

At the beginning of this dissertation, we posed a number of open questions
in load balancing, and proceeded to seek answers. Below, we summarize our
findings by revisiting these questions.

1) How much performance improvement can be expected from load balanc-
ing?

In a local, loosely-coupled distributed system, load balancing using initial
job placements alone can improve performance significantly. In the simula-
tion studies of Chapters 3 and 5, and the measurements of Chapter 4,
reduction of 30-55% in the average job response time was observed. The
workloads used had moderate intensities, with some imbalances; hence,
when the workload is heavy and/or more unbalanced, greater improvements
may be expected. The reduction is around 20-25% with the LBL data in
Chapter 5, due to significantly lower resource contention and queueing than
in all the other systems. In all cases, the response times become more
predictable. Assuming that a reasonably fast local area network environ-
ment is available, measurements show that the costs of load information
exchange and job transfer are low.

2) What algorithm to use?
While it is impossible to study all the possible algorithms, we conducted a
comparative study of seven algorithms belonging to two families: those

- \ *, \ • f '. -, .• - - - . - -' " i,

100

relying on system-wide, periodic load exchange and job placement, and
those using host subset probing and placement. We observed a fundamen-
tal tradeoff between the amount of overhead incurred and the quality of the
job placements. The two families of algorithms were found to provide simi-
lar performances in systems with up to 50 hosts. Because of the significant
but limited economies of scale in load balancing, there is not much incentive
to do load balancing in a very large system, and algorithms with scalability
of a few tens to a few hundreds of hosts appear to be sufficient. For the
periodic algorithms, using a central agent to collect load information and/or
to make placements reduces overhead and improves performance. The per-
formances of some of the implementable algorithms were found to be close
to that obtainable without any overhead, thus suggesting that there is prob-
ably not much room for further performance improvement unless more load
and job information is available and used. It is noteworthy that the above
conclusions are common to all the systems we studied.

3) What load index to use?

A comparative study of load indices using measurements show that the per-
formance of load balancing is strongly dependent upon the load index used.
For the two families of load indices we examined, one based on resource
queue lengths, and the other one on resource utilizations, the former was
found to be able to reflect the current system load more accurately, thereby
producing better performance. Due to the fluctuations in load, smoothing
of the instantaneous load values produces further improvement, provided
that the averaging interval is not too long as to obscure the current loading
conditions.

4) How does the system '8 workload affect load balancing performance?

Generally speaking, load balancing yields greater performance improvement
when the workload is heavy and unbalanced. Load balancing is more
effective when there are fewer very large jobs, because there are more
opportunities to redistribute the workload. This is partly why we observed
greater improvement in simulation of the Berkeley and Bell systems than in
simulation of the LBL system, and in measurement. We found that load
balancing can tolerate immobile jobs to a large extent without suffering
significant performance degradation. This is because only a small fraction
of the jobs need to be transferred to achieve load balancing effects.

5) What is the impact of load balancing on system behavior?

The impact of load balancing on individual hosts and job types is found to
be quite uniform using both simulation and measurement. While heavily
loaded hosts see big improvements, only slight increases in average response
time, or even decreases, are observed on those hosts originally with light
loads. Although this is dependent on the degree of system load imbalance,

HAO

the beneficial effects of load balancing upon each host seem to be general.
Similarly, no drastic differences are observed between the treatments of
different types of jobs - jobs executed remotely or locally enjoy compar-
able improvements in response time, and the improvement in big jobs is not
achieved at the expense of small jobs. While for the algorithms we studied
the long term loads of the hosts are made quite even by load balancing,
temporal fluctuations are reduced by it but still exist. This is more
significant in measurements where multiple processes of the same job are
transferred to the same host, inevitably causing a substantial increase in the
host's load.

System instability in the form of host overloading is possible, but can be
alleviated by using up-to-date load information, and by limiting the jobs eli-
gible for transfer. Also, slight host overloading does not cause much perfor-
mance degradation.

Our implementation work in UNIX environments shows that general-purpose
load balancing can be implemented transparently, and with little change to the
system or application software. While we note that very few load balancers are
currently in operation, more production quality load balancing systems are
called for because the feasibility and performance benefits of load balancing have
been clearly demonstrated.

