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The original intent of this project was to identify fast and flexible
arithmetic engines suitable for real-time radar, signal- and image-processing
applications. To that extent, preliminary design specifications for an
architecture known as the Expandable Vector Accelerator (EVA) have been
developed. This is an architecture capable of executing numerous real-time
algorithms via two separate but tightly coupled components, a high speed DSP
machine and a general purpos; data processor.

The Vector Processing Hardware (VPH) is a speed-optimized architecture
capable of processing vectors of complex data. The architecture is arranged
so that a high degree of parallelism and concurrency can be achieved. This
feature, along with a duplication of on-chip resources at the board level, are
the primary reasons for the high throughputs achievable with the VPH. The 0
overall concept has been theoretically confirmed by employing the FFT
algorithm as a test-bed. The results of the study revealed that a quad VSP-
325 configuration can yield a 1024 complex FFT result in 460 us. This is a
significant accomplishment for a board-level product.

The Cascadable Processing Hardware (CPH) is also speed optimized.
However, the architecture is configured for those applications where the
concern for high precision and wide dynamic-range is at a premium. By means

of sophisticated control circuitry, the CPH can be recoiifigured dynamically to
expand or reduce the width of the data words, thus optimizing the architecture

for larger or smaller wordlengths and increasing overall throughput.

An EVA-like architecture places a great deal of demands on the system .

interface configuration. Overall speed and versatility are paramount issues.
Based on the findings presented herein, the VME system configuration appears
to satisfy all of the demands required by tne high-performance,
cascadable-processing engine.

Aside from the FFT study mentioned above, other theoretical-analyses for
mapping algorithms onto the EVA architecture were performea. A partitioning
scheme for the Kalman filter routine was also presented. For realistic state-
vector dimensions, the CPH and the VPH can execute the Kalman filter
algorithm in real-time by using a scheme that allows some values to be
constant over several samples. Several techniques for edge-detection ani S
enhancement, clutter removal, and target tracking have been studied as well.
This study was made to determine optimal strategies for removing clutter from

missile data (in real-time) so that tracking can be enhanced. The basic
principle of our approach is based on the commonly known fact tnat if
background can be edge-detected, then a cut-and-fill operaticn can elimina-w-
this "noise." The best edge-detection algcri nms are tius important so tnat
digital fo'e3ing can be more readily accomplished.
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1.0 Introduction

The overall objective of contract DAAD07-87-C-0102 was to determine fast
yet simple programmable signal-processors for cascadable implementation. A
major focus of concentration was to develop algorithm specifications for a
dedicated multi-processor architecture for data- and signal-processing

applications. The result of these efforts is the hardware, firmware, and
interface specifications for an architecture known as the Expandable Vector

Accelerator (EVA). This arithmetic engine is ideally suited for applications
such as range instrumentation, radar signal processing, image processing,
Kalman and digital filtering, and real-time target-motion resolution. To
develop these specifications, Space Tech Corporation divided the overall

project scope into five technical objectives. They were:

1. Study and organize the EVA architecture into efficiently coupled
modules for radar and sign-! processing. In this step, data transfer

techniques were investigated to increase I/O transfers at the chip and board
levels. Optimal trade-offs were determined among engineering parameters of

power, board size, and speed of operation so as to render EVA machinery fast

and efficient for laboratory and range instrumentation applications.

2. Determine the optimal trade-offs between fixed- and floating-point
number systems. Also, analyze the rounding/truncation issues and/or the

overflow/underflow issues with respect to fixed-point and f loaing-point

operations in the EVA. The objective was to identify efficient word lengths

for signal processors in EVA-like architectures.

3. Study optimal ALU configurations that speed up signal processing in
EVA architectures. The objective here was to determine the ideal
configuration (16x16, 32x32, or larger multipliers) which supports tnt-
processing bandwidths required.

4. Research the usage of fast controller circuits tnat may utilize
centralized or distributed PLAs. The objective of tnis step was to improve

arithmetic processing speeds while reducing or at least maintaining low
control wire count from the control unit to the control points in the

architecture.

5. Research microprograns for fixed- and floating-point signal W
processing algorithms executable on EVA architectures. The objective was to 4

developed sets of signal processing micro-routines that could be ported across

architectural changes.

The following sections describe the efforts undertaken at Space Tech
Corporation to satisfy the objectives set forth above. In adiition,
justification for the options selected are presented.

1.1 Introduction to the EVA Architecture .%

The EVA is an architecture concept whereby high-speed yet versatile ani
efficient computations are a must. In order to reach an acceptable compromise •
between these conflicting needs, the process of selecting tne bu:.lding blocks
for each component of the EVA architecture considered several issues.

Minimum/maximum cascadable increments (i, 16, or 32 bits CPH only), execution

L" 0
2I

-u -. -I)



speed, versatility, availability, amount of "glue logic" needed, overall ch-p k',

count, and maximum utilization of available resources are just I
representative sample of the issues considered. ,

Figure I shows the block diagram of tne 32-bit EVA architecture

containing the Vector Processing Hardware (VPH) and the Cascadable Processing ,"

Hardware (CPH) modules. It has been determined that all of tne modules iill
connect to tne VMEbus. The VMEbus data transfers between modules can handle
up to 32 bits in one transfer, however the CPH allows up to 64-bit on-boari
data manipulations when two CPH modules are incorporated. One CPH module will
support up to 32-bit wordlengths. This cascadability allows users to maximize
the use of available resources.

The VPH is ideally suited for high-speed signal-processing applications
where efficient, complex-data number-crunching is of tne utmost importance.
The heart of the VPH (tne ZR34525 also ref erred to as the VSP-325) is capable

of executing high-level, vector oriented instructions which embed the DSP
algorithms directly into the device, allowing efficient algorithm execution.
Moreover, a VSP-325 based architecture facilitates algoritnm partitioning in
the sense that multiple VSP-325s can be paralleled in order to share in the
data processing requirements. Hence, while the VSP-325s perform parallel
processing with interleaved I/O on t-e data from one RAM section, the host or
the CPH can be up-loading or down-l-ding data into the other memory bank of ZZ
the VPH. Once the current activities are completed, the roles of the VPH
memory banks are roversed. This function-swapping is the primary reason for
the efficiency and high throughputs attainable with the VPH.

2.0 EVA System Bus Configuration .

In order to fully capitalize on tne processing power of an EVA

architecture, the system bus configuration must be equally capable of
interfacing with the host, and within modules of the architecture. A study
was made to identify the most optimal bus arrangement which allows maximum S
exploitation of the capabilities of the EVA architecture. The study did not.
consider 16-bit bus configurations such as the S-D bus, MULTIBUS I, JNIBUS,
and Qbus. The reason is that these systems do not satisfy current DSP and 'or '
military real time demands, nor are they capable of supporting the dynamic
range required in such applications.

Of the bus configurations considered, the VME and the MULTIBUS Ii
systems are the most talked about and, by far, the most profitable in the .
market. Other relatively new, but fast rising entrants into the market

include the NuBus, Fastbus, and Futurebus. The characteristics of these buses
are highlighted in subsequent sections.
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2.1 Bus Comparisons

The second generation buses emerging nowadays are considered more of an
architecture tnan simple buses. Unlike their predecessors, tnese systems
provide more tnan the ordinary DMA transfers. They are capable of

transmitting variable length data (8, 16, and 32-bits). Their addressing
range is also expandable up to 32-bits. Most importantly, these systems are
better abie to handle multi-processing tasks by providing sophisticated bus
arbitration techniques. Given the wide spectrum of enhancements across the N
board, tne criteria used to categorize and compare the different systems is

based on the following:

- transfer protocol (synchronous vs. asynchronous)

- signal lines (multiplexed vs. non-multiplexed)

- interrupt handling (dedicated vs. virtual)

- arbitration (centralized vs. distributed) (

2.1.1 Transfer Protocol

Even though advantages/disadvantages exist for each type of transfer

protocol, the synchronous vs. asynchronous issue must be examined in detail to
determine the best solution for the EVA architecture. A synchronous interface
offers a great deal of design simplifications over its asynchronous •
counterpart. Synchronized clocking allows simpler interface designs by
referring every single event with respect to a master system clock. Another

advantage of synchronous buses is a tighter control of tne bus interface by
fixing the maximum clock frequency. By the same token, however, the

synchronous design specifies the maximum transfer rate of tne system. This
does not necessarily mean tnat the asynchronous design is faster. The point

is that the asyncnronous bus transfer can adjust to the transfer rate of tne

another big advantage of the asynchronous interface is that it provides the "

ability to mix various speed devices within the system, without restraining

individual throughputs. Of course, a drawback is that since the asynchronous
design is event driven, more knowledge, thought and experience must be placed
in designing the "cause-effect" type logic required. =

The EVA architecture will require a great deal of flexibility in is
interface. Moreover, the speed of the devices to be employed must be
complemented by the speed of tne interface logic. Otnerwise, tne interface -.

bottlhneck will greatly degrade system performance, thus reducing overall
bandwidth. in view of the requirements for high overall throughput, it seems
logical to recommend an asynchronous bus architecture for use in conjunction .1
with the EVA. e.,

2.1.2 Signal Lines "
Conceptually, the multiplexed vs. non-multiplexeJ issue is easy to

understand. The key concept is efficiency. In terms of trade-offs, tr.- X
efficiency concpp. can be divided into area vs. speed. Multiplexing allows an

r
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entire bus to fit in a sin6le connector, and reduces power requirements by

cutting address and data lines in half. The obvious drawback is tnat •
multiplexing typically requires twice the execution time for the same length
transfer.

Keeping in harmony with the rationale employed in selecting an
asynchronous protocol, the speed up provided by a non-multiplexed environment
is equally desirable. The objective is to minimize the interface bottlenecks,
and thus improve overall throughput.

2.1.3 Interrupt Handling

Task scheduling, a basic requirement in real-time multi-processor
systems, is effectively handled through interrupt reouests/grants. Of
paramount importance is the time required to arbitrate and service the

interrupt. The two approaches listed below (directed vs. virtual) differ in
the time and the hardware required to service an interrupt request.

In a directed interrupt system, dedicated modules are employed for
interrupt generation and handling. This set up relieves other masters in the
system for higher priority tasks. Typically, three modules are employed. •

They are generally called the interrupter module, the interrupt handler
module, and the arbiter. The name associated with each module is indicative

of the function performed.

A virtual interrupt system, on the other hand, does not require the >1

hardware complexity exhibited in the dedicated interrupt structure. Interrupt
generation and handling is performed under the control of each individual

master in the system. A processor enables an interrupt by passing a message
to a memory-mapped location of another processor. This involves arbitrating
the bus, gaining access to it, and finally passing the necessary information.

Clearly, a processor will not achieve maximum throughput if it must _
participate in the process of monitoring and responding to interrupt signals.
Even though the virtual interrupt system requires less hardware than its
counterpart, the time involved in assigning a task to another processor may

not be feasible for real-time applications. As a result, it is concluded that
an interface system with a dedicated interrupt structure will best complement

the performance demands of an EVA-like architecture.

2.1.4 Bus Arbitration

Bus arbitration determines which one of all interrupting processors will
gain access to the bus. Two general methods are considered: centralized and

distributed.

In the centralized bus arbitration technique, a system arbiter module is

responsible for assigning ownership to the bus. Any master wisning to gain S
control of the bus has its own requester module responsible for making the
proper bus request to the system arbiter, through its own bus request line.

.~.'.5 * -5i' ~6
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Bus UwUt: iship is then granted via priority, r )und ro~bin, or other arbitrationA

~schemes.
In a distributed arbitration system only one bus request line exists.

Each processor wishing to become bus master attempts to drive its own

arbitration ID number on the bus. If the number on the bus matches tne

processor's arbitration ID number, that processor becomes the present bus
owner.

The issue of centralized vs. distributed arbitration constitutes the

closest debate of all items considered. A drawback of the centralized
arbitration technique is that it is limited to as many arbitration levels as
there are bus request lines in the system arbiter. Distributed arbitration,
on the other hand, allows as many discrete levels as there are potential bus
masters in the system. The question of exactly how many arbitration levels
will be needed in the EVA is not known at this time. Nonetheless, it is
highly doubtful that this number will exceed the 20 masters serviced by the

VME.

2.2 The Bus Architectures

A brief description of each bus considered is presented in this section.
Of the buses studied (Vr4E, MULTIBUS II, Nubus, Futurebus, and Fastbus), the

Fastbus holds the distinction of having the least amount of technical

literature available. The Nubus is not far behind, even though a copy of the

bus specifications have been requested several times.

2.2.1 The VME Architecture

The VME is a versatile bus architecture which provides asynchronous,
non-multiplexed transfers between master and slave devices. It allows

mixtures of 8, 16, or 32 bits of data as well as 16, 24, or 32 bits for
addresses. The size of data and address paths are determined on a cycle by
cycle basis. Due to its asynchronous transfer protocol, the V,4Ebus is very
timing fault-tolrant. In addition, various processors and peripherals can
operate at various speeds without having to wait for proper timing to get

on/off the bus.

In terms of raw bandwidth, the VMEbus is capable of transferring 32-bit
data at up to 40 Mbytes/sec. It utilizes dedicated interrupt lines, as well

as centralized arbitration for up to 20 masters in the system. The standard
board size for this bus architecture is (160 x 234 mm), even though a variety
of non-standard board sizes are also supported. Table I summarizes the VME
characteristics, and provides the means for easy comparison with tne other
buses considered.

2.2.2 The MULTIBUS II

The MULTIBUS II architecture is an enhanced version of Intel's MULTIBUS
I. Like the VME system, the IMJLTIBUS II is specifically designed for high
performance systems requiring 32-bit data transfer rates of up to 40
Mbytes/sec. It is also capable of transferring 8, 16, or 32 bits of data -
through an address space 16, 24, or 32 bits wide. Unlike the VME system,
however, addressing on the MULTIBUS II is multiplexed and its transfer
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protocol is synchronized. Other differences include a virtual interrupt
structure, distributed arbitration, and board sizes. The standard board
size for the MULTIBUS II is (220 x 234 mm). It is not known if non-
standard boards exist.

cA v attractive feature of tne MULTIBUS II is its built-in error
Averyatrciefaueo th UTBSI isisbiti err

detection mechanism. Subsystem buses within the MULTIBUS II utilize parity to
detect errors in data transmission. Cyclic redundancy checks are also

I. employed to detect errors in serial communication links. The NULTIBUS II is

Aalso summarized in Table 1.

2.2.3 The Nubus

The Nubus architecture, from Texas Instruments, is very similar to that
of the MULTIBUS II. That is, it is a synchronous, multiplexed bus with a
virtual interrupt structure and distributed arbitration. It is optimized for

tdata transfers over a 32-bit address space. The data bus, however, is
configurable as an 8, 16, or 32-bit bus.

The bandwidth of the Nubus is also comparable to that of tne MULTIBUS
II (37.5 Mbytes/sec for 32 bit transfers). However, there is a difference in
standard board size, where the Nubus supports a standard size of
(101.6x 327.02 mm). A larger board, with dimensions of (279.4 x 355.6 mm),
is also available.

2.2.4 The Futurebus

IEEE's Futurebus sports the second fastest bandwidth of all buses

considered (120 Mbytes/sec). It provides asynchronous data transfers over
multiplexed signal lines. Its interrupt protocol and arbitration procedure
are similar to those of the MULTIBUS II and Nubus (virtual and distributed,
respectively). It is capable of transferring 8, 16, or 32 bits of data over a
32-bit address bus. A board size standard of (160 x 220 mm) exists, although
boards of (160 x 280 mm) and (160 x 400 mm) are also acceptable.

2.2.5 The Fastbus

Very little information is available on this bus architecture, other
than the fact than it possesses the highest bandwidth of the buses considered
(160 Mbytes/sec) and that its transfer protocol is asynchronous. Its high
bandwidth, however, makes it deserving of furtner investigation. This study

shall be conducted during phase II of this project prior to the development of
an EVA prototype.

