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ABSTRACT L]

The scattering of laser light from a single diffuser and from a cascade of two ,:::: i‘
diffusers is analyzed with particular emphasis on remote sensing. !t is shown that i""f‘
diffuser surface properties and the spacing between diffuser planes can be determined ;i:df
remotely. Conceptually, one measures the angular distribution of the radiation pattern ::' ..,‘g

U
or the decorrelation of the far-zone speckle pattern with respect to changes in the :::é:‘i
wavelength or the angle of incidence of an input plane wave. =

Models for the transmission of light through single diffusers are presented that '?:!'"-'
contain a dependence on the angle of illumination. The validity of a simplified ::s‘.'u"
transmission function for singie diffusers that does not depend on angle is examined, KR
and it is found that the simple transmission function is adequate for treating the _‘a:*:ﬁ:
individual diffusers in a cascade. This is important, since the simpler transmission '.::‘:v‘(
function ieads to manageable overall expressions for the cascade. L ‘

A general expression is derived for the two-state correlation function of far-zone il
complex amplitude from a cascade of two diffusers, where the two states are the initial
and final values of the wavelength, angle of incidence, angle of observation, and
spacing. This function is then related to the two-state correlation function of intensity, ‘;., ot
which is a measure of the correlation between the initial and final speckle patterns. The ’,e. %
two-state correlation function of intensity is evaluated for various double diffuser e
combinations.

The effect of surface height models on the radiation pattern is studied. Of t
particular interest are strong diffusers that have a normally distributed height profile LLY L
and whose surface height autocorrelation functions are paraboloidal or conical for small 3:'-"’..i$
spatial offsets. Excellent agreement is obtained between theoretical radiation patterns
calcuiated with conical and paraboloidal autocorrelation functions and experimental

radiation patterns measured from ground-glass and acid-etched diffusers, respectively. l'.;:;'.;o
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Chapter 1 F)ﬂ' ,
o
Introduction ool
e e
o
s,
* e
1.1 Laser Speckle 7 A
< .':’
. Laser speckle is a granular pattern of bright and dark regions of intensity that "in 4
rd J
. . . e
occurs when laser light is scattered from a rough surface or a diffuser. For example, one ' ".}
can observe speckie by placing a piece of ground glass in the path of a laser beam and Py
QY
looking at the scattered light on a screen or a wall. With the advent of the visible line in hegd ..:
S ‘:‘
the helium-neon laser in 1962, speckle became readily observable,!-3 and many tﬂﬁ ‘
[/
researchers became interested in this phenomenon. However, while the name “speckle” N'_Qr
-'__'\..‘_.' d
is new, the phenomenon itself is an old subject, e.g., one of the first to study the statistics .:;'_:;-:}‘
LSS,
. . . - . . A
of speckle was Lord Rayleigh who in 1880 derived the probability density function for the *j )
* O
WA
light scattered from a rough surface.4 Extensive treatments appeared on this topic in the N
intervening years, as is evident in the fallowing quotation taken from M. von Laue's :;-" .:
)
paper on this subject published in 1914:5 “The theme of our investigation is an old one; W .‘:
- . . . M . "o W)
itis treated in many papers and in every optics textbook.” Nevertheless, he was the first .
Un ¥
to ascribe an experimental observation of speckle, together with an adequate theory. :'(j:i
| RSN
Early observers of laser speckle recognized that speckle arises from the ;
Pkl
interference of coherent diffraction patterns from different regions of the scatterer.! (n 5": ‘
: L OGTE
other words, the speckle pattern occurs because the nonuniformities in the scatterer .:,“:?
(o)
") l|| 6.-
. introduce phase deviations in the scattered light. Since the light that reaches the ) :".‘
€
observation point is made up of contributions from different regions of the scatterer, Aot
[ ¥
there will be either destructive or constructive interference, depending on the sum of the ;.. "
o
Y
various components at the observation point. »'f.':‘::
RS
In order to observe speckle, the light must have some degree of temporal {:}::}
L J

coherence, i.e., there must he a correlation between the phase of the optical wave at a




given point in space at two different times. The coherence time of the light source is

essentially the largest time difference for which this correlation exists. A related
quantity, the longitudinal coherence length, is the distance that light travels during its
coherence time. There is a tremendous difference between the coherence length of
white light and laser light, e.g., it is only about 1 um for white light, but it is tens of
meters or much more for a single-mode argon-ion laser beam. If the various paths that
the light takes in traveling from the source to the scatterer and then on to the
observation point differ by more than the coherence length, then interference effects
are not appreciable, i.e., speckle is not observed. For white light it is difficult to satisfy
the path length condition, however, one can observe low contrast polychromatic speckle
in the sunlight reflected from the broad curved portion of one’s fingernailé. One can also
observe speckle in a microfilm viewer. For laser light, on the other hand, it is difficuit to
eliminate laser speckle because of the long coherence length.

Early contrioutions that are important to the theoretical analysis of speckie in this
thesis were the introduction of the notion of a thin phase-changing screen by Booker,
Ratcliffe, and Shinn7 in treating diffraction from the ionosphere and the treatment of
scattering from rough surfaces in the book by Beckmann and Spizzichino.8 Other
important contributions were the use of correlation functions and linear systems theory
in the early analysis of the statistics of speckle by Goodman9, Goldfischer,10 Enloe,!
Burckhardt,’2 Lowenthal and Arsenault,'3 and Dainty.'4 The first treatment of
correlation functions in which space and wavelength dependence occured
simultaneously was by George and Jain.'5-'7 They also expressed their results in terms of
the characteristic function of the density of heights and stressed that in diffraction
integrals with phase retardations the characteristic function occurs in a natural way
when one calculates higher order moments. Hundreds of papers have been published on

the subject of speckle since 1970, and we will not attempt to review them here.
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However, good compilations are found in books, conference proceedings, and special RN

issues of journals.18-26 ey

1.2 Review of Literature on Speckle from Double Diffusers Wt

In speckle calculations it is usually assumed that light is scattered from a single ey

\ rough surface or a single diffuser. However, interesting and useful new properties of o
speckle arise when the light is scattered from two or more oobjects. A major portion of b’;
this thesis, Chapters 3 and 4, is a treatment of the decorrelation of far-zone speckle from 8
a cascade of two diffusers with changes in wavelength, angle of incidence, and spacing. ' A
Before introducing this topic in Section 1.3, we will briefly review the literature on V)
scattering from double diffusers.

Several authors have used two diffusers in relative motion to eliminate speckle
from rear-projection screens.27.28 This phenomenon, the decorrelation of the speckie
pattern from two paralle! diffusers with in-pane displacement, was analyzed by ®
Lowenthal and Joyeux.29 Experimental measurements of the wavelength dependence of el
speckle from two ground-glass diffusers, whose spacing varied between 20 and 110 um,
were reported by George and Jain.30 Interference from two identical diffusers has also
been studied. !

Speckled specklie, which results from illuminating the second diffuser with the
speckle pattern caused by the first diffuser, was studied by Fried32 who was concerned
about laser eye safety and calculated the probability that the intensity of the speckled

. speckle formed at a point on the retina would exceed safe levels. The statistics of doubly
scattered light was studied further by O’Donnell33 and Barakat.34.35 Newman3é
experimentally confirmed O'Donnel’s result that the intensity of doubly scattered
coherent light is K-distributed.

As described above, a topic considered in this thesis is the decorreiation of far-

zone speckle from a cascade of two thin diffusers with changes in the angle of

DR N N O e e L R N s L e ]



UK W

[P WAL AP SRS IR T AP T I L W S £ T TaY et @ Fah At 7t 9.8 08 EVR 0Y9 &52 Bva €58 870 4V2 8% $Va A% 4Vn'ala 202 4 "2l Ve ¥

illumination. We have already published preliminary results from this thesis on angular
decorrelation.37

As an extension of double scattering, multiple diffusers have been used in
modeling atmospheric turbulence.38-41 Another topic related to the scattering of light
from double diffusers is the scattering from a regular structure such as a grating that is
placed behind a diffuser.32.43 In another related field, speckle interferometry,20.24

speckle is used to measure displacement or vibration of a single rough surface.

1.3 Statement of Thesis Problem

The material in this thesis is divided into two major topics. In the first topic, see
Fig. 1.1(a), a diffuser D is illuminated with a plane wave of wavelength A and angle of
incidence 6,, and the radiation pattern in the far zone of the aperture a is determined as
a function of the output angle 8. For the radiation pattern from a diffuser, one can
consider the finest variations angularly, i.e., the speckle, or alternately the slowly
changing envelope of intensity. In this thesis, we will refer to the envelope of intensity as
the radiation pattern and to the fine detail as the speckle pattern.

In the second topic, see Fig. 1.1(b), two diffusers, D; and Dy, separated by the
spacing H, are probed with a piane wave, and the decorrelation of the speckie patternin
the far zone of aperture a is observed as the wavelength A and the angle of incidence 8,
of the plane wave are varied. Also included in the second topic is speckle decorrelation
with respect to changes in the spacing H between diffusers. We will show that these two
topics are very closely related in that one can predict the decorrelation behavior from a
cascade of two diffusers given the angular distribution of the radiation patterns from the
single diffusers that make up the cascade.

The main questions to be answered in this thesis are: How is the angular
distribution of light in the radiation pattern of diffuser D shown in Fig. 1.1(a) related to

the surface statistics of the diffuser, what information about the surface statistics of
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(a)

o
-

(b)

X
8o
Dy
Fig. 1.1, Radiation pattern from a single diffuser {a) and speckle pattern from a

cascade of two diffusers (b).
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diffusers Dy and D9 in Fig. 1.1(b) and about the spacing H between these diffusers or
changes AH in this spacing can be obtained by observing the speckle pattern, and what
types of remote sensing experiments are necessary in order to extract this information?

We use Figs. 1.2 and 1.3 to illustrate what is meant by speckle decorrelation and to
motivate its use in determining the structure of cascaded diffusers. In the experimental
arrangement depicted in Fig. 1.2(a), an expanded laser beam traveling along the z-axis is
incident on a single thin diffuser. A camera is placed on axis in the far zone of the
aperture g, and its lens is removed so that the speckle intensity is photographed directly,
i.e, the light falls directly onto the film plane. The angle of diffuser illumination is varied
by rotating the diffuser about the origin by the angle A6, and pictures are taken at
various values of A8. in this configuration the laser beam and the camera stay aligned as
the diffuser rotates, and the speckle pattern stays centered on the z-axis.

The results of this experiment for a diffuser made by etching glass as described in
Section 5.4.2 are shown in Figs. 1.2(b) through 1.2(d) for illumination with an argon-ion
laser beam of wavelength 0.5145 ym and for various values of AB8. In Fig. 1.2(b) we see
the speckie pattern that results from normally incident illumination of the diffuser, i.e.,
for A8=0°. The wire grid is used as a position reference and marks the z-axis. The other
speckle patterns in the series are to be compared with this first pattern. In the second
photograph, Fig. 1.2(c), the diffuser has been rotated to A8=10°, and there are only
minor differences between the two speckle patterns. In the third photograph, Fig.
1.2(d), AB = 20°; even for this relatively large change in angle, there is still a small degree
of correlation between the two patterns. This series of photographs has illustrated the
relatively slow decorrelation of the speckle pattern from a single diffuser with changes in
the angle of incidence.

We contrast the slow angular decorrelation of speckie in Fig. 1.2 from a single

diffuser with the rapid angular decorrelation in Fig. 1.3 from a double diffuser. In the
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(d)

Experimental configuration for photographing the far-zone speckle pattern from a single diffuser as a function of angular

rotation AB (a) and the resulting speckle patterns for values of A8 of 0° (b), 10° (¢), and 20° (d).
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Fig. 1.2
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SRR

(d)

(c)
Experimental configuration for photographing the far-zonespeckle pattern from a doubie diffuser as a function of angular

rotation A0 (a) and the resulting speckle patterns for values of A8 of 0 (b), 2 (¢), and 5 (d) minutes of arc.

(b)

Fig. 1.3.
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experiment depicted in Fig. 1.3(a), the single diffuser is replaced by a cascade of two it
diffusers. In the actual experiment the cascade is made by etching both sides of an , V4
approximately 10 mm thick piece of glass. There is an inconsequential change of &‘Q'
wavelength to the 0.4880 um line of the argon ion laser, and a different wire grid is used.
In the series of photographs in Figs. 1.3(b) through 1.3(d), A® is equal to 0, 2, and S "
minutes of arc, respectively. We see that angular decorrelation for the double diffuser
occurs much more rapidly, i.e., for angular changes of arc minutes rather than degrees.
This demonstrates that the magnitude of A8 necessary for decorrelation d-creases as L
diffuser thickness effects become more important, and it motivates the analysis of . LA

speckle decorrelation as a means for determining diffuser structure remotely. Y

1.4 Overview of Thesis N
Having introduced the topics considered in this thesis, we now give an overview of (O

the contents of the individual chapters. In Chapter 2 we consider the validity of the
simple transmission function approach for analyzing the propagation of light through
diffusers. A simple transmission function is a two-dimensional position-dependent :"'::
function, from which the complex amplitude at the output plane is obtained by
performing a point-by-point multiplication with the complex amplitude at the input
plane. In Chapter 2, which is based on an earlier publication, 44 we are concerned about ‘.‘l"'l
the validity of this transmission function because it can not account for diffuser thickness
'

effects. | "
R For the purpose of comparison, we introduce a generalized transmission function » ‘
that does account for thickness effects through its additional dependence on the angle e
of incidence, and we derive approximate expressions for the generalized transmission AN
function of rough surface and bulk diffusers. In the generalized transmission function

formalism, an angular spectrum representation of the input illumination is used for non-

plane-wave illumination. TQ'

.1
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Through the photographs of far-zone speckle patterns in figs. 1.2 and 1.3, the
computer simulations of speckle patterns in Chapter 2, and the analytical calculations of

the decorrelation of speckle form thin diffusers in Appendix B, we show that the angular

dependence of the generalized transmission function is not important compared to ) KNS
spacing effects ‘or typical thin diffusers and for reasonable input angles. The simulations A
and calculations also predict the slow angular decorrelation of speckle from single
diffusers that was illustrated in Fig. 1.2. From the above resuits we conclude that the gttt
simple transmission function is adequate for treating the individual diffusers in the b4y
cascade. This is important because it makes the resulting expressions for the cascade . §
manageable. by
in Chapter 3 we analyze the decorrelation of speckle from double diffusers with a3
respect to changes in wavelength, angle of incidence, angle of observation, and spacing.
In so doing we derive a general expression for the two-state correlation function uyp of ‘0:
the far-zone complex amplitude v. The subscripts a and b represent the initial and final e
states of the parameters listed above that can be varied during an experiment. We also D
show how u,; is related to the two-state correlation function <I;l,> of far-zone y
intensity, which is a measure of the correlation between the initial and final speckle
patterns. G0
The analysis in Chapter 3 applies to general diffusers; however, strong diffusers :..:
are emphasized in the applications in Chapters 4 and 5. A strong diffuser is one that
introduces an rms phase defay that is large compared to one radian. Two specific types of X ‘:"
strong diffusers are defined in Chapter 3; they are designated as paraboloidal, P, and ) g:'as
conical, C, according to whether the autocorrelation function of the surface profile is X
shaped like a paraboloid or a cone for small spatial offsets. For paraboloidal diffusers,
the slope parameter a;/w, where gy is the rms surface roughness and w is the lateral ."‘ i
correlation length, determines the anguiar spread of the radiation pattern. For conical Y

diffusers, the corresponding parameter is 0,2/w.

v , L oL . , v e - . . e .
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In Chapter 4 we apply the analysis of speckle decorrelation to the remote sensing Sl
of a P-P diffuser cascade. In an effort to make Chapter 4 self-contained, the pertinent ey
results from Chapter 3 are reviewed in Section 4.2. This allows the person who wants to (o
read about the remote sensing application first to go directly to Chapter 4. The i
advantage of analyzing the P-P diffuser cascade first is that the two-state correlation '.;g‘,.é
function of intensity can be calculated in closed form for arbitrary values of the state iy
variables. The resulting solution is useful in categorizing the different speckle
decorrelation phenomenon and in learning how to configure remote sensing ot
experiments. . N

The corresponding analysis is presented for the P-C and C-P diffuser combinations b ok
in Appendix E and for the C-C diffuser cascade in Appendix F. It is shown that one can
determine the values of the appropriate diffuser parameter os/w or 0;2/w for each N
diffuser in the cascade, together with the spacing, by performing simple remote sensing phhhy
experiments. These experiments involve measurement of the decorrelation of the
speckle pattern with changes of wavelength and spacing and measurement of the ,::Ez*s
angular distribution of the radiation pattern. &:i.:'ﬁ

In Chapter 5 we compare theoretical radiation patterns with measured radiation
patterns from ground-glass and acid-etched diffusers. As described above, by radiation il
pattern we mean the envelope of intensity, not the detail of the speckle pattern. In the 4 I,
theoretical analysis, the smoothing is accomplished by averaging the speckle patterns
from an ensemble of diffusers having the same statistical properties, i.e., from diffusers .:i::I'
representing different realizations of the same random process. In the laboratory, this :s’.
smoothing can be accomplished with a single diffuser by spatial averaging of the speckle
pattern, i.e., by using a detector whose active area is large compared to the speckle size
yet small enough not to significantly affect the angular resolution of the measurement. ’:.‘g.i"g.

The ensemble average and the spatial average are very nearly equivalent,

especially under the following two conditions: If the area of the diffuser being OO

y
¢
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illuminated is large compared to the wavelength of light, then the angular extent of the
individual speckles will be small, and the detector will integrate over a large number of
speckles. This will reduce the local variations in intensity measured by the detector. if in
addition, the area of the diffuser being illuminated is large compared to the lateral scale
of roughness, i.e., to the diffuser correlation length, then the light reaching an
observation point in the far-zone will have come from many uncorrelated regions of the
diffuser. Thus a large region of the diffuser will be sampled and this will tend to average
out the effect of sample variations. In effect this is like performing an ensemble average
because the number of uncorrelated contributions to the total output is increased.
Measured radiation patterns over a dynamic range of 6 to 8 orders of magnitude
are presented in Chapter 5 for ground-glass and etched-glass diffusers. For ground glass,
excellent agreement is obtained using an autocorrelation function that is conical for
small spatial offsets; this is consistent with our physical expectation based on the need
for a rapid fall-off in surface correlation due to the jagged nature of the surface relief.
For etched glass, excellent agreement is obtained by assuming two scales of roughness.
The upper two or three orders of magnitude of the radiation pattern is dominated by a
large roughness paraboloidal component, and the scattering at wide angles is predicted
by a small roughness component having a decaying exponential autocorrelation
function. By varying the etching time, values of o,/w for the paraboloidal component
between 0.02 and 0.1 are obtained. There is excellent agreement between these values
as measured by light scattering and by a stylus profilometer. Preliminary results having
to do with Chapter 5 have been reported in the literature.45.46 Except for minor
revisions, and the addition of the material where the effect of etch time on oy/w is

studied, the text of Chapter 5 is identical to that in a recent publication 47
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Chapter 2

Diffuser Transmission Functions

2.1 Introduction

In many speckle calculations the diffuser is modeled as a thin phase-changing
screen that introduces a position-dependent phase delay on the incident wave.1-8 Hence
the complex amplitude v (r) at the output plane of the diffuser, see Fig. 2.1, can be

calculated from the input complex amplitude v,(r} by using the simple relationship
02(r) = vl(r) tr;k). 2.1)

Here the transmission function Kr;k) is given by

Hr;k) = exp[—-hp(r;k)], (2.2)

and the phase retardation is denoted by ¢(r;k). The vector r represents position in the
diffuser plane, and the wave number & is related to the free space wavelength A by
k=2n/\. The k dependence is shown explicitly in the transmission function because the
phase delay ¢(r;k) is a function of wavelength.

One should be concerned about the range of validity of Eqgs. (2.1) and (2.2) when
using them to calculate diffuser radiation patterns for large angles of incidence or to
analyze speckle from cascaded diffusers. Qwing to thickness effects, a transmission
function must have angular dependence in order to be valid over a wide range of input
angles. However, since Eq. (2.1) implies a simple point-by-point multiplication, there is
obviously no angular dependence in this transmission-function formalism.

In this chapter we consider the limitations imposed by Egs. (2.1) and (2.2), and we
generalize the transmission function of Eq. (2.2) to include not only dependence on the
wave number k but also dependence on the direction s, of the incident illumination. The
unit vector s, is related to the spherical-polar coordinates (8,,¢,) and the cartesian unit

vecters x, y, and z by

AICATDLTDLN )
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1 n(x,y) 1

(61,01)

7" (60.40)

Vi(x,y) Va(x,y)

Fig. 2.1 Input and output planes for a bulk diffuser consisting of a planar slab of
thickness H with index of refraction inhomogeneous n(r) .
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s =x smeo cosp + ysmBo sing + zcoseo ,
as illustrated in Fig. 2.2. We define the new transmission function ¢(r;k,) to be valid for
an input plane wave with wave vector k,=ks,. We will refer to #r;k,) as the plane-wave

transmission function for k,. Using this notation one can write the output v,(r;k,)
corresponding to a unit-amplitude plane wave having wave vector k, in the form
v2(r; ko) = exp( —iku° r) t(r; ko) .

The meaning of the subscript L in Eq. (2.4) is that only the transverse components, i.e.,
the k; and the k, components of the vector k, are retained.

Equation (2.4) can be used directly when the input to the diffuser is a plane wave.
The generalization to arbitrary illumination is presented in Section 2.2, where we
represent the input v (r) in terms of an angular spectrum of plane waves. Although we
are mainly concerned with diffuser transmission functions in this thesis, the concept of an
angle-dependent transmission function can be used to describe any linear optical system.
The relationship between the plane-wave transmission function and the impulse
response representations of an optical system is also given in Section 2.2.

in Section 2.3 we obtain plane-wave transmission functions for a bulk diffuser
having plane parallel surfaces and a varying index of refraction n(r) and for a rough-
surface diffuser having a constant index of refraction with height profile A(r). There is an
extensive literature for scattering from rough surfaces and for propagation through
random media,3-'4 and these problems can be treated at varying levels of complexity.
However, we seek simple models that account for the most basic angle-dependence
effects and that are convenient for use in statistical calculations. Hence we make the
simplifying assumption of local plane-wave behavior within the diffuser; We also ignore

reflections, multiple scattering, shadowing, and Fresnel losses.

(2.3)

(2.4)
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Section 2.4 contains computer simulations that illustrate how the far-zone speckle oA
patterns, as calculated by the paraxial transmission function of Eq. (2.2) and the wide- A
angle transmission function of Eq. (2.4), become increasingly different as the angle of '.‘;\:1.‘
incidence increases. We use these curves as indicators of when it is important to include _',:.g,g‘,’r
angle dependence in the diffuser transmission function. In particular, we are interested e

- in the change in input angle necessary to "decorrelate” the speckle pattern. From the et
computer simulations in Section 2.4.2, we will see that this angle is typically quite large, !,:'t
i.e., greater than 15°. (]

The justification for using the simple transmission function model of Egs. (2.1) and A N
(2.2) in the analysis of cascaded diffusers in Chapter 3 is that angular decorrelation is
usually dominated by the spacing effect, not by the diffuser thickness effect.
Decorrelation due to the spacing effect typically occurs for an angular change of arc KRN
minutes The angular dependence present in the ensemble averaged diffuser radiation ot
pattern is of lesser importance in our application. The major effect, which is an increase
in the diffuser roughness, and hence a spread in the radiation pattern, is discussed in the " i

literature.15.16

2.2 General lllumination J

The transmission function for a general diffuser must contain an angle

dependence. Given the angle-dependent transmission function #(r;k) for an arbitrary

diffuser or optical system, we can treat non-plane-wave illumination by applying the '.‘;:;"’

. angular-spectrum formalism.
The procedure for treating general illumination is as follows: First, the input scalar o

amplitude v (r) is decomposed into an angular spectrum of plane waves by taking its 2-D

Fourier transform,17 o

i
vk )= [ v, Wexp(ik or)d’r. (2.5) Y

; g ’ ’ LS AT Rt N (N R 5, T LT S G N R K R I L I PP S
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The individual plane waves are then multiplied by the appropriate transmission function f’
;f’ #(r;k), and finally, the output that arises from each plane wave is added. Following this v 3
: l‘:f
N Lelt
.. approach, we obtain dv,(r) the element of the total output that corresponds to the plane .:::
o
wave with wave vector k, ::’
TR
R d (r)'--—l——V(k )ex (—ik or)t(r-k)dzk (2.6) e
‘ VglP) = =3 V1K JeXP 1 ; Lr o
9 (2n) -
13 [
' where d2k =dk,dk,. The total output is then obtained by integrating Eq. (2.6) over the :';'
.Z
entire k.k, plane X
v (r) = L V.(k )tir;k)ex (-—ik or ) d’k (2.7) i :E':‘
2 2T 9| V1L P L L : N
. (2n) i‘;‘.!
;‘ Equation (2.7) can be recast into the usual linear systems formalism as follows: .:::;
Ty v (r) = ! v () glrr)dr, (2.8) ,.
b 2 I’e
,.k\ (MG
N where the impulse response g(r;r') is ‘:::‘
né‘ .::.f
¢ 1 )
' glrir') = - J Kr;k)exp [ -ikr(r—r') ] dsz_ . (2.9) ]
. 2n) »
y The transmission function can be obtained in terms of the impulse response by inverting ’
:» £q. (2.9): :‘:‘
" v:i.:
‘ Pt
t(r;k)=exp(iklor)1g(r; r')exp(—iklor’ )d2r’. (2.10) =
R L,
: Thus we see that the plane-wave transmission function #(r;k) and the impulse response " ':‘
* O
) OO
:: g(r;r’) provide two alternative ways of representing the propagation of light through a ::
0 b
linear optical system. NG
W -,
W \".
0 RK)
\‘:Q "‘ '“
1:‘, 2.3 Angle Dependent Diffuser Models e
) L]
() o d
= We now derive approximate plane-wave transmission functions for two common sy
o4 3
:: types of diffusers: a bulk diffuser with varying index of refraction between plane parallel :;::
& .‘,
" surfaces and a rough surface diffuser with a constant index of refraction. ':"'
i :
I |"|
»
0 W,
W l':’-.
B )
4
: o
i :'.|f
)
* b
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2.3.1 Bulk Diffuser

We first consider a diffuser that consists of a planar slab with index-of-refraction
inhomogeneities characterized by n(r) as in Fig. 2.1. We wish to determine the complex
u amplitude v (r) at plane |l that arises from the input plane wave

v,0) = exp( =ik, or ) (2.11)

at plane I. If tocal plane-wave behavior within the medium is assumed, then at the point

r at the input plane of the diffuser, the wave is refracted from its input angles (8,,9,) to

the new angles (8 ,¢,) given by Snell’s law:
n sin@  =sin@ (2.12)
and

$,=¢ . (2.13)
Hence the complex amplitude at z=H resulting from the refracted wave is

v,(r) = exp[—ikn(r)sinel (xms¢l+ ysinq)l) ] exp(—ikn(r)H w’ﬂl) ) (2.14)

where k is the free-space wave number. If reflections at the interfaces are ignored, then

Eqg. (2.14) gives the desired output scalar amplitude. We note that in terms of our vector

notation, Snell’s Law can be written as

— A
nk, =k (2.15)

and Eq. (2.14) can be written as

vz(r) = exp( —in(r) ku"‘) exp( —in(r kle ) ' (2.16)

If €q. (2.15) is applied to the first exponential in Eq. (2.16), then this factor can be
. identified as the input plane wave, and the second exponential must be the plane-wave

transmission function:
t(r;ko) =exp( —iknin)H cosel> = exp( —in(r)kle ) . (2.17)

We can use the expression
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| n(r)k, =V nz(r)lez--ll(ul2 (2.18) _
to determine ky, in Eq. (2.17). Note that the transmission function in Eq. (2.17) is simply .,::c.‘
the factor for propagation of the k,; component of the angular spectrum a distance H .:,
along the z axis in a medium of index of refraction n.