6.2. Future Work

As pointed out in Chapter 1, load balancing is a research topic with many
dimensions, and involves a large number of research issues. We studied some of
the problems which we believe to be of fundamental importance. Our work may
be extended in a number of directions. First, we treated load balancing mainly
as a performance issue, while in reality there are many other aspects. Due to
the extensive sharing of computing resources required by load balancing, the
rigid boundary between hosts is broken, making administration and accounting
problems more complex. The security and protection policies of the hosts may S
be threatened by the presence of foreign processes executing and accessing local
resources. Dannenberg proposed, in an environment of personal workstations,
the use of dedicated servers, called butlers, to monitor the programs running on
the host, and to enforce the sharing and protection rules specified by the owner
of the station by means of a policy database [Dannenberg82]. This provides the
workstation with a specifiable level of autonomy, while still allowing sharing
among the hosts. We believe that similar functions can be suitably implemented
in the LIM and LBM of our load balancer. The open research problems, how-
ever, are those concerned with the types of policies suitable for different types of
computing environments, e.g., time-sharing systems, banks of compute servers,
and networks of personal workstations.

102

Throughout this research, we assumed the system to be homogeneous, i.e.,
consisting of hosts of the same type and power. While this base case should
clearly be carefully studied and understood, heterogeneous systems offer new
opportunities and present new problems to study. We can classify heterogeneous
systems into two types. Type A has hosts of varying capacities, but a uniform
and compatible software interface, e.g., machines of the same architecture and
operating system, but different hardware implementations. Type B has hosts
with different hardware architecture and/or operating system. With a Type A
heterogeneous system, executing programs remotely and transparently is still
feasible, and we conjecture that the load balancing problem is mainly a load
index problem. That is, a more general form of load index should be used to
reflect the varying capacities of the hosts. The family of indices based on
resource queue lengths may be extended naturally to deal with Type A hetero-
geneous systems. The presence of powerful, yet functionally identical hosts as
compute servers makes the computing environment more usable. In Type B sys-
tems, load balancing becomes much more difficult. Different, but functionally t
compatible programs have to be present on each type of host, and conversion
mechanisms may be needed, requiring software development and increasing over-
head at run time.

The performance of load balancing is closely related to the amount and
accuracy of the load and job information made available to the placement deci-
sion makers, and the efficiency with which such information is used. We have
made minimal assumptions about, and use of, such information (e.g., the job
name and resource queue lengths). It can be conjectured that, as more
knowledge is gained about job and workload characterization, better predictions
about the job resource consumptions and more accurate measurements of system
load will be possible, thus making better load balancing possible. Much further
work is called for in this area.

Load balancing can be realized through process migration, as well as
through initial job placement. Although some successful experiences exist with
implementing process migration [Douglis87] [Almes85] [Powell83] [Theimer85], it
proves to be difficult to implement cleanly in a production system, mainly due to
the persistent residual dependency of the migrated jobs on the originating host.
Integrating migration facilities into an existing system is even harder. Conse-
quently, we believe that initial job placement is still the primary means of load
balancing, given its simplicity and demonstrated potential for performance
improvement. This is not to say, however, that process migration should not be
pursued as an alternative means for balancing loads. Leland and Ott performed
an interesting comparative study of initial job placement and process migration,
and found that the latter can provide some further reduction in mean job
response time [Leland86]. Much more work is obviously needed on this topic as
well.

_n

103

We treated the units of execution to be transferred as sequential jobs.
Although this is still the predominant case, parallel computation is expected to
become much more popular in the future. In a parallel program, several
modules are dispatched to different hosts/CPUs for execution. As a result, the iR
execution time of the program may be reduced. We claim that load balancing is
still, if not more, important in such an environment. While the modules to be
executed in parallel may in some cases be made approximately equal in size (i.e.,
in the amounts of time they will require to complete), unbalanced loads on the
hosts/CPUs may cause one of them to take a longer time to complete, thus
becoming the bottleneck of the entire program, and possibly undermining the
potential advantage of parallel execution. The modules of the same program
may communicate with each other to carry out their tasks. The specific com-
munication requirements, and the resulting overhead, may make it advantageous
to consider them together in placement. Interprocess communication aspects
raise, of course, the need for new load balancing algorithms that will take them
into account.