2.3 EVA System Bus Recommendation

An EVA-like architecture places a great deal of demands on tne system
interface configuration. Overall speed and a high degree of versatility are
paramount issues. Based on the findings presented herein, the VME system
configuration appears to satisfy all of the demands placed by a high

performance cascadable processing engine such as the EVA.
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For instance, its asynchronous transfer protocol allows a system to
achieve technology independence. That is, the bus configuration can adapt its

Stransfer rate to that of the device accessing the bus, thereby eliminating
transfer bottlenecks in a system composed of a mixture of slow and fast
devices. Moreover, the asynchronous protocol insures longevity of the system.
This is accomplished by providing the flexibility of incorporating faster
devices into the system design, without having to redesign or upgrade the
interface block. The latter, by the way, fits the philosophy of the EVA
architecture. That is, to provide the ability to upgrade the system
performance as superior technology is developed.

Other characteristics of the VME system, which further enhance system
performance include non-multiplexed signal lines and a dedicated interrupt
handling scheme. Both maximize overall throughput, at the expense of more
hardware and, perhaps, higher power requirements.

An attractive feature of the MULTIBUS II is its capability to detect
errors during data transmission. Another advantage over the VME system is the
"unlimited" ability to support several masters in the system. For the EVA,
however, the VME's support of up to 20 masters is sufficient.

From a marketing and support stand-point, the VME system is also the
appropriate choice. The VME architecture is by far the most proliferated,
supported, and economical bus interface system in the market. A multitude of
"off-the-shelf" VME enhancement products are readily available. Moreover, the
VME standard has gained wide acceptance at White Sands Missile Range and other
military installations throughout the country. As noted in [II, the VMEbus
has become the most popular bus architecture in both Europe and the U.S.A.
Several major manufacturers, including Tektronix, AT&T, and IBM have endorsed
the VME standard. The estimated current markets f-r VMEbus products is $65
million. That figure is expected to grow to approximately $750 million within ,
four years [2]. Thus conformance with this pre-specified norm would most
certainly guarantee performance, support, and compatibility across a wide
range of applications. A summary of our study to incorporate the VME system
within the EVA architecture is now discussed.

3.0 The VME System Interface

The VME system has become the most designed-in high performance bus in
the market. The main reason for its proliferated use is that the VMEbus is an
open architecture, unlike INTEL's MULTIBUS or DEC's BI bus. The VME system is
a versatile architecture which provides asynchronous, non-multiplexed
transfers between master and slave devices. It allows mixtures of 8, 16, or
32 bits of data, as well as 16, 24, or 32 bits for addresses. The size of
data and address paths are determined on a cycle by cycle basis. By nature of
its transfer protocol, the VMEbus is very timing fault-tolerant. Various
processors and peripherals can operate at different speeds without having to
wait for proper timing to get on/off the Dus.

The VME system architecture is configured around three bus structures.
They are the VMEbus, the VMXbus, and the VMSbus. The system interface
configuration for the EVA is discussed in this section. VME interface

10
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protocols, addressing modes, transfer types, and bus arbitration schemes are

presented [31.

The VMEbus provides the basic parallel data transfer medium between

system components. In a single processor system, the VMEbus is the primary
data transfer path. In this situation, little need exists for the VKL~bus or
the VMSbus. These secondary buses become highly beneficial in a multiple
processor/controller environment. The VMEbus can be functionally divided into
four sub-buses: data transfer, arbitration, interrupt, and utilities.

3.1.1 Data Transfer V

A VMEbus can be configured with either a 16- or 32-bit data bus, I..

allowing data transfer up to two or four bytes simultaneously. For a dual-
byte transfer, the even byte resides on D8-D15, and tne odd byte is placed on 0
DO-D7. For a quad-byte transfer, byte 0 occupies D24-D31 and byte 3 occupies
DO-D7.

The memory is arranged in groups of four-bytes. Address lines A02-A31 .
dictate which 4-byte group is being recognized, and the control lines DSO,

DS1, A01 and LWORD combine to allow access to any combination of these four •
bytes.

To enable any single byte of data, the control signals must fulfill the

following conditions:

1) LWORD must be high if any single or double combination is desired. S
2) For an even byte (byte O,byte 2), DSO=1, DS1=O.

3) For an odd byte (byte 1,byte 3), DSO=O, DS1=1.
4) For the lower two bytes, A01=O.
5) For the upper two bytes, AO1=1.

To access any two bytes:

1) Both data strobes are driven low.
Ti 2) The initial value of AO determines the starting double-byte block.
This value is valid for only one cycle, then the two groups are alternatively
selected.

To access the lower word, all four control lines must be driven low.

3.1.2 Addressing Modes

A Master broadcasts a 16-, 24-, or 32-bit address. The different
address modes are labeled as short, standard or extended. When a Slave
responds to an address, it must drive either DTACK or BERR low. At the end of %

the data transfer, the Slave must release control of these lines.

When a Master reads data from a Slave, the data must remain valid until
Vp the Master returns the first data-strobe to high. Once a master has driven

its data-strobe(s) low, it must not drive them high until receiving a data-
transfer acknowledge or a bus-error response. r
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3.1.2.1 Block Transfer
S

The VMEbus allows block transfers up to 256-bytes in order to simplify

and to speed up address decoding. The Master facilitates black-transfers by
keeping the address strobe low. It repeatedly drives the data strobe(s) low
in response to data-transfer acknowledgments from the Slave, and transfers
data to/from sequential memory locations. The Slave is responsible for
generating the next address for each data-strobe transition.

3.1.2.2 Unaligned Transfer

A 32-bit Master can communicate with a 32-bit Slave in an unaligned,
double- or triple-byte transfer if the Slave is configured correctly. A %

triple-byte, unaligned transfer can access bytes 0-2 or bytes 1-3, ani a
double-byte, unaligned transfer must access bytes 1-2 of the address specified

by A1-A31.

3.1.2.3 Location Monitor

A Location Monitor monitors data-transfers over the DTB, detecting
accesses to the locations it has been assigned to watch. When an access to
one of these assigned locations occurs, the Location Monitor generates an on-
board signal.

3.1.2.4 Address Only CapabilityI@
The address-only cycle does not allow data-transfer. During the

execution of this cycle, it does not drive the address strobe low. This cycle
can enhance board performance by broadcasting an address before the Slave,
that will receive the address, has been determined. Thus, it allows the
Slaves to decode the address concurrently with the CPU board.

3.1.3 Typical Data Transfer Cycles

Once exclusive control of the DTB is granted to a Master, a data
transfer can be initiated. The Master first drives the address lines with the
desired address and Address-Modifier (AM) code, then it provides the

appropriate control signals to specify which bytes out of the 4-byte group are
needed. The Master must wait for a specified set-up time, then it will drive %

-' the AS low which signals the Slave when the address is stable and valid.

Each Slave determines whetner it should respond by examining the address
lines, the address modifier lines, and the IACK line. If the address or AI
lines do not correspond with a given Slave or if IACK is low, then that
particular Slave will not respond to the Master's request. While this is
happening, the Master drives WRITE to the appropriate level and verifies that
DTACK and BERR are high, ensuring the Slave (from the previous cycle) is no 'o
longer driving the data bus. If this is the case, the Master then drives DSO
and DS1 to the correct levels. .4

The responding Slave determines which four-byte group and which bytes of
that group are to be accessed from the address and control lines. It then
starts the transfer. After it has retrieved the data from its own internal
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storage and placed it on the data bus lines, the Slave signals the Master by
driving DTACK low until the Master relinquishes the low signal on either DSO
or DS1.

When DTACK goes low at the Master, the Master captures the data,
releases the address lines and drives either DSO or DS1 and AS high. The
Slave responds by releasing DTACK, which is pulled high by the backplane
terminators.

3.1.3.1 Address Pipelining

A Master can perform address pipelining by broadcasting an address for
the next cycle while the data-transfer from the previous cycle is still in
progress. However, a Master can change this address upon reception of the
DTACK or BERR signal from the previous Slave. To prevent deciphering an
incorrect address, the Slave should initiate data transfers to and from the
bus on the falling edge of each data-strobe.

3.2 Data Transfer Bus Arbitration

The data-bus arbitration allows several Masters to share a common bus. %
The VMEbus arbitration subsystem prevents two Masters from using the bus
simultaneously, at the same time it schedules requests from multiple Masters,
optimizing bus use. For additional insurance against two Masters controlling
the same bus, a Master must wait until it detects AS high before turning on
its DTB drivers.

The VMEbus supports three arbitration schemes: prioritized, round-robin,
and single level. Prioritized arbitration assigns the bus according to a
fixed priority scheme where each of the four bus-request lines has a priority
level assigned, from the highest (BR3) to the lowest (BRO). Round-robin
arbitration assigns the bus using a rotating-priority basis. When the bus is S
granted to the requester, the highest priority for the next arbitration is
assigned to the next lower bus request line. Single level arbitration only
accepts requests on BR3, and relies on BR3's bus-grant daisy-chain to
arbitrate the requests. Once the Arbiter grants the DTB to a requester and
detects that it has driven BBSY low, it will then drive the bus grant line
high.

The arbitration bus consists of six bused VMEbus lines and four daisy- "
chained lines. The signals entering the daisy-chain on each board are called
Bus-Grant In lines (BGxIN), while the signals leaving each board are called
Bus-Grant Out lines (BGxOUT). The lines which leave slot n as BGxOUT enter

slot n+1 as BGxIN, thus the daisy-chain arbitration line is formed.

In the VMEbus arbitration system, a Requester module drives a bus-
request line (BRO through BR3), a bus-grant out line (BGOOUT through BG3OUT)
and the bus-busy line (BBSY). When a Requester drives a bus request line, the
low signal level is daisy-chained through each board until it reaches the A
arbiter board in slot one. If a board does not exist in one of tne slots,
then the signal must be connected to the next board. When a board receives a
signal it is propagated to the next board, unless the Requester on that board
is also requesting the DTB on the same level. The Arbiter receives tne bus

13
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request signals and decides which module will receive control of tne DB at
the next available time.

3.2.1 Bus Busy Line

Once control of the DTB has been granted via the bus-grant daisy-chain,
tne Requester drives BBSY low. The Requester then has control of the DTB
until it releases BBSY, allowing the Arbiter to grant DTB to some other

Requester.

3.2.2 Bus Clear Line

If a priority arbitration scheme is used, the Arbiter drives BCLR low to 0

inform the Master it is currently in control of the DTB. When a higher
priority request is pending, the current Master does not have to relinquish
tne bus within any prescribed time limit. Therefore, it can continue
transferring data until it reaches an appropriate stopping point. Its on-
board Requester will then release BBSY and allow the next Master to take
control of the bus. -0

3.2.3 Requester ,

Two types of requesters exist on the VME system, the Release-When-Done
(RWD) requester and the Release-On-Request (ROR) requester. A RWD requester
releases the DTB when the module is finished with the bus. A ROR requester
gives up control of the BBSY line only when it has finished using the bus and
when another module requests the DTB. Therefore, an ROR requester monitors
all of the bus request lines which increases its hardware, but it also
decreases the amount of traffic on the DTB.

3.3 Priority Interrupt Bus

The VMEbus includes a Priority Interrupt Bus which provides the signal S
lines needed to generate and service interrupts. Interrupters use the
Priority Interrupt Bus to send interrupt requests to an Interrupt Handler
(IH). The VMEbus supports interrupt subsystems that fall into one of tne
following two groups:

a) Single handler systems. These have only one 1H tnat receives and
services all bus interrupts. The service routine is executed by the
supervisory processor.

b) Distributed systems. These have two or more IH's, with each handler
servicing only a subset of the bus interrupts. This type of architecture is
well suited for distributed-computing applications, where multiple, co-equal
processors execute the application software. ,

iv.-
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3.3.1 Priority Interrupt Bus Lines

The Priority-Interrupt-Bus consists of seven interrupt-request signal
lines, one interrupt-acknowledge line, and one interrupt-acknowledge daisy-
chain.

3.3.2.1 Interrupt Request Lines

Seven interrupt request lines exist, including IRQ1-IRQ7. Interrupts
are requested by driving an interrupt-request-line low. In a single IH
system, these interrupt request lines are prioritized, with IRQ7 having the
highest priority.

3.3.2.2 Interrupt Acknowledge Line
S

The Interrupt Acknowledge line (IACK) runs the full length of the
backplane and is connected to the IACKIN pin of slot one. When IACKIN is
driven low, the IACK daisy-chain driver, located in slo one, transmits a
falling edge down the interrupt acknowledge daisy-chain. The Interrupt-
acknowledge daisy-chain operates in the same manner as the daisy-chain of the

arbitration bus. These connections prevent two or more interrupters from
responding to an interrupt-acknowledge bus-cycle. If an interrupter receives
a falling edge on its IACKIN line and it needs to respond to an IACK cycle,
then it disrupts the chain and does not pass the falling edge to the next
interrupter in the sequence.

3.3.3.1 Interrupt Handler 0

The IH uses the DTB to read a STATUS/ID from the Interrupter. In this
respect, the IH acts like a Master and the Interrupter acts like a Slave.
However, there are important differences, including: '

a) The IH always drives IACK low, where a Master either drives it high .5
or does not drive it at all.

b) A Master drives the AM lines, but an IH is not forced to drive these
lines. In addition the IH only uses the lowest three address lines (A01-AO3)
to indicate which of the seven interrupt request lines are being acknowledged.

c) An IH never allows the data bus to communicate with the interrupter,
as opposed to a Master which usually drives the data bus in a normal DT3
cycle.

3.3.3.2 Interrupter
Once an Interrupter receives a falling edge on the interrupt-acknowledge

daisy-chain input, it performs one of two tasks. If the acknowledging-level % I
on the three address lines is equivalent to the interrupt request line it is
using, the Interrupter supplies a STATUS/ID to the data bus. If the interrupt
request level is different, the Interrupter will pass the IACK signal to the
next Interrupter in line.
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As with an Interrupt Handler and a Master, there are several differences
between an Interrupter and a Slave: S

a) An Interrupter responds only when IACKIN is low, where a Slave is

nnot allowed to respond under this condition.

b) A Slave monitors the AM lines, but an Interrupter does not.
Furthermore, an Interrupter monitors only the lower three address lines and

does not monitor the WRITE line.

c) A Slave must match precisely its data-lengtn with that of tne

Master, whereas an Interrupter is permitted to respond witn data of a
different size than that requested. Under this circumstance, all undriven

data lines will be nominally high because of the terminators on the backplane.

The two methods of release used by an Interrupter are Release-On-Register-Access (RORA) and Rel eas e-On- AcKnow ledge (ROAK). RORA Interrupters k-
release their interrupt-request upon access to a control- or status-register, Ps
while ROAK Interrupters release their interrupt-request-line when the IH reads
its STATUS/ID.

hAr

3.3.4 Typical Interrupt Operation

A typical interrupt sequence can be divided into three phases: yc-

Phase 1: The interrupt request phase.
Phase 2: The interrupt acknowledge phase.

Phase 3: The interrupt servicing phase.

Phase 1 starts when an Interrupter drives an interrupt request line low
and ends when it gains control of the DTB. During phase 2 tne Interrupt
Handler uses the DTB to read the Interrupter's STATUS/ID. During phase 3 an
interrupt-servicing routine is executed.

3.4 Utility Bus

The utility bus is composed of all the signals needed for timing,

initialization and diagnostic capability for tne VMEbus. This bus includes

signals that provide periodic timing and coordinate the power-up and power-
down sequences for the VME system. It provides a 16 MHz clock source, a

4 system reset line, an AC fail line, a system fail line, a 5 volts source, a

plus and minus 12 volts source, and an optional 5 volts standby source.

3.4.1 The System Clock Driver

The system clock is an independent, non-gated, fixed frequency, 16 e. z,
50-percent-duty-cycle signal. The SYSCLK driver is located on tne system

controller board which is located in slot one. It provides a known time base
that is useful for counting off time delays. %
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3.4.2 The Serial Clock Driver

THe Serial Clock driver provides a fixed frequency, special waveform
signal used by VMSbus modules that reside on VMEbus boards. Its waveform is
specified in the VMSbus specifications.

3.4.3 The Power Monitor

This module detects power failures and signals the VMEbus system in time
to effect orderly shutdown. When power is tnen reapplied to tne system the
Power Monitor ensures that all other VMEbus modules are initialized.

3.4.4 System Reset

The System Reset signal (SYSRESET) may be driven low by any '1IEbus board
to initialize the system. The only stringent requirement is the line must be
held low for a minimum period of 200 ms.

