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A. Statement of Problem

The purpose of this work has been to investigate laser
multiphoton ionization (MPI) as an atmospheric pressure
ionization source for ion mobility spectrometry (IMS). This
has included a study of the potential of MPI for improving
selectivity and specificity in IMS and also an investigation
of the fundamentals of laser MPI under atmospheric conditions.
A second focus of this work has been to extend IMS to
nonvolatile molecules using a pulsed laser desorption method
for volatilization.

B. Outline of Research Pindings

During this granting period we have set-up an atmospheric
pressure ionization mass spectrometer interfaced to our ion
mobility spectrometer in order to mass analyze the ions
produced in the IMS by laser ionization (see figure 1). This
equipment was provided under the DOD Instrumentation Program
under contract #DAAG-29-81-C-0023. The device was
manufactured by PCP, Inc. (West Palm Beach, FL) and the
vacuum station and associated electronics were built in-house.
The device is operational and we have been studying laser
ionization at atmospheric pressure 1gaour IMS in order to
compare the results to conventional Ni 8 source jonization.
Our results are reported in a manuscript entitled "Atmospheric
Pressure Ionization with Laser-Produced i1ons" of which the
most important points are summarized herein.

We have explored laser ionization in an IMS under
different drift gas environments. In every cage we ogtain one
pea* which when mass analyzed is found to be M or MH or
M-H . 1In no case is fragmentation observed even under fairly
high power at 266 nm (i.e. >30 MW) and the parent ion or its
protonated counterpart are always observed for identification.
Thus, laser io.aization appears to be a tool for efficiently
and softly ionizing molecules at atmospheric pressure. This
was found to be true in not only pure N2 but also air, Ar, 602
and P-10 gas. The IMS spectrum in each"drift gas was
generally found to be the same whether laser ionization or the
Ni 8 source was the means of ionization. There were several
exceptions to this including aniline and triazine; however,
upon mass analysis the same ions were detect~d. This
difference in drift time is probably due to weak clusters that
may form in the Ni 8 reactor: however, these clusters fall
apart upon injection into vacuum in a quadrupole mass
spectrometer dAue to shock waves produced in the expansion. We
also find that the d4rift time in CO, is not a function of the
mass of the ion. This is npparent1§ due to clusters of the
h! 7hly polarizable 002 around an inner ionic organic core.
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However, upon gxpangion into the mass spectrometer system we
observe only M (MH ) probably due to shock waves that destroy
the weakly bound clusters at 220°C. At 88°C, though, clusters
of CO,. plus the molecular ion can be cbserved since the
conplgx remains stable under these conditions. In addition,
the IMS spectra K_ values were found to vary directly as, a,
the polarizabilit? of the gas, except in the case of co2 where
large clusters are formed.

The addition of the muss spectrometer has allowed us to
further evaluate some of the results of our earlier work. One
such example is the change in K_ for pyridine as a function of
temperature. This was shown to be due unambiguously to the
formation of dimers even at very low concentration. We also
investigated laser induced fragmentation at very high powersg
(100 MW) and found that even under conditions where only C
would be observed in a mass spectrometer under vacuum that gt
atmospheric pressure the smallest fragment observed ls CGH .
Thus, laser ionization at atmospheric pressure may serve .3 a
means of softly ionizing molecules that might ctherwise
undergo extensive fragmentation in the ionization process.

More recently, we have begun studying laser ionization in
He buffer gas. In other cases such as 1 atm ot+H . air#or Ar
using R2PI at 266 um we always observe either M an MH with
no accompanying fragment peaks in our IMS as monitored by a
mass spectrometer. He though has a fundamentzlly much smaller
collisional effectivener3s constant ¢ and our initial results
show that fragmentation can be induced. Using a heavier gas
such as N_, the excited ionic state collisionally relaxes at
atmospheric pressure before fragmentation can proceed. Since
the relaxation processes are not nearly as effective with the
lighter He, some fragmentation occurs although not as
extensively as observed under ve:uum. The possibility now
exists for using a combination of He and N, at a specific
laser input energy to control the fornatioﬁ of a specific ion
fragment for identification. This would be extremely useful
for distinguishing ions of similar mass and thus similar K
value, but which may yield very different fragments in the®IMs
under the same conditions. This method could be used, for
example, to distinguish TNT isomers. In present mass spec
techniques such as tandem mass spectrometry the use of
collisions with other gases serves as a nonspecific means of
producing fragmentation. In this work, we plan to use
atmospheric pressure collisions to effectively control
fragmentation.

