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ABSTRACT

The scattering of laser light from a single diffuser and from a cascade of two

diffusers is analyzed with particular emphasis on remote sensing. It is shown that

diffuser surface properties and the spacing between diffuser planes can be determined

remotely. Conceptually, one measures the angular distribution of the radiation pattern

or the decorrelation of the far-zone speckle pattern with respect to changes in the

wavelength or the angle of incidence of an input plane wave.

Models for the transmission of light through single diffusers are presented that

contain a dependence on the angle of illumination. The validity of a simplified

transmission function for single diffusers that does not depend on angle is examined,

and it is found that the simple transmission function is adequate for treating the

individual diffusers in a cascade. This is important, since the simpler transmission

function leads to manageable overall expressions for the cascade.

A general expression is derived for the two-state correlation function of far-zone

complex amplitude from a cascade of two diffusers, where the two states are the initial

and final values of the wavelength, angle of incidence, angle of observation, and

spacing. This function is then related to the two-state correlation function of intensity,

which is a measure of the correlation between the initial and final speckle patterns. The

two-state correlation function of intensity is evaluated for various double diffuser

combinations.

The effect of surface height models on the radiation pattern is studied. Of

particular interest are strong diffusers that have a normally distributed height profile ,

and whose surface height auiocorrelation functions are paraboloidal or conical for small

spatial offsets. Excellent agreem ent is obtained between theoretical radiation pattern,

calculated with conical and paraboloidal autocorrelation functions and experimental

radiation patterns measured from ground-glass and acid-etched diffusers, respectively.
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Chapter 1

Introduction

1.1 Laser Speckle

Laser speukle is a granular pattern of bright and dark regions of intensity thatA'

occurs when laser light is scattered from a rough surface or a diffuser. For example, one

can observe speckle by placing a piece of ground glass in the path of a laser beam and

looking at the scattered light on a screen or a wall. With the advent of the visible line in

the helium-neon laser in 1962, speckle became readily observable,'- 3 and many

researchers became interested in this phenomenon. However, while the name "speckle'

is new, the phenomenon itself is an old subject, e.g., one of the first to study the statistics

of speckle was Lord Rayleigh who in 1880 derived the probability density function for the

light scattered from a rough surface.4 Extensive treatments appeared on this topic in the -

intervening years, as is evident in the following quotation taken from M. von Laue's

paper on this subject published in 1914:5 "The theme of our investigation is an old one;

it is treated in many papers and in every optics textbook." Nevertheless, he was the first

to o4scribe an experimental observation of speckle, together with an adequate theory.

Early observers of laser speckle recognized that speckle arises from the

interference of coherent diffraction patterns from different regions of the scatterer.' In

other words, the speckle pattern occurs because the nonuniformities in the scatterer

introduce phase deviations in the scattered light. Since the light that reaches the

observation point is made up of contributions from different regions of the scatterer,

there will be either destructive or constructive interference, depending on the sum of the

various components at the observation point.

In order to observe speckle, the light must have some degree of temporal

coherence, i.e., there must be a correlation between the phase of the optical wave at a



given point in space at two different times. The coherence time of the light source is

essentially the largest time difference for which this correlation exists. A related

quantity, the longitudinal coherence length, is the distance that light travels during its

coherence time. There is a tremendous difference between the coherence length of

white light and laser light, e.g., it is only about 1 pim for white light, but it is tens of

meters or much more for a single-mode argon-ion laser beam. If the various paths that

the light takes in traveling from the source to the scatterer and then on to the
S

observation point differ by more than the coherence length, then interference effects

are not appreciable, i.e., speckle is not observed. For white light it is difficult to satisfy

the path length condition, however, one can observe low contrast polychromatic speckle

in the sunlight reflected from the broad curved portion of one's fingernail 6. One can also

observe speckle in a microfilm viewer. For laser light, on the other hand, it is difficult to

eliminate laser speckle because of the long coherence length.

Early controutions that are important to the theoretical analysis of speckle in this

thesis were the introduction of the notion of a thin phase-changing screen by Booker,

Ratcliffe, and Shinn 7 in treating diffraction from the ionosphere and the treatment of

scattering from rough surfaces in the book by Beckmann and Spizzichino.8 Other

important contributions were the use of correlation functions and linear systems theory

in the early analysis of the statistics of speckle by Goodman 9, Goldfischer,O Enloe,' 1

Burckhardt, 1 2 Lowenthal and Arsenault, 13 and Dainty.1 4 The first treatment of

correlation functions in which space and wavelength dependence occured

simultaneously was by George and Jain.1 5-17 They also expressed their results in terms of

the characteristic function of the density of heights and stressed that in diffraction

integrals with phase retardations the characteristic function occurs in a natural way

when one calculates higher order moments. Hundreds of papers have been published on

the subject of speckle since 1970, and we will not attempt to review them here.

0.
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However, good compilations are found in books, conference proceedings, and special

issues of journals. 8 -26

1.2 Review of Literature on Speckle from Double Diffusers

In speckle calculations it is usually assumed that light is scattered from a single

rough surface or a single diffuser. However, interesting and useful new properties of

speckle arise when the light is scattered from two or more objects. A major portion of

this thesis, Chapters 3 and 4, is a treatment of the decorrelation of far-zone speckle from

a cascade of two diffusers with changes in wavelength, angle of incidence, and spacing.

Before introducing this topic in Section 1.3, we will briefly review the literature on

scattering from double diffusers.

Several authors have used two diffusers in relative motion to eliminate speckle

from rear-projection screens. 27 .28 This phenomenon, the decorrelation of the speckle

pattern from two parallel diffusers with in-pane displacement, was analyzed by

Lowenthal and Joyeux. 29 Experimental measurements of the wavelength dependence of

speckle from two ground-glass diffusers, whose spacing varied between 20 and 110 Pm,

were reported by George and Jain.30 Interference from two identical diffusers has also

been studied. 31

Speckled speckle, which results from illuminating the second diffuser with the

speckle pattern caused by the first diffuser, was studied by Fried 32 who was concerned

about laser eye safety and calculated the probability that the intensity of the speckled

speckle formed at a point on the retina would exceed safe levels. The statistics of doubly

scattered light was studied further by O'Donnell 33 and Barakat.3 4 ,35 Newman 36

experimentally confirmed O'Donnel's result that the intensity of doubly scattered

coherent light is K-distributed.

As described above, a topic considered in this thesis is the decorrelation of far-

zone speckle from a cascade of two thin diffusers with changes in the angle of

[ 
.,. 

.
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4 t
illumination. We have already published preliminary results from this thesis on angular

decorrelation.37

As an extension of double scattering, multiple diffusers have been used in

modeling atmospheric turbulence.38-41 Another topic related to the scattering of light

from double diffusers is the scattering from a regular structure such as a grating that is

placed behind a diffuser.42.43 In another related field, speckle interferometry, 20,24

speckle is used to measure displacement or vibration of a single rough surface.

1.3 Statement of Thesis Problem

The material in this thesis is divided into two major topics. In the first topic, see

Fig. 1.1(a), a diffuser D is illuminated with a plane wave of wavelength X and angle of

incidence 0, and the radiation pattern in the far zone of the aperture a is determined as

a function of the output angle 0. For the radiation pattern from a diffuser, one can

consider the finest variations angularly, i.e., the speckle, or alternately the slowly

changing envelope of intensity. In this thesis, we will refer to the envelope of intensity as

the radiation pattern and to the fine detail as the speckle pattern.

In the second topic, see Fig. 1.1(b), two diffusers, D, and D2, separated by the

spacing H, are probed with a plane wave, and the decorrelation of the speckle pattern in

the far zone of aperture a is observed as the wavelength X and the angle of incidence 0,o

of the plane wave are varied. Also included in the second topic is speckle decorrelation

with respect to changes in the spacing H between diffusers. We will show that these two

topics are very closely related in that one can predict the decorrelation behavior from a

cascade of two diffusers given the angular distribution of the radiation patterns from the

single diffusers that make up the cascade.

The main questions to be answered in this thesis are: How is the angular

distribution of light in the radiation pattern of diffuser D shown in Fig. 1.1(a) related to

the surface statistics of the diffuser, what information about the surface statistics of

4C4



(a)

(b)

Di D2

Fig. 1.1. Radiation pattern from a single diffuser (a) and speckle pattern from a
cascade of two diffusers (b).
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diffusers D, and D2 in Fig. 1.1(b) and about the spacing H between these diffusers or

changes AH in this spacing can be obtained by observing the speckle pattern, and what

types of remote sensing experiments are necessary in order to extract this information?

We use Figs. 1.2 and 1.3 to illustrate what is meant by speckle decorrelation and to

motivate its use in determining the structure of cascaded diffusers. In the experimental

arrangement depicted in Fig. 1.2(a), an expanded laser beam traveling along the z-axis is

incident on a single thin diffuser. A camera is placed on axis in the far zone of the

aperture a, and its lens is removed so that the speckle intensity is photographed directly,

i.e, the light falls directly onto the film plane. The angle of diffuser illumination is varied

by rotating the diffuser about the origin by the angle AO, and pictures are taken at

various values of AO. In this configuration the laser beam and the camera stay aligned as

the diffuser rotates, and the speckle pattern stays centered on the z-axis.

The results of this experiment for a diffuser made by etching glass as described in

Section 5.4.2 are shown in Figs. 1.2(b) through 1.2(d) for illumination with an argon-ion

laser beam of wavelength 0.5145 pm and for various values of AO. In Fig. 1.2(b) we see

the speckle pattern that results from normally incident illumination of the diffuser, i.e.,

for AO = 0. The wire grid is used as a position reference and marks the z-axis. The other

speckle patterns in the series are to be compared with this first pattern. In the second

photograph, Fig. 1.2(c), the diffuser has been rotated to AO= 100, and there are only

minor differences between the two speckle patterns. In the third photograph, Fig.

1.2(d), AO = 200; even for this relatively large change in angle, there is still a small degree

of correlation between the two patterns. This series of photographs has illustrated the

relatively slow decorrelation of the speckle pattern from a single diffuser with changes in , I

the angle of incidence.

We contrast the slow angular decorrelation of speckle in Fig. 1.2 from a single

diffuser with the rapid angular decorrelation in Fig. 1.3 from a double diffuser. In the
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experiment depicted in Fig. 1.3(a), the single diffuser is replaced by a cascade of two

diffusers. In the actual experiment the cascade is made by etching both sides of an

approximately 10 mm thick piece of glass. There is an inconsequential change of

wavelength to the 0.4880 pm line of the argon ion laser, and a different wire grid is used.

In the series of photographs in Figs. 1.3(b) through 1.3(d), A0 is equal to 0, 2, and 5

minutes of arc, respectively. We see that angular decorrelation for the double diffuser

occurs much more rapidly, i.e., for angular changes of arc minutes rather than degrees.

This demonstrates that the magnitude of AO necessary for decorrelation d.,creases as

diffuser thickness effects become more important, and it motivates the analysis of

speckle decorrelation as a means for determining diffuser structure remotely.

1.4 Overview of Thesis

Having introduced the topics considered in this thesis, we now give an overview of

the contents of the individual chapters. In Chapter 2 we consider the validity of the

simple transmission function approach for analyzing the propagation of light through

diffusers. A simple transmission function is a two-dimensional position-dependent

function, from which the complex amplitude at the output plane is obtained by

performing a point-by-point multiplication with the complex amplitude at the input

plane. In Chapter 2, which is based on an earlier publication,44 we are concerned about

the validity of this transmission function because it can not account for diffuser thickness

effects.

For the purpose of comparison, we introduce a generalized transmission function

that does account for thickness effects through its additional dependence on the angle

of incidence, and we derive approximate expressions for the generalized transmission

function of rough surface and bulk diffusers. In the generalized transmission function

formalism, an angular spectrum representation of the input illumination is used for non-

plane-wave illumination.
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Through the photographs of far-zone speckle patterns in Figs. 1.2 and 1.3, the

computer simulations of speckle patterns in Chapter 2, and the analytical calculations of

the decorrelation of speckle form thin diffusers in Appendix B, we show that the angular

dependence of the generalized transmission function is not important compared to

spacing effects ,or typical thin diffusers and for reasonable input angles. The simulations

and calculations also predict the slow angular decorrelation of speckle from single

diffusers that was illustrated in Fig. 1.2. From the above results we conclude that the

simple transmission function is adequate for treating the individual diffusers in the

cascade. This is important because it makes the resulting expressions for the cascade

manageable.

In Chapter 3 we analyze the decorrelation of speckle from double diffusers with

respect to changes in wavelength, angle of incidence, angle of observation, and spacing.

In so doing we derive a general expression for the two-state correlation function Uab of

the far-zone complex amplitude v. The subscripts a and b represent the initial and final 0

states of the parameters listed above that can be varied during an experiment. We also

show how Uab is related to the two-state correlation function <laIb> of far-zone

intensity, which is a measure of the correlation between the initial and final speckle

patterns.

The analysis in Chapter 3 applies to general diffusers; however, strong diffusers

are emphasized in the applications in Chapters 4 and 5. A strong diffuser is one that

introduces an rms phase delay that is large compared to one radian. Two specific types of

strong diffusers are defined in Chapter 3; they are designated as paraboloidal, P, and

conical, C, according to whether the autocorrelation function of the surface profile is

shaped like a paraboloid or a cone for small spatial offsets. For paraboloidal diffusers,

the slope parameter oh/w, where Oh is the rms surface roughness and w is the lateral

correlation length, determines the angular spread of the radiation pattern. For conical

diffusers, the corresponding parameter is oh2/U.



In Chapter 4 we apply the analysis of speckle decorrelation to the remote sensing

of a P-P diffuser cascade. In an effort to make Chapter 4 self-contained, the pertinent

results from Chapter 3 are reviewed in Section 4.2. This allows the person who wants to

read about the remote sensing application first to go directly to Chapter 4. The

advantage of analyzing the P-P diffuser cascade first is that the two-state correlation

function of intensity can be calculated in closed form for arbitrary values of the state

variables. The resulting solution is useful in categorizing the different speckle

decorrelation phenomenon and in learning how to configure remote sensing

experiments.

The corresponding analysis is presented for the P-C and C-P diffuser combinations

in Appendix E and for the C-C diffuser cascade in Appendix F. It is shown that one can

determine the values of the appropriate diffuser parameter oh/w or oh 2/w for each

diffuser in the cascade, together with the spacing, by performing simple remote sensing

experiments. These experiments involve measurement of the decorrelation of the

speckle pattern with changes of wavelength and spacing and measurement of the

angular distribution of the radiation pattern.

In Chapter 5 we compare theoretical radiation patterns with measured radiation

patterns from ground-glass and acid-etched diffusers. As described above, by radiation

pattern we mean the envelope of intensity, not the detail of the speckle pattern. In the

theoretical analysis, the smoothing is accomplished by averaging the speckle patterns

from an ensemble of diffusers having the same statistical properties, i.e., from diffusers

representing different realizations of the same random process. In the laboratory, this

smoothing can be accomplished with a single diffuser by spatial averaging of the speckle

pattern, i.e., by using a detector whose active area is large compared to the speckle size

yet small enough not to significantly affect the angular resolution of the measurement.

The ensemble average and the spatial average are very nearly equivalent,
0

especially under the following two conditions: If the area of the diffuser being



12

illuminated is large compared-to the wavelength of light, then the angular extent of the

individual speckles will be small, and the detector will integrate over a large number of

speckles. This will reduce the local variations in intensity measured by the detector. If in

addition, the area of the diffuser being illuminated is large compared to the lateral scale

of roughness, i.e., to the diffuser correlation length, then the light reaching an

observation point in the far-zone will have come from many uncorrelated regions of the

diffuser. Thus a large region of the diffuser will be sampled and this will tend to average

out the effect of sample variations. In effect this is like performing an ensemble average

because the number of uncorrelated contributions to the total output is increased.

Measured radiation patterns over a dynamic range of 6 to 8 orders of magnitude

are presented in Chapter 5 for ground-glass and etched-glass diffusers. For ground glass,

txcellent agreement is obtained using an autocorrelation function that is conical for

small spatial offsets; this is consistent with our physical expectation based on the need

for a rapid fall-off in surface correlation due to the jagged nature of the surface relief.

For etched glass, excellent agreement is obtained by assuming two scales of roughness.

The upper two or three orders of magnitude of the radiation pattern is dominated by a

large roughness paraboloidal component, and the scattering at wide angles is predicted

by a small roughness component having a decaying exponential autocorrelation

function. By varying the etching time, values of ohiw for the paraboloidal component

between 0.02 and 0.1 are obtained. There is excellent agreement between these values

as measured by light scattering and by a stylus profilometer. Preliminary results having

to do with Chapter 5 have been reported in the literature. 45 .46 Except for minor

revisions, and the addition of the material where the effect of etch time on oh/w is

studied, the text of Chapter 5 is identical to that in a recent publication. 47

ofp

-. '



13

Chapter 1 References

1. J. D. Rigden and E. I. Gordon, "The granularity of scattered optical maser light,"

Proc. IRE 50, 2367-2368 (1962).

2. B. M. Oliver, "Sparkling spots and random diffraction," Proc. IEEE 5, 220-221

(1963).

3. R. V. Langmuir, "Scattering of Laser light," Appl. Phys. Lett. 2, 29-30 (1963).

4. Lord Rayleigh, "On the resultant of a large number of vibrations of the same pitch

and of arbitrary phase," Phil. Mag. 10, 73-78 (1880). 0

5. M. von Laue, Sitzungsber. K. Preuss. Akad. Wiss. 47,1144 (1914).

6. N. George and D. C. Sinclair, "Editorial---Topical issue on laser speckle" J. Opt. Soc.

AM. 66, 1316 (1976).

7. H. G. Booker, J. A. Ratcliffe, and D. H. Shinn, "Diffraction from an irregular screen

with applications to ionospheric problems," Philos. Trans. R. Soc. London Ser. A

242, 579-607 (1950).

8. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from

Rough Surfaces (Pergamon Press, New York, 1962).

9. J. W. Goodman, "Statistical properties of Laser sparkle patterns,' Stanford

Electronics Laboratories TR2303-1 (SEL-63-140) (1963).

10. L. I. Goldfischer, "Autocorrelation function and power spectral density of laser-

produced speckle patterns," J. Opt. Soc. Am. 55, 247-253 (1965).

11. L. H. Enloe, "Noise-like structure in the image of diffusely reflecting objects in

coherent illumination,'Bell System Tech. J. 46, 1479-1489 (1967).

12. C. B. Burckhardt, "Laser speckle pattern---A narrowband noise model," Bell System

Tech. J. 49, 309-316 (1970).

13. 5. Lowenthal and H. Arsenault, "Image formation for coherent diffuse objects:

Statistical properties," J. Opt. Soc. Am. 60, 1478-1483 (1970).



14

14. J. C. Dainty, "Some statistical properties of random speckle patterns in coherent

and partially coherent illumination," Optica Acta 17, 761-772 (1970).

15. N. George and A. Jain, "Speckle reduction using multiple tones of illumination,"

Appl. Opt. 12, 1202-1212 (1973).

16. N. George and A. Jain, "Space and wavelength dependence of speckle intensity,"

Appl. Phys. 4, 201-212 (1974).

17. N. George, A. Jain, and R. D. S. Melville, Jr., "Experiments on the space and

wavelength dependence of speckle," Appl. Phys. 7, 157-169 (1975).

18. J. C. Dainty, ed., Laser Speckle and Related Phenomenon (Springer-Verlag, Berlin,

1975).

19. Special Issue on Speckle, Opt. Soc. Am. 66, No. 11, (1976). -

20. A. E. Ennos, "Speckle Interferometry," in Progress in Optics XVI, 235-288, E. Wolf,le

ed. (North-Holland, Amsterdam, 1978).

21. M. Francon, Laser Speckle and Applications in Optics (Academic Press, New York,

1979).

22. R. K. Erf, ed., Speckle Metrology (Academic Press, New York, 1979).

23. W. H. Carter, ed., Applications of Speckle Phenomena, Proc. SPIE 243 (1980).

24. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge

University Press, Cambridge, 1983).

25. H. H. Arsenault, ed., International Conference on Speckle, Proc. SPIE 556 (1985).

26. Special Issues on Speckle, Opt. Eng. 25, Nos. 5,6 (1986).

27. I. Liefer, C. J. D. Spencer, and W. T. Welford, "Grainless screens for projection

microscopy," J. Opt. Soc. Am. 51, 1422-1423 (1961).

28. E. G. Rawson, A. B. Nafarrate, and R. E. Norton, "Speckle-free rear-projection

screen using two close screens in slow relative motion," J. Opt. Soc. Am. 66, 1290-

1294(1976).

%-

z P _ M6:



15

29. S. Lowenthal and D. Joyeux, "Speckle removal by a slowly moving diffuser

associated with a motionless diffuser," J. Opt. Soc. Am. 61, 847-851 (1971).

30. N. George and A. Jain, "Speckle from a cascade of two diffusers,' Opt. Commun.

15, 71-75 (1975).

31. N. Barakat, T. El Dessouki, M. El Nicklawy, and M. Abdel Sadek, "Interference from

two identical diffusers," Acta Phys. Acad. Scientiarum Hungaricae 51, 341-347

(1981).

32. D. L. Fried, "Laser eye safety: the implications of ordinary speckle statistics and of

speckled-speckle statistics," J. Opt. Soc. Am. 71, 914-916 (1981).

33. K. A. O'Donnell, "Speckle statistics of doubly scattered light," J. Opt. Soc. Am. 72,

1459-1463 (1982). S

34. R. Barakat, "The brightness distribution of the product of two partially correlated

speckle patterns," Opt. Commun. 52, 1-4 (1984).

35. R. Barakat and R. J. Salawitch, "Second- and fourth-order statistics of double 9

scattered speckle," Opt. Acta 33, 79-89 (1986).

36. D. Newman, "K distributions from doubly scattered light," J. Opt. Soc. Am. A 2, 22-

26(1985).

37. L. G. Shirley and N. George, "Speckle from a thick diffuser," J. Opt. Soc. Am. A 3,

P1 21 (1986).

38. H. P. Baltes, H. A. Ferwerda, A. S. Glass, and B. Str'nle, "Retrieval of structural "'

information frum far-zone intensity and coherence of scattered radiation," Opt.
*Jt' ""-

Acta 28,11-28 (1981). ".

39. J. C. Dainty and D. Newman, "Detection of gratings hidden by diffusers using

photon-correlation techniques," Opt. Lett. 8, 608-610 (1983).

40. R. W. Lee and J. C. Harp, "Weak scattering in random media, with applications to %"

remote probing," Pr.,c. IEEE 57, 375-406 (1969).

. S



16

41. F. Roddier, "The effects of atmospheric turbulence in optical astronomy," in

Progress in Optics XlX, E. Wolf, ed. (North-Holland, Amsterdam, 1981), pp.281-376.

42. F. Roddier, J. M. Gilli, and J. Vernin, " On the isoplanatic patch size in stellar speckle

interferometry," J. Optics. 13, 63-70 (1982).

43. F. Roddier, J. M. Gilli, and G. Lund, "On the origin of speckle boiling and its effects

in stellar speckle interferometry," J. Optics 13, 263-271 (1982). '

44. L. G. Shirley and N. George, "Wide-angle diffuser transmission functions and far-

zone speckle," J. Opt. Soc. Am. A 4, 734-745 (1987).

45. L. G. Shirley and N. George, "Dffuser transmission functions and far-zone speckle

patterns," in International Conference on , eckle, H. H. Arsenault, ed., Proc. Soc.

Phcto-Opt. Instrum. Eng. 556, 63-69 (1985)

4E. L. G. Shirley and N. George, "Diffuser radiation patterns over a large dynamic

range," J. Opt. Soc. Am. A 5, P64 (1988).

47. L. G. Shirley and N. George, "Diffuser radiation patterns over a large dynamic

range. Part 1: Strong diffusers,' Appl. Opt. 27, 1850-1861 (1988).

+6

.0

or _I,



Chapter 2

Diffuser Transmission Functions

2.1 Introduction

In many speckle calculations the diffuser is modeled as a thin phase-changing

screen that introduces a position-dependent phase delay on the incident wave.1 -8 Hence

the complex amplitude v.,(r) at the output plane of the diffuser, see Fig. 2.1, can be

calculated from the input complex amplitude v(r) by using the simple relationship

v2(r) = v 1(r) t (r;k). (2.1)

Here the transmission function t(r;k) is given by

t(r;k) = exp -i4(r;k)I, (2.2)

and the phase retardation is denoted by 4(r;k). The vector r represents position in the

diffuser plane, and the wave number k is related to the free space wavelength X by

k=2na. The k dependence is shown explicitly in the transmission function because the

phase delay 4p(r;k) is a function of wavelength.

One should be concerned about the range of validity of Eqs. (2.1) and (2.2) when

using them to calculate diffuser radiation patterns for large angles of incidence or to

analyze speckle from cascaded diffusers. Owing to thickness effects, a transmission

function must have angular dependence in order to be valid over a wide range of input

angles. However, since Eq. (2.1) implies a simple point-by-point multiplication, there is

obviously no angular dependence in this transmission-function formalism.

In this chapter we consider the limitations imposed by Eqs. (2.1) and (2.2), and we

generalize the transmission function of Eq. (2.2) to include not only dependence on the

wave number k but also dependence on the direction s. of the incident illumination. The

unit vector s, is related to the spherical-polar coordinates (o,4),) and the cartesian unit

vectors x, y, and z by S

17
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Fig. 2.1 Input and output planes for a bulk diffuser consisting of a planar slab of
thickness 11 with index of refraction inhomogeneous nr)
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so = x sine ° m09' ° + y sinE)0 sino + z coS, (2.3)

as illustrated in Fig. 2.2. We define the new transmission function t(r;k0) to be valid for

an input plane wave with wave vector k,= kso. We will refer to t(r;ko) as the plane-wave

transmission function for k. Using this notation one can write the output u2 r;ko)

corresponding to a unit-amplitude plane wave having wave vector k, in the form

u 2(r; kot = exp -ko-L r ) t (r; ko. (2.4)

The meaning of the subscript I in Eq. (2.4) is that only the transverse components, i.e.,

the k, and the ky components of the vector k, are retained.

Equation (2.4) can be used directly when the input to the diffuser is a plane wave.

The generalization to arbitrary illumination is presented in Section 2.2, where we

represent the input o(r) in terms of an angular spectrum of plane waves. Although we

are mainly concerned with diffuser transmission functions in this thesis, the concept of an

angle-dependent transmission function can be used to describe any linear optical system.

The relationship between the plane-wave transmission function and the impulse

response representations of an optical system is also given in Section 2.2.

In Section 2.3 we obtain plane-wave transmission functions for a bulk diffuser

having plane parallel surfaces and a varying index of refraction n(r) and for a rough-

surface diffuser having a constant index of refraction with height profile h(r). There is an

extensive literature for scattering from rough surfaces and for propagation through

random media,9-14 and these problems can be treated at varying levels of complexity.

However, we seek simple models that account for the most basic angle-dependence

effects and that are convenient for use in statistical calculations. Hence we make the

simplifying assumption of local plane-wave behavior within the diffuser; We also ignore

reflections, multiple scattering, shadowing, and Fresnel losses-

-w 4- w*.~
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Section 2.4 contains computer simulations that illustrate how the far-zone speckle

patterns, as calculated by the paraxial transmission function of Eq. (2.2) and the wide-

angle transmission function of Eq. (2.4), become increasingly different as the angle of

incidence increases. We use these curves as indicators of when it is important to include

angle dependence in the diffuser transmission function. In particular, we are interested

in the change in input angle necessary to "decorrelate' the speckle pattern. From the

computer simulations in Section 2.4.2, we will see that this angle is typically quite large,

i.e., greater than 15* .

The justification for using the simple transmission function model of Eqs. (2.1) and

(2.2) in the analysis of cascaded diffusers in Chapter 3 is that angular decorrelation is

usually dominated by the spacing effect, not by the diffuser thickness effect.

Decorrelation due to the spacing effect typically occurs for an angular change of arc

minutes The angular dependence present in the ensemble averaged diffuser radiation

pattern is of lesser importance in our application. The major effect, which is an increase

in the diffuser roughness, and hence a spread in the radiation pattern, is discussed in the

literature. 15 .16

2.2 General Illumination

The transmission function for a general diffuser must contain an angle

dependence. Given the angle-dependent transmission function t(r;k) for an arbitrary

diffuser or optical system, we can treat non-plane-wave illumination by applying the

angular-spectrum formalism.

The procedure for treating general illumination is as follows: First, the input scalar

amplitude vu(r) is decomposed into an angular spectrum of plane waves by taking its 2-D

Fourier transform, 17

V (kj= fV, (r)exp(kor d2r. (2.5)
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The individual plane waves are then multiplied by the appropriate transmission function

t(r;k), and finally, the output that arises from each plane wave is added. Following this

approach, we obtain dv.(r) the element of the total output that corresponds to the plane

wave with wave vector k,

dv2(r) V(k)exp( iko r )t(r;k)d 2 k.L1  (2.6)
22(2a)

where d2kj. =dk/dky. The total output is then obtained by integrating Eq. (2.6) over the

entire kkty plane

2 ( ) 2 1 V I(kI(r;k)exp(- ikIr)d 2k (23)
(2n)2

Equation (2.7) can be recast into the usual linear systems formalism as follows:

u2(r) = v (r')g(r;r') d2r', (2.8)

where the impulse response g(r;r') is

g(r;r') = - t(r;k) exp ik r-rr')] d2 k,. (2.9)

The transmission function can be obtained in terms of the impulse response by inverting

Eq. (2.9):

I(r;k) = exp ( ik 1 or) g(r; r') exp( ik I r, ) d2r'. (2.10)

Thus we see that the plane-wave transmission function t(r;k) and the impulse response

g(r;r') provide two alternative ways of representing the propagation of light through a

linear optical system.