3.4.5 AC Fail Signal

The ACFAIL signal is an open-collector driven signal which indicates
that tne AC input to the power supply is no longer available or tnat the
required AC input voltage levels are not being met.

3.4.6 System Fail Signal

The SYSFAIL signal is also an open-collector driven signal tnat4.
indicates a failure has occurred in the system. This signal may be generated 4
by any board on the VMEbus. •

3.5 The VMXbus

The high speed VMXbus provides a secondary private access sub-system to
tne VMEbus. Since it is a private bus, there is less arbitration dela',
allowing a processor to access VMEbus memory with few, if any wait states L4j.

The VMXbus protocol is designed to work very efficiently to access program 7,
memory. Like the VMEbus, it is also asynchronous, tnerefore it will not
become obsolete as processor clock speeds increase.

'.5 3.6 The VMSbus

As multiple processors are added to a system, an important need develDps
to quickly communicate events between processors. The VMSbus provides a
communications medium external and concurrent to all system buses 5]. This
serial bus is useful for coordination of processor activity, resource and
system management, diagnostics, and other real time communication.
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4.0 Number Format Comparison

Several number formats are amenable for integration into the EVA
architecture. Possibilities include fixed-point, block-floating-point,
floating-point, and cascadable-floating-point. Each format offers several
advantages and disadvantages. The following sections summarize the format
parameters by discussing speed, precision, dynamic range and overhead
characteristics of each format. For consistency, the same wordlength is
assumed for all comparisons.

4.1 Fixed-Point Format

For fixed-point numbers, the format can be signed or unsigned. In either
case, fixed-point processors perform aritnmetic operations faster than the
other types [6]. Since the binary point is in a fixed position, the precision
if the number may not be maximized. Leading zeros will reduce the quantity of
significant digits, since the bits will show a position rather than an actual
value. The precision is therefore dependent on the magnitude of data being
manipulated.

Dynamic range is the biggest drawback of the fixed-point format. Table 0
2 compares the dynamic range for different word sizes. Note that for a signed
integer, 256 bits are required to equal the available dynamic range of a 32-
bit floating-point number.

Table 2. Dynamic Range Comparison.

Dynamic ngeWord Length I 201og10;(2 bits))

16 Bits 96 dB
32 Bits 193 dB
64 Bits 385 aB
128 Bits 771 dB
256 Bits 1541 dB

:n terms of software overhead, fixed-point algorithms require extra
support for overflow/underflow determination, and for other shortcomings such
as limitea dynamic range and variable precision. In terms of hardware
overnead, they require the simplest "glue-logic" and processors of any format
considered. %

4.2 Block-Floating-Point Format

of.U

The blockc-floating-point format is most effective when all tne numbers
arc of similar magnitude. As numbers grow (o decrease) during the execution
of algorithms such as the FFT, tie binary point can be shifted (actually
physically shift thu bits) one position for each FFT column to keep overflows S
from occurring. An "exponent" register is then used to keep track of how mary
and in which direction shifts occur, or in other words, where the binary point
is. 

e orswhe
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Block-floating-point arithmetic is slower than straight fixed-point, but
iK is still faster than floating-point since fixed-point processors are used.

The exlra time is spent updating the "exponent" register and shifting all data

values when an update occurs.

The precision for block-floating-point is tne same as for fixed-point,
but it is less dependent on magnitude. The number of signif-cant digits is
equal to or greater than that in fixed-point arithmetic, since tne data is
a...wed to shift up or down when a predetermined number of leading/trailing
zeros are en(-)untered.

With the e&tra register to keep track of the binary point position, the
dynamic rang- can be made much larger than in fixed-point (depenaing on the
register size). The aynam- - range of each block-floating-point number is

lower than in floating-point because all data have the same exponent.

Additional hardware is requir' -u moni-tor number growth, to update the
exponent" register, and to normalize the - :ilt. Some of this overhead can

be transferred to software, but it w.ll be ass,:ed for now that hardware will
perform these operations. This .s a res,.nable assumption given the

processinL powe2 available in the EVA.

4.3 Floating-P-iL format

Fixed-point dynamic range and precision limitations cause errors in DSP
algorithms much like noise sources in analog systems [71. As discussed in

Vprevious sections, the microprogrammer must keep track of scaling and

overflow. In floating-point, concern over these issues is left up to the
processor [B. Speed is lower than in the fixed-point format, but fewer

' programming concerns and less hardware overhead help make up for tne small

speed loss.

Floating-point has less available precision than fixed-point and block-
floating-point. However, precision is not dependent on the data's magnitude;
instead, maximum precision is always available because the mantissa is
normalized. Moreover, fiobitig-point offers much better dynamic range tnan
fixed-point. Depending on the size of the "exponent" register in block-
floating-point, floating-point could offer less, the same or more dynamic
range. Overflow and underflow can still occur in floating-point, but a 32-bit
format has a dynamic range of over 1500 dB.

-" .-* 4.4 Cascadable-Floating-Point Format

The cascadable-floating-point format proposed in this section uses
* discrete fixed-point processors to implement floating-point arithmetic

operations. The format is expandable, allowing additional bits to be added to

the mantissa and/or the exponent the same way it is done witn a fixed-point,
bit-slice architecture. The speed is slower than all the formats cons:iered,
but the operations can be pipelined to boost throughput.

Both precision and dynamic range can be the same as in floating-point.
However, precision and dynamic range are easily increased beyond that of

foatig-poin by increasing the mantissa and the exponent size, respectively.



Cascadable-floating-point requires the largest hardware and software
overhead of all formats. Fixed point processors must perform floating-point S
operations. Hence, if the architecture is pipelined to increase throughput,
programs become more complex.

A precise engineering solution t3 the number format dilemma can be only
obtained through analysis of tne kernel processors considered, and mapping of
the algorithms onto the processors. As a result, tne architectural study
described ii the following section leads to a number format recommendation.

5.0 EVA Architectural Considerations and Components

Through extensive comparative analyses and continuous interfacing witn
WSMR technical contacts, the major I.C. building blocks for the EVA 0
architecture have been selected. It has been concluded that the B2110/B2120
chip set from Bipolar Integrated Technologies and the ZR34325 (also referred
to as the VSP-325) from ZORAN Corporation are ideally suited for the demanding
number-crunching inherent to the EVA. Following sections present the findings
leading to the above mentioned conclusions, and provide a set of benchmarks to
illustrate the capabilities of the devices selected.

The EVA is an architectural concept whereby high speed yet versatile and 'N
efficient computation are a must. In order to reach an acceptable compromise
between these conflicting needs, the process of selecting the building blocks

for each component of the EVA has been carefully completed. For the
cascadable modules (the CPH), for instance, several issues were considered.

Minimum/maximum cascadable increments (8, 16, or 32 bits), execution speed,
versatility, availability, amount of "glue logic" needed, overall chip count,
and maximum utilization of available resources are just a representative

sample of the issues considered.

The decision making process for selecting the VPH building blocks is
less complex. Only two candidates are capable of satisfying the high

throughputs demanded in an EVA-like architecture. Namely, AT&T's DSP32C and
ZORAN Corporation's ZR34325 (also referred to as ,the VSP-325) provide 32-bil. %

floating-point capabilities. Of the two, ZORAN's device is far superior. A
Both provide execution cycle times of 80 ns. However, tne DSP32C is not
flexible enough to efficiently execute complex multiplies. Consequently, tne
difference in algorithm execution times for certain DSP applicati)ns is yc
noticeable, with the VSP325 holding the edge.

5.1 The Vector Processing Hardware (VPH)

The VPh is ideally suited for high speed signal processing applicaticns.
In this environment, efficient number-crunching of complex data is of
paramount importance. To meet this requirement, the VSP325 is capable of
executing high-level, vector oriented instructions which embed the DSP
algorithms directly into the device. Moreover, the nature of the architecture
and :nstruction set allow multiple VSP-325s to be paralleled on tne same bus

for improved performance. This device is detailed in the sections to follow.
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5..1 The VSP-325 Vector Signal Processor

The VSP-325, shown in Figure 2 [91, is a speed-optimized processor
ideally suited for real-time signal processing applications. Its
architectural configuration is ideal for algorithms such as one- and two-
dimensional FFTs, convolution, correlation, filtering (FIR and IR), matrix
operations, polynomial expansions, modulation/demodulation, minimum/maximum
detection, thresholding and comparison, and other related functions. This --

device offers high throughputs due to the high-level, vector oriented nature
of its instruction set. Each high level instruction can operate on a vector %4

of up to 64 complex words. Each data word conforms to the IEEE 754-1985
32-bit floating-point format, although conversions to/from 2's complement are
also supported.

E ,"rDANA. PROPRIETARY1sINEFC mrBi ,,REIMuIA T I N "I O A O

F F INFORMATION

___________ oUn Con to

Figure 2. YP-325 Architecture. '"

The VSP-325 is composed of seven essential blocks which contribute ta '
*its high performance capabilities. They are the Bus Interface Unit (BIU), the "-

Execution Unit (EU), the Move Unit (MU), the Fetch Unit (FU), the Vector Unit
(VUi), the Control Unit (CU), and a block of memory and registers. These

components are discussed below.

5,. .1 The Bus Interface Unit (BIll)
The Bus Interface Unit (BIU) enables DMA transfers between the VSP-325

and the external environment. It provides non-multiplexed address (24 bits) •and data (64 bitS) paths for improved I/0 interfacing. Its transfer mechanism

resembles that of conventional microprocessors whereby Bus Request (BRQ) and
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Bus Acknowledge (BACK) signals are exchanged between the devices wishing to
access the bus.

5.1.1.2 The Execution Unit (EU)

The Execution Unit (EU) is responsible for all floating-point arithmetic
operations within the VSP-325. The EU is optimized for complex arithmetic.
It includes a multiplier, an adder and subtracter, a set of real and imaginary
accumulators, and a set of registers. Data is loaded into the EU from two

sources: internal RAM and the Vector Unit/coefficient table. External RAM
data is buffered by the Vector Unit prior to entering the EU.

5.1.1.3 The Move Unit (MU)

The Move Unit (MU) is capable of address generation in direct, indirect,
or indexed modes. This block of hardware is responsible for data transfers
between the BIU and internal memory. It also has the capability to bit-
reverse addresses "on-the-fly." All these features make the KU the most
important component of the VSP-325, since it allows partitioning of the Vector

Signal Processor into two independent I/0 and processing blocks. The end

result is a highly efficient DSP engine.

5.1.1.4 The Fetch Unit (FU)

The Fetch Unit (FU) provides the control required to fetch and execute

VSP-325 instructions. Once instructions are fetched, they are stored in an
instruction FIFO, out of which they are subsequently executed. Recall that
the VSP-325 operates on a "high-level" set of instructions, thus the fetch
mechanism is optimized to ensure minimum instruction fetching/decoding time.

5.1.1.5 The Vector Unit (VU)

As noted earlier, the Vector Unit (VU) works in conjunction with the MU
to effectively transfer data from external memory to the EU. It operates as a
four word FIFO to allow movement of external data independently of the EU.
Hence, it allows the EU to concentrate on data processing with little concern
about I/O.

5.1.1.6 The Control Unit (CU)

The Control Unit (CU) is responsible for coordinating operation among
the VSP-325 internal registers. A total of 17 registers are available, three
for arithmetic operations and 14 for information and control. Moreover, a
coefficient look-up table is also provided to enhance algorithms such as FFTs,
DFTs, modulation, and demodulation. The VSP-325 internal registers are listed
in Table 3. Their names are indicative of the functions performed.
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Table 3. VSP-325 Internal Registers.

Arithmetic Registers Control and Information Registers
Real Accumulator Program Counter
Imag. Accumulator Stack Pointer
Min/Max Values A-Base Register

B-Base register
SAR Counter
Loop Counter
Extra Register
Min/Max index Register
Mask Chain
Mode Register
Status Register
Interrupt Pointer
Interrupt Mask
Interrupt Status

5.1.2 VSP-325 Instructions

The instruction set of the VSP-325 can be divided into four functional
categories: data movement, registers, arithmetic, and control. Overall, 52
instructions are provided some of which operate on data vectors and/or single
constants. The high-level nature of the instruction set allows entire
algorithms to be executed by invoking a single command. For instance, "FFT,"
F or "IIR" are functional instructions which execute the algorithms by
the same name. A number of parameters are associated with each instruction.
These parameters specify the number of data points, starting/ending addresses,
and other algorithm-specific values.

5.1.3 Case Study - 1024-Point Complex FFT Execution

To illustrate the capabilities of the VSP-325, a 1024-point complex FFT
is used as a test case. Recall that internal memory in the VSP-325 can be
configured as a RAM section of 64 complex words, or as two independent
sections, each 32 complex words deep. By so doing, data I/O and processing
may be overlapped. This way, while one RAM section is transferring data into
or out of the VSP-325, the other RAM section is used for data processing.
Thus data I/O is "free." This highly "compute-bound" characteristic allows •
multiple VSP-325 to be combined on the same bus, thus increasing throughput
beyond that of a single device.

Given the structure of internal memory, the kernel for large complex
data FFTs (N > 32) is based on the single instruction FFT for 32 complex
values. For instance, a 64-point complex FFT may be executed by separating
the input data into even and odd components. The even values are loaded into
the VSP-325 and the first pass of a 32-point FFT is executed. Meanwhile, the
other RAM section receives the 32 odd values of the input data. Upon
completion of the first pass of the FFT (for both even and odd values), the
results are stored back in external memory in the same order in wh-ch they
were loaded in. Next, a full 32-point complex FFT is executed on the top half
of the intermediate results. The bottom half of the intermediate results are
multiplied by the appropriate twiddle factors, followed by a full 32-point
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complex FFT. The last step involves the bit-reversal for the full 64 complex
values.

S

A similar procedure is followed if the desired transform length is 1024
complex points. Here, the input data is originally divided into 32 blocks of
32 complex values each (every 3 2 nd point taken). Next, the FFT sequence is
repeated as outlined above. The point of the illustration, however, is to
provide execution time estimates (for 1024-point complex FFTs) for
architectures utilizing single and multiple VSP-325s. In each case considered
below, the initialization step prior to each wave of FFT processing is ignored
since the time overhead is negligible (on the order of 5 micro-seconds).

5.1 3.1 Single VSP-325 Configuration

The block diagram for the single VSP-325 configuration is shown in
Figure 3. In this case, the first and second wave of FFT execution times are
identical. Only the original loading and the final storing of 64 complex
values into/out-of the VSP-325 count as I/0 overhead; the reason is th:L the
remaining of the data I/O is "hidden" during FFT execution times. This is
illustrated in the timing analysis shown in Figure 4. From Figure 4, the FFT
execution for a 1024-point complex signal requires 21064 clock cycles. At a
rate of 80 ns per clock cycle, the FFT execution time is approximately 1 .7
milli-seconds.

VSP- 325

Address
Control Data System Bus

Program Data,

Memory Memory ,

Figure 3. Single VSP Configuration.
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Y17

LID FFT FFT ST
66I 325 325 I66

LD LD ST

31 t~mes

Number of clock cycles per wave 66x2 + 325(32) = 10532

x2 waves x2
21064

Execution time = 21064 cycles x (80ns/cycle) n 1.7ms

Figure 4. Timing Analysis - Single VSP-325 System.

5.1.3.2 Dual VSP-325 Configuration

In the dual VSP-325 configuration, two VSP-325s share a common

address/data bus. By so doing, they both participate in the number-crunching
process. The architectural block diagram is shown in Figure 5, while the
timing analysis is illustrated in Figure 6. Notice that in this
configuration, only one of the processors can utilize the bus at any given
time. Hence, I/0 from processor #2 begins upon completion of I/0 from its
counterpart. As shown in the timing analysis, each processor executes a load
and a store within the FFT execution time frame. Both of these I/0 operations
require a total of 264 clock cycles, as compared to the 325 cycles required

for the 32-point complex FFT. As a result, this system configuration still
operates in a "compute-bound" fashion, whereby data I/O is "hidden" between
FFT execution times. J ,A

VSP VSP
#1 #2

Coro Dat Address Address

Cotrl DtControl Data System Bus

Program Data
Memory Meemory

~'' Figure 5. Dual VSP-325 Configuration.
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15 TIMES

LD FFT FFT ST
661 325 1 325 1 66 66 66 VSP #1

66 88 66

LD ST LD
15 TIMES

LD FFT FFT ST
66 325 325 66

m VSP #2

LD ST LD

Number of clock cycles per wave : 66x4 + 325x16 = 5464

x2 waves x2
10928

Execution time = 10928 cycles x (8Ons/cycle) t! 880us

Figure 6. Timing Analysis - Dual VSP-325 System.