When the angle dependence in Eq. (2.17) is ignored, i.e., when 8, is set equal to ' 1..,0(
zero, we obtain the paraxial transmission function that we set out to improve. The
importance of the angle dependence in a given situation is related to the phase 8
difference A¢ between these two cases:

80 =knH (1-c0s8,). (2.19)
Thus, for example, a phase error smaller than 0.1 rad can be achieved by requiring that

H/A<10.0 and 8, < 3.2° or that H/A<1.0 and 6 < 10.2°. However, as we now show, a it

large portion of the phase delay in the wide-angle transmission function is an angle-of- N
incidence-dependent bias term. For illumination with a single plane wave, this constant
phase delay does not affect the speckle intensity, and the conditions on H and 6; may be :
relaxed. This point will be further illustrated by a computer simulation in Section 2.4 5
If the index modulation n(r) is written as the sum of the average index <n> and (4

the deviation from the mean An(r}, Gl
X

nr)= <n> + An(r), (2.20) X

and if the condition

1 ) (2.21) o
Bn() << - <n>cosf0_ ,:t

is satisfied, where 8 ., > is the propagation angle within the medium for An =0,

——— (2.22)
<n> cosl =V <n>%_sin%0 , . )
<n> Q0

then it can be shown by factoring out the quantity <n>k cos@.,> in the exponent of - b
0
Eq. (2.17), expanding the remaining terms in a binomial series, and keeping orily the first

two terms, that Eq. (2.17) takes the form

14 L]
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t(r;ko) =exp(--ik<n>H oose<n>> exp( —ikAn(r)H/cosO<n> ) . (2.23)

This second form, Eq. (2.23), is convenient for statistical calculations since the r

dependence has been removed from the radical and is completely contained in the

second exponential. It also shows that the phase delay is largely due to the angle-of-
incidence-dependent bias term for reasonable values of 8, and An.

When using Eq. (2.23) it is important to consider the size of the phase difference

A® between the transmission functions of EqQ. (2.17) and £q. (2.23):
AQ:kH[<n>cosB<">—(<n> +4n ) cosd, + An./cose<n>] , (2.24)

in Fig. 2.3 the quantity A®M( <n >H), is plotted on a logarithmic scale against the angle
0; within the medium. Figure 2.3(a) is for negative values of An/<n> and Fig. 2.3(b) is
for positive values. By reading the phase error for a given value of An/<n> and
multiplying by the thickness in terms of wavelength H/\, the total phase error can be
determined. Thus these curves are useful for deciding if Eq. (2.23) is a good
approximation to Eqg. (2.17) for a given situation. Note that the phase error is plotted
against the internal angle 8, rather than the angle of incidence 8,. Since it is assumed
that the index of refraction surrounding the diffuser is unity, the internal angle will be
smaller than the angle of incidence. The dashed lines indicate the maximum value that
0; can take for a given value of <n>.
2.3.2 Rough Surface Diffuser

We now consider the diffuser model of Fig. 2.4, which consists of a dielectric
medium of index of refraction n bounded on the input side by a plane and on the output
side by a rough surface h(r). The mean thickness of the diffuser is denoted by H so that
the expected value <h(r)> is zero. We assume local-plane-wave behavior and ignore
reflections at the surfaces in calculating the transmission function. The phase delay that
results from a plane wave propagating at angle 8, but calculated along the dashed line

between the plane surface and the rough surface at position r is

I
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ADMN/H, radians

0 30° 60° 90°

ADN/H, radians

0° 30° 60° 90°
(b) ©,, degrees
Fig.2.3.  Phase error ApM(<n>H) of £q. (2.24) plotted against internal angle 6, for
An/<n> in the range (a) -0.3 to -0.003 and (b) 0.3 to 0.003. The dashed

lines indicate the maximum internal angle 8; that can be obtained for a
given value of <n>.
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» X

(61,91) |

(60,0)

oy
Vi(x,y)
Fig.2.4. Rough-surface diffuser of average thickness H and constant index of
refraction n.
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® =~ kn |[H+h)|oosd, . (2.25)
Likewise, the phase delay that arises from a plane wave propagating at angle 8, but

calculated in vacuum along the dashed line between the rough surface and the output

planeis
- (2.26)
<l>2 = kh(r) cost, .
The resulting plane-wave transmission function is
trk )= exp{—ik[Hn cos8, + h(r) (n cosB, — 00592)] } . (2.27)

The angle 6, is calculated by applying Snell’s law while taking into account the

local slope of the surface:

_ 1 , . 2 2
cosf,= ENE lsmeo(hxooszpo+ h’smd)o) + (hx + hy )ncosel-i-
x y
3 (2.28)
2 2 2 . . 2
+ {(l+ hx +hy )(l—n ) + [smeo(hxcosq;u+hysm¢o)—n cosBl] } s

where

B = dh(x,y) b= dh(x,y) (2.29)

x & ’ y @ y
and
sine0
sinG’ = " (2.30)

For surfaces with small slopes, we keep only first order termsin h and hy and obtain
co892 = cosBo - tanBo (h‘ cosp + hy s:incpo ) (ncosel - cosE)0 ) . (2.31)

The resulting transmission function is
ik )=exp {—ik lanos91+h(r) (ncosel—coseu) J}

Xexp { —ik [ h(r) (n cosBl —ooseo>mn90 ( hx cosp + hy g’mq)o) ” ) (2.32)
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When the condition

o
P
3

tand, (k_cosd, + h sinq)o) hid<<1 (2.33)

"'f- .

+

is also satisfied the phase in the second exponential is small compared to one radian, and

Eq. (2.32) simplifies to18

R .:,'.?“l
LR A

fr;k )=exp (—ik Hrncosd, ) exp [ —ik h(r) (ncosd —cosd )| . (2.34) M

The rough-surface transmission function of Eq. (2.34) is analogous to the bulk- 5:
diffuser transmission function of Eq. (2.23). Both forms are convenient for statistical y ﬁ
calculations because of the linear dependence on the roughness within the exponential. _ ‘;;‘f
Both contain a factor that accounts for the phase delay of a plane wave propagating at c}S:E:z
an angle through a medium of thickness H with constant index of refraction, and both :‘:sggi
contain a factor due to the “roughness”. They suggest a diffuser model consisting of two e .
parts: (1) a slab of index of refraction n and thickness H and (2) a thin phase screen :‘
located at the output side and having an angle-of-incidence-dependent phase delay. “ f:"‘
et

However, the two transmission functions do predict a slightly different angular

dependence on this phase delay.

2.4 Computer Simulation of Far-Zone Speckle

We now present a computer simulation of the speckle pattern vg*v; that arises
from plane-wave illumination of a bulk diffuser. In this simulation the diffuser index
modulation An(r) is represented bv a single realization of a wide-sense stationary
random process with zero mean, and Eq. (2.17) is used to obtain the plane-wave

transmission function #r;k,) for this diffuser. The compiex amplitude at the diffuser

output plane for illumination cf inis diffuser with a plane wave having wave vector K, is
obtained by multiplying Eq. (2.4) by the diffuser aperture function a(r). The far-zone A

) . . . o
complex amplitude v, at the position Rs in the far zone of the aperture is then (ay

ik . , 2
vR(Rs)=ﬁexp(—lkR>cosBJa(r)l(r;kul)exp[—l(kol-—kl)orJdr. (2.35) haHAY,

) . n » » - - LT TR T R L - " - - -~ ™ - -~ - ]
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We assume that that the bivariate probability distribution function of the diffuser index
modulation An(r) for two diffuser coordinates is jointly normal and that its
autocorrelation function is a Gaussian:

(2.36)

<An(r,) An(r,) > e, —r,[?

RAn(rz-rl) = =exp| — 2
w

<An?>
In the actual computer simulation, we simplify the above expressions to a one-

dimensional index modulation. The method for generating the data points representing
this index modulation is as follows: First, a sequence of normally distributed,
uncorrelated, pseudorandom numbers is generated by the computer. These numbers are
then made to correlate with their neighbors by convolving the random sequence with a
narrow window function.19.20 The autocorrelation of this window function determines
the autocorrelation of the correlated sequence. For the example given here, the
Gaussian autocorrelation function can be obtained by using a Gaussian window function.
This is true because the autocorrelation of a Gaussian is still a Gaussian. Finally, the data
are scaled to give the desired rms roughness. Since the original set of uncorrelated
numbers was normally distributed, and the correlated sequence is just a linear
combination of these data, the correlated sequence will aiso be be normally distributed.
Figure 2.5 contains computer simulations of far-zone speckle from a bulk diffuser
with index variations n(x). The radiation pattern is piotted against observation angle for
one realization of the simulated diffuser. The same simulated diffuser is used in each
plot. It has correlation length w=50), average index <n>=1.5, rms index modulation
<An2>% =0.025, and thickness H=80\A. Hence its rms phase delay for normal incidence
is S=4n radians. Because S>>1, the direct or specular component of the radiation
pattern is completely masked by the diffuse component of scattering. The effective size
of the diffuser is limited by a rectangular aperture of width 1500A attached to the output
side of the diffuser. In each plot the speckle pattern is calculated both with the wide-

angle transmission function of Eq. {2.17) {solid line) and with the paraxial transmission

-
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relative intensity

relative intensity

‘-’l'u'l‘& l..-‘l‘a.l.q"’o A, -.l.. .0.

i

- = = paraxial
-— wide angle

S
™~

10° A
i4.5° 15.0° 15.5°
@ ©, degrees
104 — —_— ——— v - .
0 -~ = = paraxial —1
— wide angle
102
10°

(b O, degrees

Computer simulation of far-field speckle patterns calculated with paraxial,
dashed line, and wide-angle, solid line, transmission functions for plane
wave incidence at (a) 15° and (b) 30°.
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function obtained by setting 6, =0 in £q. (2.17) (dashed line). The speckle patterns are

plotted over a 1° range of 0 centered about the input angle 6,. These curves allow us to
compare the two cases and to get a feeling for the size of the angle correction.

In Figs. 2.5(a) and 2.5(b) the diffuser is illuminated with a plane wave at 15° and 30°
respectively. These plots illustrate the effect of the angle dependence in the second
exponential in Eq. (2.23), which is to increase the effective roughness by the factor
1/c0s8<,>. We see a small difference between the paraxial and wide-angle patterns
when 8, = 15° [Fig. 2.5(a}] and a larger difference when 8,=30° [Fig. 2.5(b}].

Note that if there is no input-angle dependence in the transmission function, as is
assumed in the paraxial case (dashed line), then by the Fourier transform shift theorem,
the speckle pattern shifts by the amount 8, without decorrelating. However, there is a
spread in the specklie pattern because the Fourier transform is in terms of spatial
frequency, which goes as sinf not 8. In addition, there is a drop in intensity because of
the cos26 obliquity factor. These effects can be seen by comparing the dashed curves of
Figs. 2.5(a) and 2.5(b).

We can interpret the dashed lines in Fig. 2.5 as the speckle pattern at normal
incidence but shifted by 8, so that it will line up with the speckle pattern for illumination
at B,. Since these two patterns are very similar, we conclude that the angle of incidence
must change by large amounts, i.e., greater than 15°, to decorrelate the speckle pattern.
In Appendix B it is shown that the angle necessary for speckle decorrelation decreases as
the rms roughness S increases. However, even for S=10,000, the shift in the angle of
incidence necessary for speckie decorrelation to occur is approximately 1°. The analysis of
cascaded diffusers is greatly simplified if one can assume that the individual diffusers can
be represented by the simple transmission function of Eqs. (2.1) and (2.2). In the
following chapters we analyze speckle from a cascade of diffusers using the simple
transmission function, and we find that the angular detuning necessary for speckle

decorrelation is generally much smaller than that from the individual diffusers. For this

¢
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reason, the simple transmission function model is adequate for the analysis of speckle

decorrelation from cascaded diffusers.

; - A A : . “n L TR LY "Ry ] . ) ;
L OV OU OO OO MO I X R O T IO I'A‘I‘A,!‘nil‘»'i OO0 0K |‘.t’.- PO ORI R i X MO bl o o oo WA SN G G 0y



34

Chapter 2 References and Notes

1.

Many authors have used a phase-changing screen to mode! diffraction from the
ionosphere. See, for example, H. G. Booker, J. A. Ratcliffe, and D. H. Shinn,
“Diffraction from an irregular screen with applications to ionospheric problems,”
Philos. Trans. R. Soc. London Ser. A 242, 579-607 (1950); J. A. Ratcliffe, "Some
aspects of diffraction theory and their application to the ionosphere,” Rep. Prog.
Phys. 19, 188-218 (1956); A. Hewish, “The diffraction of radio waves in passing
through a phase-changing ionosphere,” Proc. R. Soc. London Ser. A 209, 81-96
(1951); R. P. Mercier, “Diffraction by a screen causing large random phase
fluctuations,” Proc. Cambridge Philos. Soc. 58, 382-400 (1962).

L. |. Goldfischer, “Autocorrelation function and power spectral density of laser-
produced speckle patterns,” J. Opt. Soc. Am. 55, 247-253 (1965).

S. Lowenthal and D. Joyeux, “Speckle removal by a slowly moving diffuser
associated with a motioniess diffuser,” J. Opt. Soc. Am. 61, 847-851 (1971).

E. Jakeman and P. N. Pusey, "The statistics of light scattered by a random phase
screen,” J. Phys. A 6, L88-192 (1973).

E. Jakeman and P. N. Pusey, "Non-Gaussian fluctuations in electromagnetic
radiation scattered by a random phase screen. |. Theory,” J. Phys. A 8, 369-391
(1975).

N. George and A. Jain, "Space and wavelength dependence of speckle intensity,”
Appl. Phys. 4, 201-212 (1974).

J. C. Dainty, ed., Laser Speckle and Related Phenomena (Springer-Verlag,
Heidelberg, 1975).

A. Zardecki, “Statistical features of phase screens from scattering data,” in Inverse
Scattering Problems in Optics, H.P. Baltes, ed. (Springer-Verlag, Berlin, 1978),

pp.155-192.

: A T AL WA ) ) o N - .
ERIOLOCOTIN BN RN MO NN M b WY M M ‘o,l‘.p.l‘u.b‘:. NI O.'.t p oy BX ) 33 O™ e n,h !l-'.‘ ' .h..l. L .

\ )
Ol

w

I.'\

s L



N R NI AR NN A AU N A R AT MY NG N NN M R N U N WL W UG W SO O SR R R A S A R Y A R o o Towow?y a ¥, "'"Qi‘f
I:q"g
.)“'

35 ey ?

9. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New Gt

York, 1978), Vois. 1 and 2. R

10.  W.P.Brown, jr., “Propagation in random media--cumulative effect of weak 1K)

inhomogeneities,” IEEE Trans. Antennas Propag. AP-15, 81-89 (1967). B,

11.  P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from

. Rough Surfaces (Pergamon, New York, 1963). X

12.  P. Beckmann, “Scattering of light by rough surfaces,” in Progress in Optics VI, E.

Wolf, ed. (North-Holland, Amsterdam, 1967), pp.53-69. 8

13. P. 1. Chandley and W. T. Welford, “A re-formulation of some results of P. . '::":‘z'.g

Beckmann for scattering from rough surfaces,” Opt. Quantum Electron. 7, 393-397 o
(1975).

14. M. Nieto-Vesperinas and N. Garcia, “A detailed study of the scattering of scalar ”":3 .—

1

sty

waves from random rough surfaces,” Opt. Acta 28, 1651-1672 (1981). ?v::'.(
(G

e
. . R LA
15. L. G. Shirley and N. George, “Difiuser transmission functions and far-zone speckie -

it

patterns,” in International Conference on Speckle, H. H. Arsenault, ed., Proc. Soc.
Photo-Opt. Instrum. Eng. 556, 63-69 (1985).

16. L. G. Shirley and N. George, "Wide-angle aiffuser transmission functions and far-
zone speckle,” J. Opt. Soc. Am. A 4, 734-745 (1987).

17.  Unless otherwise stated, the integrations in this thesis are over the entire r or k.
planes. Equation (2.5) is actually an inverse Fourier transform of v;. The sign
dependence on the exponential is positive so that the wave vector k| will have the

. correct physical interpretation for the expliwt) time dependence.

18. W.T. Welford, “Laser speckle and surface roughness,” Contemp. Phys. 21, 401-412
(1980).

19.  H. Fujii, J. Uozumi, and T. Asakura, “Computer simulation study of image speckle
patterns with relation to object surface profile,” J. Opt. Soc. Am. 66, 1222-1236

(1976).

l,'\x.(\

.‘5‘.'0‘:’. p",A",."“’.;I‘. 4' ,q‘l :‘lo" .’l_n&h’, LY A‘., ..’.l'.'ha F LB By Y .’x A ‘d.. » L '(“\ ) .""- ”VH’,\ ~' ‘l‘!‘l'.“l

Nt AV,



— 4:;
e ;
e ":
N - ‘
gy nxd ¢ “.
. Ko

¥ S “.

| 't"i
. ‘;
3 RS ::’

- v’ AQA:

-

* i

| 9

LIRS nts,. :::‘
)” perime :?‘;

“ 36 y and Ex ‘A

. r
k €0 .

action Th - |

| | Diffr " 'a

\ istica 79, pp ".!
: Statis o ' ..

' rtures: - ':’

‘ - chno l
rrated o J.‘

“Se "

| itu '

- ia Inst v

i Mo - ) .‘
E‘ o Californ .::
J ' sis, "
: 2 The ."
| Ph.D. ”
a ‘
" 5
My . ‘
Wy ..:!
) “
, ‘.“
v ‘. ‘
Az; ..‘
. L
:"é .:
e ":.‘
N '}
s ﬁe
ﬁ: i
)

a‘i "f
24 ‘ {
:.“ .. ‘
. ) ".
e:,l A'.

S ]
s ."é
) ‘.:
% i
LX)

3:1 .:“
»
-y '?‘
.'0‘ .:#
L “
0‘i .:}
N .t
k) l‘
»"v {6

)

L4 ‘
by lr
t:' * .
D)
X “
l' ’ ‘ .
..:' o,
>" . '
. b

- .‘
0, “
)

LX)

)

L)
.'@:.
ﬂl“

"

‘v‘|

LY

)

»;‘

s

Xy

e

-3l

s

")

)

)

5

i‘:

’J‘.

1)

4

u

»e

ay

N
¥
L7

« & . L » . » Pt } N )
. y ‘
! oy
* & AN N
oy,
O )
‘ L
' R,
L
¥,
L1
On L8
DA
[} .‘,‘ \) \) “4‘(‘ ¢ U0 .‘, \) .".“‘ “‘“ . (M
LA
2 e
! L\
'\» F'.O
[ LN
e
SRR A
LAY
L)
. L
LAY
\ )
‘ Cat \ ()
LAFUI UM A ) \} l- A LX B MY ) L) 1}
s‘l
4
(e 3,
v ¥ )
k) () ".




!
at

9.4
gy,
L
[}

AR
o
U Q.|‘.‘

Chapter 3 .

Decorrelation of Speckle from a Cascade of Two Thin Diffusers

R 3.1 Introduction

The configuration for the analysis of speckle from a cascade of two diffusers is ot ’:
shown in Fig. 3.1. The diffusers Dy and Dq in this figure are separated by the spacing H, " %vg
and they are illuminated by a plane wave of wave number k that is propagating in the A0
direction s,. The basic quantity of interest in analyzing the speckle is the complex : .3:*}0:'}3
amplitude v in the far-zone of the aperture a. As illustrated by the photographs in Fig. NN
1.3, the far-zone specklie intensity pattern will decorrelate as s, varies. A similar it
phenomenon occurs far changes in wavelength. The purpose of this chapter is to provide ,i'i}iji;‘
a general analysis of the decorrelation of the far-zone speckle pattern from a cascade of o
two thin diffusers with respect to changes in the following parameters: the spacing H f:!.!t' v
between diffuser planes, the wave number k of the incident light, the direction s, of the ":t‘
input plane wave, and the direction s of the output unit vector. éﬁtg

In the remainder of Section 3.1, the basic quantities necessary for relating the 'lis‘le
decorrelation of far-zone speckle to the diffuser surface statistics are introduced. Section -
3.2 contains the derivation of the general expression for ugp, the two-state correlation A
function of far-zone complex amplitude. In order to calculate u,; for particular diffuser
types, it is necessary to know the autocorrelation function R, and R, of the diffuser [ ]
transmission functions ¢; and t3. In Section 3.3 R, is calculated for a phase-type l,::l';"":':

transmission function under various conditions. The two-state correlation function of

. intensity is considered in Section 3.4, and an iilustration of how the preceding analysis
can be applied to the remote sensing of the spacing between a diffuser and an aperture G

is presented in Section 3.5. e
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3.1.1 Far-Zone Speckle

The basic quantity of interest in the study of far-zone speckle from a cascade of &
two diffusers is the complex amplitude v(H;k,;k) in the far-zone of the diffuser. The )
wave vectors k, and k are obtained by multiplying the unit vectors s, and s by the wave ;':_‘1
number k=2n/A. We note that the unit vector s is related to the spherical-polar ;‘;"2'

coordinates (0,$) and the cartesian unit vectors x, y, and z, see Fig. 2.2, by W %

8 = xsin0 cosd + y sin0 sind + z cosb. (3.1
In the statistical analysis of the decorrelation of speckle, we will calculate the following Ry

second-order moment of the complex amplitude v(H;ky;k): X ‘
la‘ “. ¥
2

R (3.2) s By 80
u = A—2 <u“(Ha;koa,ka)u(Hb;kob;kb)> . 3

o W
The subscripts a and b in Eq. (3.2) refer to two different states, i.e., two different sets of :s’écﬁ‘

values of the arguments. The angle brackets denote an ensemble average over diffusers aal
having the same statistical properties. The quantity within the angle brackets is

A
multiplied by R2 to account for the 1/R2 fall-off with distance and divided by ”0:3'0}
R
A°2= j late) d’r, (3.3) .:‘a‘:'f

where a(r) is the aperture function, to normalize by the total power passed by the

. . . U

aperture for the unit amplitude input plane wave. Thus, when states a and b are equal, "‘t‘:‘a
t
we have °‘: '::&
D0 .‘ t
i =<I>, (3.4) 000
aa a -
where <I,;> is a dimensionless quantity equal to the radiant intensity in the direction X ,‘,l."

specified by the unit vector s, divided by the total incident power , &' {
. <[ >==— —, (3.5)

In the calculation of ug,, we will model the individual diffusers by the thin-diffuser 'i.n,' 0
transmission functions ty(r,k) and ta(r,k), where r is a vector representing the diffuser N7

coordinates (x,y). For a phase diffuser with a height profile i(r) in a dielectric medium ®

. . . . W - -
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with index of refraction n, we write the transmission function as
Ark) = exp[—ik(n-l)h(r)]. (3.6)

As shown in Section 3.2, the autocorrelation functions R, and R, of the diffuser

transmission functions ¢, and ¢; respectively, defined by
R(r,—r_ k k)= <tr k)dr k)>, (3.7

appear in the calculation of u,p. These functions, R, and R,,, are particularly important
because they contain all of the statistical properties of the diffusers that are necessary for
the calculation of u,,. The only position dependence in Eq. (3.7) is through the
difference ry-r, since the diffusers are assumed to be at least wide-sense stationary, i.e.,
the first and second moments of ¢ do not depend on the choice of the origin. We will
derive a general expression for 1, in Section 3.2 by evaluating Eq. (3.2) in terms of R,
R,, and the aperture function a. In Section 3.4, we will discuss how u,; is related to the
second order moment of intensity <I,I,>, which is the quantity of interest in the typical
experimental application.
3.1.2 Diffuser Statistics

It is not our intent to reconstruct the height profiles hj(r) and ho(r) of Fig. 3.1, but
rather to characterize the diffusers in a statistical manner and to determine the spacing
H or changes in this spacing. In so doing, we need to have a set of quantities that
represent the statistical properties of the rough surfaces. Perhaps the most important

characteristic of a rough surface k(r) is its rms roughness
o, =<hir)>t. (3.8)

For diffusers represented by the thin-phase-screen transmission function of £q. (3.6), it is

also convenient to define the effective roughness of the diffuser in transmission as
°¢=(""”°h' (3.9)

Of course, in the scattering of electromagnetic waves from rough surfaces, the overall

AR



effective roughness is measured in terms of the wavelength \ of the incident radiation. e

Hence, we also define the rms phase delay in radians due to the transmission function Eq.