2.3 Angle Dependent Diffuser Models

We now derive approximate plane-wave transmission functions for two common

types of diffusers: a bulk diffuser with varying index of refraction between plane parallel

surfaces and a rough surface diffuser with a constant index of refraction.

bw
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2.3.1 Bulk Diffuser

We first consider a diffuser that consists of a planar slab with index-of-refraction

inhomogeneities characterized by n(r) as in Fig. 2.1. We wish to determine the complex

amplitude v2(r) at plane II that arises from the input plane wave

u1(r) = exp -ikoor (2.11)

at plane I. If local plane-wave behavior within the medium is assumed, then at the point

r at the input plane of the diffuser, the wave is refracted from its input angles (8o,(po) to

the new angles (O1,4=) given by Snell's law:

n sinO sine °  (2.12)

and

(2.13)

Hence the complex amplitude at z=H resulting from the refracted wave is

v2(r) = exp[-ikn(r)sinO ,(xcos, + y sin4)Jexp(-ikn(r H cos), (2.14)

where k is the free-space wave number. If reflections at the interfaces are ignored, then

Eq. (2.14) gives the desired output scalar amplitude. We note that in terms of our vector

notation, Snell's Law can be written as

n kL= ko 01(2.15)

and Eq. (2.14) can be written as

v2(r) = exp( i n(r) k1 1 er) exp(i n(r) k1z H). (2.16)

If Eq. (2.15) is applied to the first exponential in Eq. (2.16), then this factor can be

identified as the input plane wave, and the second exponential must be the plane-wave

transmission function:

Ork exp(-ik nrH 'Icos8O exp -in(r) k 1Z (2.17)

We can use the expression S
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n(r) k V n 2(r)k2-1 k 1
2  (2.18)

to determine kj, in Eq. (2.17). Note that the transmission function in Eq. (2.17) is simply

the factor for propagation of the k,0 " component of the angular spectrum a distance H

along the z axis in a medium of index of refraction n.

When the angle dependence in Eq. (2.17) is ignored, i.e., when 01 is set equal to

zero, we obtain the paraxial transmission function that we set out to improve. The

importance of the angle dependence in a given situation is related to the phase

difference A4 between these two cases:

A4P = knH ( -0050 1). (2.19)

Thus, for example, a phase error smaller than 0.1 rad can be achieved by requiring that

HIN < 10.0 and 01< 3.2° or that H/X<1.0 and 01< 10.20. However, as we now show, a

large portion of the phase delay in the wide-angle transmission function is an angle-of-

incidence-dependent bias term. For illumination with a single plane wave, this constant

phase delay does not affect the speckle intensity, and the conditions on H and 01 may be

relaxed. This point will be further illustrated by a computer simulation in Section 2.4.

If the index modulation n(r) is written as the sum of the average index <n> and

the deviation from the mean An(r),

n(r) = <n> + An(r) (2.20)

and if the condition

An(r) < < I <n> cos2<0 (2.21)
nr)<2 <n>

is satisfied, where 0<,> is the propagation angle within the medium for An = 0,

r - 2 (2.22)
<n>cos<>

then it can be shown by factoring out the quantity <n>k cosO<n> in the exponent of

Eq. (2.17), expanding the remaining terms in a binomial series, and keeping only the first

two terms, that Eq. (2.17) takes the form

- .0
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t (r;k 0) =exp (_ik <n >H xos6 <n>) exp(-ikAn(r)H/os8 <a>) (2.23)

This second form, Eq. (2.23), is convenient for statistical calculations since the r

dependence has been removed from the radical and is completely contained in the

second exponential. It also shows that the phase delay is largely due to the angle-of-

incidence-dependent bias term for reasonable values of 0<,> and An.

When using Eq. (2.23) it is important to consider the size of the phase difference

A0V between the transmission functions of Eq. (2.17) and Eq. (2.23):

A4) =kH [<n> cOs0-(<n>n > +An )COsI + AIosO ]. (2.24)

In Fig. 2.3 the quantity A1/( <n>H), is plotted on a logarithmic scale against the angle

01 within the medium. Figure 2.3(a) is for negative values of An/<n> and Fig. 2.3(b) is

for positive values. By reading the phase error for a given value of An/<n> and

multiplying by the thickness in terms of wavelength H/A, the total phase error can be

determined. Thus these curves are useful for deciding if Eq. (2.23) is a good

approximation to Eq. (2.17) for a given situation. Note that the phase error is plotted

against the internal angle 01 rather than the angle of incidence 0o. Since it is assumed

that the index of refraction surrounding the diffuser is unity, the internal angle will be

smaller than the angle of incidence. The dashed lines indicate the maximum value that

01 can take for a given value of <n>.

2.3.2 Rough Surface Diffuser

We now consider the diffuser model of Fig. 2.4, which consists of a dielectric

medium of index of refraction n bounded on the input side by a plane and on the output

side by a rough surface h(r). The mean thickness of the diffuser is denoted by 11 so that

the expected value <h(r)> is zero. We assume local-plane-wave behavior and ignore

reflections at the surfaces in calculating the transmission function. The phase delay that

results from a plane wave propagating at angle 01 but calculated along the dashed line

between the plane surface and the rough surface at position r is
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4> =_ kn IH+ h (r)J co1 0 1  (2.25)

Likewise, the phase delay that arises from a plane wave propagating at angle 82 but

calculated in vacuum along the dashed line between the rough surface and the output

plane is

02 = kh(r) cos8 2 " (2.26)

The resulting plane-wave transmission function is

t (r;ko) = exp{-ikl[H n cos81, + h(r) (n cos81 - 09 2)} (2.27)

The angle 82 is calculated by applying Snell's law while taking into account the

local slope of the surface:

2OO I+ inoih~c0q+ hysin4V) + h. + h,)ncosO+1+ h 2+ h 2

yx y

+ 1+ h1-n 2 + sinO ° hxCO o +hysin12 (2.28) 

where

-ah(x,y_ (2.29)
8x Y c ' 4

and

sinO
sinO - (2.30)

For surfaces with small slopes, we keep only first order terms in h and h and obtain

DS " co - tOSO ( tano +SO (2.31)

The resulting transmission function is

t(r;k)=exp{ ik[I-IncosOj+h(r) (neo98-CO8O))

Xexp { iklh(r) (ncosOicoos8)tanO. (hcos4 +hsin4)]} (2.32)

.or, ? eJr
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When the condition

tanO (h s4 + hy sinio)hiA <,< 1 (2.33)

is also satisfied the phase in the second exponential is small compared to one radian, and

Eq. (2.32) simplifies to' 8

t(r;k )=exp (ik H ncos81 ) exp[-ik h(r) (n cos8 1 CDO~ (2.34)

The rough-surface transmission function of Eq. (2.34) is analogous to the bulk-

diffuser transmission function of Eq. (2.23). Both forms are convenient for statistical

calculations because of the linear dependence on the roughness within the exponential.

Both contain a factor that accounts for the phase delay of a plane wave propagating at

an angle through a medium of thickness H with constant index of refraction, and both

contain a factor due to the "roughness". They suggest a diffuser model consisting of two

parts: (1) a slab of index of refraction n and thickness H and (2) a thin phase screen

located at the output side and having an angle-of-incidence-dependent phase delay.

However, the two transmission functions do predict a slightly different angular

dependence on this phase delay.

2.4 Computer Simulation of Far-Zone Speckle

We now present a computer simulation of the speckle pattern vR*vR that arises

from plane-wave illumination of a bulk diffuser. In this simulation the diffuser index

modulation An(r) is represented by a single realization of a wide-sense stationary

random process with zero mean, and Eq. (2.17) is used to obtain the plane-wave

transmission function t(r;k o) for this diffuser. The complex amplitude at the diffuser

output plane for illumination cf inis diffuser with a plane wave having wave vector k, is

obtained by multiplying Eq. (2.4) by the diffuser aperture function a(r). The far-zone

complex amplitude UR at the position Rs in the far zone of the aperture is then

vR(Rs) = exp( ikR) csO J a(r)I(r~k.expf ~i(k,-k,)r] d 2 r (2.35)
2nR
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We assume that that the bivariate probability distribution function of the diffuser index

modulation An(r) for two diffuser coordinates is jointly normal and that its

autocorrelation function is a Gaussian:

<An(rI) An(r2) > = r2 -r1 2 1 (2.36)

An<An2> I w 2

In the actual computer simulation, we simplify the above expressions to a one-

dimensional index modulation. The method for generating the data points representing

this index modulation is as follows: First, a sequence of normally distributed, S

uncorrelated, pseudorandom numbers is generated by the computer. These numbers are

then made to correlate with their neighbors by convolving the random sequence with a

narrow window function.19. 20 The autocorrelation of this window function determines

the autocorrelation of the correlated sequence. For the example given here, the

Gaussian autocorrelation function can be obtained by using a Gaussian window function.

This is true because the autocorrelation of a Gaussian is still a Gaussian. Finally, the data

are scaled to give the desired rms roughness. Since the original set of uncorrelated

numbers was normally distributed, and the correlated sequence is just a linear

combination of these data, the correlated sequence will also be be normally distributed.

Figure 2.5 contains computer simulations of far-zone speckle from a bulk diffuser

with index variations n(x). The radiation pattern is plotted against observation angle for

one realization of the simulated diffuser. The same simulated diffuser is used in each

plot. It has correlation length w=50X, average index <n> = 1.5, rms index modulation

<An 2>* =0.025, and thickness H=80X. Hence its rms phase delay for normal incidence

is S=4n radians. Because S> >1, the direct or specular component of the radiation

pattern is completely masked by the diffuse component of scattering. The effective size

of the diffuser is limited by a rectangular aperture of width 1500X attached to the output

side of the diffuser. In each plot the speckle pattern is calculated both with the wide-

angle transmission function of Eq. (2.17) (solid line) and with the paraxial transmission
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function obtained by setting 01 =0 in Eq. (2.17) (dashed line). The speckle patterns are

plotted over a 1° range of 0 centered about the input angle 0o. These curves allow us to

compare the two cases and to get a feeling for the size of the angle correction.

In Figs. 2.5(a) and 2.5(b) the diffuser is illuminated with a plane wave at 150 and 30

respectively. These plots illustrate the effect of the angle dependence in the second

exponential in Eq. (2.23), which is to increase the effective roughness by the factor

1/cosO<,>. We see a small difference between the paraxial and wide-angle patterns

when 00 = 150 [Fig. 2.5(a)] and a larger difference when 0, = 30° [Fig. 2.5(b)].

Note that if there is no input-angle dependence in the transmission function, as is

assumed in the paraxial case (dashed line), then by the Fourier transform shift theorem,

the speckle pattern shifts by the amount 6o without decorrelating. However, there is a

spread in the speckle pattern because the Fourier transform is in terms of spatial

frequency, which goes as sinO not 0. In addition, there is a drop in intensity because of

the cos 20 obliquity factor. These effects can be seen by comparing the dashed curves of

Figs. 2.5(a) and 2.5(b).

We can interpret the dashed lines in Fig. 2.5 as the speckle pattern at normal

incidence but shifted by 0 so that it will line up with the speckle pattern for illumination

at 9. Since these two patterns are very similar, we conclude that the angle of incidence

must change by large amounts, i.e., greater than I5, to decorrelate the speckle pattern.

In Appendix B it is shown that the angle necessary for speckle decorrelation decreases as

the rms roughness S increases. However, even for S= 10,000, the shift in the angle of

incidence necessary for speckle decorrelation to occur is approximately 10. The analysis of

cascaded diffusers is greatly simplified if one can assume that the individual diffusers can

be represented by the simple transmission function of Eqs. (2.1) and (2.2)- In the

following chapters we analyze speckle from a cascade of diffusers using the simple

transmission function, and we find that the angular detuning necessary for speckle

decorrelation is generally much smaller than that from the individual diffusers. For this

t
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reason, the simple transmission function model is adequate for the analysis of speckle

decorrelation from cascaded diffusers.

6
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Chapter 3

Decorrelation of Speckle from a Cascade of Two Thin Diffusers

3.1 Introduction

The configuration for the analysis of speckle from a cascade of two diffusers is

shown in Fig. 3.1. The diffusers D, and D2 in this figure are separated by the spacing H,

and they are illuminated by a plane wave of wave number k that is propagating in the

direction so. The basic quantity of interest in analyzing the speckle is the complex

amplitude v in the far-zone of the aperture a. As illustrated by the photographs in Fig.

1.3. the far-zone speckle intensity pattern will decorrelate as s varies. A similar

phenomenon occurs for changes in wavelength. The purpose of this chapter is to provide

a general analysis of the decorrelation of the far-zone speckle pattern from a cascade of

two thin diffusers with respect to changes in the following parameters: the spacing H

between diffuser planes, the wave number k of the incident light, the direction s, of the

input plane wave, and the direction s of the output unit vector.

In the remainder of Section 3.1, the basic quantities necessary for relating the

decorrelation of far-zone speckle to the diffuser surface statistics are introduced. Section

3.2 contains the derivation of the general expression for ULb, the two-state correlation

function of far-zone complex amplitude. In order to calculate uab for particular diffuser

types, it is necessary to know the autocorrelation function Rj, and Rt, of the diffuser

transmission functions tt and t2. In Section 3.3 Rt is calculated for a phase-type

transmission function under various conditions. The two-state correlation function of

intensity is considered in Section 3.4, and an illustration of how the preceding analysis

can be applied to the remote sensing of the spacing between a diffuser and an aperture r.

is presented in Section 3.5.
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3.1.1 Far-Zone Speckle

The basic quantity of interest in the study of far-zone speckle from a cascade of

two diffusers is the complex amplitude v(H;k 0 ;k) in the far-zone of the diffuser. The

wave vectors k, and k are obtained by multiplying the unit vectors s. and s by the wave

number k=2nlA. We note that the unit vector s is related to the spherical-polar

coordinates (8,4)) and the cartesian unit vectors x, y, and z, see Fig. 2.2, by

s = x sin8 cos + y sinO sin) + z os. (3.1)

In the statistical analysis of the decorrelation of speckle, we will calculate the following

second-order moment of the complex amplitude v(H;ko;k):

U = R2< u*(H ;k ;k )(H ;k ob;k )> (3.2)

0

The subscripts a and b in Eq. (3.2) refer to two different states, i.e., two different sets of

values of the arguments. The angle brackets denote an ensemble average over diffusers

having the same statistical properties. The quantity within the angle brackets is

multiplied by R2 to account for the IlR2 fall-off with distance and divided by

A 2= i Ja(r) d2r, (3.3)

where a(r) is the aperture function, to normalize by the total power passed by the

aperture for the unit amplitude input plane wave. Thus, when states a and b are equal,

we have

= < I > (3.4)

where <Ia> is a dimensionless quantity equal to the radiant intensity in the direction

specified by the unit vector s, divided by the total incident power

dP 1<I>= -(3.5) _

0

In the calculation of Uab, we will model the individual diffusers by the thin-diffuser

transmission functions tl(r,k) and t2(r,k), where r is a vector representing the diffuser

coordinates (xy). For a phase diffuser with a height profile h(r) in a dielectric medium

D iv il III1111

Iw
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with index of refraction n, we write the transmission function as

A(r,k) = expI-i/k(n- 1) h(r)} . (3.6)

As shown in Section 3.2, the autocorrelation functions Rt, and R f2 of the diffuser

transmission functions t1 and t2 respectively, defined by

R (rb- r;k,kb) <t*(r,k )(r k b)>, (3.7)

appear in the calculation of Uab. These functions, Rt, and Rj., are particularly important

because they contain all of the statistical properties of the diffusers that are necessary for

the calculation of Uab. The only position dependence in Eq. (3.7) is through the

difference rb-r. since the diffusers are assumed to be at least wide-sense stationary, i.e.,

the first and second moments of t do not depend on the choice of the origin. We will

derive a general expression for Uab in Section 3.2 by evaluating Eq. (3.2) in terms of Rt,

Rt, and the aperture function a. In Section 3.4, we will discuss how Uab is related to the

second order moment of intensity <laIb>, which is the quantity of interest in the typical

experimental application.

3.1.2 Diffuser Statistics

It is not our intent to reconstruct the height profiles hl(r) and h2(r) of Fig. 3.1, but &

rather to characterize the diffusers in a statistical manner and to determine the spacing

H or changes in this spacing. In so doing, we need to have a set of quantities that

represent the statistical properties of the rough surfaces. Perhaps the most important

characteristic of a rough surface h(r) is its rms roughness

h = < h2(r) >I (3.8)

For diffusers represented by the thin-phase-screen transmission function of Eq. (3.6), it is

also convenient to define the effective roughness of the diffuser in transmission as

S=(n - 1)a. h(3.9)

Of course, in the- scattering of electromagnetic waves from rough surfaces, the overall
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effective roughness is measured in terms of the wavelength A of the incident radiation.

Hence, we also define the rms phase delay in radians due to the transmission function Eq.

(3.6) as

S=ko =ko h (n-I). (3.10)

Although the roughness S is important in determining the degree of diffuse

scattering, i.e., scattering out of the directiun of the incident beam, surfaces having very

different textures, and hence different radiation patterns, can have the same value of S.

A complete statistical description of the rough surface h(r) could be expressed formally

by P,(hl,h2,...h,;rl,r2 ... r.), the joint probability distribution function of surface heights

with respect to n arbitrary positions, where n is an arbitrary positive integer. However,

since we are only considering two-state correlation function, we will not need joint

probability distribution functions higher than the bivariate function P2.

The expression for uab derived in Section 3.2 will be written in terms of Rt, and Rh.

However, a correlation function more closely related to the diffuser height profile is

<h(r) h(r ) > (3.11)
h b

R hrb -r a) = 2
Oh

Therefore it will be important to have expressions relating Rh to Rt. This relationship will

be discussed further in Section 3.3.

3.2 Two-State Correlation of Complex Amplitude

3.2.1 Far-Zone Complex Amplitude

The first step in the calculation of Uab is to derive the formula for the far-zone

complex amplitude v(H;ko.;k0 ). We begin by listing the expressions governing

propagation through each element of the system in Fig. 3.1. We write the complex

amplitude at the input side of plane I, which arises from the input plane wave, as N

(rW) =ex P( ik. or,) (3.12)

Once again, the subscript I in Eq. (3.12) denotes that only the components of the vector S

S



.0

42

k. lying in the diffuser plane, i e., the (k,,,k3.) components, are retained. Since the

diffusers are assumed to be thin, the complex amplitude at the output side of plane I is

obtained by a point-by-point multiplication of the input plane wave by the transmission

function:
, , (3.13) =

v (r) = u )f (r';k).

As discussed in Section 2.1, a thick diffuser, or any linear optical system for that matter,

could be represented by a generalized transmission function t(r,k) that depends on the

direction of an input plane wave in addition to the position in the diffuser plane and the

wavelength.' Arbitrary illumination could be treated by breaking vi-, the input at plane

I, into an angular spectrum of plane waves and operating on each plane wave

component with the appropriate transmission function.

We calculate u2-, the input to the second diffuser, by performing a Fresnel-zone

propagation of the complex amplitude v, + along the z-axis over the distance H between

diffuser planes. The impulse response for propagation between planes is 0

gH(r-r') = i exp(-ikH) exp( - 2-r-r,12. (3.14)

The range of validity of Eq. (3.14) increases in the transition from deterministic to

statistical calculations. One reason for this is that the effective limiting aperture

decreases, owing to the finite correlation length along the diffuser plane. A quantitative

discussion of the validity of Eq. (3.14), however, is beyond the scope of this thesis. We

also note that Eq. (3.14) is a paraxial approximation. Therefore, we expect our results to

be less accurate for wide angles. The justification for ignoring reflections between

surfaces at planes I and II is that any reflected light that reaches the output point must

have been reflected at least twice, and therefore its contribution to the speckle pattern 0

will be negligible compared with the directly transmitted light.

Propagation through the second diffuser, and its associated aperture, is treated in

the same manner as it was for the first diffuser, i.e., with a point-by-point multiplication 0

"L
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V+ (r) = v (r) t (r;) a(r). (3.15)
2+ 2- 2'

The far-zone complex amplitude is then obtained by propagating u2+ into the far zone

with the far-zone impulse response

g R(r,Rs) = osO exp(-ikR) expikr (3.16)

In Eq. (3.16) we choose to write the obliquity factor as cosO rather than as s-z or s. We

obtain the final form of the output scalar amplitude u(H;ko,k) by combining Eqs. (3.12)

through (3.16):

u(H;k ;k)= - k 22exp[-ik (H+R)j ] S d 2 ra(r)t 2(r~kepi.o
2aHR 2;kepio)

X f exp(-iko.r') t,(r';k) exp(- i jr-r'12) d2 r'. (3.17)

Unless otherwise specified, the range of integration in all integrals is over the entire x-y

plane.

At this point we pause to illustrate the derivation of the plane wave transmission

function for an optical system by calculating t(r;k) for propagation between planes I and

II of the double diffuser in Fig. 3.1, not including the aperture. Having tracked an input

plane wave through this system, we can write the plane wave transmission function for

the diffuser combination by taking the expression for V2+ and dividing it by the input

plane wave given in Eq. (3.12) and by the aperture function a(r):

ik exp(-ikH)
t(r;k°)= t 2(r;k)

X exp -i r + ko *r' t (r+ r';k) d r'. (3.18)

The output at plane II for arbitrary illumination can be calcuiated by substituting the

plane wave transmission function, Eq. (3.18), into Eq. (2.7) and decomposing the input at %

plane I into an angular spectrum of plane waves V1 . The plane-wave transmission

Cp0~

M* * ,*-* 0
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function representation is especially convenient for problems where the input is a plane

wave, such as in the plane-wave probing of optical systems by varying the angle of

incidence or the wavelength of the input plane wave. In Section 3.2.7 we will give a

general form for Uob in terms of t(r;ko). One could obtain Uab for a cascade of two

diffusers by applying the results of Section 3.2.7 to Eq. (3.18), however, in the following

sections we will derive uab for a double diffuser from first principles

3.2.2 Derivation of Two-State Correlation of Complex Amplitude

We proceed with the derivation of u.b by substituting Eq. (3.17), fer each of the

states a and b, into Eq. (3.2). We note that all of the randomness is cont.... d in the

transmission functions t, and t2 through their dependence on the height profiles hi and

h2, and that the resulting expression for Uab is just a linear combination of produrts

involving t and t2, i.e., integrals. Therefore, the angle brackets can be moved inside the

integrals so that they surround the combination of the transmission functions.

Furthermore, since h, and h2 are uncorrelated random processes, the angle brackets can

be split into two sets: one around the t, dependence and the other around the t2

dependence. We recognize the resulting functions as the transmission function

autocorrelation functions Rt1and Rkthat are defined in Eq. (3.7). The expression that

results for Uab is

kkb exp( -4ak) 000 CW d2rd 2r"a*(r)a(r")I? (r"-rk A

uab= 2n)4 A 2H H 2 a
0 ab6

X exp[i (kbLmr"-k.r) J exp[...i(kobL.r"'-k or')

x Rt Wr - r';ka k )ex p - -- H'Ir - r _ rr dr'
'l a b t 2 ( Ho H '

where
(3.20)

bb=kbHb_ ka"la+ (kb- k.)R.ab b b k
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By making the following change of variables, we can separate the variables in Eq.

(3.19) so that four of the eight integrations can be performed without having any

knowledge of the functional form of Rj 1and R.,:

r r r2 (3.21 a)

It r'3 -- -

2'

r2 (3.21 b)
r,=r3+ 2"

r' =(r,,+ r4 r, r, (3.21 c)

and 2

r'" = + r4- r + r2  (3.2 1d)

We note that the absolute value of the Jacobian of the transformation given by

Eqs.(3.21a) through (3.21d) is unity so that the change of variables is a simple

substitution. The resulting form of Eq. (3.19) is

kk b r k kk
u ab (,) exp(-i"ab) COSaOS b d 1r i B(rl;kob±-koaL'H ,'Hb

X exp - (k,+k or R R(r +r ;k A ) R (r2;k.,kob, ) 12ab t 2  2

xA(r ;k1 -k 0  _kb-k, b)expt 1-k k +kb±k ±r 21] d r2 , (3.2 2)

where we have defined the normalized ambiguity function 2-4 of the aperture function

A(r;k 1 )= '2 J a*(r' _) a(r'+ r) exp(ik1 .r') d2r', (3.23)

0

and the cross-ambiguity function of the Fresnel impulse response, Eq. (3.14), as

k k k k
Brk _a. "b 1 ab

B~±H, 'Hb (2a ) 2HaHb

xexpi _2. ~ r'- ~I~j- Ir+-I) exp(-ik-Lr'dr'. (.4
a b 2±
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The wave vectors that occurin the argument of A and in the exponential within

the r2 integral in Eq. (3.22) have special physical significance and will be denoted by the

following symbols:

Ak =k -k -k +k (3.25)., al. 00.1 bi obL'(.5

and

k = 2( ka-k oal + k b±- k obL )  (3.26)

Equations (3.25) and (3.26) are the difference and average values of the wave vectors

ka.-koaL and kbl-kob l, which in turn, are the differences between the input and output

wave vectors for each of the two states a and b.

We explain the physical significance of AkabL and kabL by considering the

example of speckle from a single thin diffuser. In the same manner that we obtained Eq.

(3.17) for the far-zone complex amplitude from a double diffuser, we can write

v(H;k ,k) = "k exp(-ikR)CosO a(r)t(r;k)exp i(k-ko,)-r d'r (3-27)

v(~k 2nR I\ ±el r (.7

for the far-zone complex amplitude from a single thin diffuser. Thus we see that the

speckle is essentially the Fourier transform of the product of the diffuser transmission

function and the aperture, and that the argument of the Fourier transform is ko±. kL,

the difference between input and output wave vectors. We conclude that the speckle

pattern from a single thin diffuser moves as a whole about the direction of the input

plane wave, and that there is no angular decorrelation of speckle as long as the output

wave vector from the second state moves in such a manner as to track the speckle, i.e., as

long as kaL-ko,_L = kbL-kobL. For this reason, we refer to Akab± as the speckle tracking

wave vector. We see that the tracking condition is satisfied when

Akab± = 0 (3.28)

Thus the magnitude of the offset wave vector Akobi relative to the speckle size

determines the degree of decorrelation that arises from looking at different points in the
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speckle pattern. In most applications, we are not interested in decorrelation arising from

speckle motion, and hence most experiments would be designed so that Eq. (3.28) would

be satisfied. Of course, if Eq. (3.28) holds, then Eq. (3.26) simplifies to

kab, = kaJ, - koaL = kb-, - kob-,, (3.29)

and kab-, is simply the difference between input and observation wave vectors for either

state a or state b. We refer to kab-, as the Fourier transform wave vector because it

appears in the argument of the Fourier transform in Eq. (3.22).

Another observation that we make from Eq. (3.27) is that the speckle pattern

spreads as k decreases, or in other words, it spreads as the wavelength X increases. For

example, if the diffuser is illuminated at normal incidence so that ko0 " = 0, and if we look

at the output along the ks-axis, then the arguments of the Fourier transform are (k1 = k

sin0,ky= 0). Therefore, in order to stay on the same point in the speckle pattern, k, must

remain constant, i.e., 101 must increase as k decreases. Equation (3.28) is a general

expression showing the interrelationship between the input direction, output direction,

and wavelength between states a and b that is necessary for tracking a speckle.

In studying speckle from a cascade of two diffusers, it is advantageous to have an

intermediate function that contains all of the dependence on the diffuser correlation

functions Rt, and Ri2, and on the aperture ambiguity function A. From inspection of Eq.

(3.22), we see that the r2 integration provides us with such a function:

F(r;kakb;k ;Ak) = R q(r+r';k,'k b} R t2(r';ka'kb}

x A(r';Ak±)expikj_*r') d2r'. (3.30)

We refer to F as the double-diffuser descriptor function. It is not to be confused with the

hypergeometric function, which is also denoted by F. Through the use of Eqs. (3.26),

(3.27), and (3.30), we can now rewrite Eq. (3.22) in the simplified form:
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k k k k b

a 11' 2ij a b b-oaH H

X F(r;k k;kb *Akb) f (k. + kbj r] d r. (.1
UP b'aL 1 b ex ~ 2 o.

3.2.3 Aperture Ambiguity Function

Through much of the remainder of this chapter, the aperture function will be left

arbitrary, and hence, the aperture ambiguity function A will not be specified. However,

we can gain insight into the effect of the aperture on the speckle decorrelation by

calculating A for some particular aperture functions. We will consider three functional

forms of a(r): a Gaussian aperture having width wa,

a(r) =exp _ ]r 2  (3.32)

a

a rectangular aperture having full-widths w, and wy along the x and y axes,

a(r) = rect(X) rect Y (3.33)

and a circular aperture having radius w,

a(r) =circ( (3.34)(Wa

For the Gaussian aperture A,2 of Eq. (3.3), which is a measure of the total power passed

by the aperture for plane wave illumination, is

2= n 2 (3.35)A ° - Wa

For the rectangular aperture A02 is equal to the area of the rectangle

A 2 WW, (3.36)

and for the circular aperture it is equal to the area of the circle

A 2= nw2 (3.37)
0 a

The functional form of A is particularly convenient for the Gaussian aperture of Eq. (3.32)

because A separates into the product of a Gaussian in r and in k1 :
i
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A(r;k ) e ( 2 )exp( - w 2 k-L2) (3.38)

a
For the rectangular aperture, described by Eq. (3.33), A takes the form

2x x )x
w k 2w. W 2

2 kyI wk (339)
x-rect(L-smlll-)w (339

w k \2w ' w / 21YY Y Y

It is more difficult to evaluate the ambiguity function of a circular aperture for arbitrary

arguments r and kj..5 However, for k±=0 the ambiguity function reduces to the

autocorrelation of the circular aperture, and the solution is6

A~~~r;0)=~,_ r,<L{~1 ) -[f 1 2.(L 1,1 (3.40)

a a aw \2 a1

Equation (3.40) is still useful because it is the speckle tracking wave vector AkabiL that

occurs as the second argument of A in Eq. (3.22), and Akab± = 0 in the usual application.