- Since both processors participate in the data processing phase, the FFT
execution time is reduced by roughly a factor of two compared to the single
VSP-325 configuration. The time required to execute each wave of the 1024-
point complex FFT is reduced to 5464 clock cycles. The entire process,
therefore, only requires 10928 cycles. At the 80 ns rate, the 1024-point
complex FFT is effectively executed in approximately 880 micro-seconds.

5.1.3.3 Quad VSP-325 Configuration

In the Quad VSP-325 configuration, the four VSP-325s can be paralleled
on the same bus, or on two different bus structures. The single bus
configuration is sho: in Figure 7. As the timing analysis reveals (Figure
8), the internal memory on all VSP-325s is configured as a single block of 64
complex words. The reason is that since four VSP-325s share the same system
bus, the overlapped I/0 and arithmetic capability of each processor can not be
exploited. Each wave of FFT processing requires 4810 clock cycles, thus the
9620 cycles required by the 1024-point complex FFT are executed in
approximately 775 micro-seconds. This is clearly not a very efficient
alternative, since a two-fold increase in processing power only yielded a 13;;
speed-up (from 880 micro-seconds down to 775 micro-seconds). The main reason
for the inefficiency is the emergence of bus contention problems during I/O
transfers. This is evident from the timing analysis shown in Figure 8.
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Program DataB
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Figure 7. Quad VSP Configuration -_Single Bus.

3 times

LD FFT ST LD FFT ST
130 , 550 110, 650 113011301130 130113a1130130 VSP #

II I I I

LD~ FF STL FT ST. 650 IS D 1301ST

-t I- -

_,_ _130, 5' ' 36 1 .130. . .

, ,LD FFT ,T : ,F FFT S
6130, 50 n13 0 VSP 0

3 times

Number of clock cycles per wave 130x2 + 650 + 130x13 + 650 4550
x 2

x 2 waves: %2 .
9100

Execution time - 9100 cycles x (80ns/cycle) m 730js

N. Figure 8. Timing Analysis - Quad VSP Configuration (Single Bue).

With two parallel buses, the bus contention problems are eliminated.

This set-up, shown in Figure 9, is similar to the dual VSP configuration in
the sense that two VSP-325s are assigned per bus. As a result, the processors
can exploit their overlapping I/O and processing capabilities. In this case,
however, four processors equally share in the number-crunching process, thus
enhancing overall throughput. As seen in the timing analysis (Figure 10), 1/0
is once again "free." The total number of clock cycles required to perform
the 1024-point complex FFT is reduced to 5728 cycles. Thus the effective FFT

1%
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execution time is approximately 460 micro-seconds. This is certainly one of

the fastest, if not the fastest, real-time floating-point processors
available. The fact that the processor can fit on a standard VME module only
magnifies the significance of the technological breakthrough.

Ported
Memory,vSP vSP 0

System System
Bus Bus

Figure 9. Quad VSP Configuration - Parallel Buses.

7 TIMES

LD FFT FFT ST
66 325 325 66 66 6

I VSP #1

'6666 66

LD ST LD
I~ IMES

1LO FFT FFT ST
'66 325 1325 166

66 8966o VSP #2

LD ST L

VSP #3 - Same as VSP #1
VSP #4 - Same as VSP #2

Number of clock cycles per wave 66x4 + 325x8 = 2864

x2 waves x2
5728

Execution time = 5728 cycles x (80ns/cycle) = 460us

Figure 10. Timing Analysis - Quad VSP Configuration (Two Buses).
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5.1.4 Architectural Implementation - The VPH

The architecture of the VPH is internally optimized for matrix and
signal processing tasks. This is primarily true due to the vector oriented
nature of the processors employed. Recall that the VSP-325s are capable of
processing blocks of up to 64 complex words with a s~ngle instruction.
Moreover, a VSP-325 based architecture facilitates algorithm partitioning in
the sense that multiple VSP-325s can be paralleled in order to share in the
data processing requirements. This is facilitated by the fact that internal
memory can be configured as two independent blocks of 32 complex words each.
As a result, data I/O and processing can be interleaved by using alternate
memory sections. This concept is extended outwards from the VSP-325s by
duplicating the VPH on-board memory. Hence, while the VSP-325s perform
parallel processing with interleaved I/O on the data from one RAM section, the
host or the CPH can be up-loading or down-loading data into the other memory
bank of the VPH. Once the current activities are completed, the roles of the
VPH memory banks are reversed. This function-swapping is the primary reason
for the efficiency and high throughputs attainable with the VPH.

A block diagram of the VPH is shown in Figure 11. The MC68010
microprocessor is used for data pre-processing and data-flow control to/from IM
the host, the CPH, or the VSP-325s. In order for the MC68010 to communicate %
with tne VSP-325s, it must first gain access to the appropriate system bus.
This can be implemented by means of the bus-request/bus-acknowledge
capabilities of the microprocessor. To communicate with the host or the CPH,
the MC6010 must do so via the I/O latch and the control latch shown in
Figure 11. The MC68010 is also used to monitor the status of all VSP-325s.
Upon completion of a processing task by any/all of the VSP-325s, the MC68010
must redirect inputs/outputs to the appropriate memory segments. Likewise,
the NC68010 must also pre-set the appropriate registers in the VSP-325s for
further data processing.

All four VSP-325s are connected in parallel, with the exception of tne
cnip-select, the bus-request, the bus-acknowledge, and the interrupt pins.
The reason is that all four processors participate in the data processing
operations. The bus-request and bus-acknowledge pins of each VSP-325 are
connected to a Bus Arbitration Module (BAM). This bus arbiter can be
implemented with PALs or with the Motorola MC68452. In this application, the
BAN monitors the bus request line for each VSP-325, and if a request has been
issued, the bus is granted to the appropriate processor by means of its
bus-acknowledge line. Once the BAN has granted ownership of tne bus to a
particular VSP-325, it will prevent another VSP-325 from gaining access to it
by simply not issuing a bus acknowledge. A priority arbitration scheme can
also be implemented with the BAM in the event that VSP-325s issue simultaneous
bus requests.
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With this architectural layout, the VPH is capable of executing DSP
algorithms at very high rates. A set of preliminary execution time estimates

are given in Table 4.

Table 4. Preliminary Algorithm Execution Estimates.

Algorithm Execution Time

1024 real element dot product 175.5 us
1024 point complex FFT

- one VSP-325 1.7 ms

- two VSP-325s 880.0 us .P
- four VSP-325s (single bus) 730.0 us

- four VSP-325s (two parallel buses) 460.0 us
Two Dimensional Complex FFT (256x256) 187.8 ms
Two Dimensional 3x3 Convolution (per output) 1.1 us
Matrix Multiply (50x50) 11.0 ms

32-tap FIR filter (128 real points) 382.4 us

5.1.4.1 VPH Microcode Layout

, In addition to the internal optimization of the VPH structure, the
architecture is also optimized externally in the sense that a host, such as a
general purpose computer or the CPH, may easily access any of the internal
resources via a simple function request. Upon validation of the request, the
VPH (by means of tne MC68010) informs the host whetner or not the function
request is valid. If the VPH can service the request, it first sets up all of
the internal resources needed, prior to informing the host that it is ready to
receive data. On completion of tne data transfer, the VPH can immediately
process the data and may simultaneously handle another I/O request as long as
at least one of the RAM sections is inactive. Once the data processing is
finished, the VPH informs the host that it may retrieve the results.

To facilitate this external/internal optimization of the VPH
architecture, two independent microprogram memories are required. One sector,
for external control, contains the microinstructions for the MC68010
microprocessor. The other, for internal control, contains the
microinstructions for the VSP-325s. As a result, the two processing sections
in the VPH (MC68010 and VSP-325s) can operate independently and concurrently
on data from either RAM section, or directly from the ,st. The microcode 61k

format for external control is given in Figure 12a, whim tnat for internal 7

control is provided in Figure 12b.

From Figure 12a, it is readily seen that up to 32 functions can be
executed with each of the processing sections of the VPH. Either processing

section is capable of operating on blocks of data up to 65556 words. Recall
that the MC68010 is provided for data pre-processing, data post-processing, or
both. It can also perform data processing and/or logic functions while tne
VSP-325s perform signal processing tasks. Up to now, the MC63010 functions
have not been clearly defined since most of the processing and interface S
requirements are not known yet. Nevertheless, the majority of the signal

processing tasks have been already identified and are listed in "able 5.
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Table 5. VSP-325 Functions.

Complex FFT Inverse Complex FFT

Real FFT Inverse Real FFT

Two Dimensional FFT Convolution
Correlation Two Dimensional Convolution

Two Dimensional Correlation FIR Filter
IIR Filter Matrix Multiplication
Matrix Addition Vector Multiplication
Vector Addition Division
Reciprocal Square Root
Arc Tangent DCT
Logarithm Min/Max Detection
Thresholding Comparison •

Modulation Demodulation

~~W C' -4 0- % 
_I

FUNCION REQUEST FNCIION REQUEST IRNSFER LENGTH 1/0

68K FUNCTION VSP FUNCTIONS 1/O OPERATIONS

15141131121111109 1876 4131211 0

Figure 12a. External Control Microcode Format.

2", 1 W-- X ,m '( U

>I >
__ ___ I - ,VSP INFORMATION..

RAM CONTROL VSP CONTROL

1211111019 876 5 4 7 216 10

Figure 12b. Internal Control Microcode Format.

The microcode format for internal control is shown in Figure 12b. The

layout shown in Figure 12b depicts the arrangement of the VPH internal

resources in order to execute the function requested. For instance, bits zero
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through three determine which of the VSP-325s is enabled or interrupting at
any given time. Bit four determines whih of the processing sections of the
VPH is enabled, while bits five through twelve control the individual RAM
sections.

5.2 The Cascadable Processing Hardware (CPH)

The main thrust of development for the CPH of the EVA architecture is to
organize it into efficiently coupled modules for signal and data processing
algorithms. Each module should have the exact same architecture whether it is
the least-significant or most-significant board. Several options have been
identified and their characteristics studied. They include: a cascadable AL]
with external multiply and divide support, a cascadable ALU with facilities on
chip to implement multiply and divide, and a high-speed ALU-Multiply chip-set
with multiply and divide functions available within the set.

Word length requirements include handling 8-, 16-, 32-, 48- and 64-bit
fixed-point data. in addition, 32- and 64-bit floating-point operations must
also be supported, whether by a separate floating-point module or by the same
fixed-point module performing the floating-point operations. The hardware
must also provide cascadability, where the number of modules required is
determined by the word length.

The following sections discuss the various options for module size,
board architecture, chip set selection and floating-point module alternatives.
An architecture comparison is then made. The recommended module size is 32
bits because the kernel processor selected is a 32-bit processor. -

5.2.1 Optimum Module Size

The lower and upper word length bounds are 8 bits and 64 bits,

respectively. To determine the optimum number of bits per board, tradeoffs
between spe~d desired, hardware used, glue logic required and board dimensions
needed have been investigated.

An 8-bit module is inappropriate because a 64-bit word length, requires
eight modules. As a s Lution, this architecture is far too bulky, heavy and
slow. Moreover, excessive glue logic is required to route inter-board
connections. A 64-bit module is also deemed inappropriate because an 8-bit
word length causes too many resources to be idle, thereby yielding undesirable
waste. This only leaves 16-bit and 32-bit modules to consider. Whether a
16- or a 32-bit module is used, it will support a 16-bit fixed-point and 32-
bit floating-point incremental word length.

.%

"- Looking at 16-bit and 32-bit modules, both offer different advantages.
For the 16-bit module, wasted resources are minimized as the word length is
varied. A smaller board is all that is needed to handle the shorter word
length on each module. However, since the hardware requires four boaris to
provide the maximum word length, the overall size is greater. Since tn:e

hardware is land based, the board size is not as critical as other parameters
(i.e. speed).

For the 32-bit module, less interboard connections are required.
VIncluding more logic on each board also minimizes propagation delay because
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interconnections are shorter. Less decoding glue logic is needed since all
signals either stay on the first board or propagate to a second board. This is
in contrast to the 16-bit module where the signal must choose a correct path
to three other boards. A smaller quantity of boards are required to achieve
the maximum capabilities of the system. Less space is required in the
backplane because the boards will only take up two slots instead of four as is
the case with 16-bit modules. As will be covered in a later section, the 32-
bit module can also use faster parts to perform the same operations.

After examining the parameters related to module size (propagation
delay, parts speed and interboard connections), 32 bits stands out as the best
choice for incremental module size. This conclusion is supported by the
architectural analysis described in the following sections.

4
5.2.2 Board Architectures

Three types of architectures have been identified which display the
desired characteristics. The three architectures studied are: a cascadable

ALU with external multiply and external divide support, a cascadable ALU with
facilities on chip to implement multiply and divide, and a high speed ALU-
Multiply chip-set with multiply and divide functions implemented within the

set. These architectures are now discussed in further detail.

5.2.2.1 Multiplier/ALU Set (16 Bits) With Newton-Raphson Divide

The architecture involving a cascadable ALU with external multiply and
divide support uses the IDT49C402 16-bit cascadable ALU and the IDT7210 16x16-
bit multiplier. A table-look-up (with the appropriate glue logic) is also
used to implement divisions. The divisions use an algorithm based on the
Newton-Raphson method for computing roots of an equation. The architecture
most logically supports a 16-bit module since both the ALU and the multiplier 0

are 16 bits.

Cascadable additions and subtractions are implemented easily for all
fixed-point wordlengths since the ALU is designed for that operation.
However, the multiplies and divides are not supported by the cascadable ALU.
A 16 x 16-bit multiply is performed by a 16 x 16-bit multiplier. For longer S
wrl'.engths, the module must combine special multiplies, shifts and adds. For
the worst case, a 64 x 64-bit multiply is described using the 16 x 16-bit

multipliers.

To multiply two 64-bit operands using 16 x 16-bit multipliers, the -w.
operation is divided into 16-bit sections. For example, if a3 represents tne •
most significant lo bits of the 64 bit word "A", and a represents the least

significant 16 bits of the 64 bit word "A", the multiplication is partitioned
into several submultiplies and adds as shown in Figure 13.
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<-64 BITS->
a 3  a 2  a, ao  <- WORD A

x b b2  bI. b0  <- WORD B

a3 0 a 2 b0 alb 0 1 obOa3 b, a2b I a, b, sob I
a 3 b2 a2 b2 a, b2 aO b2

+ 7 b - a b b a b _z _

Fiur 13. 64 x 128bi Miultisply

Care must be taken when aligning the partial products according to their
significance because each submultiply result (for instance a0 bO) is 32 bits

long. Therefore, the most significant 16 bits of aO0  will be added to theleast significant 16 bits of a lb2, and so on. The resuts, properly Lined up,

are shown in Figure 14. The erm aoboaob n represents the 32-bit result of

multiplying a0 by b, yielding the most significant 16 bits (leftmost a~bo)
and the least signipfcant 16 bits (rightmost aObo).

a 3  a2  a, aO  <- word A
xb b b b <- wordB

aoboaboa b boI a b0 a b0 ab

a3 b0 a3 b0
a ObI obI

a1 b, a1 bI
a2 b a2 bI

a3 b a3 b 2ab 2

a1 b2 a1 b2
a2 b2 a2 b2
2a 2bba b a ba3 2~ ~b 3 32.

a 2b 3 a2b3
+ a bab I_____3

K-- -- 128 bi-t result -- >-

Figure 14. The Proper Alignment of Partial Products.

For the least-significant 16 bits cf tne result, the least-signif'cnin:-

half of abO is dropped down. For the second least-significant 16 bits of tne W
result, t e most-significant part of aO0b is added to the least-slgnificnt

part of a bo. The carry flag is then added to the next stage (trie third
vertical column of adds). This partial result is then added to the iesc-
significant part of adbl ' again adding the carry flag to the next (third)
stage. Continue to adi the properly aligned submultiply results, as shown
lined up vertically in Figure 14, to obtain the 128 bit result. :f a 6.' b t
result is desired, the most significant 64 bits are used.
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Each 64 x 64-bit multiply, therefore, requires 16 multiplies, 24 bit-
slice adds, and 24 carry adds. A consiaerable aount if glue logic is
required to move the data for numerical calculation. The number -f carry adds
can be reduced to 6 by incrementing a counter on each stage every time a carry
occurs and adding the final carry count to the next most significant stage.