0

104

Bibliography

(Agrawal85]
R. Agrawal and A. Ezzat, "Processor Sharing in NEST: A Network of Com-
puter Workstations," 1st Inter. Conf. on Computer Workstations,
November 1985, pp. 198-208.

[Agrawala8]
A. Agrawala and S. Tripathi, "On the Optimality of Semidynamic Deter-
ministic Routing Schemes," Inform. Processing Letters, 13, 1 (October
1981), pp. 20-22.

[Almes85]
G. Almes, A. Black, E. Lazowska, and J. Noe, "The Eden System: A Techn-
ical Review," IEEE Trans. Softw. Eng., SE-11, I (January 1985), pp. 43-59.

[Alonso86]
R. Alonso, "Query Optimization in Distributed Databases through Load
Balancing," Ph.D. Thesis, University of California, Berkeley, June 1986,
also as Tech Report UCB/CSD 86/296

[Barak84]
A. Barak and A. Shiloh, "A Distributed Load Balancing Policy for a Multi-
computer," Tech. Report, Department of Computer Science, Hebrew
University of Jerusalem, 1984.

[Beals871
E. Beals, Private communication, May 1987. 6

[Bershad85]
B. Bershad, "Load Balancing with Maitre d'," Tech Report, UCB/CSD
85/276, Computer Science Division, University of California, Berkeley,
December 1985.

(Bokhari79]
S. Bokhari, "Dual Processor Scheduling with Dynamic Reasi,,gaient," IEEE
Trans. Softw. Eng., SE-5, 4 (July 1979), pp. 341-349.

[Bryant81l

R. Bryant and R. Finkel, "A Stable Distributed Scheduling Algorithm,"
Proc. Inter. Conf. on Distributed Processing Systems, 1981, pp. 314-323.

105

[Cabrera84]
L. Cabrera, E. Hunter, M. Karels, and D. Mosher, "A User Process Oriented
Performance Study of Ethernet Networking Under Berkeley UNIX," Tech.
Report, UCB/CSD 84/216, Computer Science Division, Univ. of Calif.,
Berkeley, December 1984.

[Cabrera81
L. Cabrera, "The Influence of Workload on T oad Balancing Strategies,"

* Proc. 1986 Summer USENIX Conference, Atlanta, Georgia, June 1986, pp.
446-458, also as IBM Research Report RJ5271.

[Carey85]
M. Carey, M. Livny, and H. Lu, "Dynamic Task Allocation in a Distributed
Database System," Proc. 5'th Int. Conf. on Distributed Computer Systems,
Denver, Colorado, 1985, pp. 282-291.

[Carey86]
M. Carey and H. Lu "Load Balancing in a Locally Distributed Database
System," Proc. SIGMOD '86, Washington, D.C., 1986, pp. 108-119.

[Chou82]
T. Chou and J. Abraham, "Load Balancing in Distributed Systems," IEEE
Trans. Softw. Eng., SE-8, 4 (July 1082), pp. 401-412.

[Chow771
Y. Chow and W. Kohler, "Dynamic Load Balancing in Homogeneous Two
Processor Distributed Systems," Computer Performance, Chandy and
Reiser, editors, North Holland, 1977.

[Chow79]
Y. Chow and W. Kohler, "Models for Dynamic Load Balancing in a Hetero-
geneous Multiple Processor System," IEEE Trans. Computer, C-28, 5 (May

1979), pp. 356-361.

[Chu80
W. Chu, L. Holloway, M. Lan, and K. Efe, "Task Allocation in Distributed
Data Processing," IEEE Computer, 13, 11 (November 1980), pp. 57-69.

[Dannenberg82]
R. Dannenberg, "Resource Sharing in a Network of Personal Computers,"
PhD Thesis, Carnegie-Mellon University, 1982, also as Technical Report
CMU-CS-82-152, Department of Computer Science.

[Douglis87)
F. Douglis, "Process Migration in the Sprite Operating System," To appear,
Proc. 7th Inter. Conf. Dist. Computing Sys., Berlin, September, 1987, also
as Tech. Report, UCB/CSD 87/336, Computer Science Division, Univ. of
Calif., Berkeley, January 1987.

