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SUMMARY

rhis report consists of two volumes: In Volume I, the Integrated Analy-
sis Techniques (IAT) for Command, Control and Communications (C3 ) systems are
described, along with the background, concept, requisite methodologies, and
recommendations for an automated analyst's aid. In Volume II, recommendations
for an automated analyst's aid. In Volume 2, the evolution of IAT via succes-
sive trial applications to three (C 3 ) systems or subsystems is described and
the lessons learned are summarized.-'

This first volume summarizes the results achieved to date. These results
clearly indicate the feasibility of IAT, as well as the relationships with
existing techniques (e.g., DeMarco Data Flow Diagrams, IDEF 0 , Operational
Sequence Diagrams, simulation languages, etc.). In particular, the following
results are described:

- A four-dimensional analytic framework for IAT, along with a
definitive set of requirements to be met;

- A symbolic language involving a major extension of Petri net
theory, for modeling and evaluating the performance of manned
C3 systems at any level of description or decomposition;

- A convenient means for aggregating and modularizing system
details without masking their impact on system performance;

- A set of nested, self-consistent and upward-aggregatable system
performance and effectiveness measures derived directly from
the symbolic language;

- A set of rules for applying the overall methodology;

- A flexible database management approach to building and storing
the requisite model structure and data; and

- Recommend features for an automated analyst's aid to applying
IAT to manned C3 systems,

* " Details of the methodology and guidelines for their application are described
in a series of Appendices.

The accompanying figure summarizes the relationship among TAT elements
and also indicates both progress and areas of future work.
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SECTION .

INTRODUCTION

1.1 PURPOSE OF THIS STUDY

This three-year study was undertaken to begin the development of a set
of Integrated Analysis Techniques (IAT) for deriving quantitative measures
of the performance and military effectiveness of Command, Control, and Commu-
nications (C 3 ) systems. The approach taken was to study several C3 systems
(or portions thereof) in depth; to develop a method for representing these
systems (i.e., accurately describing their subsystems, performance parameters,
irterrelationships, human activities, and military effectiveness); to apply
the method to the selected systems; and to codify the method so that other
analysts could apply it as needed to other systems. This report summarizes

the study results.

The developmental results to date clearly indicate the feasibility of
!AT as well as thi relationships with existing techniques (i.e., DeMarco data
flow diagrams, IDEFQ, operational sequence diagramE, simulation languages,
etc.). Trial applications have resulted in critical "lessons learned" that
are also presented here.

In a word, the main obstacle to integration of the many representational
techniques has been the lack of a sinle underlying analytical framework
(i.e., a Theory of C3 ) which at once could (I) support quantitative perfor-
mance evaluation, (2) be used at any level of system description, (3) utilize
inputs obtained from any other representational method (e.g., one most famil-
iar to cht user), and (4) represent C3 -specific system characteristics such
as hierarchical organization structure and the means for system adaptability
and survivability in the race of enemy attack.

1.2 GENERIC C3 ANALYSIS ISSUES

The following subsections highlight the current issues in anialyzing C3

systems: (i) System re:)resontation and modeling issues; (2) How C3 systems
differ from other complex large-scale system; (3) Human-related issues in C 3

Sjstems; and (4) Assisting the decisionmakers within C3 s'stems, and assisting
C analysts who arc analyzing, r 4esigning or redesigning C systems.

13



1.2.1 System Representation and Modeling

In almost all quantitative systems engineering analysis, the usual
starting point is the development of a mathematical model to represent the
system under investigation or dpvelopment. Such a model is essential to ob-
taining both a precise understanding of system function and structure (i.e.,

Sarchitecture) and a quantitative evaluation of system performance. However,
for large-scale, complex systems, a single "super-model" or set of equations
is generally impossible to develop without first decomposing the system into
a number of submodels. The performance characteristics of these lower-level
models can then be derived quantitatively, and the results aggregated bottom-
up into overall performance measures for the system. Computer simulation is
often employed both to embody the lower-level models and to compute the desired
measures.

For extremely complex systems, however, the modeling process usually
begins with a more limited objective, namely, finding a graphic way to repre-
sent system structure and function (i.e., system architecture). This is a
first step prior to any attempt at quantitative analysis. It is not uncommon
for the analyst to go through the following stages in evolving a graphic rep-
resentational scheme:

I. First, he develops an understanding of what the system is and
how it works. Critical to such an understanding is a means of
"visualizing" the system, its parts, its boundaries, and its
functions. To help in the process of visualization, he may
draw diagrams to represent the subsystems and their functional
interrelationships. He may also develop several decomposition
levels of such diagrams, in order to indicate successively more
detailed understanding and to provide a basis for later detailed
mathematical modeling.

2. Second, he tries to communicate this understanding to others,
usually via his diagrams. He immediately finds that the
same diagram can mean different things to different people,
reflecting differences in their background and experience.

3. He then searches for a more or less standard (or at least
well-accepted) visualization method (e.g., IDEFo functional
block diagrams, DeMarco data flow diagrams, etc.) and attempts
to translate his original diagrams into the new form.

4. He may find things in his original representation that are
difficult to translate into the new form, and may need tu
invent modifications to the standard method to represent these
exceptions.

5. He may try to gain peer acceptance for the "new" or "modified
standard" method.

14



1.2.2 Differences Between C3 and Other Large-Scale Systems

The foregoing approach generally works until a new class of system is
encountered for which the new method is inadequate. While it has proven
quite effective for selected large-scale systems such as power distribution

systems (Shaw and Bertsekas, 1985) and large electronics maintenance facili-
ties (Pattipati et a-., 1984), it has not worked well for complex military C3

systems. Indeed, for the past six years, the problem of system modeling and
representation h~s been among the most important focal points for the Annual
Conferences on Command, Control and Communications sponsored jointly by the
Massachusetts Institute of Technology and the U.S. Office of Naval Research.

One might well ask why this is so. The main reason is that there seem to
be major differences between military C3 systems and other large-scale systems.
These differences appear to be of both degree and kind. First, C3 systems
differ in degree because they are generally more geographically extensive,
more complex, and involve interactions among more different types of subsys-
tems as well as humans. Examples include the North American Aerospace Defense
System, the Tactical Air Control System, and the current conceptual development
of a Battle Management/C 3 System for the new U.S. Strategic Defense Initiative.

More importantly, however, C3 systems differ in kind from other large-
scale systems. Specifically:

I. Their performance is measured in terms of their contributions
to an offensive or defensive military mission rather than as
an end in itself;

2. Rather than having to meet a single pertormance goal (e.g.,
end-to-end message delay, units produced per unit time), they
must be capable of meeting multiple and even conflicting goals
(e.g., na..imize enemy aircraft engaged per unit time while
minimizing fratricide). They must also be able to adapt to
changes in the military situation as required.

3. They must be able to survive deliberate enemy attacks against
them in addition to responding to normal internal system
degradation and failures;

4. They must exist and function within a rigid, hierarchically-
structured military organization.

Finally, whereas the analysis of systems such as manufacturing and inven-
tory control systeins, pure communications systems, and management information
systems involves consideration of either information quantities such as mes-
sages or physical quantitities such as manufactured items, analysis of C3

bystems involves both, and in a very special way. In effect, a race occurs
between the information quantities and the physical quantities in the system.
For example, as shown in Fig. I-I, in a Str~tegic Defense System target detec-
tion, identification and weapon allocation me.sages must all be generated and

15



reach their appropriate destinations before the attacking missiles can carry
out their missions of destruction. lI-d'- tion, while the time available
for data flow in the C3 system is determined by enemy action (i.e., it is
scenario-driven), the time required for defense system response is determined
by a combination of C3 and weapon system capabilities. These include (1) data
flow rates and decision delays in the C' structure and (2) weapon activation,

-- response and flight times for the weapon system.

* ICBM/SLBM EVENTS

BOOST-PHASE POST BOOST-PHASE

I I

LAUNCH LEAK TO
NEXT LAYER

* C3 SYSTEM EVENTS

F -- III I I I
if tfi t t

DETECT REPORT ALLOCATION TARGET
TO BM DECISION DESTPUCTIO

TARGET
ENGAGEMENT R.?142A

Figure 1-1. ICBM/SLBM Versus C3 System Race

1.2.3 Human-Related Issues in C3 Systems

It is important to note the multi-faceted nature of the rules played
by humans in C3 systems. They may function as communicators, equipment oper-

ators, or decisionmakers (and sometimes as all three simultanecusly). More
important, however, is the fact that wherever a human exists in a system, he/

she not only represents a physical resource but also carries out a function
or process while meeting the authority/responsibilty requirements and also

the assigned goal of an or&anizational element.

It is this very fact which provides the flexibility and adaptability,

and also contributes significantly to the functional survivability

of C3 systems. As organizational elements, humans can reassign
goals, processes, resources and organizational responsibilities to

other humans or to other mechanisms to improve overall system per-

formance or to help reconstitute a partially destroyed system.
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Note also that human performance itself is a dependent variable, affected
by many system design parameters as well as by other people in the system and
by specific threat and environment characteristics.

Regardless of role, human activities must be represented, or modeled, as
well as measured, in ways which are compatible with the models and measures of
other system components and functions, in order that self-consistent aggregate
system performance measures may be obtained; this has been the source of major
difficulties for systems analysts and engineers in the past.

A current example of this need is taken from the SDI program. A
critical factor in the ability of the proposed Space Defense System
to meet its ballistic missile "shield" objective is its ability to
detect and kill attacking missiles while they are still in their
boost phase. While the time required between detection and weapon
assignme can be minimal, weapon release will depend on the inter-
vention of human decisionmakers. The time available for decision
will be completely circumscribed by the time between booster launch
detection and re-entry vehicle deployment, and the decision itself
will be further complicated by such factors as raid size, probable
targets, and intelligence information. For this reason, alternate
"rules of engagement" or defensive mod&' for the sySLem must be
developed long before it is actually ewployed, with defense selec-
tion being done in near-real-time based on the kinds of factors
mentioned above.

The implications of the foregoing facts for C3 system design represent
an additional set of human-related issues: How should certain components of
such systems be designed so as to assist individual humans as well as teams of
humans in their various roles and tasks in order to improve their performance
as system components? To make the best use of their special capabilities?
To counterbalance the effects of human limitations?

1.2.4 The Requirement to Help Decisionmakers

We must now distinguish between two fundamentally different decision-
makers. There are those who are imbedded within a C3 system, such as the
weapon release decisionmaker in the SDI example given above, or the identi-
fication officer in art air defense system. Clearly, these individuals per-
form critical tasks involving situation assessment and target discrimination.
These tasks may require varying degrees of assistance, depending upon such
factors as time available, degree of expertise, task complexity, and so forth.
The kinds of issues noted in the preceding subsection are directly relevant
to imbedded decisionmakers.

However, we must ;ilso understand the needs of another class of decision-
makers, namely those who analyze and design C3 systems. As described earlier
in this section, the problems of system representation and modeling, of mea-
surement, and especially of tracing human contributions to system performance
and effectiveness have become sufficiently complex and critical that new tools
aru needed t, help C3 systrMS analysis and designers in doing their jobs.
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1.3 THE IAT QUESTIONS

In recognition of (1) the needs of systems analysts for new analysis
tools, (2) the differences between C3 and other types of systems, and (3) the
impact of these differences on the requirements for C3 system representation
and modeling, a set of critical questions was posed in early 1982 by Mr. M.
Vikmanis and Capt. R. Poturaiski of the Harry G. Armstrong Aerospace Medical
Research Laboratory. Slightly paraphrased and reordered to improve clarity,
the questions are as follows:

1. Given a static structural descriytion of a C3 system, how can
one determine the system's performance?

2. What can the static structural description tell one about:

- the strengths and weaknesses of the way functions are
performed (i.e., by the mechanisms or resources which
carry out the functions)?

- the strengths and weaknesses of the way functions are
combined (i.e., carried out by the same resource)?

- the dependency of functions (i.e., upon other functions,
resources, etc.)?

- the strengths and weaknesses of data flows and controls
(i.e., functional connectivity)?

- the criticality of functions, data flows, mechanisms,
and controls?

3. How can one use a static structural description, along with
any other transformations, augmentations, or other data, to
answer the questions in 2 above? What measures can be used?

4. What can the static structural description tell us about the
dj~nam!c performance of the system? How does it address or
support issues of:

- timeliness

- probability of error

- survivability?

5. What do classical systems engineering theory, organization
theory, or network theory offer in the way of properties or
measures to address the foregoing issues?

6. How can the answers to the above questions be used to improve
system performance?
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These original IAT questions provided the impetus for a 1982 study
entitled "Integrated Analysis Techniques (IAT) for Application to Command,
Control and Communications Systems" (Colter et al., 1982), whose results are
summarized below. (The degree to which these questions can now be answered
will be discussed in subsection 3.9.)

1.4 SUMMARY OF PREVIOUS STUDY RESULTS

While the direction for the 1982 study was based on the representational
capabilities of the IDEFo methodology (see Section 2 for a summary description),
its stated objective was "...to examine additional analysis and evaluation
procedures in order to address the above issues." (Colter, et al., 1982, p. 1).

The study clearly indicated the inadequacy of IDEFo by itself to provide
anything other than a skeletal structure on which to build improved analysis
tools. Only limited quantitative analyses or measures are possible from an
IDEFo representation of a C3 system, regardless of the level of decomposition
to which it is carried. In addition, the IDEFo symbology would have to be
expanded to include such "new" standard functions as data stores.

Most important, however, was the conclusion that " .. the choice of the
technique(s) to be used therefore depends on the desired measurements/
characteristics, the information needs of the techniques, and the existing
knowledge base," (Colter et al., 1982, p. 170).

The most significant results of the 1982 study are summarized in Table
1-I. This table identifies the specific C3 system measures considered, the
various analysis techniques applicable to them, the ability of each technique
to provide quaititative versus qualitative analysis, and whether or not such
analysis requires additional information beyond that embodied in the analysis
technique itself.

The study noncluded that the tools needed for C3 system analysis will
depend on the desired measures to be taken on the system; that no single
existing technique can provide for more than a few such measures; and finally,
that while IDEFo with suitable modifications can usefully support other types
of analyses as well as :ertain direct qualitative analyses (e.g., tracing
functional connectivity), it cannot provide any quantititive measures by
itself.

In another study (Bachert et al., 1981) an attempt was made to use IDEFo
as a "front-end" to SAINT, a simulation language developed specifically for
simulating manned systems (Chubb, 1981). However, while IDEFo could provide
much of the connectivity and precedence information needed to structure the
simulation, the quantitative data about processes and assigned resources,
necessary to complete the simulation, could not be extracted and had to be
separately developed.
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In effect, then, we may conclude that at the outset of the present study,
there was no single, existing, available Integrated Analysis Technique that
could provide answers to all of the IAT questions listed in the preceding
subsection. Furthermore, there were no techniques available to meet these
needs.

1.5 CURRENT STATUS

The work reported on in this report completes two of the four stages in
IAT development. The first stage was the formulation of a static description
methodology applicable to any system to be analyzed. The second stage was the
development of quantitative techniques for estimating critical system perfor-
mance parameters. The third stage, being initiated under separate subcon-
tract, is to imbed the descriptive methodology developed to date in an easy-
to-use job aid which will insure, to the extent possible, both completeness
and consistency of system description and analysis. This will also provide a
"1quick-look" capability for quantitative performance prediction at any given
level of system description or decomposition. The final stage will involve
the capability for analyzing the dynamic reconfigurability of a C3 system and
the allocation of resources to functions.

1.6 CONTENTS OF 'iS REPORT

The objective of this report, then, is to show how to describe a complex
C3 system in such a manner that subsequent system analysis and performance
questions can be answered quantitatively. Our focus has been on how one
should describe an existing system (as opposed to designing a new system),
so as to capture the critical attributes of the system in ever-increasing
(hierarchical) detail. However, we feel that the methodology will be equally
useful in evaluating the design of new syst'-ms.

Section 2 of this volume summarizes the requirements for a static repre-
sentation technique, while Section 3 describes the new hierarchical method
for C3 system description and decomposition. Section 4 describes quantitative
analytic tools for use with the static description. Finally, Section 5 pro-
vides a summary of the results to date and a set of recommendations for com-
pleting the development of Integrated Analysis Techniques for C3 systems, with
special reference to the role of humans in these systems. Volume II of this
report presents the results of separate applications of portions of the method
to a simulated system and two actual systems, and the lessons learned from
these applicat it,1:,.
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SECTION 2

REQUIREMENTS FOR A HIERARCHICAL METHOD FOR STATIC SYSTEM DESCRIPTION

2.1 INTRODUCTION

The primary objective (and successful result) of IAT development since
1982 was to find a single, self-consistent way to describe and model a complex
C3 system in such a manner that manned system analysis and performance ques-
tions could be answered quantitatively. The initial focus was on how one
should describe an existing system (as opposed to designing a new system).
The approach taken was to (1) capture the critical attributes of the system
in ever-increasing (hierarchical) detail and (2) overcome some of the major
problems summarized in the 1982 study noted in the introduction.

In this section we summarize the requirements which must be met by a
static representation and modeling technique in order to be able to answer the
IAT questions in Section I. These include the descriptive dimensions for C3
systems; their decomposition requirements; the relationships among the dimen-
sions; the types of system measures to be evaluated for a system; and the data
management requirements for IAT.

2.2 FOUR DIMENSIONS FOR DESCRIBING C3 SYSTEMS

For the simplest of systems, straightforward representations of physical
composition and connectivity such as system block diagrams, engineering draw-
ings, "exploded" views, and "family trees" have long been generally accepted
techniques. For more complex systems, so-called functional description tech-
niques such as functional block diagrams (Goode and Machol, 1957) and Data
Flow Diagrams (DFDs) (DeMarco, 1979) were developed as aids to diagnosing sys-
tem failures and to designing new systems. Systems involving human operators
and decisionmakers exhibited special requirements for representing information
flow, display, control and workplace design implications; and techniques such
as the Operational Sequence Diagram (OSD) were developed to meet these needs
(Brooks, 1960).

With the advent of computer software, such process charts as data flow
and operational sfquence diagrams evolved into the more or less standard meth-
odology of the programming flow chart. However, as programs themselves became
increasingly complex, new graphical representation techniques were developed
for the analysis and design of complex software systems. The Structured
Analysis and Design Technique (SADT) is an example of such attempts at man-
aging software complexity through "software engineering" (SOFTECH, 1978).
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More recently, extension of these techniques to manufacturing systems and
to information systems description has required that the physical resources
needed to support the various functions and processes be incorporated directly
into the description (e.g., as in the Integrated Computer-Aided Manufacturing
Definition Language (IDEFo) as developed for the U.S. Air Force (SOFTECH, 1981).

However, when dealing with a complex, large-scale system such as a C3
system consisting of a large collection of hardware and people performing
highly interrelated and interdependent functions, we find that organizational

-- issues and constraints transcend both the physical (resource) and functional
(process) characteristics of such systems and must enter prominently into the
methods for description and analysis. As an example, an Air Defense C3 system
-will exhibit longer response times to attacking enemy aircraft if information
flow must follow strict hierarchical reporting paths than if the organization
permits cross-telling of tracks. Classically, methods of organizational de-
scription and analysis have evolved separately from (although they are often
-confused with) those of process description and analysis. They include organ-
ization charts which display lines of authority, responsibility, and coordi-
nation as well as methods of representing organizational dynarmics (Beer, 1959;
Berne, 1963).

Finally, while all systems are in some sense goal-driven, the most com-
plex of these (including C3 systems) involve "organizations of organizations"
of subsystems and people and are characterized by a complex, interrelated and
dynamic hierarchy of goals which must be explicitly accounted for in system
description and analysis. Methods of goal decomposition and diagrammatic
representation have evolved for such complex, large-scale systems (Warfield,
1973).

On the basis of problems encountered in applying earlier methods for
system static description (e.g., IDEF 0 , OSDs, DFDs, etc.) and considering
the unique requirements imposed by military C3 systems noted in the preceding
subsection, we conclude then that the following four distinct dimensions are
required to describe such systems adequately at varying levels of detail:

& Resource (physical mechanism, human, geographic location, node)

* Process (function, procedure, algorithm)

* Organizational element (subdivision, unit, individual)

• Goal (intent, performance objective)

Finally (and of critical importance), the descrip '!e methods ultimately
developed must be cable of generating important measures of system capability.

2.3 C3 SYSTEM DECOMPOSITION REQUIREMENTS

In the preceding subsection we defined the four dimensions along which
C3 systems must be described in order to capture their complexity as well as
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their critical attributes. In this subsection we umaiethe requirenmerts
for system decomposition.

it is important to note that the very concept of decomposition implies
a hierarchical set of relationships within each of the four dimensions !.den-

~tified above. One of the major requirements of IAT is that it contains a
descriptive methodology capable of representing not only the decomposition
within but also the interrelations h ips among the four dimensions whl maifn-
taininig concordance among the hierarchical levels of decomposition/detail.

Another critical requirement is that each dimension must undergo recursive
decomposition, starting at some initial or highest level of minimum detail.

* (The notion of a system bounda ry is Imp lied here, at least for purposes of
analysis and/or desitgn.) The decomposition hierarchy can then be viewed as
a "tree," with the "trunik" represenLing the highest level and the "branches"
constituting each Succeeding level of greater detail. For analysis purposes,
we cef ine the "leaf" level as the point at which the decomposition Is tertia-
nated and a model is used for thle process representation. The model parameters
and characterisWtics are then determined by the requirements and constraints
set by the physical 'resource and orA~ni zatýIio entities and by the goak hier-
archy to which tile system is responding.

The LAT riethodology requires that at aLQX decomposition level, raodels must
be capable of being defined and exercised in order to be able to estimate sys-
tem performance and effectiverness. At the higher levels (less detail) these
models must, of necessity, be extremely aggregated. This is well reflected in
PaSL aLLtwp18j to rtep.ebenL entire C3 systems by sitaple time delays. However,

th rql emn frrecursive deojs.to en htthe mode inj method
mu'it ~ienticall~y a~licbea ahlevel of dýcoM~sL
wiL.rth oH 1n tie amount of detail and the prmtrvalues ch Lnj between

l evelsa. Thus, sel ect~ion of Ith most appropriate models and definition of
theýr Interdimensiocal relationships (as, for example the effect of a given

resorceon the Lri:cess that It supports) has been a major requirement for
successful IATr development.

In the following subsections we defi ne in further detail the four decomn-
position dimeosionis and the manner by which successive levels of eletail Mubt
evolve. Note that the ability to decouipose a systew along _pýV of itr dimen-
sions separatelv will be essential for C3 systemas analysis and synthesi_--.

2.3.1 Process; DevoiVoS~itiull

Includeud 'n hie process dfmension amre Such things as functions, processes,
procedures, prutroo>, ana scri pts. Thl~s dimienslon has long been recognized
and us'ed IS L1 thu. ost salitlent diffiesllo4n for decotapositton , and has received
the greatest; attlmntutn in earliur efforts (SOFrLFCl, 1981). The hierarchical
ori!ar,1zat;.1 (.! I C3 ;vcmtý:, that is, its s~ibdiv~sion into subsystems (e.g.,
survel i anc , --4eIpol Cec~rol , e.)is dl ret I y reflected fii process decom-

f')tlu ~b iat
4

il' reliurred to !ý .SLTcuI uruuuiziL fuon Or LeVen SyStem~



structure, in this report we will use the term "process decomposition" through-
out, since "organization" usually refers to the representation of authority,
responsibility and coordination; while "structure" refers to the function
connectivity among system resources. (See further discussion of these terms
in subsection 2.3.3 below.)

Thus, the primary decomposition of a process pl at a level L0O involves
specifying the following:

1. What higher-level process pL-1 It is a a~rt_ of; and

2. What lower-level processes [pL+l] it consists of.

It is also necessary to specify its functional connectivitles, that is, to
specify from which processes at the same level a given process receives inputs,
as well as to which other processes it provides outputs.

2.3.2 Resource Decomposition

Included in the resource dimension are the physical resources, equip-
ments, nodes, locations, and physical zonnectivities which support or carry
out the processes. The resources of the system include both its physical
facilities and hardware (including imbedded computers and associated software)
ab well as its human operators and decisionmakers.

The decomposition of a resource into its component parts is usually well-
defined from the standpoint of its physical composition. Thus a resource RL

at level L>O (e.g., an aircraft) is part of a larger resource RLI (e.g., a
squadron) and itself consists of a set of subresources or components {RL+l}

(e.g., its engine, avionics, etc.) at level L+l. We make the following
assumptions:

Al. Resource decomposition is nonoverlapping, i.e.,

RLI fr RLJ - 0 , *j

Physically, this means that if RLi is removed (from RL-),
the RL4 ifj remain iliLact (even though they may not function).
And, of course, since the sum of the parts equals the whole,

A2. A human resource is nondecomposable*. Hence, If

*In some previous work, various human attributes have been defined as sepa-

rately available (sub)resources. However, we believe this to be erroneous.
While an individual can perform several tasks in an apparently siuiultaneous
manner, it is clear that the apparent simultaneity is really the result of
"chunking" of data, efficient time-sharing among the several tasks, ar,d
well-traIned response organizations. We will assume that the human, as an
operator or declsionmaker, is only capable of acting as a serial processor.
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UL RL is a person, then RLi+l = RLi

A3. In the case of computers, we will assume that the hardware
memory elements, disks, etc. are resources. However, the
programs can be either processes or resources, depending
on the application (e.g., imbedded computers, which are part
of a fire control system, use programs that are part of
"the imbedded computer resources).

In a few instances, the decomposition of a resource can be
non-unique, as for example when there is no a priori logical
way to group the parts that comprise the whole. To minimize

non-uniqueness, we establish a linkage between resource and
process decomposition by assuming that:

A4. The subresources {RL+li} at level L+l must be those that are
assigned to support or carry out the subprocesses [pL+lj} at
the same level of decomposition.

In existing systems, it is usually the case that resources
and processes are more or less directly related (in the sense
that specific resources were selected to support specific
processes); thus assumption A4 will generally be satisfied.
However, it is important to recognize the fact that while a
given resource is assigned to support only one process, it
may be capable of supporting several. The notions of flexi-
bility and adaptability derive in large part from the ability
of organizational elements in a C' system to reassign respon-
sibilities among lower-level organizational elements and to
reassign resources to support other processes, as will be
discussed below.

2.3.3 Organizational Decomposition

The military organization provides the fundamental control mechanisms
whereby humans and machines work to attain objectives. Decision authority,
responsibility, coordination and goal-setting are the primary attributes asso-
ciated with organizational elements; they allow decisionmakers to reassign
resources, processes, and organizational elements and to modify objectives
if necessary, in order to adapt to a variety of changing circumstances in the
military environment.

Of course, all C3 systems will evolve and change as they take advantage
of new technology and as they are called upon to support new or changing mis-
sions (e.g., search and rescue). Also, one may be interested in questions
relating to off-nominal performance such as system survivability, adaptability,
and flexibility (e.g., due to loss of a resource, failure to meet an objec-
tive, etc.). In either case, one must include organizational representation
in system description.
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The primary decomposition of an organizational element 0L defines the
lines of decision authority (i.e., command structure and accountability, or
reporting-to), responsibility (i.e., control), and coordination. With respect
to authority, element 0L at level L is only accountable to a single element
0 L-l at a higher level and has authority over the set of elements {OL+lJ at
the next lower level L+I, which in turn are accountable to OL. This authority
decomposition defines an organizational hierarchy.

With respect to responsibility, the relationships are more complex.
Organizational elements have responsibility for the processes and resources
assigned to them, and authority over lower-level elements; and they are
accountable to higher-level elements, in strict accordance with the lines of
authority described above. Note that a human being is a resource which can
fulfill various organizational requirements at different times and to dif-
ferent purposes or goals. Thus, there may be instances in which a lower-level
element is accountable to one higher-level element for one set of processes
and/or resources and to a. different element for another set. Such accounta-
bility to different "bosses" for different activities characterizes the
so-called matrix organization, and is exemplified by the "multi-hattedness"
of many U.S. military commands. This can be quite different for non-U.S.
commands.

Note also that an organizational element has responsibility for control-
ling processes, and that these processes can include reassignments of lower-
level decision authority, i.e., of accountability and control.

Finally, from a decomposition standpoint it is important to recognize
that an organizational element at level L may be responsible for two funda-
mentally different classes of processes:

1. those at the same level L that directly support the functions
of the organizational element in question; and

2. those at the next lower organizational level L+I into which
the function at level L decomposes.

Classically, these are known as "staff" and "line functions," respectively.

As noted earlier, it is extremely important to distinguish between
organizational and process decomposition. Among systems engineers the term
"organization" is usually taken to refer to the way in which the system itself
is hierarchically and/or functionally organized (i.e., structured or decom-
posed), whereas among human factors specialists, the very same term is used
to represent the lines of authority, responsibility and coordination among
the personnel in the system. For example, from an engineering standpoint, a
C3 system is generally "organized" into a surveillance subsystem, a planning
subsystem, a controlling subsystem, an order dissemination subsystem, a commu-
nications subsystem, etc. On the other hand, the structure of the system is
usually taken to refer to the functional connectivity among the resources of
the system, that is, which processes must "talk to" or coordinate with which
other processes, and which resources must bc connected to each other in order
to provide for the required data flow among the processes.
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In this report we shall use the following definitions of these terms:

0 Process decomposition: hierarchical subdivision of processes
into their component subprocesses. Results in multiple levels
of description at successively finer detail.

"* Resource decomposition: hierarchical subdivision of resources
into their component parts. Also results in multiple levels
of description at successively finer detail.

"* Organization, or organizational decokiposition: hierarchical
subdivision of decision authority, responsibility, and coor-
dination among all system processes and.or resources (including
humans as resources).

* Structure: connectivity among 311 system processes and/or
resources (including humans as resources), at a given level
of decomposition or description.

In some cases, as we shall see, the very existence of connectivity
between two resources implies either authority (as for example in a prece-
dence relationship such as "A before B") or coordination (as for example in
a joint presence relationship such as "A and B before C"). However, the con-
cept of responsibility is peculiarly huan in that it can only be offered
(to be either accepted or rejected by an individual) but never delegated:
whereas authority can indeed be delegated. On the other hand, authority and
coordination can always be "wired in" to a system by design, but hardware or
software parts of the system cannot take responsibility for their performance.
This is especially important from a human factors standpoint, since the system
must be carefully designed to support the human roles (i.e., their authority,
responsibility and coordination needs) in the system.

2.3.4 Goal Decomposition

Goals are established by organizational elements and must therefore be
included in parallel with the organizational dimension. In fact, the estab-
lishment of goals, resolution of conflicting goals, partitioning of goals into
subgoals, and assignment of responsible organizational elements to achieve
these subgoals are perhaps the most important of all organizational activities
(i.e., management).

The fact that an individLu.l can and does act both as an organizational
element and as a resource can be a major source of confusion unless it is
recognized that:

0 an organizational element sets goal,; for lower-level elements.
This is based on the effectiveness re~uirements placed on
level 0 L by the next higher level ,)L-,;
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0 these goals are equivalent to performance requirements for the
processes pL+1 at level L+l for which OL+1 has responsibility
(i.e., is assigned);

* the processes pL+li are supported by resources R1+1 at level
L+I. The degree to which a goal GL+l is met is determined by
the degree to which the resources RL+1 assigned to that process ..
can meet the process performance requirements implied by the
goal;

the goal becomes the means by which the entire C 3 entity
(process, supporting resources, and responsible organizational
element) is controlled.

Figure 2-1 summarizes the intera:tlons among the C 3 dimensions and demonstrates
how goals are used in controlling both processes, resources, and organization
Only line relationships are shown i-a order to simplify the diagram; staff ele-
ments would be shown as L-level processes and resources that directly support
the line functions at that level.

2.3.5 Relationships Among Processes , Resources, Organizational Elements,
and Goals

Frow Fig. 2-1 it is clear that a C3 system exhibits several classes
of interactions. In this section we examine the most important of these
Interactions.