The divide operation takes the equation

C = A/B()

and calculates the reciprocal of B to evaluate

C = A * (1/B). (2)

The reciprocal calculation is based on the Newton-Raphson algorithm. The
equation for each iteration [10] is

x = * (2 - (B * Xi)). (3)

A 64k x 16 table-lookup PROM will provide the first guess (seed) to start the
process. The seed value must fall between

0 < seed < 2/B, B > 0 (4a)

anda 0 > seed > 2/B, B < 0 
(4b)

for the algorithm to converge. Iterations will continue until an acceptable

, error is acnieved. The error is reduced quadratically for each iteration;

therefore, the number of bits of accuracy roughly doubles each iteraticn. For
example, tne reciprocal of -.3 is -3.33333333 to ten decimal places. If

the seed was -2.0, the error after each iteration is shown in Table 6.

Table 6. Error After Each Iteration (to Ten Decimal Places).

ITERATION Xi ERROR TO TEN DECIMAL PLACES
0 -2.0 1.333333333
1 -2.8 0.533333333

* 2 -3.248 0.085333333
* . 3 -3.3311488 0.002184533

' 4 -3.333331902 0.000001431

For floating-point operations, a completely separate module must be
V developed. As it turns out, the architecture has almost tne same block

structure as the 32-bit BIT-chip module (to be discusses in section 5.2.2.3 '.

5.2.2.2 Architecture Using Cascaded 16-Bit ALU with Facilities for Multiply
and Divide

The architecture shown in Figure 15 uses the AM29203 cascadable ALU witn
facilities on-chip to implement fixed-point multiply and divile. The module
requires several processor interconnections that need extra glue logic.
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Figure 15. Architecture Using a Cascaded 16-Bit ALU with
Facilities for Multiply and Divide.
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It also requires numerous control lines to configure the selected wordiength 01
on the architecture. This architecture also requires a separate floating-I@
point module that will be discussed later. The fixed-point architecture is
best suited to the 16-bit module size, since the ALU is 4-bits wide and can be
easily cascaded to 16 bits with one carry-look-ahead generator.

Adds and subtracts are easily cascadable for all fixed-point
wordlengths. Speed is increased by using a carry-look-ahead generator which
allow carries to be anticipated and transferred to more-significant bit-slice
sections without waiting for the carries to ripple through each stage. With
four ALUs on each module, one carry-look-ahead generator is required for each
module, as shown in Figure 16a [10]. If the modules are cascaded, one more
carry-look-ahead level is required, as shown in Figure 16b [10]. Since all
modules are identical, three of the four modules (for a 64-bit wordlength)
must disable their second-level carry-look-ahead generator. Additional
hardware is required to correctly route the generate, the propagate, and the
carry lines to the active generator.

Unsigned and two's-complement multiplication are both supported by the
AM29203. For an N x N-bit multiply, N cycles are required to calculate the
result. Figure 17 [10] shows the algorithm for a 16 x 16 bit two's-complement •
multiply. Figure 18a and 18b [10] identifies processor interconnections
required for the same multiply. The same structure is used for longer
wordlengths, but it is expanded to include more bit-slices and to take more
clock cycles.

k The A1129203 also supports two's complement divide. As in the case for S
multiply, several cycles are required to calculate the result. Figure 19 [1OJ
shows the algorithm for a two's-complement divide. Figure 20a and 20b [I0]
identifies processor interconnections required for the divide. The same
structure is used for longer wordlengths, though it is transferred over more

bit-slices and requires more clock cycles.
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Figure 16a. One Level of Carry-Look-Ahead On A Module.
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Figure 16b. Two Levels of Carry-Look-Ahead.
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igure 17. Flow Chart for Two's-Complement 16 x 16 Multiply.
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Figure 18a. Processor Interconnections for First 15 Cycles of the 16 x 16-Bit
Two's Complement Multiply and for All 16 Cycles of the 16 x 16-Bit Unsigned

Multiply.
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Figure 20a. Processor Interconnections for the Two's-Complement Divide. 
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Figure 20b. Processor Interconnections for 
the Two's-Complement Divide.

Correction.

The AM29203 supports an 80 ns clock cycle, but for a
memory-access/arithmetic-operation/memory-write sequence, several cycles are

NJ required. Table 7 lists the number of cycles and the time required for the

sequence of operations from memory-read to memory-write. The times listed
take into account only a single operation without pipelining.

Table 7. Fixed-Point Operation Times.

WORD NUMBER OF CYCLES TIME (ns)
LENGTH / +*

16 4 4 20 30 240 240 1200 1800.
32 4 4 36 46 1-40 240 2160 2760
48 4 4 52 62 240 240 3120 3720,
64 4 4 68 78 240 240 4080 4680

NN 5.2.2.3 Architecture Using High-Speed ALU-Multiply Chip Set with Multiply and
Divide

The architecture involving a high speed ALU-Multiply chip-set with
integrated multiply and divide functions, shown in Figure 21 , uses the_•
B2110/B2120 Multiplier/ALU from Bipolar Integrated Technologies.
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This architecture requires only two 32-bit buses and a couple of shift input
and output lines between modules. Best of all, this architecture does not 0

require a separate floating-point module. The chip set performs fixed-point
add, subtract, multiply, boolean functions, shift and rotate. It also
performs floating-point add, subtract, multiply, divide, square root, absolute
value, negative, min/max and compare. The set also provides conversions
between fixed- and floating-point [11]. The architecture most logically
supports a 32-bit module since the ALU/Multiplier pair have 32-bit data lines.

The chip-set does not have its own internal register file, but dual-port
RAM can be employed to act as a register file and cache memory. Integrated
Device Technologies manufactures a fast (35 Ps access time) dual port memory
(IDT7132/7142) that would be ideal for this application. Bipolar Integrated
Technology manufactures a five-port (2 read, 2 write, 1 read/write) register S
file that has a clocked read cycle of 12 ns (typical). It is organized as 64
18-bit registers [12]. The BIT register file is inefficient because there is
no need for five ports, but it can still be implemented.

Even though the BIT chip-set is not designed to be cascadable, it is so
versatile and fast that it handles 32- and 64-bit fixed-point and 32- and 64- S
bit floating-point add, subtract, multiply and divide without any extra
support hardware or glue logic. However, for 8-, 16-, and 48-bit fixed-point
wordlengths, operations are performed on either 32- or 64-bit data and extra
hardware interprets the data as the correct length. One big advantage to the
architecture introduced in Figure 21 is that add, subtract, multiply, and
divide can be performed on the chip itself without the need to reconfigured
the architecture to perform the operation off the chip.

For all 16-bit fixed-point instructions, the data is sign-extended as "'4
it is loaded into the processors. Therefore, the processor can correctly
handle the 16-bit data as 32 bits. The processors then execute the
instruction and pass the result on to the shift stage. The least significant 4
16 bits are on the right. All shifts and rotates are done at this point, "K
instead of on the chip, since the most significant bit can be accessed through
the tri-directional transceiver. As the data proceeds through the
architecture, overflow detection hardware checks the most-significant 16 bits

for data overflow.

All 32-bit fixed-point instructions are handled with one board, much the 1
same way as in the 16-bit fixed-point case. However, minor differences exist.
The sign extend and overflow-detect functions (not including the actual chip's
overflow detect) are disabled. Also, the tri-directional transceivers allowdirect communication between the shift sections.

For 48- and 64-bit wordlengths, two boards are required, connected as
shown in Figure 22. The right module handles the least-significant 32 bits.
For 48- and 64-bit fixed-point subtract, one operand is inverted and added to
the second operand,then a 1 is added to the result. During addition, tne d
least-significant 32 bits are added independently from the most-significant 16
or 32 bits. Once these adds have occurred, the carry from the least
significant board is added to the most significant board.
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In the case where 48- and 64-bit fixed-point multiply and divide are
implemented, the architecture is arranged as shown in Figure 22. When
performing these operations, the least-significant module loads its 32 oits
(through the top bi-directional buffer) into the most-significant module's
multiplier chip. The most significant module then sends its 16 or 32 bits
into the multiplier which performs a double-precision multiply or divide. The
least-significant 32 bits are broadcast back to the least-significant module
(through the bottom bidirectional buffer) and stored into register 1. The
most-significant bits stay in the most-significant module, and are transmitted
to the shift stage at the same time the least significant bits are sent to the

shift stage.

Register 2 on the board is used when the bus width is 32 bits and a
longer wordlength is used. Both modules supply their 32 bits to register 2 at
the same time. One module then stores its data into register 2 while the
other module accesses the bus. The following clock cycle, the second operand
is then written to the bus.

In the case where 32-bit floating-point adds, subtracts, multiplies and
V divides are implemented, the architecture is arranged as previously shown in

Figure 21 . When performing these operations, only one board is required and
the hardware beyond register 1 is unnecessary, since all functions to be
performed are done by the BIT chip-set. However, this hardware is still used

in other configurations. %

When 64-bit floating-point adds, subtracts, multiplies and divides are
implemented, the architecture is arranged as was shown in Figure 22. When
performing these operations, the least-significant module loads its 32 bits
into the most-significant-module's multiplier/ALU. The most-significant
module then sends its 32 bits into the multiplier/ALU, which performs a
double-precision operation. The least-significant 32 bits are broadcast back
to the least-significant module and stored into register 1. The most-
significant bits stay in the most significant module and the rest follows the
same pattern as in the 48- and 64-bit fixed-point configuration already
discussed.

Comparing the floating-point hardware shown in Figure 21 and Figure 22
to the floating-point hardware required for the previously discussed
architectures, the only difference is the hardware beyond register 1 . All
other interconnections are the same. It makes little sense to have the same
architecture discussed in this section implement only floating-point
operations and a completely new architecture perform the fixed-point
functions, when a single architecture can do it all with a small increase in

hardware.
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The B2110/2120 chip set supports a 50 ns clock cycle; but for a
memory-access/arithmetic-operation/memory-write sequence, several cycles are
required. Table 8 lists the number of cycles and the time required for the
fixed-point sequence of operations from memory-read to memory-write. Table 9
lists the same parameters only for floating-point operations. The times
listed take into account only a single operation without pipelining.

Table 8. Fixed-Point Operation Times.

WORD NUMBER OF CYCLES , TIME (ns)

LENGTH + - / + - /
16 '5 5 5 9 i 250 250 250 450
32 5 5 5 9 250 250 250 450
248 9 11 9 15 450 550 450 750

64 9 11 9 15 450 550 450 750

Table 9. Floating-Point Operation Times.

WORD NUMBER OF CYCLES , TIME (ns)
LENGTHi + - * / + - /

32 5 5 5 7 250 250 250 350

64 8 8 9 11 , 400 400 450 550

5.2.3 Architecture Comparisons

The architectures have been compared at the hardware level in tne
previous sections. The architectures still offering potential are now
compared on the basis of execution speed. Table 10 compares board speed of
tne 16-bit A4D bit-slice module with the 32-bit BIT fixed- and floating-point
module. Table 10 also lists the number of operations performed in each

algorithm.
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Table 10. Speed Comparisons.

FIXED-POINT
DATA 16 BIT MODULE

NUMBER TYPE ALGORITHM #ADDS #MULTS #DIV 16 BITS 64 BITS
1 1 CMPX 1024 RADIX 2 FFT 30720 20480 0 31.95 ms 90.93 ns
2 REAL 4X4 MATRIX MULT 48 64 0 88.32 us 272.6 us
3 REAL 1OX10 MATRIX MULT 900 1000 0 1.416 ms 4.296 ms
4 REAL 64X64 MATRIX MULT 257919 262144 0 376.5 ms 1.131 sec
5 REAL 4 X 4 MATRIX SCALE 0 16 1 21.0 us 69.96 us
6 REAL 64X64 MATRIX SCALE 0 4096 1 4.192 ms 16.72 ms
7 CMPX COVARIANCE MATRIX GEN. 65536 131072 0 173.0 ms 550.5 ms
8 CMPX 32X32 LU DECOMPOSITION 29301 30229 32 43.36 ms 130.5 ms
9 CMPX 32X32 GEN. MAT. INVERT 156277 161173 496 231.8 ms 697.4 ms

10 CMPX 16 TAP FIR 64 64 0 92.16 us 276.5 us
11 REAL 16 TAP FIR 16 16 0 23.04 us 69.12 us

* 12 REAL 64 X 64 MATRIX ADD 4096 0 0 983.0 us 983.0 us
13 CMPX 32 X 32 MATRIX ADD 4096 0 0 983.0 us %83.0 us
14 REAL 1024 POINT VECiOR ADD 1024 0 0 245.8 us .'5.8 us

,4% 15 CMPX 1024 POINT VECTOR ADD 2048 0 0 491.6 us 4,;.6 us
. 16 REAL 1024 VEC. MULT (SCALAR) 1023 1024 0 1.470 ms 4.400 ms

17 REAL 1024 VEC. MULT (VECTOR) 0 1024 0 1.230 ms 4.180 ms
18 CMPX 1024 VEC. MULT (SCALAR) 4095 4096 0 5.898 ms 17.69 is
19 CMPX 1024 VEC. MULT (VECTOR) 2048 4096 0 5.410 ms 17.20 ms
20 CMPX 1024 CONVOLUTION 92160 62464 0 97.08 ms 277.0 is

Table 10. (Continued).

*" ,-. FLOATING-POINT i FIXED-POINT FLOATING-POINT
16 BIT MODULE 32 BIT MODULE 32 BIT MODULE

NUMBER 1 32 BITS 64 BITS 16 BITS 64 BITS 32 BITS 64 BITS

1 10.24 is 18.94 ms 12.80 ms 24.58 ms 12.80 ms 21.50 is
2 22.40 us 42.40 us 28.00 us 52.80 us 28.00 us 48.00 us
3 380.0 us 715.0 us 475.0 us 900.0 us 475.0 us 810.0 us

V 4 104.0 is 195.1 ms 130.0 ms 246.9 ms 130.0 ms 221.1 ns
.40 5 3.500 us 6.900 us 4.450 us 7.950 us 4.350 us 7.750 us

6 819.5 us 1.639 ms 1.020 ms 1.840 ms 1.020 ms 1.840 ns
7 39.32 ms 75.37 ms 49.15 ms 91.75 ms 49.15 ms 85.20 is
8 11.92 ns 22.36 ms 14.90 ms 28.28 ms 14.89 ms 25.34 ms
9 63.64 is 119.4 ms 79.59 ms 151.0 ms 79.54 ms 135.3 ms

10 25.60 us 48.00 us 32.00 us 60.80 us 32.00 us 54.40 us
11 6.400 us 12.00 us 8.000 us 15.20 us 8.000 us 13.60 us
12 819.2 us 1.430 ms 1.020 ms 2.050 ms 1.020 ms 1.640 is
13 819.2 us 1.430 ms 1.020 ms 2.050 ms 1.020 ms 1.640 ms
14 204.8 us 358.4 us 256.0 us 512.0 us 256.0 us 409.6 us
15 204.8 us 358.4 us 256.0 us 512.0 us 256.0 us 409.6 us
16 409.4 us 767.7 us 511.8 us 972.3 us 511.8 us 870.0 us
17 204.8 us 409.6 us 256.0 us 460.8 us 256.0 us 460.8 us
18 1.638 ms 3.070 ms 2.050 ms 3.890 ms 2.050 ms 3.480 ms
19 1.230 is 2.360 ms 1.540 ms 2.870 ms 1.540 ms 2.660 ms
20 30.92 is 57.24 ms 38.66 ms 74.19 ms 38.66 ms 64.97 ns
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5.2.4 CPH Microcode Layout

The CPH preliminary architecture design, shown in Figure 20, requires
115 bits of microcode to control. Figure 23 maps out the bit pattern showing
bit position, field name, subfield name and bit description. The 115 bit word
is broken into the seven fields shown in Table 11.

PTable 11. Fields of the CPH Microcode Wor'-.