The dependence of Eq. (3.39) on the x and k, variables for y=O and ky=0 is

illustrated in Fig. 3.2. We note the following interesting features in this plot: First of all,

since A contains a rectangle function in the x-variable, it is zero outside of the region Ix

at wx. In addition, A is a triangle function in x when k, = 0 and a sinc function in k, when

x=0. We also note that more and more cycles of oscillation occur along the x-axis

between ±w, as k, increases, and that the period of the oscillations along the ks-axis

increases as Nx gets closer to the cutoff value, w.

A general feature of aperture ambiguity functions that is illustrated in Eqs. (3.38)

and (3.39) is the inverse relationship between the widths of the spatial dependence r

and the spatial frequency dependence k±. By this we mean that as the the width of the

ambiguity function increases with respect to one type of coordinate, it decreases with

respect to the conjugate coordinate. The wave vector that occurs in the ambiguity

function in Eq. (3.22) is Akab±, which we know to be related to the decorrelation of 5
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speckle that occurs due to motion of the speckle pattern as the input angle or the

wavelength is changed. In most practical applications, the aperture function, and hence

the spatial dependence of the ambiguity function for Akab± = 0, will be wide compared

to Ri and R4,. It follows from the inverse relationship between r and k1 that A will be

narrow with respect to AkbJ., i.e., that the speckle will be small in size. An advantage of

making A wide is that F can be approximated by setting the spatial argument of A to

zero in Eq. (3.30) and factoring A(O;Akb±) out of the integral. This gives the same result

as the quasihomogeneous approximation that is often used in coherence theory.7

3.2.4 Fresnel Cross-Ambiguity Function

Whereas Eq. (3.23) for the normalized ambiguity function A depends on the

particular function a used to represent the aperture function, the functional form of the

cross-ambiguity function B is completely determined because there is no dependence on

the unknown quantities Rt, Rj2, or a in Eq. (3.24). We use the identity8

Ik 2  (3.41)
=r exp 4C

to evaluate Eq. (3.24) and obtain the solution

B(r;k±;C.,Cb) 2c -c
b a

x exp{- ~ 1lk±12+ (C+Cb) k.Lr +C C Jr12I1(42ep[2 Cb- Ca a bab

In Eq. (3.42) we have represented the wavelength-spacing parameters ka/Ha and kblHb by

the symbols Ca and Cb respectively. In the limit as Ca--Cb, Eq. (3.42) becomes a delta

function: A

B(r;k;C,C) 8(r+ kA). (3.43)
a C a

Equation (3.43) can be obtained by going back to Eq. (3.24) for B and noting that the

k.
0
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quadratic terms in the exponential cancel when Ca=Cb. What remains is the Fourier

transform of a constant, i.e., a delta function.

In terms of the variables that occur in Eq. (3.31),

k kb  k kakb ex(i H aHb kO.

B(r;kb, -k_;1, -) - kk' exp( H k
H ~ ~ H 1 2 k H -k H b obl I2

X exp [ kbH (3.44)

Xex2 kH -k H b( A .L or( ea k H b

When

a kb (3.45)

Ha Hb

we can use Eq. (3.43) to find the following limiting form of Eq. (3.44):
ka k ka
a b ak (3.46)

B(r;kob-koal; H-a, b =Hb ) = 8(r+ HbSOb±- HS Soal.
Ha Hb Hb

We can interpret the offset vector that occurs in the argument of the delta function in

Eq. (3.46) as the paraxial approximation to the lateral shift between two rays that begin

at the same point on the first plane and travel in directions s. and Sob to the second

plane. For example, if s. =0, and 4ob=0 so that the vector Sob is in the x-z plane, then

H bSob.L =HFIb sinOob z, which is a paraxial approximation to the actual offset Hb tanOob x.

3.2.5 General Expression for Uab

Having evaluated the cross-ambiguity function B, we are now able to write the

final expression for Uab. In terms of the double-diffuser descriptor function F defined in

Eq. (3.30) and for arbitrary values of all parameters, Uab is

k22k exp(-i~a x~ Hall

U a k -k i Hb expi I -H k - k'1 ODSO.CSab (2n)3 H kb 2kA kH obl al b

k ba ab ba ab (.7

f . ob .

F(r;ka k;k ;4k 1 ) exp kk H I ~ +(HbS~b±-L-H 1 0s.,j.rl I d r.
bJ. ab L kbHa-. kbi 2
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Equation (3.47) is the key expression governing the decorrelation of speckle from a S

cascade of two thin diffusers. For angular decorrelation only, i.e., when wavelength and

spacing are fixed, or more generally, when Eq. (3.45) holds, then Eq. (3.47) simplifies:

Owing to the fact that B in Eq. (3.46) is a delta function, the integral in Eq. (3.31) can be

evaluated immediately yielding

U ab= k (a k l!.exp(-LU)lexp l(kb~b-kaHa )I C Sb
2a 2

X F(HSa. - Hs k,k;k ;Akb). (3.48)
a aL b abi' ' Yab-L' l

Equation (3.48) is in a particularly appealing form because there are no integrations

except for those implicitly involved in calculating the function F. The physical

interpretation of the arguments Akab.L and kabL of F has been discussed in Section 3.2.2.

In particular, we want to stress that the offset Haso±-Hbsob±, due to changing the angle

of incidence, is the lateral shift in coordinates in the multiplication of Rt, and Ri. in Eq. 9

(3.30). As we will see In Section 3.3.2, Ril and Rt, for strong diffusers will approach zero

as the offset r increases. Thus Eq. (3.30) for F can be made to approach zero for strong

diffusers by increasing the offset so that Rt, and Rt., do not overlap. If F approaches zero,

then Uab will also approach zero by Eq. (3.48). Hence the speckle pattern will become

uncorrelated.

3.2.6 Special Limiting Forms of Uab

By allowing a-pb in Eq. (3.48), we can also immediately determine the angular

dependence of the radiation pattern <![ > from a cascade of two diffusers:

<I >=u 4 , F(O,k A;k -ko;O). (3.49)

Written in terms of R ,,R,., and A, Eq. (3.49) becomes

<I a >sigCos a jr a ko dependene oR th(r;kk) A ir;)exp i (k.. 0-). Fur I d

It is significant that there is no dependence on the spacing H in Eq. (3.50). Furthermore,

IIII II j 1
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by applying the convolution theorem to express the Fourier transform of a product as the

convolution of the Fourier transform of the factors, we see that <Ia> for two diffusers

in tandem is essentially the convolution of the patterns from the individual diffusers.

We also note that if the roughness of one of the diffusers is set to zero, then Rj for

that diffuser will be unity. In this case, Eq. (3.50) reduces to the radiation pattern from a

single diffuser as expected:

<1a>= 2 S2 f J Rt(r;k.,ka) A(r;0) exp i(ka -k , )r I d2r. (3.51)

For completeness we also list the general form of Uab that results from a single diffuser.

This limiting form is obtained by setting HO=Hb=O in Eq. (3.48) and setting R= to unity

for one of the diffusers. This leaves us with the angle and wavelength dependence of

speckle from a single thin diffuser:

U kak b ex( OSOCs

Uab= ,exp(- iab)ca cOb

X J Ri(r;ka,kb) A(r;Akab±)exp(ika± *r) d2r. (3.52)

3.2.7 Uab for an Arbitrary Plane-Wave Transmission Function

Thus far in Section 3.2 we have calculated Uab for the double-diffuser geometry

shown in Fig. 3.1. In this section we derive the expression for Uab for an arbitrary plane-

wave transmission function t(r;ko) that represents propagation between planes I and II in

Fig. 3.1. By applying Eq. (2.4) we obtain the output complex amplitude V2, at plane II,

including the effect of the aperture a, that arises from an input plane wave with wave

vector k,:

V2+(r;k o) = exp(-ik.er )t(r;k,)a(r). (3.53)

The expression for the complex amplitude v(ko;k) in the far-zone of the aperture a that

corresponds to Eq. (3.17) is obtained by applying the far-zone impulse response given in

Eq. (3.16):
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t~k;k) 2n exp(-ik R )c

X ft(r;k,) a(r) exp[-i( ko,- k,)orj]d2r. (3.54)

Equation (3.54) could be generalized to include a functional dependence on one

or more additional parameters of the transmission function, e.g., the H dependence of

the plane-wave transmission function t given in Eq. (3.18) could be shown explicitly as

t(H;, ;ko) so that decorrelation with respect to this variable could also be analyzed. The

general expression for Uab that corresponds to Eq. (3.19) for a cascade of two diffusers is

-ab L.[2 epiR(kbk)]Co~OSO

• A 2

Xf Rf1(r2 -r k *;k~ )a*(rl )a(r2

X exp t£(k, a-k) r, - (kb±-kb±L) *r2 11id2r, d2r 2, (3.55)

where

R£J2(r;ko;kb) < t*(r';k(. Otr +r';k,) >. (3.56)

is the two-state correlation function of the plane-wave transmission function for

propagation between planes I and II.

By making the substitutions
r

rI  r'- - (3.57a)

and r -
r

r =r'+ - (3.57b)
2 2

and recalling the definitions of the normalized aperture ambiguity function A in Eq.

(3.23), the speckle-tracking wave vector Akab-i in Eq. (3.25), and the Fourier-transform

wave vector kab± in Eq. (3.26), we can simplify Eq. (3.55) to
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kak

Uab- (ayb2 exp[-iR(kb-ka) ] coSOa c°SOb

X f R,2(r;ko;kb )A(r;/kab)exp(ik ab.r) d2r. (3.58)

Note the similarity between Eq. (3.58) for Uab for a plane-wave diffuser transmission

function and Eq. (3.52) for a thin diffuser transmission function. The essential difference

is that the wave numbers k, and kb in the arguments of R, are generalized to k. and kob

in the arguments of R 1 2. Of course, Eq. (3.47) could also have been derived by

calculating Rt. (Ha,Hb;r;ko.;kob) from Eq. (3.18) for t(H;r;k) and then substituting Rt,2

into Eq. (3.58).

3.3 Two-State Correlation of aTransmission Function

Equation (3.45) is a general expression for Uab in terms of F, which in turn depends

on Rj, and Rt. In order to study how the decorrelation of speckle is affected by different

types of diffusers, we must calculate Uab for various functional forms of R11 and Rt2. Of

course, the functions chosen for Rt, and Rt2 must satisfy certain mathematical properties

in order to be valid correlation functions.9 For example, we know that the Fourier

transform of an autocorrelation function must be non-negative. We can see that this is

so by referring to Eq. (3.51) for the far-zone intensity pattern from a single diffuser: In

Eq. (3.51) k,=kb so that Ri is the autocorrelation function of the transmission function

with respect to the offset r. We can cause the aperture ambiguity function A(r;0) in Eq.

(3.51) to be very wide compared to Rj(r~k,k) by increasing the width of the aperture so

that A(r;O) can be replaced by A(0;0) = 1. Then the Fourier transform of Rj is essentially

the far-zone intensity <I, >, which, of course, is non-negative.

Equation (3.51) is very important because it provides a simple method for

determining R1 for the individual diffusers.10 For example, if R, is circularly symmetric,

. .... . . - . = . . . . . • . , -,.. "I
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i.e., if it only depends on r through its magnitude Id, and if the illumination is normally

incident, then the radiation pattern <1,> will also be circularly symmetric with respect

to the z-axis. It follows that Ri can be obtained by measuring <I> as a function of 0 in

one plane ( = Oand then calculating the Fourier-Bessel transform numerically.

3.3.1 Phase-Type Transmission Functions

In evaluating Eq. (3.47) for Uab, given the functional form of Rtiand Rj.. one could

consider transmission functions that change both the magnitude and the phase of the

incoming illumination. However, here we will be concerned with phase-only diffusers as 6

represented by the transmission function in Eq. (3.6). By substituting Eq. (3.6) into Eq.

(3.7) we obtain

Ri(r2-rl;k kb)=<exp i("A- qbh2)]> (3.59) 9

where

uz=k In- 1). (3.60)

In Eq. (3.59) we also use the notation qa=q(ka), qb=q(kb), h, h(rl), and h2 =h(r2).

Equation (3.59) is convenient for statistical calculations because the right-hand side is just

the joint characteristic function of the bivariate probability distribution function

P2(hl,h 2;rlr 2) of the height profile of the diffuser surface.

3.3.2 Normally Distributed Diffuser Height Profile

For definiteness in the following analysis, we will assume that the diffuser height

profile obeys a jointly normal distribution. Then evalation of the joint characteristic

function yields the following well known relationship between Ri and Rh:

2

,uh  2,) ( - 1
(r';k Ali) =exp- _ ( rz--2R r rqt~ +qr/)] 36),, .

It is very useful to factor this expression in the form1,

2 o (3.62)
R (r.,kb) =exp~ Oh (~ )2]J expj 2O 1zb( Rh(r)) (362

The first exponential in Eq. (3.62) contains the essential wavelength dependence of the
0
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diffuser, while the second exponential contains the dependence on the correlation

function Rh. Written in terms of the wave number k and the effective rms roughness oa,

Eq. (3.62) becomes

2

At this point one could substitute any valid autocorrelation function for Rh into

Eq. (3.63). However, it will be instructive to consider two limiting cases that depend on

the degree of roughness of the diffuser: If kakbOt2 =SaSb< < 1, i.e., if the diffuser is very

weak and hence passes most of the direct beam, then Eq. (3.63) reduces to

201 2 2 2 (3.64)

Rt(r;kak) 2-(ka+k) +kkboRh(r).(

In Equation (3.64) we note that Rj can drop only slightly from its initial value of unity that

occurs at r=O and ka= kb. For example, if Rh is zero outside of a certain region, then Rj is

represented by the first two terms in Eq. (3.64) in that region. In terms of the roughness

parameters Sa and Sb, this drop is (Sa2 + S 2)12, which is small compared with unity by the 0

assumotion of small roughness.

If kakbot2 > > 1, i.e., if the diffuser is rough compared to the wavelength A, and if

Rh(r) is circularly symmetric, then there are two important subcases to consider that

depend on the behavior of Rh(r) for small values of the offset parameter r: 1,.10

If Rh(r) can be expanded in a power series such that

R+ .. .. (3.65) S

then Rh is cone shaped for small values of Irl. Since the behavior of Ri is dominated by

the functional form of Rh for small offsets when kakbOt2 > > 1, we can approximate R, by

substituting the first two terms of the expansion in Eq. (3.65) into Eq. (3.63). Following

this procedure, we find that the fr dependence is a dec-iying exponential:

2 I2 j (3.66) I.- I-

R (rIkbkexp[ 2 ( k)] x ~
br 2 ~ jb& b

The second subcase for very rough diffusers occurs when the linear term it, Eq.

A

%
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1(3.65) is absent and Rh is shaped like a paraboloid for small offsets Id:

R(r)= I .-.) +.. (3.67)

In this case Rt is approximated as a Gaussian:

R (r;kk ) =exp- 2 kbkJ2] exp k r12

Unlike Eq. (3.64), where there was little drop from the initial value of Ri, Eqs. (3.66) and

(3.68) rapidly approach zero for large values of r. As a result, the decorrelation effects

arising from diffuse scattering are more pronounced when the diffusers are rough

compared to the wavelength of the incident light. Therefore, Eqs. (3.66) and (3.68) will

be very important in the calculation of the decorrelation of speckle from cascaded

diffusers. We will refer to diffusers having autocorrelation functions Ri given by Eqs. p.
(3.66) and (3.68) as conical, C, and paraboloidal, P, diffusers, respectively.

In comparing Eq. (3.66) for the conical correlation function with Eq. (3.68) for the

paraboloidal correlation function, we note that the effective correlation lengths scale

differently with wave number k and roughness 0r, i.e., for the conical correlation

function, the effective correlation length is

W Waw (3.69)

but, for the paraboloidal correlation function, it is

w w
W (3.70)
V / k ak bIt a9 S b ,'t

The quantity ot/w in Eq. (3.70) for a paraboloidal diffuser is closely related to the rms

surface slope, which can be shown to be 2 oh/w.

The texture of the rough surface controls the functional form of Rh for small

offsets. For example, when Eq. (3.65) applies, the surface is very jagged, but when Eq.

(3.67) applies, it is bandlimited in spatial frequency. In Chapter 5 we show that the

angular distribution of intensity from ground-glass and etched-glass diffusers can be

derived by using Eq. (3.65) and Eq. (3.67) to represent Rh, respectively. 0

%'
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3.4 Two-State Correlation of Intensity
!

Since one would ordinarily measure intensity rather than complex amplitude in a

speckle experiment, we will now consider the correlation function

<II> R V VV* (3.71)

ab A 4 < a  bb
0

between states a and b of the output speckle intensity.

3.4.1 General Complex Gaussian Statistics

In general, one can not deduce the fourth-order moment <Jaib> of the complex S

amplitude u given Uab. However, if we assume that the output aperture a is large enough

to contain many independent scattering cells of the transmission function t2 , then, by the

central limit theorem, the real and imaginary parts of the complex amplitude v will be

normally distributed. We make no assumptions about whether the complex random

process is circular or whether the real and/or imaginary parts have zero means. 12-15 The

conditions that must be satisfied in order to be able to make these simplifications will be

established naturally in the following analysis.

We note that the fact that v obeys complex Gaussian statistics is consistent with

the results of O'Donnell. 16 His conclusion, that the fluctuations of far-zone speckle

intensity for doubly scattered light are stronger than those for Gaussian speckle, is valid

when there are a small number of speckles incident on the second scatterer. For

example, if the area of the speckle incident on the second diffuser is comparable with the

area of the diffuser aperture, and the speckle pattern is dark over the region within the

aperture, then the intensity of the whole output speckle pattern would drop. This

phenomenon does not occur in the system shown in Fig. 3.1 because there is no limiting

aperture on the input plane wave to increase the speckle size at plane II. In addition, we S

assume that the output aperture is large compared to the wavelength of light and to the

correlation length of the diffuser.

N

• . #" p " , - ' " ",,, ',, ,'. , .,, ,v. , , ,,. " ' ,,',' ' ' ','' '.. '' ' , " # " " ' , " Z '. . . ,' -. " -, • ". " ". . ,,. ,.. ;, .-
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By applying the Gaussian moment theorem for a non-circular, non-zero-mean

complex Gaussian random process, see Appendix A, we arrive at the following expansion

for the two-state correlation function of intensity:

<I Ib> = =+ Iu u 2+ Jul 2 - 2 u , (3.72)

where

u = <v(H;k ;k )v(H b;kb;k)> (3.73)

A

and

"o= R I<v(H ;k ;k )>12. (3.74)

Equations (3.73) and (3.74) are defined in analogy with Eq. (3.2) for Uab. In Sections 3.4.2

through 3.4.4 we will derive expressions for the last two terms of Eq. (3.72) and find the

conditions under which these terms may be neglected. When these conditions hold we

have the usual result for zero-mean complex circular Gaussian speckle:

<IaIb> lu j 2 (3.75) ,

<Ia> b >  
au abb

3.4.2 Non-Circular Component

By slightly modifying the derivation of Uab in Eq. (3.31), we obtain an analogous

expression for the non-circular component ut b of Eq. (3.72):

k kr k k
t=a x(io. )CS ' OS 13rk _+k, - '

ab (2, )2 )CO ar H al H 6 H
iV

x F(r;k a -kb;-kab_; -2kb_ ) exp[ - (kb-ka ) r] d2 r (3.76)ab2

where

Ob = k It + k If + (.+ bRi3.7
ab a a b b 'a kbl

In Eq. (3.76), B is as defined in Eq. (3.24). We note that the arguments of B in Eq. (3.76)

are obtained from those in Eq. (3.31) by changing ka to -ka. This is a direct consequence 'U

vS
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of not having a complex conjugate on the first Fresnel kernel for state a. In Eq. (3.76) we

also define F$ in a manner similar to F in Eq (3.30):

F*(r;k k ;Ak ;k Rt (r+ r';k kb) R', (r';ka'ka' b' IL .1 11 a' b 2 a b)

x A(r';k1 ) exp(iAkl or') d2r' . (3.78)

The t symbol denotes that there is no complex conjugate on the first factor, i.e., that

Rt(r b - ra;k kb)= <t(r ka)t(rk)> , (3.79).
Lb a'as a'a b'b4

and

Atr - a(r'- -) a(r' r)ep iko' d2 r'. (.0
A 2  2 

(
o

The general expression for Utab is obtained by substituting Eq. (3.44) for B into Eq. (3.76):

Ut a exp) ( a Hb Ik +k 12CW os

b-i (2a )3 ktA+ kttb (2 kbHa+ka Hb oa.L ob2 a b

XI F(r;k,'kb;- 1Ak b±;-2k b±)

X axp -ikbH+k H r12+(IlbSob± Il )r d2r. (3.81)

kb~ka a b 12 bo-

We note that the 'enominator, kbHa+kaHb, is non-zero unless 1a =1b=0. Therefore,

there is no delta function form of B corresponding to Eq. (3.46).

We pause to compare the functions Ril, Ri., and A in the definition of F in Eq.

(3.30) with the functions R~tl, Rtt., and At in the definition of P in Eq. (3.78). First, we

note that As=A when the aperture function a is real. Similarly, Ri =IRi and Rt .2=Rt

for a magnitude-only transmission function. On the other hand, if the functions a, t ,

and t2 are complex, then the regular and the daggered functions can behave very

differently.

V
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For a phase-type transmission function, there is a simple relationship between Rt

and R*t; it is obtained by changing the sign on the k, variable:

R t(r;k a,kb)=R (r; -a,k b). (3.82)

Thus, Eq. (3.63) is modified to read

2

Rt*t(r;k a'k) =exp[ -  (k,+ka)'] exp k k 02(1 -R(r)). (3.83)
a~~=ep~(2 ko2 a b hi

Whereas R t is an autocorrelation function, and hence drops from its maximum value of

unity that occurs at zero offset and at ka=kb, the function Rt is not an autocorrelation

function, and it increases from an initial value that is less than unity. Furthermore, since

Rh approaches zero for large values of the offset parameter, Rj and Rtj have the same

asymptote:

2

Rt(oo;k.,kb)=R t t(r-;k,k b)=expI 2 ( k a+ kb)(3)

In Fig. 3.3 we compare the behavior of Rt(r;k,k) and R$(r;k,k) vs r for

R (r) = exp 2 
(3.

and for various values of S. We note that Rtt becomes negligible for all values of its

offset argument as S increases. Thus Fl, and hence Utab, can be ignored for large values

of S. In Section 3.4.4 we will further discuss the relative sizes of the different terms in Eq.

(3.72).

In addition to the difference in behavior between the regular and the daggered

functions, we notice the following very important difference between F and P as they

occur in Eqs. (3.47) and (3.81), respectively: The order of Akab± and kab. is switched in

the argument list. Hence, it is kab.L rather than Akab.L that occurs as the wave vector in

the second argument of At. Since a(r) is ordinarily a simple aperture, and hence a real S

function, A and At will be equivalent in many cases. We have already identified the

width of A with respect to the wave vector as the average size of the speckle, and we

know that this size is the same as the size of the direct or the specular component of the

0N
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radiation pattern. In Eq. (3.47) for uab, one would ordinarily set Akabl. to zero to track

the speckle motion at the output. However, since it is kabJ. that occurs as the wave vector

argument of At, and At is usually very narrow with respect to this argument, we can

cause the utab term in Eq. (3.72) to be negligible simply by observing in a direction

different from that of the input plane wave!

In the above discussion we have seen that the behavior of the function utab is quite

different from that of the correlation function u"b: Whereas lubl6/uaO has a maximum

value of unity when a-*b, the maximum value of Iutabl/uaa is negligible when S is large or S

when we observe in a direction away from the direction of the input plane wave. In

Section 3.4.4 we will see how large S must be for us to be able to observe at kabiL = 0 and

still ignore the U$ab term in Eq. (3.72).

3.4.3 Expected Value of Far-Zone Complex Amplitude

We now derive an expression for the final term in Eq. (3.72). We can write the

expected value of the far-zone complex amplitude by making the following argument:

Since the random processes tj and t2 are stationary, the expected values <tl(r:k)> and

<t 2(r:k)> are independent of the position r and can be factored out of the integrals in

Eq. (3.17). What remains within the r' integral is a Fresnel-zone approximation to

propagation of a plane wave between planes I and II. Instead of using this

approximation, we will calculate the exact propagation by multiplying the input plane

wave by the complex exponential exp(-ikH). Thus,

< v(H;ko;k)>-exp ikR) exp( - ikH) cosO

X <t 1(0;k)> <t 2(0;k)> A(k.-lk 1) (3.86)

where A(k 1 ) is the two-dimensional Fourier transform of the aperture function a(r):

A(k) a(r)exp(_ike.rr d 2r. (3.37)

The resulting general form of Ua is

~.w.~ -v-. )r~ - -
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2

u a= Cos 2o0 -- i I<tI(O;ka)> <1 2(0;ka)> A(k.L - kaj) 12 . (388)

Since 1A12 is essentially the far-zone radiation pattern for plane wave illumination of the

aperture, and the angular spread of this pattern is usually small, we see that 2uub in Eq.

(3.72), in addition to lUtabJ2 . are negligible compared to the other terms if the

observation point is not in the direction of the input plane wave.

We point out that <t(O;k)> for the phase-only transmission function defined in

Eq. (3.6) can be written in terms of Rt of Eq. (3.59) by setting the offset and the first k

parameter to zero. This reduces Ri from a bivariate characteristic function to a univariate

characteristic function:

<t(0;k)>=Rt(0;Ok). (3.89)

3.4.4 Relative Size of Terms

As discussed in Sections 3.4.2 and 3.4.3, the terms W,,ab and UoUb in Eq. (3.72) have

their maximum values when kab±=O, and the- fall off rapidly when kab±. points in a

direction that is a few speckles away from the direct beam. Thus these terms are only

important over a small region centered about kb±=O. However, in some applications it

is desirable to use small values of kab±, e.g., the analytical expressions may be much

simpler to evaluate and to use if kab±=O. We now find the conditions on how large S

must be for Eq. (3.75) to hold when Akobj. = kab± =0. For simplicity we let a-)b, and we

use Eq. (3.38) for A(r;kj). In addition, we assume that S> > 1 so that Eq. (3.68) holds for

Rt and that Rh approaches zero for large arguments so that Eq. (3.84) holds for R.t ,

outside of a small region around the origin. We will also assume that the effective

correlation lengths wp in Eq. (3.70) are the same for both diffusers. In comparing the size

of the terms in Eq. (3.72) it is convenient to normalize by dividing each term by uoaubb,

the product of the average intensities for the two states. Thus, the first term will have a

constant value of unity and the second term will have a maximum value of unity when
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a--+b. The result of the calculation for the maximum values of the remaining two terms is

U2 j!j2 2wa4 2 s). (3.90)S2 2 exp 4S 2 (.0

As a numerical example, if Wa= 1000 p and wp= 1 p, then S must be greater than or equal

to 2.96 for each term to contribute less than 0.01. By comparison, the maximum value of

the first two terms is 2.0. If S is increased to 4, then this error plunges to 2.6x 10-15.

Equation (3.90) serves as a guideline for determining when Eq. (3.75) can be used at any

observation position, i.e., when it can be used even at kab.L = 0.

3.5 Remote Sensing of the Spacing between an Aperture and a Diffuser

The results thus far in Chapter 3 have been quite general in that we have not

specified the type of diffuser or the functional form of the aperture. A calculation of

<laIb> for a specific type of diffuser will be presented in Chapter 4, where we will gain a

much better understanding of the interrelationship between the various parameters that

cause decorrelation of the speckle pattern. Before closing this chapter, however, we
,

wish to point out an interesting subcase of the analysis that does not require knowledge

of the specific functional form of R1, that of the remote sensing of the spacing between

an aperture and a diffuser.

We obtain the above limit by removing diffuser D2 in Fig. 3.1. In the theory, this is

accomplished simply by setting Rj., equal to unity in Eq. (3.30) for F. If diffuser D, is

strong, i.e., if S1>>1, then Rj, approaches zero as r increases. Since the aperture

function a is usually very wide compared with Ri,, the spatial dependence of the

aperture ambiguity function A will also be wide compared with Rj . Hence, we can

evaluate A at the point r' =-r where R,, is maximum and then factor A from the integral.

After shifting the variable of integration to also remove r from the integral, we obtain

S
$1 z

If lj 111 111 1 11111 (1
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F(r;k k ; -Ak .)A(-r;Ak b± )exp ( -ikb. or)

J Rt(r';ka,k b) exp(ik abor') d2r'. (3.91)

Equation (3.91) for F can then be substituted into Eq. (3.47) and evaluated for a given

aperture function.

For angular decorrelation only, we obtain a particularly useful result. Since ka = kb

and Ha=Hb, we can use the simplified expression given in Eq. (3.48) for uab. Then, if Eq.

(3.75) also applies, and if we require that the tracking conditon Akab.L=0 is satisfied,

then the two-state correlation of intensity is

<1aIb>  (3.92)
< a b + IA(Hs -ts 0)1,3.92.

Equation (3.92) does not contain any integrations, except for the implicit integration

involved in ca!culating the aperture ambiguity function from the aperture function. In

addition, Eq. (3.92) does not depend on the functional form of Rj but only on the fact

that Rt, is a narrow function compared with A.