In general, a process requires inputs and provides outputs. The result-
ing information flow among processes is only an indirect determinant of system
topology (i.e., it only implies connectivity); however, in reality, informa-
tion exchange takes place not among processes but among the physical resources
that support and are assigned to the processes. If connectivity between two
C 3 resources is broken (e.g., a radio link is jammed), then the information
flow between the processes supported by these resources (e.g., Intelligence
information) is halted. We therefore -incorporate system topology in resource
decomposition by defining at level 1. the resource connectivity matrix,
[RL4 .x Rtj];

SRLL4 1 R I If resource RL4 sends !nformation to resource RL

i =

0 otherwise

Thus, the nonzero elements of the i-th row of [RL 4 x RLj] indicate those re-
sources to which RL; sends information, and the nonzero elements of the i-th
column ofT-R-i x RLj] indicate those reso:rces from which 1L-1 receives infor-
mat'on. Note that the nature of :onnectivity implIes that for every nonzero
[RLW x RLi], there should be at least one nonzero element of xRL+Iz - RL+]
correspon•ing to the connectivity between the decomposed elements of RL;
and RLj.
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DIMENSIONS

LEVELS GOAL ORGANIZATION PROCESS RESOURCE

HIGHER L-1 GL- 1  U1

/ N -

L / L 0

wi

\ ,

LOWER L+I GL/ oI 0 .RL+

pLJ

LEGEND
(t {) where I ranges over all elements at level 1.

xA i-th element of X at level 1.

ASSIGNMENT An organizational element (0 1 at a given level (L)
(from level 1) establishes goals for the next lower level (L+I); 01

(e.g.. a commander) assigns goals (GL+), processes (pL+l).
resources (RL+). and organizational elements (0L+1)

(e.g.. subordinates) to meet these goals.

ASSIGNMENT OL has been assigned goals (GL). processes (PL). and
(from level L-1) resources (RL) from organizational elements at the next

higher level (oL-I).

RlSPONSIBILIiY ixercise of responsibility within a level for

meeting assigned goals. R-23070

Figure 2-1. Recursive Nature of Decomposition

31



In addition, for each nonzero RLi x RLj], there should be a corresponding
specification of the nature o.- the Interconnection (e.g., telephone, micro-
wave), the attributes of the interconnectioa (e.g., throughput), and a speci-
fication of the type of information transmitted. Of course, the higher one J
is in the decomposition (smaller L), the more general and all encompassing
a----re the information flow descriptors.*

It is also possible to include input-output connectivity in process
description. This serves to express what is required for process input and
output, as opposed to what is actually available, and any inconsistency between
it and the resource connectivity matrix can serve as an "error signal" and
stimulus to an organizational element for resource reassignment. In a manner
analogous to the resource connectivity matrix, we define at level 1. the infor-
mation flow iequiremerits matrix, or process connectivity matrix, [pLi x pLj];

[pLi x pL j] 1 if resource PLi requires information from process pL

0 otherwise

Again, supplementary data about the information required for each nonzero
element of P should be provided.

Finally, in a similar vein, we can represent coordination among organi-
zational elements at the same level via the coordination matrix at level k,
OCk:

o o~ = 1 if resource 0o-i coordinates with oLj

0 otherwise

where, again, supplementary data about the nature of the coordination must
also be given.

Note that since the dual of any square matrix is a graph, the foregoing
matrices can be used directly to generate resources connectivity trees, pro-
cess information flow diagrams, and organization charts.

2.3.6 Cross-Referencing and Redundancy Requirements: Assignment and
Assignability Matrices

If each of the four dimensions were decomposed separately, it would be
virtually impossible to maintain consistency across the dimensions at any

*Note that in the 'manner analogous to "indirect addressing" in computer sys-
teins, the location where supplemental information data are stored could be
used instead of a "I" in [RLi • Rj.
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given level of detail. However, tying the decompositions together provides
the basis for a consistent, balanced, and cross-referenced system description

methodology. This was a major requirement for IAT development.

... +-Thus, at any level L in the decomposition, it is necessary that:

I. A process description contains references to the resources

required for its performance, as well as references to the

organizational element responsible for monitoring and/or

controlling the process and to the goal (i.e., performance

requirement) that the process must meet. Finally, it contains

references to the input and output functional dependencies

between itself and those other processes at the same level

with which it is directly related.

2. A resour!,ze description contains references to the process(es)

which that resource is assigned to support, as well as ref-

erences to the organizational element responsible for t ae

resource. It also contains references to the physical con-

nectivities between itself and those other resources at the
same level required to support a specific process.

3. The description of an organizational element contains refer-

ences to the processes that the element is responsible for

monitoring and/or controlling, as well as references to the

resources which are assigned to that element and to the goal(s)

for which it is responsible. It also contains references to

the lines of authority, responsibility and coordination

between itself and those other organizational elements both

at the same and other levels as required to attain a specific
goal.

4. A goal description contains references to the organizational

element responsible for the attainment of that goal as well as

the process(es) for which that goal is a performance require-
ment. It also contains references to the higher-level goals

of which it is a part, as well as to the lower-level goals

which must be met in the interests of its own attainmetnt.

This cross-referencing is accomplished by means of assignment matrices.

Thus, at any level L, any of the four dimensions can be described by a coin-
posite vector (matrix) of four parts:

I Pl. x RL x 0L x GL]

with its primary decomposition (e.g. , pL, as in Fig. 2--2) and three cross-

references (e.g. , Rl, OT- and GI-). Once again, Lhuc redundancy inherent in the

cross-references over four dimensions can serve as a check on consistency of

tlhe data that define the C3 system as wcll as a means for detecting errors
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in specifications. Another reason for such cross-referening is to force, to
the extent possible, a logical consistency and balance among the four dimen-

sions. Cross-referencing can help to insure that the four decompositions
proceed in parallel, as opposed to reaching extreme depth in only one or two.

pL i

pl,+lj(j- to 4) pL+1l pL+1 2  pL+1 3  pL+l 4

Figure 2-2. Example of Primary Process Decomposition

The various relationships described above can conveniently be represented
in matrix notation as shown in Table 2-1, which presents a three-letter mne-
monic descriptor, a brief definition, and a symbolic representation for each
relationship.

it is worthwhile to examine in somewha.t more detail the nature of the
specific assignment matrices. The matrices [OxG] and [OxP] at level L, which
effectively assign responsibility for goals and processes to organizational
elements are the subject of original system design and/or long-range planning
in any C• system. On a somewhat shorter time frame, the matrix [O×R] at level
L reflects the issues of resource responsibility (sometimes referred to as

"ownership") and is a major focus of system reorganization and reconstitution
in battle. This depends heavily upon the concept of assignability, which will
be defined next.

Note that decomposition along any dimension can also be represented in
matrix form. For example, the matrix [OL x OL+I] represents the organiza-
tional decomposition (i.e., organization chart) or lines of authority in the
system while the matrix [OLix oLj] represents the chart of human coordination
in the system within a decomposition level. Similarly, the matrix [pL . pL+l]
represents the process decomposition in the system while the matrix [pLi . pLj]
represents the coordination or connectivity among processes within a decompo-
sition level.

Finally, in order adequately to represenlt the inherent adaptability
resulting from the capability for reassignment of resources, goals, processes
and even organizational elements in a C3 system, we must define a set of
assignability matrices [.1*. For example, the matrix [R×PI* at level L must
show which resources are capable of sukporting (i.e., are assignable to) each
process. Assignability matrices [O×G] , and [OxR]* can also be used to rep-
resent the capability of various organizational elements at a given level to
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TABLE 2-1. RELATIONSHIPS AMONG THE FOUR DIMENSIONS

REPRESENTATION

DESCRIPTOR DEFINITION RESOURCE PROCESS ORG'L EL'T GOAL

ISA Is known as (name) (name) (name) (name)

AKA Also known as (name) (name) (name) (name)

POF Parts of RLi e RL-lI pLi C pL-1 0Li C oL-1I GLi c GL-j

COF Consists of RLi = {RL+1j} pL= {pL+l } oLi = oL+j} GL4 = {GL+lj}

STO Sends to; [RLi x RLj] [pLi x pLj] [oLi x oLJ]

connects to;
informs; coor-
dinates with

RFM Receives from; [RLb x RLJ] [pLj x pLi] [oLi x 0 L 4 ]

is connected
to; is informed
by; Is coor-
dinated with

ATO Assigned to [RLb x pLj] [pLi x oLj] [oL-li x oLj] [GLi x pLj

[RLm x 0Loj [GL; x oLj]

AST Assignable to jRLi , oLj]* [pLi x oLj]* [oL-li x oLj]* [GL 4 x pLj]*

[RL , x o--]- [GL 4  x oLj]*

Notes:

1. Superscript = level of decomposition

2. Subscript = inde,:

3. Read RLi as "i-th resource at 'evel L"

4. Read [AxB] as A "sends to, etc; receives frou, etc; or is assigned to" B

5. Read [A×B]* as "A is assignable to B"
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take responsibility for various goals, processes, and resources at the same
level. An assignability matrix ultimately should contain as its elements
(cells) an assignablit_ ilnde x, i.e., a numerical quantity representing the
relative capability of a given resource (including humans) to support a given
process; or the relative capability of a given organizational element to take
responsibility for a given process or resource (e.g., as a function of training,
experience, or workload).

It is important to note that an assignment matrix (e.g., [RxP]) differs
completely from its related assignabillty matrix (e.g., [RxP]*) in that it is
much more sparse; of the many things a given resource could do, it is only
Aedignqý to do a small subset (perhaps only one) of th-em. -- If all resources
are "dedicated" to single processes, then a square, diagonal assignment matrix
results and the resource is subject only to queuing delays due to workload.
On the other hand, if a given resource is assigned to support two or more pro-
cesses (as is typical with both humans and computers), it is then a shared
resource and is subject to contention, as well as queuing delays.

Note that if we assume a fixed organizational structure with fixed
goals, as would be typical of a "mature" C3 system, then the actual
on-line modification of such resource assignments in [OxR] and/or
[RxP] within the constraints of [OxR]* and [RxP]* constitutes the
system's adaptive capability vis-a-vis attaining its goals with
its available resources. A more flexible arrangement would permit
on-line reassignment of goals among organizational elements [OxG]
within the constraints of [OxG]*, as an additional adaptive
capability.

The requirements for combining process, resource, organizational, and
goal decomposition as described in the preceding subsections provides a far
more powerful tool than, for example, an IDEFo description, which at best is
capable only of process decomposition with an attached indication of associ-
ated resource and "control" requirements, and no capability for representing
either actual resource connectivity or organizational authority, responsi-
bility, or coordination.

2.3.7 Depth of Decomosition

A major issue in any decomposition methodology is how to decide where
and when to stop decomposing. While gross allocations of resources (including
humans) among processes can often be made at higher decomposition levels using
simple connectivity and aggregate performance data, the decomposition gener-
ally should be carried out to one level below that at which the user seeks
the answers to specific questions. The decomposition ends at that level, with
careful attention paid to: (1) the interactions among the Lirocess performance
models (based on the assigned resources) representing the descriptions at this
level and (2) the model. parameter data, as opposed to carrying out any further
decomposition. We shall return to this point later when describing the
selected modeling technique.
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2.4 DATA STRUCTURES FOR IAT

While the matrix notation described above assists in organizing one's

thinking about the relationships among the descriptive data about a C3 system,
-we also need a means of organizing the data itself to capture these relation-

ships. Nearly any flexible, well-structured database management approach can
provide such a capability. However, the use of frame/slot notation, a tech-
nique borrowed from artificial intelligence, is particularly advantageous.

Frames were originally proposed by M. Minsky as data structures for
represt.nting knowledge of stereotyped situations, such as being in well-known
environments (e.g., one's living room, office, control room facility) or going
to special events. Frames served as components of a broader theory of human
memory and performance in their role as "units of recall," in Minsky's origi-
nal conception: frames were selected from memory whenever one encountered a
new situation, or made substantial changes to viewing current conditions or
problems at hand. It is in this sense that frames received more widespread
application as templates, i.e., "... remembered framework(s) to be adpated to
fit reality by changing details as necessary" (Minsky, 1975).

Although Minsky intended frames to be employed in conjunction with asso-
ciated types of information (viz., how to use a particular frame, expecta-
tions about what will happen next, what to do if these expectations are not
confirmed), the use of frames within artificial intelligence (Al) modeling
has focused more on the internal structural properties of frames as aids for
organizing data (Schank and Abelson, 1977; Barr and Feigenbaum, 1981).

To be viewed as data structures, frames can be conceptualized as networks
of node-, and relations. (Note the correspondence of this concept with two of
the7O descriptive dimensions: resources and processes.) The top levels of
a frame, in this context, are fixed, and represent conditions that are assumed
to be true about a specific situation. The lower levels nave terniinal rodes,
called slots, which are syntactically "place-holders" -- slots must be filled
by particular instances or data values. Each slot can be used to specify con-
ditions that its assignments must Meet. Simple conditions are specified by
markers that might require a terminal assignment to be a person, an object of
sufficient valuer,, or a pointer to data associated with another s-it or another
frame. More couplex conditions can specify relations among data assigned to
several slot:o (Minsky, 1975). Collections of semantically-related frames can
be linked together into "frame-systems." Different frames of such systems
share the same terminals: thi:; is the critical point that makes it possible
to coordinate information gathered from different vievpoints. Differences
between the frames of d-i system can thus be used to represent actions, cause-
effect relatLions, or changes in vantage points (e.g., from which the same data
are perceived or precessed).

Another importait ;iSpect of frames lies In the default values of slots.
Default jssiinments can bLh used to expre-ss prototypical, potent ial, or accept-
a Lio va •,ie;. elieice,, through default values., iranes can be used to represent
gc'•L'ric informatlon, CXpCjctLaions, and the like (Yager, 1984).
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Default values have further uses within frame-systems. In particular,
prototypical or "normally expected" values can be vsed to test the validity
of a frame, in cases where some slots are filled in with acceptable values
at the same time other slots have not (yet) been g!v.n assignments. Slots
already filled-in can be used to predict the -alues of slots whose assignments
-are lacking. This feature of frame/slot notation makes these data structures
especially helpful toanalsts who must collect field data known to be
incomplete.

For application to IAT, frames cinstitute major data sets for each of
the four dimensions: GOALS, ORGANIZATIONS, PROCESSES, RESOURCES. "Slots"
describe the data elements of a frame.

The advantages of using fraines and slots ire as follows:

I. Relationships that might be captured in several different
matrices can be grouped together on a single frame.

2. Slots can be used with and without entrieq to Indicate whether
performance data are or are not available.

3. Default values can be defined in slots for carrying out sensi-
tivity analyses and "zero-order" estimates of performance.

4. Cross-referencing can be handled by supplying pointers from
frame-to-frame (indicated as entries on slots).

5. Slots can be added or deleted to specity attributes of the
dynamic characteristics of a process.

6. The inherent nesting properties of frame and slot notation
make it possible to capture inforuation from structural
models (recursive decompositions and matrices in TAT).

Figure 2-3 illustrates frame and slot notation.

2.5 C3 SYSTEM MEASUKES

We now turn to a major problt faced by C3 systems analysts and engineers
in the past. Thece has been a serioud divergence of opinion between military
operations personnel and systems designers and analysts regarding how to mea-
sure the utility of these systems. Military personnel lean toward measuring
physical quantities (or their equivalent in computer sifnulatioas) which
directly affect a battle outcome, such as "bombs on target," assigned targets
destroyed," "attrition rates," ctc. Engineers, on the other hand, tend to
think in terms of the capabilitLie of the subsystems and systems they are
designing or analyzing. As a result, some confJsion hags deLveloped with regard
to the meaning of various typesm of measures.
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ILgure 2-3. Exa:,ple of IAT Structural De.;cription and Process Frame for the

' iucess " onttor for Enemy Missile IitLnch" (Kornfeld, 1984)
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To clarify the situation, we define the following six fundamental types
of measures associated with C3 systems:

1. System capability measures describe what a C 3 systems (or, more
properly, what the system components or physical resources)
can do (e.g., radar peak power, communication channel bandwidth
or capacity, human cognitive and workload limitations, computer
memory size, display resolution, and other attributes). All of
these measures can be evaluated based on physical properties of
hardware or human elements of a C 3 system, without reference to
any ilitary or natural environment. Capability measures are
specific to C3 resources and represent one class of !ndejendent
variables, namely, the desijnvariables of the ststem w~th

whfch engineers can deal more or less directly.

2. Mission environment measures describe the situation which
drives the CT system, i.e., those factors which consitute the
threat to and the environment of the system (e.g., radar cross
section of an aircraft; reflectivity and absorbance of the
atmosphere; number of hostile emitters in a region; hardness
of a target; flyout time of a missile). All of these measures
can be determined from the military situation and environaent
in which a system is or might be deployed, without reference
to any specific C3 equipment or physical resources. Mission
environment measures represent a second class of ýnde ndent
variables over which, however, neither military nor engineering
personnel have any direct control.

3. Syste erformance measures describe what the C3 system itself
(or, more properly, specific C3 functions or processes) will
do when driven by a specific threat and environment (detection
range for a radar; access time to a computer memory; message
queue lengths for a comunications service; time required to
assign a weapon to a newly detected target). All of these
measures can be evaluated only if characteristics of both the
situation and the C 3 system are known, since they depend on hw-
the sjstea drives and is driven by its environment. Perfor-
mance measures are dependent variables and are specifLc to C3

proc e ss es .

4. Xilitaryeffectiveness measures descr!be what the combined
effects of thGervstemand thewe aoJn _ystems which it con-
trols will be when driven by a specific threat and environment
(probability that a hostile missile !s destroyed before it
reaches its target; attr!.:-on rates; fraction of attackers suc-
cessfully penetrating fr endly dtefenses; fraction of attackers
successfully engaged before reaching target; movemenz of Forward
Edge of Battle Area). All of these measures can be evaluated
only with respect to criterion levels set by military conmanders
on the scene. Effectiveness measnres also are dýeendent
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variables but are specific to military jpals and of necessity
must take into account weapon system as well as C 3 system
performance. As an example, "number of weapons hitting desig-
nated targets" as a measure depends not only on weapon deliv-
ery system accuracy but also on target detection, recognition,
countermeasures effectiveness, and other C3 system performance
characteristics.

5. System survivability measures describe the ability of the C3

system to continue to perform one or a group of necessary pro-
cesses or functions in the face of enemy attack on the system
Itself. For example, such a measure may be the probability
that the surveillance subsystem will continue to provide at
least 90 percent coverage of a specified spatial volume during
the time period of the attack, with less than 5 percent down
time. Similar measures may be defined for other subsystems
such as communications, planning, and weapon direction and
generally will be stated in terms of probabilities, times,
spatial boundaries, etc. Survivability will be determined
by such things as: (I) communication, or connectivity among
resources In the system; (2) redundancy of dispersed resources
(i.e., number of "copies" of individual resources physically
located in different geographical areas); and (3) the reassign-
ability of resources to perform different processes as was
discussed in detail in subsection 2.3.6).

6. System efficieney measures describe the way in which available
C system-resources are utilized. A highly efficient system
requires a minimum of resources to do its job; thus, resource
utilization in such a system should be very high. However, it
is important to recognize that one cannot have both high effi-
ciency and high survivabilicy at the same time in the same
system. Since, as noted in item (5) above, survivability is
achieved via geographically dispersed multiple copies (i.e.,
redundancy) of resources, then resource utilization and hence
efficiency must necessarily be low in a highly survivable
sysrem.

Note that it may not be feasible to improve a system design with respect
to effectiveness, efficiency and survivability slmultaneousl•y. However, given
the development of appropriate mathematical tools, it should be possible to
modify a system de!Ign in order to:

0 Irymprovu effectiveness subject to minimurm constraints on surviv-
ability and efficiency; or

0 Improve efficiency subject to ininimurm constraints on surviva-
bility and effectiveness; or

* Inprove survivability subject to uinfinmim constraints on effec-
tiveness and efficiency.
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Such tools would make it possible to determine whether one or another of the
constraints must be "broken" and by how much, in order to reach a given level
of improvement (i.e., it may tur. out that a slightly lower effectiveness
can result in a major improvement in survivability for a given level of effi-
ciency; or that a small decrease in efficiency can result In a major improve-
ment in effectiveness, etc.). The trade-off possibilities simply cannot be
ignored.

It is especially important to distinguish clearly between these types of
measures when attempting to evaluate and/or predict human performance in these
systems and its impact on system performance and effectiveness.

2.6 POSSIBLE APPROACHES

The definition and evaluation of C3 system measures can be supported in
three different ways (in increasing order of difficulty and expense, but in
decreasing order of validity): by analysis, modeling and simulation, and
experiment. Analytical techniques include PERT/CPM, queuing network theory,
and related methods. These methods are primarily limited regarding the size
(i.e., depth of decomposition) of the systems that they are able to represent.
Modeling and simulation techniques include the use of such standard languages
as SLAM, SAINT, and CSMP as well as more elemental methods such as Petri net
modeling.

In this section we have reviewed the primary requirements and constraints
for C3 system description, decomposition, measurement, and data representa-
tion. Because bf its generalizability and wide applicability as well as its
direct capability for decomposition, we have selected an extension of the
Petri net methodology for further development. In the following section we
shall describe a Petri net modeling and simulation toethodology that meets
these requirements and at the same time allows us to define the significant
system measures and extract both structural and quantitative measures.
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SECTION 3

STAPNs: A FORMAL MODELING AND ANALYSIS METHOD FOR IAT

3.1 INTRODUCTION

In Section I we noted the differences between C3 Systems and other large-

scale systems. These differences comprise one major reason for the difficulty

experienced in attempting to analyze C3 systems. A second major reason has

been the lack of a complete, well-structured intellectual framework which can

capture all essential elements of C3 processes, resources, and organizations.

More useful analyses should be possible if we can (I) create a formal analysis

framework for describing C3 systems which meets the requirements set forth in
Section 2; (2) use that framework to identify a precise, inde endent, and com-
plete set of variables or measures with which to describe a Cý system's beha-
vior; (3) use the same framework to) develop quantitative relations among the
variables; (4) deduce numerical values for each of the variables using empir-
ical or theoretical data; and (5) use the same framework for representing and
analyzing both human and system activities.

This section describes ALPHATECH's approach to meeting these requirements.
it is based largely on recent work by Tenney (1986) and Blitz et al. (1985).
We first summarize the minimum set of physical constructs required for C3 sys-
tem modeling. This is followed by a short tutorial on the technical foundation
(i.e., mathematical constructs) underlying the methodology, namely, Stochastic,
Timed, Attributed, Petri Nets (STAPNs). The reader will note that the formal
structure of STAPNs is directly analogous to the empirical structure of C3 sys-

tems; it is this analogy which forms the basis of our approach.

*We then introduce the concept ot the -box node,- a new Petri net primi-
tive. Next we describe the tight relationships between the physical attri-
butes of a C3 system and the mithemr.itical modeling formalism of STAPNs.

Finally, in the remainder of is section we discuss four additional
topics:

* Relationship of STAPN's to -xisting -_-t.thods of system represen-
tation, modeling and analysýis

* Guidelines for constructit'- IAT process models with Petri nets

S zHowu STAPNs can be used to model hurnan operator and decision-
n-wa king activities

* Which IAT questions mnay nrm- be addressed and which require
furtnther IAT develop;-nent
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Details of the methodology are presented in Appendix A which describes
(1) the canonical performance measures which are directly derived from the
STAPNs; (2) the formal method of model refinement via model decomposition
and enhancement; (3) relationships among the measures at different levels
of decomposition; (4) available techniques for evaluating the measures; and
(5) open issues, i.e., problems which have not yet been solved. Subsection
3.8 contains procedures and guidelines for generating measures from STAPNs.

3.2 PHYSICAL CONSTRUCTS FOR C 3 SYSTEM MODELING

The descriptors of C3 system behavior must relate to reality. For the
sake of measurability and, ultimately, of performance evaluation, they uust
be tied to physical activities in specific, concrete ways. The approach de-
scribed here injects an abstract representation between reality and the mea-
sures, and that representation must be closely tied to reality if the implied
measures are to be so. With reality the basis for all that follows, consider
the fundamental elements of real C3 systems that must be captured by a model-
ing language and its associated measures.

How can we start to formalize descriptions of C37 To begin, we can adopt
the following point of view:

A Command and Control system, together with its environment and
associated weapon y stems, consists of a number of ojiecs. movIn
through neighborin_.n. gaphical- regions or flowing through various
Interconnected facilities, all i n a tiall" coordinated,_asyn-ý
chronous fashion.

Each of the terms in this statement is made more precise below.

3.2.1 Objects

Many of the "objects" that "move through' a system are easy to identify:
ships, aircraft, supplies, spare parts, and people. Other, less tangible,
things can be said to move as well, notably information. For the sake of
realism, the approach herein prefers to identify intangible entities, such as
information, with the'r physical manifestations, such as messages. Nothing is
lost this way -- information flows if and only if messages move -- and easily
interpretable (and weasureable) quantities can be more readily defined in

terms of physical objects than In terms of intangibles.

The benefit of this point of view is clear. A vision of many objects
moving around a set of regions or facilities i4mediately suggests many natural
variables which describe their activities: velocities, rates of arrival and
departure, time delays, and the number of objects in each region or facility.
Each of these measures can be evaluated for the real system by observing the
objects in action, so they are clearly measurable.
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3.2.2 Geography

The objects that move through geographical regions include battle forces,
civilian vehicles, civilians themselves, and supplies. In all cases, the
motion can be considered in two distinct ways: as differential equations of
motion (or equivalents) or as queuing processes (flows through networks).

The first, somewhat microscopic, view follows Newton and Euler: describe
each object by continuous quantities such as position, orientation, mass, and
velocity. Then, from knowledge of the forces acting on each object at any
time t, deduce the positions and velocities at the next point in time t+a.
The principal advantage of this representation is that it can be made arbi-
trarily realistic. It is ideal for many purposes: design of flight control
systems, deduction of ballistic trajectories, few-on-few combat modeling, and
so on. However, it suffers from complexity when used in conjunction with
models of C3 systems: an extremely large number of objects (friendly, enemy,
and neutral) can interact with the system, and to describe each of these
objects with even a six-degree-of-freedom model would be quite unwieldy.

The second, more macroscopic, view suppresses exact positions and veloc-
ities in favor of discrete quantities such as regions in position-velocity
space. Geography breaks into regions, altitude into zones, and movement into
segments of a standard mission profile. Objects move from region to neigh-
boring region, altitude to adjacent altitude, and segment to subsequent seg-
ment. The advantage of this representation is that noxious detail can be
suppressed. Unfortunately, either accuracy suffers to some extent, or com-
plexity dominates. Objects' behavior cannot be modeled arbitrarily accurately
w'thout making regions smaller, and hence more numerous.

The choice between the two alternatives clearly depends on the uses to
which the representation is to be put; we claim that the second approach is
appropriate for studies of C3 systems. This assertion is taken to be axio-
matic in what follows, but it can be justified on three empirical grounds.

The first argument is based on existing military views of the world.
For example, an air defense environment is not characterized operationally by
the detailed positions of every threat; rather threats follow one of several
types of trajectory (high altitude, skimming, ballistic, or depressed) as they
migrate from the outer air battle, to the inner air battle, to point defense.
Ground operations are organized around regions of control. Air defense is
managed by sectors. Even space defense is layered in several phases, and tar-
gets move from phase to phase. Discrete views of the world are ubiquitous in
military life, so operational personnel readily relate to discrete models of
their battle area. In addition, much documentation about how a system works
already takes this form.

The second argument is based on pragmatism. Does the overall behavior of
a C3 system really depend on the exact locations of all objects fn the battle
area? If so, the system is extremely sensitive to events in the battlefield --
and like1'v to fa i L If events do not go as planned. Conversely, C3 systems ire
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designed to be robust, so that their performance should be largely indifferent
to replacing continuous movements with intermittent tzansitions between dis-
crete regions.

The third argument is based on utility. To evaluate measures using a
continuous model is usually expensive, as one must integrate large numbers
of simultaneous differential equations. To evaluate measures using discrete
models is much easier. Specifically, consider how to simnglate continuous and
discrete models of the same system. In terms of both software development and
execution time, the discrete model is far more tractable. Except in critical
situations where accuracy is paramount, discrete models often yield acceptable
evaluation results with far less investment in software and analysis than 0o
continuous models.

3.2.3 Facilities

Not all objects move around in an unconstrained manner. Many more flow
along established pathways. Most importantly, the objects that move within a
C3 system are primarily messages, and these travel only over communications
channels.

The basis of aly C3 system is its underlying communications network.
"Communications network" is to be interpreted in the broadest sense: it in-
cludes both expensive, special purpose systems (e.g., NTDS, JINTACCS, JTIDS,
etc.) as well as inexpensive, general purpose mechanisms (e.g., memos, tele-
phones, face-to-face con':ersation). The nodes of a communications network
reside in various facilities such as sensors, command centers, and weapons.
Clearly facilities, or points within facilities, are discrete entities between
which messages flow.

3.2.4 Connections

Geographical regions border one another, and objects can physically move
only from one region to a neighbor. Facilities are interconnected by communi-
cations links, and messages can move only along communications links. Thus
both types of object move in a way which is determined by the topology of the
geographical cells and the communications network.

Connections between the geographical and C3 networks are provided by sen-
sors and weapons. If an aircraft enters the region surveilled by a radar, at
some point that radar will begin to introduce detection and tracking messages
into the C3 system. Similarly, if a message arrives at a cruiser commanding
it to launch a helicopter, a new object will begin to move through the sectors
of a battle group.

3.2.5 Parallel I sm/Asynchrony

The laws which govera the movement of objects thirough regions or facili-
ties are very different froa usual physical laws. No force fields permeate
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the entire system, affecting every object simultaneously and continuously.
Instead, most objects move independently of one another: satellite motion
and logistics messages have little influence on one another.

Movements are not completely independent, of course. Coordination does
take place, but only at discrete points in time and space. For example, air
engagements start when an interceptor, a target, and a command message allo-

cating that interceptor to that target all exist in the same region at the
same time -- and the interceptor may wait as long as necessary for the command
before starting the engagment.

In general, coordination takes place in geographical spaces only when
two objects occupy the same region. Coordination takes place in the C3 system
only when two pieces of information converge at the same facility. Coordina-
tion takes place between objects and messages only when an object causes a
sensor to emit a message (so the object and sensor are in the same region), or
when an engagement starts (so a message and weapon are at the same facility,
and the weapon and target are in the same region).

Coordination takes two forms. In the first form, two activities start
simultaneously. For example, an order to move to a heightened state of combat
readiness causes many activites to start at once. In the second form, move-
ment of one object halts until some other event takes place. For another
example, an F-15 will stay on a prescribed patrol route until either a message
arrives assigning it to investigate a radar contact, or an indication arrives
that the plane is low on fuel.

Both of these coordination mechanisms are asynchronous: there is no
worldwide clock by which events can be orchestrated. (Even systems which try
to establish a cormmon time reference ultimately rely on asynchronous protocols
to exchange information.) An activity starts if, and only if, certain precon-
ditions are satisfied and proceed for some period of time. The activity ends
only when the time required to carry it out has passed, and conditions for the
next activity to start are satisfied.

As a final example, consider a coordinated missile launch against a col-
lection of ground targets. The missiles may be launched simultaneously -

coordinated by the transmission of a single command, and enabled by prepara-
tory activites such as fueling and targeting. tiowever, each missile will be
aftected by different sequences of events as defensive systems attempt to
engage It -- the missiles move along their flight paths independently and in
parallel. The defensive system reacts to the missiles' actions, and engages
missiles 4n different areas with different sensors and weapons -- coordinating
its act ivit ies using asynchronu•i- track handovers and weapon allocIations.

3.2.6 Coi1 ex itvLHiierar 2•ies

Numerous references to the complexity of real C3 systems have already
been made. The normal mechanism for coping with complexity is tu vie- a sys-
tem .t sever-,C levels of detail. While thIs is always somewhat artificial,
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the advantages of gaining a general perspective usually outweigh the attendant
loss in accuracy, at least at first.