(3.6) as R
1
S=ko =k, (n—1). (3.10) R

Although the roughness S is important in determining the degree of diffuse .‘::'::u'.
scattering, i.e., scattering out of the directiun of the incident beam, surfaces having very . )
different textures, and hence different radiation patterns, can have the same value of S. pih
A complete statistical description of the rough surface h(r) could be expressed formally _ ‘a“i:f;'
by P,(hy,hg,...ha;ry,re,...x,), the joint probability distribution function of surface heights e
with respect to n arbitrary positions, where n is an arbitrary positive integer. However, :ql&,i'
since we are only considering two-state correlation function, we will not need joint 7 ".;g
probability distribution functions higher than the bivariate function Py, ' ':

The expression for u,, derived in Section 3.2 will be written in terms of R, and R, SO

However, a correlation function more closely related to the diffuser height profile is L2

< >
h(r,) hir,) @3.11) ety
2 ’ g'l
o oy o
A ,::
Therefore it will be important to have expressions relating Ry, to Ry. This relationship will

Rh(rb-—ra) =

T
be discussed further in Section 3.3. ::‘0:5::
- )

3.2 Two-State Correlation of Complex Amplitude
3.2.1 Far-Zone Complex Amplitude ":'j;:;

The first step in the calcuiation of ug;, is to derive the formuia for the far-zone ,‘
complex amplitude v(H;k,.:k,). We begin by listing the expressions governing A
propagation through each element of the system in Fig. 3.1. We write the complex g
amplitude at the input side of plane |, which arises from the input plane wave, as §’;‘ ':s

vl_(r')=exp(-—ikolor’). (3.12) fé‘&t
@

Once again, the subscript L in Eq. (3.12) denotes that only the components of the vector

(3
: . . - .n e . - A - O
‘r‘"w I’."!'t".o A0 "l,..b..'!,"l.l".‘.\“‘a_..C A ",l.'.l‘-'.l.l.h.y.l"'t‘n 4'-'0':."0 W l’..l'. 0'0’!'- I.n.‘ » ‘.~.‘.c.l..'l.u |‘q‘l‘o A0 | ‘.‘l‘. AL, A% 0,1, s "?“'
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k, lying in the diffuser plane, i.e., the (kk,) components, are retained. Since the
diffusers are assumed to be thin, the complex amplitude at the output side of plane 1 is | a0 f
F 4
obtained by a point-by-point muitiplication of the input plane wave by the transmission f “S
function: i 5:":!’
v ) =) (k). 313 : :.;(
As discussed in Section 2.1, a thick diffuser, or any linear optical system for that matter, ’ Q'e:
could be represented by a generalized transmission function ¢(r,k) that depends on the _..'_?S
direction of an input plane wave in addition to the position in the diffuser plane and the .:.':2
wavelength.! Arbitrary illumination could be treated by breaking v; -, the input at plane :§§:§
(3
I, into an angular spectrum of plane waves and operating on each plane wave n".":“('
component with the appropriate transmission function. ; it;
We calculate vg-, the input to the second diffuser, by performing a Fresnel-zone ‘;:E%‘
propagation of the complex amplitude vy + along the z-axis over the distance H between ?&3
diffuser planes. The impulse response for propagation between planes is ;:’_
. IO
gH(r—-r').= 2:;! exp(—ikH) exp( - %Ir-r'ﬁ). (3.14) :gsgzé
The range of validity of Eq. (3.14) increases in the transition from deterministic to '.:::':
statistical calculations. One reason for this is that the effective limiting aperture ' ::::':
decreases, owing to the finite correlation length along the diffuser plane. A quantitative . ':E:‘:
¢
discussion of the validity of Eq. (3.14), however, is beyond the scope of this thesis. We ::
also note that Eq. (3.14) is a paraxial approximation. Therefore, we expect our results to :: 3
be less accurate for wide angles. The justification for ignoring reflections between . : ‘
surfaces at planes | and 1l is that any reflected light that reaches the output point must C.Ei_ »
have been reflected at least twice, and therefore its contribution to the speckle pattern g .::‘
will be negligible compared with the directly transmitted light. ,_
Propagation through the second diffuser, and its associated aperture, is treated in b"\.

the same manner as it was for the first diffuser, i.e., with a point-by-point multiplication .
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u2+(r) =v, (r) '2(";”) a(r). (3.15)

2

The far-zone complex amplitude is then obtained by propagating vy 4 into the far zone "‘k

with the far-zone impulse response ) {t,..‘

ik }

N gR(r,Rs) = cosB SR exp(—ikR) exp(i ko r) . (3.16) _ bt

In Eq. (3.16) we choose to write the obliquity factor as cos0 rather than as sz or s,. We 5,'#-
W

obtain the final form of the output scalar amplitude v(H Kk, k) by combining Egs. (3.12) :ﬂfw‘

through (3.16): &

k?  expl~ik (H+R))
(2,,)2 HR

U(H;ko;k)= - cosG{ d*r a(r)tz(r;k)exp(iklo r) l‘::h:.‘
X [ exp( —ikulor’) t,(r';k) exp( - %Ir—r'lz) dr . (3.17) i‘.:;' »

Unless otherwise specified, the range of integration in all integrals is over the entire x-y ,‘i:o\'
plane.
At this point we pause to illustrate the derivation of the plane wave transmission NS
function for an optical system by calculating r;k) for propagation between planes | and
il of the double diffuser in Fig. 3.1, not including the aperture. Having tracked an input 5,
plane wave through this system, we can write the plane wave transmission function for It
the diffuser combination by taking the expression for vg, and dividing it by the input ¥

plane wave given in £q. (3.12) and by the aperture function a(r): o

ik exp(—ikH) AT
. trk )= m ty(r;k) ¢

LI ,
—1(m|r| +k0lor>

. . . . N . . h‘ N
The output at plane (I for arbitrary illumination can be calcuiated by substituting the Y

X J exp tl(r+ r';k) d’r' (3.18) A

plane wave transmission function, Eq. (3.18), into Eq. (2.7) and decomposing the input at f&

plane | into an angular spectrum of plane waves V. The plane-wave transmission ADRY

A
)

W
! o 7 S W w o Lg ~ _."7&,.'\‘. ‘
¥ T I M Y S ¥ A I W 1 S = w - ¥ W W LN AL N LN
‘l.n’l‘c‘l.i l.'".t ’v (4 m % l. B, ' g () .t \' N J ".‘. N ' » - \ »! \ h%ad) I‘~ B i ~ \ “ . N » ‘- L)



PR

P )

&

N, € \ . 0 OO OOON) S N R S RN RN 8% A
VoV n‘ln‘x'l,"n.l‘;,"i. ..l',v,t‘u.t haly ,.....J.q'q !b."t."n. (Kl u'o.l'..t’o.,l'o,i‘.! BHOA AL AL s ¥y » 4% .,.a'n NI R, 'r.

AR IR R AR R AR R N R R AR I

function representation is especially convenient for problems where the input is a plane
wave, such as in the plane-wave probing of optical systems by varying the angle of
incidence or the wavelength of the input plane wave. In Section 3.2.7 we wilf give a
general form for ugy in terms of t(r;k;). One could obtain u,y for a cascade of two
diffusers by applying the results of Section 3.2.7 to Eq. (3.18), however, in the following
sections we will derive ug for a double diffuser from first principles
3.2.2 Derivation of Two-State Correlation of Complex Amplitude

We proceed with the derivation of u,p by substituting Eq. (3.17), for each of the
states a and b, into Eq. (3.2). We note that all of the randomness is conta....d in the
transmission functions ¢ and ¢; through their dependence on the height profiles k, and
ho, and that the resulting expression for ug,) is just a linear combination of produrts
involving ¢; and &y, i.e., integrals. Therefore, the angle brackets can be moved inside the
integrals so that they surround the combination of the transmission functions.
Furthermore, since h; and hy are uncorrefated random processes, the angle brackets can
be split into two sets: one around the ¢; dependence and the other around the ¢y
dependence. We recognize the resulting functions as the transmission function
autocorrelation functions R, and R that are defined in Eq. (3.7). The expression that
results for u,y is

k:kb2 exp(—icpab)

u,= cosB cosO [ ‘dzrd2r"a*(r)a(r")R c'"=r;k k)
ab (211)4 A2H H a b ty ab
o a b

x exp|i(ky or" =k, or)] [Jexp[-i(kobl"""km"')]

; k
e ’, i a "2 b " reni2
X Rtl(r -r,ka,kb)expl 5 (_H e —r*= —blr - )

. ' (3.19)

where

(3.20)
=k H, -k H + (kb— ka)R .

T~

L 1pf

L% A 3 s
‘m o'y, ‘. 'v. Yoot
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b
By making the following change of variables, we can separate the variables in Eq. "!-_.‘.‘f:
(3.19) so that four of the eight integrations can be performed without having any Wy

knowledge of the functional form of R, and R, falhely

2 (3.213) -

2 (3.21b) N

(3.21¢) ) ;:iﬂ;v
and (.ﬁ“:"

r+r
e 1 2 (321d) ..I‘!
r —( r,+ r4)+ . Bt

We note that the absolute value of the lacobian of the transformation given by ]

Eqgs.(3.21a) through (3.21d) is unity so that the change of variables is a simple o'::t"’-'

substitution. The resulting form of Eq. (3.19) is fesiss

i
X exp[— -2- (koa_l.+kobl>.rl] J Rzl(r1+r2;ka'kb) Rzz(rz;ka'kb)

i(r - i 2. (322 e

X A(rz,kal-km—ku—kobl)exp[2 (kal—km+kbl—kob_l_)or2}dr2, ) W)
where we have defined the normalized ambiguity function 2-3 of the aperture function ®
o 1 r r ‘

Alrk )= ; J a*(r'~ E) a(r'+ 5) exp( —iklor') d*r', (3.23) .n'::ﬂ

O
and the cross-ambiguity function of the Fresnel impulse response, Eq. (3.14), as h 2&'&

exp(-—ik or')dzr', (3.24) L J
1 7&("'1
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%
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The wave vectors that occur’in the argument of A and in the exponential within

the r, integral in Eq. (3.22) have special physical significance and will be denoted by the

following symbols:

-k -k, +k (3.25) .

abl ~ Tal obl’

a8 0%
‘:: Kaps = ;—( kor Koar ¥ Ky Ky, ) ' (3.26) ?Z:.
Equations (3.25) and (3.26) are the difference and average values of the wave vectors ‘
; ¥
,j: ko) -Kog1 and kp; -kop i, which in turn, are the differences between the input and output ',?
: wave vectors for each of the two states a and b. .':2
We explain the physical significance of Akgyyy and kgpi by considering the ;
’gs example of speckle from a single thin diffuser. in the same manner that we obtained Eq. ‘
%E:E (3.17) for the far-zone complex amplitude from a double diffuser, we can write 27
s ) :
;;’;. v(H;ko,k) = 2lr,:R exp{—ik R) cosf J a(r)t(r;k)expli (kl - k0l> or| d’r 3.27) E
\l:\; for the far-zone complex amplitude from a single thin diffuser. Thus we see that the :.i

speckle is essentially the Fourier transform of the product of the diffuser transmission

,
B

function and the aperture, and that the argument of the Fourier transform is ko, . k,,

the difference between input and output wave vectors. We conclude that the speckle

pattern from a single thin diffuser moves as a whole about the direction of the input

plane wave, and that there is no angular decorreiation of speckie as fong as the output

wave vector from the second state moves in such a manner as to track the speckle, i.e., as

long as kg ; -Koat =kp) -Kgp1. For this reason, we refer to Ak, as the speckle tracking

wave vector. We see that the tracking condition is satisfied when

Ak, =0. (3.28) ]

Thus the magnitude of the offset wave vector Ak, relative to the speckle size

determines the degree of decorrelation that arises from looking at different points in the

Lt N R T TS ‘ o Lt s 4“'.‘-'- o a_ G Wy \ !
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speckle pattern. In most applications, we are not interested in decorrelation arising from
speckie motion, and hence most experiments would be designed so that Eq. (3.28) would

be satisfied. Of course, if Eq. (3.28) holds, then Eq. (3.26) simplifies to '0::%,,

Koo = Koy =Kppy =y =k (3.29) R
and kg is simply the difference between input and observation wave vectors for either * ',::"é:
state g or state b. We refer to k,p, as the Fourier transform wave vector because it .:':::'AE
appears in the argument of the Fourier transform in Eq. (3.22). ::.:_.::,E:

Another observation that we make from Eq. (3.27) is that the speckle pattern v
spreads as k decreases, or in other words, it spreads as the wavelength ) increases. For - :‘0:‘
example, if the diffuser is illuminated at normal incidence so that k,; =0, and if we look :::!
at the output along the k,-axis, then the arguments of the Fourier transform are (k; =%
sinG,k, =0). Therefore, in order to stay on the same point in the speckle pattern, k, must i,
remain constant, i.e., [6] must increase as k decreases. Equation (3.28) is a general gt
expression showing the interrelationship between the input direction, output direction,
and wavelength between states a and b that is necessary for tracking a speckle. N ,:’

In studying speckle from a cascade of two diffusers, it is advantageous to have an :°:
intermediate function that contains all of the dependence on the diffuser correlation ‘

functions R, and R,,, and on the aperture ambiguity function A. From inspection of Eq. W BAN

(3.22), we see that the r, integration provides us with such a function: x) '&
F(r;ka,kb;kl;Ak_L) = I Rll(r+r’;ka,kb) Rl2(r';ka,kb) SGN]

X Ak ) exp(ik, or') dr' (3.30) o
. We refer to F as the double-diffuser descriptor function. It is not to be confused with the
hypergeometric function, which is also denoted by F. Through the use of Egs. (3.26),

\

v

‘.
(3.27), and (3.30), we can now rewrite Eq. (3.22) in the simplified form: \’f&

o a .y Y roy A TN YRR R Y TR R LT T e T L R e N T
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k k *
Lap™ (21”_)6; exp('i¢ab) c0s  cosf, [ B(r;kobi_km;ﬁi'—)

[~
o

X F(r;ka’kb;kab.l.;Akab_L) exp[— é (koaJ.+kobJ.)"] d’r. (3.31)

3.2.3 Aperture Ambiguity Function
Through much of the remainder of this chapter, the aperture function will be left
arbitrary, and hence, the aperture ambiguity function A will not be specified. However,
we can gain insight into the effect of the aperture on the speckie decorrelation by
calculating A for some particular aperture functions. We will consider three functional

forms of a(r): a Gaussian aperture having width w,,
2
Ir

a(r) ::exp( - > , (3.32)
w
a
a rectangular aperture having full-widths w, and w, along the x and y axes,
x Y
= = =z 3.33)
a(r) rect( o, ) rect( v ) (
and a circular aperture having radius w,,
a(r) = cire( '—'—‘-) . (3.34)
wﬂ

For the Gaussian aperture A,2 of Eq. (3.3), which is a measure of the total power passed
by the aperture for plane wave illumination, is
A= 2 2 (3.35)
] 2 a
For the rectangular aperture A,2 is equal to the area of the rectangle
Al=y w (3.36)
o x Yy
and for the circular aperture it is equal to the area of the circle

Alsm? (.37

The functional form of A is particularly convenient for the Gaussian aperture of Eq. (3.32)

because A separates into the product of a Gaussianinrandink:




$

2 000

A = —l' 1 (XN
A(r;k )—exp(- i )exp(— -w?lk | 12). (3.38) |

2 8 a .
2wa 0

For the rectangular aperture, described by Eq. (3.33), A takes the form Ol

: ek = st 2 in (1 L .“i] =
Ak ) j:xl‘ect.( 1)sm (1 wx) 2 i

4 .. 3
2 y [ lyl "’ykyl (3.39) robd
X —rect| — }sin|(1—-—)}—]. : et
wk (Zw ) ( w ) 2 X
yy y
{t is more difficult to evaluate the ambiguity function of a circular aperture for arbitrary
arguments r and k;.5 However, for k; =0 the ambiguity function reduces to the )

autocorrelation of the circular aperture, and the solution isé §

o= Jeol o () [ (T]) e

2w
a
Equation (3.40) is still useful because it is the speckie tracking wave vector Ak, that ’:’.‘:’:

occurs as the second argument of A in Eq. (3.22), and Akgp 1 =0 in the usual application.
The dependence of Eq. (3.39) on the x and k, variables for y=0 and k,=0 is 3&:;:%3

illustrated in Fig. 3.2. We note the following interesting features in this piot: First of all, k%:‘

since A contains a rectangle function in the x-variable, it is zero outside of the region |x| R "t

=w,. Inaddition, A is a triangle function in x when k. = 0 and a sinc function in k, when i
x=0. We also note that more and more cycles of oscillation occur along the x-axis
between T w, as k, increases, and that the period of the oscillations along the k.-axis DONG
increases as | gets closer to the cutoff value, w,. R

A general feature of aperture ambiguity functions that is illustrated in Egs. (3.38) ..:‘.::a'.
and (3.39) is the inverse relationship between the widths of the spatial dependence r .."Q‘.’
and the spatial frequency dependence k. By this we mean that as the the width of the sy
ambiguity function increases with respect to one type of coordinate, it decreases with t'::t',
respect to the conjugate coordinate. The wave vector that occurs in the ambiguity b

functionin Eq. (3.22) is Ak,p1 , which we know to be related to the decorrelation of L
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speckle that occurs due to motion of the speckie pattern as the input angie or the ]
wavelength is changed. In most practical applications, the aperture function, and hence FON
the spatial dependence of the ambiguity function for Ak, =0, will be wide compared )
to R; and R,,. it follows from the inverse relationship between r and k that A will be ':::;:::‘
narrow with respect to Akgp , i.e., that the speckie will be small in size. An advantage of LN,
. making A wide is that F can be approximated by setting the spatial argument of A to ek
zero in Eq. (3.30) and factoring A(0; Akgp) ) out of the integral. This gives the same resuit
as the quasihomogeneous approximation that is often used in coherence theory.”
3.2.4 Fresnel Cross-Ambiguity Function . i,
Whereas Eq. (3.23) for the normalized ambiguity function A depends on the dahte
particular function a used to represent the aperture function, the functional form of the

cross-ambiguity function B is completely determined because there is no dependence on

the unknown quantities R, , R,,, or a in Eq. (3.24). We use the identity8 OO0

. 2
[exp[i(C|r|2_kl.,.)]d2r___ %Iexp(-i l:él ) (3.41) ;'

to evaluate Eq. (3.24) and obtain the solution aduh

B(rk L-,ca,cb) =_

2] -
Q

)

o

'l
2

] (3.42) ,"::'-:E;
(AN XA

In Eq. (3.42) we have represented the wavelength-spacing parameters k,/H, and ky/Hp by Qr,\u; )

i
X exp{—

2 2
2 c-C k| +(Ca+Cb) k er +CaCb|r|
a

. the symbols C, and Cy respectively. in the limit as C,—Cp, Eq. (3.42) becomes a delta ) %

function: Qgﬁ
B(r'k :C ,C ) = 6(r+ l_(.i) (3.43) 1",5:;
e el T C : )

a Pt
Equation (3.43) can be obtained by going back to Eq. (3.24) for B and noting that the ."I..:':O

By

-".s"‘q‘..'n".u"‘o".l. Q"tl .!‘I. l'!.l A |.!‘u'<.1 3 l‘!."‘ .‘ 0"... & ‘—V &7 I.?.Q', q".‘\'. ' '. ¥ e, Cl’- X \ - A .a X .50, %l (1% .0 8. 03,%9,%
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quadratic terms in the exponential cancel when C,=Cj;. What remains is the Fourier
transform of a constant, i.e., a delta function.

In terms of the variables that occurin Eq. (3.31),

.fg_z)_ L__i':__ex(i__a_ﬁ_“( k |2)
obL™“eal'H 'H, T Ton kH —k H, P 2 kH —kH = obL “oal

&

2
; RH +kH, kk, I

y i . K ] <i > (3.44)
Pl el _kH ( obL” oal)"' P\ rH —rH )
a a'b b a a b

When

) (3.45)

"’ B(r;kobl—km;}{l.-ﬁ=—0)= 8(r+ HbsobJ_—Hasm). (3.46)
a

We can interpret the offset vector that occurs in the argument of the deita function in

. Eq. (3.46) as the paraxial approximation to the lateral shift between two rays that begin

at the same point on the first plane and travel in directions s,, and sgp to the second

plane. For example, if soq =0, and ¢op =0 50 that the vector s, is in the x-z plane, then

Hysos1 = Hy 5inB, x, which is a paraxial approximation to the actual offset H tan0,, x.

3.2.5 General Expression for u,p,

Having evaluated the cross-ambiguity function B, we are now able to write the

final expression for ugp. In terms of the double-diffuser descriptor function F defined in

Eqg. (3.30) and for arbitrary values of all parameters, ugy is

u

=-1

2, 2 :
kakb exp(—upab) i HaHb
ab~ P

exp| — ————— |k . -k l2>cos9 cosd
bl 1 b

(2n)? *gH =k H, N2 kH ko s a
a b

k k l
kaa_kaHb

: 1 2 2 (3.47
.Akabl)exp{t Elrl +(Hbsobl-Haso‘_L)or }d r,( )

X J F(r;ka’kb;kabi’

. .. o e
CabB G0, B T T P, a2 T T 1 Y A S A S A A S S R L S S R TR

HH .

PRI
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Equation (3.47) is the key expression governing the decorrelation of speckle from a ‘E.;:::.,l
cascade of two thin diffusers. For angular decorrelation only, i.e., when wavelength and 0
spacing are fixed, or more generally, when Eq. (3.45) holds, then Eq. (3.47) simplifies:
Owing to the fact that B in Eq. (3.46) is a delta function, the integral in Eq. (3.31) can be ¢

evaluated immediately yielding e

L
2

kakb .
U= -(—2"—)2exp(—t¢ab)exp

(kab —kaHa)] c0s8_ 080, o

Ak ) (3.48) T o

X F(Hasoa.L_H ab.L; abl’’ “’?i’e‘-

bsob_l. ;ka’kb;

k
Equation (3.48) is in a particularly appealing form because there are no integrations ‘,{.‘,
except for those implicitly involved in calculating the function F. The physical |
interpretation of the arguments Ak, and kyp of F has been discussed in Section 3.2.2.
In particular, we want to stress that the offset H,s,,(-H 38,51, due to changing the angle
of incidence, is the lateral shift in coordinates in the multiplication of R, and R, in Eq. L J
(3.30). As we will see in Section 3.3.2, R, and R,, for strong diffusers will approach zero a,i:c.
as the offset r increases. Thus Eq. (3.30) for F can be made to approach zero for strong W
diffusers by increasing the offset so that R, and R, do not overlap. If F approaches zero,
then ug, will also approach zero by Eq. (3.48). Hence the speckie pattern will become l‘n..?*
uncorrelated. ; 'h"
3.2.6 Special Limiting Forms of u,y
By aliowing a—»b in Eq. (3.48), we can also immediately determine the anguiar 'E:.";?;.:
0

¢
:'l:.'c

" '."I"‘

rA

dependence of the radiation pattern <I,> from a cascade of two diffusers:

0). (3.49)

k o\ 2
. <l >=u =(-—°—) cos’® F(O:k kk —k
a aa 2 a a a al oal

n

“. {

Written in terms of R, ,R,,, and A, Eq. (3.49) becomes 'O“E
2 ]

o

i
g
@

dr _(3. 50)

k \2
_[ -8 2 . . A (e
<Ia> ..( o > cos BGJ Rll(r,ka,ka)Rlz(r,ka,ka) A(r;0)exp

i(ku—koal)or
Itis significant that there is no dependence on the spacing H in Eq. (3.50). Furthermore, oy
o
.
o
) v,

(]
u‘:::o' \

n:&‘

ey
. . B g - " - » - t
S, S T T T S g S T i S S Bt e B T e De S el Ve Sin Y ' % OO O T Do G O L LA A e L A\C:..t
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8

o by applying the convolution theorem to express the Fourier transform of a product as the

:‘3 convolution of the Fourier transform of the factors, we see that <I,> for two diffusers

Z in tandem is essentially the convolution of the patterns from the individual diffusers.

s

a We also note that if the roughness of one of the diffusers is set to zero, then R, for .
':': that diffuser will be unity. In this case, Eq. (3.50) reduces to the radiation pattern from a

‘E:, single diffuser as expected: ’
Y

K <I > =( % ) " cosla, [ R ek k) Aw0) expli(k, ~k Jor| dr. B3V

;:1 For completeness we also list the general form of u,; that results from a single diffuser.

:%j' This limiting form is obtained by setting H,=H;=0 in Eq. (3.48) and setting R, to unity

“: for one of the diffusers. This leaves us with the angle and wavelength dependence of

,:f;' speckie from a single thin diffuser:

;?: k k

"13'

3’! U= (—;;-)b-zexp(—id»ab) coseaoosﬁb

;:Z (3.52)

:\ X JR‘(r;ka,kb) A(r;Akab_L)exp(ikabl or) d*r.

0

3.2.7 U,p, for an Arbitrary Plane-Wave Transmission Function

j‘.::, Thus far in Section 3.2 we have calculated u,, for the double-diffuser geometry

P

j: shown in Fig. 3.1. In this section we derive the expression for u,; for an arbitrary plane-

R wave transmission function #(r;k,) that represents propagation between planes ! and Il in

‘E:E Fig. 3.1. By applying Eq. (2.4) we obtain the output complex amplitude vg , at plane Ii,

S:;:;i including the effect of the aperture a, that arises from an input plane wave with wave :
::: vector ky: ‘
EE;:‘ u2+(r;k0) = exp( - ﬂ(olo r) t(r;ko)a(r) . (3.53) '
’;:. The expression for the complex amplitude v(k,;k) in the far-zone of the aperture a that

“’:: corresponds to Eq. (3.17) is obtained by applying the far-zone impulse response given in

:::i Eq. (3.16):

Ny o o m . LR AN . . M - - -
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ik X .
ok k)= P exp(-—zk R) cosd .
. i 2 '
XJ t(r,ko)a(r) exp[-t(kol—kl)or]dr. (3.54) ‘.‘u
Equation (3.54) could be generalized to include a functional dependence on one b, '-:d

or more additional parameters of the transmission function, e.g., the H dependence of I:;";::‘i:
H.S:(
{
the plane-wave transmission function ¢ given in Eq. (3.18) could be shown explicitly as :.'o oy

. . . . o
HH;: ;k,) so that decorrelation with respect to this variable could also be analyzed. The st

general expression for u,, that corresponds to Eq. (3.19) for a cascade of two diffusers is A o

kk,
4= T —exp| —iR(k, k)] cosd, 080, S

“ (2n)" a2

X I J Rtlz(r2—rl;km;kob)a*(r‘)a(rz)

: 2. 42 3.55 e
X exp[l[(km—kal)orl— (kobl—kbl).rzl}drld ry, (3.55) q-:.f"

where 0

T ok Y= . ' Ayt
R “2(r,km,kob) = <£(r'k Jur+rik )>. (3.56)

4
is the two-state correlation function of the ptane-wave transmission function for ‘q::‘::':',
propagation between planes | and . 5
By making the substitutions
r=r—— (3.57a) ;
and ; !.l‘:
r
r.= r'+ -, (357b)

2 2
and recalling the definitions of the normalized aperture ambiguity function A in Eq.

7~
- .