FIELD NAME MNEMONIC # SUBFIELDS # BITS
1. Sequencer SEQ 5 21
2. Address Generation AG 10 31
3. Buffers BUF 3 5
4. Multiplier/ALU MA 4 16
5. Shift SHIFT 6 18
6. Overflow OV 1 3
7. Cache Bus Control BUS 5 21

Totals 34 115

The sequencer field is responsible for controlling program-flow usingthe IDT49C410 (preliminary selection) microprogram sequencer. The IDT49C410

is capable of addressing up to 65,536 words of microprogram memory, however
the initial design is only accessing 2048 words. This depth is expandable by
adding extra bits to the branch-addr/loop-counter subfield and increasing the
number of address lines. The 16 available instructions allow versatile
sequencing including branch, loop, jump, etc. throughout all of the available
microprogram memory. A 33-deep stack is also available which allows nested
looping. For conditional branching, 16 possible conditions/flags can be
selected from microcode for increased versatility.

5 The address generation field provides efficient address sequencing for
signal- and matrix-processing in addition to efficiently generating addresses
unrelated to previously generated addresses. The 17 most significant bits in
the AG field are dedicated to FFT addressing. DIT/DIF, radix 2/4, and pre-
scrambled-data algorithms are supported up to length 64k. Special programming
considerations are required to allow larger transforms. The remaining 14
microcontrol bits instruct a two-dimensional counter on how to increment to

, t h' next location based on the previous address generated. The field also
monitors the cache control lines.

The buffer field is responsible for configuring the architecture
correctly when two CPH boards are incorporated. The buffers eliminate tne
possibility of enabling two sources of data onto the same bus. When only one p
board is utilized, the buffers are always enabled.

The multiplier/ALU field controls processor instructions and processor
enabling. The most significant subfield enables the sign extend hardware,

Jf, which is used when operating on 16- or 48-bit wordlengths. The instruction
subfield 3elects the proper arithmetic, shift, rotate, compare or boolean
operation. The remaining subfields properly enable data in-to and out-of the
multiplier and ALU chip-set.
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The shift field sets up the control for the 714ASS)7 (preliminary
selection) 16-bit barrel shifter. Several subfields are available to enable
and determine what values are shifted in. The remaining subfields select the

shift operation to be performed.

The overflow field selects the appropriate correction to be performed if

an overflow occurs. The overflow-detect hardware is only used when
manipulating 16- and 48-bit wordlengths. The BIT chips have their own
internal overflow-detect for 32- and 64-bit wordlengths. As a result, there

is no need to enable the additional correction hardware for these wordlengths.

The cache bus sub-field controls the data written into the cache memory.
Registers are included to hold data until the bus is ready. Moreover, when
two boards are cascaded together, the least-significant 32 bits can be
transferred on the system bus in one cycle while the most-significant 32 bits

rA are transferred on the system bus in the following cycle. The sign extend
input extends the sign while manipulating 16- and 48-bit wordlengths. This
allows error-free wordlength changes during execution time. Immediate data can

Sbe written into the cache directly from microcode using the sign extend input.
This increases flexibility and should also aid in the test and debug stages.
Additional subfields are available to properly route tne data to the cache 0
memory or onto the system bus.

The microcode EPROMS shall be placed as close as possible to the chips
they control. This distributed control technique minimizes propagation delays
in addition to minimizing bus interconnections. The 11-bit-wide address is
transmitted to each of the control chips as opposed to transmitting all 115
bits from a central area all over the boards as would be t.e case in aI centralized control. A

5.3 EVA Architectural Recommendations

Extensive comparative analyses and continuous interfacing with WSMR
technical contacts have helped identify the major I.C. building blocks for the %

VA architecture. It has been concluded that the B21 10/B2120 chip set from
Bipolar integrated Technologies and the ZR34325 from ZORAN Corporation offer

high speed and flexibility for the EVA number-crunching requirements.

In the case study of a 1024-point complex FFT, a single VSP-325
configuration executes the algorithm in approximately 1 .7 milli-seconids. !n

the dual VSP-325 configuration, the 1024-point complex FFT is executed in
approximately 880 micro-seconds. For the quad VSP-325 configuration with two
parallel buses, the execution time is approximately 460 micro-seconds. This

is one of tne fastest, if not the fastest, real-time floating-point signal
processors available. Equally impressive benchmarks are possible if the
B21IO/B2120 chip set is employed for the CPH. After considering the trade-
offs between the speed desired, amount of hardware required, and board size
needed, a 32-bit incremental module size employing the BI chip set is

S recommended. The primary reason ia that fixed- and floating-point operations

are supported by the same processors, thus maximizing efficiency, thrmughput,
and versatility.
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6.0 Applications of EVA

6.1 Kalman Filter Realization

The Kalman filter is very useful for radar tracking systems using phased
array techniques. Performing the algorithm in real-time is very desirable.
The Cascadable Processing Element and the Vector Processing Element were
examined to see if either could execute the Kalman filter efficiently in real-
time. A scheme is described that will allow real time calculation by assuming
some values to be constant for several samples observed.

6.1.1 Kalman Filter

Kalman filters have been implemented in many phased array radar tracking
~equationsystems. The actual target parameters estimated are given in the state

x(K+I) = A x(K) + B u(K). 
(5)

The output equation

y(K) = C x(K) + v(K) (6)

yields the observed parameters from the radar system that approximate the
actual parameters.

The Kalman filter is very computation intensive [13, requiring five
equations to perform the algorithm

_ K = A X"K-1 (7

Pb(K) = A Pa(K-1) AT + (3)

K(K) = Pb(K) CT C Pb(K) CT (9

,X"(K) _ -XK

-"K ' ~K + K(K) L'Y(K) - C X'(io

Pa(K) [I - K(K) C] Pb(K), ()

where

M = B Qu BT 12)

Equations (7)-(11) form the Kalman filter where (7) is an initial estimate,
(8) is the error correlation before an update, (9) is the Kalman gain, (10) is
the final estimate, and (11) is the error correlation after upaate. The
components of each equation are explained in Table 12.
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Table 12. Kalman Filter Equation Components.

ELEMENT ELEMENT
NAME DESCRIPTION DI MENSTON

u(K) = RANDOM INPUT nxl
v(K) = ADDITIVE NOISE mx1
x(K) = STATE VECTOR nxl

y(K) = OBSERVED VECTOR mx1
n = NUMBER OF ACTUAL STATES n
m = NUMBER OF OBSERVED STATES m
A = CONSTANT FROM STATE EQUATION nxn
B = CONSTANT FROM STATE EQUATION nxn
C = CONSTANT FROM OUTPUT EQUATION nxm
M = TEMPORARY CONSTANT nxn
Qu = EXPECTED VALUE OF u (AUTOCORRELATION) nxn
Qv = EXPECTED VALUE OF v (AUTOCORRELATION) mxm
x(K+1) = NEW VALUE OF STATE VECTOR nxl

Note A, B, C, Qu, Qv, and M are predetermined constants and no calculation is
required inside the algorithm.

Real-time Kalman filter processing is desirable to provide the results
instantaneously. Technical contacts at WSMR have suggested a 50 kHz sampling
rate for this study. Since the filter is matrix- and vector-operation
intensive, numerous calculations are required. Techniques to decouple the
Kalman filter were Investigated.

The equations can not be calculated in parallel because (9), (10), and
(11) depend on the results calculated in (8), (7), and (8) respectively. If
one module was to calculate the five equations, it wouli make sense to e

calculate (7) first, then sequentially through (11). The number of operations
for each equation is shown in Table 13.
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Table 13. Number of Operations In The Kalman Filter Equations.

EQUATION OPERATION # MULTIPLIES # ADDS # RECIPROCALS

(7) [nxn] [nxl] mult n2  (n-1)n 0

(8) 1 nxn nxn mult n3  (n-1)n 2  0
, nxn nxn mult n3  (n-1)n 2  0
nxnJ Lnxn, add 0 n2  0

(9) Fnxnl nxm mult n2m (n-I)nm 0
'mxnj 'nMl mult m2n (n-1)m 2  0
mxm Lmxm1 add 0 m2
Lmxm inverse (5/6)m 3 + 3m2  (5/6)m 3 + 2m2  m

-(29/6)m + 5 -(11/6)m + 5
[nxm] [mxm] mult m2n (m-l)nm 0

(10) Fmxn Fnx1 mult mn (n-1)m 0
mxl mxl sub 0 m 0
nxm,, mxl mult nm (m-1)n 0

Lnx1 nxli add 0 n 0

(11) nxramxn mult n2m (m-l)n 2  0
nxn nxni sub 0 n 0

Lnxn] Lnxn. mult n3  (n-1)n 2  0L141

Adding all of the operations together, there are

(5/6)m 3+m2 (2n+3)+m(2n2+2n-(29/6))+3n3+n2+5 (I

total multiplies and
(5/6)m 3+m2 (2n+2)+m(2n2-(11/6))+3n 3-n2-n+5 (I

total additions and

m (15

total reciprocals. No additional calculations are required for matrix
transpose since special addressing can perform tne transpose operation. in

the worst case, m is set equal to n making (13) equal to

(47/6)m3+6m 2-(29/6)m+5 (16)

and (14) equal to

(47/6)m 3+m2-(17/6)m+5. (V)

The Vector Processing Element (VPH) takes

Ix 12m 3 + 56m 2 -8m + 76 (18)
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operations to perform the Kalman filter algorithm which uses an 80 ns clock
cycle. The VPH has special cases for matrices larger than 8x8 because tne

chip has a limited amount of memory for the matrix elements causing more %

overhead operations, so (18) is only true for m=n less than 9.

Table 14 compares the required calculation time for different dimensions

of state vectors (m and n) for the proposed architectures. Table 15 lists
what sampling rate could be achieved for each size of state vector and also

how many boards would be required for a 50 kHz sampling rate.

Table 14. Calculation Time Required for Several Dimensions of

State Vectors for The Full Algorithm.

CASCAD PTL CASCADABLE VECTOR

SIZE 16-BIT FIXED- 32-BIT FLOATING- PROCESSING
(n=m) POINT FORMAT POINT FORMAT ELEMENT

1 21.2 us 6.7 us 10.88 us
2 117.8 us 37.9 us 30.40 us
3 364.7 us 119.6 us 70.40 us

4 829.4 us 275.3 us 136.6 us
5 1.6 ms 528.5 us 234.9 us
6 2.7 ms 902.7 us 3-O.9 us

7 4.2 ms 1.4 ms 550.4 us
8 6.2 ms 2.1 ms 779.2 us
9 8.8 ms 3.0 ms 945.8 us

10 12.0 ms 4.1 ms 1260. us -
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Table 15. Achievable Sampling Rates With One Cascadable Module and Number of
Modules Required For A 50 kHz Sampling Rate for The Full Algorithm.

CPE CPE
FIXED-PT FLOAT-PT VPH i BOARDS REQUIRED FOR 50 kHz SAMIPLING

SIZE SAMPLING SAMPLING SAMPLING 'FIX-PT FLOAT-PT VECTOR PROC.
(N=M) RATE (Hz) RATE (Hz) RATE (Hz) FORMAT FORMAT ELEMENT
1 47k 149k 91.91K 2 1 1

8.5k 26.3k 32.9K 6 2 2
3 2.74k 8.4k 14.2K 19 6 4
4 1 .2k 3.6k 7.3K 42 14 7
5 633 1.9k 4.3K 84 27 12
6 373 1.1k 2.7K 134 46 19
7 238 704 1.8K 211 72 28
8 161 476 1.3K 311 105 39
9 114 335 1.1K 440 150 48
10 83 245 .79K 599 205 63

Obviously, for a typical state vector size of around 6, it is
impractical to implement the entire algorithm on the VPH or the CPE in real
time. Too many modules are required. Another method to implement the Kalman
filter is to assume (8), (9) and (11) aie constant over several samples. This
eliminates a large number of calculations for each sample. Only 3m2

multiplies and (3m2 - m) additions are required for each sample. The price
paid for this increase in speed is a decrease in accuracy. Table 16 compares
the required calculation time for different dimensions of state vectors (m and
n). Taole 17 lists what sampling rate could be achieved for each size of
state vector and also the number of boards required for a 50 kHz sampling
rate.

Table 16. Calculation Time Required for Several Dimensions of
State Vectors for The Approximated Algorithm.

CASCADABLE CASCADABLE VECTOR .
SIZE 16-BIT FIXED- 32-BIT FLOATING- PROCESSING
(n=m) POINT FORMAT POINT FORMAT ELEMENT .
1 4.1 us 1.3 us 3.2 us
2 16.8 us 5.5 us 9.0 us
3 38.2 us 12.8 us 20.3 us
4 63.2 us 23.0 us 38.7 us
5 106.8 us 36.3 us 65.6 us
6 154.1 us 52.5 us 102.4 us
7 210.0 us 71.8 us 150.6 us
8 274.6 us 94.0 us 211.5 us 0
9 347.8 us 119.3 us 255.0 us
10 429.6 us 1.7.5 us 377.9 us

0
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Table 17. Achievable Sampling Rates With One Cascadable Module and Number ofModules Required For A 50 kHz Sampling Rate for The Approximated Algorithm.

CPE CPE
FIXED-PT FLOAT-PT VPH iBOARDS REQUIRED FOR 50 kHz SAMPLING

SIZE SAMPLING SAMPLING SAMPLING FIX-PT FLOAT-PT VECTOR PROC.
(N=M) RATE (Hz) RATE (Hz) RATE (Hz) FORM4AT FORMAT ELEMENT
1 245k 800k 312.5k 1 1 1
2 59.5k 181.8k 111.6k 1 1 1
3 26.2k 78.4k 49.2k 2 1 2
4 14.7k 43.5k 25.8k 4 2 2
5 9.4k 27.6k 15.2k 6 2 4
6 6.5k 19.1k 9.8k 8 3 6
7 4.8k 13.9k 6.6k 11 4 8
8 3.6k 10.6k 4.7k 14 5 11
9 2.9k 8.4k 3.9k 18 6 13
10 2.3k 6.8k 3.Ok 22 8 17 ~. .

The estimates presented in Table 17 are much more realistic than the
estimates listed in Table 15. Real-time calculations are easily obtainable
for the CPE module (floating-point format) and the VPH module using a 50 kHz
sampling rate. For fixed-point formats, the number of modules required
approaches the limit of the number of modules that should be allowed. In one
system, efficiency drops noticeably when incorporati-ig approximately eight
modules. In this case, the VPH is slower than the CPE because the VPH
requires overhead cycles that are noticeable for small calculations.

The system, if it were configured to perform the Kalman filter, would
consist of the required number of modules (determined by the sampling rate and
the size of the state vector). Instead of pipelining the five equations (for
one sample) between the boards, each board would be responsible for its own
separate sample. The first sample would be sent to module 1 and calculated.
As sample 1 is being calculated, sample 2 would be sent to module 2 and
calculated, and so on. Only x"(k) and P (k) are required to be passed from
the kth to the kth+1(mod n) modules. .n additional board is required to
multiplex and to demultiplex the samples and the new estimates, respectively.
After a predetermined number of samples have been processed, (8), (9) and (11)
are recalculated for the next set of samples. This causes a discontinuity in
real-time sampling since time is taken away from calculating (7) and (10) to
calculate (8), (9) and (11).

A partitioning scheme for the Kalman filter routine has been presented.
For realistic state-vector dimensions, the Cascadable Processing Element anc

% the Vector Processing Element can execute the Kalman filter algorithm in real-
time by using a scheme that allows some values to be constant over several
samples. This eliminates a large number of calculations for each sample. The
price paid for this increase in speed is a decrease in accuracy. For a
typical state vector dimension of 6, the Kalman filter would require three CPE
modules to support a 50 kHz sampling rate. If the VPH were to implement the
algorithm, six modules would be required. If both the CPE and the VPH
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performed parallel Kalman filter processing, even higher sampling rates could

be achieved. 0

The VPH architecture has natural ALU structures to support high speed

digital focusing. In the multi-mode automatic tracking system at WSMR the VPH
can execute short FFTs in microseconds. Images can be transformed to the
frequency domain, edges and critical masspoints can be more easily determined,
and focusing accomplished in one frame time. The procedure is to compute the
2D FFT on a zoomed locality, execute a Laplacian derivative (second
derivative) to sharpen up edges for contouring, and track the frequency lines
of interest. Those which increase or decrease intensity after median filtering
denote focus status.