The perspective enunciated above supports multiple levels of detail.
Objects can be decomposed: an entire Naval battle group may be a single
object at the level of national policy making, but broken down into individ-
ual platforms for operational control. Geographical areas can be decomposed:
air defense districts break into zones, which break into regions, which break
into sectors. Facilities can be decomposed: an Army divisional headquarters
is a single facility when viewed from the theater level, but an entire network
of facilities when described in a procedures manual. As previously described
in Section 2, successive decomposition from aggregated overviews to refined
details provides the key to manage C 3 system complexities.

3.3 MATHEMATICAL CONSTRUCTS FOR C3 SYSTEM YODELING

Turning from the physical reality of C3 systems to mathematical abstrac-
tions, recall that we seek a representation which captures all of the char-
acteristics discussed in Section 2 and subsection 3.2, yet which is formpl
(i.e., well defined). It would be a mistake to attempt to build such a rep-
resentation from whole cloth, since many modeling frameworks already capture
several of these features. Unfortunately, some tailoring is necessary, since
no such framework deals with all aspects of C 3 in a manner which can be tied
to quantitative measures.

One of the more intriguing bases for C3 modeling is the fHld of Stochastic,.
Til.ed•. Attributed Petri Nets (STAPNs). Invented in the early .,,;'s (by Petri)
to characterize concurrent operations in computer systems (described as net-
works), Petri nets have been extended over the years to capture almost all of
the important aspects of large man/machine organizations (such as attributes,
timing relations, and stochastic events) (Peterson, 1981). Their greatest
appeal is their conceptual simplicity. Also, quite natural behavioral varla-
bles accompany each sluple element of a STAPN. In addition, the topology of
a STAPN model automatically determines a number of relations between these
variables.

With these advantages, STAPNs arc i logical choice for meeting both thc
descriptive and modeling requirements for C 3 systems. However, the existing
STAPN Itterature is rather fragmented ýir_' somewhat inconsistent in conventions
and terminology, so a brief (but rompleo,) descr!pt!on of the version of STAPNs
which is most appropriat.e for th4 ý work folliws.

3.3.1 Tokens/Timinj Models/Attributes

All Petri nets are based on a vision of tokens moving around an abstract
network. Tokens are conceptual entities, :eant to model the objects which
move 'n a real network. In their simplest manifestation, presented here,
tokens can be in one of t"Wo states.

48



When a token is created (as described below), it is always in an unavail-
able state. After some time elapses, the token changes to an available state.
After an additional time, the token is destroyed. The interpretation of the
two states is that (a) when the token is unavailable, it exists and cannot
be destroyed, and (b) when it is available, it exists and will be destroyed

as soon as certain other conditions are satisfied (also described below).
Unavailable and available tokens will be depicted as shown in Fig. 3-1.

0
AVAILABLE UNAVAILABLE

TOKEN TOKEN

Figure 3-1. Token States

The time a token remains unavailable, i.e., between its creation and its

entry into the available state, is determined by a timing model. Identical
timing models apply to every token created by the same process -- if a series
of tokens is created by one process, then a common timing model describes the
length of the unavailable state for each token.

Timing models fall into four classes. The simplest models are deter-
ministic: the duration of the unavailable sLaLe is fixed at one value, which
may be zero. A more realistic model is stochastic: the duration of the un-
available state is random, but always drawn from the same probability dis-
tribution. The randomness can be used to represent either actual physical
uncertainty or known modeling imprecision. In the third case, times may de-

pend on information carried by the tokens themselves (see below). The final
class of models allows the timing to depend on external variables: the dura-

tion of the unavailable state may depend on the time of day, temperature, the
Dow-Jones average, or other phenomena not explicitly represented by token
f lows.

Finally, tokens may carry attributes along with them. Attributes are
simply numbers (or other information encoded as numbers) which accompany a
token through Its life. Values are assigned to the attributes of a token when
it is created, and thuy do not change until the token is destroyed, after
which they are irrelevant. Attributes may be continuous- or discrete-valued,
or combinations thereof in vector form.

3.3.2 Places/Declsfon Rules

The abstract network through widlch tokenrm move coil.nSt s of two types ot

elements. The fir!, t type is called a place. Token. reside i;i places while
they are Hinavailable and waiting to beco:nu available, or while Lithy are? ava-i -
ahle and waitirig for conditions to arise allowing them to be des• tro)yLd.
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Places are depicted as illustrated in Fig. 3-2 below. Depending on the
number of input and output connections, a place can play four roles; the four
cases are shown separately in Figc. 3-2a -- 3-2d.

A. SIMPLE B. JUNCTURE C. SEPARATION D). MIXING
PROCESS STEP OF TWO FLOWS OF TAO FLOWS OF TWO FLOWS

Figure 3-2 . Places

The four roles are:

A. Storaige: Tokens arrive in a place from one source, and depart
to one destlna~ion after they have bccome available and the
cooditions for their destruction have been satisfied.

B. Conflue e: Two or more streams of tokens flow together to
proceed on to a siagle destinatioii, after being stored.

C. !Divergence: One strean of tokens is broken into two or more
streams, which proceed to different destinotions after gtorage.

D. Mixing: Two or more input streems combine, and then are broken
down (usually in a different way) into streams which move to
separate destinations after waiting.

In cases C and D, there must be a way to determine which path any individual
token will follow out of the place. For this, we associate a decision rule
with every place. By invoking the decision rule for every passing token, we
can ensure that token behavior is always completely determined.

As with timing models, decision rules cari vary in complexity. Deter-
ministic decision ruler, which always direcL tokens to the ,ame destination,
are possible bu' not particularly inter.sting. Stochastic decisicn rules
capture random events and cover modeling uncertainty. More complex decision
rules take into account the availablility of tokens at nearby places (so
tokens are sent only to destinations that are reody for them) or (he values
of attributes attached to the token being handled. Finally, the most compley
decision rules depend on external param.eters, such as Iline.

Note that mnany tokens may pass through a singi place. In fact, several
tokens may occupy a place siiiciltane(.cusly. •igure 3-3 exoi:nli les how tukens
may flow through one place:
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A. FIRST TOKEN B. TOKEN C.SECOND TOKEN D. FIRST TOKEN
ARRIVAL AVAILABLE ARRIVAL DEPARTURE

Figure 3-3. Tokens Moving Through Places

In this figure, the first token is created and inserted into the place (Fig.

3-3a). It waits there until it becomes available (Fig. 3-3b), but may not

leave the place immediately as the other conditions for destruction may not

be satisfied. In fact, while the first token is waiting, a second token may
be created in the place (Fig. 3-3c). Eventually, the first token will leave

(Fig. 3-3d), but the second cannot leave until it becomes available.

3.3.3 Transitons/Firing Rules/Attribute Maps

The second type of element of which the abstract network is constructed
is called a transition. Transitions determine how and when tokens are
destroyed and created. Transitions evolve through three states: potentially
enabled, enabled and disabled. Normally every transition is disabled; when
certain conditions hold, a transition will become potentially enabled; if
other conditions hold, it becomes enabled. In either case, the transition

leaves the disabled state only for infinitesimal periods of time. After
becoming enabled, the transition destroys some tokens, creates some others,
assigns attributes to the new tokens, and immediately reverts to the disabled
state.

Transitions are connected to upstream places, from which they take
(destroy) tokens, and downstream places, into which they insert (create)
tokens. The states (unavailable or available) of any tokens in the upsteam
places determine when a transition becomes potentially enabled. Figure 3-4
shows how to depict a transition with one input and one output place.

0)- -0pp
Figure 3-4. Transition

Every transition's behavior is specified by a standard Timed Petri net
firing rule. This rule has several parts. First, whenever at least one
available token occupies each upstream place, the transition is potentially
enabled. There may be several potentially enabled transitions at any one
time; we rely on the decision rules at the places to select exactly one
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transition to actually become enabled. Once enabled, the transition fires.
Firing a transition involves removing exactly one available token from each
upstream place and inserting exactly one unavailable token in each downstream
place.

For example, a simple sequence of events which can take place in the
model of Fig. 3-4 is shown in Fig. 3-5.

O-+-0 ® -. I--O Q-A---
A.T-o B.T -5 C.T-S+

Figure 3-5. Tokens Moving at Transitions

Here, one unavailable token occupies the upstream place at time 0 (Fig. 3-5a).
At some point, say at time 5, that token becomes available (Fig. 3-5b). The
transition is now potentially enabled; since it is the only transition in the
model, it must be selected to become enabled. Thus at time 5, the transition
fires; it removes the available token from the upstream place, and deposits a
new, unavailable token in the downstream place (Fig. 3-5c).

What if the transition has more than one input or output place? This
slightly more complex situation appears below in Fig. 3-6. In this example,
the system starts at time 0 with an unavailable token in PI (Fig. 3-6a).
Again at time 5, this token becomes available (Fig. 3-6b). However, T1 is
still disabled, since no token occupies P2. Even if another token were to
arrive and become available in PI, TI could not fire (Fig. 3-6c). Also, the
arrival of a new token in P 2 at time 7 (Fig. 3-6d) is not sufficent to enable
Tl, until that token also becomes available, say at time 18 (Fig. 3-6e). At
this point, T1 becomes enabled; it fires and removes one available token from
each of PI and P 2 , and places unavailable tokens in P3 , P4, and P5.

Figure 3-5 showed how transitions act as (a) separators between places,
(b) destroyers of available tokens, and (c) creators of unavailable tokens.
Figure 3-6 exemplifies the fourth crucial job of transitions: to coordinate
the flow of tokens. Any available token in P1 must wait for another available
token to arrive in P2 (and vice versa). The apparent complexity of the firing
rule comes from a need to deal with special situations. In these, two or more
places are potentially enabled simultaneously, but are related in such a way
that if any one fires, then they all become disabled. Transitions in this
situation are said to be in conflict. A simple example of a conflict situa-
tion is presented Ln Fig. 3-7. Initially, all transitions are disabled (Fig.
3-7a). At some later time, a token is created in P3 and, later, becomes
available (Fig. 3-7b). Now, both T1 and T2 are potentially enabled. If T1
fires, it will remove tokens from PI and P 3 , so T2 is disabled along with TI
(Fig. 3-7c) since no token remains in P3. If T2 fires, a symmetric situation
arises (Fig. 3-7d). With no other information, the behavior of the mode.l is
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Figire 1-6. Coordination by a Transition
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not well defined. However, the decision rule at P3 specifies the transition
to which the token in P3 is allocated, and so resolves the ambiguity in a well
defined manner.

The final aspect of a transition is the mechanism which determines the
values of attributes attached to newly created tokens, called an attribute
map. Like timing models and decision rules, attribute maps may be determi-
nistic or stochastic, or may be dependent on external parameters. The most
useful form of attribute maps deduces attribute values for newly created
tokens from attribute values carried by tokens destroyed in the same firing.

3.3.4 Arcs/Petri Nets

The connectors between places and transitions are called arcs. Only one
basic constraint restricts the placement of arcs in a STAPN: arcs can only
connect places to transitions, or vice versa; they can never connect places to
places or transitions to transitions. In addition, we impose two additional
constraints, not absolutely necessary to Petri net theory, but which make for
more meaningful measures.

First, every place must have at least one arc leaving it. This precludes
the obvious degenerate situation where toketis pile up in a place ad infinitum.
(There may be less obvious cases where this occurs due to some pathology of the
Petri net, out these cannot be ruled out by simple topological constraints.)

Second, multiple arcs between one place and one transition are prohibited.
Often these are used to create or destroy several tokens in one place simul-
taneously. However, the use of multiple arcs significantly complicates the
derivation of relations between measures in two or more models. Moreover,
activities modeled by multiple arcs can be modeled by equivalent nets with
single arcs, albeit with a slight increase on the model's complexity.

A collection of places, transitions, and arcs which satisfies these con-
straints forms a Petri net. With the addition of timing models, decision
rules, and attribute maps, the Petri net becomes a STAPN. With one other
piece of information, the STAPN becomes a complete model of a system.

The additional information is the initial marking of the net. A marking
completely describes the state of the STAPN. It includes the number of tokens
in each place, whether each token is available or unavailable, and the attri-
bute values attached to each token. It also includes, for every unavailable
token, the amount of time remaining until the token becomes available (this
can be considered to be an attribute carried by all tokens).

The marking of a STAPN captures ail of the rnmory of the process which
it models. It is rilatively eatiy to show, by direct construction, that:

Fact I : Given _•tTAIN, and the markinj• of that STAPN at any time t.
If t-chu- imiing models, decisiou rules, and attributeaps do not
depend 'm uxtern•] parameters, then the arobahi t' distribution
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over the set of markings at any future time t+T is conplet,.ly deter-
mined. If the timing models, decision rules, andg--trfY-Tite maps are
deterministic, then a unique marking for any future time t+T is com-
pletely determined.

As an example of a complete STAPN, consider Fig. 3-8, which shows :1 network
and its initial marking at Lime zero.

Sprwing

Buffer Start Process End

Creation

Free

Figure 3-8. Example STAPN

This system operates as follows. The token in SPACING immediately
enables CREATION, which places a token both in BUFFER and back in SPACING.
If the timing model for this token is deterministically zero, then CREATION
can fire immediately. More realistically, the timing will be nonzero, so
the token rests in SPACING before enabling CREATION again. Once this hap-
pens, this cycle repeats: tokens are intermittently deposited in BUFFER ad
in. nitum.

There is another set of events that are partially coordinated with the
CREATION process. These begin when the first token in BUFFER becomes avail-
able. START fires, and when the token created in PROCESS becomes available,
END fires and restores a token to FREE. However, if the time to become avail-
able in PROCESS is long compared to tile time in SPACING, more tokens will have
arrived in BUFFER before the token In FREE becomes avallable. Alternatively,
if the time spent in PROCESS arid FREE Is small compared to thle tine spent in
SPACING, the FREE token will wait for the next arrival ta BJFFER beforte firing
START.
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Overall, then, this is a model of a source of tokens which are stored in
a buffer until a resource becomes free. Then, a Rrocess starts; when it ends,
the resource is freed up and made available to work with another token in the
buffer. (Irn fact, if the timing models for SPACING and PROCESS are proba-
bilistic with exponential distributions, and all other timing models are zero,
this is identical to the simplest model from queuing theory: an M/M/l queue.
More genprally, any queuing theoretic model can be represented by a STAPN; the
converse is not true.)

3.3.5 Compiexitj_/Jierarchies_

How can STAPNs handle this kind of complexity which IDEFo was designed to
deal with? As mentiorei in Section 2, the normal mechanism for managing com-
plexity is to organize knowledge ini a hierarchy. Can STAPNs be arranged in a
hierarchy? As we will see in subsection 3.5, the answer is "yes" -- one can
consider a large STAPN to be an interconnection of subnetwcrks, each of which
is a STAPN itself. Each of these subnetworks may be furthe: divided into
subSTAPNs, and the process iterated until each subnetwork reduces to a single
place or transition.

In addition, timing models, decision rules, and attribute maps which
appear in a crude STAPN model of a system may be quite complex. Rather than
leaving them a, primitive entities, their descriptions may expand into entire
STAPNs when more detail Is added.

3.3.6 The "Box Node"

In order to manage the hierarchical complexity typical of C 3 systems
and, more specifically, to be able to represent successively higher levels of
aggregation of other Petri net primitives in simple graphic form, ALPHATECH
has added the concept of a "box node" to standard Petri net representations.

In the formulations we have described so far, STAPN models appear as flat
graphs even though the C 3 systems they are intended to represent are hier-
archical in nature. Consequently, the STAPN model of a C3 system reveals all
of the details of that sybtem without any organization in this presentation.
To capture the hierarchical nature of C3 systems, ALPHATECH created a new
Petri net primitive -- the box node. Box nodes, which are represented in a
Petri net dia/raw as rectangles with a darkened stripe in the diagraus, are
used to cluster and conceal other Petri net primitives -- places, transitions,
and other box nodes -- which form a subnetwork or submodel (see illustrdtion
in Fig. 3-9). A stibmodel concealed within a box node is incorporated as a
single unit into a model under construction.

The use cf box nodes is analogous to the use oi sibroutines in modular
programming and affords the same benefits. Box nodes conceal detail and allow
the system analyst to work at a level of abstraction that is hl.gher than the
level of places and transitions. Box nodes can be arbitrarily complex. Most
importantly, box nodes allow the development of standardized process models
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in modular form, thus permitting easy repetition within a simulation (e.g.,

as with modules representing multiple surveillance assets), as well as easy
transfer of such modules to other simulations. Using the STAPN methodology,
users .of IAT may work with box nodes representing say, the entire surveillance

subsystem of a C 3 system, where the representation of this subsystem may re-
quire many hundreds of primitives.

A-3o43

Figure 3-9. The Box Node as a New Petri Net Primitive. Within the
Box Node inputs always go to places; outputs always
leave from transitions.

Thus, with the addition of the box node primitive, the Petri net becomes
an extremely convenient an.' expressive modeling device. ALPHATECH has already
implemented the Box Node in its Micro Modeler for the Air Force's Foreign

Technology DivisiorL (Blitz et al., 1985).

3.3.7 Implications for Precision

Because a STAFN is rigidly defined, so are all of the events that take
place as it operates. Provided that the net topology obeys the interconnec-
lion constraints, anl -rrnvidod that the timing models, decision rules, and
attribute maps are well detined for all values of the variables on which they
depend, there is absolutely no room for ambiguity about how the model works
(this is the essence of Fact I). Hence, if measures are explicitly related
to a STAPN's behavior, they too will be rigidly defined. Note that any model,
including a STAPN, is really an analyst's hypothesis about how a system works.
That hypothesis should always be subject to both reasonableness checks and
validity tests on the measures taken.

3.3.8 Implications for Mutual Exclusion

The basic events of a STAPN are transition firings arid assignment of
tokens to places. Any measures defined for STAPNs must be related to these

events. Two or more measures which are affected by the same evenit will be
correlated, if not dependent. The criterion for mutual exclusion between
measures implies a requirement that the measures be defined in terms of i.cn-
overlapping sets of these basic evenits.
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Thus the formal structure of STAPNs provides a step towards the goal of
independent, and largely uncorrelated, definitions of C system measures of
performance. The requirement for mutual exclusion atnong the sets of events
which underlie measure definitions are satisfied in Appendix A, where canon-
ical measures are developed.

3 4 RELATIONSHIPS BETWEEN THE PHYSICAL AND MATHEMATICAL CONSTRUCTS

Earlier we alluded to certain analogies between the real C systems and
the abstract mathematical constructs inherent in STAPNs. This section dis-
cusses each of these analogies and sets out the axioms of our approach.

The reader will recall the viewpoint presented in subsection 3.2:

A Command and Control system, and its environment, consist of a
number of objects moving through neighboring geographical regions
or flowing through various interconnected facilities, all in a
partially coordinated, asynchronous fashion.

Now consider a simple description of STAPNs:

A STAPN describes how a number of tokens move among interconnected
places in a partially coordinated, asynchronous fashion determined
by transitions.

The analogies between each of the terms in these statements is made more
precise below.

3.4.1 Tokens: Objects

First, messages move through a C system and objects move through its
environment. Tokens move throagh STAPNs. In general:

A.serti-jn I: All objects tha- move through a Command and Control
system or its environmen+ -- be represented by tokens moving
through a STAPN.

As used in subsection 3.2, "object" is a general notion. Objects include con-
crete entities such as submarines, people, and messages. Objects also include
concrete manifestations of more abstract notions: the position of an indi-
cator that represents the DEFCON state, the location of warfighting materiel
that represents a state of combat readiness, or the armament on a close air
support aircraft that represents its capabilitits.

Unlike many objects, which exist permanently, tokens are cre;ated and
destroyed regularly. For tukens to represent real objects, a succession of
tokens most be used to re,)resenL an individual object, by dividing the life-
tine of that object into separate segiaents of timre. Different tokens will
represent the continuous existence object during each segmenL. For example,
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a single aircraft may fly through several geographical regions; a different
token will represent that aircraft in each region. The sequence of tokens
that represents the aircraft corresponds to the sequence of regions through
which the aircraft travels.

As the above example shows, the correspondence between token and objects
cannot be one-to-one. However, we can infer:

Conclusion 1: At any single instant of time, there should exist a
one-to-one correspondence between tokens and (generalized) 2•yscal1
objects.

3.4.2 Places: Regions, Facilities

Objects move from region to region; messages move from facility to
facility. In discrete models, movement is instantaneous and objects spend
almost all of their time in regions and facilities. Tokens rmove from place to
place, and spend almost all of their time waiting in places. Thus we claim:

Assertion 2: All facilities in a Command and Control system, or
regions in its environment, can be represented by places in a STAPN.

Generally, this assertion implies that places represent processing: that
the time a token stays in a place is related to the activities which Involve
the corresponding object in the real system. It takes time to cross a geo-
graphical region; it takes time to handle a message. Neither aircraft nor
messages can proceed until certain amounts of time have elapsed. Tokens must
stay in places until they become available; timing models capture the duration
of this wait. Thus we have:

Conclusion 2a: Transit and processing times must be represented
by tining models in a STAPN.

In reality, objects may leave one region for any one of several neigh-
boring regions; messages may be forwarded to one of a number of facilitics
connected to a sender. The selection of an alternative region or facility
depends on random effects, standard operating proceedures, and operational
policies. Each place in a STAPN has an associated decision rule which deter-
mines which of several arcs a token will follow out of a place. We conclude
that :

Conclusion 2b: Policies, procedures, and random events which
influence the paths which objects follow must be modeled by
decision rules in STAPNs.

Thus if a place represents an ASW sector for a Naval battle group, then a
timing model will describe the time required by hostile submarines to move
through the sector, and a decision rule will model the process which deter-
wines the sector Into which the submarines move next.
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A limitation of this approach becomes apparent when regions or facilities
can change over time. If a sensor or weapon moves, then the regions which

form their fields of view or fire change. !f a battle group approaches a

coastline, it redefines its ASW sectors to exclude areas where submarines
cannot operate. In space, orbital motions cause communications links to be

established and broken regularly. If a C3 system reconfigures itself after

sustaining damage, then its facilities and their interconnections change.
While one can envision a STAPN model which tracks these changes, the notions
required to formalize this process have not yet been developed.

3.4.3 Transitions: Boundaries, Events

Transitions demarcate and coordinate the flow of tokens. Consider the
physical analogs of each of these roles separately.

Along with the correspondence between objects and tokens, there must be a

correspondence between events in the real system, and the events which create
and destroy tokens. Tokens endutz in a place while the corresponding object
occupies a certain region or faciliLy; tokens leave a place when the object
leaves. Tokens leave when a transitio•i fires, so we must have:

Conclusion 2c: There is a one-to-one correspndence between bound-
ary crossings (between Aegions and/or facilities) by obects Ina
real system, and transition firings in a STAPN.

Continuing the ASW example, a submarine crosses a boundary when it enters or
leaves a sector; acoustic energy crosses a boundary when it passes from the
ocean to the piezoelectric crystal in a hydrophone; a message crosses a bound-
ary when a sonar operator tells the ASW officer on duty about a new detection.
In a STAPN model of this process, transition firings represent each of these
events. RecAll that transition firings are instantaneous; so are boundary
crossings if the boundary is infinitely thin and the object crossing it always
moves with nonzero speed.

Turning to the coordination role, transitions force some tokens to wait
until others become available. The physical analogy to this occurs when
objects or messages are prohibited from crossing a boundary until other
objects or raessages are in suitable locations. In general, we suggest that:

Assertion 3: Coordination occurs in a real system only when one
object or message ray be forced to wait until some other object
or message is ready to move on.

This is less an axiomatic statement than a particular definition of coordina-
tion. Nonetheless, it captures the essence of real coordination schemes in
asynchronous systems. In fact, it even applies to synchroaous systems, as
certain activities can;iot begin until a global clock "tick" reaches them.

?otr net transitions shotild be famillar tr) users of PERT charts: a
trasiTion provides exactly the same coordination mechanism as do PRT mcoels.
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In fact, standard PERT charts are identical to STAPNs which have (a) deter-
ministic timing models, (b) no decision rules, (c) no attributes, and (d) no

loops formed by any series of arcs. Various extensions to standard PERT
models include some forms of these other features, excluding loops. Just as
PERT models have been widely used in scheduling applications because of their
flexibility and simplicity, so their extensions, namely STAPNs, convey the
same benefits.

3.4.4 Complexity/Hierarchies

In Section 2 and subsection 3.2.6, we saw that hierarchical rc:presenta-
tions of C3 systems were necessary to prevent their inherent complexity from
overwhelming a viewer. In subsection 3.3, we saw that there is a potential
for complex STAPNs to be either divided into subSTAPNs or expanded at their
timing models, decision rules, or attribute maps.

If analogies, consistent with assertions 1-3, can be established between
a gross model of a C3 system and reality, as well as between a refined model
and that same reality, then there ioust be relationships between the gross and
refined models. Some general forms of these relationships are presented in
Appendix A.

3.4.5 Implications for Measurability

What does iU take to establish strict analogies between events In a real
C 3 system, and events in a STAPN model of that system? What do we look for
In the real systems to be studied, and how do we translate what we find into
a STAPN model? How does all this help ensure that variables defined in terlas
of the STAPN are in fact measurable in the real system?

A summary of the process discusbed above suggests that STAPN representa-
tions can be built systematically if we:

I. specify the objects that move through the system, and define
the token attributes that are needed to characterize each,

2. specify the regions or facilities in which objects may be
stored, and define a place for each,

3. specify the boundaries which objects cross as they move between
regions and facilities, and define a transition for each,

4. where objects must reside in regions or facilities for a period
of time before moving on, define a timing riodel for the corre-
sponding transition/place pair,

5. where objects may depart a region or facility along one of
multiple paths, define a decision rule for the corresponding
place,
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6. where attributes may change as an object crosses a boundary,
define an attribute map for the corresponding transition,

7. where coordination can happen, define the transitions (and
related tokens and places) which model the coordination
mechanism.

If we follow these steps, the correspondence between reality and a STAPN
is based on the definitions of objects, the regions or facilities in which
objects may reside, and the boundaries between regions and facilities. Sup-
pose that this correspondence is made precise for each token, place, and
transition in the STAPN, and that we impose the following guideline when
defining behavioral variables:

Assertion 4: All measures will be defined in terms of the STAPN
elements, so that the measures relate to transition firings and the
creation, storage, and destruction of to'.ens in places. For these
measurestobecomplet.eelydefined, there will be an explicit way to

evaluate their values by observing the behavior of the STAPN model.

Let the evaluation mechanism be captured in some algorithm, which accepts
a list of firings, creations, storage, and destructions and which produces the
value of a measure. Then it is reasonable that:

Conclusion 4a: Values of measures defined on a STAPN can be
obtained for the corresponding real system, using the algorithm for
evaluating those measures for the STAPN, by replacing (a) transition
firings with boundary crossings by objects, (b) token creations by
object entries into regions or facilities, (c) token storage by
object residency in regions or facilities, and (d) token destruction
by object departures from regions or facilities.

Moreover, since each object, region, facility, and boundary is defined in
terims of physical entities, which are observable, we conclude that:

Conclusion 4b: STAPN variables consistent with Assertion 4 are
measurable in the real system.

Btcause representations of C3 systems are not unique, difierent analysts
will undoubtedly choo0e to define objects, regions, and boundaries in slightly
different ways. However, as long as they are all physically meaningful, and
as long as the correspondences between real and STAPN elements are carefully
defined, we can feel comfortable about defining measures for the STAPN and
eYpect. them to carry over into valid measures for the real system and a stan-
dard method for evaliat ing them.

The reader i.- referred to Appendix A for further detail.
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3.5 RELATIONSHIP OF STAPNs TO EXISTING METHODS OF SYSTEM REPRESENTATION,
MODELING, AND ANALYSIS

In Fig. 3-10 we show the relationships among all of the various IAT
elements previously defined. Along the bottom of the figure are the various
techniques used by systems analysts to gather and structure data about C 3

systems. As indicated, these can be employed, as individual familiarity
with each one dictates, to obtain as much of the process and connectivity
data required to develop a detailed-level C3 system process model using the
Stochastic, Timed, Attributed Petri Net (STAPN) modeling method described
earlier in this Section. From the maodel structure itself, it is then possible
to define a complete, nested set of Probability, Rate, Occupancy, and Delay
("PROD") measures for the C3 system.

However, in order to obtain quantitative values for these measures, we
need to know two things: (1) the performance capabilities of the various
resources, and (2) the specific resource-to-process assignments. Of partic-
ular importance here is the data on shared resources, i.e., where one resource
is time-shared among several processes. Then, to complete the picture we need
scenario data to define the specifics of both enemy target and friendly weapon
system actions.

Evaluation of a single target moving through the system under various
circumstances can produce a PERT or critical path assessment. On the other
hand, a full multi-target scenario will require more sophisticated evaluation
techniques such as the application of queuing network theory or, for more
complex models, the use of simulation; in either case, the full range of sta-
tistics on probabilities, rates, occupancies and delays ("PROD") will be
computed. As the model becomes defined in increasing detail, additional data
needs will become apparent to the analyst. Discussions of example queuing
theory and PERT/CPM analyses can be found in Sections 5 and 6, respectively.

As indicated by the horizontal dashed line in Fig. 3-10, the foregoing
represents the set of current IAT elements and how they relate to one another.
It involves two of the four decomposition dimensions (process and resource)
and four of the six types of measures (system capability, mission environment,
system performance, and system effectiveness) described in Section 2.

The survivability of various C 3 functions can be evaluated in a simpli-
fied manner using the static, set-theoretic method of Wohl et al. (1981).
This involves (1) defining a specific function in detail and determining the
quantity and type of resources required to support that function; (2) identi-
fying the resources actually available or assignable to carry out the func-
tion; and (3) determining the probability that the requisite number and type
of resources remain available after a given (specified) attack on the C3 sys-
tem. Thus, functional survivability can be assessed in a gross, static,
"before-and after" sense. However, we are not yet at the point where C 3 sys-
tem survivability can truly be evaluated in detail. The main problem here is
that little work has been done to define carefully the various factors affect-
ing functional survivability other than the aforementioned gross measures.
For example, time averages may not make sense because of intervening changes
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in C3 system topology or structure; while ensemble averages may be question-
able because the system structure may change at different times in successive
replications. Such evaluation would have to involve analysis of the dynamic

reassignment of resource capabilities in the system, and these are determined
by the organizational constraints (i.e., lines of authority, responsibility
and coordination) as well as by changes !n the C3 system structure due to

enemy action, etc. (See the end of subsection 2.5 for a discussion of prob-
lems associated wiLh attempting to improve a C 3 system arch!tectore.)

3.6 USING ýTAPNs TO MODEL HUMAN ACTIVITIF:S

In this section we examine how STAPNs can be used to represenL a wide
range of human activities in C3 systems. These activities range from psycho-
motor tasks such as those involving both simple and complex (disjunctive)

reaction tines to higher-level cognitive tasks such as the Hypothesis and
Option election tasks in the SHOR paradigm (Woh] , 1961).

The following five illustrative cases demonstrate the applicability of
STAPNs to human behavior modeling and specifically to representing the SHOR
Paradigm. From them, it is clear that more complex concatenations of humani
activities can indeed be represeited using STAPNs.
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3.6.1 Case I: Simple Reaction Time Tasks

Sample Task 1: If light comes on, push buttom immediately.

Sample Task 2! If message is received, send acknowledgement
immediately.

Measure: Reaction time (tr).

State 1: - 1 Light off (token not present)

State 2: Q . Light comes on (token present
but unavailable)

State 3: (O ( Light is on, perception and& /A -.<D cognition occur (token becomes
available after tr seconds)

State 4: Button is pushed (transition fires)

Note: tr f(light brightness, message length, etc.)

Figure 3-Ai. Petri Net Representation, Case I

S ) . R If S then R

SIMPLE
DISCRIMINATION

(ON/OFF)

Figure 3-12. SIIuR Representatton, Case I
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3.6.2 Case 11; Complex (Disjunctive) Reaction

Sample Task 1: There are three colored lights that can come on:
Red, Yellow, Green. If Red comes on, push button
#'l; if yellow, #12; if Green, #3.

Sample Task 2: These are three possible formatted nrtGsagei; that
can be received: R, Y, or G. If R, respond with
acLton 01; if Y, #12; if G, #/3.