From Eq. (3.92) we see that one can determine the spacing between a diffuser and

an aperture, given the aperture function a(r), by observing the speckle pattern as the

angle of illumination is changed. A practical implementation of the experiment is to

illuminate the diffuser at normal incidence, SoaL = 0, and to observe the speckle in the

same direction as the input plane wave as the diffuser and aperture rotate as a unit

about the center of the aperture. In this configuration kab±=O and the tracking

condition, Akab± =0, is automatically satisfied. We note, however, that Eq. (3.92) does

apply for arbitrary values of kab l . For a circular aperture of radius wa, we substitute Eq.

(3.40) for the autocorrelation function of the circular aperture into Eq. (3.92) and obtain

the normalized two-state correlation function of intensity

ab = + > circ 2 cos t ,- , 2).(3.93)

h• n

% ?
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We define k in Eq. (3.93) by the expression

,sinA, (3.94)

2w

and we note that sinA6= ISob-t.

Equation (3.93) is plotted in Fig. 3.4. We see that the function has a maximum

value of two and a minimum value of one, and that it is cone shaped for small offsets E,.

In determing H from experimental data, it is convenient to find the value of k, in Eq.

(3.93) by comparing the experimental and theroetical curves for small values of E. The

power series expansion for Eq. (3.40) is

2 (cos-l - 1- =I+ - -- + I k (2n-3)!!e2 1+ 1

at 6 n 2 2r r n=2 2 n!(2n+l)

for 0 5, 1. In Eq. (3.95) we make use of the double-factorial notation n!! = n (n-2) (n-4)..

.5.3.1. Thus we can write the first two terms of the series expansion for Eq. (3.93) as

<aI b> 4 (3.96)S = 2- - HsinAO +....<1a> < <l> a
a b a

Equation (3.96) is plotted as the dashed line in Fig. 3.4. It is very useful for determining

H, given wa, from the slope of the two-state correlation function near the origin with

respect to angular detuning AO.

3.6 Summary and Conclusions

In Chapter 3 we have analyzed the general problem of decorrelation of speckle 1

from a cascade of two parallel diffusers. By decorrelation we mean that the two-state

correlation function Uab becomes small compared with its initial value Uaa, or that the

normalized two-state correlation of intensity in Eq. (3.72) approaches unity. The

setup for analyzing the speckle is illustrated in Fig. 3.1. In this figure the diffuser pair is 0

illuminated with a plane wave of wavelength \ that points in an arbitrary input direction

so. The two diffusers are separated by a spacing H, and there is an aperture a in contact

with the second diffuser. We have written the expression for the complex amplitude in

1%-
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the far-zone of this aperture in Eq. (3.17), and in Eq. (3.47) we have given a general

expression for uob, the the two-state correlation function of the far-zone complex

amplitude. The two states a and b represent different values of the four parameters that

can be varied, i.e., the wavelength X, the input direction s,, the spacing H, and the

observation d i rection s.

In Eqs. (3.25) and (3.26) we have defined the two important wave vectors Akab_

and kbj_. When Akab.. of Eq. (3.25) is equal to zero, we have the speckle tracking

condition, i.e., our observation point moves with the local speckle motion. The other

vector, kab-L of Eq. (3.26), represents the average difference between the input and

observation wave vectors for the two states. When Akab- = 0, kabj_ acts as the Fourier

transform variable for the far-zone speckle pattern.

The general expression for Uab given in Eq. (3.47) takes the particularly simple

form given in Eq. (3.48) when k and H are constants, or more generally, when Eq. (3.45)

holds. Equation (3.48) is proportional to the double-diffuser descriptor function F that is

defined in Eq. (3.30). The offset vector HOsOO±-HbSob_ that occurs as the first argument

of F is particularly important. It can be interpreted geometrically as the lateral shift at

plane II between two rays leaving plane I at the same point and traveling in directions so0

and So b.

The function F contains all of the dependence on the statistics of the diffusers .

necessary for the calculation of uab through its dependence on the correlation functions

Rt, and RI., defined in Eq. (3.7). For this reason, F serves as a useful descriptor for the

diffuser pair. The function F also depends on the aperture ambiguity function A that is

defined in Eq. (3.23). In general, an ambiguity function depends both on a spatial and on

a spatial frequency variable, and there is an inverse relationship between the width of

the ambiguity function with respect to these two variables. As it appears in Eq. (3.30), A

depends on r' and on the wave vector Akabl. The speckle size is equal to the width of A

with respect to Ak 0 b_. Thus, when Ak0 b.L becomes larger than the speckle, A drops 5

., : *N .
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rapidly. In most applications the experiment would be designed so that Akob± = 0.

Ordinarily, the width of the aperture function is large so that A is wide spatially

compared with R.. Therefore, A can usually be evaluated at r'=0 in Eq. (3.30) and

factored out of the integral. For convenience, the ambiguity function is normalized to

unity so that A(0;0)= 1. As illustrations of the functional form of A for common aperture

functions, we have evaluated A for a Gaussian aperture, Eq. (3.32), and for a rectangular

aperture, Eq. (3.33); the resulting expressions for A are given in Eqs. (3.38) and (3.39)
S

respectively.

Some special cases of Uab are listed in Section 3.2.6. When a-b we have the

radiation pattern from a cascade of two diffuser, Eq. (3.50). This formula is reduced to

the expression for the pattern from a single diffuser in Eq. (3.51). For purposes of

comparison with the literature, uab from a single diffuser is also listed in Eq. (3.52). In

Section 3.2.7 the calculation of Uab is extended to arbitrary wide-sense stationary plar'e-

wave transmission functions. Speckle decorrelation from double diffusers is a special

case of this more general formalism.

In order to perform calculations based on Eq. (3.47), the functional forms of R 1

and Rt, must be specified. The relationship between the diffuser height profile

correlation function Rh and Rt is discussed in Section 3.3. Equation (3.63) applies for

normally distributed diffuser heights. The decaying exponential, Eq. (3.66), and the

Gaussian, Eq. (3.67). are two important limiting forms of R, for large roughness diffusers,

i.e., for S> > 1. The decaying exponential applies when Rh looks like a cone, and the

Gaussian applies when Rh looks lilke a paraboloid for small values of the offset parameter

7V.
In a typical speckle experiment, one would measure the intensity rather than the

complex amplitude. Hence it is important to calculate the moment <blb>. This is done .4

in Section 3 4 for the important case where a(r) is wide compared to R,., so that the real
$

and imaginar, parts )'f the complex amplitude v are normally distributed. The expansion

%,

i iU
I I I
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of <biab> for non-circular non-zero-mean complex Gaussian statistics is given in Eq.

(3.72). We derived expressions for the non-circular component Uab in Eqs. (3.81) and for

the non-zero-mean component u, in Eq. (3.88). Although these terms may be important

for some applications, they become negligible when the observation point is not on the

direct beam or when S> > 1.

The condition on S for Utab and Ua to be negligible, even when observing in the

direction of the direct beam, i.e., at kab± = 0, is given in Eq. (3.90). Even for S as small as

3, these terms make little contribution to the total expression in Eq.(3.72).

The analysis presented in Chapter 3 is intended as a general framework for further

study of speckle decorrelation from a cascade of two diffusers. The key expression, Eq.

(3.47), can be used as the basis of many different remote sensing techniques. As an

example of the generality of the analysis, we have given an expression, Eq. (3.92), that

can be used to determine the spacing between a diffuser and an aperture by observing

the angular decorrelation of the far-zone speckle pattern. Equation (3.92) is applied to a 9

circular aperture in Eq. (3.93).

A -o

.':,),.
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Chapter 4

Remote Sensing of Double Diffusers

4.1 Introduction

In this chapter the analysis of Chapter 3 is applied to a specific type of diffuser

cascade, and the interrelationship is discussed between the various parameters that

cause the far-zone speckle pattern to decorrelate. The emphasis is on remote sensing

applications, i.e., on determining the diffuser properties or the spacing between

diffusers from observing the far-zone speckle. We refer to the diffuser cascade

considered here by the symbol P-P because the autocorrelation functions Rh, and Rjh of

the diffuser height profiles h and h2 are =haped like a paraboloid for small spatial offsets

r. We also assume that the diffusers are strong, i.e., that the rms phase delay S is large

compared to one radian. In Section 3.3.2 we have shown, that for a normally distributed

diffuser height profile, these assumptions lead to the Gaussian autocorrelation function

Rj, Eq. (3.68), of the diffuser transmission function t.

The P-P diffuser cascade is perhaps the most important example to consider S

because Eq. (3.47) for the two-state correlation function of the far-zone complex

amplitude Uab can be evaluated in closed form for arbitrary values of all of the

decorrelation parameters. We use the resulting solution to gain a general understanding

of the different speckle phenomenon that occur with double diffusers. With this

understanding we will know how to configure remote sensing experiments to extract the

spacing H between diffuser planes or the parameters describing the diffuser statistics.

We begin by reviewing Chapter 3; for ease of reading we will repeat the pertinent

equations in Section 4.2. In Section 4.3 we present the general two-state correlation

function of intensity for the P-P diffuser combination, and we discuss speckle
b

decorrelation with respect to changes in wavelength, spacing, and angle of incidence.

76
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We also introduce the five parameters p, P1, P2, p3, and p4 that one can measure by

performing remote sensing experiments and that contain information about the diffuser

cascade. In Section 4.4 we show how these parameters can be used to solve three classes

of remote sensing problems. In Section 4.5 we discuss how the remote sensing of the P-P

diffuser combination is expected to differ from the remote sensing of the other

combinations of strong diffusers that are considered in Appendix E and Appendix F.

4.2 Review of Chapter 3 1

In Chapter 3 we obtained the general expression, Eq. (3.47), for Uab, the two-state

correlation function of far-zone complex amplitude from a cascade of two diffusers:

k k 2 exp(-iab) e1 H
a~~~ ba b 2ba b 12

X F(r;kkb,;k ;Akab±)exp i b I2+ (H - or d2 r. (4.1)

The two states are represented by the subscripts a and b on the parameters tha'. can be

changed during an experiment. There are four basic quantities that we allow to vary,

see Fig. 3. 1. They are the wave number k, the direction s, of the input plane wave, the

spacing 11 between the diffuser planes, and the direction of observation s. However, in

Chapter 3 we showed that these parameters occur in certain combinations that have

physical significance; therefore we defined the two additional wave vectors Akab± and

kabi in Eqs. (3.25) and (3.26):

Akab± =k" -koa. -k kb +k,,h." (4.2)

and

k ( k ,a. +k± - k )± (4.3)

II
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The wave vector k is obtained by multiplying the unit vector s by the wave number k, and

the subscript . denotes that the component of s or k that lies along the z-axis has been

dropped. We refer to Akab± as the speckle tracking wave vector because if Akab± = 0,

then the observation point follows the speckle pattern as it shifts with changes of

illumination angle or wavelength. We refer to the other wave vector, kab±, as the

Fourier transform wave vector because it occurs in the Fourier transform kernel. It is the

average over states a and b of the difference between the input and output wave S
vectors. Essentially, kab-is the offset of the observation point from the input direction in

the diffuser radiation pattern.

The double-diffuser descriptor function F that occurs in Eq. (4.1) is defined in Eq.

(3.30):

F(r;k ak b;kabl ;Ak ) = I R(r+ r';k ,k ) R 2(r';kk b)

X A(r';Ak,±) exp ( ik * r') d2r' (4.4)

It depends on R, and Rt., defined in Eq. (3.7) as the autocorrelation functions of the

diffuser transmission functions t1 and t2 , and on A, defined in Eq. (3.23) as the normalized

ambiguity function of the aperture function a.

The condition that must be satisfied for changes in spacing to be balanced by

changes in wavelength is given in Eq. (3.45):
k a k b (4.5) 6
Ika  l b  W

If this condition is satisfied, then Eq. (4.1) simplifies to

b 2 iexp i4,) " (kbllb - ' / CsOa "cOb
U 2n 2x(-~a~ x  2!:

x F(11s,, - 11 s k kk ;Ak Io46

NV
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The spatial offset vector FasoaL-HbSob± in the argument of F is important because it is

the shift between the autocorrelation functions Rj and R in Eq. (4.4). This offset can be

interpreted geometrically as the paraxial approximation to the lateral shift between two

rays that begin at plane I and propagate in the directions s. and Sob to plane II.

Since it is the intensity rather than the complex amplitude that is measured in a

typical remote sensing experiment, we have also given an expression, Eq. (3.72), for the

two-state correlation function of far-zone intensity. Equation (3.72) applies when the

speckle is Gaussian, i.e., when the real and imaginary parts of the complex amplitude are

normally distributed so that the complex Gaussian moment theorem (see Appendix A)

can be used to write the fourth-order moment in terms of second- and first-order

moments. .

Gaussian speckle occurs when the aperture function a is wide compared with R, 2

so that many uncorrelated diffuser cells contribute to the speckle pattern. In Section

3.4.4 we have shown that the last two terms of Eq. (3.72), which we refer to as the non-

circular and non-zero-mean components respectively, are negligible for all observation

points if the diffusers are very rough, i.e., if SI > > 1 and S2 > > 1. In this case we have %

zero-mean complex circular Gaussian statistics, and Eq. (3.72) reduces to Eq. (3.75). We •

will use the normalization Uaa(O)Ubb(O) introduced in Appendix C rather than the

normalization Ua,(ka±-kaL)Ubb(kbJ_-k)b±) in this chapter. In other words, we will N,,

calculate the normalization factor as the value of the intensity in the direction of the

input plane wave:

12

< 1a (0)> <Ib(O)> u (0)1,(O) u . (0) u btO)

In analyzing the dependence of speckle from a cascade of two strong diffusers, td^

there are two important functional forms of the autocorrelation function R, to consider:

For diffusers that are very rough and that have a normally distributed height profile, R is

given by the Gaussian, Eq. (3.68), 0

.5
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RorkA ep 0t k Q ]ep kk0 IH2 (4.8)
Rir~ k b) ex[- (kb-ko)a ex(kbo -)

w

if the diffuser height profile autocorrelation function Rh is shaped like a paraboloid for

small spatial offsets r, and by the decaying exponential, Eq. (3.61),

2
2 (4.9)

R (r;kA,k ) =exp k (k )2] exp(kak a

if Rh is shaped like a cone for small r. In practice, a roughness S of 3 or 4 radians will

usually suffice for the diffuser to be considered strong. We designate diffusers having R,

given in Eq. (4.8) and (4.9) by the symbols P and C, respectively. Thus there are four

combinations of strong diffusers to consider: We denote them by the symbols P-P, P-C,

C-P, and C-C. The ordering of the letters corresponds to the ordering of the diffusers

from left to right in Fig. 3.1. In this chapter we will analyze the P-P diffuser combination

in detail. In order to make the analysis tractable, we assume that the aperture function a

is Gaussian, Eq. (3.32), so that the aperture ambiguity function is given by Eq. (3.38):

AIrk 1)2 (4.10)

A(r~k )=exp(- 2w- 2 ) exp(-8w2ki). 41 j

a

The P-C and C-P diffuser combinations are treated in Appendix E, and the C-C diffuser

combination is analyzed in Appendix F.

4.3 Two Diffusers of the Paraboloidal Type

The intermediate steps in evaluating Eq. (4.1) for the P-P diffuser combination,

where the output aperture is a Gaussian of arbitrary width w,, are given in Appendix C.

In most practical situations the relation

2 (4.11)

2k kW2 > > -
a ba 02

holds since the area of the aperture is large comp,,red to the area of the diffuser

correlation cells. This insures that the output speckle pattern is caused by many
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uncorrelated scatterers so that Eq. (4.7) holds. Inequality (4.11) was applied in deriving

the final result, Eq. (C14), in Appendix C.

In remote sensing applications we will require that the speckle tracking condition,

Akab-L = 0, is satisfied. In practical applications the tolerance on this condition is that

~k~x << -. (4.12)
W

When this inequality is satisfied,the error in the speckle tracking parameter is small

compared to the speckle size. Then Eq. (C14) reduces to

<I I > ao2 a2 l

a1 2 a b

+ exp[t- (o+o 1 )(kbk)2] 1

X ~ ~ ~ ~ ~ ~ ~ 1 "ppkk LL+2I S -Hs 1

it 12 1 P

2 2 2 2

"Xexp 2kk 2 2i oil22 2E )Ika0 _J2J
ab 1 2a I +t2 pp

2 0u12 1 p (4.13)
exp 12 (1~J~! 2 -1 k~. ~

0t1 2 pp

where the spacing-wavelength cdetuning parameter di of Eq.(C4) is now

2 2
(4-14)

2
#LI (kH- 2 Y

U.-

Equation (4.13) is the key expression governing the decorrelation of the speckle

intensity 'rom a cascade of two paraboloidal diffusers. We will now discuss the

significance of the various factors and terms making up this equation, and we will look at

certain important limiting cases to gain an understanding of how Eq. (4.13) can be used

to extract information about the diffuser pair. By inspection of Eq. (4.13) and Eq. (4.14)

V %
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we see that the parameters that one could hope to find, based on this equation, are the

rms slope parameters j7wi and %/ w2, the spacing H, or changes All in this spacing, and

the sum of the squares of the roughness parameters o, and o.,. In the most common

application H, = Hb SO that AH= 0.

We begin by writing the degenerate from of Eq. (4.13) that results from letting

a->b:

<12> ,o _ 02 -1 (4.15)0 =2exp -I aL-S

<1 (0)>2 2 W2 W2 8 al oai'

Equation (4.14) has the value two when the observation direction is equal to the input

direction, and it falls off as a Gaussian in the offset Isa-Soal between these two

directions. By illuminating at normal incidence, so_,=O, and scanning the output sa±,

one can extract the effective slope parameter, p0, for the diffuser combination:
0

2  
02

t 2 (4.16)

W1 W2

In practice one can obtain Po more directly by fitting the radiation pattern from

the diffuser pair, see Chapter 5, to

<x > p 1 °t2 )-1 2I (4.17)a =exp -- + 0 ' I..Sao,2
<1(0)> w2 w2

a 1 2

Thus po could be obtained by illuminating at normal incidence, soj± = 0, and finding the

value of Isa.l=sin80 where <!a>l<Ia(O)> falls to its e-1 point. This experimental

configuration is illustrated in Fig. 4.1(a). If we denote the value of 0, where this occurs as

0e, then po=0.5sinO,. Of course this method of determining Po can only be used for

values of Po < 0.5; for larger values of po, one must fit the curve at angles smaller than 0e,  %.

However, typical values of Po are small compared to one. For example, the etched glass

diffuser described in Chapter 5 has o/w = 0.03 or oh/w = 0.06 so that for a cascade of two

of these diffusers, p,=0.04. If the rms diffuser slope parameter oh/w is not small

compared to unity, then we will not be able to ignore shadowing and multiple

III; r1L A 16% * -6 V2M V Y
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scattering, and the simple transmission function model given by Eqs. (2.1) and (2.2) may

not adequately describe the transmission of light through the individual diffusers.

As pointed out in Section 3.2.6, the radiation pattern from a diffuser pair is

essentially the convolution of the individual radiation patterns. Since the radiation

patterns from the individual paraboloidal diffusers are Gaussian, the radiation pattern

from the two diffusers, Eq. (4.17), is also Gaussian, but it has a larger width than either of

the single diffuser patterns. In other words, P. is larger than ot1/wl and a./w2.

In using Eq. (4.13) as the basis for remote sensing experiments, we want to find the

simplest subcases that will allow us to calculate the diffuser parameters and the spacing.

As we will see below, these parameters can still be obtained from the formula that results

by setting kob± =0 in Eq. (4.13):

<I I>
a exp -a +0 2 )(k -k.)2]

exP[ Or2 2J\ 6 a]

<1a (0>< 0 tt b 1+p

2 22

X expj-2k k (w + w2 'H - HS 1 (4.18)
a b2 ~2 1+,0 bo a Oa~l

i1 t2 pp
However, we will need to perform an additional experiment with kab_. t0 to determine

0

the ordering of the diffusers. We denote the three factors in the second term of Eq.

(4.18) by the symbols fl, f2, and [3:
'

f, exp ( 2+a2 kbk a , )2] (4.19

_ (4.29) :_:

and •

W2 2 . '

W 12 (4.21)
exp -2k ob Hasoa

it t2 pp

We now discuss the physical significance of each of these factors and show how they can

be used in remote sensing.

Or
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4.3.1 Wavelength Decorrelation 5
V

By requiring that HbSobL=HsoJL, we can eliminate f3 from Eq. (4.18). This leaves

the pure wavelength dependence of fi and the spacing-wavelength dependence of [2:

ab = 1 + exp -o2+o2)(k-k)2] 2 (4.22)
<Ia(0 )> <lb(0)>  ita 1 + f2

A simple way of eliminating f3 is to set So.±=Sob±=O, i.e., to illuminate at normal

incidence for both states. See Fig. 4.1(b) for a diagram of this experimental I
configuration. In most applications the spa-ing H is constant so that f3 could also be

eliminated by fixing the angle of illumination, not necessarily at normal incidence.

We first discuss the significance of the factor f, that occurs in Eq. (4.22). This factor

arises from multiplying the wavelength dependence of the individual diffusers, see Eq.

(3.63). It does not depend on the spacing between the diffusers or on the functional

form of the autocorrelation functions Rt, and R.,, only on the fact that h, and h2 are-I

normally distributed random variables. In order to facilitate the discussion of

wavelength dependence, we will define a new parameter A as the fractional change in

wave number between states a and b:

pk= (4.23)
k S

In Eq. (4.23) we have denoted the change kb-k,, between the wave numbers of the initial

and final states by the symbol Ak, and we have dropped the subscript a on the initial .

wave number k in the denominator. We note that the fractional change in wave -

number pk can range in value between negative one and infinity.

Using the above notation, we can rewrite Eq. (4.19) for f, in the folm:

exp _(S2+S2 )p 21 , (4.24)

where we have used Eq. (3.10) to express ot, and or., in terms of rms phase delays S1 and

S2 at wave number ka. Since we have already assumed that S, > > 1 and S2> > 1, then

Eq. (4.24) implies that the wavelength dependence of the individual diffusers will cause

S;'
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the speckle pattern'to decorrelate unless [pj < < 1. If f, does dominate the wavelength

decorrelation, then Eq. (4.19) can be used to extract the effective roughness

(O0C2+0 2 )1 (4.25)

of the diffuser pair.

We now consider the spacing-wavelength decorrelation factor [2; this factor is a

Lorentzian in the parameter 1pp. If f, does not dominate the decorrelation, then by

substituting Eq. (4.14) for pp into Eq. (4.20) for f2, we see that we can find the value of

the parameter

W2 W2 1= 2 H  I + 2 (4.26)

iil t2

One method of obtaining P2 is to measure the value of Ak necessary for the factor f2 to ie'

fall to one half of its maximum value of unity for AH=O, then p2 =Ak-I. We note that

decorrelation arising from f2 occurs more rapidly if the spacing H and the slope

parameters o* /wi and ol !w2 are large. Large slopes imply a large spread in the radiation

pattern and a large value of H allows the light to spread spatially between planes. Thus

we see that this decorrelation phenomenon occurs more rapidly with wavelength

changes if the light scattered from a point on the first diffuser illuminates a large area on

the second diffuser and if the angular spread of light scattered from the second diffuser

is large.

If we define &H as the change from the initial spacing Ha, in the same manner that

we defined Ak as the change from the initial wave number k0, and if we drop the

subscript a on the initial values, then the spacing-wavelength detuning parameter that

occurs in the definition of P,,p can be written as

kbH -klb = H Ak-k AI. (4.27) "

The symmetry between decorrelation with respect to wave number k and spacing H is

clearly displayed in Eq. (4.27): If the spacing is fixed and the wave number varies, then

AWL1N1

La. S N
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,pp is proportional to HAk, and if the wave number is fixed and the spacing varies, then

Ppp is proportional to kAH. Another convenient form of Eq. (4.27) is

HAk -k AH= kH(Pk-PH)' (4.28)

where PH is the fractional change in spacing,

P H (4.29)

Of course PH, as well as Pk , can range in value between negative one and infinity. By

setting

PH =P ' (4.30)

we see that both H and k can change without affecting the offset parameter OPP-

However, the range over which the speckle remains correlated by constraining Pk to be

equal toPH is limited by the factor fl.

In wavelength experiments it is often more convenient to work in terms of

wavelength X rather than wave number k. If we define the fractional change in

wavelength

Pl= (4.31)

in the same manner as we defined ph in Eq. (4.23) and PH in Eq. (4.29), then the

expression

P- + P, (4.32)

may be used to convert between pk and PA. For infinitesimal shifts dX and dH, the

constraint in Eq. (4.30) becomes

dA dH (4.33)

A H

Equation (4.33) gives the relationship between dX and dH for fpp to remain constant.

Thus far we have shown how one can determine the value of the parameter Po

defined in Eq. (4.16) from the angular spread of the radiation pattern and the value of at

z

- r
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least one of the parameters, Pt of Eq. (4.25) or P2 of Eq. (4.26), from the wavelength

decorrelation for normally incident illumination and on-axis observation. We can tell

whether wavelength decorrelation will be dominated by the spacing effect or by the

combined wavelength dependence of the individual diffusers by looking at the ratio of

the width of the two factors fA and [2 with respect to the fractional change of

wavelength pk:

2kH( wl+ w) (4.34) 4a 1 2 a -2 4

Q il t2

1 2

To illustrate the effect of the size of Q on our ability to determine P, and P2, we

have plotted Eq. (4.22) for different values of Q in Fig. 4.2. If Q> > 1, then the spacing

effect dominates, and the curve approaches the Lorentzian shape of the dashed line.

Thus, for large Q it will only be practical to obtain p2. On the other hand, if Q < < 1, then

the wavelength dependence of the individual diffusers dominates, and the curve is

Gaussian shaped. For small Q it will only be practical to obtain pl. If Q- 1, then it is likely

that both P, and P2 could be determined. As a numerical illustration of Eq. (4.34), we

choose the following typical values for the parameters: ot/1 w ! = oeW2 = 0.03, S 1 =S 2 = 5,

H=5 mm, and X=0.5 pm and calculate Q=8.0. For this illustration we would only be

able to accurately determine p2.

In a wavelength decorrelation experiment, one is limited by the laser linewidth

Avj, and the range of wavelengths Amj over which the laser can be tuned. A linewidth

of less than 40 GHz can be obtained with a typical tunable dye laser. This converts to

AXiw=0.3 Angstoms, Akl,=8x10-4 pm- 1, and pk,Lw=pxLw= 6 x10-5 . In addition, it

implies a longitudinal correlation length of 7.5 mm. The range of tunability for

Rhodamine 6G dye is from u.570 pm to 0.650 pm. Thus IJXmaX =0.08 pm, IAkm--- 1.5

pm-', Lpk,max=0.1 2 , and poxk=,,,j=0.14. We see that there is a ratio of approximately

2000 to 1 between the range and the resolution of tunability so that one could obtain

LD09



W~vP2%R~nulInnArWRIq 0

89

U.'

0

a -a
CL5
C

0

0.

0 40

0

a

* .C

0 E

0~

) II

0~

OCC
4U

Cn C

U,,

40 o
>,U

< (O~j > <(opI

< qjC .>



900

about 2000 nonoverlapping data points.

The laser linewidth limits the maximum value and the resolution of the distance

parameters pt and p2 that can be obtained with a given dye laser system. The range of

tunability, on the other hand, sets the minimum values of these parameters that can be

measured. If we designate the e-1 and the 0.5 points as the values of the factors fA and [2,

respectively, at which we can reliably measure the widths of f, and [2, then we can write

the following set of equations for the maximum and minimum values and the resolution

obtainable for the parameters Pt and p2:

Plmi = 2,n= I (4.35)

P l,.i.p~e ' P2,.in: p 12 [ k~a' z-  ( , 436 )

2i~aPi~I (4-37)

and

P2,res P2 Ilj

We first consider the limitations imposed by the linewidth and range of tunability

on our ability to measure the effective roughness p, of the diffuser combination. By

substituting AkI =8x 10-4 1Im-
1 into Eq. (4.35), we find Pl,max= 1 mm. Since 1 mm is

large compared to the roughness at which one can expect the thin diffuser model to S

apply, it does not impose any real restrictions. We calculate the minimum value to be

PI,min = 0.7 im by substituting IAkkmaxl = 1.5 Vm-1 into Eq. (4.36). The restriction on Pl.rn"n

is more serious than the restriction on Pi,max, e.g., if both diffusers have the same

roughness, then it implies that the rms phase delays S1 and S2 must be greater than six to

be measured by wavelength decorrelation. However, Eq. (4.13) applies for values of S as

small as three, e.g., the etched glass diffusers in Chapter 5. From Eq. (4.37), we calculate

the resolution to be P,re,=8 Angstroms, 0.08 pm, and 8 pm at a roughness p, of 1 pm,

WA PLp
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10 pm, and 100 pm, respectively. This resolution is very good for smaller values of pl, but

it worsens as a fraction of p, asp, increases.

From Eqs. (4.35) through (4.38), we see that the same restrictions apply for both p,

and p2. However, it is more meaningful to convert the conditions on P2 to conditions on

H. Thuswe obtain

2 2W

H + 2 iAk,-1,(.
2r 2 02

1 t2

2 2H. 1 W )Ik -, (4.40)

mn20 \2 0 2

and

H r 2H 2 ( + a)- IAkj.

The range of ot/w obtainable by the etching process described in Chapter 5 is

approximately 0.01 to 0.05. If we choose ot/w=O.0 3 as a typical value, then

(w1210 1 1
2 + w22/ot2 2 )/2= 1000. Thus Hma= 1 m; however, at such large spacings, the path

length differences could easily exceed the longitudinal correlation length of 7.5 mm, and

the speckle contrast would be reduced. In addition, the resolution, Hre, arising from the

finite linewidth worsens for large spacings. From Eq. (4.41) we calculate Hre, to be 0.8

pm, 80 pm, and 8 mm at spacings H of 1 mm, 10 mm, and 100 mm, respectively.