Ay A

(3.23), the speckle-tracking wave vector Ak, in £q. (3.25), and the Fourier-transform

a4
¥,
-'

wave vector k,p, in EQ. (3.26), we can simplify Eq. (3.55) to o

) o o, o« g Y "y W W ™

) - S - 137 91 -y g { L { nn AR -
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: o)
: e
{
3 D
5 .'- {3
k k
ab it
[ - g 2 —-i - f Q’
. u,= > exp[ tR(kb ka)] cos cosB, o
K (21!) Mo
i "
i (M
N v
, ‘.’(
. i . 2 (3.58) !
X [R‘m(r,km,kob) A(r,AkabL)exp(zkab_Lor) dr. . W)
f Note the similarity between Eq. (3.58) for u,; for a plane-wave diffuser transmission :‘.:',;
by
'.," . (e
& function and Eq. (3.52) for a thin diffuser transmission function. The essential difference ::::
)
k is that the wave numbers k, and k in the arguments of R, are generalized to ko, and ks *:tf
[
i in the arguments of R, ,. Of course, Eq. (3.47) could also have been derived by oy
L4 . { ‘
§’> " t
i calculating R, ,(Ha,Hp;rkog;Kop) from Eq. (3.18) for (H;r;k,) and then substituting R, , o::P
o4 ot
o into Eq. (3.58). Wy
2%,
."" '1;\
b "Q
5 3.3 Two-State Correfation of aTransmission Function .
O
fo ",
A Equation (3.45) is a general expression for u,y in terms of F, which in turn depends .::
- on Ry and R,,. In order to study how the decorrelation of speckle is affected by different 9
‘4
na ) N
::' types of diffusers, we must calculate ug;, for various functional forms of R, and Ry Of 'ﬂf
:' l..'(
if: course, the functions chosen for R, and R,, must satisfy certain mathematical properties ':::
4 1)
in order to be valid correlation functions.9 For example, we know that the Fourier *
i (W
. R e%
*:" transform of an autocorrelation function must be non-negative. We can see that this is 5
X .
! ,
Q:: so by referring to Eq. (3.51) for the far-zone intensity pattern from a single diffuser: In NG
i
% Y
Eq. (3.51) k, =k so that R, is the autocorrelation function of the transmission function i
‘ with respect to the offset r. We can cause the aperture ambiguity function A(r;0) in Eq. .
i
y ) » "\
‘» {3.51) to be very wide compared to R(r;k, k) by increasing the width of the aperture so '::
! o,
that A(r;0) can be replaced by A(0;0)=1. Then the Fourier transform of R, is essentially . k
@ .
) Lt
\:: the far-zone intensity </, >, which, of course, is non-negative. . :.
] 4 i
L) SR
;: Equation (3.51) is very important because it provides a simple method for e
[) -
§
L determining R, for the individual diffusers.10 For example, if R, is circularly symmetric, e
v R
()
g ;
" W,
) h ";
R |
W e
. [ 4
l" Iy
OO A O s O D DN DA DN D AN N DN e R DR AT D008 AN S AR Y, £ G0t 0l s NG R



\]
i.e., if it only depends on r through its magnitude |r], and if the illumination is normally ::'.«_:::-’
incident, then the radiation pattern </, > will also be circularly symmetric with respect o~ '
V) ...ﬂ
to the z-axis. It follows that R, can be obtained by measuring </, > as a function of 8 in ::.'::e:::
NN
LMK
. OO
one plane ¢ = ¢, and then calculating the Fourier-Bessel transform numerically. ::,‘::::::
3.3.1 Phase-Type Transmission Functions T s
||‘ |";
L In evaluating Eq. (3.47) for ug, given the functional form of R, and R,,, one could .:::
consider transmission functions that change both the magnitude and the phase of the ,:::'?.:j‘;
MR
incoming illumination. However, here we will be concerned with phase-only diffusers as L
. A
represented by the transmission function in Eq. (3.6). By substituting Eq. (3.6) into Eq. .Qa‘.“
g
.)

(3.7) we obtain

R‘(r,z-rl;ka,kb) —<exp[ n, h 1 2)]> (3.59) 1'..‘

where ‘.‘:
‘ ".
n=k(n~1). (3.60) . ::. :'.‘-

In Eq. (3.59) we also use the notation g =nlky), np=nlky), by =h(ry), and hg=h(rs). !

Equation (3.59) is convenient for statistical calculations because the right-hand side is just .::::
the joint characteristic function of the bivariate probability distribution function ,0..::'

Py(h,hyir,,r,) of the height profile of the diffuser surface. .'
3.3.2 Normally Distributed Diffuser Height Profile "
For definiteness in the following analysis, we will assume that the diffuser height :3:
Pyttt

profile obeys a jointly normal distribution. Then evaluation of the joint characteristic

function yields the following well known relationship between R, and R;:
) o, . (3.61)
Rl(r;ka,kb) =exp [ - ? (rl: —2Rh(r) N, + rzb“) J .
Itis very useful to factor this expression in the form'!
2

Rk )—exPl_o rz,, n > ] exPl—Of’lanb(l ‘Rh('))J' .62

The first exponential in Eq. (3.62) contains the essential wavelength dependence of the




RN RN A RN AR AN U XA AN U RN N VN A U A O I AR Y] PR U N U RO Vv s G x " Ao U ol Ul At @ e i 6*2 4'8 S B &° T "’“'
v T “‘

58 B

diffuser, while the second exponential contains the dependence on the correlation

function R;. Written in terms of the wave number k and the effective rms roughness g, iy

Eq. (3.62) becomes :5‘
1

2 1008
R ik k) =exp - o?t (ky=t,)?] exp| =k k02 (1 -R,®) . G-63) .

At this point one could substitute any valid autocorrelation function for R, into e
Eq. (3.63). However, it will be instructive to consider two limiting cases that depend on !.:gt
the degree of roughness of the diffuser: If k,kp0,2=8,8, < <1, i.e., if the diffuser is very &

weak and hence passes most of the direct beam, then Eq. (3.63) reduces to . "...;.'

T 2 (3.64) )
Rt(r;ka’kb) ~1- ?(ka +kb) +kakbat Rh(r) ’ :::":h‘

In Equation (3.64) we note that R, can drop only slightly from its initial value of unity that
occursatr=0and k,=ky. For example, if Ry, is zero outside of a certain region, then R, is 2:
represented by the first two terms in Eq. (3.64) in that region. In terms of the roughness >
parameters S and S, thisdrop is (Saz+Sb2)/2, which is small compared with unity by the ®
assumotion of small roughness. “A
If kakpo2>>1, i.e., if the diffuser is rough compared to the wavelength A, and if "S,;:
Rp(r) is circularly symmetric, then there are two important subcases to consider that "®
depend on the behavior of B,(r) for small values of the offset parameter [r|:1.10 A

If Rp(r) can be expanded in a power series such that AT

Ir] )
R)=1-—+ .., (3.65) ®

w s
then Ry is cone shaped for small values of [r|. Since the behavior of R, is dominated by 3
the functional form of R, for small offsets when k ky0,2> > 1, we can approximate R, by

substituting the first two terms of the expansion in Eq. (3.65) into Eq. (3.63). Following

this procedure, we find that the [r| dependence is a decaying exponential:

2 &

o (3.66) Ao

, _ t 2 9 Ir| o
Rt(r,ka,kb)—exp[——z— (kb'—ka> ] exp[—k kao®— J -

a bt o

The second subcase for very rough diffusers occurs when the linear term in Eq. N ‘
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(3.65)—is absent and R, is shaped like a paraboloid for small offsets |x{:

h(l ) 1 ( ) TSN (3. )
In this case Rg is approximated as a Gaussian:

2 2
R (rik k) =expl-—(12£- (kb—ka)2l expl-kakbolzll:—lz . (3.68)
Unlike Eq. (3.64), where there was little drop from the initial value of R, Eqs. (3.66) and
(3.68) rapidly approach zero for large values of r. As a result, the decorrelation effects
arising from diffuse scattering are more pronounced when the diffusers are rough
compared to the wavelength of the incident light. Therefore, Egs. (3.66) and (3.68) will
be very important in the calculation of the decorrelation of speckle from cascaded
diffusers. We will refer to diffusers having autocorrelation functions R, given by Eqs.
(3.66) and (3.68) as conical, C, and paraboloidal, P, diffusers, respectively.
in comparing Eq. (3.66) for the conical correlation function with Eq. (3.68) for the
paraboloidal correlation function, we note that the effective correlation lengths scale

differently with wave number k and roughness o,, i.e., for the conical correlation

function, the effective correlation length is

w

w, = ———— = i’; , (3.69)
kkyo, Sy
but, for the paraboloidal correlation function, itis
w = Lz (3.70)
\/kakbot Sab

The quantity o/w in Eq. (3.70) for a paraboioidal diffuser is closely related to the rms
surface slope, which can be shown to be 20,/w.

The texture of the rough surface controls the functional form of R, for small
offsets. For example, when Eq. (3.65) applies, the surface is very jagged, but when Eq.
(3.67) applies, it is bandlimited in spatial frequency. In Chapter 5 we show that the
angular distribution of intensity from ground-glass and etched-glass diffusers can be

derivec by using Eq. (3.65) and Eq. (3.67) to represent R, respectively.
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3.4 Two-State Correlation of intensity Lty
Since one would ordinarily measure intensity rather than complex amplitude in a e

speckle experiment, we will now consider the correlation function OA0S
4 ¢

(3

<I I Sz=—<y v *U U‘) (371) .l'l,.’:
ab 4 a a

A b7b R

0 ";l
between states a and b of the output specklie intensity. . “';"

3.4.1 General Complex Gaussian Statistics Moy

In general, one can not deduce the fourth-order moment </I,/;> of the complex @
amplitude v given uyp. However, if we assume that the output aperture a is large enough . ;:“':.'
to contain many independent scatiering cells of the transmission function ¢g, then, by the ::’n
central limit theorem, the real and imaginary parts of the complex amplitude v will be
normally distributed. We make no assumptions about whether the complex random !
process is circular or whether the real and/or imaginary parts have zero means.12-15 The |.'.:,t
conditions that must be satisfied in order to be able to make these simplifications will be
established naturally in the following analysis. S .:.

We note that the fact that v obeys complex Gaussian statistics is consistent with 4‘0;""
the results of O'Donnell.'6 His conclusion, that the fluctuations of far-zone speckle

intensity for doubly scattered light are stronger than those for Gaussian speckle, is valid

e
H’§
2.2

when there are a small number of speckles incident on the second scatterer. Ffor

example, if the area of the speckle incident on the second diffuser is comparable with the

e

EAT J

"I{rf.::

area of the diffuser aperture, and the speckle pattern is dark over the region within the

Kada

aperture, then the intensity of the whole output speckle pattern would drop. This ’

57

phenomenon does not occur in the system shown in Fig. 3.1 because there is no limiting .

»
X Aty

.&

aperture on the input plane wave to increase the speckle size at plane Il. In addition, we

2
2

assume that the output aperture is large compared to the wavelength of light and to the

’I. w,
o B

correlation length of the diffuser.
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By applying the Gaussian moment theorem for a non-circular, non-zero-mean
complex Gaussian random process, see Appendix A, we arrive at the following expansion

for the two-state correlation function of intensity:

<Ialb> =u u,+ |uaIJ2+ lui,f -2 uu,, (3.72)
where
2 (3.73)
t . . . . -
u,, = " 3 <U(Hu’kua'ka)u(Hb'kob’kb)>’
(]
and
2 4
u =— |<uH k k)>|% (3.74)
a A 2 a oa’a

(V]

Equations (3.73) and (3.74) are defined in analogy with Eq. (3.2) for uqp. In Sections 3.4.2
through 3.4.4 we will derive expressions for the last two terms of Eq. (3.72) and find the
conditions under which these terms may be neglected. When these conditions hold we

have the usual result for zero-mean complex circular Gaussian speckle:

gy

1+ )
RPL S

<Ialb> (3.75)

<I ><I >
a b
3.4.2 Non-Circular Component
By slightly modifying the derivation of ugp in Eq. (3.31), we obtain an analogous

expression for the non-circular component Utab of Eq. (3.72):

t kakb t ka kb
u,= 2exp(—¢¢ab>coseacosebjB(r;kml+kou;—;,f—{—)
(2") a b
. oy . 1] 2 (3.76)
X Bk ki -4k, -2k, ) exp[- 5 (kobl_km)-r] d*c
. where
(3.77)

o}, =k H + kH,+ (ka+ kb)R.
In €q. (3.76), B is as defined in Eq. (3.24). We note that the arguments of B in Eq. (3.76)

are obtained from those in Eq. (3.31) by changing k, to -k,. This is a direct consequence
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of not having a complex conjugate on the first Fresnel kernel for state a. In Eq. (3.76) we

also define F* in a manner similar to F in €q. (3.30):
. . . — 3 . 1 ',
Frwsk kiok k)= J RY, (+rik k) BY (ko)

X At(r';kl) exp(iAkl or’) dr' . (3.78)

The § symbol denotes that there is no complex canjugate on the first factor, i.e., that

t . =
R‘ (rb—ra,ka,kb)— <l(ra,ka)t(rb,kb)> , (3.79)
and
1 r r .
Yook V= — ' - "4 o= ; \ g2
A'(rk )= e J a(r’' - 2) a(r’'+ 2) exp(—zklor ) dr'. (3.80)
o

The general expression for uf,; is obtained by substituting Eq. (3.44) for B into Eq. (3.76):

2, 2 : o1
. Ry exp(—uﬁab) (i HH,
P

u,=-~i - —
2 kH +kH,

ex lk  +k !2)0039 cosf
ab (2")3 kaa+kaHb oal obl a b

)

t.. . .
X J F (r,ka,kb,—%Akabl,—-2kabl

; kakb
kaa+kaHb

L 2 (3.81)
Elrl +(lIbsobl—Has(m_L>or ]d r.

X exp{ -

We note that the ‘enominator, kpH, + kg Hy, is non-zero unless f{;=Hy=0. Therefore,
there is no delta function form of B corresponding to Eq. (3.46).

We pause to compare the functions R, R, and A in the definition of F in Eq.

(3.30) with the functions R¥, , R%,, and At in the definition of F* in Eq. (3.78). First, we

note that A*=A when the aperture function a is real. Similarly, R, =R, and R%,=R,,

for a magnitude-only transmission function. On the other hand, if the functions a, ¢,

and ¢y are complex, then the regular and the daggered functions can behave very

differently.

-

B o Ry U AN o . - T L TS A N N e R P N N I
W SCACBENGNY A0 LAY "‘-'!,x&.‘t Al A-'l,-'l’h, .'. N > J.’l.‘,l Lt H,.,,I'_\.’ " P I"J' "‘"'\"J" N

-

Y .'. -

AT



For a phase-type transmission function, there is a simple relationship between R,

and R%,; it is obtained by changing the sign on the k, variable:
t .. = .
R* (rk k )=R (r;=k k). (3.82)

Thus, Eq. (3.63) is modified to read
2
¥k k)= 2k k)2 ko?(1-R (3.83)
R® ek k) —exp[— 2 ( »t a) ] exp[ka 59, ( - h(r)) ] .
Whereas R, is an autocorrelation function, and hence drops from its maximum value of
unity that occurs at zero offset and at k, = k3, the function R%, is not an autocorrelation
function, and it increases from an initial value that is less than unity. Furthermore, since

R, approaches zero for large values of the offset parameter, R, and R%, have the same

asymptote:
2

o (3.84)
. —p¥ (o — (2, .2
Rt(m’ka’kb) =R t(m’ka’kb) =exp [ T 9 (ka + kb ) ] ’

In Fig. 3.3 we compare the behavior of R/r;k,k) and R¥,(r;k,k) vs r for
2

Rh(r) = exp(— :’—2 )

and for various values of S. We note that R¥, becomes negligible for all values of its

(3.85)

offset argument as S increases. Thus F*, and hence ut,;, can be .ignored for large values
of S. In Section 3.4.4 we will further discuss the relative sizes of the different terms in Eq.
(3.72).

In addition to the difference in behavior between the reqular and the daggered
functions, we notice the following very important difference between F and F* as they
occur in Egs. (3.47) and (3.81), respectively: The order of Ak,py and k. is switched in
the argument list. Hence, itis k51 rather than Ak, that occurs as the wave vector in
the second argument of A%. Since a(r) is ordinarily a simple aperture, and hence a real
function, A and At will be equivalent in many cases. We have already identified the
width of A with respect to the wave vector as the average size of the speckle, and we

know that this size is the same as the size of the direct or the specular component of the
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radiation pattern. In Eq. (3.47) for u,p, one would ordinarily set Akgy) to zero to track
the speckle motion at the output. However, since itis kqp) that occurs as the wave vector
argument of A%, and At is usually very narrow with respect to this argument, we can
cause the ut,; term in Eq. (3.72) to be negligible simply by observing in a direction
different from that of the input plane wave!

In the above discussion we have seen that the behavior of the function u#,; is quite
different from that of the correlation function ugy: Whereas |ugpl/uqe has @ maximum
value of unity when a—b, the maximum value of |ufgp|/uy, is negligible when S is large or
when we observe in a direction away from the direction of the input plane wave. In
Section 3.4.4 we will see how large S must be for us to be able to observe at kyp; =0 and
still ignore the ut,, term in Eq. (3.72).

3.4.3 Expected Value of Far-Zone Complex Amplitude

We now derive an expression Jor the final term in Eq. (3.72). We can write the
expected value of the far-zone complex amplitude by making the following argument:
Since the random processes {; and ¢y are stationary, the expected values <tj(r:k)> and
<ty(r:k)> are independent of the position r and can be factored out of the integrals in
Eq. (3.17). What remains within the r’ integral is a Fresnel-zone approximation to
propagation of a plane wave between planes | and Il. Instead of using this
approximation, we will calculate the exact propagation by multiplying the input plane

wave by the complex exponential exp(-ik, H). Thus,
Hk k)>= —lk—— ikR ik H ) cos8
<ulHk ; )>—2nR exp(-—t )exp(—-z . )co:

) ) _ (3.86)
X <tl(0,k)> <t2(0,k)> A(kol kﬂ'

where A(k ) is the two-dimensional Fourier transform of the aperture function a(r):

A(kl) = J a(r)exp(—iklor) d*r. (3.37)

The resulting general form of u, is
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a | ' 2 (3.88)
e': u = (2n)2 s :&E |<tl(0;ka)> <t 0k )> A(koal—ku)l .
¢
',:‘; Since |Al2 is essentially the far-zone radiation pattern for plane wave illumination of the
'”: aperture, and the angular spread of this pattern is usually small, we see that 2u,uy in Eq.
v::: (3.72), in addition to |u,{2, are negligible compared to the other terms if the
:::E observation point is not in the direction of the input piane wave.
::: We point out that <#0;k)> for the phase-only transmission function defined in
N Eq. (3.6) can be written in terms of R, of £g. (3.59) by setting the offset and the first &
A

: parameter to zero. This reduces R, from a bivariate characteristic function to a univariate

0
a characteristic function:
o <HO:k)> =R (0;0,k). (3.89)
o
i
i X 3.4.4 Relative Size of Terms
.fi
. As discussed in Sections 3.4.2 and 3.4.3, the terms |ut;p] and uguy in Eq. (3.72) have
Z:: their maximum values when kg5, =0, and they fall off rapidly when kgp; points in a
ALY
\: direction that is a few speckles away from the direct beam. Thus these terms are only
N
4, important over a small region centered about k;;,; =0. However, in some applications it
‘,:;o is desirable to use small values of k.3, e.g., the analytical expressions may be much
o,
::: simpler to evaluate and to use if kg3 =0. We now find the conditions on how large S
[N
{: must be for Eq. (3.75) to hold when Ak, =kg,1 =0. For simplicity we let a—b, and we
e use Eq. (3.38) for A(r;k_). !n addition, we assume that S> > 1 so that Eq. (3.68) holds for
)
:" R, and that Rj approaches zero for large arguments so that Eq. (3.84) holds for R%,,
3
"
:.‘ outside of a small region around the origin. We will also assume that the effective

)
s correlation lengths wy, in Eq. (3.70) are the same for both diffusers. In comparing the size
(A
»
"s of the terms in Eq. (3.72) it is convenient to normalize by dividing each term by ugqups,
WY,
:: the product of the average intensities for the two states. Thus, the first term will have a
o

constant value of unity and the second term will have a maximum value of unity when

"
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b
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: , - , )
a—b. The result of the calculation for the maximum values of the remaining two terms is ottty

2 12 ,
uy  lug | 2w \4 (3.90) )
_— =(—a> exp(—4Sz). :"l\"l"_
u? u? w

w “a P ity
As a numerical example, if w,=1000 p and wp,= 1 y, then S must be greater than or equal St
to 2.96 for each term to contribute less than 0.01. By comparison, the maximum value of ez
the first two terms is 2.0. If S is increased to 4, then this error plunges to 2.6 x 10-15. ’.'I’e.i'.,
Equation (3.90) serves as a guideline for determining when Eq. (3.75) can be used at any

observation position, i.e., when it can be used even at kg =0. ¢

3.5 Remote Sensing of the Spacing between an Aperture and a Diffuser

The results thus far in Chapter 3 have been quite general in that we have not
specified the type of diffuser or the functional form of the aperture. A calculation of "‘Ego‘;
<I,I> for a specific type of diffuser will be presented in Chapter 4, where we will gain a
much better understanding of the interrelationship between the various parameters that O
cause decorrelation of the speckle pattern. Before closing this chapter, however, we ::2‘.,)(- OE
wish to point out an interesting subcase of the analysis that does not require knowledge &
of the specific functional form of R,, that of the remote sensing of the spacing between » SN
an aperture and a diffuser. Nday

We obtain the above limit by removing diffuser Dy in Fig. 3.1. In the theory, this is o .:',‘,
accomplished simply by setting R,, equai to unity in Eq. (3.30) for F. If diffuser Dy is e Vol
strong, i.e., if §;>>1, then R, approaches zero as r increases. Since the aperture
function a is usually very wide compared with R, ., the spatial dependence of the

aperture ambiguity function A will aiso be wide compared with R,. Hence, we can

evaluate A at the point r' =-r where R, is maximum and then factor A from the integral.

After shifting the variable of integration to also remove r from the integral, we obtain $"‘~v o

P - - o W W W W, : : %, . s P A A LA Y AL P A LA A" w gw wy e«
"‘|.~ ""“‘J'"'.i “\. t"l- "» 'Q»"l!‘..-“l. a ) o.\w ’v LY ‘f‘ X V" 'q o » ‘,- " N Y\ \ ‘. \‘ N‘ “'.- vl l.l',.,l " o~
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Firik kygk, 18k, ) ~Al=ridk,, Jexp( - ik, or) s
:'n':'t
‘. ' ' ' 3.91 WA
X J R‘l(r ,ka,kb) exp(lkablor ) dr'. ( ) ,":‘::Z'
N
Equation (3.91) for F can then be substituted into Eq. (3.47) and evaluated for a given * =
WA
U0
aperture function. :'{::35
. A
A (i
For angular decorrelation only, we obtain a particularly useful result. Since k, =k :. ,::o:
ot
4D
and H,= H,, we can use the simplified expression given in Eq. (3.48) for u,p. Then, if Eq. ‘ -
(3.75) also applies, and if we require that the tracking conditon Ak,p =0 is satisfied, ::::::
i
. o Wt
then the two-state correlation of intensity is ;l.':ag,
c‘l';:o‘
<lI> g
a'b . 2 (3.92) -
— =1+ |AH -H 0.
<I><[ > |AtHs y, —Hs,,:0l aye
a b l ';"'?.!
Equation (3.92) does not contain any integrations, except for the implicit integration g:::l'i
« ".t
involved in ca!culating the aperture ambiguity function from the aperture function. In l:=
AOUY
addition, Eqg. (3.92) does not depend on the functional form of R, but only on the fact ._
that Ry is a narrow function compared with A. , 5
| '.g
4.+
From Eq. (3.92) we see that one can determine the spacing between a diffuser and '13:‘;
1
g > \‘
an aperture, given the aperture function a(r), by observing the speckle pattern as the
T
angle of illumination is changed. A practical impiementation of the experiment is to ﬁ‘ :
¢
illuminate the diffuser at normal incidence, sy, =0, and to observe the speckle in the “":‘:
0
i
same direction as the input plane wave as the diffuser and aperture rotate as a unit Py
W
about the center of the aperture. In this configuration k., =0 and the tracking E'.:f.::
» '.
condition, Akgp) =0, is automatically satisfied. We note, however, that Eq. (3.92) does ::":":":
gt
apply for arbitrary values of kgp . For a circular aperture of radius w,, we substitute Eq. , e
i\
(3.40) for the autocorrelation function of the circular aperture into £q. (3.92) and obtain \j\ :
L
.
[
the normalized two-state correlation function of intensity :\r\
l\’
<I 1> _ 2 T
b 4 0\~ . Ll &
_ .—_l+—cim(0(cos_l£—£\/l—£l> . (3.93)
<l ><[.> 2 7
a b n o |"
\
o
t
.‘ .
W
Wahy
A4
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We define £ in Eq. (3.93) by the expression 2 ‘c'::n';

2w ,".".
a

and we note that sinA8= |, |. :‘2«':*;
. Equation (3.93) is plotted in Fig. 3.4. We see that the function has a maximum i
value of two and a minimum value of one, and that it is cone shaped for small offsets §,. l'..\.
In determing H from experimental data, it is convenient to find the value of § in Eq.
(3.93) by comparing the experimental and theroetical curves for small values of §. The bl
power series expansion for Eq. (3.40) is . WA

® 2n+1
2 - 4 1 2Zn-=-3N¢ 9
—(oos"lt—i\/l—ﬁz)=1+—[—f,+ —€3+ E—-—z———— (3.95) O '0:
" n 6 =2 2%at@n+1) e
for0<{=<1. In Eq. (3.95) we make use of the double-factorial notation n!!=n (n-2) (n-4). . )

.5.3. 1. Thus we can write the first two terms of the series expansion for Eq. (3.93) as 2000

<l 1> o,

4 ¢
ab _ 9 _ HsinAS + . . .. (3.96) ittty
<I><I> nw, CORONY

|
Equation (3.96) is plotted as the dashed line in Fig. 3.4. It is very useful for determining R
H, given w,, from the slope of the two-state correlation function near the origin with W

respect to angular detuning AB.

0
3.6 Summary and Conclusions :‘ék:‘z \
In Chapter 3 we have analyzed the general probiem of decorrelation of speckle bf".s"'
from a cascade of two parallel diffusers. By decorrelation we mean that the two-state
correlation function u,, becomes small compared with its initial value ugy,, or that the «." )
normalized two-state correlation of intensity in Eq. (3.72) approaches unity. The :':-.’fg‘
setup for analyzing the speckle is illustrated in Fig. 3.1. In this figure the diffuser pair is @
illuminated with a plane wave of wavelength \ that points in an arbitrary input direction ~ ':'.
so. The two diffusers are separated by a spacing H, and there is an aperture a in contact

with the second diffuser. We have written the expression for the complex amplitude in .

1
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the far-zone of this aperture in Eq. (3.17), and in Eq. (3.47) we have given a generai
expression for u,,, the the two-state correlation function of the far-zone complex
amplitude. The two states a and b represent different values of the four parameters that
can be varied, i.e., the wavelength A, the input direction s,, the spacing H, and the
observation direction s.

In Eqgs. (3.25) and {3.26) we have defined the two important wave vectors Akgp )
and k.. When Ak, of Eq. (3.25) is equal to zero, we have the speckle tracking
condition, i.e., our observation point moves with the local speckle motion. The other
vector, kqpy of Eq. (3.26), represents the average difference between the input and
observation wave vectors for the two states. When Akgpi =0, kqpy acts as the Fourier
transform variabie for the far-zone speckle pattern.