In preliminary results using an in-house constructed IMS
device, the gas mixture was varied from pure N, to a mixture
of 80X He/20% N Using laser ionization at 236 nm, only one

peak was ob.ervsd in pure "2' As the percentage of He was
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Figure 2. 1Ion mobility spectrum for DMMP ar 220 °C in N7 at a
concentration of (a) 15 ppb, (b) 50 ppb, and (c) 100 ppb for

ions produced by the 63N{ B source and (d) 15 ppdb and (e) 100 ppb %?
for ifons produced by laser radiation at 266 nm. -~J
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increased, additional peaks were observed which may be due to
an enhanced ability to produce fragmentation. In order to
study this further, a small atmospheric pressure ion cell has
been constructed which is interfaced to our mass spectrometer
system. Lower voltage fields ara used here in order to
prevent arcing which readily occurs in helium gas.
Experiments in this system are now in progress,.

In other work, we have studied the ionization of DMMP in
an ion mobility spectrometer. We have found that laser
ionization at 266 nm can induce efficient direct ionization of
DMMP t> produce M as detected in the mass spectrometer (See
figure 2). Although the ionization potential of DMMP is
egtisated to be 10.4 eV there is sufficient hot-band
population to allow efficient ionization. We have also found
that dimerization occurs at very low concentration levels for
UMMP and by 100 ppb mainly the dimer is detected in the aass
spectrometer. More recently we have begun to explore laser
iowlzation of other related chemical warfare agent analogs.

This work has been supported by ARO Grant DAAG 29-85-K-
1008. The personnel directly respongible for this work are
Professor David M. Lubman, P.I. and Mr. Leonidas Kolaitis, who
recently received his Ph.D. M. Tierney and C. H. Sin have
also participated in this project part-time.

2. A second project which has been pursued is the detection
and analysis of nonvolatile and thermally labile compounds
using laser desorption in atmospheric pressure mass
spectrometry. This may be of particular interest to DOD
because it allows the extension of IMS/MS to pharmaceutical
and biological molecules and thus the ability to detect
biological toxins with great sensitivity. Many biological
compounds such as N-heterocyclic based drugs and amino acids
and peptides are nonvolatile and thermally labile so that if
heated they decompose before sufficiednt vapor pressure is
produced for detection. We therefore use rapid laser
desorption of these materials from a surface into the gas
phase at atmospheric pressure in pure Nz (see figure 3). The
ion-molecule reagents generated by a Ni“g source are then used
to softly ionize these biological species and the product ions
are focused into the API mass spectrometer. This method has
proved to be an incredibly sensitive neans of detecting these
compounds where sensitivity limits probably lie in the sub-ppb
region. This sensitivity appears to be due to the very
efficient laser desorption process which vaporizes all the
material on the surface in several laser pulses and the
chemical ionization-API method which ionizes 100% of the
molecules in the reaction region due to the large number of
collisions at atmospheric pressure. This method is
particularly effective for molecules with high protoen
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affinities which includes large classes of biological species
such as N- and S- heterocycles. The laser desorption
generally appears to produce gas phase species intact before
decomposition can occur and the chemical ionization API is a
soft ionization tool so that generally molecular ions are
produced with little or no fragmentation for exact
identification in the mass spectrometer.

Although laser desorption can produce direct ionization
from th9 surface at the power levels used in this experiment,
i.e. 10" W/em®, 99% of the species descrbed into the gas phase
should be neutrals. We have used this method to detect
nonvolatile molecules such as amino acids, purine and
pyrimidine bases and their phosphate sugars, and various anti-
depressant drugs and catecholamines. The ability to detect
such compounds with great sensitivity and with unique
identification by mass spectrometry may have important
ramifications for quality control in the pharmaceutical
industry and in clinical analysis. This technique could be
interfaced with liguid chromatography separation where the
eluent is placed on a moving belt, the solvent evaporated and
then desorbed into the APIMS system. In addition, this metlhod
may be useful for determining contamination on surfaces for
compounds such as chemical and biological agents.