III IF I DII ,-

106

[Eager86a]
D. Eager, E. Lazowska, and J. Zahorjan, "A Comparison of Receiver-
Initiated and Sender Initiated Dynamic Load Sharing," Performance
Evaluation, 6, 1 (April 1986), pp. 53-68.

[Eager86b]
D. Eager, E. Lazowska, and J. Zahorjan, "Adaptive Load Sharing in Homo-
geneous Distributed Systems," IEEE Trans. Softw. Eng., SE-12, 5 (May
1986), pp. 662-675.

[Ezzat86]
A. Ezzat, "Load Balancing in NEST: A Network of Workstations," Proc.
1986 Fall Joint Computer Conference, Dallas, Texas, November 4-6, 1986,
pp. 1138-1149.

fFerrari78]
D. Ferrari, "Computer Systems Performance Evaluation," Prentice-Hall,
Englewood Cliffs, NJ, 1978.

[Ferrari85]
D. Ferrari, "A Study of Load Indices for Load Balancing Schemes" Tech.
Report, UCB/CSD 85/262, Computer Science Division, Univ. of Calif.,
Berkeley, October 1985; republished, G. Serazzi, Ed., "Workload Character-
ization of Computer Systems and Computer Networks", North-Holland,
Amsterdam, 1986.

[Ferrari86]
D. Ferrari and S. Zhou, "A Load Index for Dynamic Load Balancing," Proc.
1986 Fall Joint Computer Conference, Dallas, Texas, November 4-6, 1986,
pp. 684-690.

[Ferrari87]
D. Ferrari and S. Zhou, "An Empirical Investigation of Load Indices for
Load Balancing Applications," To appear, Proc. PERFORMANCE 87,
Brussels, Belgium, December, 1987, also as Tech. Report, UCB/CSD
87/353, Computer Science Division, Univ. of Calif., Berkeley, May 1987.

[Gao84]
C. Gao, J. Liu, and M. Railey, "Load Balancing Algorithms in Homogene-
ous Distributed Systems," Proc. 1984 Inter. Conf. on Parallel Processing,
August 1984, pp. 302-306.

[Hac86
A. Hac and T. Johnson, "A Study of Dynamic Load Balancing in a Distri-
buted System," Proc. ACM SIGCOMM Symp. on Communications, Archi-
tectures and Protocols, Stowe, Vermont, August 1986, pp. 348-356.

[Hagmann86
R. Hagmann, "Process Server: Sharing Processing Power in a Workstation

107

Environment," Proc. 6th Inter. Conf. Dist. Computing Sys., Cambridge,
Mass., May, 1Q86, pp. 260-267.

[Harbus86]
R. Harbus, "Dynamic Process Migration: to Migrate or not to Migrate," MS
Report, also Technical Note CSRI-42, University of Toronto, July 1986.

[Hsu861
C. Hsu and J. Liu, "Dynamic Load Balancing Algorithms in Homogeneous
Distributed Systems," Proc. 6th Inter. Conf. Dist. Computing Sys., Cam-
bridge, MA, May, 1986.

[HuaS]
K. Hua, "Allocation of Processes and Files for Load Balancing in Distri-
buted Systems," PhD dissertation, Computer Science Division, University of
California, Berkeley, October 1985.

[Hwang82]
K. Hwang, W. Croft; G, Goble, B. Wah, F. Briggs, W. Simmons, and C.
Coates, "A UNIX Based Local Computer Network with Load Balancing,"
IEEE Computer, 15, 4 (April 1982), pp. 55-66.

[Johnston86]
W. Johnston and D. Hall, "UNIX Based Distributed Printing in a Diverse
Environment," Proc. 1986 Summer USENIX Conference, Atlanta, Georga,
June 1986, pp. 514-528.

[Joy80]
W. Joy, "An Introduction to the C Shell," Computer Science Division,
University of California, Berkeley, November 1980.

[Joy83]
W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and D. Mosher,
"4.2BSD System Manual," Computer Systems Research Group, University
of California, Berkeley, July 1983.

[Kratzer8o]
A. Kratzer and D. Hammerstrom, "A Study of Load Leveling," IEEE
COMPCON, September 1980, pp. 647-654.