The general expression for u,, given in Eq. (3.47) takes the particularly simple
form given in Eq. (3.48) when k and H are constants, or more generally, when Eq. (3.45)
holds. Equation (3.48) is proportional to the double-diffuser descriptor function F that is
defined in Eq. (3.30). The offset vector H s, -Hpsp1 that occurs as the first argument
of F is particularly important. It can be interpreted geometrically as the lateral shift at
plane || between two rays leaving plane | at the same point and traveling in directions s,
and sy,

The function F contains all of the dependence on the statistics of the diffusers
necessary for the calculation of ug, through its dependence on the correlation functions
R,l and Rt._! defined in Eq. (3.7). For this reason, F serves as a useful descriptor for the
diffuser pair. The function F also depends on the aperture ambiguity function A that is
defined in Eqg. (3.23). In general, an ambiguity function depends both on a spatial and on
a spatial frequency variable, and there is an inverse relationship between the width of
the ambiguity function with respect to these two variables. As it appears in Eq. (3.30), A
depends on r' and on the wave vector Akgp . The speckle size is equal to the width of A

with respect to Ak, . Thus, when Akgp . becomes larger tihan the speckle, A drops

‘l, -{‘-.‘\'_'-
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* rapidly. !n most applications the experiment would be designed so that Ak,  =0. .
! Ordinarily, the width of the aperture function is large so that A is wide spatially “Ay
]
. X t
3 compared with R,. Therefore, A can usually be evaluated at r'=0 in Eq. (3.30) and ‘,u:f
A - (N
< J |‘?
E factored out of the integral. For convenience, the ambiguity function is normalized to . st
; unity so that A(0;0)= 1. As illustrations of the functional form of A for common aperture ;'
>
- . ¥
o functions, we have evaluated A for a Gaussian aperture, £q. (3.32), and for a rectangular ..c*
S ...:
i . . : . . W
I aperture, Eq. (3.33); the resulting expressions for A are given in Eqs. (3.38) and (3.39) NS
| g
y respectively. 0
; p y e
. v, )
." Some special cases of uy, are listed in Section 3.2.6. When a—b we have the v
by =23
{: radiation pattern from a cascade of two diffuser, £q. (3.50). This formula is reduced to : i
i
! the expression for the pattern from a single diffuser in £q. (3.51). For purposes of %.
oy ¢
) Y.
W comparison with the literature, uq, from a single diffuser is also listed in Eq. (3.52). In 8
) "
- Section 3.2.7 the calculation of 1, is extended to arbitrary wide-sense stationary plare- ‘h:;
kK ¥
. wave transmission functions. Speckle decorrelation from double diffusers is a special . )
R
d case of this more general formalism. »
I‘. Y S
'\ in order to perform calculations based on Eq. (3.47), the functional forms of R, \":
14
and R, must be specified. The relationship between the diffuser height profile -
o
L’ \
g correlation function R, and R, is discussed in Section 3.3. Equation (3.63) applies for ::f
Y
A normally distributed diffuser heights. The decaying exponential, Eq. (3.66), and the :::
-
S
Gaussian, Eq. (3.67). are two important limiting forms of R, for targe roughness diffusers, ®
3 %
w . . . »
- i.e., for S>>1. The decaying exponential applies when R; looks like a cone, and the :',\.
~ N
el Y
- Gaussian applies when R looks like a paraboloid for smal! values of the offset parameter \
“ (SN
4 - e
‘@
‘s In a typical speckie experiment, one would measure the intensity rather than the s
':E complex amplitude. Hence itis important to caiculate the moment <[ /[, >. Thisis done By
LS,
§ 4
) , o N
' in Section 3 4 for the important case where a(r) is wide compared to R, so that the real 2N
. i [
ok and imaginar, pats 3f the complex amplitude v are normally distributed. The expansion R4
n"‘l ’
'
o
o>
) '.-’
g o
5 ~
[v ‘.Qr
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of <[l Iy> for non-circular non-zero-mean complex Gaussian statistics is given in Eq. m"‘
(3.72). We derived expressions for the non-circular component ut,; in Egs. (3.81) and for SRR
the non-zero-mean component u, in Eq. (3.88). Although these terms may be important :::‘::;:
for some applications, they become negligible when the observation point is not on the ‘:!":?.‘
direct beam or when $> > 1. v
r‘ The condition on S for ut,, and u, to be negligible, even when observing in the &"&g
direction of the direct beam, i.e., at kg =0, is given in Eq. (3.90). Even for S as small as ‘.:é..:f
3, these terms make little contribution to the total expression in Eq.(3.72). 14V 068

The analysis presented in Chapter 3 is intended as a general framework for further ':,::"tg‘,.
study of speckle decorrelation from a cascade of two diffusers. The key expression, Eq. :"u‘::c.‘:
(3.47), can be used as the basis of many different remote sensing techniques. As an "yl

example of the generality of the analysis, we have given an expression, Eq. (3.92), that o

can be used to determine the spacing between a diffuser and an aperture by observing

VRSN
.

the angular decorrelation of the far-zone speckie pattern. Equation (3.92) is applied to a

vy
(]

circular aperturein Eq. (3.93).
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> Chapter 4 Wy
? " 3
I Remote Sensing of Double Diffusers \ .::
:z ':
E A

4.1 Introduction

In this chapter the analysis of Chapter 3 is applied to a specific type of diffuser

el X

cascade, and the interrelationship is discussed between the various parameters that

cause the far-zone speckle pattern to decorrelate. The emphasis is on remote sensing

Ry

. %,
3 _— . - . . . wh
i applications, i.e.,, on determining the diffuser properties or the spacing between :',s:f
k) {4
\ . . . W
:' diffusers from observing the far-zone speckle. We refer to the diffuser cascade ;::':

considered here by the symbol P-P because the autocorrelation functions R, and R, of

the diffuser height profiles Ay and ho are shaped like a paraboloid for small spatial offsets

r. We also assume that the diffusers are strong, i.e., that the rms phase delfay S is targe

compared to one radian. in Section 3.3.2 we have shown, that for a normally distributed

diffuser height profile, these assumptions lead to the Gaussian autocorrelation function

R, Eq. (3.68), of the diffuser transmission function ¢.

The P-P diffuser cascade is perhaps the most important example to consider

because Eq. (3.47) for the two-state correlation function of the far-zone complex

amplitude u,p can be evaluated in closed form for arbitrary values of all of the

decorrelation parameters. We use the resulting solution to gain a general understanding

of the different speckle phenomenon that occur with double diffusers. With this p;-
v

understanding we will know how to configure remote sensing experiments to extract the

spacing H between diffuser planes or the parameters describing the diffuser statistics.

We begin by reviewing Chapter 3; for ease of reading we will repeat the pertinent

equations in Section 4.2. In Section 4.3 we present the general two-state correlation

function of intensity for the P-P diffuser combination, and we discuss speckle

decorrelation with respect to changes in wavelength, spacing, and angle of incidence.
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We also introduce the five parameters p,, p1, p2, p3, and ps that one can measure by
performing remote sensing experiments and that contain information about the diffuser
cascade. In Section 4.4 we show how these parameters can be used to solve three classes
of remote sensing problems. In Section 4.5 we discuss how the remote sensing of the P-P
diffuser combination is expected to differ from the remote sensing of the other

combinations of strong diffusers that are considered in Appendix £ and Appendix F.

4.2 Review of Chapter 3
In Chapter 3 we obtained the general expression, £q. (3.47), for ug,, the two-state

correlation function of far-zone compiex amplitude from a cascade of two diffusers:

2 .
XN exp(—ld)ab) (l- HH,
P

=—i expl — ———— |k, -k |2>oose cosd
ab - - bL al b
(2,,)3 kH —k H, 2 kH —kH ° o a

ab

k k {
kaa—kaHb

X [ F(r;ka,kb;kabl;Akabl)exp{i 2
The two states are represented by the subscripts a and b on the parameters tha: can be
changed during an experiment. There are four basic quantities that we allow to vary,
see Fig. 3.1. They are the wave number &, the direction s, of the input plane wave, the
spacing H between the diffuser planes, and the direction of observation s. However, in

Chapter 3 we showed that these parameters occur in certain combinations that have

physical significance; therefore we defined the two additional wave vectors Ak,,; and

kqp in Egs. (3.25) and (3.26):

1 (4.1)
- Ir{2+ (HbsobJ_ - IIasm_L)or' }d2r.
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The wave vector k is obtained by multiplying the unit vector s by the wave number k, and
the subscript L denotes that the component of s or k that lies along the z-axis has been
dropped. We refer to Ak, as the speckle tracking wave vector because if Akgp =0,
then the observation point follows the speckle pattern as it shifts with changes of
illumination angle or wavelength. We refer to the other wave vector, kg3, as the
Fourier transform wave vector because it occurs in the Fourier transform kernel. It is the
average over states a and b of the difference between the input and output wave
vectors. Essentially, kqp 1 is the offset of the observation point from the input direction in
the diffuser radiation pattern.

The double-diffuser descriptor function F that occurs in Eq. (4.1) is defined in Eq.

(3.30):
I"(r;ka,kb;kabl;Akabl) = J Rll(r+ r’;ka,kb) th(r';ka,kb)

x Aw'ak ) exp(ikm.r') d*r . (4.4)
it depends on R, and R, defined in Eq. (3.7) as the autocorrelation functions of the
diffuser transmission functions ¢y and t9, and on A, defined in Eq. (3.23) as the normalized
ambiguity function of the aperture function a.

The condition that must be satisfied for changes in spacing to be balanced by

changes in wavelength is given in Eq. (3.45):
k k
=2 =
H I

a

o

(4.5)

-
o

If this condition is satisfied, then Eq. (4.1) simplifies to

k k

ab . f ) .
u = 2exp(—t¢nb>cxp E(kh”b-ka”u) coaOacosOb
(2n)
X F(H s, = Hs, kkyk, B8k, 0 (4.6)
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The spatial offset vector Hys,q1-Hpsop1 in the argument of F is important because it is
the shift between the autocorrelation functions R, and Ry, in Eq. (4.4). This offset can be
interpreted geometrically as the paraxial approximation to the lateral shift between two
rays that begin at plane | and propagate in the directions s,, and s, to plane Il

Since it is the intensity rather than the complex amplitude that is measured in a
typical remote sensing experiment, we have also given an expression, Eq. (3.72), for the
two-state correlation function of far-zone intensity. Equation (3.72) applies when the
speckle is Gaussian, i.e., when the real and imaginary parts of the complex amplitude are
normally distributed so that the complex Gaussian moment theorem (see Appendix A)
can be used to write the fourth-order moment in terms of second- and first-order
moments.

Gaussian speckle occurs when the aperture function a is wide compared with R,,
so that many uncorrelated diffuser cells contribute to the speckle pattern. In Section
3.4.4 we have shown that the last two terms of Eq. (3.72), which we refer to as the non-
circular and non-zero-mean components respectively, are negligibie for all observation
points if the diffusers are very rough, i.e., if ;> >1 and S9> >1. In this case we have
zero-mean complex circular Gaussian statistics, and Eq. (3.72) reduces to £q. (3.75). We
will use the normalization ug,,(0)ups(0) introduced in Appendix C rather than the
normalization uga(kgi-kKogilups(kpy-kesi) in this chapter. in other words, we will
calculate the normalization factor as the value of the intensity in the direction of the
input plane wave:

2
<l 1> Uyl . 1uabj 4.7
<Ia(0)> <Ib(0)> um(O)u M(O) um(O)ubblOJ

in analyzing the dependence of speckle from a cascade of two strong diffusers,
there are two important functional forms of the autocorrelation function R, to consider:
For diffusers that are very rough and that have a normally distributed height profile, R, is

given by the Gaussian, Eq. (3.68),

XN
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o)

A o 2 . |"|2 (4.8) )

i Rt(r;ka’kb) =exp [ - —2‘ (kb_ ka)z] exp( - ka kb0t2 —w2 ) ¥,
o,

if the diffuser height profile autocorrelation function R} is shaped like a paraboloid for

small spatial offsets r, and by the decaying exponential, Eq. (3.61),

? (4.9) o
E:E Rl(r;ka,kb) =exp[— o?t (kb—ka)z] exp(—kakbo‘2 % ) ! .

if Ry, is shaped like a cone for small r. In practice, a roughness S of 3 or 4 radians will

usually suffice for the diffuser to be considered strong. We designate diffusers having R,

given in Eq. (4.8) and (4.9) by the symbols P and C, respectively. Thus there are four

combinations of strong diffusers to consider: We denote them by the symbols P-P, P-C,

C-P, and C-C. The ordering of the letters corresponds to the ordering of the diffusers

from left to right in Fig. 3.1. In this chapter we will analyze the P-P diffuser combination

in detail. In order to make the analysis tractable, we assume that the aperture function a

is Gaussian, Eq. (3.32), so that the aperture ambiguity function is given by Eq. (3.38):

N ]

o Irf? 1 o
b i(rk = 2, 2 (4.10) P
::'. A(r,k_l_)—exp(— 2—-—; > exp( - gwa |kl| ) ~
y w )

The P-C and C-P diffuser combinations are treated in Appendix E, and the C-C diffuser

combination is analyzed in Appendix F.

4.3 Two Diffusers of the Paraboloidal Type

The intermediate steps in evaluating Eq. (4.1) for the P-P diffuser combination,

where the output aperture is a Gaussian of arbitrary width w,, are given in Appendix C.

In most practical situations the relation

2 \
w (4.11) <
o 2% hw?>> — (
n a'b a 2 *
W ) -

holds since the area of the aperture is large compeored to the area of the diffuser

correfation cells. This insures that the output speckie pattern is caused by many

ha® B 1J . Nm
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uncorrelated scatterers so that €q. (4.7) holds. Inequality (4.11) was applied in deriving
the final result, Eq. (C14), in Appendix C.
In remote sensing applications we will require that the speckle tracking condition,

Akgp 1 =0, issatisfied. In practical applications the tolerarice on this condition is that

2
lak , | << - (4.12)
a

When this inequality is satisfied,the error in the speckle tracking parameter is small

compared to the speckle size. Then Eq. (C14) reduces to

2 2
<Lty —expl 1(0“ +0‘2>_1< ! + ! )Ik 2]+
- Ta\ 27 2 o2/ ekt
<Ia(0)><1b(0)> 4 w' w, ka kb
1
2 2
+e"p[_(° 1+°e2)(kb"ka) ] 2
1+ 8
pp
wl2 w22 -1 1 2
X exp| -2k k, -+t 1+[32 | bsobL—Hasoa_Ll
0ll 012 pp
2 2 2 2 2
1 91 Op\-! O Wo Bpp 2
e - ger \ et oz) oz ow g /e
2k kb w' o w, w0, 1+[3pp
2 2
w o, -1 B (4.13)
1 "2 pp
X exp 2(l+ > w2> —1+[32 kabl.(llbsobl—IlasoaJ.) ,
0” 2 pp
where the spacing-wavelength detuning parameter S, of £q.(C4) is now
2 2
(“’l RN (4.14)
[ipp—z(kaa—kaHb> -+ -
otl 012

Eqguation (4.13) is the key expression governing the decorrelation of the speckle
intensity ‘rom a cascade of two paraboloidal diffusers. We will now discuss the
significance of the various factors and terms making up this equation, and we will ook at
certain important limiting cases to gain an understanding of how Eq. (4.13) can be used

to extract information about the diffuser pair. By inspection of Eq. (4.13) and Eq. (4.14)
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we see that the parameters that one could hope to find, based on this equation, are the
rms slope parameters "!17“’1 and o, /wg, the spacing H, or changes AH in this spacing, and
the sum of the squares of the roughness parameters o, and o, in the most common
application H, =Hjyso that AH=0.

We begin by writing the degenerate from of Eq. (4.13) that results from letting

a—b:
2 2
<l > ) 1(°“+°"">'1|s . P (4.15)
—a T pexpl_if B, _
<I(0)>2 P 2 wl2 w22 al  “oal
a

Equation (4.14) has the value two when the observation direction is equal to the input
direction, and it falls off as a Gaussian in the offset |s, | -S.q1| between these two
directions. By illuminating at normal incidence, s,,; =0, and scanning the output s, ,

one can extract the effective slope parameter, p,, for the diffuser combination:

2 2
(%1 %a\} (4.16)
P, =5+ )
Wy W

In practice one can obtain p, more directly by fitting the radiation pattern from

the diffuser pair, see Chapter 5, to

2 2
<[> 1(°¢1+°¢2>“| 2 (4.17)
—_— =exp| -~ —m+ — s -8
<Ia(0)> P wl'z wf al  “eal

Thus p, could be obtained by illuminating at normal incidence, s, =0, and finding the
value of |s;,|=sin8, where <I,>/<I,(0)> falls to its e-! point. This experimental
configuration is illustrated in Fig. 4.1(a). |f we denote the value of 8, where this occurs as
0., then p,=0.5sin6,. Of course this method of determining p, can only be used for
values of p,<0.5; for larger values of p,, one must fit the curve at angies smaller than 0,.
However, typical values of p, are small compared to one. For exampie, the etched glass
diffuser described in Chapter 5 has o/w=0.03 or o,/w=0.06 so that for a cascade of two
of these diffusers, p,=0.04. If the rms diffuser slope parameter o,/w is not small

compared to unity, then we will not be able tn ignore shadowing and multiple

048 ot <abx
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scattering, and the simple transmission function model given by Eqs. (2.1) and (2.2) may
not adequately describe the transmission of light through the individual diffusers.

As pointed out in Section 3.2.6, the radiation pattern from a diffuser pair is
essentially the convolution of the individual radiation patterns. Since the radiation
patterns from the individual paraboloidal diffusers are Gaussian, the radiation pattern
from the two diffusers, Eq. (4.17), is also Gaussian, but it has a larger width than either of
the single diffuser patterns. In other words, p, is larger than o, /w; and o /ws.

In using Eq. (4.13) as the basis for remote sensing experiments, we want to find the
simplest subcases that will allow us to calculate the diffuser parameters and the spacing.
As we will see below, these parameters can still be obtained from the formula that results
by setting ko =0in EqQ. (4.13):

<l I> _ s 9 . 1
TO><Lom> T exp| ~(oq+0, ) (ky=k,)’] 1+ B2

2 2
ok Wy Wy -1 1 H 9 (4.18)
X exp| - ab 02+_§- 1+B2 l bsobl—Hasoa.Ll ’
t1 0:2 pp

However, we will need to perform an additional experiment with kg1 #0 to determine
the ordering of the diffusers. We denote the three factors in the second term of Eq.

(4.18) by the symbols fi, f3, and f3:

f, = exp[-(o“‘;+ot22)(kb-ka)2], (4.19)
1
fy= =, (4.20)
1+[}pp
and
2 2
_ ok k Wy Wy -l ; 2 (4.21)
r3— exp | - ka b 7+7> 2 If bsob.L—I‘Iasoa.Ll
o 1+
I3 2 pp

We now discuss the physical significance of each of these factors and show how they can

be used in remote sensing.
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4.3.1 Wavelength Decorrelation
By requiring that Hys,5 1 = H,8,,1, We can eliminate f3 from Eq. (4.18). This leaves
the pure wavelength dependence of f; and the spacing-wavelength dependence of fs:

<I.1,> _ T 2 2 2 1 (4.22)
<I0)><I0)> =1+ exP[_<°t1+°t2)(kb_ka) ] 1+pp2p'

A simple way of eliminating f3 is 10 set s, =801 =0, i.€., to illuminate at normal

incidence for both states. See Fig. 4.1(b) for a diagram of this experimental
configuration. In most applications the spa-ing H is constant so that f3 could also be
eliminated by fixing the angle of illumination, not necessarily at normal incidence.

We first discuss the significance of the factor f; that occurs in Eq. (4.22). This factor
arises from multiplying the wavelength dependence of the individuai diffusers, see Eq.
(3.63). It does not depend on the spacing between the diffusers or on the functional
form of the autocorrelation functions R, and R,,, only on the fact that hy and hy are
normally distributed random variables. In order to facilitate the discussion of
wavelength dependence, we will define a new paramater p; as the fractional change in

wave number between states ¢ and b:

L {4.23)

In Eq. (4.23) we have denoted the change k;-k, between the wave numbers of the initial
and final states by the symbol Ak, and we have dropped the subscript a on the initial
wave number k in the denominator. We note that the fractional change in wave
number p; can range in value between negative one and infinity.

Using the above notation, we can rewrite Eq. (4.19) for fj in the form:
f,= exp[—(Sf*—S;)pr, (4.24)
where we have used Eq. (3.10) to express o, and o,, in terms of rms phase delays S; and

Sy at wave number k,. Since we have aiready assumed that §1>>1 and Sy> > 1, then

Eq. (4.24) implies that the wavelength dependence of the individual diffusers will cause

f ‘f "IIN.vfsN'\. 1\.‘1 -.. S R ST '\- nc .' A SN AN -.I’.‘(..-»'"

NaXaX)

24

r*fg—'{’i: N

¥
E’_{

P

;?3-?
%ol
“

ot

4

'I

-

.

2

i

‘5_ AP

: e
o

i

1'1 .
- & .‘\..L

5 %

%y
s

s, c
g e

"I'I%

Py

;.10

> >
b5

Ay
2,

7



" AD-A197 066

LASER SPECKLE FROIl THIN AND CﬂSCﬂDED D!FFUSERS(U) T 23
ROCHESTER UNIV

ARD-24626-PH-U IR

¥ INST OF OPTICS L G SHIRLEY WAV 88
F/G 97/ N




LA o OISR RNy ST

—
-l
ST

X

-

S i

é
. "
\
B 28 [il25 &
10 5 ja X
¢ | — 63 == RN
‘ L ke "= ’ ' I
: g -
: [l £ e R
| == .
‘ iz Jis s
[}
[ MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
[
¢
!
t
)
)
i
4
:
¥
'
L]
)
v
)
'
¢
Y
!
_ - ;-——;-——-r PRI L LIPA LAY £ = .\ -‘ \ TN 2
.4‘ -.\-\, | S N S N -{-.’\\'*J. f -J“n.:-\._\ f\_-“
R "‘.0 o #"“ S %:f S et wv R ."- e "‘ﬁ*”‘-"‘*i":*“""'
:u". n‘ ."' e *'* ""."‘ *‘J-"-'\‘ "J" \ 2 " N"'\. 4 \ W, NSRS
' . ‘.‘.". ". e: ':' ‘q.é. -.‘ "..l.. Al q.. I.!'... ¢, " n .- 0 0.5, “‘ - - Ty '." Aot NALELALE



[ 027, 0" a0 val ek Ve b

m‘ .’u I ¥

86

the speckle pattern to decorrelate unless [py|< <1. If f; does dominate the wavelength
decorrelation, then Eq. (4.19) can be used to extract the effective roughness

o= (odend) 29

of the diffuser pair.

We now consider the spacing-wavelength decorrelation factor f;; this factor is a
Lorentzian in the parameter B,,. If f; does not dominate the decorrelation, then by
substituting Eq. (4.14) for §,, into Eq. (4.20) for f5, we see that we can find the value of

the parameter

2 2
Wy Wwyn-1 (4.26)
py=2H(—+—) .
% %2

One method of obtaining pg is to measure the value of Ak necessary for the factor f3 to
fall to one half of its maximum value of unity for AH=0, then py=Ak-l. We note that
decorrelation arising from fo occurs more rapidly if the spacing H and the slope
parameters o; /w; and o; /wy are large. Large siopes imply a large spread in the radiaticn
pattern and a large value of H allows the light to spread spatially between planes. Thus
we see that this decorrelation phenomenon occurs more rapidly with wavelength
changes if the light scattered from a point on the first diffuser illuminates a large area on
the second diffuser and if the angular spread of light scattered from the second diffuser
is large.

If we define AH as the change from the initial spacing Hg, in the same manner that
we defined Ak as the change from the initial wave number k,, and if we drop the
subscript a on the initial values, then the spacing-wavelength detuning parameter that

occurs in the definition of f,, can be written as
kH —k H, =HAk—kAH. (4.27)
a a'b

The symmetry between decorrelation with respect to wave number k and spacing H is

clearly displayed in Eq. (4.27): If the spacing is fixed and the wave number varies, then

4% pﬂ ha y\ " ”“‘ "lv’} ny 'v "Q "l." l!..’.- IIIN."‘\' . » J-- -‘ n‘q" * ”’ !... 'k OAJ"" -0‘.‘ .. .N,l“
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Bpp is proportional to HAk, and if the wave number is fixed and the spacing varies, then
Bpp is proportional to kAH. Another convenient form of Eq. (4.27) is
HAk—kAH = kH (p,t —pH) ,
where py is the fractional change in spacing,
(4.29)

Of course py, as well as p, , can range in value between negative one and infinity. By
setting
Py=Py> (4.30)
we see that both H and % can change without affecting the offset parameter §,,.
However, the range over which the speckle remains correlated by constraining p; to be
equal to py is limited by the factor f1.
In wavelength experiments it is often more convenient to work in terms of
wavelength A rather than wave number k. If we define the fractional change in

wavelength

Ar (4.31)

A= 3

in the same manner as we defined p; in Eq. (4.23) and py in Eq. (4.29), then the

expression
(4.32)

may be used to convert between p; and p,. For infinitesimal shifts dA and dH, the

constraint in Eq. (4.30) becomes

u{‘
lf 2

el

dA
A

aH (4.33)
T

v-l}

Equation (4.33) gives the relationship between d\ and dH for f,, to remain constant.

Thus far we have shown how one can determine the value of the parameter p,

4

defined in Eq. (4.16) from the angular spread of the radiation pattern and the value of at
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least one of the parameters, py of Eq. (4.25) or ps of Eq. {4.26), from the wavelength
decorrelation for normally incident illumination and on-axis observation. We can tell
whether wavelength decorrelation will be dominated by the spacing effect or by the
combined wavelength dependence of the individual diffusers by loaking at the ratio of
the width of the two factors fi and fo with respect to the fractional change of

wavelength p;:

, NE&

2

+
2
otl 012

w -1 434
2kH(:i > (4.39)

[

Q= 2 2
\/Sl+sz

To illustrate the effect of the size of @ on our ability to determine p; and pg, we
have piotted Eq. (4.22) for different values of @ in Fig. 4.2. if @ > >1, then the spacing
effect dominates, and the curve approaches the Lorentzian shape of the dashed line.
Thus, for large @ it will only be practical to obtain py. On the other hand, if @ < <1, then
the wavelength dependence of the individual diffusers dominates, and the curve is
Gaussian shaped. For small Q it will only be practical to obtain py. If @~1, then itis likely
that both p; and ps could be determined. As a numerical illustration of Eq. (4.34), we
choose the following typical values for the parameters: o, /w; =0, /wz=0.03, S;=S2=5,
H=5 mm, and A=0.5 pm and calculate @=8.0. Ffor this illustration we would only be
able to accurately determine po.

