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LIKELIHOOD RATIO GRADIENT ESTIMATION:
AN OVERVIEW

Peter W. Glynn
Department of Industrial Engineering

University of Wisconsin
Madison, WI 53706

ABSTRACT ing Monte Carlo gradient estimation is for the purpose of opti-

-) The likelihood ratio method for gradient estimation is brief- mizing complex stochastic systems. More precisely, consider a
) ~stochastic system depending on d decision variables ,, 2 ..... 0

ly surveyed. Two applications settings are described, namely to a t (9 . e eexpctd c o s of r n i the

Monte Carlo optimization and statistical analysis of complex be the expected cost" of running the

stochastic systems. Steady-state gradient estimation is empha- system at parameter choice .

sized, and both regenerative and non-regenerative approaches A powerful method for computing the value 0' which min-
are given. The paper also indicates how these nmihods apply imizes a( ) is the Robbins-Monro algorithm. This technique
to general discrete-event simulations; the idea is to view such recognizes that, under suitable regularity on a( ), 0* must be a

systems as general state space Markov chains. 0-root of the equation

1. INTRODUCTION Vale) = 0, (2.1)

Consider a single-server queur in which the service rate- is where va{e, is the gradient of a(.) evaluated at e. The idea then

a decision variable. Given that *(O is the steady-state cost of is to construct a stochastic recursion which has the root a' as

running the queue at parameter level 9, one is frequently inter- its limit point.
ested in minimizing n(0) over a suitable constraint set. Since 0()
is often difficult to evaluate analytically, Monte Carlo optimiza- This approach is most clearly illustrated when d = 1. In this

tion is an attractive methodology. By analogy with determinis- case, such a recursion is given by

tic mathematical programming, efficient Monte Carlo gradient

estimation is typically an important ingredient of simulation = (2.')

based optimization algorithms. As a consequence, gradient es-

.- timation has recently attracted considerable attention in the

/3, simulation community. It 1-ur goal, in this paper, to describe (a > 0) where the V.'s mimic a'( ) in expectation. More precisely,

one such method for estimating gradients in the Monte Carlo one is required to compute Vn's with the property that

setting, namely the likelihood ratio method. k .

In Section 2, we describe two important problems which E(V,+1 JV0 ,o . V,, , 6.} = a'(0,) a.s. (2.3)

motivate our study of efficient gradient estimation algorithms.

Section 3 is devoted to the derivation of the likelihood ratio gra- Under appropriate additional hypotheses, it then follows that

dient estimate for transient estimation problems in a discrete- there exists finite a such that

time Markov chain setting. Section 4 extends the raethodol-

ogy to steady-state gradient estimation by using regenerative 9'0* am. as n - oo (.

structure; in Section 5, a technique for non-regenerative sys- n/ 2
(0.0- 9) =i &N(0, 1)

tems is explored. Section 6 describes the specialization of these

techniques to the Markov chains associated with discrete-event where N(0, t) is a standard normal r.v. The key result in (2.4)

simulations, while Section 7 states some conclusions, is the central limit theorem which asserts that On converges to
9* at rate O(n-'/2 ). (A stochastic sequence {H, : ,n ? 0) is said

to be Op(a,n) if {a;
1

H_ : n > 0) iJ tight.) Since a convergence

2. EFFICIENT GRADIENT ESTIMATION: MOTI- rate oQ(, - 
1/2) is typically the best that one can expect of a

VATING APPLICATIONS Monte Carlo algorithm (because of central limit effects), this

As indicated in the Introduction, one motivation for study- suggests that recursive algorithms of the form (2.2) should lead
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Likelihood Ratio Gradient Estimation: An Overview

to reasonably efficient procedures for calculating 0. Of course, Typically, the vector i - P will be a mean zero multivariate

the critical component of such an algorithm is the sequence of normal, with a covariance matrix that can be easily estimated

gradient estimates (derivative estimates when d = i) {V. : n > O from the data sets. (This occurs, for example, if the 9,'s are

appearing in (2.3). Thus, efficient stochastic optimization is maximum likelihood estimators for the 8:'s.) To calculate the

one setting which requires gradient estimation, distribution of the second term, it therefore remains to compute