State 1: 11 . 1 I No lights on (no tokens present)

State 2: -- ¶ Red light comes on (Red token
present 'hut unavailAble)

AEO'
TOKEN 1 3

State 3: 1- 1 Red light remains on; perception,

discrimination, and cognition occur

2 (Red token becomes availiable aft'--t

RED,• tr seconds)1OKEN ___,_ 3

State 4: - 'BO utton 01. is puqlhed (Red trans IA oa
* '+_* f iri-u, Red token disappears, rre"w

- . Q 2 token is created in place ;'.I)

r-3 3t p tiA

Figure 3-13. P~eLri N,(:-L R cp e eir •; IL aLtOiI, C a;|•; TI
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Decision Rule: If Red token is present and available, red transition
fires, etc.

Note: tr f(number of lights or colors, difficulty of
discrimination, etc.)

S R If S 1 then R 1 , etc.

S2 R2

$- R
3 3

COMPLEX
DISCRIMINATION
(LIGHT COLOR)

Figure 3-14. SHOR Representation, Case II
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3.6.3 Case III: Hypothesis Selection Task

Sample Task: Tokens A, B, and C have attribute sets Ai, Bj, and C%-

Token attributes represent "indicators" (e.g., diagnostic
symptoms and their confidence levels).

Task: Select that hypothesis that has the greatest number of
high-confidence indicators.

Measures: Processing time, confidence level in chosen hypothesis.

TOKENS
41A B 41C 

ýH

ALL
TOKENS
GOTO H.sVALL 0 - -<

(r1 PLACES

j k
R-3606

111 Decision Rule: If Al, B3, and C 6 , then HI

H2 Decision Rule: If Al, B1 , and C2 , then H2

etc.

Figure 3-15. Petri Net Representation, Case IlI

S n H

DISCRIMINATION
& ORGANIZATION
OF ATTRIBUTES

Figure 3-16. SHIOR Representation, Case III
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3.6.4 Case IV: Option Selection Task

Sample Task: Tokens A, B, and C have attribute sets Ai, Bj, and Ck

Token attributes represent conditions that must be
fulfilled in order for an option to be viable. One
condition is that a specified goal be met. Another
is that a given hypothesis be correct. Subsets of
the token attributes therefore serve to constrain
the option set.

Task: Select that option that is least constrained and
meets the goal.

Measures: Processing time.

TOKENS

A 4 B 4 c C1 _* "

4, 02

1 -

ATTRIBUTES{ 03

R.3607

01 Decision Rule: If Al, B3 , and C6 , then 01.

02 Decision Rule: If A, BI, and C2 , then 02 (e.g., if Hl is cor-
rect and goal is to be met, then 02 is least
constraining option.)

etc.

Figure 3-17. Petri Net Representation, Case IV

S • H -- { O

DISCRIMINATION OF
ATTRIBUTES &

INTEGRATION WITH GOAL

Figure± 3-18. SHOR Representation, Case IV
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3.6.5 Case \ : Higher Level Cognitive Task: Hypothesis Generation and Testing

Sample Task: Find a rational "explanation" (hypothesis) for the
presence or existence of Ai, Bj, and Ck.

Method: (1) Look for analogies to previous situations

or to other cases.

(2) Find that analogy (141) that best explains or
accounts for the presence of Ai, Bj, and Ck.

(3) Identify additional token attributes that

would have to be present if H1I were tr.ie

(e.g., Cn).

(4) Test to see whether they are present.

If so, accept lii.

If not, try F. (next best analogy).

(5) etc.

Same as Case 111, except for token C:

C

2

k

2 ADDITIONAL
ATTRIBUTES IF

: • H1 IS TRUE

R- 3608A

Figure 3-19. Petri Net Representation, Cas;e V
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Appendix B contains several additional examples of how various types of
human interaction can be represented using STAPNs.

3.6.6 Relationship to Rasmussen's Task Taxonomy

The foregoing sample cases are also instructive from another vie,'-oint.
Several years ago, Rasmussen proposed a simple taxonomy of human tasks which
has been extrewely useful in organizing thinking about human behavior in
systems (Rasmussen and Rouse, 1981). In essence, he said that such behavior
falls into one of three classes:

- Skill-based

- Rule-based

- Knowledge-based

Skill-based behavior is exemplified by human operators performing lower-level,
more "mechanical" psychomotor tasks such as the reaction time tasks in Cases
I and II above, as well as more complex tasks such as those involving tracking
behavior. Rule-based behavior is exemplified by human operators and/or deci-
sionmakers perforoing intermediate-level cognitive tasks such as simple pattern-
matching, and hypothesis and option selection tasks in whic¢ the alternatives
are known, as in Cases III and IV above. Knowledge-based behavior is exempli-
fied by human dectsionmakers performing higher-level cognitive tasks such as
hypothesis and option generation tasks in which the alternatives are unknown
and must be developed as part of the task, as in Case V above. This case is
especially interesting since it assumes that decisioninakers are strongly de-
pendent upon historically analogous situations as a basis for generating new
hypothesis and/or option alternatives. Evidence for this assumption is con-

tained in the work on mental models by Larkin et al (1980); on analogical rea-
soning by Klein and Weitzenfeld (1978); and on historical reasoning and its
impact by Neustadt and May (1986).

3.7 GUIDELINES FOR CONSTfRUCTING IAT PROCESS MODELS WITH STAPNs

,uilding IAT mod, :s of physical processes should proceed in three stages:

$tave I:lnitializa~tion

* Scope the problem.

S Ide-it ily boundaries and data or objects crossing the
bou dda ries.

* S;: uil a list of data collection goals and criteria,
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Stage 2: Build a Baseline Model

"* Construct a "mid-level" model of the complete system.

"* Carry out data collection and assess whether Stage 1
goals and criteria have been met.

Stage 3: Refine the Stage 2 Model

"* Elaborate tie model structure as needed to insure
consistency, completeness, and parsimony.*

Activities to be pursued at each stage are listed below.

3.7.1 Stage 1: Initialization

1. Define the boundary of the system to be modeled. Think of this
in physical terms (e.g., the NCMC complex). Express Khe boun-
dary in terms of data/material flows (e.g., the arrivng mes-
sage traffic, the departing message traffic, etc.).

2. Decompose the input/output flows into their finest elements
(i.e., if two types of message might be processed differently,
they form two token flows, even if they arrive through the same
physical channel). Each elementary token flow defines a token
type, to be placed on the list of token types, along with an
annotation.

3. Define a transition for each token type to cross the boundary
of the system. These transitions would be labeled "Detection
message from sensor 3 arrives at NCMC" or "Operational order
sent to SAC from NCMC," etc.

3.7.2 Stage Z: Build a Baseline Model

Maintain separate lists of all defined items including:

* token types

* places

* transitions

* branches

*Sec discussion in subsection 3.4 above.
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as initialized above. Each item on a list represents a data collection goal:
fill in all the information described in Section 3.4.5. Items with all slots
filled in can be placed on a second list. By definition, a model is complete
when all items are removed from these lists. Moreover, it is easy to guar-
antee consistency as each item is filled in.

Note that one may have t' add items to these lists as slots are filled
in. For example, if a token type "Detection message from sensor 3" is defined,
that item cannot be taken off the list until two transitions, marking both the
generation and disposal of these messages, are added to the transition list.

The order in which items are taken from these lists to be completed can
be arbitrary. It should be selected to suit the data collecto:'s constraints.
A natural order is to walk through one processing path at a time. For example:

Q: Where do detection messages from sensor 3 go?

A: (Definition of a new place: facility, resource.)

Q: How long does it take to get there?

A: (Timing information.)

Q: What happens next?

A: (New branch or transition.)

Q: Must something else happen first?

A: (New token-type.)

etc.

3.7.3 Stage 3: Refine the Stage 2 Model

While the baseline model way be guaranteed to be complete and consistent,
it may not be parsimonious. The lack of parsimony can be found in timing
mcdells and decision rules wh: depend on non-local state information. Addi-
tional network structure to reduce these models should be added.

3.8 PROCEDURES AND GUIDELINES FOR SYSTEMATIC GENERATION OF SETS OF NMEASURES
FROM STAPNs

3.8.1 Step I: Construct the Top Level Model

Section 2 presc:ted arguinent.s in favor of a sysLoruatic method to identify
a set of variables which describe the behavior of a Command, Control, and
CoMrInunictC ions systen. I1.n this section and Appendix A the founidations for
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such a method have been laid by introducing Stochastic, Timed, Attributed
Petri net (STAPN) models, their canonical measures, and ways to organize such
models in a hierarchy. This subsection weaves these various threads into a
single, self-contained tapestry: an iterative process that simultaneously
models C3 systems and extracts a hierarchy of variables that measure their
behavior.

The resulting method has five major steps, repeated until the models and
measures reach a level of detail sufficent for the purpose at hand. Each
subsection of this section delves into the details of each step, first in the
abstract, and then in the specific context of a generic tactical air defense
mission. The air defense example provides concrete illustrations of each
aspect of the method. A few heuristic guidelines, generated in the course of
exercising the methodology on the air defense example, bridge the abstract and
concrete. These guidelines result not from theoretical analyses, but from
pragmatic concerns which seem, at least in the limited context of air defense,
to contribute to more acceptable and useful sets of measures.

A secondary product of the air defense example is empirical evidence that
common behavior measures may apply to C3 systems (including humans) that sup-
port a common mission area. This statement certainly applies to highly aggre-
gate models; it may break down as the hierarchy of models becomes successively
more specific. Nonetheless, a common set of high-level behavior measures
does seem to exist for air defense and appears to exist as well for the other
limited examples (SIMCOPE and NORAD MWC) described in Volume II.

Procedure

The first step of the methodology builds a highly aggregated STAPN model
of the system under study. The purpose of this step is (a) to capture the
essential objectives of the system in a STAPN framework, and (b) to establish
a starting point for later iterations which refine and extend the STAPN model.
The top level model need not be complicated, as the successive iterations
through the methodology provide ample opportunity to add detail.

The basic process for building a STAL'N model for a system was established
in subsection 2.5. Repeated here, the seven substeps required to buiid a c•m-
plete SYAPN model are:

I. Specify the objects that move through the system, and define the
token attributes that are needed to characterize each,

2. Specify the regions or facilltie• in which objects may be stored,
and define a place for each type of token which can be stored in
each region or facility,

3. Specify th,_- boundaries which objects cross as thuy move between
regions and facilities, and define a transition for each,
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4. Where objects must reside in regions or facilities for a period
of time before moving on, define a timing model for the corre-
sponding transition/place,

5. Where objects may depart a region or facility along one of mul-
tiple paths, define a decision rule for the corresponding place,

6. Where attributes may change as an object crosses a boundary,
define an attribute map for the corresponding transition,

7. Where coordination can happen, define the transitions (and related
tokens and places) which model the coordination mechanism.

Fortunately, if the only objective is to identify behavioral measures,
the final four substeps are optional. Certainly they are necessary to define
a complete STAPN model. However, in subsection 2.5 it was shown that the
canonical measures for a STAPN model are defined by places, transitions, and
interconnections alone; the timing models, decision rules, and attribute maps
contribute to evaluation of the variables, but are unnecessary for the iden-
tification of variables. Since the purpose of this work is the latter (see
subsection 1.6), only the first three substeps are relevant to the general
method.

Guidelines

Two general advisories apply to the construction of the top level model.
First, if a model. directly relates to generally accepted statements about the
purpose and structure of the -.ystem which it represents, then it (and its
refinements) will be more readily accepted. Since the model which represents
a system Is not unique (see subsection 1.5), we can always anticipate differ-
ences of opinion about the correpondence between model elements and reality,
or about the appropriateness of the level of detail preserved or suppressed in
the top level model. Little can be gained by offering additional opportuni-
ties for disputes about the scope or purpose of a system. Such issues have
often been discussed at great length in other forums. References to published
doctrine, official. definitions, and generally accepted viewpoints provide a
firm and easily justified starting point for the methodology.

Secondly, humans (and particularly engineers) have a great deal of diffi-
culty describing a system at a crude level of detail. Their strong tendency
is to critique a simple model of a system by pointing out numerous features
which are not represented in that model. In the context of our methodology,
this tendency is counterproductive: the purpose of the top level model is to
capture only the broadest aspect of the system -- not every detail. More than
a modicum of discipline is needed to keep the top level model simple, and to

relegate the details to later iterations of the method.

In summary, two guidelines for Step I of the rmethodology are:
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1. M~intaiiu cledf cuutectIonj between the top level STAPN model
and previously established views on the scope and purposee of

the system.

2. Keep the top level model as simple as possible, leaving details

for later refinements.

3.8.2 Step II: Generate all Canonical Measures

The STAPN model serves as an intermediary between reality and the mea-

sures sought. From the model, we can extract the set of canonical measures --

a set which is unique and well defined once the model is established.

Procedure

The second step of the methodology uses an existing STAPN model of the

system under study as the basis for deiinitions of a large set of measures.
The purpose of this step is to generate a set of measures which are (a) mutu-

ally exclusive (describe nonoverlapping sets of events) and (1j collectively

exhaustive (complete with respect to the STAPN model).

The principal challenge of this step is to establish notation that is
easy to extend through several levels of a hierarchy. To this end, conven-
tions are adopted similar to those used by several other structured decompo-

sition methods:

I. Formally name each model at level N+l by appending a unique
letter, in alphabetical order, to the name of the model at
level N of which it is a refined submodel.

2. Formally name each place in a model with a letter P, using a
subscript constructed as described in (4) below.

3. Formally name each transition in a model with a letter T, using
a subscript constructed as described in (4) below.

4. Construct subscripts by appending a numerical index, in ascending
order starting with i, to the model name.

Canonical measures are straightforward to generate from a STAPN model of
a system. The four substeps required to identify the canonical measures are:

I. To each output arc of a place Pi, leading to some transition Tj,
assign a probability measure Pij.

2. To each transition Ti, assign a rate measure Xi.
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3. To each place Pi, assign an occupancy measure ni.

4. To each place Pi, and to each output transition Tj for Pi,
assign a delay measure Ti,

Note that the formal notation for each measure follows directly from
the notation for places and transitions. Naturally, informal names can be
attached to places, transitions, and measures for convenience. However,
unless the model is to be extended to only one or two levels of detail, the
formal naming method is preferable as it guarantees that each measure has a
unique name.

Guidelines

Only one guideline applies to the derivation of canonical measures.
Recall that tokens may have attributes. Subpopulations of tokens are implic-
itly defined by attributes, as we may divide tokens into groups, with tokens
in each group sharing like attribute values. Often, measures may need to be
defined for each attribute subpopulation separately. For example, one may
wish to explicitly consider cases where the delay encountered by messages
about different target types are different, since different message types may
be handled with different priorities, although they follow the same processing
paths. In this case, the delay for each message type, rather than an average
over all messages, is of interest.

Instead of building separate models which depict the processing of each
individual subpopulation, one can define vector-valued measures. The compo-
nents of the vectors are measures for each specific attribute value which
determines a subpopulation of interest. Thus if there are four message types,
the canonical measures for the model elements which describe the message hand-
ling are four-dimensional vectors.

Fortunately, the horizontal relations defined in subsection A.3 apply,
componentwise, to vectors of canonical measures as well as to scalar measures.
Additional vertical relations may be required to relate components of vector
measures at level N+I, where subpopulations determined by attribute values may
be broken e-it. t• e--rr- -t level N, where attribute values may not be con-
sideritr! at .. i .. _ se relations are generally simple sums and expectations,
mimicking the f,,rns discussed in subsection A.5.

Thus the only guideline for Step II of the methodology is:

1. Use vector valued measures when the only distinction between
tokens and the way_ they move through a STAPN is the value of
attributes that they carry.
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3.8.3 jtea III: Select Primarry.1Mensures

While all canonical measures are physically meaningful and potentially
interesting, they are not all independent. The redundant measures may be
eliminated without fear of compromising the coverage of the overall set of
measures, while simplifying the description of a system's behavior.

Procedure

The third step of the methodology reduces the set of candidate measures
compiled in Step II using the standard horizontal relations developed in sub-
section A.3. The purpose of this step is simply to develop a (nonunique) set
of independent primary measures.

The basic procedure passes through two phases. The first phase (substeps
1 - 4) generates a list of horizontal relations. The second phase moves
through that list, successively eliminating both relations and measures:

1. Derive a conservation of probability relation between the prob-
ability measures attached to the output arcs of each place.

2. Derive a conservation of rate relation between the rate measures
attached to the output transitions of each place.

3. Derive a probability-rate relation between the rate measure for
each transition and the probability measure attached to every
arc leading to that transition.

4. Derive an occupancy-rate-delay relation between rates at the
output transitions at each place, the occupancy measure at the
same place, and the delay measures between that place and its
output transitions.

5. Select any relation remaining on the list.

6. Select any measure appearing in that relation.

7. Solve for the value of the selected measure in terms of the
other measures appearing in the selected relation. If this is
not possible, discard the relation and go back to substep 5.

8. Replace all appearances of the selected measure in all remaining
horizontal relations, using the formula from step 7.

9. Discard the selected measure and relation. If any relations
remain, go to substep 5.

Substeps 5 and 6, of course, are the arbitrary decision points which
allow the final set of primary measures to be nonunique.
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Guidelines

Several guidelines can help reduce the arbitrariness of the selection
decisions. These guidelines fall into two classes: general suggestions about
the measures that tend to be most acceptable to users, and specific revisions
to steps 5 and 6 implied by a literal interpretation of the general guidelines.

Four general ideas about measure selection follow from considerations
of the uses to which the measures will be put. First, in the evaluation of
alternative systems, numerous measures quantify a system's behavior. No
single measure captures a concept of good behavior; the multitude of behav-
ioral, structural, and socioeconomic measures must be combined into a single
measure of a system's worth before final selections can be made. This combi-
nation logic can simplified, and made more intuitive, if the sensitivities of
the overall measure of worth, with respect to individual measures, are all of
the same sign. Arbitrarily, one can ask that a selected measure has the prop-
erty that an increase in its value leads to an increase in the overall worth
of the system. Thus a choice between the probability of detection, and the
probability of nondetection, of hostile aircraft should be resolved in favor
of the probability of detection, as increases in that measure are usually con-
sidered to be good.

Secondly, the basic objective of a C3 system is to deliver weapons to
hostile targets before those targets cause any damage. The basic objective
of the targets is to cause damage before the C3 system can respond. This
race between enemy assets and the C3 processes is the essence of C3 system
evaluation, and is most naturally captured by the canonical delay measures:
does the time required for an enemy to achieve its objectives exceed the time
required to arrange friendly forces to meet the threat? Since the occupancy-
rate-delay relations allow us to exchange occupancies and delays, they should
be used to eliminate occupancies in favor of delays.

Thirdly, the probability-rate relations allow us to exclude either proba-
bilities or rates. Except in cases where a natural benchmark (such as physi-
cal throughput capacity constraints) exist, rates can be hard to interpret.
Probabilities always have such a benchmark: they are always bounded between 0
and I. Thus probabilities should be preferred to rates, as the normalization
for probability measures automatically provides a sense of scale.

Finally, division by zero is not well defined. Step 7 may result in
equations involving division, and we should cvoid the possibility that the
denominator becomes zero whenever possible.

Thus the three general guidelines for :asure selection are:

1. Eliminate measures for which decreasing values are usually
interpreted as indicative of better systems.

2. Eliminate occupancies in favor of delays when considering an
occupancy-rate-delay relation in substep 5.
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3. Eliminate rates in favor of probabilities when consider nLa
proba ility-rfat te r-ae t on ____ _7 

2ue 5

4. Do not eliminate measures which allow equaions in substec_7
to have denominators which may become zero.

Mechanically applying these guidelines yields a specific strategy to
generate the set of primary measures, once the horizontal relations have been
identified. Noting that guideline 4 is not explicitly included, the special-
ized strategy for steps 5 and 6 becomes:

5a. If any Conservation of Probability relation remains, select it;
otherwise, go to substep 5c.

6a. Select, for elimination, one probability measure in the relation
of substep 5a for which a decrease in value is generally consid-
ered to be good. (At least one such probability measure exists,
since an increase in the most favorable probability must be off-
set by a decrease in at least one other.) Continue to step 5c
after the probability is eliminated.

5b. Select the Probability-Rate relation which contained the proba-
bility measure chosen in step 6a.

6b. Select, for elimination, the rate measure in the relation of
substep 5b. (This rate measure is monotonically related
to the probability measure in substep 6a, for which a decrease
in the rate must also be considered to be good.) Go back to
step 5a after the rate is eliminated.

5c. If any Probability-Rate relation remains, select it; otherwise,
go to substep 5d.

6c. Select, for elimination, rate measure in the relation of sub-
step 5c. Go back to step 5c after the rate is eliminated.

5d. If any Conservation of Rate relation remains, select it; other-
wise, go to substep 5e.

6d. Select, for elimination, a downstream rate measure in the
relation of substep 5d. Go back to step 5d after the rate is
eliminated.

5e. If any Occupancy-Rate-Delay relation rem.-ies, select it; other-
wise, the process ls complete.

6e. Select, for elimination, the occupancy measure In the relation
of substep 5e. Go back to step 5e after the occupancy is
eliminated.
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These substeps apply when steady state or time average measures are used;
a slightly different selection order should be used for ensemble averages.

3.8.4 SLep IV: Refine Primazy Measures

A STAPN model of a system was built in Step I. Steps II and III devel-
oped sets of primary and secondary measures from that model. The measures are
precisely defined in terms of that model. However, the measures will be used
for the real system, and they may nut yet be precisely defined in terms of
real events.

Procedure

The fourth step of the methodology uses the list of primary measures to
focus attention on some correpondences between physical elements of a real
system and abstract elements of the STAPN model of that system. The elements
deserving further scrutiny are simply those that appear in the definitions of
the primary measures. In addition, some aspects of the measures themselves
must be specified. Thus the purpose of this step is to (a) transfer the defi-
nitions of primary measures from the STAPN elements to the real system, and
(b) to add further pragmatic information to the definitions. The product of
this step is a glossary which augments the definitions of the primary
measures.

Step IV simply revisits each of the primary measures, and the terms
that appear in each, to establish more precise and unambiguous definitions;
objects, regions, facilities, and boundaries modeled by a STAPN must not be
ambiguously defined if a wide community of users is to share the measures
produced thereb,. To be evaluated consistently, the measures must be of the
same type (e.g., ensemble average or steady state). The basic procedurp
passes through two phases. The first phase (substeps 1 - 4) generates a list
of horizontal relations. The second phase moves through that list, succes-
sively eliminating both relations and measures:

Define units; define type of measure; specify T or K.

1. For each object, regoion, facility, or boundary mentioned in
the definition of a priraary measure, generate an entry in a
glossary for the model which clarifies any ambiguities in that
definition.

2. For each measure, specify whether It is to be evaluated as an
instantaneous valut, a time average, an ensemble averdge, or a
steady state statist,:*. If the measure is to be a f4nite aver-
age, specify the interval (K or T) over which the average is to
be computed.

3. For each easare, specify the units in which it is to be
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All of these substeps involve the judgment of the analyst constructing
the measures, so there is no objective way to evaluate the performance of this
step. However, the purpose of the step is to foster communication among the
users of the measures, and to insure that Imperfections In this step do not
propagate to later steps of the methodolcgy.

Guidelines

Two simple guidelines assist Step IV. First, the units selected in sub-
step 3 should be as uniform as possible. There is rarely a good reason for
defining some delays in days, some in minutes, and some In seconds when the
overall purpose of the set of measures is considered. Translation from one
set of units to another certainly does not facilitate the comparisons which
the measures are to support.

Second, the definitions of measures can usually be significantly iinproved
if they are subjected to peer review, particularly if the reviewers have widely
different backgrounds. Hidden assumptions, ambiguities, and poor choice of
terminology are much more apparent to someone who did not participate in the
modeling process. Any differences in interpretation between reviewers can be
assumed to reflect diversity present in the user community.

In summary, two guidelines for Step IV of the methodology are:

I. Use consistent units in the definition of all measures.

2. Suiect the definitions and lossar to review by a set of
independent reviewers of varied backgrounds.

3.8.5 Step V: Refine Model by Disaa r iat~on or Enhancement

The STAPN model built so far may be too crude to generate measures at
the level of detail required for some analysis. We maust extend the model by
disaggregating its elements and by enhancing It with additional structure.
The refined model can then serve as a basis for an additional pass through
Steps II, III, and IV.

Procedure

This final step of the methodology extends an aggregated STAPN model,
made in a previous step, into a refined nolel of the same system. The purpose
of this step is (a) to establish formal correspondences between the orfglnal
and the disaggregated models, (b) to add detail to the refined model which
was deliberately suppresscd when the original model was built, and (c) to
derive vertical relations between -measures ior tbhe two models using the formal
correspondences.
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The ideal processes for refining a STAPN model for a system were estab-
lished in subsection 2.7. Based on Step I and that discussion, the substeps
required to extend a STAPN model are:

1. For each transition in the original model, determine whether
the objects or messages crossing the boundary represented by
that transition are to be decomposed into classes of objects.

2. For each transition in the original model, determine whether
the boundary represented by that transition is to be decomposed
into segments.

3. For each transition identified in substeps I or 2, insert a
set of transitions in the refined model which capture the de-
composition desired. For each transition not identified in
substeps I or 2, insert a replica of that transition in the
refined model.

4. For each place in the original model, determine whether the
regions or facilities represented by that place are to be
decomposed into subregions or subfacilities.

5. For each place in the original model, determine whether the
timing model, decision rule, or processing step represented by
that place is to be decomposed into segments.

6. For each place identified in substeps 4 or 5, insert an acyclic
network of places and transitions in the refined model to cap-
ture the decomposition desired. For each place not identified
in substeps 1 or 2, insert a replica of that place in the
refined model.

7. For parallel paths, coordination mechanisms, or other detail
not yet built into the refined model, add places, transitions,
arcs, and initial tokens to enhance the disaggregated model.

8. Where objects must reside in regions or facilities for a period
of time before moving on, define a timing model for the corre-
sponding transition/place in the refined model.

9. Where objects may depart a region or facility along one of
multiple paths, define a decision rule for the corresponding
place in the refined model.

10. Whero attributes may change as an object crosses a boundary,
deCine an attribute map for the corresponding transition in
the reflined model.
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.11. For each measure defined in Step II for the original model,
construct a vertical relation based on the correspondences set
in subs teps 3 and 6 here.

12. Go back to apply Step II to the new, refined model.

As in Step I, if the only objective is to identify behavioral measures,
the substeps 8, 9, and 10 are optional.

Guide lines

The same general advisories apply to refinement of a model as to the
construction of the top level model in Step I. In addition, it seems to be
easier to delete existing model elements, which are inappropriate to the level
of detail of a model, than to avoid inserting those elements in the first
place. However, first attempts to refine a model tend to incorporate more
detail than desired. Thus the natural construction of a refined model seems
to include more details than necessary in the disaggregation and enhancement
substeps, followed by an additional simplification substep where some of the
new model elements are removed.

Also, after two or more iterations, the refined models tend to become
quite unwieldy. A technique for managing the complexity of the model at each
level is to partition the model into submodels. The natural location of par-
titions is at transitions, since these already model boundaries in the real
system. The inputs to a transition which straddles a partition line appear
in one submodel; the outputs appear in another. Care must be taken to ensure
that each transition on a partition line is disaggregated consistently in each
model in which it appears. Partitioning a model also permits some submodels
to be refined while others remain unchanged.

In summary, the four guidelines for Step V of the methodology are:

I. Maintain clear connections between the each level of the STAPN
model and any previously established views on the scope, purpose,
or structure of the system.

2. Keep the each refined model as'simple as possible, leaving
details for later refinements.

3. Include more detail than necessary_ iu the first attempt tc, uilid
a refined model Chtbn eliminate '!cments f•rii h .-. !'":: re ; o• r
issues addre-,-i hy the hulk or the additi'Qoal od&-1 structrte.

4. Partition models whiLh exceed a few dozen places and transi-
tions into submodels, with boundaries between submodels passing
through transitions.
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3.8.6 Conclusion

The five steps outlined in this subsection form the basis of a method-
ology for building hierarchical models and sets of measures. The design of
the methodology endows the models and measures with certain desirable proper-
ties. While steps 3 and 5 generate some equations which relate measures to
one another, these are insufficient to compute numerical values without fur-
ther information about the system under study.

To conclude this subsection, some of the major advantages and disadvan-
tages of the methodology presented here are reviewed.

Advantages

The advantages of the method stem from the structured decomposition which
drives the model-building process, and from the mathematical structure of
STAPNs. They include:

Reality: The connections established in Steps I, IV, and V between
the STAPN elements and the objects, messages, facilities, regions
and boundaries of the real system preserve a tight connection between
the resulting measures and the activities of the real system.

Visibility: The hierarchical set of models, while initially moti-
vated by a desire for a tool to help structure the generation of
measures, is itself a useful product of the methodology. The models
act as successively more detailed schematics of a system, and cap-
ture not only connectivity but also the timing and coordination
mechanisms which operate within that set of connections. To an
analyst who did not participate in the generation of the measures,
the models make explicit a number of the assumptions that led to the
selected sets of measures.

Automatic generation of measures: Because the models are built out
of o-s-dard a7&STAPN primitives, and the canonical measures can be
readily deduced from the interconnection of these primitives, gener-
ation of the measures themselves becomes an easy task.

Automatic minimality: Along with the canonical raeasures come canon-
ical horizontal relations, which establish mathematical r('dundancies
among the measures. Elininaxiing a subset of the measures --o that
rnc -e I •.• - !w.I.• .. ,.o°,' the rena,.•.,i •:i:~ry :nesures scrs
i ndepeadence.

Automat ic internal completeness: The formal rature of disaggrega-
tion at transitions and places establishes the one-to-one correspon-
dences required for vertical relations to hold. The fact that a
vertical relation exists for each higher level measure ensures that
the values of all higher level measures are completely detemined by
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values for lower level measures. Thus nothing is missing from the
lower levels, at least with respect to the coverage of the measures
at the higher levels.

Precision: The rigorous definitions of measures for STAPN models
guarantee that the theoretical definition of every measure con-
structed using this methodology is precise. The general analogies
provided by Assertions 1 - 4 in Section 3, and the glossary provided
in step 4 of the methodology enable the mathematical definitions to
be translated into precise and unambiguous physical definitions.

Disadvantages

However, a number of disadvantages prevent the methodology from achieving
all of the goals one might expecL of it. Fout major disidvantages are:

Judgment: The selection of the amount of detail to be preserved at
a model level, and of the way to disaggregate higher level elements
into lower level structures, is completely determined by the judgment
of the analyst executing the methodology. Since different analysts
have different opinions, the models and measures produced by two
independent studies of a single system are likely to be different.

incompleteness: Many details of a system are deliberately suppressed
at the higher model levels for the sake of intelligibility. These
details may be added as the depth of the model hierarchy is increased,
but practical constraints on time and effort may limit this depth.
Thus the resulting sets of measures may be knowingly incomplete. In
addition, there seems to be no way to exclude (external) incomplete-
ness caused by simple oversights.

Structural and socioeconomic measures: The focus of the development
here has been on behavioral measures. Structural mueasures may fit
into the STAPN framework if tokens are taken to represent structural
states, buL .•-serves firLher thought. Socioeconomic measures are
well outside the capabilities of the STAPN approach.

Complexity: Above all, C3 systems are complex. Models and measures
developed to describe a system will also be complex. Complexity en-
genders fru' tration, impatience, and skepticism. Nonetheless, cfm-
plexity is a price that must be paid by any methodology which asp'res
to completeness and realism.

3.9 IAT 4UESflvNS TilAT MAY bE ADIRESSED

In Section 1 were listed ques'Lions about C3 systems that should he ad-
dressed by the Integrated Analys is Techniques sumwmari -:cd In Fig. 3-i0. It is
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now possijlc ta determine which of these questions can current 1', be addressed,
snd which mus.: await further technique development. Each question is rcpeated
below for convenien'e, followed by a brief discussion of its addressability.