The digital focusing requirements for blurred images at WSMR will assist
lens focusing and can be met with this architecture using the vector
processing module as follows. As a VME double height board, it can plug
directly into existing WSMR backplanes to perform a zoom on a 256x256 frame to
a 16x16 frame where the target can be 2D-FFT'd as shown in Figure 24. The 2D-
FFT will give a spectral window of the spatial content. Movement of the
spectral peaks will identify blur or focus from frame to frame. Prior to the
FFT, an edge enhancement step may make the spectral analysis clearer. Recall
that close up focus is highly desired anyway. This is very important for
multiple munition scenes. The P2 connector on our board can use the VS and HS
signals from WSMR boards to sync pixel clock, window region, frame region, and
an eventual target classifier signal (which may be simply a binary on/off
trigger). Our RS232 output can then be fed directly to WSMR tracker gear. The
application for this technology is shown in Figure 24. 0.

-o
The actual functions which the board will perform looks like the

sequence shown in Figure 25. Using a 6-bit TRW flash converter, the digitized -

signal is fed to a frame grabber. Then either edge enhancement is performed
(if needed) or the 2D-FFT is executed on the zoom segments. From this point, a

digital amplitude detection on the spectral contents is done. Finally, the
relative position estimate is made and signals to the WSMR stepper motors will 
drive the lensing mechanisms to perform fast real time focusing. A rotator can

align the image to a fixed axis (so a simple 1D-FFT is used) or we can perform
a 2D-FFT on complex data. Our board can perform a 16x16 2D-FFT in 1.8
milliseconds and easily keep up with a 60 per sec Frame rate of 16.6 ms.

6.2.2 Multi-Spectral Data Processing S

The CPH and VPH modules can be coupled to integrate six sensor inputs.
These modules have sufficient registers and memory to capture a "data pass",
colocate, and align the frames. The procedure is to take one sensor as
primary, register others along this boundary, compute the RMS error of each
datum position, and update the pointers to data base. These computational ]

steps take less than 40 usecs for short frames.

% -
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6.2.3 Digital Filtering With Simulation Models

Conventional polynomial process models are fast. However, simulation
models are more realistic. The VPH is a microprogrammable architecture which
can incorporate novel algorithms without resorting to slow high level code.

%Direct computation of Kalman, LS, LMS, and splines make this architecture
better suited to real-time digital filtering.

6.2.4 Real-time Processor for Large Aperture Array

The VPH can be microprogrammed to compute the angular resolution cells
in detected targets by monitoring 9 adjacent cells in the focal plane. The VPH
is organized to compute "array-like" data efficiently because sufficient
registers and ALU power exists in its internal vector processors that can
process up to 128 element vectors in one microinstruction! A nine element
vector by vector multiply can be executed in an estimated 80 nanoseconds.

6.3 Best Fit Edge Detection For Missile Imaging and Digital Focusing

V The texture, contrast, and "noisiness" of missile tracking imagery data

belongs to the class of visual images that requires unconventional and non-
classical processing techniques. For instance, the digital Laplacian operator
cannot be directly applied to these images without further modification. This
is vividly portrayed in the application of classical edge detection techniques
to visual images that are very "busy", which tends to amplify the granularity
of an image rather than generate useful edge detection. A comparative study
of classical edge detection techniques is described with actual atmospheric
data obtained from geostationary satellite data.

This study was made to determine optimal strategies for removing clutter
fr from missile data in real-time so tracking can be enhanced. Most of tfe

clutter data analyzed is cloud backgrounds. In principle, if clouds can be
edge-detected, then a cut-and-fill operation can eliminate the "artifact".
The best edge-detected algorithms are thus important so that digital focusing
can be more easily accomplished.

* . 6.3.1 Technical Background

Use of finite difference approximations to linear isotropic derivative
operators such as the gradient and Laplacian as edge detectors are well
documented .15J. Given the point (i, j), the magnitude of tne digital
gradient of f is

Ax f(i' J 2 + i ' ) (19)

where

6 f(i. j) f (i. J) - f(i - , J) '20)

and
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4

6 :y (i, j) (i, ) f f( , j - i) (2 1)

A popular approximation to this expression is the Roberts' gradientI

approximation [161:

i - g(i + 1. j + 1)) + ( g(i+ 1, j) - g(i, j + )] I22a)

where

g(i. J) - if -i. J). ,22b)

6.3.2 Classical Edge Detection Techniques

In this study, the following variation to the Roberts' gradient was used(see ',15])- .
(e max (If(i, J) - f(i + 1, j + 1). jf(i +  I, j) - f(i, J + I). (2 )

As noted in [15], the differences in this expression are symmetrical
about the point (i + 1/2, j + 1/2) and hence, the Roberts' gradient should be 0
considered an approximation to the continuous gradient at that point rather

than (i, j).
The discrete Laplacian of f at the point (i, j) is given by

72 f( , ) - f(i + , j) + f (i -l j) + f(ij, + ) + f(ij,- 1) -4f(i, j) (24) .

Recalling that the second derivative of f at the point x can be
approximated by o

f "(x). f (x + h) + f(x - h) - 2f(x) (25)

2

where h is the positive grid parameter, we can interpret the digital Laplacian
combination of the finite difference approximations to be "horizontal" and

"vertical" derivatives of f at (i, j) with stepsize h=1.

We have applied the Roberts' gradient (23) and the Laplacian (24) to
some digital infrared GOES-i data (Figure 26a). Although the Laplacian and do

the Roberts' gradient perform nearly equally well on the smaller cloud masses,

both fail to yield a contiguous boundary on the larger clouds. As an edge
detector, the Laplacian suffers from the defect noted by Rosenfeld and KaK

L15] of being more sensitive to the detection of lines, line ends and points
' over edges. Hence, the somewhat "noisy" result, especially in the larger

cloud masses. This "noisiness" has also been noted by Eberlen and Weszka

L17]. It should be noted, however, that their definition of the Laplacian . ,'

magnitude differs from ours and is given by %

V 2 f(i. J) - [f(i- , - 1) f( i- 1, j) + f(i- 1, j + 1) + .% "

(i, j - 1) + f(i, J) + f(i, j + 1) + f(i + 1, j - 1) + (i + 1, ) + 126) 0

f(i + 1, j + l)j- f(i, }I)1

6o



1*3-'ng the sradien-, a pproxirnat -on

mx [ f ( -- 1, j 1) f(i 1, j ) + ' f (i + 1. -3 ) f (i + 1) .p

f i + 1, j-1) f f(1 1, j+ 1) f f(i, j+ 1) f f(i + 1, j+ 1)].27

1

(a)

W%%

(b) 
i

Figure 26. Results of Applyn th oberts' Gradient (b) and the Absolute
Value of the Laplacian (c)toSome _Infrared GOES-I dat-a a

* .~age'i~ui~ ~sEnhacedby inerlySpreading Values From 0 to 110 to
the Full 0 to 255 Range. 4
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there is a slight, but noticeable improvement in tne edge detector output of -

ERTS-1 data when (26) is subtracted from (27) at each point.

To extend this idea intc the nonlinear domain, we formed the product the

Roberts' gradient and the Lraingiven by (2 1) and (24) respectively wit.n
the result shown in Figure 27. The results are less than excellent.

Fiue2.Rsl fFrmn h rdc fteRoet'Gain n h

Figue 27. Reslultoringh the Prductgofal thderts'e Grdintan t

Aser note e atr ier thlued disce ae orap acia is mrel the inur
comgboation of tes fiit dfrferencea apoiatins tne "horizontal' and t
"vertial dherivaltis of flyn at (is ' oal ymt operator isceetdinFgr an"b,
coratedpbyincludng enaso tea to "diaonal" degrae aproxiatiobertto

gradientf~i (2-) an [f-mieti Laplacian) f(i aple 1. th ines of - fi.jl/

whregna theutpuft) r "is inlvedso t censate for-e te c ou th ge t bieo
neignbors~ are in tines aslfar. frome~ j asrc n ars te hiontaln and vem,-r'
onplcs. Ther reutse ofaplingie n operato e is a pente in igunlr. t-an,
lft comarin, tanslaroe-o area is 3 shown int gresu29witno- theroets'n
grediynte(2i) and symmetictLpaiure. apid ote neseo n

orignaloutut) Thi inerson roceurefores he coudedg tobe
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Figure 28. Result of Applying theSymmetric Laplacian.

One of the defects of the above methods is the existence of segmented
cloud borders in the operator output. A weighted two-dimensional high pass
filter,

f(i, J) -f(i, J) - /'29)

where

ir+ l. r+l.
4 z z W9.,m f(i -(--T--) + j - (M) , -n

R 1,r m-1,r 2.-

i-1,r m 1,r

with

W, w x wa, i, r - a)

where
= 1, 7

+"I - i i '31 b

for r = 17, was applied to the satellite image and tne Roberts' gradler, was
then applied with the result shown in Figure 3i. As can be seen from this
picture, the filtering technique shows promise of closing the gaps pr.valer.t
in the former methods.

Based on the results of this study, a useful combination of filters anoi
operators would likely be tha- of a high pass filter an, an extended verso:n
of the gradient in which more neighbors of (i, j) are included in the operator
equation.
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Iy

6.3.3 Sobel Edge Detection

The Sobel algorithm for a 3x3 window computes

S = ',[a+2b+c)- [2 + 2f I e 12
+ LLa+2h+gJ - [c+2-d+ej] 2]/ 2  (32)

on the 3x3 window

a b c
h z d (33)
g f e .J

The architecture fine-tuned for this algorithm must perform row-wise and
column-wise addressing. The ZORAN VSP 161/325 is ideally suited. The
instruction sequence for row or column vectors becomes

INSTR CLOCK CYCLES

1. LD 8
2. ADDR 13
3. MULTR 15
4. kDDR 13

49x.1 = 4.9 us

This is repeatea four times along with two squaring (2xMGSQ) plus one squareg root for an estimated tjoal computation time per pixel of (4.9x4-2x.8+1O)
J1.2 us. On a 16x16 ZOOM, real time Sobeling is now feasible with frame rates
of 60 per sec.

%:.

6.3.4 Optimal Tracker Architecture System Description

The general features of the system (see Figure 31) include: (a) computer
control of both internal data routing and user interaction, (b) computer
command interface wi~n manual diagnostic test panel, (c) data input
multiplexing for data stream merge and/or separation, (d) eight solid state
memory planes, eight bits deep for 512x512 pixel storage reconfigurable in any
combination from 64 s.--bit planes to 8 eight-bit planes and randomly
accessible at varying access cycles in read or write mode, (e) memory output

,., multiplexing to route the data stream to any of five look-up tables (LUT's),
(f) five video rate and format output ports via tne LUT's witn high speed
digital-analog converters (DAC's), (g) a video tape recording output port with
automatic red-green-blue (RGB) to NTSC [18] conversion for recording format,
(n) a microprogrammable timing and control unit for variable recoraing,
transmisrion, playback, video display and direct-memory-access (DMA, by
computer, and, (i) a high speed output port for self-diagnostic tests.
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Figure 30. Result of A~ying the Roberts'_ Gradient _to an ImaeWhc Has

Been Subjected First to a 2-Dl High Pass Filter.

Due to inadequate reproduction, the above Figures do not accurately display
the results obtained in this study. Photographic prints of Figures 26 through
30 are available upon request.
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6.3.4.1 Command Processor 6

The primary control link is the Command Processor (see block 2 of
Figure 31) which can perform both in automatic or manual mode. In automatic
mode, the computer issues necessary commands via programs generated for
various weather map manipulations. At present, 17 primary commands or
instructions are available and are listed in the Appendix. Note that each
command has several sub-commands or select codes. For example, the Set Output
Multiplexers (SOM) command can issue the seven select codes for the output
MUXes which route appropriate bits to various LUT's. Remaining primary
commands behave similarly and, when combined with their respective
subcommands, can generate up to 58 instructions.

These instructions are then decoded by the Command Processor (much like
the instruction register of a conventional computer) to actuate several signal
and control lines. In the current configuration, commands essentially control
input multiplexers, output multiplexers, memory addressing and cursor routing
which are primarily hardwired functions. More importantly, all instructions
for the command processor unit can also be generated by a manual test panel .
which conveniently serves as a diagnostic module. Static and dynamic
diagnostics can be exercised via this manual panel off-line from the computer
if desired.

6.3.4.2 Memory System %,

The memory is conceptually configured as a memory array much like STARAN

is configured as an array processor. Bits or words can be vectorized in both
instances; however, unlike STARAN which has a multitude of processing elements
for data stream computation. Our approach uses memory planes reconfigurable
on demand in either bits or words in any vector pattern. This reconfiguration
occurs dynamically (between vertical or horizontal retrace of video) by
Command Processor instructions which latch various input and output
multiplexers as shown in blocks 3 and 5 of Figure 31 . The same principle of
single-instruction-stream multiple-data-stream" for STARAN processors applies

to the memory blocks. The 16 bit data words from the computer interface can
be streamed out to several planes of the memory simultaneously via the input 7
multiplexers, one of which is shown in Figure 32. Upon exiting memory planes,
the data stream (of any widtn up to 8 bits) can be repacked in any fashion by
the output multiplexers. a

0

"p
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Figure 32. Input Multiplexer.

Two useful operations, which tne input/output mult;iplexers and memory ,'
planes rapidly perform, are the mirror and shift operations. Mirror P.

2 essentially transposes right and left images, while shi ft opera tes on V:

individual pixels to scale contrast up or down. The objective of this memory .
loading scheme is to reduce execution time required for manipulating bits and

! words in the computer itself and provide for instantaneous picture replication
. on several output channels, while allowing for future incorporation of ""

arithmetic capability in the separate output channels.

The primary mass storage medium consists of NNOS random access memory
'"- [I19]. Supporting the memory are the address/multiplexe r unit ano a

timing/control module. Each block (see Figure 55) contains two data
input/output ports, a half-dup~ex random access read/write port (for computer.-
interface) and a sequential or video read port. In sequential access, 16
consecutive one bit words are retrieved, loaded into a 16 bit high-speed shift .[

644

, register and clocked out as a single bit/plane at video dat-i transfer rates,,'
while parallel access is commonly obtained via the half-duplex port. Maximum ,.

:6694
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transfer rates for the video and RAM ports exceed requirements for
conventional 30 frames/sec refresh, and DMA, respectively. S

One major engineering task involved the design of a flexible addressing
scheme, described next, to provide for refresh of the dynamic RAM's regardless
of the state of the system without inhibiting video presentation (introducing
flicker, lines, streaks). As shown in Figure 33, three multiplexed addresses,
MADDR, VADDR, and RADDR, make up the memory address. The random access
address (MADDR) is 18 bits wide, externally loaded and automatically
incremented after each access. The sequential mode or video address (VADDR)
is 14 bits wide (bits 0-3 are zero) and is incremented by (VAINC) and cleared
by (VACLR) through external video timing. The upper 9 bits of the address can .

be viewed as a Y-address and the lower 9 bits as an X-address. On displaying
the memory on the video monitor, Y is the vertical direction and X the
horizontal. To read through the memory sequentially using MADDR simply
requires incrementing the address with Y the most significant and X the least
significant bits. In video or sequential access from memory to the monitor,
the even Y-addresses are read first and then the odd (interlace). For this
reason the Y-address in VADDR is rotated so bit 8 is in bit 0. In
incrementing VADDR, bit 8 of the X-address carried into bit 1 of the Y-address
and bit 8 of the Y-address carries into bit 0 of the Y-address. Bit 0 of the
Y-address is actually a field indicator for interlace, so the field indicator
FRXA (from the video sync generator) is used as bit 0. The third address
register is the refresh address RADDR. This address has only 6 active bits
(0-3 and 10-27 unused) since a plane can be completely refreshed by
incrementing address bits 4-9 and by enabling the refresh option.