In a wavelength decorrelation experiment, one is limited by the laser linewidth
Avy, and the range of wavelengths A) o, Over which the laser can be tuned. A linewidth
of less than 40 GHz can be obtained with a typical tunable dye laser. This converts to
ANy =0.3 Angstoms, Ak, =8x10-4 pm-1, and pg 1, =P 1w, =6x 10-5. In addition, it
implies a longitudinal correlation length of 7.5 mm. The range of tunability for
Rhodamine 6G dye is from u.570 pm to 0.650 pm. Thus |AA ;4 =0.08 um, |Akq = 1.5

M-, [Pk maxl =0.12, and |y max} =0.14. We see that there is a ratio of approximately

2000 to 1 between the range and the resolution of tunability so that one could obtain
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e from a cascade of two diffusers. Equation (4.22) is plotted against p; for @
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about 2000 nonoverlapping data points.

The laser linewidth limits the maximum value and the resolution of the distance
parameters p; and ps that can be obtained with a given dye laser system. The range of
tunability, on the other hand, sets the minimum values of these parameters that can be
measured. |f we designate the e-' and the 0.5 points as the values of the factors f; and /3,
respectively, at which we can reliably measure the widths of f; and f3, then we can write
the following set of equations for the maximum and minimum values and the resolution

obtainable for the parameters p; and po:

— _ -1
pl'm - Pz'm - lAk1wl ’ (4-35)

- IAkmul—l , {4.36)

pl,min = p?,min

_ 2 (4.37)
Pyres = Py lAkIwI ’

and

— .2 {(4.38)
p2,res - p2 IAklw| :

We first consider the limitations imposed by the linewidth and range of tunability
on our ability to measure the effective roughness p; of the diffuser combination. By
substituting Ak, =8x 10-4 uym-1 into Eq. (4.35), we find pi mg;=1 mm. Since 1 mm is
large compared to the roughness at which one can expect the thin diffuser model to
apply, it does not impose any real restrictions. We calculate the minimum value to be
P1,min=0.7 pm by substituting |Akpy,,] = 1.5 pm-1 into Eq. (4.36). The restriction on py mis
is more serious than the restriction on pq mqy, €.g9., if both diffusers have the same
roughness, then it implies that the rms phase delays S| and Sy must be greater than six to
be measured by wavelength decorrelation. However, £q. (4.13) applies for values of S as
small as three, e.g., the etched glass diffusers in Chapter 5. From Eq. (4.37), we calculate

the resolution to be py .., =8 Angstroms, 0.08 pm, and 8 ym at a roughness p; of 1 um,
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10 um, and 100 ym, respectively. This resolution is very good for smaller values of p;, but
it worsens as a fraction of p; as p; increases.

From Egs. (4.35) through (4.38), we see that the same restrictions apply for both p;
and ps. However, it is more meaningful to convert the conditions on ps to conditions on

H. Thus we obtain

Lywlow (4.39)
H =—(-—+-—>|Akwf“l,
maz 2\ 2 02 {
t1 t2
pywl w) (4.40)
- 1,2 -1 :
Hmm_2< 2+ 2>lAkma.r' ’
On %%
and
"’2 ‘”2 1 (4.41)
H =2H2(—‘—+-3> Ak, ). '
res 2 2 4
0:1 0:2

The range of o/w obtainable by the etching process described in Chapter 5 is
approximately 0.01 to 0.05. If we choose o/w=0.03 as a typical value, then
(w12/04 2 + w22/0,,2)/2=1000. Thus Hpmgay=1m; however, at such large spacings, the path
length differences could easily exceed the longitudinal correlation length of 7.5 mm, and
the speckle contrast would be reduced. In addition, the resolution, H ., arising from the
finite linewidth worsens for large spacings. From Eq. (4.41) we calculate H,., to be 0.8
pm, 80 um, and 8 mm at spacings i of 1 mm, 10 mm, and 100 mm, respectively.

The minimum value of H that we can measure by wavelength detuning for
o/w=0.03 is calculated from Eq. (4.40) to be H,,;,=700 um. Although this is a relatively
small diffuser spacing, it might be considered to be quite large if one were trying to
measure the thickness of a film having rough interfaces with the surrounding medium.
We note also that the value of H,,,, is very sensitive to the value of the slope parameter,

e.g., ifoJw=0.01, then H,,;, =7 mm, and the restriction is much more severe.
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4.3.2 Spacing Decorrelation
In Section 4.3.1 we have stressed the wavelength dependence of Eq. (4.22). Itis
also worthwhile to consider the decorrelation that occurs by keeping the wavelength

constant and changing the spacing. The resulting form of Eq. (4.22) is

2 2
<l 1> W Wy \-112]-1 (4.42)
=1+{1+|2RAH| — + — .
<I (0)><I(0)> 0?2 o2
a b a2

It is interesting to note that there is no dependence on the spacing H in Eq. (4.42), only
on the change in spacing AH. If one can increment the spacing, then Eq. (4.42) provides
the basis for a convenient method for measuring w) /6,2 + we?/0, 2. If we measure AH at
the point where the second term in Eq. (4.42) falls to 0.5, and if we assume that A=0.5
um and that o, /w) =0, /w=0.03, then AHH=90 ym. We observe that the value of AH
necessary for decorrelation is very sensitive to the value of the siope parameters o, /w
and o./we, e.g., if the slope is reduced by a factor of 10, 5o that o, /wy =0y /we=0.003,
then the value of AH necessary for decorrelation increases by a factor of 100 to AH=9
mm. If one has two diffusers that are created by the same process, then it can be
assumed that o /wy =o/wo, and Eq. (4.42) provides a very convenient and sensitive
method for determining o/w for the diffusers.
4.3.3 Angular Decorrelation

Let us suppose that we can find ps by varying the wavelength. Since we can also
evaluate p, from observing the radiation pattern, we need to have one more condition in
order to solve for o, /wy, 0 /wg, and H. This missing information can be provided by
making use of the factor f3 defined in Eq. (4.21). We can isolate the angular dependence
in f3 from the wavelength dependence by setting k, =%, in Eq. (4.18). Of course, we also
assume that the spacing is constant for the present discussion, i.e., that H,=H, so that

Bpp=0. Equation (4.18) then reduces to

<’ I > w’= l.U_2 _1 ) 443
a'b =1 +exp -—2<—'+—2\\ (kHIs - |\“)l (4.43)
<l 0)><I1(0)> 0l o2 J o\ Tebd 1
a b i 2
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From Eq. (4.43) we can deduce the value of y tﬂ

- <wl w; \-# (4.44) 04

The parameter p3 can be obtained experimentally by setting s,,; =0 and finding the ".‘:'.;':
value of 6, such that f3 falls to its 1/e point. If we denote this angle as Af,, then =
p3={(ksinAB,)-1. The practical implementation of this experiment is to illuminate the gé:‘:
diffuser pair at normal incidence and to observe on axis as the diffuser pair is rotated as a E ¢
whole about a line lying in the output diffuser plane and passing through the center of ¢
the output aperture, see Fig. 4.1(c). In this configuration the conditions kqp, =0 and ' 'o“.'o’
Ak,p) =0 are automatically satisfied as the diffuser pair is rotated. (N

Since it is w0, * + wo’/o,,’” that occurs in the wavelength detuning parameter po, e
and it is the square-root of this quantity that occurs in the angular detuning parameter \
p3. Eq. (4.44) is the third equation necessary for solution of the three quantities wy/ay, } 4".::':
waloy,, and H. As with wavelength decorrelation, angular decorrelation occurs more
rapidly for larger values of the spacing fI. In addition, both phenomenon rely on their
being an angular spread in the radiation pattern, and decorrelation occurs more rapidly ;‘é&"
if this spread is large. _I_":

Just as we calculated the limitations imposed by a finite laser linewidth and a finite '::d;‘t
tuning range on our ability to measure the parameters p; and ps, we can determine the O
corresponding conditions on the maximum and minimum values and on the resolution "“:"ﬂt
obtainable for pj that arise from the finite angular resolution A0,,; and the maximum 4

. angular range AB,,,,. The equations corresponding to Egs. (4.35) through (4.38) are: ; :'.‘\\'R

P3max = |kA8res|_l ’ (4.43) L J

by =lksina0_ |1, (@46 X
min max

and

-~ - EW] 5 € LY TR IT A TILT AT A  N  T W Yy L « o= Wy Y
"a').u"!g ,.' ,c‘\! l.l.\..g"e. l,.'\_l" .'l.‘g"_..ﬁ“..',..ﬁ_.lc“..“, _..I.! N ,'.l.l"!\“.lJ LAYy .|~ 1. ~ "' ’ $ .,. » M " St H" ;‘. \ C
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p.’l.reu - kp:l |Aerea| ’
We write £gs. (4.45) through (4.47) in terms of conditions on H as:
powl o owi (4.48)
Hma.x= :/—_—(—;“f-—';') |kA9r“|_l, A
20, o,
2 2
1 (W Want 1 (4.49)
min = —\/5 =t |ksmA0m | ,
otl ut‘..’
and
22
w w, -~
- . 2 (4.50)
H = \/2112(—,‘+——) ka0 1.
res 2 2 res
% %%

To illustrate Eqs. (4.48) through (4.50), we assume that the angular resolution is
one arc second and that the range over which one can change the input angle without
causing decorrelation due to thickness effects from the individual diffusers is 30°. This
implies that sinab,, =5 x 10-6 and 8inA0,,,,=0.5. We see that one cculd resolve about
105 individual data points over this 30° range. If o, /w) =0y /we=0.03, then H 4, =150
mm. Although this value of H,,,, is smaller than it was for wavelength decorrelation in
Section 4.3.1, it is still farge enough to cover the likely range of applications. The
resolution [, is 1.8 um, 180 um, and 5 mm for spacings /I of 1 mm, 10 mm, and 50 mim,
respectively. The minimum spacing that one can measure is I1,,,=5 um; this is much
smaller than it was for wavelength decorrelation. Thus there is an advantage to angular
decorrelation over wavelength decorrelation for small values of II. In addition, for
wavelength decorrelation, one had to be concerned with the competition of wavelength

decorrelation from the individual diffusers. However, the angular decorrelation from a

typical single diffuser is small compared to the decorrelation from the effect of the

spacing between the diffusers.
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4.3.4 Unequal Input and Observation Directions . j
L J
In Eq. (4.18) we note that the slope parameters o, /w; and o,/wg occur :_
) symmetrically in the factors f,, f5, and f3, i.e., Eq. (4.18) is not altered if the subscripts 1 E '|:
, X
. NV . WY
and 2 are interchanged. Therefore we can not distinguish between the two diffusers, !
given only the values of the parameters p,, pe, and ps. This ambiguity in the ordering
R . arises mathematically from the arbitrary choice of the sign in the solution of a quadratic ;1‘-
equation, see Section 4.4.3. ':.S. ]
pYp
in order to resolve this ambiguity, we need to perform one more experiment. _.
. "1 (]
3 )
) Recall that Eq. (4.18) is the reduced form of Eq. (4.13) that resulted from setting ko5, =0. :3 ::{
i LA
G4y
This caused the first term and the last two exponential factors in the second term to :{‘:1::
\;j‘,g!;
] reduce to unity. By performing an experiment where kg5, 20, i.e., where the input and 9
) =
; observation direction are not equal, we can extract the information contained in the last ;
; s
' twao factors. Continuing with our numbering system for the factors in £q. (4.13), we will by ')~'
t :
: oty
refer to these two factors as ®
¥
4 2 2 2 2 2 S 0y
1 otl U2 \-! O“ Wy Bpp 2 (4.51) Pay N
' f,= expj — —+— 1+ — — k| )y
y 4 2k b, \ 2 2 wZ ol 14p2/ bl e
{ a’b Wy 2 1 Y2 P OO
L "“:"
and 4,0
@
2 2 T
: R . (4 52) R
h fs=exp|2 1+;? F 1452 kab.L.(Hbsob.L—Hasoa.L) ‘ : 0:
: n 2 o }i‘h
3 We note that neither /3 nor f5 is symmetric with respect to the subscripts 1 and 2, and that :ﬁ}‘,
4 L'l
; one can obtain the value of a fourth parameter, TS
. oS
s _ (4.53) g
[ Py= o e
s 1 2 nns
" the ratio of the effective slope parameters of the two diffusers, from either Eq. {4.51) or ‘5".‘
) €q. (4.52). . EQ ¢
1, 1
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We can emphasize f4 in Eq. (4.13) by illuminating at normal incidence,
Soal =80b) =0, s0 that f3 and f5 reduce to unity, see Fig. 4.1(d). The resulting simplified

form of Eq. (4.13) is

<%Q>

<l 0)><I0)>
a b

2 22 2
1 k, /0 -10, w, ﬂpp ol (4.54)
X1+ 7 €XP _2_k_ —2+ - = 3 9|sal|"l

l+[3pp bW, w, w' o, 1+BW

in Eq. (4.54) we have assumed that @ > > 1 so that fy dominates f;, and we have used the

speckle tracking condition Ak, =0 towrite s, interms of s, :

k, (4.55)

§, =—s .
bi 1
k, ¢
By invoking the condition |p,| < <1, we see that replacing k; by k, in the two places
where k; appears explicitly in EqQ. {4.54) will have an insignificant effect on the overall
equation. The resulting form ur Eq. (4.54) is

< alb>

<l (0)><I(0)>
a b

1 B . (4.56)
Xt{1l+ exp .

2
1
+Bpp

A difficulty in evaluating p4 based on Eq. (4.54) or Eq. (4.56) is that the speckle

o

"

tracking condition is not automatically satisfied when kg 0. 1t is important,

p 4
a4
-

x
o,
L4

therefore, to determine the conditions under which this tracking condition can be

5

e

e 3
I oo

ignored by keeping the observation angle fixed as the wavel2ngth changes: For normal
incidence we set kg =kypy =0 in Eq. (4.2) for Ak,p;. Then by substituting k,s,; for
ko and kpsy for ky,, setting s, equal to s, 1, substituting the resulting expression for

Akgp ) into Eq. (4.12), and converting ky-k, tO pi, we obtain

hl'... ,‘..4..‘ L e‘hl “.\ ’ y . ~. ~ ~—' ~ y -N‘-‘.- \- -\-\.K.- ~. \. ‘-.‘-. ¥ “"" .-!-..‘ y N.'.-N. \q ..’ .‘.\.h .
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2

s (4.57)
kw sin®
a a

o k| <<
as the condition on p; that must be satisfied for speckle motion to be negligible. The
above inequality is expressed in terms of the initial angle of observation 8, through
IsqL]|=5inB,. As a numerical illustration of Eq. (4.57), we set 8,=10°, w,=1 mm, and
A=0.5 um and find that |ps| < <0.001, or else speckle motion can not be ignored. For
A=0.5 um, this corresponds to a change in wavelength |A}| that is small compared to 5
Angstoms! Thus we see that it is important to configure the experiment so that the
tracking condition is satisfied.

In Fig. 4.3, Eq. (4.56) is plotted against f,, for different values of p4 and sin8,y/p,.
As 5inB,/p, increases, the maximum value of the curves, which occurs at 8, =0, decreases.
However, the ratio between this maximum value and the minimum value, i.e., the
asymptote at large B, is always two. For a given value of sing/p,, the curves become
more narrow as p4 increases, but as py decreases, the curves approach the Lorentzian
shape represented by the dashed lines. If sinB,/p,=0, then £q. (4.56) reduces to the large
Q form of Eq. (4.22), and there is no p4 dependence. For a given value of pg4, the curves
become narrower as sinB,/p, increases. Thus, the sensitivity to py increases as sinfy/p,
increases. We see that one could distinguish between diffusers by illuminating on-axis
and observing the off-axis wavelength decorrelation of speckle, see Fig. 4.1(d). This
decorrelation occurs more rapidly if pg> 1, i.e., if the diffuser having the larger spread in
its radiation pattern occurs first in the cascade.

We note that f,, in addition to [k,p 1|, must be nonzero for either f4 or f5 to affect
Eq. (4.13). Since f3 and f5 are the only components of Eq. (4.13) that contain information
about the ordering of the diffusers, we conclude that two conditions must be satisfied
for us to distinguish between the diffusers: The input and observation directions must
be different, and the wavelength must be tunable. One can not determine the order of

the diffusers by angular detuning alone.
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(4.56) is plotted against B, for different values of ps and sinB,/p,. The dashed lines are the limiting curves for ps = 0.
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One could also determine p4 from f5, however, f; is the most difficuit to use of all ':":E:;
the factors since [kqp1| must be nonzero, and since both angular and wavelength .:-
detuning must be present simultaneously for it to contribute. Hence fs is also the easiest ,:S:E‘.E:
factor to eliminate from Eq. (4.13). We note that f5 is the only factor that curves upwards .QEE:EE’
) about the origin, but that it does not increase indefinitely with fp, because /(1 + §,,,2) e 2
K
has a maximum value of 0.5 at 8,,=1. ’Q:::'E
In optimizing the accuracy of a measurement system, it may be desirable to ’3}‘:2:5

Le'd. %

measure the parameters p,, p2, p3, and p4 in several different ways to check for c"
O,
consistency and to average measurement errors. In such a system f; may be of some ::.:a:‘;.;:n

\]

value, however, fsis not important in most practical applications, and there are no new .:E:EE‘:EE
parameters to be obtained from it. ’ "T".
.
4.4 Determination of Spacing and Diffuser Slope Parameters =§' ‘:
In Section 4.3 we have introduced the five parameters p,, p1, p2, p3, and p4 in Egs. ' Y
(4.16), (4.25), (4.26), (4.44), and (4.53), respectively. These parameters represent the :-{F\
information that one can obtain from different remote sensing measurements based on '( .:t:
Eq. (4.13). In applying the analysis to the remote sensing of a cascade of two thin !'.."
diffusers, there are three experimental configurations that are particularly useful, and :gé"%
that should be treated in more detail. "’:‘i%
In the first application it is desired to measure the thickness H of a layer of material { % y
or a film that has rough interfaces with the surrounding medium. Perhaps it is not ig:
. possible to measure this thickness directly without destroying either the sample or the ) '.v‘

>

f (‘ﬁ;‘

surrounding medium, or perhaps the sample is immersed in the surrounding medium in

‘ . ‘ _ ®
such a way that one can not measure the thickness mechanically. We wi!l refer to this TR
o
configuration by the symbol (H). in the second application one can measure the surface 4L
i
properties of diffuser Dy directly because it is on the observation side of the diffuser Rﬁ:

Pt
® |

combination. Given this information, it is desired to find the surface slope statistics of

B O e SO e T I O M M L MO o XL MR, F RV R R RG A R S A



the input surface, Dy, and the spacing between surfaces. We shall denote this problem

by the symbol (H,Dy|D2) because we are to determine o, /w for D, and H given o, /w; for

D2. Inthe third problem, denoted as (H,D,,Dz), we have no prior knowledge of H, o; /w1, 0

-~ o
-
-~

or o, /wg, and it is necessary to determine all three parameters remotely.

In solving these three remote sensing problems, we will assume that we can

perform experiments to obtain the parameters p,, p1, p2, p3, and p4. In this section we

R 2 X

will determine which parameters must be evaluated, or in other words, what types of

experiments must be performed, for the solution of each remote sensing problem. For

convenience we list the definitions of all five parameters together in one location:

[(4.16)]

[(4.25)]

2 2 ey
w w -1 4.26 K
p,= 2H( -2 ) , la.26)] e

PSR I )

[(4.44)]

; _%a Wy [(4.53)] X
p4— w . |

1 %

The parameter p; is in class by itself because it involves the rms roughness, not the rms

slope. Unless we are given more information, we cannot solve for o;, and o,, separately.

Hence we will concentrate on the evaluation of o, /w), oy,/w2 , and H given one or more

of the parameters p,, ps, p3. and p4. Since there are four remaining equations and only

three unknowns, these four parameters are obviously not independent; in fact, they are

related by the expression

e

L)
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2 2 -2 4.
2[)02;)3=p2 (2+p42+p4 ) (4.58)

This dependence implies that there will be more than one method for obtaining a given
diffuser parameter.

We have described the following three basic experiments in Section 4.3:
measurement of the angular distribution of the radiation pattern for determination of
Po. Measurement of the decorrelation of the far-zone speckie pattern with respect to the

wavelength for determination of p; and pg, and decorrelation with respect to the angle

of incidence for determination of p3. In addition we have described an auxiliary . :}:c.:;-i:
W)

experiment for distinguishing between the input and output diffusers by measuring
whether p4 is greater than or less than one. Since both parameters p; and py are
measured through wavelength decorrelation, it may not be possible to accurately
determine both parameters experimentally if the ratio @, Eq. (4.34), is either very large or
very small compared to one. In the remainder of Section 4.4, we will assume that @ > >1
or that @ = 1 so that we can at least determine the spacing-wavelength parameter pa.
4.4.1 Spacing

In the first class of problems, denoted by the symbol (H), we are to determine the )

."‘ N

spacing H between diffuser planes. By comparing Eq. (4.26) for pg with Eq. (4.44) for pj,

ey
‘ 0’9_
we see that we can obtain H given ps and p3 by the expression ‘3" '
2
P (4.59
H=-2 ’
Py

Thus H can be found by performing a wavelength and an angle of incidence experiment.
. Once H has been evaluated, one can use either Eq. (4.26) or Eq. (4.44) to determine
wy2/04,2 + we2/o, 2. In many applications, this quantity is constant so that one would need
only a wavelength experiment or an angle of incidence experiment to determine new

values of H. Another possibility is that one is only interested in the ratio of two spacings. oty
]
':‘.""i
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This ratio can also be determined by performing either a wavelength or an angle of
incidence experiment for the two spacings.
Using Eq. (4.58), we can eliminate either py or p; from Eq. (4.59), however, the

resulting expressions also require knowledge of p, and py:

Py (4.60)
H= 2+p2~+-p"2 :
4 4
{eteer)
and
p - e 5
H=—=—V2+pl+p>2. (4.61)
2po

If the rough interfaces are produced by the same process, then one may assume that
o /wy =0y, /wo, i.e., that pg=1. Then Eqs. (4.60) and (4.61) are particularly useful because
H can be determined by finding p, from a radiation pattern measurement and either po

from a wavelength experiment,

Py (4.62)

or p3 from an angle of incidence experiment

H=V2 Ps . (4.63)
po

4.4.2 Depth and rms Slope of a Buried Rough Surface

In the second class of problems, denoted by the symbol (H,Dy|D3), one wishes to
determine the siope parameter o, /w; of a hidden surface D, and the depth / of this
surface below an outer diffusing surface Dy. Since the outer surface can be observed
directly, we assume that its slope parameter o,,/w is known.

There are five methods for determining the two unknown parameters [l and
oy, /wy, each of which requires knowledge of two of the parameters p,, p2, p3, or ps. The
sixth combination, (p,,p4), of the four parameters does not allow for evaluation of FI. In

the first method, which we refer to by the symbol (pg,p3), we obtain p; through a

wavelength experiment and p3 through an angie of incidence experiment. We have
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already shown how one obtains H from these measurements, see £q. (4.59). The solution
for the other parameter o, /w; is found by substituting Eq (4.59) for H into either Eq.

(4.26) or £q. (4.44):

2 2
32__<2p3 33>—¢ (4.64)
1 p22 °¢22

In the second and third methods, denated by (p,,p2) and (p,,p3), we determine p,

from the radiation pattern. When Eq. (4.16) for p, is solved for the unknown, o, /w,, we

obtain
2
2_<2%w* (4.65)
w, o w22

We can determine the other unknown, H, from either a wavelength experiment to find
P2, or an angle of incidence experiment to find p3. We calculate H for the (py,p2) method

by substituting Eq. (4.65) for o, /w) into Eq. (4.26):

2 2
H Py Wy (1 ) >“ (4.66)
T 9 o2 p2w? ’
t2 o 2

Likewise, we calculate H for the (p,,p3) methad by substituting Eq. (4.65) into Eq. (4.44):

2
Py W, (1 % )'* (4.67)
V2 O p02w22

For completeness, we have included the fourth and fifth methods, (p4,p2) and (p4,p3),
even though they require knowledge of ps, the most difficult of all the parameters to

measure. The solution of o; /w, follows immediately from the definition of py:

% O (4.68)

L=p, =2
wy Wy

The spacing H is determined by substituting Eq. (4.68) into Eq. (4.26) for the (p4,p2)
method or into Eq. (4.44) for (p4,p3) method:
2
w
=22 -2
H= 2 o2 (l+p4 )
2

o

(4.69)

and
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_2)* (4.70)

If we can assume that both surfaces are created by the same process so that pg=1, then
Eqs. (4.69) and (4.70) are more useful. Then it is only necessary to perform a wavelength
or an angle of incidence decorrelation experiment to evaluate H.
4.4.3 Spacing and Diffuser Slope Parameters for Both Diffusers

In the final class of problems, (H,Dy,D2), one wishes to determine all three
parameters, H, o; /w), and o,/wg, remotely. Since we have already shown how to obtain
H in Section 4.4.1, we will emphasize the evaluation of o, /w; and o, /ws in this section.
For the solution of the present problem we need to determine at least three of the
parameters p,, p2, p3. and ps by remote sensing experiments since we are to solve for all
three parameters H, o;/w), and oy/we. There are four possible combinations of these
parameters taken three at a time. In the preferred experimental method, we use the
combination (p,,p2,p3) because pg is more difficult to measure. First, we use Eq. (4.59) to
determine H, and then we obtain the solution for o, /w; and o, /w3 as follows: We use Eq.
(4.59) to eliminate H from Eq. (4.26), solve the resulting equation for o,,2/ws2 and

substitute this solution into Eq. (4.16). This yields a quadratic equation for o, 2/wy2:

4 2 2
1 0;1 fi+ Py (4.71)
4~ 2 2 =
p: w'  wy o 2pg
The solution of Eq. (4.71) for o, /w; is
2
% P, 1+(1 2p, ); s (4.72)
=73 ) |
wl \/2 popa

By substituting this solution back into Eq. (4.16) and solving for o,/w;, we obtain the

corresponding sofution,

] (4.73)

P)

e e ll-T-(l i )i

T Vo T 22
2 \/2 P0P3

for diffuser Dg. In comparing Eqs. (4.72) and (4.73), we note that the £ sign has been

’ - - o A A TR R X AT N PR P R AL - e ; | -
L T RN L T B AN G e G b WS R LR n"o TR SO AT ‘t.l" B

ol wol 20§ < raik eof Sak vall May Su§ Va9 Vol Wall vaf taw wal o f aaf ueh €a ¥ Yol ol Spl Mai ol tal sl ‘el va vad vel egh u

DRI Ry

sql
.::‘!:n‘



R A T NI TN N N I O O O R N N N O T N N O O e O T O S O O O O O T O O O oY T UY TN O g .8°

e

X
105 :3 ’u..
replaced by ¥ in Eq. (4.73). In other words, we must use opposite signs in the two
solutions. We point out that we are unable to tell whether the upper or lower choice of b i...t.'
signs is correct without having more information. This sign ambiguity results from the "y
symmetry with respect to o;/w; and o/wg2 in the definitions of p,, ps, and p3. As .!‘.':‘:t.'
discussed in Section 4.3.4, we can resolve this ambiguity by measuring whether py is Sty
greater than or less than unity. ."-,’;’ \
If the quantity 2p92/(p,2p32) in Eqs. (4.72) and (4.73) were greater than one, then i ",sf
we would have the square-root of a negative numiier. However, this is not allowed to
happen, as we see by writing this quantity in terms of p, via Eq. (4.58): Even though p4 - ',

. g va: {
ranges between zero and infinity, the condition Y it

9 2
Py 4 (4.74) e gar
0= = <1 “"‘

2 2 2 -2
p,py 2+p +p,

always holds. Owing to the uncertainty in experimental measurements of p,, ps, and p3,
the condition in Eq. (4.74) could be violated. However, this is most likely to occur near
pa=1 where the inequality has its maximum value. Hence, if the condition is violated, 'oit":’;:;
one can assume that pgy =1 to within the resolution of the measurements. N

For completeness we also list the equations for the other three methods. In the
(Pop2,p48) and (po,p3,pa) methods, one uses Eqs. (4.60) and (4.61) respectively to find H. N

For both methods, one then determines o, /w; and o, /wg via 2,500 8

2

%, ( 1+p, )* (4.75) !
P

w, °2+p42+p4—2

and .|'l.t

-2
% ( 1*+p, )* (4.76) Tl
Equations (4.75) and (4.76) are obtained from Egs. (4.72) and (4.73) by using Eq. (4.58) to %&:
W
!

eliminate po and p3 and choosing the signs to agree with the definition of p4 in Eq. (4.53).