I. Given a static structural des crtipLon" of a C3 system, how can
one predict the system's performance?

Answer: Referring back to Fig. 3-10, evaluation of predicted
C3 system performance measures requires that a STAPN
process model of the system be produced and that all
of the requisite data identified in the left-hand
column of Fig. 3-10 below the horizontal dashed line
be obtained and reflected in various model parameters,
at a selected level of sjystem decomposition.

2. What call a static structural description tell one about:

- the strengths and weaknesses of the way functions are
performed (i.e., by the mechanisms or resources which
carry out the functions)?

- the strengths and weaknesses of the way functions are
combined (i.e., carried out by the same resource)?

- the dependency of functions (i.e., upon other functions,
resources, etc.)?

- the I•trengths and weaknesses of data flows and controls

(i.e., functional connectivity)?

- the criticality of functions, data flows, mechanisms,
and controls?

Answer; Given a STAPN process model, a complete set of per-
formance measures can be defined. However, they
cannot be evaluated unless the requirements noted
above are ,net. Determining the relative strengths
and weaknesses of the way in which various functions
are performed and of data flows and controls, as well
as determining the relative criticality of these
items, requires such evaluation. On the other hand,
the deyendencjy of functions upon other functions,
resources, etc., can be determined directly from the
appropriate matrix in Table 2-1. Even second, third,
and n-th order dependencies within a given level of
decomposition can be calculated by means of simple
matrix multip•iication. For example:
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Let [pLi x pLj] be the functional connectivity
matrix defining which processes Pi feed which
other processes Pj at the L-th decomposition
level. This is a sparse matrix of zeros and
ones which directly represents the first-order
dependencies among the processes. Then
[P~i x pLj12, [pLi x pL 1 3, and [PLi

represent the second, third, and n-th order
dependencies, respectively. Note that a STAPN
process model is not necessary for this pur-
pose; the required matrices can be developed
directly from any appropriate functional or
resource connectivity diagram.

3. How can one use a static structural description, along with any
other transformations, augmentations, or other data, to answer
the questions in item 2 above? What measures can be used?

Answer: This question has already been addressed by the answers
to questons I and 2 above.

4. What can the static structural description tell us about the
dynamic performance of the system? How does it address or
support issues of:

- timeliness

- probability of error

- survivability?

Answer: Dynamic performance can only be determined by exer-
cising a STAPN process model with all of the requisite
data, as in the answer to question 1. The "PROD"
statistics will directly provide probabilities, rates,
occupancies, and delay data. Calculation of error
probabilities and their consequences will require
that the STAPN model explicitly include branches for
representing critical error possibilities and their
propagation paths.

Static functional survI"dbility measures can be de-
fined and evaluated for a given C 3 structure and
attack scenario, using the methods of Wohl et al.
(Wohl et al., 1981). However, they cannot be eval-
uated for a drnamic situation in which the system
structure continually changes as a result of jamming
and/or destruction. New measures and methods must
be developed to handle such situationts.
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5. What do classical systems engineering theory, organization
theory, or network theory offer in the way of properties or
measures to address the foregoing issues?

Answer: A STAPN process model represents the most recent
advance in systems engineering theory. Simpler STAPN
models with single-target scenarios can be evaluated

using analytical methods from PERT/CPM, and with
multiple-target scenarios they can be evaluated using
methods from queuing network theory. More complex

STAPN models (e.g., at greater levels of decomposi-
tion detail) must employ computer simulation for their
evaluation. Organization theory will be useful in the
future in developing methods for analyzing dynamically
adaptive (i.e., changing) C 3 structures and in calcu-
lating their survivability rr-aasures (see 4 above).

6. How can the answers to the aboie questions be used to improve
sys te~n performnance?

Answer: At presenit this can only be done by comparatiLve uval-
uatiion of alternative strLIctures, alternative assign-
ments of resources to processes, etc. At some future

date it should become feasible to apply dynaiaic opti-
mization techniques to determine how a system should

be structured and what art! the optimal allocations of
resources (including humans) to pr-.cesses. However,
these techniques are not yet sufficiently mnatue to
be able to address hierarchical C 3 system structures.

S. .... i:, ! ' " II L
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SECTION 4

ANALYTIC METHODS FOR EVALUATING C3 SYSTEM PERFORMANCE

4.1 TOOL SELECTION AND SPECIFICATION

A top-down technical approach was done, first examining properties of
operations research and systems engineering tools, and then evaluating them
for relevance to the kinds of C3 evaluation problems of which the NORAD MWC
operational environment is typical.

The most important results are as follows:

1. For limited application, e.g., to help gain insight into more
complex systems, critical path alal :sLs based on standard PERT/

CPM methods can be useful. Its primary limitation is that it
will handle only the passage of a single threat through the
system; but even this can demonstrate the presence of major
bottlenecks In a manned C 3 system. Because of their general
availability (e.g., Boehm, 1981), analytical details are not
repeated in this report.

2. Analytic approaches based on queuing theory can indeed be used
to exercise performance models of manned-C operational systems

under more realistic (i.e., multiple target) conditions, but
only if sufficient care is taken to modify classical queuing
theory for describing and predicting hutjan 2erformance. Again,
standard queuing theory techniques are generally --vailable and
will not be repeated here (Kleinrock, 1976). Appropriate modi-
ficatlons for application to human performance are described in
subsection 4.3.2.

3. Petri nets, and in particular, STAPNs appear to be especially
useful as a weans of:

a. representing PROCESSES and RESOURCES within the IAT
f ramework;

b. co,•tructlng ,performance models; and

c. defining measures of performance (MOPs)
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that will permit the models to be exercised. These aspects
of STAPNs have already been described (Section 3 and Appen-
dices A and B). Functional and data requirements for using
Petri nets are elaborated in subsection 4.3. It should
be noted that any queuing model can be represented by a
Petri net.

4.2 PERT/CPM TECHNIQUES

The identification bottlenecks in any flow network can most easily be
done using PERT/CPM methods if (I) the network's nodes and arcs are completely
defined; (2) the processing delays at each node are known, either determin-
istically or statistically; (3) we are only interested in the single-thread
case, e.g., a single intruder in an air defense system. PERT/CPH techniques
allow simple and direct computation of the total expected delay along any
set of connected paths and, as a fallout result, the longest path delay or
"critical path" (hence the term Critical Path Method or CPM). The computa-
tional methods are well known (Boehm, 1981) and have been embodied in many
computer programs (including several for PC's). As a consequence, they will
not be repeated here.

4.3 QUEUING THEORY APPROACHES

Studies conducted during FY82-84 identified queuing theory as an appro-
priate method for generating quantitative estimates of human/system perfor-
mance in C3 systems:

I. It can be used to produce measures of throughput and delly
directly related to the timeliness measures natural oCT
systems.

2. Measures of resource utilization are provided. (These furnish
the means to explore alternative resource allocations and task
structures.)

3. The analyses can be done at several levels of detail (ranging
from gross approximations based on simplifying assumptions and
steady-state analyses to detailed transient analyses obtained
with numerical methods).

4. Issues of accuracy and eLxor can be addressed through the
parameters of simple queuing models or their extension, a
network of queuing models.

In this subsection we present a brief review of classical queuing theory
based largely on Kleinrock (1976) and summarize the assumptions that need to
be made for analyzing and predicting human performance. Modifications to sim-
ple queuing arialysis methods are required because these traditional approaches
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are not designed to take account of human behavior at the level of complexity
exhibited in C3 systems. Changes to standard methods are motivated for ad-
dressing factors such as accuracy and error, associated with human operators
who carry out specific tasks at workstations.

4.3.1 Queues and Their Relevance to Modeling C3 Systems

Queuing theory involves the mathematical characterizations and analysis
of "queues" (waiting lines). Queues form whenever demand for a service
exceeds capacity to provide that service. In real-world systems, units of
demand are items-to-be-serviced, and may take the form of messages, informa-
tion, raw materials, or tasks that need to be processed. Entities providing
service or processing may be human operators, computer programs, or entire C3

systems.

Decisions must be made regarding the amount of capacity, or resources
that should be allocated to maintain systems that will function in a cost-
effective manner. To allocate resources appropriately and to reduce costs,
decision-makers would like to be able to predict when units (of demand) will.
arrive to seek service and how much time will be needed to provide the re-
quired service. This information becomes important for achieving a balance
between the cost of providing a service and the cost associated with waiting
for that service. Providing too much service (i.e., more than required to
handle demand) creates unnecessary expense; but not providing enough service
causes queues to build up beyond processing capacity.

Queuing theory analysis does not itself tell decision-makers how to bal-
ance supply of service against costs of waiting -- but it does yield the data
needed to make decisions by predicting characteristics of the waiting line
(e.g., mean waiting time, length of queue).

Queuing Models: Basic Structure

Figure 4-1 represents a simple queue. Items to be processed ("custo-
mers") originate from an "input source" (or "input population"), and enter
the "queuing system" when they join a queue. At specific times, a customer
is selected for service according to a rule called the "service" or "queue
discipline;" this discipline refers to the order in which customers are se-
lected for service. The "service mechanism" performs the required service
for the customers, after which they leave the queuing system.

Elements of the Queuing Process and Standard Assumptions

I. INPUT SOURCE -- Population size (total number of customers that may
require service) is assumed to be infinite

-- Customers are identical
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Figure 4-1. The Basic Queuing Proces.'

-- The number of cusrtomers generated until a specific point

in time has a Poisson distribution

(for the case where arrivals to the queuing system occur
randomly but at a certaitl average rate)

-- The interarrival time (time between consecutive arrivals)

follows an exponentLial distributLion

-- Unless otherwise stated, there is no balking or reneging

(customers refuse to enter the queue or may leave if the

queue grows too long)

2. SERVICE DISCIPLINE -- First-in/first-out ("FIFO") unless specified to the
contrary

3. SERVICE MECHAtNISM -- Consists of service facilities, which are comprised
of service channels ('servers"). Most elementary
models assume one service facility with either one oi"

a flnite number of servers.

"Service tihne" ("holding- or "completion time') is

the time lapsed between start and completion of
.,ervice; the probability distribution of service time
is assumed to be _onential and the same for ill

servers. Constant average service timr~e J. frequently

assumed. Service t -ie does not depend on the

attrtbot e nf a part icuilar c:u istomner.
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4.3.2 Using Queuing Theory Approaches to Model Human Performance

Notational Conventions for Modeling Human Performance

For purposes of using queuing theory to model human performance in manned
C3 systems, the notations below describe a classical "N/M/I" queue, for a
single human (server), performing tasks (handling customers) of a single type.
In an M/M/I queue:

* M/M/I (the first -M") denotes the arrival process type; viz.,
Poisson, having a constant average task arrival rate (X tasks/
sec.) for all arrivals.

• MIM/1 (the second "M") describes the service process type; viz.,
exponential, with a constant average task completion rate per
busy server (p tasks/sec.).

Note: the exponential interarrival and service time distributions mean that
the system is "memory-less" -- i.e., at any point in time, the total
length of the time in the system is independent of the observed line
length.

0 M/M/I (the last integer) identifies the number of servers.

The queuing process is assumed to be steady-state; i.e., it is defined with
respect to the average time between arrivals, average service time, and the
queue discipline. From these parameters, statistics can be derived to
describe time in the queue, time in the system (queue plus processing), number
of customers in the queue, and idle time of the system or service facility.
Table 4-1, which follows, presents the symbology and notational conventions
that are consistent with these assumptions. Table 4-2 includes formulas to
describe the queuing process for elementary queuing models.

Limitations of the Simple Queuting Model

In characterizing the "M/M/I" model, we have assumed that --

I. (Human) error rates are not taken into account.

2. Service rates are independent of arrival rates.

3. Waiting times are not constrained (i.e., tasks will wait forever
if necessary to be completed).

Each of these three assumptions needs to be changed for using simple queuing
models to characterize and predict human/system performarce. The following
secrions discuss changes appropriate for modeling human operator performance.
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TABLE 4-I. STANDARD TERMINOLOGY FOR STEADY-STATE SIMPLE QUEUING MODELS
(Kleinrock, 1976)

n - Number of customers in the queuing system

Pn = Probability that exactly n customers are in the queuing system

L - Expected number of customers in the queuing system

Lq - Expected number of customers in the queue

W - Expected waiting time in the system (includes service time)

Wq = Expected waiting time in the queue (excludes service time)

X = Mean arrival rate (expected number of arrivals per unit time)
of new customers

1/% = Expected interarrival time

P = Mean service rate (expected number of customers completing service
per unit time)

I/P = Expected service time

p = Utilization factor (expected fraction of the time that servers
are busy), defined as X/p
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TABLE 4-2. FORMULAS FOR DESCRIBING THE QUZUING PROCESS

For a steady-state queuing process:

LX

and

Lq - X Wq

For a classical M/M/I queue:

X P

Ii -x 1-P

therefore,

L I

[May also be designated as:

1
E(tb) = , the expected length of the busy period)

whereI -
E(ti) = -, the expected length of time the server is idle;

i.e., the expected interarrival time.]

However,

W = Wq +

therefore,

W q P P(
ý1 I p p1 -

2p
and i~q

It can also be shown that:

Po = 1-p (the probability that the queue is empty)
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Error Rate Models

In the simplest case, there is an error probabilty Pe(p) as a function
of p, defined as the probability that a task is incorrectly completed. In the
simple case, incorrectly completed tasks are not redone. In a more complex
case, the incorrectly completed tasks are redone. Consequently, for the more
complex case, the rate A of tasks is defined as

I
= )X+ X Pe

where X is the externally-imposed task arrival rate and the second term is
due to the feedback (i.e., redoing) of incorrectly completed tasks. Note that
such a "human" queue, in contrast to the classic M/M/l queue, will saturate

A
before the utilization factor p " - is equal to 1. In fact, It can be shown

that the human saturates for p 1 - Pe(l) 4 1.

Of course, it is necessary to have an empirical database to deterTaine the
function Pe(P), or even just a constant value of Pe- Moreover, the task for
which a queuing model with errors is used must be such that task completion
can be characterized simply as correct or incorrect. Other formulations are
possible, such as distinguishing between errors of commission and errors of
omission (Schank and Abelson, 1977).

Errors of Commission. Errors of omission occur as a result of the relation-
ship between capacity, mean arrival rate (x), and expected waiting time (W),
as in Fig. 4-2a. For human operators, we suspect that the mechanism of error
generation also involves an attempt to adjust or "stretch" response capacity C
such that waiting time W of a task does not exceed a criterion level. Then,
as apparent capacity C increases (e.g., as in the uppermost horizontal dashed
line in Fig. 4-2b), the rate of errors of commission cC (e.g., character sub-
stitution, number inversion, types, etc.) should increase proportionately, in
accordance with Shannon's law for noisy communication channels. Specifically,
for 1 < C, error rate eC can be made arbitrarily small by proper task design
(i.e., "encoding"). But for a given task design, any attempt on the part of
the human to increase his apparent capacity C will result in an increase in
error rate rC.

Errors of Omission. By adding a threshold parameter to the classical I/M/I
model, we can predict errors of omission. Assume that if W for a given task
exceeds a threshold parameter T, then the task is omitted by the serving
resource and we say that a "reneg" has occurred; i.e., the "customer" or task
cannot "wait" any longer than a threshold time W = - and "leaves" the queue.
This rene!ýnj• rate is eqiuiva lent to the error rate for errors of omission, F0,
such as missed keystroke, missed symbol, missed message, etc.
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(a) Differences Between Perfect, Physical, and Human
Information Handling (after Miller, 1978)
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IOTAL ERROR RAlE RIMAINS CONSTANT.

(b) Effect of Human Attempts to Process Faster

Ftgure 4-2. Human Error and Workload - An Information-Theoretic Paradigm
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Let T be scenario-determined "time available" for a task from queue entry
to completion of service; and let I/ij be the "time required" for service.
Then T must be greater than the service time l/v plus the waiting time W in
order to minimize reneging. That is, in the steady state,

T > (Wq + I/u)

If T is less than this value, reneging or errors of omission will occur at
an increasingly high frequency.

The "slack time" S for a task Is the time available minus the time re-
quired for the task. That is,

S - -1- 1/ ,1/X - 1/P

For a lower bound for this expression, we substitute for T from the fore-
going expression to obtain:

S >•

Workload-Dependent Service Rate

Let us assume that the service rate depends on the utilization factor,

V V(p) •

Then the effective service rate ' for a given queue must be derived from the
expression

Note that an alternative assumption would be that the human's processing rate
is a function of the actual backlog of tasks to be performed, rather than
average operator utilization.

Reneging

An additional consideration is the potential reneging of tasks, i.e.,
tasks that are not completed by a certain deadline cannot be completed at all.
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An example is a task (related to ballistic missile intercept) that cannot be
performed if the incoming weapon impacts its target. As discussed above, non-
completion of tasks can be viewed as errors of omission, and reneging/error
rates predicted.

4.3.3 Functional and Data Requirements for Queuing Theory Approaches

Lessons Learned from the SIMCOPE Modeling Experience: Defining Queues

The analysis that was done on the SIMCOPE simulated missile warning

facility at AAMRL (see Vol. Il) provided experience for dealing with the
issues, problems, and expected benefits of using queuing theory approaches to
describe and predict human performance. The primary technical issues that had
to be addressed for SIMCOPE (and for other similar operational environments)
are the following:

I. What is the ippropriate level of abstraction for describing
human/system processes?

2. If a queuing (network) representation is to be used, what is
it that will be queued and serviced? (viz., data, information,
physical objects, or tasks?)

In dealing with (1) above, it has been assumed that IAT structural mod-
eling must be taken down to a level of detail sufficient for identifying ele-
mental tasks. At this level, measures of performance (MOPs) can be associated
with specific processes that particular individuals carry out and for which
they are responsible. Although measures may well be associated with higher
levels of analysis (in aggregated form), the raw data about human performance
should be collected at the tasking level.

Question (2) then must be considered. One option is to let tasks be
queued to a human operator (or other resource) and serviced. This approach
was not taken in modeling SIMCOPE for the reasons listed below:

I. Strict definitions of "tasks" are not easy to formulate.*

2. Completing a task might require several decisions and/or actions
on the part of the operator, and these might be difficult or
impossible to observe.

3. The procedural controls placed on an operator make task queues
troublesome to describe.

*However, it is possible to provide a formal description of the level at which
tasks cani be meaningfully identified. Set theory notation can be used to
specify appropriate level(s) of detail, as nart of the IAT recursive decom-
position te'chnique described in Section 2.
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Specifically, if tasks in the SIMCOPE example were comprised of message-
handling processes (acknowledging, assigning, and filling out reports), it
would have been very difficult to place these tasks in a single queue -- or
even parallel queues based on separate task streams. The source of the prob-
lem lies in the interrelations among tasks. Even for the relatively simple
environment in SIMCOPE, the number of interrelated tasks was large. For
real-world systems, the situation is aggravated.

Another option, and the one that was taken in modeling SIMCOPE, requires
that queues be defined in terms of physical entities (IAT RESOURCES). Then
the processes necessary to service the items in the queue can be considered
in a more straightforward manner. The chief merit of this approach is that
it places the source of the demand for service with items which are easily
identified and quantified -- rather than with tasks which may be somewhat more
open to interpretation.

One consequence of defining queues in terms of RESOURCES is that a data
flow analysis identifies such queues directly. Moreover, any situation where
items are filed (or stored) in anticipation of further processing suggests a
queue. Hence, there is no need to define tasks exhaustively before identify-
ing queues. Another advantage to this approach is that measurement issues and
data collection become simplified: queues are based on observable physical
items and events, as opposed to perceptual or cognitive ones. This last point
becomes critical when descriptions of the system (such as the classified/
unclassified documents on NORAD MWC and CP) do not contain service time data
for macroscopically defined tasks. This was the situation in SIMCOPE and
would appear to be the case for the NORAD MWC Validation Effort as well.

It is essential therefore that data necessary to support or validate the
queuing theory approach be directly observable or capable of being derived
easily.

Defining Queue Discipline

An independent reason for using resources to comprise queues comes from
examining problems associated with defining queue discipline. In the case
of a human operator (or any resource), goals and procedures will define what
task should be performed in a given circumstance. A task analysis should then
identify the data used by the operator, as well as those processes the oper-
ator carries out to complete the task. This type of analysis will define
the queue discipline albeit indirectly, but the description will be a natural
one from the prospective of depicting human performance.*

*This approach was illustrated in the SIMCOPE example via the overall data

flow diagram and the estimation of effective processing times. The diagram
identified services or tasks performed by the operator while the service
time estimates were dependent upon the assumptions about the order of
processing and interruptions.
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4.3.4 Recommendations for Using queuing Theory to Evaluate Human/System

Performance

I. View the human operator as a server for one or more queues.

2. Define thesc queues by tangible (observalle and measurable)
items in the system. (!AT RESOURCES)

3. Use a data flow df:scription (e.g., with DFDs) to facilitate
identifying queues and major processes. (This will allow the
queuing network to be described with a minimum of abstraction.)

4. Make explicit the control structure of the system. (This is
especially important for cases in which one operator or resource
services more than one process. A description of the system
control structure would establish the order in which processes
are to be performed.)

5. Use Petri nets to specify control structures.

6. Carry out further analysis (process modeling) to estimate
service rates:

a. Identify processes shown on the lowest-levels of DFDs.
These processes are the appropriate ones for completing
a given task, according to the conventions of data flow
methodology.

b. Determine completion times for each process identified
in 6a).

c. Estimate conditional task completion times ("conditional"
in the sense that full attention is assumed to be devoted
to the task).

Levels of Detail

The SIMCOPE example and other experience suggests that while some of the
impact of system connectivity and structure on human function allocation could
be analyzed at higher levels of aggregation, the level of process description
defined in Gruesbeck et Al. (1984) was not sufficiently detailed to derive
the quantitative data necessary for performance analysis. Further decomposi-
tion must be performed and data must be extracted by considering procedures
and system specifics (e.g., cued versus non-cued display, etc.). Such data
are obtained only after fairly detailed task analysis is completed. The de-
composition should push down to the point of revealing generic processes such
as button-pushes and extraction of single items of data. This will insure
that analysts can use information from the human factors literature to fill
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data voids in system-specific documentation. By working back up through the
process description, the necessary service time data can then be estimated.

While gross trial allocations of functions can be performed at higher
levels of aggregation, only if given sufficient detail is it possinle to link
human factors design issues and data into a queuing network representation
for predicting performance. Without. going to this point, it is not clear that
such linkage can be achieved except in a purely empirical way (i.e., by esti-
mating parameter values from observations of the system in operation). Also,
it is only at this level that operator interface design and redesign issues
can be addressed.

Addressing Issues of Accuracy and Error

As illustrated in the SIMCOPE analysis in subsection 4.3.3, error rates
can be established by the task or service description. To use this approach,
the process description must be sufficiently detailed so as to describe error-
checking, editing, and various exit conditions* in a probabilistic manner.
Service times will then directly reflect error by means of checking and correc-
tion loops: these will have the effect of increasing average service times.
Problem simplification strategies and load shedding could also be built into
the detailed process description, if desired, by making the processing activity
s tate-determined.

4.4 STAPN4 MODTI N(

In Section 3 and Arpendix A a detailed basis for STAPN modeling of C3

systems, including humans, are provided. However, there are certain 1inimum
data requirements for using Petri nets which bear repeating at this F.tint.

4.4.1 Summary of Basic Data Requirements

To describe a model of PROCESSES, from which measures of performa,c
(MOPs) and measures of effectiveness (MOEs) may be cuonputed, aL least tloe
following is necessary:

I. A list of all of the places.

2. A list of all of t),2 branches.

3. A list of all of the transitions.

*e.g., -- Task completed error-frte

-- Task completed with one error
-- Task completed with ritilr.iple errors
e t C.
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4. For each place:

a. A description of the process by which unavailable tokens
are made available.

b. The transitions which insert tokens into the place.

c. The branch which describes where tokens go after they
leave the place.

d. The number of tokens iniLially in each place.

5. For each branch:

a. A description of the decision rule which selects the path

each token will follow.

b. The pl.ac-e, from which tokens exit through the branch.

c. The transitions to which tokens may flow (i.e., the
alternative paths leaving the branch).

6. For each transition:

a. The places which must contain available tokens for the
transition to fire.

b. The places which receive unavailable tokens when the
transition fires.

These requirements can be grouped into three classes:

1. Decision rules (5a)

2. Timing data (0a)

3. Network topology (all others).

These form three hasic "dimensions" of the physical process toodel.

4.4.2 Metrics for Insuring Model Quality

One of the mrajor outputs of an IAT analysis is a physical process model
f rom which perforinance rnea.sures will he caiculate,.d. At least four desiderata
apply tu tic outJL.,t of any such nethodology:

1. C.j.Inssl-t.!ncy: Is thc node]. (formally) well-structured! Are
a 11 comnccLions iei;d] ?

2. Completent U [ : Is; the mfod,'I f inished? Are there, •any l oose ends

-th-at-- d-- t be f1llf-d In?

I0j1



3. Correctness: Is the model an accu'ate representation of reality?

4. Parsimony: Is the model represented at an appropriate level
of detail?

Consider the implications of each in a Petri net framework:

1. Conistency

A Pertri net model has a strong syntax: places lead to branches,
which lead to transitions, which lead to places. Any model which
violates this syntax, e.g., by connecting a transition to a
transition, is inconsistent (Figure 4-3). While such inconsis-
tencies can be detected by a "model syntax checker," like the
syntax checker In a compiler, it would be preferable to have a
methodology which ensures that the resulting model is consistent.

2. Completeness

A physical process model is complete if it contains enough
informatioti to allow it to be simulated. For Petri nets, this
means:

a. every branch is preceded by a place

b. every transition is preceded by at least one branch

c. evry place has an attached process (timing) model

d. every multiple output branch has an attached decision rule

e. every place has an initial number of tokens specified
(default may be zero).

Any consistent network description satisfying a) and b), with
ancillary information (c), (d), and (e), can form the basis of
a simulation.

Flgure 4-3. Inconsisitent Petri Wet, Models
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R-2725

Figure 4-4. Incomplete Petri Net Models

3. Correctness

Unlike consistency and completeness, correctness cannot be
assessed just by examination of the model. The usual issues

of validation, etc. cannot be avoided. However, there are
symptoms of incorrectness which should be double-checked when

found:

a. A place with no inputs and no initial tokens is
entirely superfluous.

b. A place with no inputs and some initial tokens is
of transient importance only.

c. A transition which can never be enabled is superfluous.

Related to these symptoms, "liveness" (related to c)) and
"boundedness" (no place where an infinite number of tokens can
accumulate) have been extensively studied in the literature.
Dead or unbounded Petri nets may be incorrect models, or may

be correct models of improperly designed systems.

R-2722

Figure 4-5. Incorrect Model: "Vead"
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R-2723

Figure 4-6. Incorrect Model: "Unbounded

4. Parsimony

This is an aesthetic quality. Theze is a fandamental tradeoff
between the complexity of processes and decision rules and the

complexity of the network.

4.4.3 Extensions for Enhancing Model. Clarity and Completeness

I. Annotations - text commentary indicating the relationbhip of a
model element to the actual system.

2. Token Typing - labels oln tokens to describe the function/object/
data they represent.

3. Multilevel Representations - aggregation of the process, proLo-
col, and timing information into higher-level constructs (which
perhaps have non-local dependencies),

4. Other Dimren3ions - physical equipment models (from which timing
information can he derived), organization/goal models (from
which protocols can be derived), etc.

4.4.4 Summary

In summary, Petri net process modeting can be complhoely described by Lhe
items in subsection 4.4.1 plus

I. An annotation describilg the- facility or resource that tLh
place represents.

2. An annotation describing the purpose or .oa] of the brai;i'h.
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3. An annotation describing the event modeled by the transition,

including uncertainty, timing, andT dependency relationships.

4. For each token type,

a. An annotation describing what the token represents.

b. The transition(s) at which the type is created.

c. The transition(s) at which the type Is destroyed.

5. As appropriate, aggregate models and token typing hierarchies.
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SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

While numerous system representation methods such as IDEFo, Data Flow
Diagrams, and the SAINT and other simulation languages have long been avail-
able, none of these techniques, either alone or in combination, could meet
the IAT requirements noted in Section 2. The main obstacle was the lack of
a single, underlying, integrating analytical framework (i.e., a theory of C3 ).
With the development of the Stochastic, Timed, Attributed Petri Net STAPN)
representation technique for manned C3 systems, this obstacle has now been
largely overcome.

The results of the work to date have served to demonstrate the feasi-
bility of IAT. Not only has the required analytical framework for IAT been
developed, but the following additional results have also been achieved:

- a mathematically rigorous symbolic language (STAPNs) for describing
(i.e., modeling) and evaluating (i.e., assessing the system per-
formance and/or military effectiveness of) manned C3 systems and
their associated weapon systems at any level of description or
decomposition.

- a convenient means for managing system complexity by aggregating
and modularizing system details in the new Petri net "Box Node"
aggregation prmitive, without masking the impact of these details
on overall system performance and effectiveness.

- a set of nested and self-consistent system measures derived from
the symbolic language.

- a flexible data management system concept based on the artificial
intelligence concept of frames and slots.

- computer-based instantiations of all of the above.

In Sections 3 and 4 it has been shown that classical analysis methods
such as PERT/CPM and queuing theory, as well as computer simulation methods,
can be made ani integral part of the STAPN methodology for IAT.
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5.2 RECOMMENDATIONS

Based on the lessons learned from the three trial applications discussed
in Vol. II, it Is felt that an automated aid to IAT must be developed with the
following features:

I. A "Friendly Front End (FFE)" to help the analyst describe and
decompose a C3 system using a "standard" graphic Input language
of his or her choice. Specifically:

- An analyst must be able to "enter" IAT using familiar or
easily learned, graphics-based techniques such as Data
Flow or IDEFO Diagrams, and the FFE taust interactively
assist the analyst in generating, decomposing, storing
and accessing these diagrams.

- The FFE must incorporate a "Data Stripper" or means for
automatically stripping off from the stored Data Flow
and IDEFo Diagrams the connectivity, information flow,
dependency, control, resource assignment, and ether
data required to convert it into a STAPN model.

- The FFE must also incorpor.te a "Data Checker" to help
the analyst build the required database. The mathemat-
ical rigor of the STAPN modeling method autowatically
provides a "model" of the relationships among the
various data elements, thus greatly reducing the diffi-
culty of Data Checker development. The Vata Checker
must work interactively with the analyst to flag missing
and/or inconsistent data and connectivities, and must
also help generate a list of C 3 resources and their
assignments to C3 processes.

2. A database system organized around the Frame/Slot concept of
artificial intelligence to provide the flexibility needed to
make possible the features described herein. Data organization
is crucial to the success of an automated aid to IAT. The data
must be organized dimensionally and hierarchically to reflect the
decomposition levels within and among each of the four descrip-
tive dimensions (Process, Resource, Organization, and Goal).
For example, slots in a given process frame must be capable of
being used as "pointers" to associated processes, to assigned
resources, to organizational assignments, to assigned perfor-
mance goals, and to associated sets of measures (e.g., "PROD"
statistics) contained in other frames, while maintaining con-
sistency of description among the dimensions at a given decom-
position level. To reduce the effort involved, the system
should also contain a "default" database of key C 3 system and
human operator/decisionmaker parameters. This will permit
sensitivity analyses to be performed to determine which data
Item values require further ref inement (e.g., by ueans o0 man-
in-the-loop exppriments).

114



3. An "Explainer" for explaining to the analyst why certain data
inputs were required, why the structure of a STAPN model was
incomplete or inconsistent, and why selected MOPs and MOEs were
obtained when the model was exercised. Without such a feature,
we hav. found that analysts will be loathe to use the automated
aids described above, and their "customers" will question the
credibility of their results.

Fortunately, except for the Data Stripper, many of these features have
already been or are in process of being developed for other projects, and
need only to be combined and integrated to form an automated analyst's aid
to applying IAT. It is recommended that this be done.

i i ..... ii ir " - f = V-I
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APPENDIX A

MATHEMATICAL FORMALISM FOR STAPNs

A.1 INTRODUCTION

In this appendix we present details of Stochastic, Timed, Attributed
Petri Nets (STAPNs). The canonical Petri net variables and their relation-
ships are Identified along with methods for both their decomposition and
aggregation. Techniques for evaluation of measures are briefly described
(detailed exam, - will be found In Volume I1), and Appendix A ends
with a descriplioit of some of the systems analysis issues that have not yet
been addressed.