V&(0') or, more precisely, its estimator V6(). For analytically
A second problem context which leads naturally to gradi- intractable models (such as the single-server infinite capacity

ent estimation is statistical estimation for complex stochastic queue with uniform inter-arrival and service time distributions),

systems. As an example, consider a single-server infinite ca- this entails calculating a gradient via Monte Carlo simulation.

pacity queue in which the inter-arrival distribution F. and ser-

vice distribution F. are unknown. Suppose that one is given The situation described above in the single-server queueing

data X, X,,..., X.. fr th, inter-arriva' t:rns .4i . observations context is typical of many sLaListcal problems that arise in the

Y ,...,Y_ for the service times, with the goal of estimating the analysis of complex stochastic systems. To fully resolve the

steady-state queue-length a. The parameter a may then be statistical error then generally requires Monte Carlo estimation

regarded as a function of the inter-arrival and service time dis- of an appropriate gradient.

tributions i.e. a = a(FoF.). If F. and F. are respectively the

"true" inter-arrival and service time distributions, our goal here 3. DERIVATION OF LIKELIHOOD RATIOS FOR

is to estimate a* = a(F., F:) from the data. MARKOV CHAINS

Assume that F.,F; are elements of one parameter fain- In this section, we derive likelihood ratio gradient estima-

ilies of distributions {Fo(0 1)), {F.(0 2)}, respectively, such that tors for discrete-time Markov chains. Our view is that discrete-

F: = Fo(9),F; = F.(0). We can then reduce the problem of event simulations can be characterized probabilistically as

estimating a" to that of determining 5(0;,08;), when &(6l,02) discrete-time Markov chains. In particular, suppose that one

a(F.(0), F,(9)). For example, if F.(61 ) and F.0 2 ) are both expo- views the "state" as incorporating all that information about

nential, the resulting system is an M/M/1 queue with ( can the discrete-event system which needs to be computationally

be calculated analytically here) updated on every transition of the process (e.g. event list, clock

times, and physical state). Thus, one can view a computer pro-

&(l91, ) = f [0/02)(1 - (0/02)) - , 0 < 2 gram for a discrete-event simulation as an implementation of

0 ?:0. the recursion

On the other hand, if F,,( ) and F.( ) are uniform on [0,0! and

:0, 92 respectively, a is not available in closed form, and Monte X +i = (X-,1.7 1 } (3.1)

Carlo evaluation may be necessary.

where X. is the "state" of the system at the ,'th transition, and
The natural estimate for a' is a = gi,&2), where ii is an P7,1 is a vector incorporating all new random variables which

estimate for 0, calculated from Xi .... ,X. and h; is an estimate need to be computed in order to calculate X, 1 from X. The

for e; derived from Y..... Y; 02() is a Monte Carlo estimate of mappings f are complicated functions which are rarely consid-

l). To calculate the error in a as an estimate of a', note that ered explicitly by the simulator, but which are mathematical

representations of the computational algorithm used to obtain

a - " = [A(, 2 ) - &(,(2. X,+ from X, and , .+i. We will return to this point in Section

+ ((,i 2) -a(0, 0;)). 6 when we consider generalized semi-Markov processes. In any

case, any sequence {X, : n > 0) satisfying (3.1) is Markov, since
The first term on the right-hand side of (2.5) is error incurred

from the Monte Carlo estimation of &(ii,iZ); the second term,

which is (conditionally) independent of the first, reflects the P.. .. ) P[A(X,, X. = Q(X-

intrinsic error in a* due to uncertainty in the data sets. The w

error in the first term can be estimated from conventional out-

put analysis procedures. For the second, note that if a( is where Q( , ) Pf ?,n.t, t. The above equality follows from

differentiable, then the fact that the new r.v.s which are generated at the )n 1 st
transition are independent of everything previously generated.