-

-y " - - : W, N ™, s
:‘ﬁ'-«‘.'t!v...a't‘n‘\‘siltl‘t.c"‘.-.l.;.l;a'l. I‘ ‘( ..C ."‘ .| .'I -.l |“ » o l. "d o'" 'l [\ o AR .‘I A l " \-‘ " e \ AL S ) - ..i ﬁ » \ N.‘ \‘x ."N L ~ LAY ""



L R NN R TS N NN A R Ll T I P T T W WU MU A N T N O O Y IR T OOy “a 8% Ava 1 ¥a dlsaVaataral, TR

K W,
[ .
' Wy
‘ &g
: 106 iy
. t:ﬂj
. (A
"
1A
if both rough surfaces are caused by the same random process, then pg=1, and we have "’
20 v
i':; the simple result o, /wy =0y /we= po/2t. ;::‘;
N 0 ..i
% ¢ N
iy In the final method of determining H, o, /wy, and oy/ws, referred to as the :s:‘.
+, "
: ot
) (p2,p3.p4) method, H is determined from Eq. (4.59), and o, /w) and o, /wg are given by ) ah
ik % Py 3 (8.77) 3
¥ — === Vl+p N ':
s Y1 Vipy g
W " §
and o
X
2 2 [
] 2 _ 2 _Vi+p —2 (4.78) R
AL w 2 4
‘: 2 Py £
w Equatioris (4.77) and (4.78) are obtained from Eqs. (4.75) and (4.76) by using Eq. (4.58) to :9,
N N
K eliminate p,. _%
v? ":
8 g
E5 4.5 Discussion .i‘anf
¢ 3
§° i 'l",’
B The analysis of the paraboloidal-paraboloidal diffuser combination presented in :g',,’
b Chapter 4 has been important to our understanding of the remote sensing of double i
K s
_a:. diffusers because we were able to obtain the general expression given in Eq. (4.13) for ‘ ::f
) )
i the two-state correlation of far-zone intensity for arbitrary values of all the input ‘:€
X parameters and then to study the significance of each of the factors fi, fa, f3, fa. and fs. "y
[} 3
K 0
f,: Through this analysis we learned that H, o, /w), and o,/ws could be obtained by :‘::
:: ' performing simple experiments with equal input and observation directions, kqp) =0. It ")(
s was only necessary to have k.51 =0 to distinguish between the two diffusers, i.e., to tell
kh
‘:: the order in which the diffusers appear in Fig. 3.1.
9‘ N
::* in Chapter 4 we have been able to classify the different speckle phenomenon that
A
7 occur in double-diffuser decorrelation experiments by analyzing the P-P diffuser o
%) )
";’ combination. However, we point out that there is one major difference between speckie
‘:' from the P-P and from other diffuser combinations. The unique property of u,; for the
&
P-P combination is that the shape of the decorrelation curves do no depend on the
W
4
W
A
"
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diffuser parameters o, /w1 and oy /wy, i.€., the widths of the curves are scaled by changing
these parameters, but Eq. (4.13) remains a combination of Lorentzian and Gaussian
functions. For this reason, we are only able to extract one parameter from each of the
three experiments depicted in Fig. 4.1(a) through 4.1(c), i.e., the width of the functions f,,
f2,and f3.

However, by inspection of the results in Appendix E for the P-C and C-P
combinations and in Appendix F for the C-C combinations, we see that one can extract
two parameters from each experiment. For example, by comparing Eq. (E10) for the two-
state correlation function of intensity for the P-C diffuser combination with the
corresponding function, Eq. (4.22), for the spacing-wavelength dependence of the P-P
combination, we see that the factor corresponding to f> defined in Eq. (4.20) is

_ 10{s, VERVITE, )1
= D(ypc ka) D<ch kb)

where D is defined in Eq. (E4). In addition, the spacing-wavelength detuning parameter

fy , (4.79)

Bpcis
2
% (4.80)
B =2HAR -
w
1
and ratio parameter y,, is
2
, = Y Y% (4.81)
pe 0“ \/2 w2

We see that y,. determines the shape of the function f5 ,c plotted against .. By fitting
the experimental data to £q. (4.79), one could determine the ratio parameter yp, from
matching the curve shape and the product Ho, 2/w)2 from matching the curve width. We
also note that one could determine both o, /w; and o,,%/wy from measuring the angular
distribution of the radiation pattern, see Fig. 4.1(a), and both yp. and Ho/wy from
performing an angular decorrelation experiment on the P-C diffuser combination, see

Fig. 4.1(b).
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By inspection of the results for the C-P and C-C combinations, we see that one can .
’ also determine two parameters from each type of experiment. Thus we have much more t..::,
% '
: freedom in choosing our experiments in the remote sensing of the P-C, C-P, and C-C ':::
1) 4, .‘.
o . ., . )
R diffuser combinations. We also note that the diffuser parameters that one can et
-_:3 determine are different for each of the four combinations, i.e., o; /w) and oy /w, for P-P, gt
¥ <
bt P
¥ oy, /w) and o, 2/we for P-C, o, 2/wy and o,,/ws for C-P, and o 2/wy and G, 2/wq for C-C. ’ :: 1
: \
)
5‘ For the P-P combination, it was necessary to perform and auxiliary experiment o
7y with kgp1 =0 to determine the order in which the diffusers occur. This also appears to be e
‘?‘ () ‘|
R : (]
3;: true for other diffuser combinations. For example, Eq. (E10) for the P-C and Eq. (E20) for ’a:;
X st
K) the C-P diffuser combinations are identical except that the numbering on the rms .:o::
;: roughnesses o;, and o, and on the correlation lengths w, and w9 has been switched. In e
! %
| e
;2. other words, B is defined in terms of o/w for the paraboloidal diffuser for both cases, and 12::;
§ {
2 . ) . . . . W
:;: y is defined as the ratio of 0,2/(2tw) for the conical diffuser and o/w for the paraboloidal ::"
[ (Y
o diffuser for both cases. Thus, we are able to find the appropriate parameter for the o
)
« Y
Q: conical and paraboloidal diffusers, but we must have some other method of determining : ,'31:‘
& o
:E,_ whether the combination is P-C or C-P. In conciusion, we note that there is also an 0y
ambiguity in the ordering of the diffusers for the C-C combination, e.g., Eq. (F15) is P
ti .'."
5’ . . . ‘(
‘: defined in terms of the absolute value of the difference between the parameters o, 2/w .::::
N t‘:‘c‘
) and 0,%/ws. ‘:f:'
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Chapter 5

Experiments: Radiation Patterns from Strong Diffusers

5.1 Introduction

The relationship between the characteristics of a rough surface and the angular
distribution of light scattered from the surface is a subject of considerable interest.
Applications include designing rough surfaces or diffusers with a desired angular
distribution, predicting the radiation patterns from a given surface, and providing a
noncontact method for characterizing surfaces.!-'8 Diffuser radiation patterns are also
of interest in the analysis of the decorrelation of speckie from a cascade of diffusers. As
discussed in Section 3.3, one can determine the autocorrelation function R, of the
diffuser transmission function ¢ by measuring the radiation pattern and then performing
a Fourier transform, see Eq. (3.51). Given R, for the individual diffusers, one can then
predict the speckie decorrelation properties for the diffuser cascade.

In this chapter we study the radiation patterns from paraboloidal and conical
diffusers, which were defined in Section 3.3.2 as strong diffusers having a circularly
symmetric autocorrelation function, a normally distributed height profile, and height
profile autocorrelation functions that are paraboloidal or conical, respectively, for smal!
spatial offsets. We also extend the analysis of these single-scale diffusers to diffusers
having two scales of roughness and present measured radiation patterns over a large
dynamic range. For ease of reading, and to make Chapter 5 self contained, we will
reintroduce the basic quantities. Because of the applied nature of Chapter S5, the
formulas will be written in terms of input and output angles rather than direction

vectors. In addition, the arguments will be written in terms of the x-y coordinates of the

diffuser planes rather than the vector r or simply as r when there is circular symmetry.

¥
""4 Es

RIS

e

4

‘}.‘ {‘—’» Wy
%

- :
Al

[d



CSv R @t 8a7 et BeY Bt Ut it gt PV KRt iat iy 0T dav et tev 2% $2° 080 08" 0itatatata” 10a" ob TR T RO R T AT

B 110

We define a strong diffuser as one whose rms phase delay

¢, &
B 7
:: S=ko, (n—1) (5.1)
't . . .
N caused by the surface roughness is much greater than one radian. In Eq. (5.1), n is the
\‘0
index of refraction of the diffuser, oy is the rms diffuser height, and k=2nr/A, where ) is
B}
;« the wavelength of illumination. In general, the functional form of the radiation pattern
8
[ ) .
::: depends both on the value of S and on the form of the normalized autocorrelation
!El.
function of the surface profile
ll; <
:’& R . h(.tl,yl) h(xz, y2) > (5.2)
g:l hxz_xl’yZ‘yl = 2 ’
P [¢]
@ h
a:; where the angle brackets denote an ensemble average. However, for $> > 1, the effect
,';,' of R, on the radiation pattern is determined by the behavior of R, for small spatial
W
e offsets.
PR
)
?‘}:. We consider diffusers where the surface profile h(x,y) is normally distribut+d and
A3t
. the autocorrelation function depends on the offset r=[(xo-x1)2+ (y2-y1)2]4 between
1\
E:“ points {x1,y1) and (z2,y2), but not on the direction of this offset. When the latter property
g
:" holds, the envelope of the radiation pattern for normal incidence will be circularly
\I'\,
) symmetric. If the autocorrelation function can be represented by a power series in r,
Y
:5‘ then one of the two classes will arise depending on whether the linear term in r is
::" present or missing. If this term is present, then the autocorrelation function will be cone
...
shaped near the origin,
N ,
‘Hy) R(MN=1=-—+ . , (5.3)
; -
& and the shape of the radiation patterns wil! depend on U< quantity w/S2, where w is the
k¥,
correlation length of the diffuser roughness. If the linear term is missing, then the
X
N
i';: autocorrelation function will be paraboloidal near the origin
0“
; ry (5.4)
=1-(=) +. .. :
X R;. (r) ( " ,
™, and the shape of the radiation pattern will depend on the ratio w/S.
a
'!:.
‘:i”'
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We use the terms conical and paraboioidal only to refer to the shape of R, for : ,::s",
small offsets. A cone and a paraboloid, defined respectively by the first two terms of Eq. :::""‘ %
(5.3) and Eq. (5.4) for r=w and as zero otherwise, would not be valid autocorrelation ‘/ :e:
N | . o
functions since their Fourier transforms are negative in certain regions. Equation (5.3) is 0 lé:,fe
characteristic of surfaces having discontinuities and high slopes. An example of a rapidly V" {;_
falling autocorrelation function in one dimension is the triangie function which results as 3‘;5’. :‘,
the autocorrelation of a rectangle function. Equation (5.4), on the other hand, is :
charactenstic of smooth surfaces that are bandlimited in spatial frequency. ".;;l :
We present radiation patterns from a ground-glass diffuser and a specially ;‘{:s::.:
fabricated etched-glass diffuser measured over an output angle 0 of nearly +90° and :‘:.:':‘::‘gt.
over a dynamic range of six and eight orders of magnitude, respectively. in these ":
measurements the solid angle subtended by the detector is large enough to include :'.:\:.:
many speckles but small enough so as not to have a significant effect on the angular ‘.E'\'E‘;E
2
resolution of the measurement. Thus, the measured intensity is a good approximation to T
CaliC %
the expected envelope of intensity that is calculated in the statistical analysis. -:_;:‘:-:‘f‘
There is very good agreement between the ground-glass radiation patterns and ‘..:é;:
curves of the first type, which depend on the value of w/S2, and between the etched- e ‘:‘\
glass radiation patterns and curves of the second type, which depend on the value of :. ': i’é
w/S. The etched-glass radiation patterns can be fit over about three orders of _',:E‘"\
magnitude, i.e., at small angles, with a simple paraboloidal autocorrelation function. }’?ﬂ
However, due to the microstructure of the surface, it is necessary to use a composite :1.:‘
diffuser model containing two scales of roughness to fit the radiation pattern over all "'::::E
angles. The model for the surface profile then consists of a large roughness paraboloidal ::::::‘, '
. component with a small roughness exponential component superimposed. The small :i‘ ..\
roughness component has a negligible effect on the upper two or three orders of :{::3\
magnitude of the radiation pattern, but it dominates at wide angles. ,_.:‘;; ]
o
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The first diffuser was made by grinding glass, and the second diffuser was made by

chemically etching preroughened glass surfaces. Photographs of the surfaces of both

types of diffuser, as taken with a scanning electron microscope, are shown in fig. 5.1.

The ground-glass surface of Fig. 5.1(a) has the discontinuities and the high spatial

frequency content characteristic of Eq. (5.3). The etched-glass surface of Fig. 5.1(b), on

S

-

the other hand, is smooth on a wavelength scale and has gentle slopes, except for the ' ,‘:0.,

’-ﬁ.‘

ridges, as is characteristic of Eq. (5.4).

Much has been written on the scattering of light from ground glass.19-26 For

example, it has been demonstrated that the height profile is approximately normally

distributed.19-23 In previous attempts to calculate the angular distribution of the

radiation from ground glass, it has been assumed, for simplicity, that the autocorrelation

However, as pointed out by Chandley,22 the

function of heights is Gaussian.

autocorrelation function is not Gaussian. Hence, these predictions of the angular

distribution of light have failed. Since ground glass does not fit the analysis, other

authors have gone to considerable effort to prepare this type of Gaussian diffuser.27-29

However, the interest in modeling actual diffusers that are widely usec¢ [l exists. "!;

Another common assumption in theoretical derivations is that the rms phase delay

produced by the diffuser is large compared to one radian, i.e.,, S>>1. For such a '\

diffuser, it is not the exact shape of the autocorrelation function that is important, but its

behavior for small offsets. Therefore, the type of etched-glass diffuser studied below,

which has a normally distributed height profile, a paraboloidal or Gaussian like

autocorrelation function, and a large rms phase deviation, should be useful for testing

theories based on these assumptions.

In Section 5.2 we present the equations governing the angular dependence of the

intensity scattered from singlie-scale diffusers having S> > 1 and behaving like Eq. (5.3)

or Eq. (5.4) for small offsets. We develop a composite diffuser model consisting of two

scales of roughness in Section 5.3 and describe the experimental configuration for
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(b)

SEMs of glass surfaces (a) ground with 820 grit and (b) preroughened for 60
minutes with Armour Etch and etched for 45 minutes in BOE.
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measuring the radiation patterns in Section 5.4. In Section 5.5 experimentally measured
radiation patterns are presented for ground-glass and etched-glass diffusers. These
results are found to be in excellent agreement with the theoretical predictions. By
varying the etching process, paraboloidal diffusers with w/(AS) ranging between 3 and 13
are obtained. There is also excellent agreement between values of w/(AS) for the various
etched-glass diffusers as obtained by fitting the radiation patterns to the theoretical
curves and by measuring the surface profile with a stylus profilometer.
5.2 Envelope of Far-Zone Intensity

The physical quantity of interest in the study of radiation patterns is the power per

unit solid angle received by a detector, i.e., the radiant intensity

dQ

When laser light is used to illuminate the sample, a speckle pattern will appear in the
scattered light. However, we are not interested in the microscopic detail of this speckle
pattern, but rather in the angular distribution of the envelope of intensity I,. Since any
practical detector system will subtend a finite solid angle AQ, we will be able to smooth
out these rapid intensity variations by choosing a detector that is large compared to the
size of a speckle, yet small enough so as not to have a significant effect on the angular
resolution of the measurement. Furthermore, to standardize the radiation patterns so
that they can be compared to one another, we will plot all radiation patterns relative to
the incident power P,. Therefore, we will use the normalized envelope of intensity I,

defined by30

, - bP
“n AQP

(5.6)

The coordinate system used for both the experiments and the analysis is the same as in
Fig. 2.2. The diffuser is located at the x-y plane with illumination incident at angles
(6o,00). Scattered radiation is measured at observation angles (6,¢). If the azimuthal

angles ¢, and ¢ are equal, then the measurement is in the plane of incidence.
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In the analysis the diffuser height profile-will be represented by a normally
distributed, zero mean, wide-sense stationary, random process h(x,y) having a
normalized autocorrelation function R(r), defined in £q. (5.2), and an arbitrary
roughness g5. The expected value, or the ensemble average, of the normalized intensity
will be denoted by <I,>. The general form for <I,> arising from a diffuser with a

normally distributed height profile is

2 w
<I >=cos"9—n[ rd (2nf-\/sin26-2cos(q>—q> )sin® sin® +sin’8 )
n hz 0 V] A o ] 1]

X exp{ —Sz[l—Rh(r)] } dr. (5.7)

Equation (5.7) is obtained by substituting Eq. (3.62) for R, into Eq. (3.51), setting
ko =k, replacing A by its initial value of unity, converting from wave vectors to angles
through Eq. (2.3), and converting the circularly symmetric Fourier transform to a Fourier-
Bessel transform. The cos20 obliquity factor is also generalized to cosn8. Of course, the
angle dependence within the argument of the Bessel function in Eq. (5.7) simplifies to
sin® for normal incidence 8,=0 and to sin0-sinf, for measurements in the plane of
incidence ¢,=¢. From the theoretical model, the cosn® in Eq. (5.7) should be cos26.
However, the theory neglects multiple bounce effects in the surface structure of the
diffuser and shadowing as well. Hence, the precision of fit at angles 8> 75° is uncertain.
We prefer to keep the coefficient n general at this point. Empirically, we have found that
better experimental fit to the data is obtained by setting n=1. Thus, we will set n=1in
expressions for <[,> throughout the remainder of this chapter.

If § is not large compared with unity, then Eq. (5.7) may contain a direct
component, as represented by a delta function. This delta function should be replaced
by the functional form of the aperture radiation pattern. We see that this direct
component becomes insignificant for large S, e.g., if R,(r) falls to zero as r increases,

then the magnitude of the delta function will be exp(-§2).
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‘ 5.2.1 Strong Diffusers (§>>1)
1 : . L : 0
:’ : We will now briefly describe how the two classes of radiation patterns arise for K
13 ."
2 . 94
.f: single scale diffusers with S>>1. By inspection of Eq. (5.7), we see that the major .:a
B3 g
[ ¢
B contributions to the integral for iarge values of S occur near the origin r=0. Therefore, . %,
;:; the shape of the radiation pattern is determined by the behavior of Rj for small values of :::
)
RS . : . -
o' r. This leads us to consider the beginning terms of power series expansions of R;. The ,::
o ]
0
i first term will be unity for any choice of R, since R, is normalized to unity at the origin. v:!:'
)
|:c This term drops out of Eq. (5.7) because it is 1-R, that appears in the exponent. The 'g
By . :
)
::v second term will be of the form ra, where a is the lowest nonzero power of r with a _
AN !
i - . . . . Yot
f::t nonzero coefficient; this term will control R, for small r. With the exception of a :o
;c:; constant autocorrelation function where a is infinite, the highest possible value of a is
O W
1% » 4.
':— two.3' We will only consider autocorrelation functions where a=1 or a=2. However, 2:
%) v
f bo.-
'1‘ autocorrelation functions do exist where a is a noninteger less than two. In general, for ":
i:'. single scale diffusers with S>>1, <I,> will depend on w and S through the singfe 4
Yy %
",: dimensionless shape parameter w/(AS2/a). G
:g'!‘ iﬂiz
‘:c We can see the relative importance of the different terms in a power series ::"a
] (%
o expansion of R by writing the exponent in Eq. (5.7) as i“
ol .
s 1)
) 2 2 2 00y
;:. . C,S C,S , C,S 3 (5.8) '::
" exp | -S (I—Rh(r)) = exp fr| + r‘ + >+ ... 1. XY
: .
b W
. If C,y=-1, then Ry is conical, Eq. (5.3), and if C; =0 and Cy =-1, then R} is parabotoidal, KU
::*: Eq. (5.4). We consider conical autocorrelation functions first. For S>> 1, the linear term ﬁ'.
iy w
:,' will determine the behavior of Eq. (5.8) as illustrated by the following numerical . :k:
W ¢
B example: In Eq. (5.8) we have C; =-1 for the conical autocorrelation function; let us also
: ' suppose Co=-1and S=10. The 1/e2 point for the decaying exponential, arising from the ;5
3 L | 3
:., first term, is r=w/50. However, at this value of r the Gaussian, arising from the second
) "
) ¢
.*5 term, has only dropped from unity to 0.96. Higher order terms will be even less A
U0 significant. By keeping only the first term in Eq. (5.8), setting n=1 as discussed, and o
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evaluating the integral in Eq. (5.7), we see that the expected value of the normalized
radiant intensity <I,> for a strong diffuser of the conical type is

<I>= cosGZn(-)‘iS‘lY

x[l + (%—:—’)z(sinzﬁ-2eos(¢—¢o)sinesineo+ sm"’eo)]'w. (5.9)

In Eq. (5.9) the shape parameter is w/(AS2)=w\/(2ro)2. For paraboloidal diffusers, the
quadratic term will dominate the higher order terms for S>> 1. By keeping only the

second term in Eq. (5.8) and again evaluating Eq. (5.7), we obtain

<In> =cosGrz( )2

ol &

X exp[—( % )2(sm29—2 cos(®— ) sind sinf_+ sinzeo)], (5.10)

The shape parameter in Eq. (5.10) is w/(AS)=w/(2no,).

Equations (5.9) and (5.10) were derived for diffusers having a single scale of
roughness. In Section 5.3 we will extend these results to diffusers with two scales of
roughness by assuming that the surface profile is the sum of two functions having
autocorrelation functions Ry, and Rj,, normalized roughness S; and S, and correlation
lengths w; and wy. Depending on the choices of these autocorrelation functions and
parameters, more than one term in Eq. (5.8) can be significant in determining <I,>,
evenif 8y >>1o0rSy> >1and especially at large angles 6.

It is useful to compare Eqgs. (5.9) and (5.10) with the radiation pattern of an

idealized Lambertian diffuser for which

w0 (5.11)

<I >=
n n

We note that Eq. (5.11) is not a large roughness limiting form of either Eq. (5.9) or (5.10).
As described in Section 5.4, a Lambertian diffuser may be used to perform the system

calibration.
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it is also of interest to integrate the intensities in Eqs. (5.9) and (5.10) over the -

ff“-: output hemisphere for normal incidence to obtain the total integrated power. This .::
N Uk ]
fé‘ . l';
\(:;:: yields :::

: 2nw )
| P=P {1-[1 + )2] *} (5.12) .

o8 AS i
\e: W
" for the conical diffuser of Eq. (5.9) and . ':;
Y i
"t nw v

P=P {l—exp[ )2]} (5.13) X
Lyl ' o
;:: for the paraboloidal diffuser of Eq. (5.10). Equations (5.12) and (5.13) show that . ::*
;l‘. .f
a;:: according to the diffuser model considered here, the total integrated power approaches ::',‘
2 ]

W . . ) !
! P, for large values of w/(AS2) and w/(AS). Most interestingly, we notice that P
,.‘ .-
:::: approaches zero as the roughness S increases. This same effect is noted for <I,> at 6=0 s::
) 0 !
a‘!. 0N
e in the literature.18 :f
.1, (3 s

4y O

& We illustrate the behavior of Egs. (5.9) and (5.10) with plots. In Fig. 5.2, <[> is 05{;
" |
::: plotted from Eq. (5.9) as a function of output angle 6, for 8,=0, and for various values of '-:‘r
ot §
ik oat
-::: w/(AS2?) ranging from 1/32 to 8. The intensity is displayed on a logarithmic scale over six "3:
% 3 9,

) ¥
e orders of magnitude to stress the wide-angle behavior of the radiation patterns. In this j:gf
;.':‘,' family of curves we see how the maximum value <I,> ., for normal incidence increases s,
A )
;:: as w/(AS2) increases according to :2
o::' w \2 ‘
Ry <I > =2n ( ) (5.14) )

, n’ max AS? '
B .
::: and how the width of the curves goes as AS2/w. We aiso observe that, except for very 'j
- 1:‘
:::t small values, i.e., w/(AS2)< 1/4, the shape of these curves is the same for angles larger : ?‘:
iy &
" than about 45°. We can readily understand why the shape is the same by comparing the 'c?
-
it size of the two terms within the square brackets in Eq. (5.9). If {2rw/(A$)12> > 1, then the )
’r";' i
‘i“ Byt
1::; second term will dominate the first term for large angles. Thus, the large-angle normal- n
& :
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incidence form of Eq. (5.9) that is valid when w/(AS2) is large is e
<t >~ oose2 A?Z | (5.15)
(2r)* wsin’@
For the purpose of comparison, Eq. (5.11) for an idealized Lambertian diffuser is also
plotted as a dashed fine. .
The family of curves shown in Fig. 5.3 is calculated from Eq. (5.10) with 8,=0 and ‘
with w/(AS) also ranging from 1/32 to 8. We see that <[>, increases as w/(AS) 3
increases according to L
<1n>m=n(xl‘-;-)2 (5.16)
and that the widths of these curves now go as AS/w. There is no large-angle
approximation of Eq. (5.10) analogous to Eq. (5.15). Except for the cos0 factor, the curves
in Fig. 5.3 are Gaussian in sin@, or parabolic on a logarithmic intensity scale.
Since experimental radiation patterns are most easily observed near the intensity
peak, it is useful to compare the effect that the shape parameters w/(AS2) in Fig. 5.2 and " .
w/(AS) in Fig. 5.3 have in determining the behavior of <{,> near its maximum for o,
normal incidence, 8,=0. For example, from Eqs. (5.14) and (5.16) we see immediately 5
that the on axis intensity of the conical diffuser is twice as great as that of the e
paraboloidal diffuser for the same values of the appropriate shape parameter. Also from
Eqs. (5.9) and (5.10) at normal incidence, the curvature x of <I,>/(<I,> ,,.c080) as a
function of sin0 at the peak is calculated to be 1212[w/(A82)]2 for the conical diffuser and ‘e
2n2[w/(AS)]2 for the paraboloidal diffuser. Thus the radius of curvature, p=1/x, is 6 times
greater for the paraboloidal diffuser as for the conical diffuser for the same value of the ‘
appropriate shape parameter w/(AS2) or w/(AS). Another observation that we make from . T .
Figs. 5.2 and 5.3 is the decrease in total integrated power P of £gs. (5.12) and (5.13) that K
occurs as w/(AS2) or w/(AS) becomes small. : h
We would like to point out that there are important applications, both in ! .
transmission and reflection, of non-normal incidence for Egs. {5.9) and (5.10) and for the
o
A
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other expressions for <I,> that will follow. For example, arbitrary input angles (6,,9,)
and output angles (8,¢) are useful in robot vision and in computer generation of realistic
looking images of rotating diffuse objects. We note that these equations are also

applicable to reflection, in which case

o
S0 )=4n ——cos8_, (5:17)
Q A [
and B goes to 180° -0. Actually, the effective value of S for transmission in Eq (5.1) also

depends on the angle of illumination ,:6

o e —— .
S0 )=2n —"(\/,,2_ sin%8 — cosf) ) . (5.18)
o A o 0

Besides using Eqs. (5.9) and (5.10) to find the values of w/(AS2) or w/(AS) for strong
diffusers by fitting the shapes of the experimental curves, we can approximate these
quantities in an experiment with simple methods suggested by Egs. (5.9) and (5.10) and
(5.14) through (5.16). The first method is to use Eq. (5.9) or Eq. (5.10) by measuring the
intensity at =0 and then to change the angle 8 until the intensity level falls to a certain
fraction of this value. In the second method, w/(AS2) or w/(AS) can be read by measuring
<I,> mar and solving Eq. (5.14) or Eq. (5.16). A similar single point measurement could
be done using Eq. (5.15) at an angle of, say, 60°, to find w/(AS2). However, both of these
latter methods require that the detector system is calibrated and that the insertion loss is

accounted for.