A.2 CANONICAL MEASURES: PROD STATISTICS

In subsection 3.4 we established tight connections between the reality
of a C3 system and the structure of an abstract STAPN representation of that
system. Given these high fidelity relations, conclusions drawn from the
STAPNs carry over directly to analogous statements about reality. In partic-
ular, this section explains how the STAPN primitives give us a way to identify
canonical variables which describe their behavior, and henceforth we take for
granted the fact that these variables apply equally well to a real system.
Appendix C contains procedures and guidelines for generating measures from
STAPNs.

There are four types of canonical measures, each associated with a dif-
ferent element of a STAPN: arcs, transitions, places, and tokens. There Is
no distinction between capability measures, mission measures, or effectiveness
measures: each of the four canonical types can play any of the three func-
tional roles. In order to prod one's memory about the forms of the canonical
measures, we consider them in mnemonic order (yrobabilities, rates, occupan-
cies, and delays), and do not distinguish between roles.

Before introducing the canonical variables themselves, two technical
aspects of their defiut~tions must be settled. First, some basic stochastic
processes associated with STAPNs are introduced, processes that will form the
basis of explicit evaluation mechanisms alluded to in Assertion 4 on page 60.
Second, each basic measure may be defined in four different ways, depending on
the evaluation mechanism used.
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A.2.1 Basic Processes

Begin by considering any arc Ai in a STAPN. Suppose the STAPN's opera-
tion is started several times, each execution called a replication of the
process. For each replication, observe the tokens that flow along Ai. These
tokens flow instantaneously and in sequence (ties may be broken arbitrarily to
establish a total order on the tokens that follow Ai). Let ti (n, k) be the
time (according to some external, global clock) that the n-th token traverses
Ai during the k-th replication of the STAPN operation. The ti (n, k) form a
set of random variables which characterize much of the STAPN's behavior.

To derive measures from the qi (n, k), for each arc Ai and each replica-
tion k, define an indicator function Ii (t, k):

ji (t, k) - En 6 (t, ti (n, k))

where the sum is taken over the total number of tokens passing over Ai in the
course of replication k. The 6 (., .) function is the Dirac delta: a func-
tion which is zero almost everywhere and which integrates to unity when the
value of one argument is included in the range of integration of the other.

The Ii (t, k) are the most basic stochastic processes for a STAPN. How-
ever, more important is the counting process Ji (t, k), which gives the number
of tokens having traveled on Ai between time 0 and time t, in replication k.
Ji (t, k) is related to Ii (t, k) by:

t
Ji (t, k) =f Ii (s, Q) ds

0

The processes Ii (t, k) and Ji (t, k) are the primitive stochastic
processes from which the canonical measures will be constructed. Note that
the algorithm for generating either of these two processes from observations
of a STAPN's behavior is consistent with Assertion 4.

A.2.2 Forms of Measures

To see the differences between four forms of measures, consider Ji, the
number of tokens having passed over arc Ai, as an example measure. This basic
quantity can be interpreted as an instantaneous value; it may be averaged over
a number of replications, over time, or both; the averages may be finite or
infinite.

An instantaneous value of a measure is taken at one instant of time t in
a single replication k. To make this dependence explicit, denote the instan-
taneous value of Ji as Ji (t, k), as above. Since tokens are almost never on
arcs, Ji (t, k) is piecewise constant, with unit step discontinuities at a
countable number of values of t and k.
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An ensemble averaAge is taken over several replications. Denoted by the
form Ji (t), ensemble averages may be computed from the instantaneous values
as:

Ji (t) = K- Ek Ji (t, k)

where K is the number of replications. Unless K is explicitly mentioned,
sssume K is infinite:

J Wt = limK+-, {K-1 E Ji (t, kQ1

A time average is, of course, taken over time. Time average measures
are denoted by the form Ji (k), preserving the dependence on the replication
index. Time averages may be computed from the instantaneous values as:

T
Ji (k) =T-1 f Ji (t, k)

0

where T is the time interval of interest. Note that Ji (k) takes on the
interpretation of a rate: the number of tokens which cross Ai per unit time.
Again, unless T is explicitly specified, assume T is infinite:

T
Ji Mk = limT+- IT-' f ii (t, k)1

0

If this limit exists, and the system does not exhibit periodic behavior, then
Ji (k) is often refered to as a steady state measure.

Finally, a time-ensemble averaje is, as expected, taken over both time
and replications. These measures are denoted by the form Ji, suppressing the
dependence on time or replication index. These averages may be computed from
any of the above in the obvious ways. Both averages are assumed infinite
unless stated otherwise.

Which of these four forms is preferable? The answer depends on the uses
to which they are to be put. Instantaneous values or ensemble averages are
useful when the situation or system structure changes over time, since they
are applicable at every instant of time. Time averages are useful when the
system and its environment are in some sort of equilibrium, so that a steady
state measure can be considered meaningful.

In subsequent subsections, only infinite ensemble averages and infinite
ensemble-time averages (steady state measures) will be considered (e.g., ii (t)
and Ji). Definitions of canorical measures given in these forms can readily
be adjusted to provide definitions of the measures in the other forms. How-
ever, if finite averages are used as measures, the limits of the averages
(i.e., K or T) musct be specified in order for the measures to be well defined.
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A.2.3 Probabilities

The first canonical measures are associated with arcs leaving places.
To each place corresponds a decision rule, which specifies by which arc each
token departs. A certain fraction of the tokens that leave the place follow
each of the exit arcs; these fractions are the canonical probability measures.

Formally, suppose place Pi has output arcs A,, A2 , ... , AK. Define the K
probability measures associated with those arcs as:

Given that a token leaves place i at time t in some reylication,
th_._ rab y h the token leaves on arc n is:

Pin (t) = Il (t) / Tk 1k (t)

The stead state robabilit that a token leaves lace ± via

arc n is:

Pin = limt+. {Jn (t) / Ek Jk (t)}

Since Pin (t) is defined only at a countable number of points (since only a
countable number of tokens are generated 4-n a countable number of replica-
tions), care must be taken in the determination of the time average Pin. To
keep Oin dimensionless, we take the definition of Pin as an assertion, not a
direct consequence of the definition of Pin (t).

All of the probabilities are unconditional probabilities. their defini-
tion assumes nothing is known about the activities in other parts of a net.
Conditioning the probabilities on such knowledge can drastically change their
values. For example, consider the partial net (Fig. A-i). Without knowledge

P P 4
TPP

P3

P2 C - P5

T
2

Figure A-I. Conditinal Exit From a Place
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of the placement of tokens in P1 and P2 , P31 and P32 might both be, say, 0.5.
However, conditioned on the marking of the net in Fig. A-i, the probability
that the token in P3 leaves through T1 is 1.0. Thus a probability measure Pik
must be carefully interpreted; it is meaningful and well defined precisely
when the only knowledge about the net is that some token is leaving place i.

Every place has at least one output arc, so at least one probability mea-
sure is defined for each place. If exactly one output arc leaves a place, the
value of the probability measure for that arc will always be 1.0, irrespective
of any other structure or activities of the net. This is a degenerate example
of a canonical measure, and formally defined but rather useless in practice.

A.2.4 Rates

The second canonical measures are attached to transitions. Transitions
fire; this is their essential activity. In most STAPNs, transitions fire
repeatedly, and it is meaningful to measure how often they fire. The fre-
quencies with which transitions fire are called the canonical rate measures.

Formally, suppose transition Ti has input arcs Al, A2 , ... , Ay and output
arcs AK+I, AK+2, ... , AK+L. Due to the coordination role of transitions, and
the fact that exactly one token passes over each and every one of these arcs
when Ti fires, it is known that:

Jl (t) = J2 (t) in... =JK+L (t)

Without loss of generality, Jl (t) can be used in the definition of the canon-
ical rate measure for transition TI:

The rate at which transition i fires is:

Xi (t) = d/dt [ Jl (t) ]

The steady state firin4 rate of transition iiLf it exists,_.is:

The firing rate of a transition implies that tokens flow along each of
its input arcs and output arcs at exactly the same rate. From these, token
flow rates into and out of a place can be determined by summing arc flow rates
over all input or output arcs of that place. Because of these relations, rate
measures need not be defined for other elements of a STAPN.
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A.2.5 Occupancies

The third canonical measures are connected with places. Places store
tokens between their creation and destruction. The natural quantities to
associate with places are the number of tokens which occupy those places;
these are the canonical occupancy measures.

Formally, suppose place Pi has K input arcs labeled AI, A2 , ... , AK and M
output arcs AK+l, AK+2, ... , AK+M. Tokens arrive in the place over any Input
arc, so the process which Indicates the total number of arrivals into tie
place, by time t, is

Ek Jk (t)

Similarly, the process which indicates the total number of departures from the
same place, by time t, is

Em JK+m (t)

Now, the number of tokens in the place at tIme t is some initial numaber of
tokens specified by the marking of the STAPN, ni (0), plus the number that
have arrived, less the number that have departed:

The occ.uýan nc_ ofy _Lace I s :

l (t) - ni (0) + Ek Jk (t) - Em JK+m (t)

The steady state occupdncy of place i it it exists. is:

T

ni - ni (0) + limT,' I r-l f rk -)k (t) - Em JK+m (t) dt
0

A.2.6 DelaJs

The fourth canonical measures apply to tokens. Tokens exist between
their creation at one transition and their destruction at another. The
natural quantities to associate with tokens are their lifetimes; these are
the canonical delayn measures.

Formally, consider all tokens created in place Pi and destroyed by output
transition Tj. (All such tokens spend their lives in the same place. How-
ever, different timing models may describe the duration of their unavailable
state, since they may have been created by different transitions.) N4umber
these tokens in order of their creation, ustng the index nij to emphasize the
dependence on both P1 and Tj. Let ti (nij, k) be the time of creation of the
nij-ti, token to arrive at Pi in replication k; let tj (nij, k) be its tirie of
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destruction at T-. Note that delay measures are defined on a token by token
basis, so we rausi replace time averages with token averages to form steady
state measures:

The delay exper encedbefore time tb tokens between arrival

.ljkace I and dsrcinat transition is

Tij (nij) = tj (nij) - ti (nij)

The steady state delay experienced by tokens between arrival at place i and
destruction at transition j, if it exists, is:

Tij " limN+- I N-I En rij (n) }

Note that tij (nij, k) is defined only when the ni -th token from Ti to Tj has
been destroyed, t at is, when tj (nij, k) is known. Tokens which have been
created, but are still in a place, do not have a permanently defined lifetime
and are thus excluded from this definition. Tokens which are part of the
initial marking arrive at their respective places at time 0, when the STAPN
starts to operate.

Finally, note that these delays are conditional delays: they represent
the time a token spends in Pi given that it exits through Tj. They do not
describe the delay which any token experience: in Pi, although the latter
measure can be computed from the canonical delays and probabilities.

A.3 HORIZONTAL RELATIONS BETWEEN MEASURES

From the dincussions above, it is clear that not all measures are indepen-
dent. The most trivial example occurred in the case where a place has a sin-
gle output arc: the probability for that arc is 1.0, regardless of anything
else. This section identifies four classes of relations which exist between
the canonical measures of a STAPN.

Consider the partial STAPN and its canonical measures in Fig. A-2. A
number of relationships hold between the measures shown here. For example,
equations which relate the steady state measures happen to be:

P12 + P13 = 1.0 Conservation of probability

Xi= X2 + X3 Conservation of rate

X2- P12 * X1 Probability -- rate relation

X3 P13 X Probability -- rate relation

xI=1 * (P12 -112 + P13 * T13) Occupancy -- rate -- delay relation
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The four types of relations exemplified above can be generalized; in
fact, similar equations exist for the steady state measures surrounding every
place in a STAPN. For measures expressed as ensemble averages, the analogous
equations are not algebraic; they take the form of delay-differential equa-
tions (which cza be viewed as relations between entire time functlons, rather
than between single values). Whatever the form, these equations jrov4 de the
set of horizontal relations that apply within a single STAIPN model.

A.3.1 Conservation of Probabilityj

Recall that thb canonical probabilities measure the fraction of tokens
that leave a place along each of its exit arcs. Since every token that leaves
a place must follow exactly one output arc, these fractions must sum to one.

Formally, suppose place Pj has output arcs A,, A2 , ... , AK. The first
horizontal relation between measures is:

Conservation of Probability:
For ensemble avere:

Ek Pik (t) - 1.0

For sready state statistics:

Ek Plk = 1.0
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These relations imply that one probability measure at every place is redundant--
including the trivial situation where only one arc leaves a place.

A.3.2 Conservation of Rates

The second class of horizontal relations also follows from the fact that
tokens do not evaporate from places. Every token that enters a place either
stays there, or leaves to be destroyed at a transition. As long as tokens do
not pile up in a place indefinitely, the sum of the output rates must approach
the sum of the input rates.

Formally, suppose a place Pi has K input arcs labeled Al, A2 , ... , AK
from transitions T1 , T2 , ... , TK respectively, and M output arcs labeled AK+I,
AK+2, ... , AK+M to transitions TK+I, TK+2, ... , TK+M. Recall the basic
occupancy equation:

fli (t) = nI (0) + Ek Jk (t) - Em JK+m (t)

Differentiating both sides with respect to time, and substituting the defini-
tions of rate statistics provides:

Conservation of Rates:
For ensemble avera!es:

d/dt rn[ (t) = Ek Xk (t) - Em XK+m (t)

Em XK+m (t) = Ek Xk (t) - d/dt nj (t)

For steady state statistics,- if they and ni exist:

Em XK+m = Ek Xk (t)

These relations imply that many rate statistics are redundant. The STAPN
topology restricts the channels which tokens may follow; tokens that contri-
bute to a rate statistic at the input to a place must eventually contribute
to an output rate at the same place.

A.3.2 Probabil it_ Rae _latRions

The third clav;s of horizontal relations results from the process which
determince how a tokcn departs from a place. The total flow of tokens into a
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place diverges into flows along each output arc, so that the total flow out
of the place is the sum of the output transition firing rates. A probability
describes the fraction of that flow which travels along each arc, and the flow
along each arc equals the firing rate of the transition terminating that arc.
Thus we can relate individual output transition firing rates to the total
output firing rate.

Formally, again suppose a place Pi has 1 outpuL arcs labeled Al, A2 , ... ,

Am to transitions Tl, T2 , ... , TM respectively. From the definItion of C1u (t):

In (t) = ym Im (t) * Pn (t)

Note that

d/dt Jn (t) - limK+m I K-I Zk d/dt Jn (t, k)

so

An (t) Ii= imK { K-I1  k Im (t, k) In (t)

Similar manipulations apply to the steady state sttitiSLcs. From the defini-
tion of Pn:

limT+, { T-1 Jn (T) } lim T- M Jm (T) *

and passing to the !imit:

Xn = { X, 1 xnP1

These arguments give us the third kind of horizontal relation:

Probability-Rate Relations:
For ensemble aver_1_:

An (t) = Fm Xm (t) * Pn (t)

For steafdy state statisticsL.ifthey exist:

An = .n Am * Pn
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These relations can be used two ways. If canonical probabilities are known,
then all rates for the output transitions of a place can be deduced from any
one such firing rate. If all rates are known, then we can solve for all
probabilities without any other information.

A. 3.4 Occu pancy-Rate-Delay Re I ations

The final class of horizontal relations exploit two different interpreta-
tions of the same quantity: the number of token-seconds spent in a place.
This can be computed by adding up the lifetimes of all tokens that transit a
place, or by integrating the number of tokens present over time.

Formally, suppose a place Pi has K input arcs labeled Al, A2 , ... , AK
from transitions TE, T2 , ... , TK respectively, and M output arcs labeled AK+1,
AK+2, ... , AK+M to transitions TK+I, TK+2, ... , TK+M. Consider the nth token
that passes through Pi, departing through TK+m at time

t = tK+m (n)

At this time, the total number of tokens having passed through Pi is

Em JK+m (t)

Assuming first-in, first-out passage of tokens through Pi, this n-th token
will have arrived at Pi at some time t - Ti which satisfies:

Ek Jk (t - Ti) = rm JK+m (t)

Differentiating both sides with respect to t(n),

Ek Xk (t - i) * (I - d/dt Ti) = Im XyK+m (t)

Rearranging terms, the delay encountered by a token leaving Pi at time t is
Ti, given by the delay-differential, equation:

d/dt { Ek Xk (t - Ti) - Tm 'K+in (t) } / Ek Xk (t - Ti)

Now consider the steady state statistics. The total amount of time spent
by those tokens in Pi, which have left via TK+m by time t, is:
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81,K+m (t) = Sn ti,K+m (n, t)

The total amount of time spent by all tokens in Pj which have left by time t
is:

i (t) = EZ 0 1,K+m (t)

The number of tokens departing Pi by tLime t Is:

O0 JK+m (t)

so the average amount of time, per token, spent in Pi is:

eA (t) /4, JK+m (t)

Now, an alternative way to compute Oi (t) is:

t

0± (t) - f ni (t)
0

Letting Ti be the average time any token spends in Pi, the combination of the
last two forms yields:

T
I {T- 1  f ni (T) /{ T-1 EmJK+m (T)}

0

Passing to the limit in T gives Little's formula, well known from queuing
theory:

Ti = Ili / Em ýK+m

These arguments give us:

Occupan.jy -- Rate -- Delay Relations:
For ensemble ave rae.s:

d/dtr = { Ek Xk (t - FI) - Im XK+m (t) } / Ek Xk (t - Tj)
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For steady state statistics, if. they exist:

fli - Ti * Em XK+m

These equations are not quite complete, since they involve the uncondi-
tional delay in Pi, namely Tt. Instead of applying just to tokens leaving Pi
by a specific arc, Ti is an average over all tokens passing through Pi, and
has not been seen before. Conditional delays, Tij, have been defined previ-
ously, but are defined with respect to a specific transition T . Fortunate-
ly, the two delays are easily related to one another. For ensemble averages,
if the ni,K+m-th token departs Pi via TK+m at time t,

"Ci (t) = Ti,K+m (niK+m)

For steady state statistics, the unconditional delay ib simply a weighted
average of the conditional delays:

Ti = Em Pi,K+m * Ti,K+m

A.3.5 Implications for Minimality

Clearly the entire set of canonical measures for a STAPN, while entirely
meaningful, includes redundant elements. The four types of horizontal rela-
tionships described above apply to any STAPN, and thus can be used to elimi-
nate redundant measures. By first identifying all canonical measures, then
finding all of these horizontal relationships, one has a simple procedure for
eliminating the redundant measures. Simply select one relationship, eliminate
one measure which appears in it, use it to replace all occurrences of the
eliminated measure in all other relations, then repeat for each other rela-
tion. Of course, the equations above provide no gu'iance pertaining to the
order in which relationships and measures should be selected in this process.

The power of these relations can be clearly seep when steady state sta-
tistics are used. For example, one can use the occupancy-rate-delay relations
to compute all occupancies from rates and delays, so all occupancy measures
can be eliminated. Then one can use the probability-rate relations to com-
pute all probabilities from the rates, so all probabilities can be discarded.
Finally, the conscrvdtion of rate relations eliminate a rate measure frota one
output transition of each place. By followinýg these steps, a majority of the
canonical measures can be removed from thi! original set of candidate measures.

There is w) guiar,,ntee that the canonical relations are the only sources
of dependence j:monig measures. Indeed, when values of measures are to be com-
puted, additionlal relations mu.:t be rnide available in order for the values to
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be completely determined. The four classes of relations presented here are,
however, the only relations which always hold and which may be determined
solely from the topology of tha STAPN.

A.4 REFINEMENT OF MODELS

Petri net models of real systems are notoriously complex -- often pro-

hibitively so. In order to manage the unavoidable complexity of C3 systems,
we have suggested that STAPN models could be arranged in hierarchlies, with
each level representing the same system but with differing amounts of detail.
Well defined connections between models at successive levels allow the general
structure depicted in a higher level model to be transferred to lower level
models. In addition, these same connections can help structure the model
building process, and give rise to quantitative relations between measures at
neighboring levels.

A.4.1 Disaggregation and Enhancement

Two mechanisms exist for expanding a model from one level of detail 1o

another, based on opposing philosophies. The first is strict structured decom-
position or disaggregation, where each element of a level N model decomposes
into a set of elements at level N+l, and where the level N+l model contains
nothing but these decomposed elements. We naturally think of disaggregation
in terms of geographical regions, where nations disaggregate into nonover-
lapping territories, and every acre of land is contained in some territory.
Similarly, organizations often disaggregate from divisions to groups to peo-
ple, and every person is a member of one group, every group is part of one
division. Strict disaggregation is a powerful technique when it can be used,
as it implies precise relationships (homomorphisms) between the structural
elements depicted in successive modeL -Levels.

Unfortunately, very few real systems can be disaggregated so that their
higher levels are just 3ggregated versions of their lower levels. More often,
the lower levels contain details that have no counterpart at the higher
levels. Yes, the United States can be disaggregated into fifty states and
several territories, but where do national parklands and Indian reservations
fit into this scheme? Yes, organizations can be disaggregated into divisions,
but where do interdivisional programs and matrix management fit in?

To deal with real C3 systems, we must be prepared to consider details
relevant to level N+l which do not appear at all in higher level models. For
example, special purpose messages, which are part of a protocol to manage a
communications network, should be suppressed in any simple model of the mission
which that network supports. Such details which appear afresh at level N+l,
without being modeled at level N, are enhancements to the model of level N.

The distinction between disaggregation of a model, which implies strong
relations between models at two adjacent levels, and enhancement of that
model, which precludes any such relations, becomes pirticulurly ifportant
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when we derive vertical relations between the measures associated with the
two levels. Subsection A.4 will revisit this distinction; for now, we simply
explore three techniques for increasing the detail of an existing model:
two disaggregation methods (one for transitions and another for places) and
enhancement.

A.4.2 Disaggregation at Transitions

The simplest disaggregation technique expands one transition at level N
into several transitions at level N+I. This partitions the events (physical
boundary crossings) modeled by the higher level transition into subsets of
events, one subset for each lower level transition.

Formally, consider two STAPN models of the same system, organized at two
levels of detail. The model at level N contains some transition TA, and the
model at level N+l has some transitions TB,I, TB,2, ... TB,M. Define:

Transitions TRI,_•,2, ... T ,K form a strict disaggregation of
transition TA if and only if there is a one-to-one correspondence
between firings of the former and firings of the latter.

A simple illustration of disaggregation at a transition is shown in Fig. A-3.
Here, transitions TB2 and T8 3 form a disaggregation of transition TA2. (To be
precise, this is the case if and only if TBI is a trivial disaggregation of
TAI, so every token entering PAl corresponds to a token entering PBI') Since
tokens may leave PAl only via TA 2 , and PBl only via TB2 or TB3, there is a
one-to-one correspondence between firings of the shaded transitions in the two
models.

T AI pB

Figure A-3. Disaggregation at a Transition
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Physically, disaggregation at transitions divides the flow of objects or
messages across some boundary into component flows. The components may be
defined in two ways. First, a Ringle class of objects at the higher level
may be divided into several clas:ies of objects at the lower level. For exam-
ple, messages arriving at a facility may all be lumped together at the higher
level, but broken out by type it the lower level. Secondly, the actual bound-
ary may be refined, being broken into segments across which obJects of the
same type flow. For example, the flow of enemy helicopters across the forward
edge of the battle area can be decomposed by the sector from which they arrive.

In summary, disaggregation at transitions supports hierarchical decom-
position of token classifications and of boundaries.

A.4.3 Disaggregation at Places

The second disaggregation technique expands one place at level N into several
places and transitions at level N+l. This refines the model of processing
done at a place in the higher level model into individual processing steps.

Formally, consider two STAPN models of the same system, organized at two
levels of detail. The model at level N contains some place PA, and the model
at level N+l has some places PB,I, PB,2, - PB,M" Define:

Places 1 , "'-PB, form a strict disaggregation of place PA
if and only if there is a one-to-one correspondence between tokens
in the former and in the latter.

A sim l- illustration of disaggregation at a place is shown in Fig. A-4. Here,
places PCI, PC2 and PC3 form a disaggregation of place PBl- (Again, this is
the case if and only if each TC,m is a trivial disaggregation of transitions
TB,m, m = 1, 2, and 3, so every token entering PCI corresponds to a token en-
tering PB1, and every token leaving PC2 or PC3 corresponds to a token leaving
PBl') Note that the two processing paths in the original model (TB 1 to PBl
to TB2, and TBI to PB1 to TB3) are each decomposed into a single sequence of
transitions and places in the lower model, but that the latter share TCI and
PCI. Note also that the new transitions, TC4 and TC5, have no counterparts
in the original model, so they are not disaggregatior.s of any original tran-
sitions. if the initial number of tokens in PCI, PC2 and PC3 equals the inl-
tial nm, bhr of tokens in P 13, thei there will always be a one-to-one corrc-
spondence between tokens in the shaded places of the two models.

Physically, disaggregation at places divides the processing of objects or
messages in a region or facility into processing substeps. For each pair of
input and output transitions i:i the original model, a sequence (;:ore general-
ly, an acyclic network) of places and transitions appears in the lower model
to convey details of the original processing. Just as tokens in the original
model share residence In the original place, so the refined processing path-
ways may share traansitions and places. However, no coordination mechanism
other than simple sequencing along each pathway is possible using place dis-
aggregation, as more sophisticated coordination mechanisms require additional
tokens, usually to rupresent memory in the coordination mechanisia, which have
no counterparts in tCe original model.
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Figure A-4. Disaggregation at a Place

The natural physical candidates for place disaggregation are decomposi-

tion of regions into subregions, division of facilities into components, and

segmentation of procedures into steps. For examples, a high level model might

represent an entire nation with one place, using transitions between places

to model border crossing events; a lower level model might use a place for
each state or county, with additional transitions modeling internal border

crossings. The North Cheyenne Mountain Complex might be a single place in

one model; each operations center might be a place in a lower level model,
with some additional transitions modeling message or personnel movement be-

tween centers. The launch preparation process for a strategic missile might

be captured by one place in a high level model; at a lower level, individual

places might represent separate preparatory processes such as fueling, arming,
and targeting.

In summary, disaggregation at places supports hierarchical decomposition

of regions, facilities, and procedures.

A.4.4 Simultaneous Disaggregation/Subnetworks

Parenthetical comments following Figs. A-3 and A-4 indicated that simul-
taneous disaggregation at both transitions and places is needed in order to
assert that either one is valid. That is, one-to-one correspondences between

tokens can be maintained if and only if there exist one-to-one correspondences
between the events that create and destroy tokens (transition firings). Thus

procedures to validate that a place disaggregation is correct must introduce

compatible transition disaggregattons, and vice versa.
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Formally, the correspondences between tokens and transition firings pro-
vided by a simultaneous disaggregation provide a well defined homomorphism
between two model levels. In subsection A.4, we will see that this homomor-
phism creates exact relationships between measures at the two levels.

From a practical perspective, simultaneous disaggregation is more readily
understandable than artificially enforced separations between disaggregation
at transitions and at places. In fact, simultaneous disaggreg.ition can be
interpreted quite naturally as subnetwork expansion. Each place is disaggre-
gated into a subSTAPN, which may model the decision rule or timing model for
the original place in more detail. Each transition is disaggregated to ensure
that the boundaries of the subSTAPNs are compatible: the output transitions
for one subSTAPN must match the input transitions of any subSTAPNs that follow
it. Thus simultaneous disaggregation permits construction of hierarchies of
models which have precise correspondences between elements at successive
levels.

A.4.5 Enhancement

However, simultaneous disaggregation is not sufficient to model real C 3

systems. The high level structure of these systems only becomes apparent when
some details are completely suppressed. We must have a method for resurrect-
ing these details as the model levels become more detailed, or risk losing
the completeness property of the models. That method is enhancement: adding
additional STAPN primitives to a model for which no corresponding element
exists at the level above.

There is no formal definition of enhancement, but the concept is ade-
quately illustrated by example. In Fig. A-4, we disaggregated a place into
three places and two transitions, but added no information about the decision
rule for the original place. Suppose that logic is to send alternating tokens
to PC2 and PC3" The lower level model of Fig. A-4 can be enhanced to capture
this special coordination mechanism as 3hown (Fig. A-5). Here, tokens alter-
nately occupy PD4 and PD5, thus enabling transition TD4 for every other token
that becomes available in PDI" However, there is no token at the higher level
that corresponds to the token initially in PD5- (Similarly, no transitions
fire at the higher level when either TD4 or TD5 fire, as seen in Fig. A-4.)
Thus PD4 and PD5 constitute an enhancement to the higher level model.

Physically, enhancement adds structure to a model. It does not nullify
any aspects of a higher level model, but introduces new objects and coordina-
tion mechanisms to extend the detail of that model. For most simple STAPN
models, complexity not represented by the network itself is hidden in the

decision rules and timing models. Thererore, we would expect enhancement to

inject more visibility into these elements as a model is refined.

Figure A-5 is a simple example of how an allocation decision rule, modeled
simply as the separation of two token flows in Fig. A-3, can be made explicit.

Similar mechanisms express the detai" of other common allocation rules, such

as allocating a message to an operator with the shortest queue. Timing models
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Figure A-5. Enhancement

used in higher level models usually represent activities of long duration,

such as establishing the identity of an object, and a lower level enhancement
would make explicit the time taken when false identities are conjectured and
rejected, perhaps several times, before the true identity is established.

Finally, we saw that disaggregation only pernits processes to be decom-

posed into sequential subprocesses. In order to introduce the parallelism
and related coordination mechanisms so vital to C 3 systems, we cannot rely
on disaggregation alone. Enhancement provides the opportunity to introduce
parallel processing paths and additional coordination between them, as in
Fig. A-S.

In summary, enhancement supports hierarchical decomposition of decision
rules, timing models, and coordination mechanisms.

A.4.6 Implications for Completeness

in addition to the usual issues of model fidelity, internal complete-
ness is i propertLy of hierarchies of models that can potentially be verified.
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The disaggregation techniques provide the structure for validating internal
completeness.

In what sense can one expect a hierarchy of models to be Internally com-
plete? It has been repeatedly argued that much detail present in lower levels
must be suppressed from higher levels for the models to be managable. Enhance-
ment is a necessary technique for building hierarchical Aodels of C3 , so one
cannot ask that all features present in one level be present in all levels
above. One can, however, demand that nothing be lost as we work more detail
into the models -- i.e., that every object and event captured by a high level
model be included in some component of each lower level model.

In STAPN terminology, internal completeness demands that every token
created at level N have a unique counterpart at level N+l, N+2, ... , and that
every transition firing at level N corresponds to a unique transition firing
at every level below it. Suppose that:

Assertion A-1: Every STAPN model of a system can be decomposedLb
successive disaglregations (at either places or transitions) and
enhancements.

Now, the properties required for strict disaggregation (one-to-one cor-
respondences between tokens and transition firings at successive levels of the
model) are transitive (so that they apply between levels N and N+K+M If they
apply between levels N and N+K, and between levels N+K and N+M). Thus if
successive disaggregation-enhancement steps are used to build a hierarchy of
models in a top-down fashion, any token or firing in level N will have a
unique counterpart at every level below, so

Fact A-1: Every STAPN model constructed from top-down iterations
over disaggregation-enhancement ste s, where the disaggregation is
performed at every place and every transition. is internally__coplete.

Thus one can ensure internal completeness for a collection of STAPN models by
carefully structuring the model-building process, so that disaggregation and
enhancement are alternated as the model Is built in a top-down fashion.

A.5 VERTICAL RELATIONS BETWEEN MEASURES: AGGREGATIUN

Suppose one has two versions of a model at different levels of detail,
and they are related to one another as described in subsection A.4. How do
the connections between models carry uver :nto relationships among measi:res?