In most discrete-event simulations, the transitiun mechanism is

&{i,821 - (;,0) v{){))i - 0) time-homogeneous, so that f, f and ,i+1,; the Marko- chain
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(x, Z, o ) is then itself time-homogeneous so that Q,~ a Q. fore obtains that vo(o) =E, 0 i() Specifically, one has the

relation
Note that for most discrete-event systems, the Markov

chain X = {X. :~ n 0) defined by (3.1) has both a complicated
Bc, BAs

state space and complex transition rule. To simplify our ex- (0~) E,. OL'(0
poeition here, we therefore start by considering likelihood ratio

gradient estimates for discrete state space Markov chains. For where

each 0 in some open set, suppose that P(6) is the transition ma-

trix associated with the choice 0 of the parameter value. We

further assume that a cost g5i.,)is incurred when the .XLLg9 + gS 0

sample sequence (Xo,..X.) takes on the values (io ,.~. i.) n

this case, the expected "cost" of running the chain X at param-

eter value 6 takes the form and

a(9) = E&Q(6, Xo,. Xii) (3.2) L. Bs L() P(xxl L(e

ToT (0 (0, o) "() + 8 ~,X.X 6

where E,( ) reflects the fact that the probabilistic dynamics of lX)a, PX )

X ar govrnedby Pe).Thus, by simulating Xo.., under initial distribution

If E,f.) were independent of 8, our solution to the Monte and transition matrix P(60 ), we can calculate la (S)/B, and there-

Carlo gradient estimation problem would be trivial, namely to by estimate Vo(6). Observe that the estimator V(/Bcon-

simulate i.i.d. replicates of the random vector Vg(6,Xo,.X). tains the product terms

The trick is therefore to transform (3.2) into a representation

where the expectation operator il independent of 0. To accom- -

plish this, observe that oP#,1h+ Ul9X0

We claim that the choice 9. = 0' is particularly convenient
a(8 = g(.'o ta)k8,O IPSi~ka for evaluating Va(9'). In this case, L,dO') = I so that the corn-

putation involved in calculating the estimator V'j(6') is reduced.
- g

6~ . ,~),~0,o .. :,)i(o~o)1~ P8o'-i0 1  Furthermore, for large n, this choice substantially reduces the

(3.3) variance of V().To see this, note that Es,i,(61) = 1, so that

where

45") ,jo o0'&,'k., Assuming that P(oo) is positive recurrent with stationary prob-
abilities wr(so),

We assume here implicitly (as throughout this paper) that ap-

propriate positivity conditions are in force so as to guarantee

that no divisions by zero occur in (3.4). 1 lo 1.(' -'lo P', Xk, Xk+) + 1 log A', Xn)
-no FI)= o P2 

(goXk X,) n M
2 
(6oXo)

Returning to (3.4), we can easily verily thath0

- o~)8,,j) log P2 ($}j 1

o(6) =o £.g(6, Xo,..X,,)L.(6) 0 .,(6) (3.5)

where 
Hne

-Ea. log L1.(0')-
L"()= Ln (8, X ... Xj).

The crucial point in (3.5) is that the expectation operator ap-

pearing on the right-hand side is independent of 8. One there- so that, by Jensen's inequality,
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E.oL.(e') > exp(np./2) 81.. 8u(8', X)/8e, + ( 8p(8',x 3,x,..,)/a8, (38)
P)= u(8', 1 p),

for ,n sufficiently large. Since EoL2,(8') _ L_ (8'))2 - 1, it fol-
lows that i, ? 0 (with strict inequality holding when L.(8') is Thus, under the density hypothesis (3.6), it is straightfor-
non-deterministic). We conclude that if 00 # e', the variance of ward to calculate an unbiased estimator for Va(e'):
L..(e) generally grows exponentially fast in n. One would expect 1. Generate Xo,... under p(6') and P(e').
this exponentisl growth to significantly impact the variance of 2. Calculate the r.v.'s 8a(a)/80. and 8L.(e')/88. from (3.6)
Vj(0') for large n. and (3.7) and the sample path Xo ... , X. generated in

1.
We turn now to the generalization of this approach to By replicating steps 1 and 2, one can easily construct an -

Markov chains having a general state space; this generaliza- timator (just use the sample mean) which converges to Vao)')
tion is necessary in order to apply this methodology to Markov at rate O,(t

1 2) (use the multivariate cenra' limit thore) i
chains of the type arising in discrete-event simulation. The ana- the computational effort t. We have therefore obtained L rdi-
log of the initial distribution vector s(f) is an initial probability ent estimator which converges at the best possible Monte Carlo
distribution

convergence rate, namely O,(t-12 ).