The minimum value of H that we can measure by wavelength detuning for S

o/w=0.03 is calculated from Eq. (4.40) to be H,= 700 pm. Although this is a relatively

small diffuser spacing, it might be considered to be quite large if one were trying to

measure the thickness of a film having rough interfaces with the surrounding medium.

We note also that the value of Hmin is very sensitive to the value of the slope parameter,

e.g., if o/w=0.01, then Hm n=7 mm, and the restriction is much more severe.
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4.3.2 Spacing Decorrelation

In Section 4.3.1 we have stressed the wavelength dependence of Eq. (4.22). It is

also worthwhile to consider the decorrelation that occurs by keeping the wavelength

constant and changing the spacing. The resulting form of Eq. (4.22) is

W 2 )-1 (2 - (4.42)<[ 0) <b()> = 1 + 11 + 12k~k[ ( _+ _

a bOtl 0 t2

It is interesting to note that there is no dependence on the spacing H in Eq. (4.42), only

on the change in spacing Al. if one can increment the spacing, then Eq. (4.42) provides

the basis for a convenient method for measuring w1
2/oi, 2 + w 2

2/O1- 2. If we measure Atl at

the point where the second term in Eq. (4.42) falls to 0.5, and if we assume that X=0.5

im and that ot 1 w, =o./w2=0.03, then AH=90 pm. We observe that the value of All

necessary for decorrelation is very sensitive to the value of the slope parameters oi,/wl

and ok/ w2, e.g., if the slope is reduced by a factor of 10, so that Oi,/wl =o /w2 =0. 0 0 3 ,

then the value of AH necessary for decorreiation increases by a factor of 100 to &H=9

mm. If one has two diffusers that are created by the same process, then it can be

assumed that ogilwj =oa/w2, and Eq. (4.42) provides a very convenient and sensitive

method for determining og/w for the diffusers.

4.3.3 Angular Decorrelation

Let us suppose that we can find p2 by varying the wavelength. Since we can also

evaluate p, from observing the radiation pattern, we need to have one more condition in

order to solve for oglwI, o0Jw 2, and II. This missing information can be provided by

making use of the factor f3 defined in Eq. (4.21). We can isolate the angular dependence

in f3 from the wavelength dependence by setting k,=kb in Eq. (4.18). Of course, we also

assume that the spacing is constant for the present discussion, i.e., that H,=Hb so that

ppp= O. Equation (4.18) then reduces to

2 I2O

e:j-2 + U 2  btiq-j 2 (4.43)

< 1(0) > <I 10) > exp 2 0a i t  12

1%,
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From Eq. (4.43) we can deduce the value of
t

The parameter p3 can be obtained experimentally by setting so j.=O and finding the

value of 0 ob such that f3 falls to its lie point. If we denote this angle as A0 e, then

p 3 =(ksinAqe) -1 . The practical implementation of this experiment is to illuminate the

diffuser pair at normal incidence and to observe on axis as the diffuser pair is rotated as a

whole about a line lying in the output diffuser plane and passing through the center of 6

the output aperture, see Fig. 4.1(c). In this configuration the conditions kab_=0 and

AkabJ. =0 are automatically satisfied as the diffuser pair is rotated.

Since it is Wl"/o,'1 + w 2 "/o.," that occurs in the wavelength detuning parameter P2,

and it is the square-root of this quantity that occurs in the angular detuning parameter

P3, Eq. (4.44) is the third equation necessary for solution of the three quantities wl/ot,

W210t., and H. As with wavelength decorrelation, angular decorrelation occurs more

rapidly for larger values of the spacing II. In addition, both phenomenon rely on their

being an angular spread in the radiation pattern, and decorrelation occurs more rapidly

if this spread is large.
6

Just as we calculated the limitations imposed by a finite laser linewidth and a finite

tuning range on our ability to measure the parameters P, and P2, we can determine the

corresponding conditions on the maximum and minimum values and on the resolution
S

obtainable for p3 that arise from the finite angular resolution AOre and the maximum

angular range AOma,. The equations corresponding to Eqs. (4.35) through (4.38) are:

P3,.ax = IkAOresl- (4.45) _

p3 ,mn Ik sinAO In=1  (4.46) %

and
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= Ip, .1 • (4.47)

We write Eqs. (4.45) through (4.47) in terms of conditions on 11 as:

2 2
1 W 1  Wp (4.48)

LL = = + -2 IkAOI-1
'nar V2 o2 -2 Aores-

d t2

(W +W1 W 2 \)4kin O 1 (4.49)
Hmi = - 0 2 + 2 m

and

res 2 2/ rz
-1 2 WI 2 

(4.50)

To illustrate Eqs. (4.48) through (4.50), we assume that the angular resolution is

one arc second and that the range over which one can change the input angle without

causing decorrelation due to thickness effects from the individual diffusers is 30'. This

implies that LnUr,= 5 x 10-6 and sin&Onx= 0.5. We -ee that one could resolve about

105 individual data points over this 300 range. if o*1/wI =O,/2=0.03, then 1I,, = 150

mm. Although this value of ),na is smaller than it was for wavelength decorrelation in

Section 4.3.1, it is still large enough to cover the likely range of applications. The

resolution 1res is 1.8 pm, 180 tim, and 5 mm for spacings !1 of 1 mm, 10 mm, and 50 mam,

respectively. The minimum spacing that one can measure is llrn 5 m; this is much

smaller than it was for wavelength decorrelation. Thus there is an advantage to angular

decorrelation over wavelength decorrelation for small values of !. In addition, for

wavelength decorrelation, one had to be concerned with the competition of wavelength

decorrelation from the individual diffusers. However, the angular decorrelation from a

typical single diffuser is small compared to the decorrelation from the effect of the 'S

spacing between the diffusers. II,
0

F . - o- ,y,-.-
% 5...
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4.3.4 Unequal Input and Observation Directions

In Eq. (4.18) we note that the slope parameters ot,/Wl and O.j2 w2 occur

symmetrically in the factors fo, f2, and f3, i.e., Eq. (4.18) is not altered if the subscripts 1

and 2 are interchanged. Therefore we can not distinguish between the two diffusers,

given only the values of the parameters Po, p2, and P3. This ambiguity in the ordering

arises mathematically from the arbitrary choice of the sign in the solution of a quadratic

equation, see Section 4.4.3.

In order to resolve this ambiguity, we need to perform one more experiment.

Recall that Eq. (4.18) isthe reduced form of Eq. (4.13) that resulted from setting k,,bL=O.

This caused the first term and the last two exponential factors in the second term to

reduce to unity. By performing an experiment where kabL-±4O, i.e., where the input and

observation direction are not equal, we can extract the information contained in the last P

two factors. Continuing with our numbering system for the factors in Eq. (4.13), we will

refer to these two factors as L

2l 32 1( 1 W.) P__ ~Ikbl 1 (.1

f 4= exp 2k- k (w 2 + 2 (2 24.51)
b W1  W 2  W1 G12 1+

and

22a 1 (452)
2Lexp 2 (1+ I t2 P k-Hs"
t W2  -13;pp

We note that neither f4 nor fs is symmetric with respect to the subscripts I and 2, and that

one can obtain the value of a fourth parameter,

oil w 2  (4.53)

4Wa
S t2

the ratio of the effective slope parameters of the two diffusers, from either Eq. (4.51) or

Eq. (4.52).

- . a - a .~- a~- -~ ' a a-aa-p_



96

We can emphasize f4 in Eq. (4.13) by illuminating at normal incidence,

SoaL=Sob.L=O, so that f3 andf5 reduce to unity, see Fig. 4.11(d). The resulting simplified

form of Eq. (4.13) is

< I b> l° 0 2 1 b 2
eap - i 1 2 - + - .I aSaL 2

<a < b(o)> 4W W 2 k+

pp 1 2 1 , ,p

In Eq. (4.54) we have assumed that Q> >1I so that (2 dominates fi, and we have used the

speckle tracking condition Akabi = 0to wieSb! i terms ofsal:
a (4.55)

sb1 s- 1 2

By invoking the condition Ipkl< <1, we see that replacing kb by k0 in the two places

where kb appears explicitly in Eq. (4.54) will have an insignificant effect un the overall

equation. The resulting for" = Eq. (4. 54) is of *-

<2 2

a b• '

S = 2 S (4.56)

l+I 2  2 W< 2 W: W2 O22; p

A difficulty in evaluating P4 based on Eq. (4.54) or Eq. (4.56) is that the speckle S

~~tracking condition is not automatically satisfied wnen kab±=O. It is important, -

therefore, to determine the conditions under which this tracking condition can be

ignored by keeping the observation angle fixed as the wave!. ngth changes: For normal•
incidence we set koa =kobi= in Eq. (4.2) for kab Then by substituting ks for

kai and kbSbJ for kb±, setting sh equal to s, substituting the resulting expression for uE(.)

Akab. into Eq. (4.12), and converting kb-k1 to p2, we obtain

1,- .>22

1 2

(3,2 2 2
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2 (4.57)

as the condition on pk that must be satisfied for speckle motion to be negligible. The UV

above inequality is expressed in terms of the initial angle of observation 0 , through %

IsLl=sina,. As a numerical illustration of Eq. (4.57), we set 0,= 100, w,= 1 mm, and

= 0.5 l5m and find that [pl< <0.001, or else speckle motion can not be ignored. For

A=0.5 pm, this corresponds to a change in wavelength lAA that is small compared to 5

Angstoms! Thus we see that it is important to configure the experiment so that the

tracking condition is satisfied.

In Fig. 4.3, Eq. (4.56) is plotted against/,pp for different values of P4 and sinOa/po.

As sinOa/po increases, the maximum value of the curves, which occurs at 1pp = 0, decreases.

However, the ratio between this maximum value and the minimum value, i.e., the ,

asymptote at large 1pp, is always two. For a given value of sinOa/po, the curves become

more narrow as P4 increases, but as P4 decreases, the curves approach the Lorentzian

shape represented by the dashed lines. If sin0,/po =0, then Eq. (4.56) reduces to the large S

Q form of Eq. (4.22), and there is no P4 dependence. For a given value of P4, the curves

become narrower as sinjpo increases. Thus, the sensitivity to P4 increases as sinO/Po

increases. We see that one could distinguish between diffusers by illuminating on-axis 0

and observing the off-axis wavelength decorrelation of speckle, see Fig. 4. 1(d). This

decorrelation occurs more rapidly if p4> 1, i.e., if the diffuser having the larger spread in

its radiation pattern occurs first in the cascade.

We note that fpp, in addition to Ikabll, must be nonzero for either f4 or f5 to affect

Eq. (4.13). Since f4 and f5 are the only components of Eq. (4.13) that contain information Ilk

about the ordering of the diffusers, we conclude that two conditions must be satisfied

for us to distinguish between the diffusers: The input and observation directions must

be different, and the wavelength must be tundble. One can not determine the order of %

the diffusers by angular detuning alone.
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One could also determine P4 from f5, however, f& is the most difficult to use of all
S

the factors since lkab.l must be nonzero, and since both angular and wavelength

detuning must be present simultaneously for it to contribute. Hence f5 is also the easiest

factor to eliminate from Eq. (4.13). We note that f5 is the only factor that curves upwards

about the origin, but that it does not increase indefinitely with Ppp because Jpp/(1 +t6pp2)

has a maximum value of 0.5 at f'PP = 1.

In optimizing the accuracy of a measurement system, it may be desirable to

measure the parameters Po, P2, P3, and P4 in several different ways to check for

consistency and to average measurement errors. In such a system [5 may be of some

value, however, f5 is not important in most practical applications, and there are no new

parameters to be obtained from it.

4.4 Determination of Spacing and Diffuser Slope ParameterS

In Section 4.3 we have introduced the five parameters Po, P1, P2, P3, and p in Eqs.

(4.16), (4.25), (4.26), (4.44), and (4.53), respectively. These parameters represent the

information that one can obtain from different remote sensing measurements based on

Eq. (4.13). In applying the analysis to the remote sensing of a cascade of two thin

diffusers, there are three experimental configurations that are particularly useful, and

that should be treated in more detail.

In the first application it is desired to measure the thickness HI of a layer of material
S

or a film that has rough interfaces with the surrounding medium. Perhaps it is not

possible to measure this thickness directly without destroying either the sample or the

surrounding medium, or perhaps the sample is immersed in the surrounding medium in

such a way that one can not measure the thickness mechanically. We wi!l refer to this .'

configuration by the symbol (H). In the second application one can measure the surface

properties of diffuser D2 directly because it is on the observation side of the diffuser

combination. Given this information, it is desired to find the surface slope statistics of 5
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the input surface, DI, and the spacing between surfaces. We shall denote this problem

by the symbol (HDuID2 ) because we are to determine oi1/wl for D and H given o£./w2 for

D 2. In the third problem, denoted as (HD 1 ,D2 ), we have no prior knowledge of H, aol/w 1 ,

or oat/w, and it is necessary to determine all three parameters remotely.

In solving these three remote sensing problems, we will assume that we can

perform experiments to obtain the parameters Po, Pl p2, p3, and P4. In this section we

will determine which parameters must be evaluated, or in other words, what types of

experiments must be performed, for the solution of each remote sensing problem. For

convenience we list the definitions of all five parameters together in one location:

2 2

0I itl -Ot2 [( .1 )
2

P1= (aH\ 2 +)-2 [(4.25)]

I9

W W [(4.26)]

itl t2

3 V 2 H(- W+- I [(4.44)]

and
O w

t 2 [(4.53)]
P4 =- W It 2

The parameter pt is in class by itself because it involves the rms roughness, not the rms

slope. Unless we are given more information, we cannot solve for ot and o1 separately.

Hence we will concentrate on the evaluation of O£ / 1w, Ot/w2 , and H given one or more

of the parameters Po, p2, P3, and P4. Since there are four remaining equations and only

three unknowns, these four parameters are obviously not independent; in fact, they are

related by the expression
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2 2 = 2 (+2 -).(4.58)
2 op 3 =2 4 4+~j)

This dependence implies that there will be more than one method for obtaining a given

diffuser parameter.

We have described the following three basic experiments in Section 4.3:

measurement of the angular distribution of the radiation pattern for determination of

Po, measurement of the decorrelation of the far-zone speckle pattern with respect to the

wavelength for determination of P, and p2, and decorrelation with respect to the angle S

of incidence for determination of P3. In addition we have described an auxiliary

experiment for distinguishing between the input and output diffusers by measuring

whether P4 is greater than or less than one. Since both parameters P1 and P2 are

measured through wavelength decorrelation, it may not be possible to accurately

determine both parameters experimentally if the ratio Q, Eq. (4.34), is either very large or

very small compared to one. In the remainder of Section 4.4, we will assume that Q> > 1

or that Q- 1 so that we can at least determine the spacing-wavelength parameterP2.

4.4.1 Spacing

In the first class of problems, denoted by the symbol (H), we are to determine the

spacing H between diffuser planes. By comparing Eq. (4.26) for p2 with Eq. (4.44) for P3,

we see that we can obtain H given p2 and p3 by the expression

2
P3  (4.59)

Thus H can be found by performing a wavelength and an angle of incidence experiment.

Once H has been evaluated, one can use either Eq. (4.26) or Eq. (4.44) to determine

WI2/o 1 2 + w2
2 /t. 2 . In many applications, this quantity is constant so that one would need

only a wavelength experiment or an angle of incidence experiment to determine new

values of H. Another possibility is that one is only interested in the ratio of two spacings.

-
A . ~
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This ratio can also be determined by performing either a wavelength or an angle of

incidence experiment for the two spacings.

Using Eq. (4.58), we can eliminate either p2 or P3 from Eq. (4.59), however, the

resulting expressions also require knowledge of p, and P4:

H= P 2
(4.60)

and

H 3 - - 2 ~ 2 (4.61)

V'2p 0
If the rough interfaces are produced by the same process, then one may assume that

oG1IWl=OL,1W2, i.e., thatp 4 = 1. Then Eqs. (4.60) and (4.61) are particularly useful because

H can be determined by finding Po from a radiation pattern measurement and either P2

from a wavelength experiment,

H=2 P2  
(4.62)

p0

orp 3 from an angle of incidence experiment

H = ViP3. (4.63)
PO

4.4.2 Depth and rms Slope of a Buried Rough Surface

In the second class of problems, denoted by the symbol (HDID2 ), one wishes to

determine the slope parameter ot 1 wl of a hidden surface D, and the depth H of this

surface below an outer diffusing surface D2. Since the outer surface can be observed

directly, we assume that its slope parameter Ot.,/w2 is known.

There are five methods for determining the two unknown parameters fI and

o1 1 /wl, each of which requires knowledge of two of the parameters Po, P2, P3, or P4. The

sixth combination, (Po,P4), of the four parameters does not allow for evaluation of H. In

the first method, which we refer to by the symbol (P2,P3), we obtain P2 through a

wavelength experiment and P3 through an angle of incidence experiment. We have

V. -U
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already shown how one obtains H from these measurements, see Eq. (4.59). The solution

for the other parameter alw, is found by substituting Eq (4.59) for H into either Eq.

(4.26) or Eq. (4.44):

2
S 2P3 W2)- (4.64)

1  p2  12

In the second and third methods, denoted by (Po,P2) and (po,P3), we determine p0

from the radiation pattern. When Eq. (4.16) for po is solved for the unknown, oa,/wj, we

obtain

2o1(2 0*2)\4 (4.65)

We can determine the other unknown, H, from either a wavelength experiment to find

p2, or an angle of incidence experiment to find P3. We calculate H for the (Po,P2) method

by substituting Eq. (4.65) for ot0/wI into Eq. (4.26):

2 22 1 O2 2-0 (4.66)

2 a2 2 2)
t2 o 2

Likewise, we calculate H for the (Po,P3) method by substituting Eq. (4.65) into Eq. (4.44):

H= 3 W2 1- t2 (4.67)
o 2

For completeness, we have included the fourth and fifth methods, (P4,p2) and (P4,P3),

even though they require knowledge of p4, the most difficult of all the parameters to

measure. The solution of o,1/w1 follows immediately from the definition of P4:

a = 0t2 (4.68)

w- P4 w 2

The spacing H is determined by substituting Eq. (4.68) into Eq. (4.26) for the (P4,P2)

method or into Eq. (4.44) for (P4,P3) method:

2

p 2 W2 
(4.69)

t2

and
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P3 W2  (4.70) -.H=- =-'o

If we can assume that both surfaces are created by the same process so that P4 = 1, then

Eqs. (4.69) and (4.70) are more useful. Then it is only necessary to perform a wavelength

or an angle of incidence decorrelation experiment to evaluate H.

4.4.3 Spacing and Diffuser Slope Parameters for Both Diffusers

In the final class of problems, (H,DiD 2 ), one wishes to determine all three

parameters, H, ojg/w, and o 2/w2, remotely. Since we have already shown how to obtain

H in Section 4.4.1, we will emphasize the evaluation of o 1wl and ot./w2 in this section.

For the solution of the present problem we need to determine at least three of the

parameters Po, p2, p3, and 4 by remote sensing experiments since we are to solve for all

three parameters H, oitfwl, and ot,/w2. There are four possible combinations of these

parameters taken three at a time. In the preferred experimental method, we use the

combination (po,p2,p3) because p4 is more difficult to measure. First, we use Eq. (4.59) to

determine H, and then we obtain the solution for o,1w, and t/W2 as follows: We use Eq.

(4.59) to eliminate H from Eq. (4.26), solve the resulting equation for of2/W22 and

substitute this solution into Eq. (4.16). This yields a quadratic equation for ot,2/w,2:

1 0 0 P2  (4.71)

p2 w4 w 2p
0 1 1 3

The solution of Eq. (4.71) for a/wl is

Oil 12t 2 (4.72)
I Po P3

By substituting this solution back into Eq. (4.16) and solving for Gj1w 2, we obtain the

corresponding solution,

f t2 D. 2 (4.73)

for diffuser D2. In comparing Eqs. (4.72) and (4.73), we note that the ±sign has been
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replaced by 4- in Eq. (4.73). In other words, we must use opposite signs in the two r

solutions. We point out that we are unable to tell whether the upper or lower choice of

signs is correct without having more information. This sign ambiguity results from the

symmetry with respect to 0t1/w1 and ow2 in the definitions of p, P2, and P3. As

discussed in Section 4.3.4, we can resolve this ambiguity by measuring whether P4 is

greater than or less than unity.

If the quantity 2p22/(po2p32) in Eqs. (4.72) and (473) were greater than one, then

we would have the square-root of a negative numoer. However, this is not allowed to

happen, as we see by writing this quantity in terms of P4 via Eq. (4.58): Even though P4

ranges between zero and infinity, the condition

2p 2 4 (4.74)
0 ! - 5 1

always holds. Owing to the uncertainty in experimental measurements of Po, p2, and P3,

the condition in Eq. (4.74) could be violated. However, this is most likely to occur near

p4= 1 where the inequality has its maximum value. Hence, if the condition is violated,

one can assume that p4= 1 to within the resolution of the measurements.

For completeness we also list the equations for the other three methods. In the

(Po,P2,P4) and (Po,P3,P4) methods, one uses Eqs. (4.60) and (4.61) respectively to find H.

For both methods, one then determines oa,/w, and Ot./w2 via

2

and4 (4.76)

at,? + Ip42 f 4.6

2+ p 4+ p4

Equations (4.75) and (4.76) are obtained from Eqs. (4.72) and (4.73) by using Eq. (4.58) to

eliminate p2 and P3 and choosing the signs to agree with the definition of P4 in Eq. (4.53).
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If both rough surfaces are caused by the same random process, then p4= 1, and we have

the simple result 0 1 wI =o/w2=po/2*_.

In the final method of determining H, oi/wl, and ot2
1w2, referred to as the

(P2,P3,P4) method. His determined from Eq. (4.59), and at1lWl and Gl2W2 are given by

Wi1°tlw= P2 N/+P (4.77) -

and

0 t2 P2 2

w / VI+p 2 . (4.78)

Equatior.s (4.77) and (4.78) are obtained from Eqs. (4.75) and (4.76) by using Eq. (4.58) to

eliminate Po

4.5 Discussion

The analysis of the paraboloidal-paraboloidal diffuser combination presented in

Chapter 4 has been important to our understanding of the remote sensing of double

diffusers because we were able to obtain the general expression given in Eq. (4.13) for

the two-state correlation of far-zone intensity for arbitrary values of all the input

parameters and then to study the significance of each of the factors fl, f2, f3, & and f5.

Through this analysis we learned that H, ot/Wl, and ot2/W2 could be obtained by

performing simple experiments with equal input and observation directions, kab± =0. It

was only necessary to have kalc_ O to distinguish between the two diffusers, i.e., to tell

the order in which the diffusers appear in Fig. 3.1.

In Chapter 4 we have been able to classify the different speckle phenomenon that

occur in double-diffuser decorrelation experiments by analyzing the P-P diffuser

combination. However, we point out that there is one major difference between speckle

from the P-P and from other diffuser combinations. The unique property of U,,b for the ,1

P-P combination is that the shape of the decorrelation curves do no depend on the

. ... . . . . . ,N N
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diffuser parameters ot1/wl and ot/w2, i.e., the widths of the curves are scaled by changing .,.

these parameters, but Eq. (4.13) remains a combination of Lorentzian and Gaussian

functions. For this reason, we are only able to extract one parameter from each of the

three experiments depicted in Fig. 4.1(a) through 4.1(c), i.e., the width of the functions &0,

f2, and f3.

However, by inspection of the results in Appendix E for the P-C and C-P

combinations and in Appendix F for the C-C combinations, we see that one can extract

two parameters from each experiment. For example, by comparing Eq. (E10) for the two- S

state correlation function of intensity for the P-C diffuser combination with the

corresponding function, Eq. (4.22), for the spacing-wavelength dependence of the P-P

combination, we see that the factor corresponding to [2 defined in Eq. (4.20) is

D (,'<o YX _V<- T -P )1
fPC D(yk.)D(y).kb) (.9

where D is defined in Eq. (E4). In addition, the spacing-wavelength detuning parameter

Ijpcis
2

tl (4.80)
1/ = 2 HAk -2

WI

and ratio parameter ypc is

2

o~l '2w 2

We see that ,pc determines the shape of the function f2.pc plotted against IP,. By fitting .

the experimental data to Eq. (4.79), one could determine the ratio parameter yPC from

matching the curve shape and the product Hog,2/w 1 2 from matching the curve width. We

also note that one could determine both o/wi and Ot2 /w2 from measuring the angular

distribution of the radiation pattern, see Fig. 4.1(a), and both Vpc and Hot/wl from

performing an angular decorrelation experiment on the P-C diffuser combination, see

Fig. 4. 1(b).
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By inspection of the results for the C-P and C-C combinations, we see that one can

also determine two parameters from each type of experiment. Thus we have much more

freedom in choosing our experiments in the remote sensing of the P-C, C-P, and C-C

diffuser combinations. We also note that the diffuser parameters that one can

determine are different for each of the four combinations, i.e., ot/wl and ot/w2 for P-P,

Ot /wl and Gt2/ 2 for P-C, ot 2 lwi and %/ 2 for C-P, and Ot12/wi and Ct2 IW2 for C-C.

For the P-P combination, it was necessary to perform and auxiliary experiment

with kb.b rO to determine the order in which the diffusers occur. This also appears to be

true for other diffuser combinations. For example, Eq. (E1O) for the P-C and Eq. (E20) for

the C-P diffuser combinations are identical except that the numbering on the rms

roughnesses ot, and ot and on the correlation lengths w, and w2 has been switched. In

other words, O is defined in terms of oi/w for the paraboloidal diffuser for both cases, and

y is defined as the ratio of oa2 f(2w) for the conical diffuser and oiw for the paraboloidal

diffuser for both cases. Thus, we are able to find the appropriate parameter for the

conical and paraboloidal diffusers, but we must have some other method of determining

whether the combination is P-C or C-P. In conclusion, we note that there is also an

ambiguity in the ordering of the diffusers for the C-C combination, e.g., Eq. (F15) is

defined in terms of the absolute value of the difference between the parameters ot 2/w1w

and Ot.2/W2.

"0

b



Chapter 5

Experiments: Radiation Patterns from Strong Diffusers

5.1 Introduction

The relationship between the characteristics of a rough surface and the angular

distribution of light scattered from the surface is a subject of considerable interest.

Applications include designing rough surfaces or diffusers with a desired angular

distribution, predicting the radiation patterns from a given surface, and providing a

noncontact method for characterizing surfaces. 1- 18 Diffuser radiation patterns are also

of interest in the analysis of the decorrelation of speckle from a cascade of diffusers. As

discussed in Section 3.3, one can determine the autocorrelation function Rt of the

diffuser transmission function t by measuring the radiation pattern and then performing

a Fourier transform, see Eq. (3.51). Given Ri for the individual diffusers, one can then

predict the speckle decorrelation properties for the diffuser cascade. _

In this chapter we study the radiation patterns from paraboloidal and conical

diffusers, which were defined in Section 3.3.2 as strong diffusers having a circularly

symmetric autocorrelation function, a normally distributed height profile, and height

profile autocorrelation functions that are paraboloidal or conical, respectively, for small

spatial offsets. We also extend the analysis of these single-scale diffusers to diffusers

having two scales of roughness and present measured radiation patterns over a large O

dynamic range. For ease of reading, and to make Chapter 5 self contained, we will
reintroduce the basic quantities. Because of the applied nature of Chapter 5, the

formulas will be written in terms of input and output angles rather than direction

vectors. In addition, the arguments will be written in terms of the x-y coordinates of the

diffuser planes rather than the vector r or simply as r when there is circular symmetry.

109
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We define a strong diffuser as one whose rms phase delay

S=ko h (n-1) (5.1)

caused by the surface roughness is much greater than one radian. In Eq. (5.1), n is the

index of refraction of the diffuser, oh is the rms diffuser height, and k=2n/A, where A is

the wavelength of illumination. In general, the functional form of the radiation pattern

depends both on the value of S and on the form of the normalized autocorrelation

function of the surface profile

< h(x,Yl) h(x 2'y 2 ) > (5.2)

Rh(x2 -xly 2 -y 1)= o2

where the angle brackets denote an ensemble average. However, for S> > 1, the effect

of Rh on the radiation pattern is determined by the behavior of Rh for small spatial

offsets.

We consider diffusers where the surface profile h(xj) is normally distributed and

the autocorrelation function depends on the offset r=[(x2 -x0)2+(Y2-Y1 )2)i between

points (x1 yl) and (X2,Y2), but not on the direction of this offset. When the latter property

holds, the envelope of the radiation pattern for normal incidence will be circularly

symmetric. If the autocorrelation function can be represented by a power series in r,

then one of the two classes will arise depending on whether the linear term in r is

present or missing. If this term is present, then the autocorrelation function will be cone

shaped near the origin,

r %

Rh (r) 1-- + .(5.3)w -

and the shape of the radiation patterns will depend on ',.c quantity w/S 2, where w is the

correlation length of the diffuser roughness. If the linear term is missing, then the

autocorrelation function will be paraboloidal near the origin

r 2(54)R h(r) - - + ... 54

and the shape of the radiation pattern will depend on the ratio w/S.
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We use the terms conical and paraboloidal only to refer to the shape of Rh for

small offsets. A cone and a paraboloid, defined respectively by the first two terms of Eq. r

(5.3) and Eq. (5.4) for rsw and as zero otherwise, would not be valid autocorrelation

functions since their Fourier transforms are negative in certain regions. Equation (5.3) is

characteristic of surfaces having discontinuities and high slopes. An example of a rapidly r

falling autocorrelation function in one dimension is the triangle function which results as

the autocorrelation of a rectangle function. Equation (5.4), on the other hand, is

characteristic of smooth surfaces that are bandlimited in spatial frequency. 6

We present radiation patterns from a ground-glass diffuser and a specially

fabricated etched-glass diffuser measured over an output angle 0 of nearly ±90 and

over a dynamic range of six and eight orders of magnitude, respectively. In these ,

measurements the solid angle subtended by the.detector is large enough to include

many speckles but small enough so as not to have a significant effect on the angular

resolution of the measurement. Thus, the measured intensity is a good approximation to

the expected envelope of intensity that is calculated in the statistical analysis.