[Krueger84]
P. Krueger and R. Finkel, "An Adaptive Load Balancing Algorithm," CS
Dept. Report 539, University of Wisconsin, Madison, April 1984.

[Lazowska86]
E. Lazowska, J. Zahorjan, D. Cheriton, and W. Zwaenepoel, "File Access
Performance of Diskless Workstations," ACM Trans. on Computer Systems,
4, 3 (August 1986), pp. 238-268.

(Lee841 J
K. Lee and D. Towsley, "A Comparison of Decentralized Load Balancing

108

Policies in Distributed Systems Characterized by Bursty Job *Arrivals,"
Proc. ACM SIGMETRICS Conf., Raleigh, NC, May 1986, pp. 70-77.

[Leland86]
W. Leland and T. Ott, "Load Balancing Heuristics and Process Behavior,"
Proc. ACM SIGMETRICS Conf., May 1986, pp. 54-69.

[Lionel85]
M. Lionel and K. Hwang, "Optimal Load Balancing in a Multiple Processor
System with Many Job Classes," IEEE Trans. Softw. Eng., SE-11, 5 (May
1985), pp. 491-496.

[Livny82]
M. Livny and M. Melman, "Load Balancing in Homogeneous Broadcast Dis-
tributed Systems," Proc. ACM Computer Network Performance Symp.,
April 1982, pp. 47-55.

[Livny84]
M. Livny, "The Study of Load Balancing Algorithms for Decentralized Dis-
tributed Processing Systems," PhD Dissertation, Weizmann Institute of Sci-
ence, Rehovot, Israel, December 1984, also as CS Dept. Report 570, Univer-
sity of Wisconsin, Madison.

[Ma82]
P. Ma, E. Lee, and M. Tsuchiya, "A Task Allocation Model for Distributed
Computing Systems," IEEE Trans. Computer, C-31, 1 (January 1982), pp.
41-47.

[McKusick85]
K. McKusick, M. Karels, and S. Leffler, "Performance Improvements and
Functional Enhancements in 4.3 BSD," Proc. Summer USENIX Conference,
June 1985, Portland, OR, pp. 519-531.

[Mutka871
M. Mutka and M. Livny, "Profiling Workstation's Available Capacity for
Remote Execution," CS Dept. Report 697, University of Wisconsin,
Madison, May 1987.

[Nelson87]
M. Nelson, B. Welch, and J. Ousterhout, "Cacheing in the Sprite Network
File System," Tech. Report, UCB/CSD 87/345, Computer Science Division,
Univ. of Calif., Berkeley, March 1987.

[Ni8la]
L. Ni and K. Abani, "Nonpreemptive Load Balancibg in a Class of Local
Area Networks," Proc. IEEE Computer Networking Symp., December 1981,
pp. 113-118.

[Ni8lb]
L. Ni and K. Hwang, "Optimal Load Balancing Strategies for a Multiple

i0g

Processor System," Proc. 1081 Inter. Conf. on Parallel Processing, August
1981, Columbus, Ohio, pp. 352-357.

[Ni85]
L. Ni, C.-W. Zu, and T. Gendreau, "A Distributed Drafting Algorithm for
Load Balancing," IEEE Trans. Softw. Eng., SE-11, 10 (October 1985), pp.
1153-1161.

[Powell831
M. Powell and B. Miller, "Process Migration in DEMOS/MP," Proceedings
of the 9th ACM Symposium on Operating Systems Principles, Bretton
Woods, New Hampshire, October 1983, pp. 110-119.

[Rao79I
G. Rao, H. Stone, and T. Hu, "Assignment of Tasks in a Distributed Pro-
cessor System with Limited Memory," IEEE Trans. Computer, C-28, 4
(April 1979), pp. 291-299.

[Sberman72

S. Sherman, F. Baskett II, and J. Browne, "Trace Driven Modeling and
Analysis of CPU Scheduling in a Multiprogramming System," Comm. ACM,
15, 12 (December 1972), pp. 1063-1069.

[Stankovic84]
J. Stankovic, "Simulations of Three Adaptive, Decentralized Controlled,
Job Scheduling Algorithms," Computer Networks 8, 1984, pp. 199-217.