In contrast to the main memory blocks which, then considered with the
input/output multiplexers, dominate bit/pixel management, the five look-up
tables (LUT's) provide the real-time transformations on the data stream.
Among these functions for the high speed 256x8 RAM's [20] are scaling and
histogram generation useful to radiometric conversions, pseudo-color
enhancement of multi-band imagery, space variant radiometric correction for
removal of vignetting and/or camera shading, and dimensionally reduction or
bandwidth compression (when coupled with the arithmetic processor). The LUT's
primarily perfoia in two states, either as mass storage for digital computer
access/retrieval or for high speed imagery functions, with control provided
via VSRMD (see Figure 34). In the computer state, LUT's are loaded with the
desired output functions (e.g., exponential or anti-log similarity, contrast
shading, etc.); while in the video state the LUT's serve strictly as table
look-up memory.

3it/pixel shuffling is primarily performed via the input and output
multiplexers. Data words from the computer are stored in the memory blocks
via eight Input Multiplexer units (see Figure 32) which route one-bit of eight
to any of 64 memory planes. Selection is made by a six-bit latch loaded from
the Command Processor unit. Data retrieval from the eight memory-blocks is
routed via eight Output Multiplexer units (see Figure 35) to tne LUT's.
Similar to the Input Multiplexers, the Command Processor unit generates a
five-bit code to select various paths via the output multiplexers.

Each of the five-line output buses on the multiplexer is wire-ORed bit-

by-bit with seven other multiplexer outputs.
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Figure 35. utplut Multiplexer.

6.3.-4.3 Video System

The video System can consist of two raster scan video monitors *
*(black/white and color), video synchronize generator, timing unit and

interface circuitry. It is principally designed for high pixel resolution,
video bandwidth for 30 frames/sec rofresh, and system versatility. Typically,
the first two objectives can be achieved by employing high quality monitors,
on-line convergence algorithms (to correct for beam spreading in 3-gun color
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displays), and conventional clocking circuitry. However, system versatility,

for example, the ability to change from NTSC (American [18]) to PAL (European

[21]) television sync format with minimal hardware modification reauires
unconventional procedures. In our system, a novel microprogrammable control

00% unit is imbedded in the video sync generator to provide both the power and
flexibility of the video system. Furthermcre, this microprogrammable feature

permits more stable timing circuitry when driven with a phase-lock loop either
externally (60 Hz) or internally (crystal oscillator).

The primary role of the video sync generator (see Figure 36) is to"
provide necessary synchronization for horizontal and vertical retrace;

however, most systems also rely on the sync generator to clock data into the
video monitors. For stable images (jitter-, flicker-free), synchronization to
either the horizontal retrace frequency, f or the vertical retrace

I" frequency, f.v is sufficient. In our case, the data clock was synchronized at
a constant phase difference with an integer multiple of fH, as shown in V
Figure 37. To do so, we specify some fsck as a multiple of twice fH and
combine fv H and fsck with a phase-lock loop on either of two base frequency
sources. Vfref (60 Hz power line frequency) and f (a crystal oscillator).powe fHad kco
f'f fH and fsk then provide the primary drive signals to the pulse forming
circuits of drive (YVD, YHD), blank (YVB, YHB), equalization (YEQV, YEQH), and
serration (YSRV, YSRH) where (YXXV) and (YXXH) correspond to vertical ana "
horizontal synchronization, respectively. The relationship of the vertical
drive signals with f- and fH is shown in Figure 38. For NTSC format, equalize
and serrate require three horizontal sync (YHSYNC) periods and, for our
monitors, the blanking intervals for vertical and horizontal blank are 1 msec

(tVB) and 10 us (tHVS), respectively.

Since, for color displays, the composite sync (TCSYNC) predominantly

governs framing operations, drive, serrate and equalize must be coupled with
the blanking intervals. However, although fields A and B (assuming interlaced
scanning) modify the composite sync to account for half lines at picture top
and bottom, the vertical sync signals can be obtained by dividing twice the

horizontal frequency by an odd number and, with a 512 complete visible line
format. fH can be derived from the vertical blanking interval, tVB, such tnat

=513 * 60
f" H - _ * -- - - 3 4

2 (1-6OtvB) S

where 513 corresponds to complete visible lines plus two half lines and
synchronization to the power line frequency of 60 Hz is assumed. If, tnen,
f "ck is chosen carefully, horizontal timing for N'TSC as well as for 512x12 .
displays can be achieved which naturally reduces circuitry in the video timing

unit. A functional diagram of the video sync generator, shown in Figure 3o, S
depicts the coupling of the phase-lock module (block 3), the programmable
memory modules for NTSC or 512x512 (blocks 4-9), and the interface circuits
(blocks 1 , 10) to external clock control and monitor drive, respectively.
Besides the concern for programmability, the video sync generator must inhibit .
instabilities; hence, the low pass filter in the phase-lock loop must be
carefully chosen, Therefore, since a phase-lock open loop transfer function, S
H(s), with just an integrator is intolerable, an additional pole and zero were
incorporated in the transfer function.
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and 7) constitute the microprogrammable control unit with microinstruction
formats, i.e., the control fields designations, for horizontal and vertical S
sync control shown in Tables 18 and 19. Note that each microinstruction must
specify, not only the pulse duration (bits 0-9, or counter values), but also

ell the repetition rate of each signal (bit 15 or the jump bit which, in most
cases, causes the current microinstruction or sequence of microinstructions to
be repeated). Generally, the jump bit is enabled on the last microinstruction
to repeat the pulsing sequence. The operation initiates with a start map
address for any sequence outputted from block 6 as the sync rate selection.
Then, blocks 5 and 8 latch microinstructions from the PROM's which contain
control signals for serrate, drive, equalization, and blank. For horizontal
synchronization, bit 10 controls color burst which is not needed for the
vertical signals and remains unused. The current microprogram terminates with
a test on the jump bit. Our microprograms are designed by Algorithmic State S
Machine techniques [22]. Here, the state qualifier pair with assumed address
is employed with bit 15 of each microinstruction utilized as "branch enable".
Such techniques have proved useful, not only during design but also later
during diagnosis and field maintenance. The inherent versatility of a
microprogrammable control unit thus supports not only field maintenance but %
simple modifications for many video formats (NTSC, PAL, etc.).

Table 18 Horizontal PROM Word Format

1l3e14 - nlrol fild

[1 1 - |Inailc jump •" ~~I N( P '',,

14t I I nable serr,,ia n gale
0= N(4P

I I' I Enable h,,porrn ai drive

0 N()P
12 I inable equalitaion gale11 - NOP"- 

,,

3 I I - Enahle hrmiontal blank
0 N(P ,

104 I |nable odor hlurt gale
0-- NO)P

9-41 Councr N luc 12' conplement 0-10241

'N u t I f !hi 14 i% a (I and B ii I1 is a I H rr i/o n I '.
Sync i % enabled.

Table 19 Vertical PROM Word Fo=r.t ~..

I 0 Jump cn.,hle
I- NIIP

14 I I -a4udi/lion gale enable

0 NOP
I I Serraion gale enabled 0

0 - N O P ,. . .
.1~12 1 E 1nable vertical drive

0 NOP
II I Enashle vertical blink

o : N (11,
10 Not used

.1-41 counter ,.luc Q 's complement L-1024)

%
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6.3.4.4 Cursor Generator iS
The cursor generator unit primarily controls timing, color, and position

of a real-time cursor with the capability to respond to computer or operator
commands (joystick) for adjustable size and color format. Both flexibility
and high speed prompted use of hardwired configuration coupled closely to the
final digital output. Therefore, besides interpreting inherent cursive
parameters requested of the command processor unit (notably among these are:
(a) cursor on/off, (b) region blank, (c) region invert, and (d) cross), the
cursor control section itself also generates various commands to the digital-
analog converters (e.g., route LUT data to DAC, route cursor to DAC, generate

block level, etc.). In the configuration, cursor patterns assume either box
or cross shapes in any pseudo-color or transparent mode. To furtner enhance
minimal circuitry, a cursor parameter set shown in Figures 39 and 43 was

.F. adopted. The physical cursor dimensions in Figure 39 depict tne position (X,
Y relative to upper left frame corner), size (DX, DY), and i.iterior/exteri'r
partition zone (DW). These physical specifications in conjunction with the
zone denominators of Figure 40 (e.g., zone B identifies cursor corners, zone D

pAe

identifies the interior, etc.) enhance tne command processor instruction set
while reducing cursor circuitry. Design of tfe cursor generator unit
subsequently led to similar class 4 ASM link-state machines for X and Y
control.

OPGIN X

SCREEN
y 8OUNOARY

Y T-r

Dw Ow

%

Figure 39. Physical Cursor Dimensions.
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Figure 40. Cursor Zone Denominators.

6.3.4.5 Algorithm Complexity

The algorithmic complexity of a video tracker is directly related to the
arithmetic structure (i.e., the number of ALU's, physical location, and
interconnections). If, as is typically found, the computational power is
resident to a computer essentially off-line from the processing system, tnen
the algorithmic complexity is proportional to the computer itself. However,
image processing systems now appear with the computational structure imbedded
directly in the data stream in parallel fashion made possible by the relative
economy of microprocessors. Therefore, the algorithmic task is no longer
relegated solely to the computer but rather to the arcnitecture of tne entire
image processor system. In small configurations, for example [23], multiple
microprocessors are configured as independent ALU's. At each output channel
from the main memory banks are located small numerical processors capable of

.-. executing +, - *, and /. This architecture supports pixel-pixel computations
4. and is adequate for many algorithms. In large systems, such as STARAN,

multiple ALU outputs can be programmed to several associative memories whizh
permit simultaneous pixel (parallel) and bit (serial) manipulation. In our
system, a combination of the techniques extracted from [23 and STARAN are
included to provide both pixel and bit manipulation while attempting to
maintain a modestly sized configuration. At present, we rely solely upon
ZORAN devices. In a final configuration, the system may have GAPP devices ..
the output section with processor and data stream selection controlled by the
off-line computer. The future architecture is chosen to effect both local and
global spatial form L15].

7.0 Conclusions and Recommendations

The original intent of this project was to identify fast and flexible
arithmetic engines suitable for real-time radar, signal- and image-processing
applications. To that extent, preliminary design specifications for an
architecture knovn as the Expandable Vector Accelerator (EVA) have been
developed. This is an architecture capable of executing numerous real-time
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algorithms via two separate but tightly coupled components, a high speed DSP
machine and a general purpose data processor. These blocks are discussed
below.

The Vector Processing Hardware (VPH) is a speed-optimized architecture
capable of processing vectors of complex data. As such, tne building blocks
of the VPH were selected so that algorithm and data partitioning could be
implemented with relative ease. Although this is not always feasible, the
architecture is arranged so that a high degree of parallelism and concurrency
can be achieved. This feature, along with a duplication of on-chip resources
at the board level, are the primary reasons for the high throughputs
achievable with the VPH. The overall concept has been theoretically confirmed
by employing the FFT algorithm as a test-bed. The results of tne study
revealed that a quad VSP-325 configuration can yield a 1024 complex FFT result •
in 460 us. This is a significant accomplishment for a board-level product.

The Cascadable Processing Hardware (CPH) is also speed optimized.
However, the architecture is configured for those applications where the
concern for high precision and wide dynamic-range is at a premium. By means
of sophisticated control circuitry, the CPH can be reconfigured dynamically to S
expand or reduce the width of the data words. Hence, if an application
involves multiplication/addition-intensive tasks, the CPH can expand its
wordlengtn to accommodate those cases where overflow/underflow occur, thus
eliminating round-off errors. The converse also applies. For instance, if an
application only requires processing on 8-bit data, the CPH can be configured
to operate as an 8- or a 16-bit machine, thus optimizing the ar-hltecture for •
smaller wordlengths and increasing overall throughput.

In order to fully capitalize on the processing power available on an %
EVA-like architecture, the system-bus configuration must be equally capable of
interfacing with the host, and within modules of the architecture. A brief
literature survey has been conducted to identify the most optimal bus
arrangement. The study did not consider 16-bit bus configurations such as the
STD bus, MULTIBUS I, UUIBUS, and Qbus. These systems do not satisfy current
DSP and/or military real-time demands, nor are they capable of supporting the
dynamic-range demanded in such applications.

Of the bus-configurations considered, the VME and the MULTIBUS !I
systems are better capable of handling the requirements of an EVA machine. An
EVA-like architecture places a great deal of demands on the system interface
configuration. Overall speed and versatility are paramount issues. Based on
the findings presented herein, the VME system configuration appears to satisfy
all of the demands required by the high-performance, cascadable-process:ng
engine.

Aside from the FFT study mentioned above, other theoreticul-analyses for
mapping algorithms onto the EVA architecture were performed. A partitioning A'
scheme for the Kalman filter routine was also presented. For realistic state-
vector dimensions, the CPH and the VPH can execute the Kalman filter ea algorithm in real-time by using a scheme that allows some values to be
constant over several samples. This eliminates a large number of calculations

for each sample. The price paid for this increase in speed is a decrease in
accuracy. For a typical state vector dimension of 6, the Kalman filter would o.

require three CPH modules to support a 50 kHz sampling-rate. If tne VPH were

7)~
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to implement the algorithm, six modules would be required. if both the CPH
and tne VPH performed parallel Kalman filter processing, even higher sampling

rates could be achieved.

Several techniques for edge-detection and enhancement, clutter removal,
and target tracking have been studied as well. This study was made to
determine optimal strategies for removing clutter from missile data (in

real-time) so that tracking can be enhanced. The basic principle of our
approach is based on the commonly known fact that if background can be edge-
detected, then a cut-and-fill operation can eliminate this "noise." The best

Pr; 0 - edge-detection algorithms are thus important so that digital focusing can be
more readily accomplished.

Finally, the preliminary microinstruction-word layouts for all of tne
components of the EVA architecture were determined. Moreover, it has been
determined that a distributed control approach offers numerous advantages,
particularly when the architecture requires complex control of highly
sophisticated components. Propagation delays are minimized, and narrower
buses can be utilized. The minimized microinstruction-word for the CPH is
totally parallel, requiring no on-board decoding. The same is true for tne
VPH microcode format. Both of these preliminary microword layouts offer a

great deal of versatility and task concurrency for each raodule of tne EVA
architecture.
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Appendix. Command Processor Instruction Set. 0

Select
Command code Data Description

0 X X Clear all main memory enable hit%

n_(1 Hit% 0-i Set output nultiplrta
SC = MUX number W11

Data Hit 0 routes 9l-bits, of data ,. "'
to L:UT 0 I

A i! I to IL IT I N.

Ht 5 to high speed port 0

2 SI7 1-A! .et input multiplerors .
SC = MtIX number

Data = Mair memory
Plane to route
Computer bit to 

%

1 0-7 Bils 0-7 Set main memor enable latches
SC= Main memory blmk

Data Bit 0 a I enables Plane 0
Bit I a I enables Plane I

Bit 7 a I enables Plane 7

4 (1-4 0-255 Set look-up-table read •

SC [ IUT #
Data = Address to be read

q 1-4 0-255 Set fooik uptil *-rite
SC = LUT W,

Data = Address to A rite

6. X 0-7 Iknabl main memory block it) he read
D~ita ItBlock 4F

7 X 0-sI I LIoad main memon, + high ipeed ,
port X-address e

. ', Data 
= 9-hit X -addres %"

5. X 1-sI I I oad main memory * high spred '. .;

port ).uidrers
Data 9-bit Y-address -p.

" 0-4 0-,111 Load curaor po.itionlsite parameters
SC 0 load X

I load Y
2 load I)X
I load DY
4 load DW

Dala Value 0- 11

(14 tsRI 0-1 Set (urior modei 441

Data Hit 0 a I is cursor on ., a,
Oil I a I is invert on
Bit 2 a I is blank on f,, *5

Bit I a I is cross on .
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Appendix. (Con't). 0

Select
Command code Data Dccription

6 Bits 0-4 Sft curs.'r ilor
Data. Btt o a I, Red on

Hit I a 1. Green on

Bit 2 at. Blue on % 1-%W,
BSi 3 a I. W I on ahivteg , )-

Hit 4 a 1. BIW on

N 7 X Enable hiKgh .peed read mode S
X Bits 0- Star/stop tlido mode + sen( rate set

Data: Bit 0 a I set video mode
a 0. clear video mode

Bit I a I. set 525 sync
a (. set 545 sync

"S X X Set main memory write mode S

"It X X Set main memory read mode J' e

". X X Enable return of command channel lag 1i

'1 X X Disable return of CFL.AG

N'g X X Clear all readlarite modes 0
(except video mode)
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