Other work using this method involves the detection of
explosive materials using LD in atmospheric pressure. We have
examined compounds such as 2,4 and 2,6 DNT, 2,4,6 TNT (see
figure 4), RDX (see figure 5), HMX, nitroglycerin, PETN,
Composition B, LX-14 and C-4. Detection has been investigated
using both positive and negative modes although the negative
mode appears to be more sensitive. The ion mobility
spectrometer with mass analyzed results has served as the
means of identification. In each case we find soft
desorption-ionization of the molecules with molecular ions or
simple rearrangement products being detected in the negative
mode. In both the negative and positive mode the ion products
obtained appear to change as a function of gas temperature
with adduct ions with -NO and -NO, appearing or loss of -nzo,
~-NO, -HNO_, or -NO, occurring in t%e mass spectra. In any
case, thoagh, the“spectra obtained are generally very simple
with only one or two major peaks. The results obtained are
consistent with those ions observed in chemical ionization
(CI) conditions under vacuum; however, the API spectral
pattern is generally much simpler. Electron beam jonization
of these compounds generally provides extensive fragmentation
and often only low mass ions are the major peaks in the
spectrum. Our results are also comparable to Spangler's IMS
and MS data on DNT and TNT although some differences are
apparent.
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(a) heating of probe and (b) laser desorption in Nj.




The laser desorption technique provides rapid
vaporization without decomposition of the explosive materials
studied here. Detection below 0.1 ng is obtained in the
negative mode und is limited by our ion collection efficiency.
This method can also provide simultaneous vaporization of
mixtures such as C-4 (plasticizer + RDX) and composition B
(TNT + RDX) whereas slow heating may provide a distorted
abundance of one compound. In addition, we have been able to
study real samples mixed with plasticizers such as LX-14(HMX)
and Det-Cord (PETN). We have also compared the desorption
method to a direct probe arrangement where the sample is
placed on the end of a ceramic probe and heated by the hot !
bath gas (see figure 3). This heating arrangement works quite
well in some cases although the sensitivity will be limited by

the slow rate of vaporization at 60 °C and any pyrolysis on
the surface.

We are presently studying the LD and direct probe mathods
for detection of chlorinated and phosphoroorganic pesticides
that are analogs to neurotoxins and chemical warfare agents. .
We have studied four such basic structural groups including: _ r
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where R is usually a small aliphatic group and Z is often an
aromatic or heterocyclic ring or small aliphatic side chain.

Our results demonstrate that the LD-APIMS mass spectra of
most OPs studied so far exhibit several general features:

(1) +In most cases positive LD-APIMS mass spectra exhibit
the (M+H) ion as the base peak with high intensity.

(2) In most cases, negative LD-APIMS mass spectra

exhibit the phosphorus ester group specific ion (M-Z) as the
base peak.

{3) The order of the tendency to form the specific ion
(M-2Z) 1is:

S [ B [

:
)
i R<CH 3: Mze157 mze141 m/2«141 m/z=125
R

ReC 2H5 T mM/z=185 m/z=169 m/2«169 m/z«153

(4) For some OPs which contain a chlorinated Z moiety,
the (M-Z+Cl) dion appears as the base peak, though the
specific ion (M-Z) also appears with strong intensity.

g (8) For some compounds, such as*Demeton mixed iscmer in
class 2 and Phorate in class 4, (M+Z) is observed as the base
peak in the positive mode, and (M-R) is observed as the
second most intense peak in the negative mode.
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(6) For the Parathion group (with zZ = C_H N°2’ in class
3 the phenolate ion (OC_H_NO,) 1is observed ag ghe base peak,
though other investigatgrg uging CI have found the
thiophenolate ion (Scsusﬂoz) to be the base peak.

(7) In some compounds, such as Carbophenothion in class
4, the Z moiety contains thiophenolate SC 3501 and the
(SC_H,Cl) 4don is observed as the buse pegk in the negative
nodg 3h11e the (M—306H501) jon is observed as the base peak
in the positive mode.

(8) In most cases, the results of using an In-beam
heating probe are similar to LD-APIMS, however, the LD-APIMS
experiments can be performed at a lower temperature which
appears to prevent decomposition. The LD-APIMS results show
enhanced formation of the specific fragments discussed above
without extra fragments observed when using the heating probe
method due to thermal decomposition.

(9) We have begun interfacing the LD/APIMS method to
laser R2PI at 2€6 nm “or detection of some of the OP compounds
with an absorbing aromatic center. Since the different OP
compounds have absorption maxima that are shifted from one
another we will examine the selectivity pososible in the IMS by
varying the laser ionization wavelengths. A wavelength ~ 220
nm will be used to ionize some of the nonaromatic OP
compounds.
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