[Stankovic85]
J. Stankovic, "An Application of Bayesian Decision Theory to Decentralized
Control of Job Scheduling," IEEE Trans. Computer, C-34, 2 (February
1985), pp. 117-130.

[Stone77]
H. Stone, "Multiprocessor Scheduling with the Aid of Network Flow Algo-
rithms," IEEE Trans. Softw. Eng., SE-3, 1 (January 1977), pp. 85-93.

[Stone78]
H. Stone, "Critical Load Factors in Two Processor Distributed Systems,"

IEEE Trans. Softw. Eng., SE-4, 3 (May 1978), pp. 254-258.

[Tantawi85]
A. Tantawi and D. Towsley, "Optimal Static Load Balancing in Distributed
Computer Systems," Journal ACM, 32, 2 (April 1985).

[Theimer85]
M. Theimer, K. Lantz, and D. Cheriton, "Preemptable Remote Execution
Facilities for the V-System," Proceedings of the 10th ACM Symposium on
Operating Systems Principles, Orcas Island, Washington, December 1985.
pp. 2-12.

NtA

[Walker83]
B. Walker, G. Popek, R. English, C. Kline, and G. Theil, "The LOCUS Dis-
tributed Operating System," Proceedings of the 9th ACM Symposium on
Operating Systems Principles, Bretton Woods, New Hampshire, October
1983, pp. 49-70.

[Wang85]
Y. Wang and R. Morris, "Load Balancing in Distributed Systems," IEEE
Trans. Computer, C-34, 3 (March 1985), pp. 204-217.

(Wilkes7l]

M. Wilkes, "Automatic Load Adjustment in Time-Sharing Systems," Proc.
1971 Harvard Workshop on System Performance Evaluation, Cambridge,
Mass., 1971, pp. 308-320.

[Wolff87]
R. Wolff, "Stochastic Modeling and the Theory of Queues," Prentice-Hall,
Englewood Cliffs, NJ, forthcoming, 1987.

[Wu80]
S. Wu and M. Liu, "Assignment of Tasks and Resources for Distributed
Processing," Proc. COMPCON, Fall 1980, pp. 655-662.

[Yu86]
P. Yu, S. Balsamo, and Y. Lee, "Dynamic Load Sharing in Distributed
Database Systems," Proc. 1986 Fall Joint Computer Conference, Dallas,
TX, November 1986, pp. 675-683.

[Yum8l]
T. Yum, "The Design and Analysis of a Semidynamic Deterministic Routing
Rule," IEEE Trans. Commun., COM-29 (April 1981), pp. 498-504.

[Zatti851
S. Zatti, "A Multivariable Information Scheme to Balance the Load in a
Distributed System," Master Report, also Tech. Report, UCB/CSD 85/234,
Computer Science Division, Univ. of Calif., Berkeley, May 1985.

[Zhou85]
S. Zhou, H. Da Costa, and A. J. Smith, "A File System Tracing Package for
Berkeley UNIX," Proc. Summer USENIX Conference, Portland, OR, June
11-14, 1985, pp. 407-419.

[Zhou86]
S. Zhou, "A Trace-Driven Simulation Study of Dynamic Load Balancing,"
Tech. Report, UCB/CSD 87/305, Computer Science Division, Univ. of
Calif., Berkeley, September 1986, also submitted for publication.

[Zhou87a]

S. Zhou, "An Experimental Assessment of Resource Queue Lengths as Load
Indices," Proc. Winter USENIX Conference, Washington, D.C., January

IF)R

NEW A~r -. -T

1ii

1987, pp. 73-82, also as Tech. Report, UCB/CSD 85/298, Computer Science

Division, Univ. of Calif., Berkeley, April 1986.

[Zhou87b]
S. Zhou and D. Ferrari, "An Experimental Study of Load Balancing Perfor-

mance," To appear, Proc. 7th Inter. Conf. Dist. Computing Sys., Berlin,

September, 1987, also as Tech. Report, UCB/CSD 87/336, Computer Sci-

ence Division, Univ. of Calif., Berkeley, January 1987.

[Zhou87c]
S. Zhou and R. Zicari, "Object Management in Local Distributed Systems,"

Tech. Report, UCB/CSD 86/267, Computer Science Division, September

1985. to appear, Journal of Systems and Softw., North-Holland.

I

I