Variants of the gradient estimator algorithm described
above have been analyzed in Glynn (1986a), Reiman and Weiss

whereas the transition matrix P(P) is replaced by the transition (1986), and Rubinstein (1986).

kernel

4. STEADY-STATE GRADIENT ESTIMATORS:
REGENERATIVE ANALYSIS

.P(8,z, A) P_ .(x,,,AIX. = =.
The method outlined in Section 3 was valid for cost func-

We require that p( 8),P(8) have densities, in the sense that tionals 9(8,Xo,...,X,) which depend on the chain X up to a de-

terministic finite time horizon n. In fact, the method is equally

valid for functionals 9 ,Xq,...Xr depending on the chain up
.A(6,A) = u(O,y)p(dy) to a stopping time T. To be precise, suppose that

P(8, , A) = p(8 v,y)P(z, dy),

for some (&-finite) measures p, P(z, .). It is easily verified that o(8) = E0g(e, Xo.XT),

where Eo(.) is the expectation on the path-space of X = (X,
a(8) = Ev9(,X . X) n > O corresponding to initial distribution p(6) and transition

= Ec(8, X.... XA)L,,(6) kernel P(a). Then, Va(') = E,,V (E') where

where

= -(O',X . . XT)

- ( .X ) I c(o X X,,.,)'

and Eo() is the expectation operator corresponding to the I =
probability measure P(Xoedzo...,Xidx,) = ju(6,dzo)

n..-0 P(a,, dzk, ). As in the discrete state space case, choos- An alternative estimator can be developed when 9(o.X 0,... ,Xr)

ing 8o = #' makes sense in evaluating Vo(6') via Monte Carlo is an additive functional of the form
simulation. In this case, we obtain Va(8') = E.oi(8'), where

06, x0 . Xr) = _ X ). (4.2)

- g A ' ',X ... X.) + g(P', Xo.... X ) - L ( ') (3.7)
In this case, we can use the fact that

and

369
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P.W.Glynn

E., t(p' ,X1,Y,# IX.. X, We can try to approximate V*(6) via EVk.8'), where

so that -Z

E~~. 8,X,,X,+1 )/88,, o')0. (43) a (' Xo)88 l/ap8,XX+.
{p (,,.Xxi Xo .... (8. . - o oE ,(,,x,/, (4.6)+ L . ('"xk' j u(,,Xol Z= ,(s.,,.,,., 1)A..=0

By conditioning in (4.1) and using relations (4.2) and (4.3), we

find that The first sum in (4.6) satisfies a strong law, and therefore

converges. The second quantity on the right-hand side is a

product of two factors, the first of which satisfies a strong law
Es,-L(fl = E0, A(h, ') (4.4) with limit a(e'). The second factor, which involves a sum of

terms of the form fL',X,X+.)/p(o', X, ,X,,), can be analyzed

where via the central limit theorem (use (4.3)), yielding

A(h,= + F -((',x ,) ,=o p(O',,,X,.)

for some constant a. By squaring both sides of (4.7) and taking
Me 'a('xe,x,0 1)/a8, + au(,Xo)1au. expectations, we find that

u, o Xt (W,Xo) I t

7 a T-1az( " x(''X+,)/,r' ,v,=,o s"'+= F (e",X,X,+06=.+ V tr,=o ' ' )+1a
= ,8 ,l) E8, +

+ u Zh(', X,). This suggests that
,) = 

(4.5)
a1,.(8')

Relations (4.3) and (4.5) will prove useful in our regenerative vare-a -W _ o (0')' n

analysis of steady-state gradient estimation.
as n - co. We conclude that we can expect the variance of

Consider a family of transition kernels P({) having unique a,(8')/a, to increase linearly with n. Thus, in trying to ap-

stationary distributions w(o), and suppose that we wish to cal- proximate a steady-state gradient, the approximants become

culate the gradient of increasingly less stable. This conclusion, which was previously

observed by Reiman and Weiss (1986), leads one to look for

(8) = f w(8, dx)h(8, ).alternative approaches.