There is very good agreement between the ground-glass radiation patterns and "

curves of the first type, which depend on the value of wIS 2 , and between the etched-

glass radiation patterns and curves of the second type, which depend on the value of

wIS. The etched-glass radiation patterns can be fit over about three orders of

magnitude, i.e., at small angles, with a simple paraboloidal autocorrelation function.
-'0

However, due to the microstructure of the surface, it is necessary to use a composite

diffuser model containing two scales of roughness to fit the radiation pattern over all ,_A

angles. The model for the surface profile then consists of a large roughness paraboloidal

component with a small roughness exponential component superimposed. The small

roughness component has a negligible effect on the upper two or three orders of

magnitude of the radiation pattern, but it dominates at wide angles.

V

. ~A % ,g~Kb '~~ - ~*.yy '.' ~~ ' S~' i~V ,~~
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The first diffuser was made by grinding glass, and the second diffuser was made by

chemically etching preroughened glass surfaces. Photographs of the surfaces of both

types of diffuser, as taken with a scanning electron microscope, are shown in Fig. 5.1.

The ground-glass surface of Fig. 5.1(a) has the discontinuities and the high spatial

frequency content characteristic of Eq. (5.3). The etched-glass surface of Fig. 5.1(b), on

the other hand, is smooth on a wavelength scale and has gentle slopes, except for the

ridges, as is characteristic of Eq. (5.4).
S

Much has been written on the scattering of light from ground glass.19 -26 For

example, it has been demonstrated that the height profile is approximately normally

distributed.1 9-23 In previous attempts to calculate the angular distribution of the

radiation from ground glass, it has been assumed, for simplicity, that the autocorrelation

function of heights is Gaussian. However, as pointed out by Chandley, 2 2 the

autocorrelation function is not Gaussian. Hence, these predictions of the angular

distribution of light have failed. Since ground glass does not fit the analysis, other

authors have gone to considerable effort to prepare this type of Gaussian diffuser.2 7-29

However, the interest in modeling actual diffusers that are widely used 11 exists.

Another common assumption in theoretical derivations is that the rms phase delay

produced by the diffuser is large compared to one radian, i.e., S> > 1. For such a

diffuser, it is not the exact shape of the autocorrelation function that is important, but its

behavior for small offsets. Therefore, the type of etched-glass diffuser studied below,

which has a normally distributed height profile, a paraboloidal or Gaussian like

autocorrelation function, and a large rms phase deviation, should be useful for testing

theories based on these assumptions.

In Section 5.2 we present the equations governing the angular dependence of the

intensity scattered from single-scale diffusers having S> > I and behaving like Eq. (5.3)

or Eq. (5.4) for small offsets. We develop a composite diffuser model consisting of two

scales of roughness in Section 5.3 and describe the experimental configuration for
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20 pm

(a)

20/.pm

(b)

Fig. 5.1. SEMs of glass surfaces (a) ground with 820 grit and (b) preroughened for 60
minutes with Armour Etch and etched for 45 minutes in BOE.
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measuring the radiation patterns in Section 5.4. In Section 5.5 experimentally measured S

radiation patterns are presented for ground-glass and etched-glass diffusers. These

results are found to be in excellent agreement with the theoretical predictions. By

varying the etching process, paraboloidal diffusers with w/(XS) ranging between 3 and 13

are obtained. There is also excellent agreement between values of wi(kS) for the various

etched-glass diffusers as obtained by fitting the radiation patterns to the theoretical

curves and by measuring the surface profile with a stylus profilometer. S

5.2 Envelope of Far-Zone Intensity

The physical quantity of interest in the study of radiation patterns is the power per

unit solid angle received by a detector, i.e., the radiant intensity

dP (5.5)
1= d-

When laser light is used to illuminate the sample, a speckle pattern will appear in the

scattered light. However, we are not interested in the microscopic detail of this speckle

pattern, but rather in the angular distribution of the envelope of intensity I. Since any

practical detector system will subtend a finite solid angle AQ, we will be able to smooth

out these rapid intensity variations by choosing a detector that is large compared to the

size of a speckle, yet small enough so as not to have a significant effect on the angular

resolution of the measurement. Furthermore, to standardize the radiation patterns so

that they can be compared to one another, we will plot all radiation patterns relative to

the incident power Po- Therefore, we will use the normalized envelope of intensity I,,,,

defined by30

(5.6)
en A

0

The coordinate system used for both the experiments and the analysis is the same as in

Fig. 2.2. The diffuser is located at the x-y plane with illumination incident at angles

(0opo). Scattered radiation is measured at observation angles (0,40). If the azimuthal

angles (0o and 40 are equal, then the measurement is in the plane of incidence.

51
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In the analysiS the diffuser height profile-will be represented by a normally

distributed, zero mean, wide-sense stationary, random process h(x,y) having a

normalized autocorrelation function Rft(r), defined in Eq. (5.2), and an arbitrary

roughness Oh. The expected value, or the ensemble average, of the normalized intensity

will be denoted by <[,>. The general form for <4k> arising from a diffuser with a

normally distributed height profile is

<I >- nSo 2U [ rJo(2 - %/ sin20- 2cos (4)_ -)sinO sinO + sin28)-- AO 2 oo 0o

X exp S 2[1 _Rh(r)I dr. (5.7)

Equation (5.7) is obtained by substituting Eq. (3.62) for Rt into Eq. (3.51), setting

k,=kb, replacing A by its initial value of unity, converting from wave vectors to angles

through Eq. (2.3), and converting the circularly symmetric Fourier transform to a Fourier-

Bessel transform. The cos 20 obliquity factor is also generalized to cosne. Of course, the

angle dependence within the argument of the Bessel function in Eq. (5.7) simplifies to

sinO for normal incidence 0=0 and to sin8-sin~o for measurements in the plane of

incidence 4o=41. From the theoretical model, the cosnO in Eq. (5.7) should be cos 28.

However, the theory neglects multiple bounce effects in the surface structure of the

diffuser and shadowing as well. Hence, the precision of fit at angles 6>75 is uncertain.

We prefer to keep the coefficient n general at this point. Empirically, we have found that

better experimental fit to the data is obtained by setting n= 1. Thus, we will set n= 1 in

expressions for <In> throughout the remainder of this chapter.

If S is not large compared with unity, then Eq. (5.7) may contain a direct

component, as represented by a delta function. This delta function should be replaced

by the functional form of the aperture radiation pattern. We see that this direct

component becomes insignificant for large S, e.g., if Rh(r) falls to zero as r increases,

then the magnitude of the delta function will be exp(-S 2). S
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5.2.1 Strong Diffusers (S> > 1)

We will now briefly describe how the two classes of radiation patterns arise for

single scale diffusers with S> > 1. By inspection of Eq. (5.7), we see that the major

contributions to the integral for large values of S occur near the origin r=0. Therefore,

the shape of the radiation pattern is determined by the behavior of Rh for small values of

r. This leads us to consider the beginning terms of power series expansions of Rh. The

first term will be unity for any choice of Rh since Rh is normalized to unity at the origin.

This term drops out of Eq. (5.7) because it is 1-Rh that appears in the exponent. The

second term will be of the form ra, where a is the lowest nonzero power of r with a

nonzero coefficient; this term will control Rh for small r. With the exception of a

constant autocorrelation function where a is infinite, the highest possible value of a is

two.3 1 We will only consider autocorrelation functions where a= I or a=2. However,

autocorrelation functions do exist where a is a noninteger less than two. In general, for

single scale diffusers with S> > 1, <In> will depend on w and S through the single

dimensionless shape parameter w/(XS2/).

We can see the relative importance of the different terms in a power series

expansion of Rh by writing the exponent in Eq. (5.7) as

exp S2(1-Rh(r))= exp I 2 + --S r2  +  Ir13 +

1-hw W 2 W

If C1 =-1, then Rh is conical, Eq. (5.3), and if C1 = 0 and C2 =-1, then Rh is paraboloidal,

Eq. (5.4). We consider conical autocorrelation functions first. For S> >1, the linear term

will determine the behavior of Eq. (5.8) as illustrated by the following numerical

example: In Eq. (5.8) we have C1 =-1 for the conical autocorrelation function; let us also

suppose C 2 =-1 and S= 10. The 1/e2 point for the decaying exponential, arising from the

first term, is r=w/50. However, at this value of r the Gaussian, arising from the second

term, has only dropped from unity to 0.96. Higher order terms will be even less

significant. By keeping only the first term in Eq. (5.8), setting n= 1 as discussed, and

IK
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evaluating the integral in Eq. (5.7), we see that the expected value of the normalized

radiant intensity <I.> for a strong diffuser of the conical type is

<I>= cos 2n(

2awI+(sn 2 cs (4-P sinO sinG. + Sno. -r (5.9)

In Eq. (5.9) the shape parameter is w/(XS2)=wV/(2Uo)2. For paraboloidal diffusers, the

quadratic term will dominate the higher order terms for S> > 1. By keeping only the

second term in Eq. (5.8) and again evaluating Eq. (5.7), we obtain

X exp[- ")2 (sin28 -2 cos($- ) sinO sinO. + sin2 e)I (5.10)

The shape parameter in Eq. (5.10) is w/(XS) = w/( 2 rro).

Equations (5.9) and (5.10) were derived for diffusers having a single scale of

roughness. In Section 5.3 we will extend these results to diffusers with two scales of

roughness by assuming that the surface profile is the sum of two functions having

autocorrelation functions R 1 and Rh2 , normalized roughness St and S2, and correlation

lengths w, and w2. Depending on the choices of these autocorrelation functions and

parameters, more than one term in Eq. (5.8) can be significant in determining <[>,

even if S > > 1 or S2 > > 1 and especially at large angles 0.

It is useful to compare Eqs. (5.9) and (5.10) with the radiation pattern of an

idealized Lambertian diffuser for which

< COSO (5.11)
n az

We note that Eq. (5.11) is not a large roughness limiting form of either Eq. (5.9) or (5.10).

As described in Section 5.4, a Lambertian diffuser may be used to perform the system

calibration.

- ~ g~ ~ ~f**~. ~ %V ~'\. .
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It is also of interest to integrate the intensities in Eqs. (5.9) and (5.10) over the

output hemisphere for normal incidence to obtain the total integrated power. This

yields

+ = .J nW) - (5.12)XS 2

for the conical diffuser of Eq. (5.9) and

P = {O exp[- lW )2] (5.13)

for the paraboloidal diffuser of Eq. (5.10). Equations (5.12) and (5.13) show that

according to the diffuser model considered here, the total integrated power approaches

P, for large values of wI(XS2) and wl(XS). Most interestingly, we notice that P

approaches zero as the roughness S increases. This same effect is noted for <In> at 0=0

in the literature.18

We illustrate the behavior of Eqs. (5.9) and (5.10) with plots. In Fig. 5.2, <In> is

plotted from Eq. (5.9) as a function of output angle 0, for 0,=O, and for various values of

wl(IS2) ranging from 1/32 to 8. The intensity is displayed on a logarithmic scale over six

orders of magnitude to stress the wide-angle behavior of the radiation patterns. In this

family of curves we see how the maximum value <In> max for normal incidence increases

as wI(XS2) increases according to

<I m 2n ) (5.14)

and how the width of the curves goes as XS2/w. We also observe that, except for very

small values, i.e., w/(XS2) < 1/4, the shape of these curves is the same for angles larger

than about 450. We can readily understand why the shape is the same by comparing the

size of the two terms within the square brackets in Eq. (5.9). If [2nw/(XS)12 > > 1, then the

second term will dominate the first term for large angles. Thus, the large-angle normal-



119

CPA

00

C6C

L-JS Ui



120

incidence form of Eq. (5.9) that is valid when w/(AS2) is large is

co 06 S2  (5.15)

n > (2r)2 WS in 30

For the purpose of comparison, Eq. (5.11) for an idealized Lambertian diffuser is also

plotted as a dashed line.

The family of curves shown in Fig. 5.3 is calculated from Eq. (5.10) with 0, = 0 and

with w/(XS) also ranging from 1/32 to 8. We see that <In>mn= increases as w/(AS)

increases according to

<I > =7 (5.16)

and that the widths of these curves now go as XS/w. There is no large-angle

approximation of Eq. (5.10) analogous to Eq. (5.15). Except for the cosO factor, the curves

in Fig. 5.3 are Gaussian in sinO, or parabolic on a logarithmic intensity scale.

Since experimental radiation patterns are most easily observed near the intensity

peak, it is useful to compare the effect that the shape parameters w/(XS2) in Fig. 5.2 and

w/(AS) in Fig. 5.3 have in determining the behavior of <1,> near its maximum for

normal incidence, o=0. For example, from Eqs. (5.14) and (5.16) we see immediately

that the on axis intensity of the conical diffuser is twice as great as that of the

paraboloidal diffuser for the same values of the appropriate shape parameter. Also from

Eqs. (5.9) and (5.10) at normal incidence, the curvature K of <In>/(<n>mxCOSG) as a

function of sinO at the peak is calculated to be 12n2[w/(XS2)]2 for the conical diffuser and

2n2[w/(XS)12 for the paraboloidal diffuser. Thus the radius of curvature, p= 1/K, is 6 times

greater for the paraboloidal diffuser as for the conical diffuser for the same value of the

appropriate shape parameter w/(AS 2) or w/(AS). Another observation that we make from

Figs. 5.2 and 5.3 is the decrease in total integrated power P of Eqs. (5.12) and (5.13) that

occurs as w/(XS 2) or w/(XS) becomes small.

We would like to point out that there are important applications, both in

transmission and reflection, of non-normal incidence for Eqs. (5.9) and (5.10) and for the

N'Al
L i% llk:•
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other expressions for <I,> that will follow. For example, arbitrary input angles (0,,)

and output angles (0,(0) are useful in robot vision anJ in computer generation of realistic

looking images of rotating diffuse objects. We note that these equations are also

applicable to reflection, in which case

S(9 )=A4 1LCOS0 (5.17)

and 0 goes to 1800 -0. Actually, the effective value of S for transmission in Eq (5.1) also

depends on the angle of illumination 0o:6

S(00)=2niO .(V2_ sin 2 0 cosO. (5.18)

Besides using Eqs. (5.9) and (5.10) to find the values of wi(AS 2 ) or w/(AS) for strong

diffusers by fitting the shapes of the experimental curves, we can approximate these

quantities in an experiment with simple methods suggested by Eqs. (5.9) and (5.10) and

(5.14) through (5.16). The first method is to use Eq. (5.9) or Eq. (5.10) by measuring the

intensity at O= 0 and then to change the angle 0 until the intensity level falls to a certain

fraction of this value. In the second method, w/(XS 2 ) or wl(XS) can be read by measuring

<In>max and solving Eq. (5.14) or Eq. (5.16). A similar single point measurement could

be done using Eq. (5.15) at an angle of, say, 60*, to find w/(XS2). However, both of these

latter methods require that the detector system is calibrated and that the insertion loss is

accounted for.

5.3 Diffusers with Two Scales of Roughness . g\,,

As stated in Section 5.1, it is necessary to use a diffuser model with two scales of

roughness to describe the wide-angle scattering from the etched-glass diffuser.32 A

simple way of accounting for this wide-angle component is to assume that the random

variable h(x,y) representing the diffuser surface profile is the sum of two normally

distributed zero-mean components hl(x,y) and h2(x,y) that are uncorrelated with each

other

J S
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h(x,y) h (x,y) + h2(x,y) (5.19)

Then h(xy) is also normally distributed and its autocorrelation function is given by

0 2 R(r) =02h Rh (r) +o22 R (r), (5.20)
1 h hih 2 h2

where Rh, Rh,, and Rh are the normalized autocorrelation functions of h, hl, and h2 ,

respectively, and the variance Oh2 is related to S2 through Eq. (5.1). Similar expressions

hold for S12 and S22. Thus the exponential in Eq. (5.8) becomes

e 21 ) exp S (1I 1 -s2 1-R\,(r). (5.21)

We will use Eq. (5.21) as the basis for categorizing the different types of composite

diffuser. Any valid autocorrelation functions Rh, and Rh, and any values S, and S2 could

be used. However, in this discussion we are interested in strong diffusers and assume

that S, > > 1. Having made this assumption, we need only specify whether the behavior

of Rh, for small offsets is conical as in Eq. (5.3) or paraboloidal as in Eq. (5.4).

5.3.1 Large Roughnesses S, and S2

Besides assuming that S 1 > > 1, let us also assume for the moment that S2 > > 1,

then when each exponential on the right-hand side of Eq. (5.21) is expressed in terms of

the series in Eq. (5.8), it will only be necessary to keep the lowest order term. This leaves

us with three possibilities that we will denote by (C,C), (P,P), and (C,P) according to

whether Rh, and Rh., are conical, paraboloidal, or mixed. For the (C,C) combination, Eq.

(5.9) will still hold. But, of course, the effective parameter will be different:

2 2
2 -2 (5.22)

AS2 - w 2

Likewise, for the (P,P) combination, Eq. (5.10) will hold with the effective parameter

XS 2 XS(5.23)V= I. __ 2+ -. ,.=

For the remaining (CP) combination, Eq. (5.7), again with the selection n = 1, becomes

W.
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2i s + sinr22S
2

<1>=aoso- rJ(2a-s 2 -,s~- )s. ) ]in8
n 2 

0 O\ 0 0oJ

rS 2r2S(5.24)
× exp -2 2z dr.

W I  W2

One can readily understand the behavior of Eq. (5.24) by applying the convolution

theorem, i.e., since <I>/cosO in Eq. (5.24) is the two-dimensional Fourier transform of

the product of an exponential and a Gaussian, then it is also the convolution of

<I,>/cosO of Eqs. (5.9) and (5.10). We define P as the ratio of the two components:

W2 /S 2  (5.25)

so that for P of zero and infinity Eq. (5.24) reduces to Eqs. (5.9) and (5.10), respectively.

Equation (5.24), without the obliquity factor, is illustrated in the universal plots of Fig. 5.4

for various values of 1 ranging between 0 and 4. Because of the way Eq. (5.24) is plotted

in Fig. 5.4, the curve for P= 0 looks the same for any choice of wl/(A S 2). As P increases,

the top of the curve becomes more rounded and the intensity level drops. As P increases

more, the curve begins to behave like Eq. (5.10) over a larger and larger dynamic range,

but the wide-angle values of this convolution cannot drop below the 13 0 curve.

5.3.2 Large Si and Arbitrary S2

If S, > > 1 and S2 is arbitrary, then we have one of two general expressions .

depending on whether Rh, is conical or paraboloidal for small offsets. If Rh j is conical,

then the first factor on the right-hand side of Eq. (5.21) can be replaced by a decaying

exponential, i.e., by Eq. (5.8) with C! =-1 and with all other coefficients set to zero. If we

write the second factor in Eq. (5.- I) as

exp -S 2(1-Rh (r)) =exp (-S2) { + [exp(S2Rhr) -I ] } , (5.26)

then Eq. (5.7) can be broken into two parts:

I.
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<In >= cosO 2n exp (- S 2)

X j W1 )2 [1 +( 2 ) 2 (z2w2"s(4V)sine sine +1 1
OD.

±r
+X 2 f0 rJ°(2n X/sin20-2cos (4- o )sine sin0 +sn2 0

x exp(- -) exp( s2 R (r))-I J dr . (5.27)

Likewise, if RhI is paraboloidal, then the first factor in Eq. (5.21) can be replaced by a

Gaussian. Again using Eq. (5.26) for the second factor, we obtain the expression

2

~<I, > =cos~n exp(-S 2 )

x (-# )2expi_( )2 (sin2 0 - 2 c s (.t-d ,B)sinOsinO + sin2o)J

+- rJ°(2 a N/ sin20- 2cos ((V- po) sin sin0o + sin 200
A ~0

Xexp[-( rSI )2, [exp(S Rh W) -I ]drl. (5.28)

5.3.3 Large S, and Small S2

If we assume that S2 < < 1, then it is only necessary to keep the first term in the

power series expansion

exp- = S R(r) + (5.29

2

The choice of Rh2 is arbitrary, but for definiteness, we will use either an exponential

autocorrelation function

R (r) =exp( - (530)
oo

or a Gaussian autocorrelation function
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R (r)-exp (5.31) S
2

We note that Eqs. (5.30) and (5.31) have the expansions given in Eqs. (5.3) and (5.4),

respectively. After choosing the above two types of autocorrelation function for Rh2, we

have four possible combinations. We will denote them as (C,E), (C,G), (P,E), and (P,G).

The first letter in each pair corresponds to the choice of a conical or a paraboloidal

autocorrelation function for the large roughness component, and the second letter

indicates whether an exponential or a Gaussian autocorrelation function is used for the
I

second component. The (CE) and the (C,G) expressions for S2< < 1 can both be derived

from Eq. (5.27) by keeping only the first term in the expansion given in Eq. (5.29). For the

(C,E) combination Eq. (5.30) is used for Rh., and we obtain

<I > = cos0 2a exp (- S 2 )
n 2

2rS~ww

')2 1 4n2 (si 2
( i 2 os ( P -Ve sn O s2) J-+dsin.2(5.32)

(X/W + XS2IW1 )

For the (C,G) combination, Rh2 is given by Eq. (5.31). Then the Fourier-Bessel

transform in Eq. (5.27) is of the same form as Eq. (5.24), which has already been plotted in t

Fig. 5.4. If we assume that Rj, is a narrow function of r compared to the exponential, i.e.,

W2<<w w/S 2 (5.33) i<

then the exponential can be replaced by its r=0 value of unity. Equation (5.27) for the

(C,G) combination then simplifies to
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<I> = cosO a exp (- S 2)<n 2

X 12 ( w, )2 [1+( 21 l)2 ( sin 20 - 2 cs(4o. 0)sinO sinG0 + Sin2Oo) I 312
AS 2

+ ( ) 2 [(fl W1) 2 (si 2 8  s -p) sinO sineo+ sin2o)} (5.34)

Equation (5.34) must be used with care because, as illustrated in Fig. 5.4, the second term

is only a valid approximation to the integral over a certain dynamic range, i.e., for large

enough values along the abscissa the curves will approach the P=0 curve unless P is

infinite. We note, however, that this (C,G) combination is of little practical interest

because the conical component will dominate at both large and small angles.

The (P,E) and the (P,G) expressions for S2< < 1 can both be derived from Eq.

(5.28) by keeping only the first term in the expansion given in Eq. (5.29). The (P,E)

expression is obtained by using Eq. (5.30) for R&. Once again, the second term has the

same form as Eq. (5.24). However, a very good approximation for our purposes is

obtained by assuming that

w 2 << WI/Sv1 (5.35)

so that the Gaussian in Eq. (5.28) can be replaced by its r=O value of unity. Then the

expression for <In> simplifies to

<I > = cos n exp (- S)

+ 2('2W2)2 [1 + n ( )2 (sin2 e 2 cos 4). sine sineo + sin 20]N2} (.6
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The approximation in Eq. (5.35) corresponds to having ,B< < 1 in Fig. 5.4. We see that Eq.

(5.36) is a very good approximation because for ,< 1 the major effect of the convolution

appears at small angles where the first term in Eq. (5.36) dominates anyway.

Finally, for the (P,G) case, Rh2 is given by Eq. (5.31), and Eq. (5.28) becomes

<I > = cosaexp(-S )

X {(w )2F(exp w, )2SI 2(sin2 -2cs(P--*o)sinesino0+s °in2o)]

2 2/ .20 + in2
+ 2 xP EM - 2csO(P0 )s .sin8 0  (5.37)

(X/W 2) 2 + (XS I/W 1) 2(X/W 2 ) )2+ (XS I/W1 )2

Equations (5.36) and (5.37) for the composite diffuser model are illustrated in Fig. 5.5. In

these plots wi/(XSI)=5. Thus, the small-angle behavior that is dominated by the first

term in Eqs. (5.36) and (5.37) is the same in each case. Since Eqs. (5.36) and (5.37) are even

in 0, we will display Eq. (5.36) for negative angles and Eq. (5.37) for positive angles.

Equation (5.36) will be emphasized in this discussion because the (P,E) combination fits

the etched-glass radiation patterns. The second term in Eq. (5.36), which controls the

wide angle behavior, has the same shape as Eq. (5.9). However, the width is X/w2 rather

than XS21w, and the weighting factor has changed. From a first look at Eq. (5.36), it

appears that the shape of the wide-angle wings can be controlled by varying w 2/A, and

that the intensity level of these wings is proportional to (S2w 2/A)2 . However, by referring

back to Fig. 5.2 and Eq. (5.15), we see that, except for very small values of w/(XS 2), the

wide-angle portions of the curves all had the same shapes. The same thing occurs in Eq.

(5.36); the expression for the wide-angle component of Eq. (5.36) analogous to Eq. (5.15)

is

coe AS (538
<1 OO 2 (538

n (2n)2 w 2 sin30

Equations (5.15) and (5.38) are identical except that S21w has been replaced by S22/w2. S
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Therefore, although Eq. (5.36) appears to have the three independent parameters,

wi/(XS,) w2, and S2, there are actually only two important parameters: XS 1Iw 1 sets the

width of the central Gaussian and XS 22 W2 sets the intensity level of the wings. However,

the choice of W2 and S2 does give us some latitude in controlling how smoothly the two

regions of the curve join. This is illustrated on the left-hand side of Fig. 5.5 where curves

for w2/(XS 2
2) of 100 in the upper curve, 1000 in the middle curve, and 10,000 in the lower

curve are shown. Each of these curves breaks into two curves at the transition region

according to two choices of w2 and S2 used to obtain this ratio. In the lower set of curves l

w 2 /A = 1, and in the upper set of curves w2/X=4. The curves look the same for w2/X> 4 as

long as S2 < <1 and Eq. (5.35) holds. The dotted lines correspond to a numerical

integration of Eq. (5.28) with an exponential autocorrelation function for R.2; they show

that the error introduced by the approximate form, Eq. (5.36), is very small.

Equation (5.37) is plotted on the right-hand side of Fig. 5.5 for wi/(XSI) = 5 and for

various values of w2 and S2 . There is no wide-angle expression analogous to Eq. (5.38)

for Eq. (5.37). Therefore, w2 and S2 have independent effects. By assuming that Eq.

(5.35) holds, we see that the width of the wings is X/w2 and that the intensity level is

proportional to (w2S2/A)2.

5.4 Experimental Configuration

A scatterometer was constructed for measuring diffuser radiation patterns.

Because of its high dynamic range, this instrument gives one the capability of measuring

these patterns over output angles of nearly ± 900. Although transmission measurements

will be described here, reflection measurements are also possible since the arm could %

rotate completely around the sample. Scattered intensity is measured in the plane of

incidence with the angle of incidence being set by rotating the diffuser about the axis of

detector arm motion. The system is operated under computer control to improve
SI
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performance and for the purpose of automation. A block diagram of the entire system is

shown in Fig. 5.6.

5.4.1 Input Optics

The light source is an argon-ion laser operating at 0.4880 pm and modulated at

930 Hz by a rotating mechanical chopper. A small fraction of the light is directed by a

beam splitter to a reference photodiode to measure fluctuation of the input power. The

direct beam is sent through a broadband polarization rotator and then to a Glan-

Thompson polarizer to ensure that the input to the diffuser has the desired polarization.

Although experiments were performed with both p- and s- polarized light, in most

experiments we used s polarization, i.e., the electric field is polarized perpendicular to

the plane of incidence.

The light passed through an iris as it entered the blackened chamber. This

chamber, measuring about 1.5 m on each side, had its walls, ceiling, and floor covered

with black velvet, which was very effective in reducing scattered light within the

chamber. There was also an opening in the wall opposite the input iris so that the direct

beam, if it were not extinguished by the diffuser, would leave the blackened chamber.

The size of this opening could be adjusted according to the angular spread of the

radiation pattern of the diffuser being tested so that most of the scattered transmitted

light left the chamber.

5.4.2 Diffuser Preparation and Mounting

The diffuser or rough surface is mounted on a rotation stage that is located in the

center of the chamber and used for setting the input angle 0. in the plane of incidence.

The diffuser mount was designed to allow for angles of incidence between ± 750. Some

care was necessary in designing the mount and in preparing the diffuser for illumination.

The diffuser mount served as an opaque wall so that the only light reaching the detector

passed through a small aperture on the diffuser. This mount was long enough to block

light scattered from the input iris that would otherwise be in the field of view of the
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detector as it scanned the radiation pattern, even for an angle of incidence of 750 At

observation angles near ±90, light scattered from the backside of the diffuser or its

mount was prevented from reaching the detector by side pieces on the diffuser holder.