For each of the four types of canonical measure, the disaggregation
methods produce a set of vertical relations which determine values for the
higher level measures from lower level values. If the conditions of Fact A-I
are followed, one vertical relation is produced for each high level measure.
Since the structures introduced by enhancement are not part of the disaggre-
gations, the measures associated with the enhancement elements will not appear
in any of the vertical relations for the level above.
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A.5.1 Paths and Path Sets

We will use the same notation in the discussion of all four classes of
vertical measures. Any simultaneous disaggregation process starts with some
place at level A, PA, its input transitions TA l, TA,2, ... TAK, and its
output transitions TA,K+I, TA,K+2, ... , TA,K+M. Disaggregation at the input
transitions produces transitions TBI, TB,2, ... TB,L at the next level B.
Disaggregation at the output transitions produces transitions TBL+l, TBL+2,
0.. TBL+N. Finally, disaggregation of PA,i produces several new places PB,I,
PB,2, -' PB,J"

Common to several definitions of vertical relations is the notion of
a path set. A ath under A is an alternating sequence of transitions and
places which (a) starts at one of the disaggregated input transitions TB,1,
TB,2, ... TBDL, (b) terminates at one of the disaggregated output transitions
TB,L+l, TB L+2, ... TB L+N, (c) only contains a subset of PB 1, PB,2, •
PB,J, and (d) is acyclic. The collection of all such paths Is the path set
for PA, denoted as SA. The collection of all paths In SA that terminate on
transitions diaggregated from TAI is denoted by the set SA,AI.

This definition of paths, along with the properties of the disaggrega-
tions which produce them, resnlts in an essential characteristic of a path

se;If several pat hs connect .AIset. -fsvrlytscnetayone dis!ggregated input transition to any

disa.g[egated outut transiontheX diverge and converge only.at places.

The proof of this fact is by contradiction. Suppose two distinct paths
in a path set diverge at a transition. Suppose this transition, common to
both paths, fires. This creates one token in each of the two next places of
each path. By the definition of place disaggregation, each of these two tok-
ens must bear a one-to-one correspondence with tokens in the original, aggre-
gated place. Since only one token is created in the aggregated place in the
upper level model by this firing, these two tokens are In a one-to-one corre-
spondence with the same token, thus producing a contradiction. The proof for
convergence at places is proven by the same arguments, working backwards in
time from the disaggregated output transition.

There may be several paths containing any single place. For example,
consider the higher level system in Fig. A-3, which we refined into the lower
level system of Fig. A-5. These two models are shown together in Fig. A-6.
In this diagram, the original place PAI has a path set SAl containing two
paths:

T01 + PLD + TD4 + PD2 * TD2

TDI * PD1 TD5 * PD3 + T)3

Neither P1D4 nor P1)5 appear in any path set, since they resulted from enhance-
ment, not disaggregation at PAI- For this reason, the two acyclic sequences:
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TDI + PDI + TD4 PD4 + TD5 + PD3 TO3

TD1 + PD1 + TD5 PD5 + TD4 + PD2 TD2

are not in the path set for PAI"

orT Al A

T D5 P 03 T°D3

T 02
3

Figure A-6. Example for Vertical Relations

Continuing the example shown in Fig. A-6, five vertical relations hold
between the canonical measures for the two systems. The equations which

relate the steady state measures of the two models are:

PAI,A2 - PDI,D4 + PDI,D5 Aggregation of probability

XAl = XDI Aggregation of rate

XA2 XD2 + XD3 4ggregation of rate

"r'Al = nDl + qD2 + rD3 Aggregation of occupancy

TAI,A2 PDI,D4 * {TDI,D4 + TD2,D2}

+ PDl,D5 * iTDI,D5 + TD3,D3I Aggregation of delay

The next four subsections derive general wrs ions for each of th, e four

classes of canonical vertical relaýtions.

A.5.2 Aggrepation of Probability

The canonical probabilities mensure the fraction of tokens that leave a
place along each of its exit arcs. As places are concatenated along a path,
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these fractions multiply, as the flow is subdivided at each place. As paths
converge, these fractions add. The total fraction of tokens that reach each

disaggregated output transition is the sum of the fractions for each path
terminating at that transition.

Formally, one must begin by defining some intermediate variables for the

paths. The weight of a path s under PAl, denoted ws, is a normalization fac-

tor times the product of the probabilities for each {place--output transitionj
pair encountered along the path. The normalization factor is the fraction of
tokens created by the initial transition on the path. If a path begins at
transition T B,i, then the normalization factor is:

fB,i - AB,i / El iB,l

These statements stand as is for steady state statistics; for an ensemble

average ws (t), the normalization factoc and probabilities to be multiplied
together must be taken from the times at which each transition fired. That
is, if the path s Is:

TBI + PB2 9 TB3 * P84 * TB5

then the weight of the path is:

ws (t) = 0B4,B5 (t) * PB2,B3 (t - T34,B5 ) * fBl (t - TB4,B5 - TB2,33)

where
fb,[ (t) = gB,i (t) / S1 XB,1 (t)

Thus each probability measure is evaluated increasingly far in the past, as
delays accumtulate before the final transition fires. For steady state
statistic 3,

W;s - B4,R5 * PH2,B3 * f8l

as all, dtienilwd,1, en tO ie Is eliminated.

Now c. ,. ztate the first vertical relation between mea!-,t es. For each
IA, and , I its output transitions TAi:

A._gi" '4.ition ot Probability:
For oneuihl.. e iverages:

,,Ai M) = Es ws (t)
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For steady state statistics:

PA,Ai ws w.

where the sums are taken over paths s in SAA.

A.5.3 Aggregation of Rate

The canonical rates measure the frequency with which transitions fire.
Disaggregation at a transition maintains a one-to-one correspondence betweun
firings of the original transition and those of its components in the lower
level model. Thus the firing rate for a transitio*i at one level is thle sum of
the firing rates of the transitions into which it has been disaggregated.

Formally, a vectical relation can be defined for every transition in the
original model. Let that transition be TA,i; let it be disaggregated into N
transitions TB,I, TB,2, ... , TB,N. The second vertical relation between
measures is:

Aggregation of Rate:
For ensemble averages:

XAJi (L) = En XB,n (t)

For steady state statistics:

XA,i = En XB,n

A.5.4 Aggregation of occupancy

The canonical occupancies measure the number of tokens in places.
Disaggregation at a place maintains a one-to-one correspondence between tokens
in the original place and those in its components in the lower level model.
Thus the occupancy of a place at one level is the sum of the occupancies of
the places into which it has been disaggregated.

Formally, a vertical relation can be defined for every place in the ori-
ginal model. Let that place be PA,i; let it be disaggregated into .J places

PB,l, PB,2, "'', P6,J" The third type of vertical relation huLw'eei ::iuasuris

is:

Aggregation of Occupancj;
For ensemble averages:

A,I tB,j (t
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For steady state statistics:

AA,i = -j XB,J

A.5.5 A eration of Delay

The canonical delays measure the time between the creation of a token and
its destruction. When output transitions are disaggregated, the set of tokens
over which ensemble averages are taken may be partitioned. When a place is
disaggregated, the life of one token may be broken into segments, represented
by a sequence of tokens in the disaggregated model. The place may also be
disaggregated into a set of alternative paths. One can reconstruct the life-
time of an original token by averaging the sum of token's lives along each
disaggregated path, weighting the terms of that average by the fraction of
tokens following each path.

Formally, another set of Intermediate variables must be defined for the
paths. The len &_h of a path s under PAi, denoted J., is the sum of the delays
for each 1ploce--output transitioni pair encountered along the path. As with
weights on paths, this statement stands as is for steady state statistics;
for an ensemble average I (t), the delays to be summed must be taken from
the times at which each token leaves each place. If the path s is:

TBI ÷ PB2 + TS3 * PB4 * TB 5 * Bb * TB7

then the length of the path is:

IS (t) TB6,h7 (t) + TB4,B5 (t - TB6, B7) + TB2,B3 (t - 116, B7 - TB4, B5)

Now the fourth vertical r,-iation between measures can be stated. For
each PA, and ,arch of its output transitions TA;:

_A~fr e_.a.t~to2 o_ fDeljay :

For ensemble averages:

t.\A4 (t) A: !.; (t) * 
1s (t)

For stead_ st tte _statistcs:

`A,.- = :s '-s * S

Where the sums are taken ovar paths s--
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A.5.6 1i21ications for MinimaLLty

If the prescription for Fact A-1 to hold is followed, it will be ensu:ed
that every transition and place at level N is disaggregated, perhaps trivt-
ally, into elements at level N+1. If this Is the case, it has been shown that
a vertical relation can be constructed for every level N measure. Thus know-
ledge of the values for all level N+1 measures completely determines values
fot all level N measures. Thus the level N measures are redundant. If one
seeks sets of measures that are independent, then one can only take measures
from one level at a time.

Therefore, the ultimate set of measures desired are those from one level

of a hierarchical STAPN model. Since theru is une set for each level of the
model, nested sets of measures have indeed been const'iicted, where higher
level ,reasures are simple aggregations of lower level measuz-ts.

A.6 EVALUATION OF MEASURES

Now all of the basic concepts re 4 uired to systematically generate sets of
measures for Command and Control systems are in place. For completeness, a
review of some techniques for computing values for those measure,; is in order.

Although evaluation of measures is outside the scope of this work. numer"uus
comments on evaluation have appeared throughout, and some tt.,chniques terit a
brief review.

Evaluation techniques fall into three classes. In increasing order of
expense, these are ' techniques, where values emerge as the solution to
a set of equations; simulation, where the behavior of the system is mimicked
by a combination of hardware and software models; and fe_.eri~ments, where the
real system is operated in a manner representative of actual wartime condi-
tions. This section cannot review all three techniques in depth, and so
focuses on those aspects which are particularly germane to STAPN models.

The major contribution of the STAPN framework is not a set of new evalua-
tion techniques; those listed below are commonly used and well understood.
Rather, it establishes a common intellectual framework which facilitates cola-

parisons between data obtained from different evaluations. Thus, for a singli
system, a numerical analysis, simulation results, and experimental data can be
directly compared and checked for consIstenCy.

The major question still to be addressed is the construction of enough
additional relations between measures to permit a single solution f,,r thet!
values to emerge. Since the canonical horizontal and vertical relations arise
from the structure of the network alone, the obvious sources for the addo-
tional relations are decision rules, timing models, and attribute maps. For
example, timing msodels may relate delays to arrival rates and occupancies, and
decision rules may produce models which determine probabilities from delays,
occupancies, and rates.
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A.6.1 Analysis

The most highly developed analytic techniques are those from critical
path analysis and queuing theory. Since both PERT charts and queuing theore-
tic models are very similar to STAPN models, although more limited in scope,
these techniques can at least be applied to a subset of STAPN models.

Generally, queuing analysis computes steady state values for measures.
Additional relations to generate a solution are derived from analyses of
standard queuing structures, such as single-server, first-in-first-out queues
with reneging from the queue. The equations constructed by these analyses
provide relations between rates, delays, and occupancies, as desired. Unfor-
tunately, the equations are strictly correct only when a number of restric-
tive, and often unrealistic, assumptions are imposed for the probability
distributions of various measures (e.g., the interval between transition
firings is an exponentially distributed random variable).

Less work has been done on analytic evaluation of ensemble averages.
These offer the potential of describing changes in behavior of a system as
time progresses, as well as evaluating systems without any well defined
steady state. At best, current technology permits differential equations
to be derived for specific ensemble averages, such as the occupancy of a
place representing a queue, in rather simple systems with many simplifying
assumptions.

A.6.2 Simulation

Simulation is by far the most popular method for evaluating measures.
Simulation has a reputation for providing visibility into the relations
between reality and the assumptions built into a model intended to mimic that
reality. This reputation is well deserved, except in cases where complexity
overwhelms an analyst and visibility gives way to obscurity.

STAPN models are quite well suited for simulation. Indeed, a number of
software products have appeared, particularly in Europe, which are tailored
to simulation of some form of Petri net. However, none support all features
necessary to directly simulate the STAPN models described in subsection 2.2.
(Of course, such models can be simulated indirectly by translating them into
the constructs of existing special purpose simulation languages).

The appeal of STAPN simulation lies in the fact that the basic events
are transition firings, and these take place at discrete points in time. The
marking of a STAPN changes only at a firing, so data structures need to be
updated only at these times;. Thus STAPNs are ideal candidates for discrete
event simulation techniques, where computational load is determined by the
number of events which occur in a system, not some arbitrarily chosen inte-
gration step size.

In addition, the hierarchical structure of the STAPN models described
here simplifies the collection of output statistics. As each transition at
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the lowest model level fires, several measures must be adjusted: the rate for
that transition, the occupancies of Its Input and output places, and the prob-
abilities and delays for arcs leading from input places to the transition.
The vertical relations determine exactly how to propagarp these changes up
the hierarchy of measures, so that measures at all levels of detail can be
accessed while the simulation is in progress.

However, simulations (including STAPNs) can be expensive ,in two ways.
First, to construct a large simulation of a real system is a major software
engineering effort. The availability of general purpose tools to aid this
process has alleviated, but not eliminated, the large amount of manpower
required to build a realistic simulation in which all assumptions are con-
sistent. Modifying large simulations is also notoriously difficult.

The second expense associated with simulation is computer time. WhIle
one replication of a simulation may be rather inexpensive, an extremely large
number of replications are usually needed for statistically significant ensem-
ble averages to be computed.

A.6.3 Exercise and Experients

The faost expensive method for evaluating statistics is also thc most

realistic -- run the real system and see how it behaves. The major drawback
to experiments or exercises is the significance of the results, as very few
replications can be run to give statiEtical significance to onsemble averages.

The -'ajor potential contribution of Lhe STAPN framework to evaluation by
experiment is in the data collection and reduction processes. Prior to an
exercise, data collectors must be instructed to observe and report specific
events. The precision of a well built STAPN model can help define exactly
what constitutes an event -- exactly what object is to cross what boundary as
the event tai.es place. In addition, the vertical relations contribute as much
to data reduction In this context as to simulation.

A.7 OPEN ISSUES

The concepts described in this section are but a start towards a complete
methodology for evaluating C3 systems. The three imost prominent desiderata
are: (a) more extensive validation that assertionls I to 5 in subsection 3.4
are indeed true, (b) the ability to meld behavioral measures with models for
structures which change over time, and (c) development of analytical tools for
evaluating transient values of measures (ehsetable averages) without resorting
to the expense of simulatlon or exercise.

A.7.1 Validation

The concepts described herein have been applied to a gencr`c eir defense

mission (see Vol. i1). While no evidence was produced contradicting any of
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the assertions presented above, one exercise of a method does not constitute
proof of the generality of the method. Air defense is a well, studied, highly
structured mission area. Whether or not (apparently) less structured missions
such as cover and deception can be reduced to STAPN models remains to be seen.

In addition, one drawback of the concepts constucted above was clearly
demonstrated In both the air defense analysis and in another, similar study
of NORAD's Missile Warning Center: complexity dominates any manual effort.
While the hierarchical structure of a model helps manage complexity, there is
a limit to the number of pages of diagrams which any person can manipulate
simultaneously. Purely manual validations of these concepts are likely to be
expensive and frustrating. Fortunately, the rigorous framework common to the
concepts opens opportunities for partial automation of STAPN modeling and
measure generation.

A.7.2 Structural Dynamics

Structural measures convey how the interconnections of a system (i.e.,
the topology of a STAPN model) change over tiwe due to failures, repairs,
enemy action, or reconstitution. Current evaluation technology generally
limits us to evaluation of behavioral measures in the context of one specific
structure. If the structure of a system changes, then we typically
re-evaluate the behavioral measures, once for each system structure. In cases
where behavioral measures are In fact evaluated along with structural changes,
little work has been done to carefully define the measures -- time averages
may not make sense because of intervening structural changes, and ensemble
averages may be-questionable because the system structure may change at dif-
ferent times in different replications.

Unfortunately, the changes in system structure are often driven by the
behavioral events. If I C3 system permits attackers to penetrate defenses
frequently, then the t .e between structural changes caused by enemy actions
will be short. Integration of (transient) behavioral measures with structural
measures would be much more realistic than present techniques.

A.7.3 Continuous Time Models

Finally, the entire process of evaluating C3 systems should be made more
cost effective, so that taxpayers' dollars are spent more wisely and so that
more comprehensive evaluations can take place, resulting in more effective
fielded systems. Since time varying, ensemble averages provide the most
Insight into system behavior, this means that either simulation technology
should be improved, or that analyical techniques which directly compute
ensemble averages should be developed.

The latter notion may not be unrealistic in the context of STAPN models.
Recall that the horizontal and vertical relations can be written for ensemble
averages as well as for steady state measures. As with steady state queuing
analyses, there are not enough horizontal relations to completely deteiaine
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values for the measures. However, it may be possible LO augment the canonical
horizontal relations with other retlioas derived from timing models or deci-

sion rules. Ideally, these additional relations would take the form of delay-
differeutial equations, so that they are compatible with the structure o0 the
canonical relations. With certain approximations, it may be possible to reduce
the completed set of delay-differential equations to a set of ordinary differ-
ential equations, for which numerous solution Lechniques exist.
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APPENDIX B

ILLUSTRATIONS OF PETRI NET MODELS REPRESENTING HUMAN-MACHINE INTERACTION

B.1 PURE* PETRI NETS

Pure Petri nets have nodes (places, transitions) and arcs that connect
the nodes to form a network. Often the place nodes represent pre-conditions
or post-conditions of some event, and the transition nodes represent the
event. In other models, the places represent processes, and the transitions
mark beginning-of-processing and end-of-processing. Tokens in places in the
network indicate that the pre-conditions (or post-conditions) are true, or
that the processing is in progress. Transitions consume tokens from their
input places and create tokens for their output places; this can indicate for
eyample, that pre-conditions no longer hold, or that processing has begun.
Places have only one output transition.

Pure Petri nets are used to model systems for which it is necessary to
represent the coordination of resources or processes. For example, consider
simple message-handling by an operator as shown in Fig. B-l.

rMESSAGE ARRIVES

* 1MESSAGE IS WAITING

"OPERATOR BEGINS TO PROCESS MESSAGE

IS IDLE OPERATOR IS PROCESSING MESSAGE

_MESSAGE PROCESSING COMPLETE

IMESSAGE IS AWAITING DISPATCH

iMESSAGE IS SENT

i iu re B- I. Simple Message-lkindling by ai Operator

Wi.e., wi-Tiou0t extensions. "Pure Petri nets" refers to C.A. Petri's original
description (1962), as opposed to "extended Petri nets," which include
modific•i i ro; to increase the expressive power of the methodology.
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In the above example, message-processing can begin because a message is
waiting and the operator is idle.

In Fig. B-2, a r :ssage is waiting -- it cannot begin processing because
the operator is not idle.

r1ESSAGF ARRIVES

* IMESSAGE IS WAITING

OPERATOR OEGINS TO PROCESS MESSAGE

* OPERATOR IS PROCESSINGr-MESSAGE

MlESSAGE PROCESSING COMIPLETE

M1ESSAGE IS AWAITING DISPATCH

MlESSAGE IS SENT a WO

rigure B-2. Message Waiting

In Fig. B-3, two operators are available. Also, the place whuru inessages
wait (prior to sending) has room for only three messages.

- -- rMESSAGE ARRIVES

.MESSAGE IS WAITING

OPERATOR BEGINS TO PROCESS
MESSAGE

OPERATOR * OPERATOR IS PROCESSING rlE5SArE
IS IDLE

-•ESSAGE PROCESSING COMPLETE

rIESSAGE IS * SPACE IS AVAILADL( FOR MESSAGE
AWAITING DISPATCH IN OUTPUT flUFFER

MESSAGE 15 SENT

Figure 1B-3. TwG Operators, Output Buffer of Capacity 3
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Figure B-4 depicts message handling with confirmation required.

MESSAGE ARRIVES

MESSAGE IS WAITING

REOUEST CONFIRMAT ION

CONFIRMATION REO]UEST MESSAGE WAITING
WAITING

OPERATOR 2 OPERATOR I S
IS AVAIL ABLE *AVAILABLE TO

TO OBTAIN PROCESS MESSAGE
CONFIRMATION

CONFIRMATION IS OBTAINED MESSAGE IS PROCESSED

MESSAGE IS READY TO SEND

MESSAGE IS SENT 2-2692

Figure B-4. Message Processing With Confirmation

In the above figure, the message is ready to send when the message is
processed and confirmation is obtained.

B.2 LIMITATIONS OF PURE PETRI NETS

B.2.1 No Variation of a Token's Path

It is not possible to model a branch in a token's path (because a place
may have only one output transition).

Consider our first example (Fig. B-i): simple message handling. We
know that messages are sometimes garbled. Suppose (for simplicity) that one
message in three is garbled and needs to be queued up for reprocessing.
Hlow might we model this? Consider Fig. B-5.
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'II

MESSAGE IS WAITING TO OE

PROCESSED (OR REPROCESSEO)

-75 12

MESSAGE IS
SENT BACK MESSAGE IS BEING PROCESSED

TO BE
REDONE

t3

MESSAGE 1S READY TO LIE S[Nr

t4 r1ES5AGE IS 5[ET ON

Figure B-5. Me!;sage Reprocessing

A message that is ready to be sent may follow one of two paths: it may

be sent on, or sent back to be redone. In this simple model, every third
message is sent back -- will it work? Only if it is somehow guaranteed that
whenever t 4 and t 5 are both enabled, L5 will fire first. t4 and t5 are in
conflict, since firing t 5 diser.ables 14. The problem of transitions in con-
flict will be considered later.

B.2,2 No Explicit Consideration of Timing Fffe':ts

In pure Petri net modeling, processes are considered to take some indeter-

minate amount of time. The issue is not one of using resources efficiently,
but preventing situations such as bottlenecks or deadlock. In parallel pro-
cessing situations, tokens may pile up, or resources (operators) be idle, if
the parallel processes take different amounts of time.

Consider the example in Fig. 13-4: ineCsag, processing with confirmation.
Suppose it takes 60 seconds to process a message, but two minutes to obtain
confirmation. The model given slit) represents the necessary coordination
correctly - a icssage will not be sent on until it has been processed and

confirmed. But if messages arrive at a ratv laster than one every two min-
utes, the processed messages will pile up awaiting confirmation. One can
easily prevent this as shown in Fig. B-6.

In Fig. B-6, the place pI on the right prewvnts either task trom begin-
ning until a prior message has been procOs.CeId .nd COnIIJ IIMUc. l)W1'Vetr', 110W O01e
operator will ),e idle 50 percent of the time, and me;sages may pile up awalit-
i"ng processing. The model may nut give us iaiy indicatiun. ('[The plaie p)1 is
merely redundant.)
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MESSAGE ARRIVES

• MESSAGE IS WAITING

CONFIRMATION REQUEST WAITING MESSAGE IS WAITING

II
OPERATOR I IS
AYAILAKLE TO

OPERATOR 2 PROCESS MESSAGE
IS AVAILA8LE 

P
TO OBTAIN

CONFIRMATION "MESSAGE AND
Co-FICOWI RATAT OON

ARE BEING

CONFIRMATION IS OBTAINED MESSAGEIS
PROCESSED

MESSAGE IS AWAITING DISPATCH

MESSAGE IS SENT R.2694

Figure B-6. Message Processing With Confirmation

B.3 EXTENSLtONS OF PETRT NETS

B.3.1 Ex cit Consideration of Branching* in the Net

To mode l systems in which a token may travel from a place to one of two
or more Lrasiitions, we allow explicit branches in the links between places
a nd transitions (Fig. 8-7). Transitions may then "share" common input, places:
LWu traifItLioi, might be enabled in such a way that firing one disenables the
other.

Tranaition6 s;hown in Fig,. B-7(a) are in contention; we necd a decision
rule associated with P1 to decide where the token should go in the event that
both transittons, are enabled: e.g. , "Every third token to t2" or "Go to t2

if -2 is enablud."

-FeLri -fi -withloout br;anches are cal led Decision-Free.
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0 2  D I P 2  01 P2 P _

t2 1i t2 ._] tl 2 tlI

(e) (0) (C) R.29S

In (a) the decision rule In (b) and in (c) there is no contention,

associated with pl deter- so the decision 'ule is not used.
mines which transition
will fire.

Figure B-7. Transitions in Contention

Consider the simple message handling examprle (Fig. B-i), but suppose
there are two classes of messages: status messages and alarm messages; natur-
ally, the operator should attend to alarm messages as they arrive. This is
modeled as in Fig. B-8.

ALARM MESSAGE STATUS MrESSAOE
ARRIVES ARRIVES

ALARM MESSAGE STATUS MESSAGE
WAITING (D 0 WAITING

St2

ALARM MESSAGE STATUS MESSAGE
BEING PROCESSED BEING PROCESSED

Figure B-8. Message Handling With Prioriýy

The decision rule is: token go.,s to t1 if both tI and t 2 are eiabled.
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Consider the case shown in Fig. B-9 when one message in three is garbled:

MESSAGERIS ti I. MESSAGE ARRIVES

lMESSAGE 
IS WAITING

R OTO 
6E PROCESSED JRREPROCESSED

OPERATOR IS OPERATOR IS AVAILABLE
PROCESSING TO PROCESS MESSAGE

MESSAGE

IMESSAGE IS AWAITING
DISPATCH

SR.z69,

Figure B-9. Message Handling With Reprocessing

The decision rule is: every third token goes to tI (in a random way).

B.3.2 Explicit Consideration of Timing in the Net

Consider the message processing center exampie in Fig. B-1O. Two oper-
ators (I & t1) process two message types (A & B). All messages must be con-
firmed by telephone (I line) before processing. Either operator may confirm
a message, but type As are processed by operator I and Bs by II. Thirty per-
cent of messages are type A.

Each transition assigns a time (possibly zero) to tokens that it creates:
the tokeii is unavailable* for that time in the subsequent place, possibly dis-
enabling suhsequent transitions (see Fig. B-li).

*An 1na,1 lal) (I token is indicated by "0.'"
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2 3

' I 0 mu.26

t1: message arrives PI: message is awaiting confirms-
t',: Operator I begins to confirm tion [Rule: output to which-

message ever transition i& enabled,
t3t Operator 11 begins to con~firm r 2 if both are enabled]

meestge pz: messeage is being confirmed by
t6: Operator I completes confirms- Operator I

tion of message P3: telephone Ia available (Rule:
tS: Operator II completea confir- same as I] •

4L

artion ot message Pe: message is being confirmed by
t 6 : Operator I begins to procese Operator II

t7: Operator II begins to process P6: message is waiting pzocessing
message type B [Rule: eend 30 percent of

t8: Operator I completes tokens to t 6 , in a random w.ty]
proceessng of meseage type A PY: Operator II Ia idle

t9: Operator II completes P8: message type A being processed
processing of mese~ge type B by Operator I

t 1 O: message is sent pg: message type B being proce~s,,'
by Operator II

PlO; message is waiting to be sent.

Figure B-lO. Message Ptocesslng Center*

W-0i any give-n dyT--fs--likely that the mix of messages (As and bs) wifl only

approximate 30 percent; the actual distribution will vary. The clecis~un rule
4 tlc



TOKEN IS PRESENT OUT
UNAVAILABLE (FOR TIME
REQUIRED FOR PROCESSING)

t2 t 2 IS NOT ENABLED A-26"

Figure B-11. Unavailable Token

e.g., Consider the message processing with confirmation example (Fig. B-6):
processing takes 60 seconds but confirmation takes two minutes (see Fig. B-12):

B.3.3 Considerations of Stochastic Timing

In real life, tasks rarely take precisely 60 seconds, or exactly two
minutes. Usually tasks require some time like "two minutes, give or take
ten seconds," each repetition requiring a slightly different amount of time.
Stochastic-timed Petri nets are as discussed above except tha't the tires
assigned are chosen from an appropriate probablity distribution, so that the
times given in the example would be "about 60 seconds," "near two minutes"
and so forth, depending on the exact times assigned.

B.4 FROMI PETRI NETS TO QUEUING REPRESENTATIONS; STOCHASTIC, TIMED,
A ilE:_iT~3 PETRI NETS (STAPNs)

Section 4 of the text discusses queuing theory approaches to IAT. The
following examples Illustrate STAPN representations of simple queuing systems.

B.4.1 Simple G/G/I Queuing Model

ThIc notation X/Y/N is used to describe a queuing system, where X indi-
catos zhe nature of the arrival process, Y indicates the nature of the service
t -LStrLbuLion, and N the number of servers.

A G/(;/] queuing system has a general (that is, any) arrival process, a
general service time distribution and one server: a GIG/I queuing system is
any ,iingle server queuing system.

Figure b-13 shouws a block diagram of a single-server queue. Figure B-14
shows a I'Qiri net representation of arrivals into the queue, and Fig. B-15
shows a Peiri net representation of the queue and service facility. Figure
B-16 shows the Petri net rup)esentation of the complete system.
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0 * 0 0 0

t . 0r i 0 00G

0 0

t -0 1260 1;20

()message arrives
(b) message oknd confirmation request are routed
(c) teroage processing begins and conf:rmation in being obtained
(d) message processing conclude@, confirmation still being obtained

(in the •sentime another message arrives)
(e) message waiting to be sent
(f) processing next message begins
(g) confirmation Is obtained ... next message proce~slng &Ina

finished ... another message has come in
(h) bgin processing third message but only second con0irmation
(1) first a ssage gone ... already we see messages piling up in one

place while confirmations are accumulating further back In thd
system: the model shows us that this Is h)ppening.

Figure B-m12 A Timed PeLri Neb
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ARRIVALS

QUEUEIL 1

1-SERVER
FACILITY

DEPARTURES

R-2726A

Figure B-13. Block Diagram of a Single Server Queue

t

R-2727

Figure B-14. Generating Arrivals into the Queuing System

The transition fires whenever the token in the place is available.
It consumes this token and creates two output tokens. The token
that is output to the place p is unavailable for a time that is
determined by the inter-arrival distribution. [For example, if
customers arrive "every five minutes, give or take a minute or so,"
then the time this token is unavailable should be drawn from a
uniform distribution with mean 5 and standard deviation 1.] The
other token is available immediately.
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MEANS PI

ANY NUMBER n OF
TOKENS naI t

(THE TOKEN IN p3 P3  0 P2

IS UNAVAILABLE)

t 2

R-2728

"a token in Pl indicates "a customer is waiting in the queue"

"a token in P2 indicates "the server is available"

"a token in P3 indicates "the server is attending to a customer"

the firing of tI indicates "service starts for one customer"

the firing of t 2 indicates "service finishes for one customer"

tI fires when tokens are available in Pl and P2" It consumes
these tokens, so there is one less token (maybe none) in p1,
and no token in P2- [This corresponds to one less customer
in the queue, and the server no longer available.] It creates
one token which is unavailable for a time determined by the

service time distribution, and this token goes into place P3,
indicating service is in process. [For example, if service
times average "three minutes give or take half-a-minute" then
the time this token is unavailable should be drawn from a
distribution with mean 3 and standard deviation .5.]

t 2 fires when the token in P3 becomes available, indicating
service is ended. It consumes the token in P3 and creates
a token for P2 which is immediately available.

Figure B-15. Queuing and Service
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.Pt

tI

P2

t2

P4  *P 3

1-2729

tl: arrival Pl: create arrivals
t 2 : begin service P2: queue
t 3 : complete service P3: server available

P4: service in progress

Figure B-16. Petri Net Representation of Single Server Queuing
System at Time T=O.
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B.4.2 Simple GIG/N Quaeuing Model

"GIG/N" refers to any multi-server queuing model. This model is the same
as the preceding except that P3 contains N tokens (shown as "N-- in Fig. B-17):

*p 1

Ii

122

P4  N e P35

t3

R-.2730

Figure B-17. Petri Net Representation of Multiserver Queuing System at Time T-0

In the f, ilowing (Fig. B-18), a 5-server facility is serving three cus-
tomers and no customers are waiting:

*P 1

tP2

P4 oo P3

t3

Figure B-18. Five-Server Queuing Model
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B.4.3 Simple GIG/N Queuing with Type I Reneging

A queuing system exhibits reneging if a customer leaves the system before

service has been completed. In many situations, a customer will not wait indef-

initely, but will always complete service once service has begun. This customer

leaves the system from the queue only; this is Type I reneging (Fig. B-19).