One way to do this is to assume that the sequence X
Of course, a(f} may generally be regarded as the expected cost, (X. : n > 0} possesses readily identifiable regenerative structure.

under P#(), of the functional In this case, assuming that % is a regenerative initial condition

with T its associated regeneration time, the ratio formula of

regenerative analysis shows that
90, Xo .. = lim in - h(,X.).

Note that E , X (e)

a(8) i m inf Ee,(O, Xo ..., X,-1) Then

(P I (8u a, ,
when = (8)28, 88o

g~(8, 0. X,.~) ~ ~h(O,X5 ).-
n -LE F w(,X)IE.T

h. .h0=0
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where w(6,x) = h(6,z) - a(e'). It remains to evaluate the above ALGORITHM B:

partial derivative in terms of a quantity amenable to Monte

Carlo estimation. 1. Choose a sample size n _ 1, where f corresponds to the

number of regenerative cycles to be simulated.

By applying (4.1), we find that 2. Generate a sample path X0 . X...I (i.e. generate X over a

regenerative cycle) under P(').

3. Calculate the quantities:

a ET1_6)-1 Ta =~"j 1 T

k.0 '=0 .

7-1 B(', ,,x,+d/B, j '  X, )
+ E P(Oe'xx, - (e'}} X=)
,=o = 0 R1 = -h( ', X,)

, =

Hence, Va(O') can be estimated by using the following algo- '-2 ap(e', X,, x,, 1 )la ,"= ap('XX )Ig .(T- -I

rithm. p(5',"= XJ

ALGORITHM A: Rib= - aP(',X,,X,)+ Z h(', X,)

'.0 f+

I. Choose a sample size n ? 1, where n corresponds to the 4. Replicate steps 2 and 3 n times, thereby obtaining R,,, 1 _

number of regenerative cycles to be simulated. sf_5 n, 1 _<5 < .

2. Generate a sample path X0,...,Xr-I (i.e. generate X over a 5. Calculate

regenerative cycle) under P(8').

3. Calculate the quantities: A3( ) + s( ) R (n) R4( )

= T R +n) R((n) RI(n) RI(n)

Q Z2 h=(', X,) where R.(n) = E'. R,,/n(1 S i < 5); this estimator converges to

= 7- -h(6', X,) 
aa(6')/a8, as n- .

It is easily verified, via standard arguments, that the estima-
- Bpi P( X,X', 1 ) l8, T tors described in Algorithms A and B converge at rate O(t

-
/2)

'=0 in the computational effort t.T-1T-1

QJ = Z (8', X,x, ,)/aXe, Z , X)

4. Replicate steps 2 and 3 ft times, thereby obtaining Q, 1 5. NON-REGENERATIVE STEADY-STATE GRA-
DIENT ESTIMATORS

i:5 ft I_ S

5. Calculate We turn now to the case where the sequence X = {X. : n _> 0)

9,() = (n) + 5 (n) Q2(() Q.(n) exhibits no obvious regenerative structure. The regenerative

Qj(' ) Q1(n) Qj(n) QL(n)' results of Section 4 actually provide the key to the analysis.

where Q,(ft) = Q,./ni( : .5 ); this estimator converges Turning to (4.8), we note that the second sum can be ex-

to aa(f')/a6, as n - oo. pressed as a steady-state expectation i.e.

A second regenerative estimator for Va(6') uses (4.3) and (4.5).

It is easily shown that

=- a( ') 2-p l where F-o, is the expectation on the path-space of X associated

E , '" p(', X x0,/86, - {h(#', Xd - (61) with transition kernel P(P') and initial distribution _(p'). For

,T I- =, the first term, a more intricate analysis is necessary.