The diffusers were made by grinding or etching one side of +" x 2" x 3' pieces of

float glass that had been cut from a single sheet. The ground-glass diffuser was ground

with 820 grit. The etched-glass diffusers were prepared in a manner similar to that used

by Dyson. 33.34 His method was to preroughen the glass by grinding and then to expose

the preroughened surface to hydrofluoric acid for various lengths of time. We obtained

better results by preroughening the glass with Armour Etch 35 etching cream. For short

exposures to the etching cream, the surface texture of the glass goes through various

stages that are critically dependent on time; however, after an etch time of 45 minutes

the texture does not seem to change. Nine diffuser blanks were preroughened on one

side with Armour Etch for 60 min and then exposed to BOE3 6 (4-1) etchant for times of 2,

5, 10, 20, 30, 45, 60, 90, and 120 min. As the BOE etch time increases, the cell size or the

size of the scallops in Fig. 5.1 also increases. However, the rms height stays nearly

constant at about I pim. The limiting etch time is about 2 hrs. For longer times the

surface develops smaller scale structure and large splotches. For etch times up to 5 min,

the major effect of the BOE is to smooth out the high spatial frequency detail of the A

preroughened surface, not to increase the cell size.

The diffusers were then painted black on the four sides and on the diffuser

surface, except for an opening about 4 mm wide by 7 mm high. The light is incident

from the s.nooth side of the diffuser, and the effects on the radiation pattern of

reflections between this surface and the rough surface, which can be significant at high

observation angles, are reduced by keeping the ratio of aperture width to glass thickness

small. The aperture was made somewhat larger than the size of the laser beam, which

had a le 2 intensity point of w.=0.59 mm, to reduce scattering from its edges. There

were certain advantages to forming the aperture with paint over placing an aperture in
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contact with the surface. For example, when a metal aperture with a thickness of about

30 jam was attached to the surface, the scattering from its edges dominated the ,,.,,d

scattering from the diffuser itself at large observation angles. On the other hand, the

edge formed by the paint could be made to be very thin at the border and to increase in

thickness with distance so that the edge scattering was reduced. It was necessary to use

an aperture on the diffuser, otherwise, unilluminated areas of the diffuser would light

up through multiple scattering and increase the light scattered at high angles. Since the

paint was in contact with the rough surface and partially index matched the glass,

reflections and multiple scattering were reduced in the painted regions.

The diffuser could be positioned through micrometers on three translation stages

and on a tilt stage. The translation stages are used to center the diffuser in the input

beam and to control its longitudinal position so that the area to be ifluminated with the

laser was at the center of rotation. The tilt stage was used to achieve retroreflection off

of the polished input surface of the diffuser. For illumination with non-normal

incidence, this position served as the zero degree mark for the diffuser rotation stage. To

account for beam displacement that occurred when the 12 mm thick glass diffusers were

illuminated at an angle, the whole diffuser detector assembly was translated laterally to

bring the beam back into the center of the diffuser aperture.

5.4.3 Detection System

The detector was mounted on an arm that could rotate completely around the

sample, and that had the same axis of rotation as the diffuser. Both the diffuser rotation

and the arm rotation were computer controlled. The step size of the arm between

intensity measurements for most applications was 0.200. However, a step size as small as

0.010 could be obtained with the system.

The distance from the center of rotation to the detector, a silicon PIN photodiode

operated in the photovoltaic mode with no bias voltage, was 65 cm. The field of view of .

this detector is restricted to a half angle of 3.20 by a baffle. Also at the entrance to the 6

0

: , ,. . . . . = ,i ., i 'V.
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detector is a polarization .nalyzer mounted in a rotation stage. The effective diameter

of the detector is 2.5 mm so that it subtends a solid angle Q of 1.16x 10-5 sr or a half-

angle of 0.11.

The signal from the detector went to a PAR Model 181 Current Sensitive Preamp.

For detection of the low light levels that occurred at high angles, the sensitivity of the

preamp was set at 10-7 A/V. However, in the region around the intensity peak, it was

necessary to switch to a lower sensitivity, 10-4 A/V in most cases, to avoid saturation. To

measure the intensity spike that occurred from diffusers that passed the direct beam, it

was also necessary to reduce the intensity of this spike with neutral density filters. The

signal from the preamp was input into a PAR Model 5301 Lock-In Amplifier that was

controlled by the host computer over the IEEE-488 interface bus. Since the signal

strength changed by many orders of magnitude as the arm moved between the different

regions of the radiation pattern, the autoranging capability of the lock-in amplifier % is

used to maintain its sensitivity at the appropriate level.

5.4.4 Linearity and Calibration

Since the radiation patterns were measured over many orders of magnitude, and

the preamp sensitivity was switched within a single measurement run, it was important

to test the linearity of the system and the consistency of the preamp at the sensitivity

settings of 10-7 and 10-4 A/V used for most applications. To check this range switch, the

power incident on the detector was set at the level where the range would be switched

in an actual radiation pattern measurement. The average difference between readings

taken before and after this 103 range switch was less than 1%.

The linearity of the detector system was checked over a wide range of input

powers, ranging from direct illumination of the detector with a He-Ne laser to six orders

of magnitude below this level by using neutral density filters. One neutral density filter,

having a density of 0.3, was mounted so that it could be removed from the beam path

and then reinserted to the same position. It served as a repeatable attenuator for
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showing that the attenuation measured by the system was the same at different power

levels. The attenuation agreed to within 1% over the six decade range.

The system was calibrated using both a direct and an indirect method. In the

direct method there was no test diffuser. The laser beam was attenuated with neutral

density filters placed before the beam splitter in Fig. 5.6, and the total energy within the

direct beam that entered the blackened chamber was incident on the detector. The

preamp was set at 10-4 AN, and the ratio of the signal voltage V". out of this preamp to

the voltage V, from the reference detector was calculated as •

V (5.39)

Vro

The product gVr became the indicator of the power level incident on the diffuser for a

given reference voltage Vr. It was not necessary to perform an absolute calibration of

these detectors in watts per volt because the quantity of interest Ien is normalized by the

incident illumination and hence does not depend on the input power. However, to

facilitate the discussion, we assume that we do have a calibration factor a such that the

total power Po entering the chamber is

P agVr, (5.40)

and the power scattered from the diffuser and received by the detector is

AP=a V (5.41)

Then by Eq. (5.6),

V
!1= . (5.42)

en AQ g V

In the indirect calibration method, a barium sulfate disk was used to approximate

an idealized Lambertian scatterer, and the radiation pattern in reflection was measured

with the scatterometer. The calibration factor Qg of Eq. (5.42) was calculated by

comparing the resulting radiation pattern with Eq. (5.11). Since the indirect method was

N't ta
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more repeatable, and the signal levels V, and Vr for this method were in the range used

for actual measurements, it was the preferred method of calibration. The calibration was

performed for wavelengths of 0.4880 lpm and 0.6328 lm. The minimum detectable le, is

4.0 x 10-7 sr-1 for an average input power of 30 mW at 0.4880 pm and 1.3 x 10-5 sr- 1 for

an average input power of 1.2 mW at 0.6328 pm. This corresponds to a minimum

detectable power for the receiver of about 1.5 x 10-13 W. 'r

5.5 Measured Radiation Patterns

5.5.1 Ground Glass

The radiation pattern from a ground-glass diffuser is presented for comparison

with the theory of Section 5.2 Since this type of surface is made by an abrasive grinding

process, it has sharp edges and abrupt discontinuities as illustrated in Fig. 5. 1(a). Hence,

one would expect that the resulting autocorrelation function would drop immediately,

i.e., be better represented by a conical shape than by a paraboloidal shape for small

offsets. Hence, Eq. (5.9), and correspondingly Fig. 5.2, are expected to provide a

theoretical basis for the prediction of the radiation pattern.

Before presenting the experimental data from the ground-glass diffuser, we will

present the calibration curve from the barium sulfate scatterer used to approximate an

idealized Lambertian surface. In the two curves labeled (a) in Fig. 5.7, the radiation

pattern in reflection resulting from illumination of this surface at normal incidence is

plotted, solid line, and compared with Eq. (5.11), dashed line. There is a break in the

experimental data around e=0 ° where the detector assembly blocked the input beam.

The calibration factor was obtained by adjusting the experimental curve vertically until

the solid line and the dashed line overlapped.

In curves (b) of Fig. 5.7, we see the experimental results from the ground-glass

diffuser, solid line, together with Eq. (5.9), dashed line, plotted for w/(XS2)= 1.4. A very

good fit has been obtained at all angles and over five orders of magnitude. We did not
Ao e
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observe a significant difference when the radiation pattern measurement was repeated

for p polarization, i.e.. when both the polarizer and the analyzer were rotated by 900.

5.5.2 Etched Glass

As illustrated in Fig. 5.1 (b), the surface of the etched-glass diffusers are smooth on

a wavelength scale and have slowly changing slopes except at the ridges. Hence, we

would expect the radiation patterns to be quite different from those of ground glass. In

curves (c) of Fig. 5.7 we compare the theoretical prediction, using the composite diffuser

model of Eq. (5.36), with the measured pattt, , from an etched-glass diffuser

(AE 60 min, BOE 45 min). Very good agreement is seen at all angles and over eight orders

of magnitude. This fit is obtained by choosing wl/(XS)=6.0 to set the height of the

central Gaussian intensity profile and by choosing w2/(XS2 2) = 38 to set the height of the

wide-angle wings. Alternatively, we could have chosen w/(XSi)= 5.0 to obtain better

agreement between the widths of the two curves in the central region, but then the

height of the dashed line at 0=0 would have fallen by 30% or by 0.16 units on the

logarithmic scale. The transition region between the central Gaussian and the wings is

dependent on the values of w2 and S2 used to produce the above ratio. For the curve

shown, w2/, =0.75 so that S2 =0.14. The fitting of the wings is consistent with the

presence of microstructure on the surface having the discontinuities that are

characteristic of an autocorrelation function that isconical for small offsets. With

reference to Fig. 5.5, we review the curve fitting procedure as follows. As explained

directly above, (1) the parameter wl/(XS) is obtained by intensities en at small angles

and (2) w2/(XS 22) is obtained from 1en for 0 600. Finally, (3) the parameter w2/ is obtained

from the transition region between the central Gaussian and the wings.

In Fig. 5.8 we see the radiation patterns for the same etched-glass diffuser

(AE 60 min, BOE 45 min) as measured for input angles 0(=-60', -30°, 00, 300, and 60 °.

Similar curves for ground-glass diffusers are in the literature 26 The measurements in

Fig. 5.8 were made with the detector arm sweeping out a half circle in the plane of
Fig
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incidence for s polarization. In these curves we observe that the position of the

maximum of each radiation pattern slides according to the illumination direction 00 but

that this peak is displaced toward smaller angles, the displacement increasing with

increasing angles of incidence. Some of this displacement arises from the fact that the

obliquity factor is stronger on the high-angle side of the curve, which tends to shift the

maximum value of the curve inward.

We also observe that the radiation patterns widen and that the maximum values
S

decrease as the input angle 0, increases. Part of this widening is due to the effective

value of S increasing as 0 increases in Eq. (5.18). However, most of it arises from the fact

that we are observing the radiation pattern as a function of the angle 0, not as a function

of the spatial frequency, which goes as sinO.

In Fig. 5.9 we have used Eq. (5.36) to plot a family of radiation patterns in the

plane of incidence for the same values of 8o as in Fig. 5.8 and for wl/(XS1 )=6, W2/A=0.75,

and S2 = 0.14. We observe very good agreement between Figs. 5.8 and 5.9, especially in

the angular dependence of the wings. In plotting Eq. (5.36) we have used Eq. (5.18) for

the dependence of S on input angle 0o. The etched-glass radiation pattern

measurements were repeated for p polarization. The only observed difference between

these patterns was that the intensity level of the wings dropped on the long side of the

patterns for oblique incidence.

Figure 5.10 contains plots of the radiation patterns for three of the nine etched

glass diffusers for normally incident illumination. From these radiation patterns we see

the large range in the widths and maximum values of the intensity curves that can be

obtained by varying the BOE etch time between 2 min and 120 min. By fitting these

radiation patterns to Eq. (5.10), we can obtain the values of the shape parameter w/(XS)

for the paraboloidal component. We use a linear rather than a logarithmic intensity axis

for this fitting procedure because the angular distribution of intensity in the wings is

insignificant on a linear scale. In Fig. 5.11 the values of w/(XS) as so obtained are

III PI 11.4
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compared with direct measurements from a stylus profilometer. In the profilometer

method, 1 mm scans consisting of 2048 data points are taken for each diffuser.

Autocorrelation functions from each scan are calculated and fit to a Gaussian to obtain w

and S. The excellent agreement between these two methods of measuring w/(XS)

establishes measurement of the radiation pattern as a useful and accurate noncontact

method for characterizing paraboloidal surfaces.

5.6 Summary

A theoretical formulation for the far-zone radiation pattern resulting when a

diffuser with a normally distributed surface height profile is monochromatically

illuminated is presented in detail and compared to experiments. In the theory, which is

extended from an earlier publication,6 we emphasize predictions of the expected value

of the normalized intensity <I,>, and we stress that this corresponds to the envelope of

the speckle pattern 1en. First, in the theory for the case of normalized roughness S in Eq.

(5.1) much greater than one, we present two important limiting forms of <I,>, Eqs.

(5.9) and (5.10), which correspond, respectively, to autocorrelation functions that are Eq.

(5.3) conical and Eq. (5.4) paraboloidal for small offsets. Second, we present forms for

<In> from a diffuser with two scales of roughness where the first component has large

roughness S, > > 1 and the roughness S2 of the second component is in one of three

categories: If S2> >1, and the autocorrelation functions of the first and second

components are conical and paraboloidal, respectively, then we denote this combination

by the symbol (C,P) and Eq. (5.24) applies. For arbitrary S2, Eq. (5.27) will apply if the first

component is conical and Eq. (5.28) will apply if the first component is paraboloidal. If

S2< < 1 then Eqs. (5.27) and (5.28) simplify. We illustrated this case with four examples,

denoted by the symbols (C,E), (C,G), (P,E), and (P,G), that correspond to Eqs. (5.32),

(5.34), (5.36), and (5.37), respectively. The second letter in each pair symbolizes either an
b

exponential or a Gaussian autocorrelation function for the small roughness component.
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In Fig. 5.7 excellent agreement is obtained between Eq. (5.9) and the ground-glass

radiation pattern by adjusting the single parameter wI(XS2) and between Eq. (5.36) and

the etched-glass radiation pattern by choosing the three parameters w1 /(XSI), w 2/X, and

S2 properly. As illustrated in Fig. 5.11, the values of w1/(AS 1 ) obtained by measuring the

angular distribution of the radiation pattern agree well with stylus profilometer

measurements of diffuser surfaces.
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SUMMARY

In this thesis the scattering of laser light from single thin diffusers and from a

cascade of two thin diffusers is analyzed with particular emphasis on remote sensing. In

both scattering configurations, the diffusers are probed with a monochromatic plane

wave, see Fig. 1.1. For single diffusers, the angular distribution of the radiation pattern,

i.e, the slowly varying envelope of intensity, is related to the statistical properties of the

diffuser surface. For double diffusers, decorrelation of the far-zone speckle pattern with O

respect to changes in the wavelength and/or angle of incidence of the input plane wave

is related to the diffuser surface properties and to the spacing H between diffusers. It is

shown that these two problems are very closely related in that one can predict the

decorrelation behavior from a cascade of two diffusers given the angular distribution of

the radiation patterns from the single diffusers that make up the cascade.

The propagation of light through single diffusers is treated in Chapter 2. Of

particular interest is the validity of Eq. (2.1) for obtaining the complex amplitude u2(r) at

the output plane of a diffuser by multiplying the complex amplitude vl(r) at the input

plane, point-by-point, by a diffuser transmission function t(r;k). This simple transmission

function approach is limited because it does not account for diffuser thickness effects.

For comparison, a generalized transmission function t(r;k) is introduced that does

account for thickness effects through its additional dependence on the angle of

incidence of an input plane wave. Hence, t(r;k) is denoted as the plane-wave

transmission function for the plane wave with wave vector k. For general illumination,

the input uv(r) is decomposing into an angular spectrum of plane waves, and Eq. (2.7) is

used to calculate the output V2(r). As is evident from Eqs. (2.9) and (2.10), the plane-wave

transmission function t(r;k) is an alternative to the impulse response g(r;r') for treating

the propagation of light through an arbitrary linear system.

1
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Approximate plane-wave transmission functions are given in Eq. (2.23) for a bulk

diffuser and in Eq. (2.34) for a rough surface diffuser. Through computer simulations of

far-zone speckle patterns (see Fig. 2.5) and through analytical calculations of the speckle

decorrelation (see Appendix B) it is shown that the angular dependence of the

generalized transmission function is not important for typical thin diffusers illuminated

at small input angles. Hence, the simple transmission function is adequate for treating

the individual thin diffusers in a cascade. This is important because it makes the resulting
a

expressions for the cascade manageable.

In Chapter 3 the decorrelation of speckle from double diffusers is analyzed with

respect to changes in wavelength, angle of incidence, angle of observation, and spacing.

The diffuser pair, see Fig. 3.1, is illuminated with a plane wave of wave number k that

points in an arbitrary input direction so. The two diffusers are separated by a spacing H,

and there is an aperture a in contact with the second diffuser. The expression for the

complex amplitude in the far-zone of this aperture is given by Eq. (3.17).

Equation (3.47) is a general expression for Uab, the two-state correlation function

of the iar-zorie complex amplitude. The subscripts a and b represent the initial and final

states of the four parameters that can be varied during an experiment, i.e., the wave

number k, the input direction s., the spacing H, and the observation direction s. In a

typical speckle experiment, one would measure the intensity rather than the complex

amplitude. Hence, it is important to also calculate the two-state correlation function of

intensity <IIb>. The expansion of <IIb> in terms uab for circular complex Gaussian

statistics is given in Eq. (3.75). The two-state correlation functions Ub and <Iab> are

measures of the correlation between the initial and final spec!le patterns. A speckle

pattern is said to be decorrelated if u"b is small compared to its initial value ua or if the

normalized two-state correlation of intensity in Eq. (3.75) approaches unity.

The general expression for uob given in Eq. (3.47) takes the especially simple form

given in Eq. (3.48) when k and H are constant, or more generally, when Eq. (3.45) holds.

V,
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Equation (3.48) is proportional to the double-diffuser descriptor function F that is

defined in Eq. (3.30). The offset vector Hasoa±-HbSo b± that occurs as the first argument

of F is particularly important. It can be interpreted geometrically as the lateral shift at

plane It between two rays leaving plane I at the same point and traveling in directions Soa

and Sob. Some special cases of Uab listed in Section 3.2.6 are the radiation pattern from a

cascade of two diffusers in Eq. (3.50), the radiation pattern from a single diffuser in Eq.

(3.51), and Uab for a single diffuser in Eq. (3.52). Equation (3.58) is a general form of Uab

for a diffuser with an arbitrary plane-wave transmission function. It includes the double

diffuser as a special case.

The analysis in Chapter 3 applies to general diffusers; however, in order to

perform calculations based on Eq. (3.47), the functional forms of the autocorrelation

functions Rt, and Rt of the diffuser transmission function t1 and t2 must be specified. For

diffusers whose height profile h is normally distributed, there is a particularly simple

relationship, Eq. (3.63), between the autocorrelation functions R, of the transmission

function and Rh of the height profile. The decaying exponential, Eq. (3.66), and the

Gaussian, Eq. (3.67), are two important large roughness limiting forms of Eq. (3.63) for

Rj. The decaying exponential applies when Rh looks like a cone, and the Gaussian applies

when Rh looks like a paraboloid for small values of the offset parameter r. These

diffusers are designated as conical, C, and paraboloidal, P, respectively. For paraboloidal

diffusers, the slope parameter cj/w, where oh is the rms surface roughness and w is the

lateral correlation length, determines the angular spread of the radiation pattern. For

conical diffusers, the corresponding parameter is oh2/w.

Chapter 3 provides a framework for further analysis of speckle decorrelation from

a cascade of two diffusers. The general expression in Eq. (3.47) for uab can be used as the

basis for many different remote sensing techniques. An important special case of the

analysis is the remote sensing of the spacing between a large roughness diffuser and a

•I
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circular aperture by observing the angular decorrelation of the far-zone speckle pattern,

see Eq. (3.93).

In Chapter 4 the analysis of speckle decorrelation is applied to the remote sensing

of a P-P diffuser cascade. The advantage of analyzing this combination first is that the

two-state correlation function of intensity can be calculated in closed form for arbitrary

values of the state variables. The resulting solution, Eq. (4.13), is used in categorizing the

different speckle decorrelation phenomenon and in configuring remote sensing

experiments. Equation (4.18) is the simplified version of Eq. (4.13) that results by setting

kabL=O, i.e., by using equal input and observation angle.. Based on Eq. (4.18), it is

shown that the three parameters Ohl/WI, oh./W2, and H of the diffuser cascade can be

determined remotely by performing three experiments. These experiments are

measurement of the decorrelation of the speckle pattern with changes of wavelength

and spacing and measurement of the angular distribution of the radiation pattern.

However, it is also necessary to perform a wavelength decorrelation experiment with
kab1.O to distinguish between the diffusers, i.e., to determine the ordering of the

diffusers in the cascade. This additional experiment is based on the fact that the

wavelength decorrelation for kab. - 0 is enhanced if P4> 1, i.e., if the diffuser having the

larger spread in its radiation pattern occurs first in the cascade.

The analysis is presented in Appendix E for the P-C and C-P diffuser cascades and

in Appendix F for the C-C cascade. It is shown that one can determine the values of the

appropriate diffuser parameter Oh/w or oh21W for each diffuser, together with the

spacing, by performing simple remote sensing experiments. The major difference

between these diffuser combinations and the P.P combination is that two unknowns,

instead of one, can be obtained from each experiment, see Section 4.5. This implies that

there is more freedom in choosing the types of experiments used in the remote sensing

of the P-C, C-P, and C-C diftuser combinations.

S =

ml

', " ""," " "v ", " "." ". ". ",,-," " .. " .'""' ".-..- -". '. .' -'- . ... " .. - .. .. ... " " ' " .. ... . "-



.0

155

in Chapter 5 theoretical radiation patterns are compared with measured radiation

patterns from ground-glass and acid-etched diffusers. First, the theoretical radiation

patterns from conical and paraboloidal diffusers are given in Eqs. (5.9) and (5.10),

respectively. Then diffusers with two scales of roughness are also analyzed. Of particular

importance is Eq. (5.36) for the (P,E) diffuser, where the letter P denotes a large

roughness paraboloidal component as usual, and the letter E denotes a small roughness

component having an exponential autocorrelation function.

Measured radiation patterns over a dynamic range of about 6 orders of •

magnitude are presented for ground-glass diffusers and about 8 orders of magnitude for

acid-etched diffusers. For ground glass, excellent agreement is obtained using an

autocorrelation function that is conical for small spatial offsets; this is consistent with our

physical expectation based on the need for a rapid fall-off in surface correlation due to

the jagged nature of the surface relief. For etched glass, excellent agreement is obtained

with the (P,E) diffuser. The upper two or three orders of magnitude of the radiation

pattern is dominated by the large roughness paraboloidal component, and the scattering

at wide angles is predicted by the small roughness component having a decaying

exponential autocorrelation function. The values of w/(XS)=w/(2noj) for the

paraboloidal component of etched-glass diffusers made with BOE etch times ranging

between 2 and 120 min are obtained from the measured radiation patterns. These

values of w/(XS) range between 3 and 13 and compare well with those obtained by direct

measurement of the surface profile with a stylus profilome~er.
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Appendix A

Fourth-Order Moment of a Non-Circular, Non-Zero mean.

Complex Gaussian Random Process

The complex Gaussian random process z is defined as

z = x+iy, (A1)

where x and y are arbitrary real Gaussian random variables. In much of what is written

on the subject it is assumed that z has zero mean, i.e., that <x> = <y> =0, and that z is

circular.1-5 Circularity is defined below in Eq. (Al 1). There seems to be a lack of written

material on the general case of, non-circular, non-zero-mean cumrpex Gaussian random

processes. There is sometimes confusion in the literature because the results for zero-

mean circular-complex random processes are applied to general complex Gaussian

random processes. The results of this appendix are used in obtaining Eq. (3.72) for the

two-state correlation function of intensity.

We begin calculation of the general fourth-order moment of a complex Gaussian

random process by first considering real Gaussian random variables. Let x, x2, x3, and x4

be four Gaussian distributed random variables, each having a mean value of zero. Then

by the Gaussian moment theorem, 3,4 we can write the fourth-order moment in terms of

the second-order moments as

<X1X2 3X4
> = <XIX 2 > <x 3 x4 > + <X1X3 > <x 2x4 >+<x X 4 > <X2X3 >. (A2) .

Since all odd-order moments are equal to zero, we also have %

<X 1.1 >=0. (A3)

The random variables in Eqs. (A2) and (A3) could be interpreted as arising from distinct

random processes, which may or may not be correlated with each other. However, in the
0
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usual application xi represents a single random process where the subscript denotes a

certain argument, i.e., x=x(t), where i= 1,2,3, or 4.

We generalize Eq. (A3) to include non-zero-mean statistics by substituting the

zero-mean random process x- <xi> for each of the variables and then expanding. The

resulting expression for the third-order moment is

<X1X2X3 = <x2-3> <XI > + <XlX3> <x> + <xtx2> <x?

(A4)

By following the same procedure for Eq. (A2) and using Eq. (A4) to reduce the resulting

terms containing third-order moments to second- and first-order moments, we obtain

<X x 2 x3 x 4> = <X X +<xx ><X <Xx><X3
1XX4 I2><3x4>+ 13 X4 14 2X

(A5)-2<x ><X ><X ><X >4
1 2 3 4

for the expansion of the fourth-order moment when the random variables have non-

zero means.

When <x > =0 and <yi> =0, the expansions for complex random variables

corresponding to Eqs. (A2) and (A3) are

<Z I2Z34 >=<z Z2 > <Z 3Z4>+ Z 3> <Z2 4> + Zl4> <Z 2-3>  (A6)

and

<z1z2z3 >=O. (A7)

The validity of Eqs. (A6) and (A7) can be checked by writing z in terms of the real

variables x and y,, expanding, and using Eq. (A2) to reduce the real fourth-order

moments to second order moments and Eq. (A3) to show that the real third-order

moments are zero. Equations (A4) and (A5) also generalize to complex variables yielding

<Z Z Z> :<Z'2Z > < Z > + < ZlZ3 > 
< Z2 > + < I > < Z3>

A.
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-2<z><z 2><Z3 > (A8)

and

<Zl12Z34 >  <ZIZ2> <Z4> + <Z1Z3 >  24> + <Z IZ 4 > <z 2z 3 >

-2<z I > <Z2 ><Z3 > <Z4> (A9)

for the expansion of the third- and fourth-order moments of non-zero mean complex
S

Gaussian random variables. The steps in obtaining Eqs. (A8) and (A9) from Eq. (A6) and

(A7) are exactly the same as those used to obtain Eqs. (A4) and (A5) from Eqs. (A2) and

(A3).

The usual complex fourth-order moment that one encounters in random processes

has complex conjugates on two of the four z variables, and z is interpreted as a single

random process, i.e., zL=z(t/). Thus we rewrite Eq. (A9) as

<z(t 1) z(t 2 ) z*( 3) Z*(t 4) > = <Zt 1) zU 2) > < z*(t 3) z*(t 4) >

+ <Z(tI)z*(t 3 )> <z(t2)z*(t4)> + <Z(t)z*(t 4)> <z(t2 )z*(t3)>

- 2 < -(t I)> <Z(t 2 )> <z*(t 3)> <z*(t 4) >. (A10)

In many cases, e.g., when z(t) is an analytic signal representation of the real

function x(t), the random process will be circular.5 The definition of circularity is that

< Z(t 1) Z(1t2)> = <Z(t I)> <Z(t 2)> (Al 1)

for any values of t and t2. Equation (Al1) implies that the real and imaginary parts of z

will obey the following two relationships: '0 O

<x(t1)x(t - <x(t I)> <x(t2 ) > = <Y(tI)Y(t2)> - <Y(t 1)> <Y(t)> (A12)

and

< xU 1)vt YU > - < x(t l)> < x(t 2) > - < x(t z) -'(01 > - <Y(I I) > <Y(t 2 )> • (A 13)

For circularity, Eq. (A10) reduces to

Oi
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< 4tf1 ) Z(t) Z*(t 3 z*(t 4)> =<4t I z*(t 3) <4 2) z*(t 4 ) >

+ <4t 1)z*(t4 )> <41.9zZ*(t )> -<Z4t )> <4*2t)> <z*(t )> <z *(I)>. (A14) mI
1 ) 2 3
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Appendix B

Plane-Wave Probing of Single Diffusers

Approximate plane-wave transmission functions for bulk diffusers and rough-

surface diffusers are given in Eqs. (2.23) and (2.34), respectively. In this appendix these

transmission functions are used to evaluate the two-state correlation function

Ri,(r;koa;kob) defined in Eq. (3.56). The two-state correlation function Uab of far-zone• j

complex amplitude is then obtained by substituting Ri., into Eq. (3.58), and Eq. (3.75) is

applied to calculate the two-state correlation function of far-zone intensity. This

appendix is useful for showing that the wavelength and angular decorrelation of speckle -

from single diffusers generally occurs slowly compared with decorrelation from cascaded

diffusers.