ARRIVAL

OUEUE

N-SERVER
FACILITY

DEPARTURE DEPARTURE
AFTER WITHOU'T

SERVICE SERVICE
;-??)I

Figure B-19. Block Diagram of Multiserver Queuing System with Type I Reneging

Using Petri Liet notation, we can represent the G/G/N case by adding a

place, a transition and a branch (Fig. B-20):

tI

P3 02

P5  NO P4

514 P

ti : arrival pl: generate arrivals

t 2 : begin service p2: queue available for servie

t 3 : reneg ,i3: queue waiting to reneg

t 4 : end service P4: server available

P5: service in progrejs

Figure B-20. Petri Net Representation of Figure F-19
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In the model ahown in Fig. B-20, t1 creates two output tokens: the token
that is forwarded to P2 is available immediately; the cokert Lhit is forwarded
to P3 is unavailable for the reneging time of this system. (If every custcmer
will wait exactly 5 minutes, then this token is w~available for 5, minutes.]
As shown, no serverG are available (no tokens are available in P4)"

Place P2 has two output transitions, t 2 and t 3 . The transition that is
enabled first will consume the token. Thus if a server becomes available
before the reneging time is elapsed, then t 2 will be enabled and a token will
be passed to P5, indicating service in progress. If the reneging time elapses
first -- (1) the token in P3 will become available; (2) t 3 will be enabled;
and (3) the tokens in P2 and P3 will be consumed. This situation represents
the fact that the customer is never serviced.

Note that there is a problem with this model as it stands. Every time a
token is consumed by t 2 (service begins), the token in P3 that represents a
reneging time will become available at a later time. Subsequent tokens in P2
will then "reneg" immediately.

The problem can be corrected by adding another place, another transition,
and another branch (Fig. B-21):

1 )1

It. 2734

Figure B-21. Final Version of Figure B-20
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Now t2 also creates two output token3 and the token in P6 is available immedi-
ately. It represents the fact that processing has started for this customer.
When the reneging time is elapsed, the token in P3 becomes available, t 5 is
enabled, and the tokens in P3 and P6 are consumed.

A problem still remains. Consider a single server system: one customer
being served, one customer waiting service, and the reneging time for the
fi-7st customer has elapsed (Fig. B-22):

3.13

t 14)

Figure B-22. Contention Between Transitions t 3 and t 5

Now both t 3 and t 5 are enabled. Firing either will disenable the other; these
transitions are in conflict. We must have a decision rule associated with P3
which directs the output of its tokens when both output transitions are
enabled. Here we choose a simple deterministic rule: t 5 is always enabled if
there is a conflict.

Actually, if our implementation allows events to occur "simultaneously,"
then we need a decision rule for P2 as well. Suppose in the above example
(after firing t5 ) thet the server becomes available (service time in P5
elapsed) at precisely the same instant that the token in P3 becomes available
(reneging time elapoed). Figure B-23 illustrates this situation:
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P3 ( P2

to t2 ( o

Figure B-23. Contention Between Transitions t 2 and t 3

Now c2 and t 3 are ii conflict. Here the decision rule we choose for P2 may be
deterministic: "always enter service" (t 2 is enabled) or "always reneg" (t 3
is enabled). Or, depending on the situation being modeled, we may feel that
there is some probability that the customer will reneg, and thus the decision
rule may have probabilistic content: "chances are 60% of customers will
reneg;" that is, in a random way, enable t 3 60% of the time.

B.4.4 G/G/N Queuing with Type II Reneging

In some situations, a customer will leave the system after some length
oZ time (the reneging time) regardless of whether service has begun or not.
A system exhibits Type II reneging if customers will reneg fiom the queue or
leave while being served. Figure B-24 shows the block diagram to represent
this case and Fig. B-25 presents the associated Perr-net model.

ARRIVAL

FACILITY

DEPART RENEGING RENEGING
AFTER FROM FROM

SERVICE SERVICE OUEUE

I-2y],

Figure B-24. Multiserver Queuing System with Type II Reneging
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8.211*

•r- t2

P7 P P6

t7 q. t6

ti: customer arrives: pI: token generator.

Pl token available after P2: customer in queue.
interarrival time. Rule: go to t 3 (if both t 2

P2 token available and t 3 enabled) [this could
immediately. vary].

p5 token available after P3: service in progress or completed.
reneging time. Rule: go to t 7 if enabled.

t 2 : service begins: P4: server is available.
P3 token available after P5: reneging time is elapsing or

service time. has elapsed.

t3: customer renegs from queue. Rule: go to t 3 if t 3 is enabled;
t -vice ends: else go to t 6 if t 6 is enabled;

h tokens available else go to t5.
immediately. P 6 : service time has completed

t 5 : reneging time ccipletes: and reneging time has not.

both tokens available P7: reneging time has completed
immediately. and service time has not.

t 6 : customer departs having

completed service.
t 7 : customer departs having

reneged from service.

Figure 11-25. Petri Net Representation of Figure B-24
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B.5 EXAMPLE SHOWING USE OF DECISION RULES IN PETRI NET MODELING

A simple model of an operator managing two streams of messages is shown

in Fig. B-26 below:

ENTRY 2  ENTRY 1

0 01

IPILRATOR

SERVICE 2 HFREVO SERVICE 1

EXIT 2  EXIT1
2.1701

Figure B-26. Model of an Operator Servicing Two Task Streams

If the decision rule at the branch is "allocate the operator (token) to any
nonempty queue of messages, this model is complete (tokens flow through the
branch to any enabled transition at the exit of QI and Q2)" If the decision
rule is "allocate the operator (token) to the longest nonempty queue, with
ties broken in favor of Ql", then thcre if a tradeoff. If this network
description is used, then the decision at the branch is =de based un state
information beyond 'he enablement status of the transitions terminating the
branch. The number of tokens in QI and Q2 must be compared for the decision
to be made and neither QI nor Q2 is directly connected to the branch. Hence
the simplicity of the network gives rise to a coupling between distant places
and decision rules.

The second decision rule can be implemented by a net where such distant
couplings are absent, albeit at a cost of topological complexity. The deci-
sion rule can be decomposed as:

IF 1QIl - IQ21 > 0 THEN serve a token in Ql (P1)

ELSE IF IQ21 - IQII > 0 THEN serve a token in Q2 (P2)

ELSE IF jQIl + 1Q21 > 0 THEN serve a token in QI (P3)

ELSE wait.
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where IQil is the number of tokens in Q1 at the time an operator token becomes
available in the "OPERATOR FREE" place. Adding structures to evaluate predi-
cates Pl-P3 directly in the Petri net* gives a more complex net, but decision
rules are only dependent upon the enablement status of transitions connected
to the corresponding branch.

In Fig. B-27, IEXCESS Q1 OVER Q21 - IQil - IQ21

JEXCESS Q2 OVER Q11 - IQ2 1 - IQll

ITOTALI = IQWl + IQ21

Tokens become available immediately (after zero delay) in all but the SERVICEi
and OPERATOR FREE places.

(NTRY 2  ENTRYI

02 OYER 0 0, OYOER 02

[XFL '2IT T-3T1

Figurc B-27. Adding Structure to Evaluate Decision Rules

-S F B-2e -e f B_--2T.-
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Decision rules are all of the form "pass the token to the enabld tran-
sition with the smallest index"; i.e., the decision rule following OPERATOR
FREE is:

IF lexcess QI over Q21 >0 THEN FIRE T1

ELSE IF jEXCESS Q2 over Q11 >0 THEN FIRE T2

ELSE IF ITOTALI >0 THEN FIRE T3

ELSE WAIT.
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APPENDI'" C

PROCEDURES AND GUIDELINES FOR APPLYING IAT TO REAL-WORLD SYSTEMS

C.1 INTRODUCTION

Using modeling notations such as frame/slot and Petri nets to describe
real-world systems requires a high-level understanding of system structure,
purpose, and re]ationships among elements within a system. The components of
the IAT conceptual framework have been developed to aid analysts in gaining
this understanding.

Although the focus of work has been to define and refine the modeling
techniques per se, the needs of (prospective) IAT users, who would be required
to learn the methods themselves and apply them to operational systems, have
also been identified. The subsections below include Aejneric puidqeeiqneýs,
intended to support analysts who wish to learn and use IAT techniques for ana-
lyzing human/system performance of C3 systems. Examples used in stating these
procedures have been drawn from ALPHATECII experience to date on modeling the
Missile Warning Center (MWC) at NORAD Cheyenne Mountain Complex (NCMC) and a
generic Air Defense System (see Vol. II). The guidelines are presented iiere
from the broadest level of applicability -- model development in general --
to a more specific approach geared to analyzing decisionmaking within opera-
tional environments such as those found at MWC.

C.2 GENERAL GUIDFLINES FOR IAT MODEL DEVELOPMENT AND USE

1. Define "the Problem:" Why

- Who's asking the question-- Perspective

- When is the answer needed -- Scope

2. Review the Facts: What

- Do not reinvent wheels or probe blind alleys

- Do nut assume non-available Information
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3. Identify the Analogies: How

- What is this "like" (or not like)

- Where does the analogy begin to fail

4. Develop the Model

- Determine the degree of decomposition needed -- scope

- Identify the variables

5. Formalize the Mathematical (Petri Net) Representation of
the Model

- Develop the complete model

- Define a complete set of measures

6. Parameterize the Model

- Estimate internal variables (e.g., coefficients based
on resource characteristics and capabilities)

- Estimate external variables (e.g., scenario input
based on threat and environment characteristics)

7. Solve the Model; Exercise the Representation

- Analytically: Given X, find Y using PERT/CPM or

Queuing Theory Methods

- Numerically: Generate X, compute Y

8. Interpret Results

- Verification

- Validation

9. Sensitivity Analysis

- What is critical/trivial

- 'dow close is good enough

10. Execute Production Runs: Prediction/Estimation

- Interpolate: Precision

- Extrapolate: Speculation
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C.3 GENERAL RULES TO HELP FOCUS DATA COLLECTION -- FOR BUILDING IAT
STRUCTURAL AND PERFORMANCE MODELS

1. For each observed process (activity, task), identify the

following:

a. What constitutes successful completion?
[i.e., look for GOALS in the IAT framework]

b. Who normally carries out the process or executes the task?

[identify responsible individuals (RESOURCES),
who have specific roles in ORGANIZATIONS]

c. Where is the process carried out?
[e.g., workstations, display terminals, other locations
(IAT RESOURCES)]

d. How is the process done?

[by what means, using what equipment or information]

c. What triggers the process or permits it to start? to stop?
[activation(s), termination(s)]

f. If a process is interrupted, who determines whether to
abandon or restart it? What factors influence that
dects~on?

g. After intterruptions, how is restart accomplished?

- with no set-up, some set-up, or complete restart?

- does set-up include activities that would not
have been done otherwise?

h. WhaL happens when performance is blocked?

- required inputs are not available

- required resources are not available

- required authorization is not available

i. Can this process cause other processes to be interrupted?
(What happens to resources?)

171



2. Look for inform'ation about each observed process:

a. How often does it occur?
[rate or time between events]

b. How long?
[speed or duration]

c. How important is it co the purpose of the overall system?
[which activities can it pre-empt ... by which other
activities can it be pre-empted)

d. Where are errors likely to occur?

3. Identify precedence constraints on processes
(serial/parallel distinctions):

a. Do things have to happen sequentially? Why?

b. Could things be done concurrently? If so, how could
concurrent execution be achieved?

4. Describe conditional dependencies (rules and factors):

a. When/if , do , not

b. Unless/until , do

C.4 MORE SPECIFIC GUIDELINES FOR BUILDING IAT STRUCTURAL MODELS*

1. Define the system or subsystem boundary: e.g.,

a. Input bound - message receipt at MWC

b. Output bound - CINC's decision reported outside of NCMC

2. Define the system performance criteria: e.g.,

a. Time that first notification report is transmitted

b. Time that last notification report is transmicted

*Those items marked with "*" will be treated in more detail in subsequent

sections of this appendix.
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3. Develop a "back-chained logic'* for the data flow sequence:

viz.,

a. Identify content of each output or product (e.g., report).

b. Collect information about how that output is produced,

and by whom* (PROCESSES, RESOURCES, and ORGANIZATIONAL*
elements in IAT).

c. Identify each input used in producing each output

(IAT RESOURCES*).

d. Find out how this information relates (i.e., links back)

to the original input bound in the system (e.g., incoming
message ftream at MWC).

4. Develop a "forward-chained l6gic"* for the data flow sequence:

e.g., for the MWC,

a. Identify all other incoming inpuv messages: their source,
content, and arrival characteristics.

b. Identify where and how message existence will first be
detected (with respect to IAT RESOURCES, ORGANIZATIONS,
and PROCESSES).

c. Identify each pathway through which message contents may
flow.

d. Trace flows to specific output products or events (even
though there may be no physical output that is realized;
e.g., a file that gets destroyed or a message that raight
be ignored).

5. Identify where in the system human involvement* is required
to do the following:

a. Decide what option or action alternative to take*, partic-
ularly in situations where a decision is on the critical
path for producing a product or carrying out a task.

,

b. Make a Judgment, without which a data void will exist
(or a required output will not be produced).

•-Those hites7 i~a- wi•e -"* will be treated in more detail in subsequent
sections of this appendix.
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C.5 MORE DETAILED PROCEDURES FOR LOWER-LEVEL ANALYSES OF SYSTEM STRUCTURE

C.5.1 Questions to Support Analysis for the 1AT ORGANIZATION Dimension*

I. What is your most important job? [IAT PROCESS]

What is the purpose [IAT GOAL] of this activity?

What do you need to do this job [inputs] and what
products or services do you provide [outputs]?

2. If time did not matter, how would you know whether you

succeeded or failed [measure of performance]?

3. Does it matter when the job is done [start, stop,

and/or duration]?

4. Who gets the product [where does it go next]?

5. What makes up the product [what are its component parts]?

6. How is that product built [i.e., put together, assembled,
generated or produced]?

7. Where do the inputs come from [ORGANIZATION, other PROCESSES,

and/or other RESOURCES)?

C.5.2 Rules for Hierarchical Decomposition for the IAT ORG.NIZATION
Dimension

[Examples based on Missile Warning Center (MWC) and Command Post (CP)
at NORAD Cheyenne Mountain Complex (NCMC).J

1. Identify first the single point of authority for the unit
being decomposed.

- for CP: Command Director

- for rX'C: Missile Warning Officer (MWO)

*Questions at this level of generality should be directed to individuals who

play specific roles in organizations. The question sequence should be re-
peated as needed to obtain complete job inventories. Each implied reference
to associated PROCESSES, RESOURCES, and ORGANIZATIONS should be pursued until
elemental tasks can be identified. (An elemental task is a single action or
decision by a human agent, for which a unique output can be identified.)
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2. Identify subordinate linkages - to whom that individual reports
and who reports to that individual.

- for CINC NORAD: reports to NMCC; Command Director (CD)
reports to CINC NORAD

- for MWO: reports to CD; the Events Verification Officer
(EVO) and Missile Warning Supervisor (MWS) report to
the MWO.

3. Identify the cooperating and coordinated units.

- Cooperating units supply inputs

- Coordinated units are supplied outputs

4. For each identified organizational element, identify the con-
stituent components: the positions that collectively compose
this unit.

- for CP, lists of Daily Duty Officers and Battle Staff

- for MWC, list of crew members

5. Prepare an associated Duties List for each individual identi-
fied; this serves as a starting point (and later as summary
sheet) for the function assignment matrix.

6. If an individual can be at more than one location from time to
time, it may become necessary to list these sites. This would
be the beginnings of a locatability matrix (especially impor-
tant for recall in the transition from peacetime to wartime
operations).

7. Identify whatever formal documents exist that authorize, govern,
or constrain the activities of this organizational unit.

C..; e- 7 I.T RESOURCE Decomposition [based on MWC operations]

I. [See ORGANIZATION decomposition, derived from procedures in sub-
section C.5.2, for relevant crew and workstation information.]

2. For each crew position, identify all dedicated console/
workstation equipment; all portable/shared equipment; and all
personnel equipment items.

3. For each equipment item (portable or dedicated), identify all
input/output interfaces and the characteristics of each.
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4. Within each display identify:

a. what information indicates what is being displayed and
how the operator discerns that,

b. what options can be selected and how these are made
known to the operator, and

c. the constant and variable contents of each display
format (for all possible alternate formats).

5. For each control panel, identify the major function being sup-
ported and obtain the nomenclature associated with each item
(and groups of items) on every panel. Indicate the actuation
mode* (push, twist, flip, pull, etc.) for each item.

6. Obtain or document relative position of each item on each panel.
and each panel on each console using a well-defined coordinate
system.

7. Identify or define the operator's work position(s) relative to
the console (standing, sitting, etc.).

C.5.4 Important questions to be Answered About Displays and Controls

1. Display Characteristics of Interest:

a. Are contents always available? Y/N

(If no, name the access procedure)

b. Are changes automatic? Y/N

(If no, name update procedure)

c. Are detections of change highlighted? Y/N

(If yes, by auditory alarm? Y/N)
(If alarm no, describe visual display dynamics).

2. Control Characterestics of Interest:

a. Are entries self-paced? Y/N

(If no, what controls the forces pace?)

T-le list should describe what action is required to activate the control;
compound actlonu grasp, pull, and lift) may sometimes he required; these
descriptiotb influence time estimates.
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b. Are entries fed back for verification? Y/N

c. Are entries checked for validity? Y/N

d. Are transmitted entries acknowledged?

e. Are unacknowledged messages timed out so the operator
is alerted? Y/N

(If yes, how is the alert presented?)

C.6 GENERAL GUIDELINES FOR CARRYING OUT "BACK-" AND "FORWARD-CHAINED"

LOGICAL ANALYSES

C.6.1 Specifying Assumptions:

I. Assume all equipmeit works a:,d crew required is on-hand
and performing error-free.

2. Anytime there are multiple options:

a. list the entire set

b. determine which dominates (by importance, frequency,
or time demanded -- in that order)

c. pursue only the dominant flow path first;
pursue others later.

3. Focus on major end products being generated at intermediate
stages of evolution toward output; do not explore how these are
generated (only what, where, when; not how or why).

C.6.2 Guidelines for "Back-Chained" Logical Analysis

PREREQUISITES:

I. Determine the boundary of the facility/organization unit:

Define the I/O interface (what comes in and what goes out).

2. Isolate the I/O component& of interest (e.g., messages).

3. Identify where these manifest themselves inside the unit, i.e.,
houndaries where inputs f|nter and where outputs are dispatched.
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IMPORTANT QUESTIONS:

1. What are the output product(s)?

a. Name the message(s) leaving the facility.

b. Enumerate variable contents of each.

c. Identify the basis for determining which message
leaves in cases where more than one can (e.g., format
selection).

d. For any message, determine what controls its departure.

2. How is each output product composed? [i.e., what are the con-
stituents of each output?]

a. For each variable from lb above, identify the exhaustive
set of mutually exclusive alternatives that constitute
content opinions.

b. Determine who makes the selection; then ask how that
selection is done.

c. For each information item or condition that serveq as
an input, identify other items that can be associated
as outputs (within or outside the system boundary).

3. For each identified input, repeat the process described in steps
1 and 2.

Quit when all inputs can be viewed as output products from
facilities which lie outside the boundaries of interest.

C.6.3 Questions for "Forward-Chained" Logical. AnalXsis

1. Identify all input messages, their source and initial destination.

2. Determine buffer characteristics: how many messages can be held
and for how long; when/how might data be lost?

3. What iidicates new/more data are available so that processing
may continue?

4. What are the processing stages between receiving, storing, and
destroying data or information?
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5. How might the information get used (for what, in what, by whom,

and accessed how)?

6. When/how do old files get purged (by whom, on whose authorization)?

7. Can information losses be recovered and if so, how; if not, what

is the impact?

C.7 PROCEDURES FOR ANALYZING HUMAN INVOLVEMENT: SITUATIONS REQUIRING
HUMAN DECISIONMAKING AND JUDGMENT (From Section C.4, No. 5)

C.7.1 Dec1sionmaking

For each decision that is identified:

1. Who normally has decision authority (and under what conditions)?

2. What are the action alternatives from which selection is made?

3. What consequences are of concern?

4. What risks are perceived?

5. What information can change perceptions about the foregoing?

C.7.2 Juagment

For each judgment:

I. Who normally makes the judgment?

2. What changes when the judgment is made?

3. What information does the judge access before implementing
that change?

/4. What would data voids* do to the judgment process?

a. lncreaset error

b. Delay change Implementation

c. Reduce confidence

d other

u. Combinait.Ionb of the above
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APPENDIX D

PROCEDURES AND GUIDELINES FOR USING DATA FLOW DIAGRAMS TO DEVELOP IAT DATA

D.I INTRODUCTION

Of the methods reviewed earlier in the IAT development effort (Gruesbeck
et al., 1984),Structured Analysis (SA) appears to have high utility. SA is a
manual, graphical, •ad narrative requirements analysis and design method. It
was developed during the early 1970's as part of L.L. Constantine's Structured
Design (SD) methodology, which emphasizes deriving processing requirements
based on a description of total system data flows and state at any specific
time (DeMarco, 1979; Rowell, 1981).

SA is based on top-down decomposition with simple graphical tools. Its
use is iitended to improve user/analyst communication and provide accurate and
easily comprehended, structured requirements specifications as input to the
design stages of the system development life cycle.

A complete SA model consists of the following components:

I. Data Flow Diagrams (DFDs)

2. Data Dictionary

3. Mini-Specs

DFDs, which were used in the SIMCOPE and MWC applications, are network repre-
sentations of a system portraying the system's component processes and their
interfaces (data flows). DFD3 serve to partition the system and may be used
to represent manital as well as automated processes. A Data Dictinnary defines
each of the DFD's interfaces in terms of lower-level data flews and/or more
primitive data elements-. Mini-Specs describe the lowest-level processes in
the DFDs using tools such as Structured English, Decision Tables, and Decision
Trees (Rowell, 1981).

Note that for IAT applications, based in part on the SIMCOPE and
MWC validation studies, we are advocatln& the use of DFDs along with
frameslot and Petri net notations. Framme-/slot and Petri net model-
ing techniques provide more flexible and comprehensive formats for
decomposiae system constituents Into lower-level processes than do
the (often elaborate) narratives required for Data Dictionary and
Mini-Specs.
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D.2 PROCEDURES FOR DERIVING DATA FLOWS USING DEMARCO DFDs

The basic components of DFDs and their application to manned C3 systems
have been presented elscwhere (Kornfeld, 1984; Kornfeld et al., 1905). The
focus of the discussion here is rather to summarize guidelines for helping
analysts use DFDs along with other IAT modeling tools. For this purpose, only
a brief listing of DFD components appears below (Fig. D-1), with more emphasis
on notational conventions.

FILE

COMPONENTS

1. Data flows, represented by labeled arrows. (X.Y,Z)

2. Processes, represented by circles; (P1,P 2 )

3. Files or Data Stores, represented by straight lines; FILE

4. Data Sources or Sinks, represented by boxes.

R-Z3) I

Figure D-1. DeMarco Data Flow Diagram

D.2.1 Data Flow Notational Conventions

Data flows are represented by named arrows or vectors. They act as pipe-
lines through which packets of data and information of a known composition can
flow.* Conventions for deriving data flows include the following (DeMarco,
1979; Rowell, 1981):

I. Name all data flows - when no logical relevant name can be found
for a data flow, chances are there is some error in the DFD.

*Note that DFDs do not show the system's flow of control. A data flow that
is actually a signal to do something (e.g., a flow named Start-Next-Item)
should not be portrayed on the DFDs. Control flows re procedural in nature
and should be specified elsewhere (e.g., in Petri nets).
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2. Choose a name which conveys to the DFD reader what the data is
and what is known about it (e.g., Raw-Intelligence-Data 1ecomes
SAC-Interest-Data in Fig. D-2, which illustrates data analysis
processes in IIQSAC).

3. Insure that all data flows have different names to avoid coifu-
sion for the DFD reader.

4. Hyphenate multiple word data flows to show that they zepreseit
a single concept.

INTELLIGE14CE RAW
COLLECTION " INTELLIGENCE SAC-INTEREST

*AGENCY DT NTLAIN

RET RAN SM ISS IDI
REQUEST IT

DATA SAC
INTEREST

IRRELEVANTDAA// DATA

ANALYZE
ANALYST DATA REJECTED

REPORT FILE ROUTINE ATA
INTELLIGENCE RET

PRIORITY DATAINTELLIGENCE•

ROUTINE \REPCRT CURRENT INTELLIGENCE
REPOT REORTS DATA BASE

S•./PRIORITY
REPORT

lVil;aire 0-2. D~aLi Flow Diagramr of Hlypothetical Military
I, t,•lIlgence System (Rowell, 1981; p. 60)
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5. When applicable, show data flows diverging to different elements
or converging from different elements with forkiLn or ý_noL
vectors, e.g., Relevant-Routine-Reports in Fig. D-2.

6. Let data flows into and out of simple files be identified by the
file name instead of naming the data flow itself (e.g., the data
flow from the SAC-Interest-Installation file to the Edit Data
process in Fig. D-2).

D.2.2 Conventions for Other DFD Components: Processes L Files, and Data
Sources (Rowell.j 1980)

Processes are transformations of one or more incoming data flows into
one or more outgoing data flows (e.g., Edit Data, Analyze Data in Fig. D-2).
Processes are represented by circles which are labelled with a number and a
descriptive name. The numbering system and its rationale are part of the
leveled DFD concept which is explained below.

Files are temporary repositories of data which include a computer tape or
disk, an index file in someone's desk, a computer database, or even a waste-
basket. They are represented by a straight line with the file's (descriptive)
name in close proximity (e.g., the Analyst Report File in Fig. D-2). The
direction of data flows going to or from a file is important, showing that a
file only provides data to a process (outgoing arrow such as from the SAC-
Interest-Installations file to the Edit Data process in Fig. D-2), only re-
ceives data from a process (incoming arrow such as from the Write Intelligence
Report process to the Analyst Report file in Fig. D-2), or both. When there
is two-way access between a file and a process, either a double-headed arrow
or two separate arrows can be used to show the data flow depending on whether
the data flows in question have the same composition. The rule is tolonl
show net flows to and from files.

Sources and sinks are net originators or receivers of data which are
outside the system's context and are represented by a named box (e.g., Intel-
ligence Collection Agency in Fig. D-2). Data can flow both into and out of
a source/sink box. ThI3_ should be used sparin~gly! since they are usually not
defined very rigorously and are included to provide a feel for the system's
connections to the outside world.

D.3 RULES FOR DRAWING DFDs (Rowell, 1981; pp. 63-69)

D.3.1 General Guidelines

1. Identify the system's net input and output data flows and draw
them around the ed e of the dia ram. These data flows define
the system's context boundarjy (since everything outside them is
out of the system). Try to identify all of the important and
relevant boundary data flows and include them, but do not be
overly concerned with completeness at this point.
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2. Work from inputs to out -- d. awing in outputs, backwards from
oututsto ro te cetrout' drwif ocesses

and data flows. Concentrate first on major data flows looking
for primary data pipelines. Draw them on the diagram with (for
now) empty circles for the transforming processes and try to
hook them up with the peripheral data flows. Examine each
.blank process and see if there are internal data flows which
require the process to be split into two or more separate proc-
esses. For each data flow item, determine what is needed to
build it, identify where the components come from, and try to
determine what processes create the components.

3. Carefully label all the interface data flows. The names given
to data flows will have a major impact on DFD readability.
Therefore, try to make the name appropriate (applicable to the
entire data flow, not just one of its components) and avoid
grouping unlike items into a single flow unless they definitely
belong together. Insure all data flows (except to and from
simple files) are named. If the data flows cannot be simply
and accurately named, consider: (1) breaking them up into two
or more nameable data flows, or (2) restarting.

4. Label the processes in terms of their inputs and outputs. Again,
make sure the name is appropriate and reflects what is done in
the transformation. Try to develop names with a single strong
action verb and a single object (multiple verbs usually mean
more partitioning is required). Avoid verbs like "process" or
"handle"'- they are too imprecise. Repartition when necessary
(to break down processes which are unnameable or to combine
several processes to describe a process which is more easily
named).

5. Ignore initialization or termination ideas. Draw the system
in an up-and-running steady state and defer concerns about how
the system got there until later (at the end of the entire DFD
analysis process).

6. lanore the details of trivial error-handlinpdata flows.

If the error requires no undoing of past processing,
ignore it for the moment; if it requires you to back
out previous updates or revert a file or files to a
previous state, then do not ignore it (DeMarco, 1979;
p. 68).

Remember that a DFD is trying to convey an overall picture of
the system's context and contents -- leave the details until
later.
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7. Do not portray control flows or control information. There
are two tests to determine if a data flow is in Fact a control
flow: (1) ask what data or information moves over the data
flow in question -- if there is none, the data flow probably
does not represent the stream of the data itself and should be
removed; (2) ask what use the destination process will make of
the data or information moving over the data flow in question.

If it is modified and put out as an outgoing data flow
or part of one, then it Is a legitimate data flow. If
it only serves to prompt the process to start doing
its work or guide it in how to do its work, then it is
control (DeMarco, 1979; p. 69).

8. Be prepared to start the drawings over. The final DFD set should
be preceded by several successively more accurate iterations.

D.3.2 Leveled D'Ds

Leveled DFD• are called for when a system is too large or complex to be
completely represented by a one-page DFD. Leveling involvep first partition-
ing a system into subsystems, then treating each subsystem as a system which
is partitioned into sub-subsystems, etc. until the required level of detail
can be achieved for each of the lowest level processes.

The highest-level DFD (i.e., the 6ystem view) is referred to as the
"parent," and lower-level DFDs (i.e., subsystem views) are ichildren," in the

DeMarco DFD nomenclature. Insuring the equivalence of data flows between
parent and child diagrams is called balancing.

D.3.2.1 Notational Conventions for Leveled DFDs

0 Numbering -- Each child diagram retains the number of its par-
ent's (related) process circles. Subprocesses are numbered in
turn with decimal point separators. For example: Fig. D-3
below represents a more detailed (subsystem) view of higher-
level processes which were pictured in Fig. D-2. The parent is
"Diagram 0" and the child "Diagram I." Process #I, "Edit Data"
on Diagram 0, is decomposed into its constituent processes on
Diagram 1, the child. Each subprocess on Diagram 1 is labeled
as 1.1, 1.2, etc. If a process such as 1.2 were to be broken
down further, the decomposition DFD would be labeled "Uiagram
1.2" and the subprocesses 1.2.1, 1.2.2, etc.
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RAW
DATA

VERIFY SAC-INTEREST
DATA VERIFIED RAW IhSTALIATIGNS

(Rowel, 198;0. 67) LIGNC

DATA

REI RA4SMI SS IONCOPR

REQUEST DOMATA

UNLISTED

INSTALLAT ION
DATA

4 VERIY DATAINSTALLATIO1N
IRRELVANCYDATA

hLEVANT
UNLISTED

INSTALLATION

I kREL VANIT
DATAD1T4

DATAR•,OR)AAT SAC

DATA INTEREST
j DATA

Figure D-3. Diagram 1: Data Flow Diagram of "Edit Data" Process

(Rowell, 1981; p. 67)

D.3.2.2 Guidelines for Decomposition with Leveled DFDs

I. Asymmetry is allowed when trying to assess which processes
should be decomposed. Some processes are likely to be more
complex than others -- the more complex processes should be
decomposed down more levels.

2. Stop decomposition when each lowest-leve. process can be speci-

fied by describing elemental tasks and procedures. Using IAT,
one should be able to complete a frame by filling in values for
slots at the point each lowest-level process has been adequately
described.

3. Maintain accuracy and consistency In carrying out a leveled-DFD
analysis:

"* Show cihanges on both parent and child diagrams.

"* Insiirv that data flows balance.

"* Suspect processes or files with incoming but not outgoing
dara flowb; such processes/files may actually be sinks or
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