Let rX = (XkX. .... ). For a function f defined on the

(4 8) infinite product space, an easy extension of the regenerative

This gives rise to a second algorithm for estimating 7a(fl) ratio formula proves that
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Ee, . f(r'X)= £#.f(X) r(o, )= ] P(8, z, )r(8,dz), (52)
'=o

Applying this formula to where S is the state space of X. Then, it is reasonable to assume

that P() can be expanded as0 , ~I(T>_1 -
fx M - P(9 ,X0, X0) p',oX j (h(Or, X,) - ('}

P(8' + he,) = P(O') + hQ,(O') + o(h) (5.3)

we obtain the relation

where e, is the i'th unit vector. If w(a' + he.) is (formally) differ-
re ,W('

)  
entiable at h = 0, there exists a measure ,,(O') such that

S , z( > T-h(', X(O' + he,) = (f') + hn.,(') + o(h). (5.4)+ E,, p~e ,oX,) y, l:(h(O' ,X,) - ('.

Plugging (5.4) and (5.3) into the stationarity equation (5.2)

Let T,,T2,... be the successive regeneration times for X. By the and collecting terms in h yields

ratio formula for regenerative processes 7

k,. FT"_. h(6, X, )

and hence
In operator form, this can be written as

,, -1h(6,X,)- 0.

E T. 17 f~,...('(- PIG')) = w(')Q,(9'). (5.5) ,.

By the independence of regenerative cycles, we get We wish to solve for ,,('). Let I(O,z,) = w(6', ) for all zeS.
Observe that (5.4) implies that %.S) o Oust divide by h and

let h - 0), and hence

+ E4  .,( ,X°X) 10, 0 I(h(6', X) - (0')) ( ,dz)fl(9, z, 0.

-3-

Let m - oo and we obtain ;

Now, for many Markov chains (in particular, aperiodic positive
S W a, recurrent Harris chains), Pt(o', , ) - i(9', ) for all zS, and it

a_ , =:..Ea heXo)}+,-,.rso , " (h(9', Xrlo,,)-() therefore malkes sense to assume that

t ,,. 1 (09X ',oOX ', X,) - -(0',xI

= 0, -X°) h',X,) -1+ - n(8))

((4.3) was used in the last equality). The important point is exists. (Just use the identity P(')l1(9'} = 1(9) = r'(G')P(e').)

that expression (5.1), while derived from a regenerative argu- Thus,

ment, is n of regenerative structure.chains), = -( ( (% (5.a )

(8(') = o Lh 0,s) hrfremksses oasueta

h==

The same expression can be found via a totally different

argument. Recall that the stationary distribution w(e) satisfies (use (5.6) again). Recall that
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h ja(') f wsl' + he.)h(8' + he.) - w(')h(l') the infinite sum (5.1). This approach appeared previously in

, h, ,('),(9') + ,(o') -h(D)h (3.8) Glynn (1986b).

(Expand and collect terms in h again.) Substituting (5.7) into 6. LIKELIHOOD RATIO GRADIENT ESTIMA-
(5.8), we get TION FOR DISCRETE-EVENT SIMULATIONS N

As indicated in Section 3, discrete-event simulations can be
viewed as Markov chains living on a general state space. To

-a(0') be precise, discrete-event simulations can be viewed mathemat-

" f_ (9"dz)a-h{e',) (3.9) ica)ly as a "generalized semi-Markov process' (GSMP). Such a

+ ,,O'.d, .Q.(8'.z~dy, P(,',d.). process is characterized by:

h.0 S~ SS: a "physical" state space which is countable (e.g. S

We now identify Q, (#', x, dy) in our current framework. Note that mighL be the set of all possible queue-length vectors for

(see(3.5)) a queueing simulation).