F.1 Bulk Diffusers

Upon substituting Eq. (2.23) into Eq. (3.56) and using Eq. (2.22) to write cosO< > in -f

terms of sinOo, we obtain •

R t12(r; k); kb) b expIHi k aVX <n> 2 _si 2 0,, - k bV <n >2_sin2Ob)

iII<n> k An(r') kb n(r+r') (B1)X exp[d~n
V <n>2s-nO in 2 b --

o-o

as the two-state correlation function for the plane-wave transmission function of a bulk

diffuser. Following Section 3.3, we identify the ensemble average of the exponential in

Eq. (B1) as the joint characteristic function' of the random process An with respect to the

variables r and r/b, where -V
"%

Ilk <n>
a (32)

V/ <n>2_ sin20
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and 0

Hk <n>
b_______ (B3)

'l <n> -sin 0
ob

For a normally distributed wide-sense stationary random process, see Eq. (3.62),

< exp Li rl.ntr')+qLntr-1r') > = expi a- b .2

In Eq. (B4)

and

R (r An(r') An(r +r') > (6
An2 N,

Through its dependence on the difference t
lb-qla' the first exponential on the right-

hand side of Eq. (B34) controls decorrelation with respect to changes in the waelength-

and the angle of incidence of the input plane wave. The second exponential is relatively

insensitive to small changes in wavelength or angle of incidence because rz, and 'lb occur

,is a prodlu '. We also note that the first exponential can be factored out of the integral

in calculating uab from Eq. (3.58). Hence, it is not the precise functional form of Ra that

is iinportant in determining the decorrelation properties of a single bulk diffuser, but

rather the magnitude of the normal incidence rms phase delay

S Anlo~ (B 7)

A good approximation to Eq (3 58) for Uab is obtained by setting 'ibh rz,, within the

secunid exponential in Eq. (134):

I
L L



0
169 i .

ka k bUab= - iR ( k b- k

Xexp iHkv <n>2_ i - kbV ns 2.b/ ex( i 2 Ankqb'aI)2

x exp -A2nq 2 (1 -R',A(r)) A(r;kabiexpi k r) d2r. (B8)

We use Eq. (3.75) to calculate the two-state correlation function of far-zone intensity
w.from a strong diffuser whose limiting aperture is large compared to the diffuser A

correlaticn length. By requiring that the speckle tracking condition holds, i.e., that

Akab_= 0, the integral in Eq. (B8) will have the same value for Uab, Uaa, and Ubb, and Eq.

(3.75) will take the simple form

a = 1 + exp[-O 2(r b-ra)21. (89)<1a> <Ib> "nZbq

Equation (B9) governs the wavelength and the angular dependence of speckle

from a single bulk diffuser. We emphasize the wavelength dependence by applying Eq. ,

(B9) to normally incident illumination and note that the wavelength dependence reduces

to that of a single diffuser in a cascade, see Eq. (4.24):

I +exp~SP 2).( 0<I > < <l> 0 _
a b

In Eq. (810) we have used the fractional change in wavenumber Pk defined in Eq. (4.23), %

and So is calculated for the initial wavenumber k0. The angular dependence in Eq. (B9) is '..

4
emphasized by assuming k, = kb:

<2>< < • a'.','ab I+ exp-S 21(t g8 .. kll42 81
<1 ><1 > P1 0 j 2

a b <n <n*

In many applications 0,, = 0, i.e., the input plane wave is initially normally incident. Then

for small angular detuning, Eq. (B 11) reduces to "

%..
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If we say that angular decorrelation has occurred when the exponential in Eq.

(8 12) falls to its Ile point, then the value of Oob necessary for decorrelation is

ob= <n> N/2/So. (B13)

For the speckle pattern from a thin bulk diffuser to decorrelate with a change of angle of

incidence of Oob 1°, S, must be very large, i.e., S0 -15,000 rad. Even for O0 b:s 100,

Soa 150 rad for the speckle pattern to decorrelate. As illustrated in Fig. 1.3, changes in

the angle of incidence required to decorrelate speckle from a cascade of two diffusers •

are typically of the order of arc minutes. Thus angular decorrelation arising from the

individual diffusers is usually insignificant compared to angular decorrelation arising

from the spacing between diffusers.

F.2 Rough-Surface Diffuser

The two-state correlation function for the plane-wave transmission function of a

rough-surface diffuser is obtained by substituting Eq. (2.34) for t into Eq. (3.56) for R 12

and using Eq. (2.30) to express 01 in terms of the input angle 0,:

Rt? t(r;k,;k) = exp iH( .kV n sin0. -k by l 2_Sil 20)

2.20 _ ').0 (B14)

<exp [ik ah(r')( \/ n-sin 0 -cosO)) - kbh(r+ r')k\ nsini bcob)]

Once again, the ensemble average of the exponential is a joint characteristic function,

this time of the random process h(r) with respect to the variables.-.

ra =k. Vfn-sin20-cos0o (815) .

and

k in 2 O) (B16)

The normal incidence rms phase delay corresponding to Eq. (B7) is NO%

S ko (n-1). (B17)

V.V.N&.

,5% .
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Equation (B17) is identical to Eq. (3.10) except there is a subscript on S in Eq. (117) to

emphasize that the phase delay is for normal incidence.

The expression analogous to Eq. (B9) for the two-state correlation function of far-

zone intensity is

=1 + exp [o(q--)2]. (
<I ><I>

Equation (810) also applies for the wavelength dependence of a rough-surface diffuser,

but So is now given by Eq. (817) rather than Eq. (17). The expression corresponding to Eq.

(B 11) for the angular decorrelation at constant wavelength is

<I aIb >
-1

<I a><Ib >

+ exp -So 2 1 1 (x/ n2 -sin20 -cos -/n 2 -sin 2Oob + cosO .
1-x 0 nIk 0a 0a ob ob/j

For 0o = 0 and small values of Oob, Eq. (B 19) simplifies to

<1!> S20o4
ab > +0ob\ (120)-1 +expl- 2 ) . .',

<la> <Ib 4n 2

Except for the difference between the way S. is defined for a rough-surface diffuser and

the difference in the way the index of refraction occurs in the denominator, i.e., n 2  •

instead of <n>4, Eq. (B20) is identical to Eq. (B12) for a bulk diffuser. The rough-surface

analog of Eq. (B13) is %

0 = 2n/S (B21)

From Eq. (821) we see that So> 10,000 rad and So- 100 rad for the speckle pattern from a

rough-surface diffuser to decorrelate with changes of angle of incidence of 0 ob-----1and

0ob- 100, respectively. Once again, these decorrelation angles are large compared to 0

typical decorrelation angles arising from the spacing between diffusers.

or. 2,". r

,.0. .- , ..
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1. N. George and A. Jain, "Space and wavelength dependence of speckle intensity,"
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Appendix C S

Paraboloidal-Paraboloidal Diffuser Combination

In this appendix we present the results of the intermediate steps in the calculation

of Eq. (4.7) for the two-state correlation of far-zone intensity from a cascade of two thin

diffusers. The diffusers are assumed to be strong, i.e., S1 and S2 are much larger than

one, and Eq. (4.8) applies for both R h and Rk so that both diffusers are paraboloidal. We

denote this diffuser combination by the symbol P-P. The subscripts 1 and 2 on the

diffuser parameters ot and w refer to the planes I and II of Fig. 3.1. We proceed by first

evaluating Eq. (4.4) for F while keeping all of its arguments arbitrary. Using the identityl

exp[ (a Ir2i ki r)Id r= n 2exp(- 2C
a 4a 2

where Re(a) e0, to evaluate the integral, we arrive at

2 2
'( t 0l t2

F(r;k k bk )= - ( + - +
a'W b' b-L s kk \2 2 2)b 2  2k, kbWa

x exp( - 8w2I kab±12) exp - I (o2+o2 )(kb-ka)21

2 2
Xep I /I ~t2 1 I 4. 10akbW 2+ W 2 2kakbW: 2) kb±-L

4k 1  i 2  akkb a

ax{ I2 IV 2 2k k w 2) lablr

2

2 k (C2)
w2 +  abW 2  ab- " t
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When we substitute Eq. (C2) into Eq. (4.1) and evaluate the integral, again using Eq. (C1),

we obtain the following general expression for uab:

1 4.exp( iab) exp( k I kb.L - kIoaL2
2 kbHa-kal

b  b

w2 2

b( W 2k kw2)a.
W1  W2  ab a

1 2 2 _ _

121

W t2 a 2 1~f-

X exp kk - t2 + -+ 2)1 Is 6 -+ HIS 12

a + 2 2 2k kbW 2 1+ 2a l

to w 2  2 bapp

2 a ba

S 
2

We~ ~ ~ ~ ~ ~ ~~P (,Opp tha fl eowe h cniini q 34) i aie,, iewe

XeXP W 2k k I 2 +
b 1  2 ) abb a -P

W2 2 +- B

X2 e+13 I+~P 1) 12 1 j + wkHs 0

a ) 2 W 2 2kkiW aa*(~Sba_ ~

tl ~2 kakba 1+3kP(P b W-1 0

where j3pp is a wavelength-spacing dletuning parameter defined as

=2kf-k ib) fW/~ + GOf- (C4)
PP ba ab02 W2 2k k W 2

il 2 aba

We note that Opis zero when the condition in Eq. (3.45) is satisfied, i.e., when

kbHa = kaHb. We point out that there is an inherent difference between the parameters

Akab., kb-ka, Ppp, and HbSob-HaSoa_L and the parameter kabithat occur in Eq. (C3). The 0

parameters in the first set all vanish when the states a and b are equal, but kabi can be I'

non-zero. For example, when we calculate uaa from Eq. (C3), most of the factors reduce

S,.'.
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to unity, but we are left with a function of the offset between input and output wave

vectors:

2 02 0 2

u (k ._k <1 (k _k )> = cos I el +t2 +aa4-iia W12 W 2 2akbW 2

22 a b

a 2  + 2 Ik kI2 (C) 

Xexp - +t2 2+ _ -k -L.(0

a2 2 aba 0

Of course, kaiL-ko,,= kabi by Eq. (3.29) since &kab-" = 0. When we write uaa without an S

argumert, we mean that the argument is k, 1 -ko 1L as given in Eq. (C5). When we write

ua(0), we mean that ka.L = koa_L, i.e., that the observation point lies in the same direction

as the input plane wave. As we will see below, there is an advantage to using uaa(O) and

Ubb(O) instead of u. and Ubb as the normalization factors.

We need to know [UabJ2 in order to obtain the two-state correlation of intensity

from Eq. (4.7). In calculating 1UabI2 from Eq. (C3), the real components of the arguments

of the exponentials double and the imaginary parts disappear since they are just phase

factors. We begin by using the normalization factors Uaa and Ubb. The resulting

expression for the normalized magnitude squared of Uab is:

?~ N.
V 1VI , ..

I..,*1, i ;4

I",<
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U'j 2  0 2 2 02 2 02 02

-- 2 2 2+ XJ+ + - ,-+2 + w 2k-kWL2
aa bb I) W 2  2wa ka WI W2 a b W I 2 2kak6

X exp(IW2Akb.2)exp (U+0;2)(k-k)2] i

4 a w 2  
2kb +a

2 
2

b, W1 L + 0 21

-xp- - + 2  + 2 k 2) 1+
2 kakh 1 w2 2akba;0~ ~ 2 kkWI+p 2  abij

t l t2  , -a i

2 2

X e x p + + 2 - I +

a x 2 2- 22

4 b W 1 w 2  2k,a kab kb

2 2 2,

exp 12

b 1 2 ba

2 0_ _ _ 2 _ _

Ib -k__=__b k -Aab (C8).,

exp{ exp o n 12 jkab L k b.L

42 2 kkW 2  2k 2 2 b- 2 a
a 1 2 ppa

entr Eq. o tC ehe utse ti vdn rmEs C)ad C)ta h pruecnb

a f i p w it th+ r + l Iok I 1

2 2

khl + k 6  Pkb P-A b (C6)

entr into tC)ehe uts tseietfo qs C)ad( ht h pruecnb

acounprste formliititn xothe rs inrslo p are i/u ofd ifu se ) yno

%0

* *~ *~j* - -I 5 ~ SP * ~ Wj Ipq > ~ Xp .
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writing the w. dependence and letting

2 2
a°t2 a 12 1C9)

w2  w2  
2 kkbW 2

In most practical applications, the aperture contains many diffuser correlation cells so

that the condition
2

w2 (c1o)
2k kbW2 > 2

a ba a2tr2

is satisfied. Then the first two factors in Eq. (C6) cancel with the third factor and the wa

dependence within the exponentials in Eq. (C6) and within the definition of jpp can be

dropped. The resulting expression corresponding to Eq. (C6) is:

Iuj 2 
_ ( 22 \ ) £ ~ k

-uU2 exp 2w IAk ..L12 exp-(02"+0 12 - k +)2  +
u aa U bb 4 I t (b+ 2

2 2exp _2k a kb(Wl 2 w 2  1 +2J 6L-Hasal1"- +- - l __ o.--Ho_2

0i 02 1 +,p

it £2 pp

2 2 2

aexp l( 2b a 20t
'L

+x -' lab'.+kkb + + b 12
l ~ b2 2 )( 21+/ # )I 22,

2 2
2 W 1  2 

Wl a £2 pp
U1  U 2  a b

exp 2(+. ) IV k1 (2 -hs_(l

a+2 I a2A (h ob aSo.aL

We show why the normalization Uaa(O)Ubb(O) is preferred to UaalUbb by evaluating

Eq. (C1 1) for the limiting values of the arguments Akb± = O,#3pp=O, and SoaL
= Sob± :

%

I
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- exp[ (o2 +o2)(kbka)2]
Ua U - xp d t

xep!(4~ 2  > (k-k ) 2
2  (C12)

1  W2  ab

Since we have assumed that S, and S2 are much larger than one, the first exponential

will have damped to a small value unless (kb-ka)/ka is small compared with unity.

However, the argument of the second exponential is positive and there is no restriction

on how small the slope parameters oi,/w1 and otJw2 can be; Therefore, this exponential

will increase as kb-ka increases and it can dominate the first exponential so that the

product increases as a function of of the wavelength offset kb-k,. The reason that Eq.

(C12) increases about the origin is that we are dividing by normalization factors that fall

off rapidly as Ikab.I increases. Since we would like our normalized 1uabI 2 to behave like

an autocorrelation function, i.e., drop as kb-ka increases, we will use u,,(O) and Ubb(O) as

the normalization factors. The corresponding form of Eq. (3.75) is

b >  =U aa bb uJ_2  (C13)- +
<I (0)> <lb(0)> U (0) Ubb(0) Uo (0) U b(0) "

a b oau bb a b

'.

real
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For the P-P diffuser combination, Eq. (C13) takes the form

<1I I>ab

<1 (0)> <1b(0)>

4 2  k2  k 2 abi

a b

1 2 2 2 )2] 1ex w 1 Ak 1 , exp 0 2 +0+2 k kk 2
1+,"pp S

2 2

X exp~ 2k~k( W U2 -1 H -H 1o2j

exp( 2 1+- + 2 1+ 2 a~_ bSob.L-- aSoa.l .

1 12 pp

a2 02 2 2

-

exp 0l t2 (1 l± 2 2
2k k 2 p I2)k al21
a2bk ww2 w a I +p3~a±ab 1 2 1 12 pp

2q

Xexp 2 1+ - -k 1  - Ha(3t2  ~ p2 )a.L (C14)L do
1 2 1 p

9.

S

S

oI

J, .,
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Append ix C Reference

1 . S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and Products,

(Academic Press, New York, 1980), p. 338.
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Appendix D

Circular Symmetry and Two-State Correlation Functions

With the exception of certain special cases, the general expression for Uab, the

two-state correlation function of the far-zone complex amplitude from a cascade of two

diffusers is very difficult to evaluate analytically. In this appendix we derive the reduced ,,

form of Eq. (3.47) for Uab that results for wavelength and spacing dependence by

assuming normal incidence, on-axis observation, and that the correlation functions Rj,

and Rt.,, along with the aperture ambiguity function A, are circularly symmetric, i.e., that

they depend on r only through its magnitude Ir. Appendix D is used in the calculation of

Uab for the P-C and C-P diffuser combinations in Appendix E. For convenience, we

repeat Eq. (3.47) here:

k2 k.1 2 exp( exp "0b ab H k b o
(2n)i b3 aekH 2 kobJl - (aL1 )5. 6 S

2a)kboa- .b 2kbH-kHb a,4

X F(r;k, k;kb;Akb_)exp k b lr12+ b H/1soaL -r d2r,(D 1)

f b~rk~~± abiL 1. k H-k H 12 ("b 1 ).r

The above assumptions imply that kabj.=Akab_L=O, and that F(r;ka,kb;O;O) is also P

circularly symmetric. If we convert the r integral to the polar coordinates r and 0, then

we can evaluate the 0 integration immediately. The resulting expression for Uab is •

Ub -- i / kbH-k Hb

oho
{oo~ ~ 2 ub .) (D2) ..'

X× r1'(rkkb;O O)exp 2 k r )dr.
J 0  'a'b'H k1 , H %

Equation (D2) is only useful as long as we can evaluate the functional form of V'.
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In some instances, we can not evaluate F directly, however, it may still be possible

to find a closed form solution for uab. Given the same assumptions used to arrive at Eq.

(D2), we can alternatively write Eq. (Dl1) as

k2k2 exp( -t-PU ab -ia b kH H i R,(r-k.k b)R t2 (r';k ak b) Ar';O)
2n -k )'a b a- j a b

Xep ka kb Ir-rJ dr d2r'. (D3)
(2k bHa -k aH

By converting both the r and the r' integrals to polar coordinates and evaluating the 0

and 0' integrals using

S2n I2n ep iCCSU-0)Ad' 2)2J(),(4

10 L0 0 D

we obtain the solution

22bab exp( -i,1) j-_______kk
U = 2a k b H-kaH b 1010 k .- k.b ' R (r;k,pkb)

(r~ ~k a~ Arkkk b (2+r2)1Jd r (D5)
x Rt2(r;ka b) ,r;,exp 1 kH,-k, b rfrl d'

Since the number of integrations has been reduced from four to two, Eq. (D5) is useful

for numerical or analytical evaluation of LUab for circular symmetry.



Appendix E

Mixed Diffuser Combination: Paraboloidal and Conical

In Appendix E we calculate the wavelength and spacing dependence of the two-

state correlation of intensity, Eq. (4.7), for the P-C and C-P combinations of strong

diffusers. The letters P and C stand for paraboloidal and conical and represent the

autocorrelation functivns Rt given by Eqs. (4.8) and (4.9), respectively. The first letter of

the pair corresponds to Rtiand the second letter to Rt,. In this appendix the output

aperture is a Gaussian of arbitrary width w,. Hence the aperture ambiguity function is

given by Eq. (4.10).

E.1 Paraboloidal-Conical

We calculate Uab for the P-C diffuser combination directly from the equation that

results from substituting Eq. (4.8) for Rt,, Eq. (4.9) for Rt2, and Eq. (4.10) for A into Eq.

(D5):

k 2k 2 exp(-ia2 /
a *I ba.) exp [ ! (a2+0' )(kb-k.)2]

b 2n kbHkHb 2 ' t2

J 0 rr' b - rr' ) expl -k Ioil -+t2

kbH1a -k 11 b /a 4 b UP£ 2 UPw /

2 expi kakb r2 +r'2) dr dr'. (El)
2w2 r) 1 2 k H -k H (~

aw b aa b

Since the r integral in Eq. (El) is (2n) -1 times the Fourier-Bessel transform of a complex

Gaussian, Eq. (D1) can be used to evaluate the equivalent two-dimensional Fourier

transform:
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kk .) 2(H_ L x 0+1)k-
Ub-.eP*~ i~ob) I i(baka b ) *I I l t2.2

abb 2a W1 2

xlrexp(-kka 2 RI- ko w2  (E2)
10  ab 2 ) n+-I r2 dr

W2 ~1 + i2 (kba-kaH h)Ott

The remaining integral in Eq. (E2) can be evaluated using'

frexpt (ar2+ br) Idr=10 (E3)

In Eq. (E3) we have introduced the dlecorrelation function

D(z) =I -V n- z exp( z2) erfc(z) . (E4)

Methods for evaluating the complimentary error function of a complex argument are

given in the literature2-5. Upon evaluating the integral in Eq. (E2), we obtain the final

form Of uab:

kHkH

. ab I1 a b

where

2

flx= kHkH 01 (E6)

is the spacing-wavelength dletuni ng parameter,

W1  0,!2 (P7)

0,1 %/2w2 I ~ +#2.

is the effective ratio of diffuser shape parameters, and

I + 4 b (kH. biH 20 /W 2-' (E8)
IP 2w k k b 1w1 I
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is the output aperture discombobulation factor. The expression for the normalized

square of the magnitude of Uab is

/ j2 02 2

- tl
exp_/2+ 2 .(2 kE2  2

aa bb a W I ab I

2

2w2 k W2) +( 2 k-1

X exp-(o2 +0 2 )(kb k)J2I Dykkx1+f~I

For large apertures, we can use Eq. (3.75) to express the two-state correlation function of

intensity in terms of the normalized square of the magnitude of Uab given in Eq. (E9).

Equations (E5) through (E9) also simplify for large apertures, e.g., 4p approaches unity so- .

that the expression within the square-root in Eq. (P7) reduces to unity, and the product of

the first three factors in Eq. (E9) approaches unity. The resulting expression for the

wavelength and spacing dependence of the normalized two-state correlation function of

far-zone intensity for the P-C diffuser combination is

<IaIb> I D( yp /kkb I + i/ j (E-< b = +exp[-(o2+a)(kb-ka)2 ]  (E 0)
< [a > < I[b>  tI 2) b -D (y ; k ) D (Ypck b) '

where

2

I32 kHk H o ti (Eli1)
PC b a b) 2'

WI

and

2
WI t2 (E 12)

0 - V2 w.,

°tl
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E.2 Conical-Paraboloidal

We can also calculate Uab for the C-P diffuser combination directly from Eq. (D5).

In this case Rj, and Ri. are of the form of Eqs. (4.9) and (4.8) respectively:

U k~ 2n k H 22*
a b exp | -) 1 2 2

uo a2n kbHa-kaHb ( 11 ' 2

Xrr'J kb a kJb exp kk akb1

0 -- k0 - 2
w2 

X ex ex2 )p 2  k akk b (r2 +r'2) dr dr'.(E32w
2w a 2 bH a a b

This time we evaluate the dr' integral first:

2
k k exp(-,=0 ) 0o )_,

U 2 6- Ib -2- (k-k H
ab 4n k1 -kaIaIW2 2w2kk2 b a a b4 kH-kHb w2 2wkkb

b2 a a ab

X exp[-- (0o +0 2 )(kbk a)2] I.r exp(kko 2 r
2 i t) -0 a l

a 2('- 1 '1 (E 14)
X exp1-kk1(+ t2 ) +i2(kbH -k H) Ir'jdr. (E4

Once again, Eq. (E3) is used to evaluate the remaining integral:

U -- exp-~ b 2 +

1 2 2

exp[ (ot+o 2 )(kbk )2 ] D(y,/k kb + ) (E15)

where the offset parameter is now

2 (k1.- . '9 -1 -) (E 16)

2

and the effective ratio of diffuser shape parameters is

- xx
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G2 2
*1 0 12 1(E 17)

1 2 2a

The normalized square of the magnitude of Uab is now

uu 2 2, ~2)( W2  )2(2 2w+ kk >2
2 a a 2 a b 2 ab

x exp [ (02+ 2 D (vv'k,) bv' + 1 )P 12 (E 18)

In practical applications the condition

2

21

is usually satisfied, i.e., the aperture is large compared to the effective diffuser

correlation length, so that Eq. (E18) simplifies, and Eq. (3.75) applies. The resulting form

for the wavelength and spacing dependence of the normalized two-state correlation

function of far-zone intensity for the C-P diffuser combination is identical to Eq. (E1O),

except that the dletuning parameterfland the ratio parameter y are redefined to account

for the switch in the order of the diffusers:

<1I ~> I /T E0

a b [(2 2' ~ kY~lI\CV%V+P CP~ 12 2
<1I ><I b> = +exp[H a \ti +0 12) k bajkJ) D(ycpka) D(yCkb)

where

2B

c12 (E2~ 1)

W2

and

= l 2 W2  (E22)

V 2 w, oil

all MISS29N=
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Appendix F

Conical-Conical Diffuser Combination

In Appendix F we evaluate the two-state correlation function of intensity given in

Eq. (4.7) for the C-C combination of strong diffusers. This is the most difficult of the four .K

diffuser combinations, P-P, P-C, C-P, and C-C, to analyze. By assuming that the input

and observation angles are equal, i.e., kb_=0, that the speckle tracking condition is S

satisfied, i.e., Akab ± =0, and that the aperture function a is wide spatially compared to

Rt., so that A(r;O) can be replaced by A(0;0)= 1, we can evaluate the double-diffuser

descriptor function F(r;k,kb;O;O) defined in Eq. (4.4). In Section F.1 we evaluate F by 0

assuming that the diffusers have equal shape parameters, i.e., that w1/oi,]=W2/o,. 2 .

Given F we then find closed form solutions for the angular dependence and for the

spacing-wavelength dependence of Uab. In Section F.2 we give the functional form of F

for arbitrary shape parameters. This allows us to write the angular dependence of uab

immediately, and to reduce to one, the number of integrations necessary in evaluating

the spacing-wavelength dependence of Uab.

F.1 Equal Shape Parameters

Since Rj, and Rj. are circularly symmetric, and the aperture ambiguity function A

has been removed, we can write F as the convolution of Rt, and Rg.:

F(r;ka, ka;OO) = 0 Rt(r',k, k b) R, (r-r';k.,kb) d2 r,  (Fr)

Then by the convolution theorem, F is the inverse Fourier transform of the product of the

Fourier transforms of Rt and R., The two-dimensional Fourier transform of a decaying

circularly symmetric exponential of width iv is the Fourier-Bessel transformI

2n r J(kr) exp (- ) dr = 2n w 2 1 +(2nkw)21 -12 (F2) 0
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Since R h, and Rj., are identical functions, the product of the Fourier transforms is the S

square of Eq.-(F2). The inverse Fourier transform of this product is the Fourier-Bessel

transform
2

2 (F3)
2aF4 x d0 (Cx) (I +X2 )- dx=2n 8 K2 (C).

08

Hence

F(rk,kb;;O)k= 4exp _ 2 2
2

, 2 2
b'O 4L2 a l0t2 )(b k, r 2 (\ btw i W(4

In Eqs. (F3) and (F4), K 2 is the modified Bessel function of the second kind of order two.

For small arguments

K.,(z) - 2 z- (F5)

so that

F(O;k,k;O,O) = (F6)

We calculate the angular dependence of the two-state correlation function of

intensity by substituting Eq. (F4) for F into Eq. (4.6) for Uab and then substituting the

resulting expression for Uab into Eq. (4.7):

a =1 2 (F7)
<[a> b>  4 2

The angular detuning variable 4 in Eq. (F7) is defined as

k 2 0 2 w IS. (F8)

The arguments on the intensity normalization factors in the denominator in Eq. (4.7)

have been dropped in going from Eq. (4.7) to Eq. (F7) since we have already assumed that

We calculate the spacing-wavelength dependence of Uab by substituting Eq. (F4)

for F into Eq. (4.1), setting soqj. = Sob. = O, and using the identity3

x3exp(ax2)K 2 (x) dz-0 b2  6 2 ( (F9)
04a 4a 4a 4a
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where Re(a)>O, to evaluate the integral. The resulting expression for IUb is

ab 8n k k Ot4  \ O~b 2~ tepx (2+02 )(k-b /2

The single subscript on the spacing-wavelength dletuning parameter,

k akoba (F1l1)
0,=(kbH,,katb) -22

indicates that Rland Rt-, are identical functions. Finally, the two-state correlation

function of intensity, obtained by substituting Eq. (F1O) for Uab into Eq. (4.7) and writing

the complex exponential in terms of a sine and a cosine and the exponential integral Ei

in terms of a sine integral si and a cosine integral ci, is

a Ib =1+ expH~O 2+0 2 ) (kb-k.)21<1 ><I > lt b

a C

F.2 Arbitrary Shape Parameters

When the shape parameters WI/0j,2 and W2Iot.,2 are arbitrary, it can be shown that

F rk k;0,0) -exp I--o o)(k- k'b' 4 1 2 i1 t2\b /

++

where

Ikkb 02  (F 14)
IV 2\ w W

and



MA MA~nA r.F M
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W 2  
wI W 2

We note that 11w- is zero when the shape parameters are equal; thus Eq. (F 13) reduces to

Eq. (F4). We also note that

F(O;k,k;OO) w (F 16
2 +'

which reduces to Eq. (F6) for equal shape parameters.

Given Eq. (F 13) for F, we can now generalize Eq. (H7) for the angular dependence

of the two-state correlation function of intensity to arbitrary shape parameters:

< a1> > +4 1Io(yccc)K 2 (cj )I2_(Ycc~cc) Kj(4cj2 (F17)

In Eq. (F17) we have also generalized the angular dletuning parameter 4. for equal shape0

parameters to

4C IS.± -so± (F18)

for arbitrary shape parameters, and we have introduced the ratio parameter

+ (F19)

We note that ycc is zero when Itv1j
2 = (V2/0t.,

2 , and that it approaches unity when ivo, 2

> > W2./Oi.,2 or when I /j 1
2 < < W2/0i.,2.

By substituting Eq. (F 13) for F into Eq. (4. 1) and setting Soa I SobLO, we obtain

the spacing-wavelength dependence Of U~b:

2S
k'kbw It2 0-+1 (F20)%

ab8fI \6~ 2~ 1Q cc YCC CC

where the spacing-wavelength dlecorrelation function G is defined as

= jj'j~J ~[ cx~i2 (F21)
(OC 'C 0ccA C4# C%

and the spacing-wavelength dletuning parameter #,,C is P

#Ckbfa a i b (F22)

CC 2w k b

- - S * *q1*
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When&,ec is zero, w

G(Oy) = i. (F23)

Hence the normalized two-state correlation function of intensity is

<I> Ib>

a b

In evaluating Eq. (F24) numerically, it is convenient to rewrite Eq. (F2) for G as a one-sided

Fourier transform:

0

. k,, ,

,. ,.%

I~y )K 9 (V%
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