E: a set of events to be scheduled (e.g. for each station

in a closed queueing network, one needs to schedule an
P(' + he., x, A) = P(0', ,A)+A "-P(6',x, +' A, d) "end of service" event).

so p(s',a,e): the probability of jumping from 3 to a', given

that event e triggers the transition from s (e.g. e might

Q.(6 ' (0}, ....... correspond to station % completing service, in which case
'd11 = Y.i'/, a W. (5.I0) p(s'; s, e) might represent the probability of sending a cus-

Substituting into (5.9) yields (5.1). Formula (5.1) is the funda- tomer from station i to station ); here s' = 3 - e. - c).

mental relation for non-regenerative stochastic systems. Notice r,.: the rate at which clock e runs down to zero in state

that the first term on the right-hand side of (5.1) can be con- a (e.g. in a queuring network, ,, might be unity except

sistently estimated via for events e which are "interrupted' in state j, in which

case 0).

h (0', X,).11) F( ', , e): the probablity distribution which sched-

.h . ules event e' in state s', given that the previous state

whereas the 3'th term in the infinite sum appearing there can was e and the transition was triggered by c (e.g. these

be estimated by using might be service time distributions in a closed queueing
network).

" . h(', X,.) In calculating gradients, we allow p(s'; .,,r) and F(; s', el , e) to de-

n P(, XsXk, pend on the decision parameter 6; the likelihood ratio method is
generally inapplicable to problems in which S, E, or r., depends

A standard device for estimating the entire infinite sum is to on 0. We further require that F(6; ,.', e', 3, e) have a density for

use an estimator which combines (5.11) and (5.12), namely to which the support is independent of e, so that

use

F(9,dz;s',e', ae) = f)(,z; s', e',.. e)m(dx)

h ( Z ,(XkXk+'}P', XXh.,) where { tff,za'.... } > 0) is independent of e. (Thic is the

h0 X,)analogue of the positivity condition discussed in Section 3.)

n+ a , This density hypothesis rules out point mass distributions in

which 6 controls the location of the points: the independent

where t(n) is keyed to the sample size n in such a way that support condition does not permit uniform distributions with

t(n) - oo with t(n}/n - 0. The particular choice of t() effects support on 10,6'.

a compromise between bias and variance effects in estimating
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To make a discrete-event simulation Markov, we consider

the state of the simulation at transition epochs. Specifically, Y- e6 s" ;$,, ) p(O',S,.S,,e;)

set X. = (S.,C,.), where $, is the "physical" state occupied at + y f/(',C +,..;$, ,,eS,,el)
transition n and C, is the state of the "clocks" on the event (6.21

scheduling list at the n'th transition. Then, {X, : n > 0) is

a Markov chain with a complicated state space (inclusion of The algorithm discussed in Sections 4 and 5 can then be ap.

the clocks makes the state space uncountable). To study the plied to general discrete-event simulations, by substitutirg (6.2)

ergodic behavior of a GSMP {Y(t): t > 0), note that appropriately.

I (Y(s))ds ft =, a(S)C; 7. CONCLUSION

We have shown that gradient estimation plays an important

for t large, where C; is the time spent in the k'th state visited, role in the optimization of stochastc systems, as well as in

and .Iklt) is the number of transitions by time t. (Note that C; their statistical analysis. The likelihood ratio method described

is a simple function of C¢, namely the minimal value of Ck,/,s, here is easily applied to discrete-event simulations of arbitrary

taken over all clocks e.) If the GSMP is well behaved, we can complexity (see Section 6), and does not require case-by-case

expect that analysis for implementation. On the other hand, this method is

inapplicable to problems in which the settings of deterministic

event times are decision variables. (See the density conditions inf (Y(,l)ds - Ee.a(S,)CE#/C,*o Po.a.s. Section 6.) Such problems frequently arise in a manufacturing

context. Nevertheless, we believe that the methods described

as t - cc. The objective of calculating steady-state gradients here form a promising avenue for future research.

for GSMP's therefore reduces to estimating the gradients of

',,a(So}C; and k.C. This can be done by the methods of Sec-

tions 4 and 5 (apply to h(Xk) = a(Sh¢C; and h(X.) = C,). It ACKNOWLEDGEMENTS
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