5.3 Diffusers with Two Scales of Roughness

As stated in Section 5.1, it is necessary to use a diffuser model with two scales of
roughness to describe the wide-angle scattering from the etched-glass diffuser.32 A
simple way of accounting for this wide-angle component is to assume that the random
variable h(x,y) representing the diffuser surface profile is the sum of two normally
distributed zero-mean components h;(x,y) and ho{x,y) that are uncorrelated with each

other
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hxy)=h (z,y) +hyfx,y) . (5.19)

Then h(x,y) is also normally distributed and its autocorrelation function is given by
’R.N=0®> R, N+0: R, (N (5.20)
ATk h h h,
1 M 2 "2
where R;, Ry, and R, are the normalized autocorrelation functions of Ak, hy, and hg,

respectively, and the variance o2 is related to S2 through Eq. (5.1). Similar expressions

hold for §;2 and S22. Thus the exponential in Eq. (5.8) becomes

(5.21)

exp exp

_s2(l—Rh(r))] =exp -sf(l-Rhl(r)) —Sg(l—ha(r))

We will use Eq. (5.21) as the basis for categorizing the different types of composite
diffuser. Any valid autocorrelation functions R, and Ry, and any values S, and S could
be used. However, in this discussion we are interested in strong diffusers and assume
that S; > > 1. Having made this assumption, we need only specify whether the behavior
of Ry for small offsets is conical as in Eq. (5.3) or paraboloidal as in Eq. (5.4).

5.3.1 Large Roughnesses S; and Sa

Besides assuming that S;> >1, let us also assume for the moment that So> > 1,
then when each exponential on the right-hand side of Eq. (5.21) is expressed in terms of
the series in Eq. (5.8), it will only be necessary to keep the lowest order term. This leaves
us with three possibilities that we will denote by (C,0), (P,P), and (C,P) according to
whether R;, and Ry, are conical, paraboloidal, or mixed. For the (C,C) combination, Eq.

(5.9) will still hold. But, of course, the effective parameter will be different:

2 2
w (Asl Asz >_1 (5.22)
— =\t :
AS wy Wy
Likewise, for the (P,P) combination, Eq. (5.10) will hold with the effective parameter
TSV NI 529
AS w ’

wy 2

For the remaining (C,P) combination, Eq. {5.7), again with the selection n=1, becomes

23
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s ~
3 2
:: 2n [* r ‘

<I >=cosB—J rJ (2n—\/sin29—2003(¢—cp)sinesin6 +sin%g ) ] dr
N n A2 o ° A ° 0 0 P-
stl !
B 2 242 o
o rS; r'S, (5.24) '
i Xexp[-—z-— > ]dr. N
ot wy w, o
. One can readily understand the behavior of Eq. (5.24) by applying the convolution ‘
35. W f
A theorem, i.e., since <I,>/cosf in Eq. (5.24) is the two-dimensional Fourier transform of .
G’.
o
::; the product of an exponential and a Gaussian, then it is also the convolution of e
ol
<I,>/cos0 of Egs. (5.9) and (5.10). We define § as the ratio of the two components:
i, 0P
!
i _ w8, (5.25) "
!!g B_ 2 .‘ (]
.‘:| wl /Sl ":(
:aﬁ so that for B of zero and infinity Eq. (5.24) reduces to Egs. (5.9) and (5.10), respectively. bt
Equation (5.24), without the obliquity factor, is illustrated in the universal plots of Fig. 5.4 Lt
b |
" for various values of § ranging between 0 and 4. Because of the way Eq. (5.24) is plotted §
) 3
Z%. in Fig. 5.4, the curve for 8=0 looks the same for any choice of w;/(AS,2). As f increases, Bt
Y the top of the curve becomes more rounded and the intensity level drops. As 8 increases %:
, .
N
¥ more, the curve begins to behave like Eq. (5.10) over a larger and larger dynamic range, W,

3 by
! . . .

j:; but the wide-angle values of this convolution cannot drop below the =0 curve. ,‘*
.A

“ S.3.2 Large S; and Arbitrary Sy
7:: .'\r"f
:e. If S>>1 and 83 is arbitrary, then we have one of two general expressions 'C.‘ ]
Y wh ol
:: depending on whether R, is conical or paraboloidal for small offsets. If Ry is conical, ‘;"
A ,-:' .

then the first factor on the right-hand side of Eq. (5.21) can be replaced by a decaying »
) s
.f exponential, i.e., by Eq. (5.8) with C. =-1 and with ali other coefficients set to zero. If we ":‘_:
1 .))'
¥ write the second factor in Eq. (5.. 1) as ]
2 o
s 2 _ 2 2 5.26) ..
. exp[—S 1-R, (r) ]—exp(—S ) 1+[exp SR, (1) -1 ] ,, (
':' 2 ( 'l2 ) 2 ( 2 h2 )
"W
:: then Eq. (5.7) can be broken into two parts: !
Z'.f 5
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Universal plots of Eq. (5.24) with  of Eq. (5.25) ranging between 0 and 4.

Fig.5.4.
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4 — — -— ».
'? X exp( o, ) [exp(Sthz(r)) 1 J dr}. ‘:
a0, Likewise, if Rp, is paraboloidal, then the first factor in Eq. (5.21) can be replaced by a "é
kX 0
& Gaussian. Again using Eq. (5.26) for the second factor, we obtain the expression ':.:‘
W O
Y <I > =oc0sbn exp(—Sz) '03\
[0 n 2 v
'5' o d
0 ‘1::
W w nw O
* _l 2 1\2 .2 . . . 2 'f“

{(,{Sl ) exp[ —( —ASl ) (sm B—2cos(q>—¢o)sm9 sm90+ sin BO)J H
> 2
.
‘ 2 © ‘™ 3
r ¢ Ll
b +~—] rl (2n—\/sin29—2cos(¢-¢ )sin® sin@_+ sin’0 ) e

" A2 0 o A 0 2] 0 ;
t"; “..1
1 "S e
K 1\2 2 (5.28) )
W Xexp[—( " ) “exp(Sthz(r)) -1 ]dr}. ¢
y 1 i
K 5.3.3 Large S; and Small Sg w

) Vot

If we assume that Sp< <1, then it is only necessary to keep the first term in the

\ > 4

}o: power series expansion :f; .

'y LY
Lt

E‘ exp[S;Rh (r)]—l = S;Rh n+ ... . (5.29) t’_’.

» 2 2 bl

[

4 The choice of Ry, is arbitrary, but for definiteness, we will use either an exponential [

;:. autocorrelation function ‘h

:. |

r (5.30)

[] R ( ) =ex - '

s " p( w )

K} or a Gaussian autocorrelation function
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Rk(r)=exp(—:2;) . (5.31)
We note that Eqs. (5.30) and (5.31) have the :xpansions given in Eqgs. (5.3) and (5.4),
respectively. After choosing the above two types of autocorrelation function for Ry, we
have four possible combinations. We will denote them as (C,E), (C,(), (P,E), and (P,G).
The first letter in each pair corresponds to the choice of a conical or a paraboloidal
autocorrelation function for the large roughness component, and the second letter
indicates whether an exponential or a Gaussian autocorrelation function is used for the
second component. The (C,E) and the (C,G) expressions for S; < <1 can both be derived

from Eq. (5.27) by keeping only the first term in the expansion given in Eq. (5.29). For the

(C,E) combination Eq. (5.30) is used for Ry, and we obtain

<In> = cosB 2nexp(—S§)

x [(%)ZIH( 2:5?1)2(sin2e-2ms(¢—¢o)sine sin6, + sin’8, ) | =%

Svmwavomdl

2
A/w2+ )\Sllwl

X

4n® (sin"0~2 cos (9~ &, sin@ sin6 + sin’e ) ] _am } (5.32)
1+

2
(Mw,+AS 1w,
For the (C,G) combination, Ry, is given by Eq. (5.31). Then the Fourier-Bessel

transform in Eqg. (5.27) is of the same form as Eq. (5.24), which has already been plotted in

Fig. 5.4. !f we assume that Ry, is a narrow function of r compared to the exponential, i.e.,

w,<<w /87, (5.33)

2

then the exponential can be replaced by its r=0 value of unity. Equation (5.27) for the

(C,G) combination then simplifies to
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i
. <In> =cosbn exp(—Sg)
AN
K]
N w 2nw
R X [2(-—‘-)2[1+( - *(sin% -2 cos(9 - 9 sindsind, + sin’8_ ) | %
‘l lsz ASZ [ /] o
1 1

: S

W nw
a 272 1\2 2\g/ . C . 2 (5.34)
kz + ( X ) exp[-(——A ) (m26—2ws(¢-¢o)smesmeo+ sin 90)] } .
{ Equation (5.34) must be used with care because, as illustrated in Fig. 5.4, the second term
v is only a valid approximation to the integral over a certain dynamic range, i.e., for large
¥
'. enough values along the abscissa the curves will approach the §=0 curve uniess § is
et
:’, infinite. We note, however, that this (C,G) combination is of little practical interest
q because the conical component will dominate at both large and small angles.
W,
2; The (P,E) and the (P,G) expressions for Sp< <1 can both be derived from Eq.
)
:: (5.28) by keeping only the first term in the expansion given in Eq. (5.29). The (P,E)

expression is obtained by using Eq. (5.30) for R,,. Once again, the second term has the
same form as Eq. (5.24). However, a very good approximation for our purposes is

obtained by assuming that
. w,<<w,/§,, (5.35)

1¢ 50 that the Gaussian in Eq. (5.28) can be replaced by its r=0 value of unity. Then the

W expression for <I,> simplifies to

) <I>= eosenexp(-Sg)

1)

)

: X {(l—:)Zexp[—(A—s—l)2(sin29—2ms(¢—¢o)sines'm90+ sinzeo)]

-372 (5.36)
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The approximation in Eq. (5.35) corresponds to having < <1in Fig. 5.4. We see that Eq.
(5.36) is a very good approximation because for <1 the major effect of the convolution
appears at small angles where the first term in Eq. (5.36) dominates anyway.

Finally, for the (P,G) case, Ry, is given by Eq. (5.31), and Eq. (5.28) becomes

<In> = cosf nexp(—S,f,)

X {(;s-l;)zexp[—( ,;—::- )2(sm29—2 cos(@—¢ )sinOsind + sinzeo)]
S,

. —n* (sin®0—2 cos (9~ ) sin® sind + sin’8_ ) ] } (5.37)

exp
(M w, P+ (AS /1w (M w)?+ (AS, /1w, P

Equations (5.36) and (5.37) for the composite diffuser model are illustrated in Fig. 5.5. In
these plots w1/(AS1)=5. Thus, the small-angle behavior that is dominated by the first
term in Egs. (5.36) and (5.37) is the same in each case. Since Eqs. (5.36) and (5.37) are even
in 8, we will display Eq. (5.36) for negative angles and Eq. (5.37) for positive angles.

Equation (5.36) will be emphasized in this discussion because the (P,E) combination fits
the etched-glass radiation patterns. The second term in Eq. (5.36), which controls the
wide angle behavior, has the same shape as Eq. (5.9). However, the width is /w9 rather

than AS2/w, and the weighting factor has changed. From a first look at Eq. (5.36), it

appears that the shape of the wide-angle wings can be controlled by varying we/A, and

that the intensity level of these wings is proportional to (Sewg/A)2. However, by referring

back to Fig. 5.2 and Eq. (5.15), we see that, except for very small values of w/(AS2), the

wide-angle portions of the curves all had the same shapes. The same thing occurs in Eq.

(5.36); the expression for the wide-angle component of Eq. (5.36) analogous to Eq. (5.15)

is

w0 A5 (5.38)

(2n)2 w, sin°0 ‘

Equations (5.15) and (5.38) are identical except that S2/w has been replaced by S22/ws.
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Therefore, although Eq. (5.36) appears to have the three independent parameters,
w1/(AS)), we, and S2, there are actually only two important parameters: AS;/w; sets the
width of the central Gaussian and AS22/w- sets the intensity level of the wings. However,
the choice of wq and Sg does give us some latitude in controlling how smoothly the two
regions of the curve join. This is illustrated on the left-hand side of Fig. 5.5 where curves
for we/(AS92) of 100 in the upper curve, 1000 in the middle curve, and 10,000 in the lower
curve are shown. Each of these curves breaks into two curves at the transition region
according to two choices of we and Ss used to obtain this ratio. In the lower set of curves
w,/A=1, and in the upper set of curves w,/A=4. The curves look the same for w,/A> 4 as
long as S2< <1 and Eq. (5.35) holds. The dotted lines correspond to a numerical
integration of Eq. (5.28) with an exponential autocorrelation function for Ry,; they show
that the error introduced by the approximate form, £q. (5.36), is very small.

Equation (5.37) is plotted on the right-hand side of Fig. 5.5 for w/(AS;)=5 and for
various values of wy and S3. There is no wide-angle expression analogous to Eq. (5.38)
for Eq. (5.37). Therefore, wy and Sy have independent effects. By assuming that Eq.
(5.35) hoids, we see that the width of the wings is Mwsy and that the intensity level is

proportional to (weS2/))2.

5.4 Experimental Configuration

A scatterometer was constructed for measuring diffuser radiation patterns.
Because of its high dynamic range, this instrument gives one the capability of measuring
these patterns over output angles of nearly +90°. Although transmission measurements
will be described here, reflection measurements are also possible since the arm could
rotate completely around the sample. Scattered intensity is measured in the plane of

incidence with the angle of incidence being set by rotating the diffuser about the axis of

detector arm motion. The system is operated under computer control to improve
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performance and for the purpose of automation. A block diagram of the entire system is
shown in Fig. 5.6.
5.4.1 Input Optics

The light source is an argon-ion laser operating at 0.4880 ym and modulated at
930 Hz by a rotating mechanical chopper. A small fraction of the light is directed by a
beam splitter to a reference photodiode to measure fluctuation of the input power. The
direct beam is sent through a broadband polarization rotator and then to a Glan-
Thompson polarizer to ensure that the input to the diffuser has the desired polarization.
Although experiments were performed with both p- and s- polarized light, in most
experiments we used s polarization, i.e., the electric field is polarized perpendicular to
the plane of incidence.

The light passed through an iris as it entered the blackened chamber. This
chamber, measuring about 1.5 m on each side, had its walls, ceiling, and floor covered
with black velvet, which was very effective in reducing scattered fight within the
chamber. There was also an opening in the wall opposite the input iris so that the direct
beam, if it were not extinguished by the diffuser, would leave the blackened chamber.
The size of this opening could be adjusted according to the angular spread of the
radiation pattern of the diffuser being tested so that most ¢f the scattered transmitted
light left the chamber.

5.4.2 Diffuser Preparation and Mounting

The diffuser or rough surface is mounted on a rotation stage that is located in the
center of the chamber and used for setting the input angle 8, in the plane of incidence.
The diffuser mount was designed to allow for angles of incidence between +75°. Some
care was necessary in designing the mount and in preparing the diffuser for illumination.
The diffuser mount served as an opaque wall so that the only light reaching the detector
passed through a small aperture on the diffuser. This mount was long enough to block

light scattered from the input iris that would otherwise be in the field of view of the
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detector as it scanned the radiation pattern, even for an angle of incidence of 75° At
observation angles near 1£90°, light scattered from the backside of the diffuser or its
mount was prevented from reaching the detector by side pieces on the diffuser holder.

The diffusers were made by grinding or etching one side of $" x2" x 3" pieces of
float glass that had been cut from a single sheet. The ground-glass diffuser was ground
with 820 grit. The etched-glass diffusers were prepared in a manner similar to that used
by Dyson.33.34 His method was to preroughen the glass by grinding and then to expose
the preroughened surface to hydrofluoric acid for various lengths of time. We obtained
better results by preroughening the glass with Armour Etch35 etching cream. For short
exposures to the etching cream, the surface texture of the glass goes through various
stages that are critically dependent on time; however, after an etch time of 45 minutes
the texture does not seem to change. Nine diffuser blanks were preroughened on one
side with Armour Etch for 60 min and then exposed to BOE36 (4-1) etchant for times of 2,
S, 10, 20, 30, 45, 60, 90, and 120 min. As the BOE etch time increases, the cell size or the
size of the scallops in Fig. 5.1 also increases. However, the rms height stays nearly
constant at about 1 ym. The limiting etch time is about 2 hrs. For longer times the
surface develops smaller scale structure and large splotches. For etch times up to 5 min,
the major effect of the BOE is to smooth out the high spatial frequency detail of the
preroughened surface, not to increase the cell size.

The diffusers were then painted black on the four sides and on the diffuser
surface, except for an opening about 4 mm wide by 7 mm high. The light is incident
from the s.n0oth side of the diffuser, and the effects on the radiation pattern of
reflections between this surface and the rough surface, which can be significant at high
observation angles, are reduced by keeping the ratio of aperture width to glass thickness
small. The aperture was made somewhat larger than the size of the laser beam, which
had a 1/eZ intensity point of wy,=0.59 mm, to reduce scattering from its edges. There

were certain advantages to forming the aperture with paint over placing an aperture in
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contact with the surface. For example, when a metal aperture with a thickness of about .:“c::’.t’
‘ -V el s
30 um was attached to the surface, the scattering from its edges dominated the A
I" '
i
scattering from the diffuser itself at large observation angles. On the other hand, the :::,!:5
!
edge formed by the paint could be made to be very thin at the border and to increase in .: ‘:
At
thickness with distance so that the edge scattering was reduced. It was necessary to use "':‘,
X000
. . . . . . SR
. an aperture on the diffuser, otherwise, unilluminated areas of the diffuser would light Q':: '.:
Rt 0!,
ety
up through multiple scattering and increase the light scattered at high angles. Since the :,q, ’q:f_
{70
paint was in contact with the rough surface and partially index matched the glass, ¢
. P
reflections and muitiple scattering were reduced in the painted regions. "%‘:.:"'.:‘
yhale
The diffuser could be positioned through micrometers on three translation stages ':.:;'.::"
g bl
)
DO
and on a tilt stage. The translation stages are used to center the diffuser in the input iy
- .
beam and to control its longitudinal position so that the area to be iliuminated with the :: ‘.::
'. ”’ v
laser was at the center of rotation. The tilt stage was used to achieve retroreflection off ,‘E::,::s:
ity
vl
of the polished input surface of the diffuser. For illumination with non-normal '3' .
g . . ¥ ‘
incidence, this position served as the zero degree mark for the diffuser rotation stage. To N J". '
S,

. el
account for beam displacement that occurred when the 12 mm thick glass diffusers were :'g:::a
illuminated at an angle, the whole diffuser detector assembly was translated laterally to I
bring the beam back into the center of the diffuser aperture. :?.::o::

A
5.4.3 Detection System q::c::
o
The detector was mounted on an arm that could rotate completely around the et
sample, and that had the same axis of rotation as the diffuser. Both the diffuser rotation {.-7‘- A
]
and the arm rotation were computer controlled. The step size of the arm between ‘%ﬁ M
ol
intensity measurements for most applications was 0.20°. However, a step size as small as E: "‘
0.01° could be obtained with the system. , t
AN
i 4
The distance from the center of rotation to the detector, a silicon PIN photodiode _}Q&
BLRLY:
Fagy!
operated in the photovoltaic mode with no bias voltage, was 65 cm. The field of view of :.-:;-
.

this detector is restricted to a half angle of 3.2° by a baffle. Also at the entrance to the e
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‘ detector is a polarization znalyzer mounted in a rotation stage. The effective diameter ”
’ of the detector is 2.5 mm so that it subtends a solid angle Q of 1.16x 10-3 sr or a half- ,'_s"
e»i angle of 0.11°, ,.:

i The signal from the detector went to a PAR Model 181 Current Sensitive Preamp. . l‘!’
i. For detection of the low light levels that occurred at high angles, the sensitivity of the E
R
E o preamp was set at 107 A/V. However, in the region around the intensity peak, it was é;
'ﬂ necessary to switch to a lower sensitivity, 10-4 A/V in most cases, to avoid saturation. To ":‘
t measure the intensity spike that occurred from diffusers that passed the direct beam, it A ::
i‘vg" was also necessary to reduce the intensity of this spike with neutral density filters. The %
_'k“ signal from the preamp was input into a PAR Model 5301 Lock-in Amplifier that was :;ﬁ
":; controlled by the host computer over the |EEE-488 interface bus. Since the signal ]
" strength changed by many orders of magnitude as the arm moved between the different ,( :
E:f regions of the radiation pattern, the autoranging capability of the lock-in amplifier w :s ‘:‘.
:':_v.: used to maintain its sensitivity at the appropriate level. ;
EE:' 5.4.4 Linearity and Calibration .'::
Z;' Since the radiation patterns were measured over many orders of magnitude, and Es

the preamp sensitivity was switched within a single measurement run, it was important

a8 to test the linearity of the system and the consistency of the preamp at the sensitivity .

!
A . o . .
:': settings of 10-7 and 10-4 A/V used for most applications. To check this range switch, the .
o ¥
power incident on the detector was set at the level where the range would be switched ’
) g
K 3
o in an actual radiation pattern measurement. The average difference between readings K
’ 9 9 {
By et S
?,:' S taken before and after this 103 range switch was less than 1%. t.,
R
! The linearity of the detector system was checked over a wide range of input Lo
y P
L b
oyl "%
:::. powers, ranging from direct illumination of the detector with a He-Ne laser to six orders ":!
" ‘o
"‘,' of magnitude below this level by using neutral density filters. One neutral density filter, Rt
) g y 9 y 0
KNy -
Y having a density of 0.3, was mounted so that it could be removed from the beam path W
e et
sl and then reinserted to the same position. It served as a repeatable attenuator for \)
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showing that the attenuation measured by the system was the same at different power
levels. The attenuation agreed to within 1% over the six decade range.

The system was calibrated using both a direct and an indirect method. In the .N..M
direct method there was no test diffuser. The laser beam was attenuated with neutral .::'.::g.
density filters placed before the beam splitter in Fig. 5.6, and the total energy within the
direct beam that entered the blackened chamber was incident on the detector. The l.",ﬂ-
preamp was set at 10-4 A/V, and the ratio of the signal voltage V, out of this preamp to oy

the voltage V,, from the reference detector was calculated as o

s0 (5.39) ‘w3l 'Q.t

The product gV, became the indicator of the power level incident on the diffuser for a
given reference voltage V,. It was not necessary to perform an absolute calibration of
these detectors in watts per volt because the quantity of interest I,, is normalized by the Moty
incident illumination and hence does not depend on the input power. However, to
facilitate the discussion, we assume that we do have a calibration factor a such that the 2N

total power P, entering the chamber is J
P =agV_, (5.40)
taa‘.::'q,
and the power scattered from the diffuser and received by the detector is NS
AP=aV . (5.41) .

L]

Then by Eq. (5.6),
.0 & A
[ = Vs (5.42) c':'sl::'
= —— oy
e AQgV. R
In the indirect calibration method, a barium sulfate disk was used to approximate O
an idealized Lambertian scatterer, and the radiation pattern in reflection was measured

with the scatterometer. The calibration factor Qg of Eq. (5.42) was calculated by : "

w
comparing the resulting radiation pattern with Eq. (5.11). Since the indirect method was -"Q_ '
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more repeatable, and the signal levels V, and V, for this method were in the range used '
R . . . . iy
“ffo for actual measurements, it was the preferred method of calibration. The calibration was ‘
‘)‘1‘ ‘. 3
.'“. -
“';n performed for wavelengths of 0.4880 ym and 0.6328 ym. The minimum detectable [, is :.*
:p‘l .'.
\ 0
i 4.0 x 107 sr-! for an average input power of 30 mW at 0.4880 um and 1.3 x 10-5 sr-1 for o
e
,%gf: an average input power of 1.2 mW at 0.6328 um. This corresponds to a minimum )
R . o
A i
K detectable power for the receiver of about 1.5x 10-13 W. o
,,“ti Pt
Vil ,
N '
LK . g
R 5.5 Measured Radiation Patterns 3
4 d
s ‘
EA N
,:.' 5.5.1 Ground Glass '
) 1
i ' . . N N 4
:f- The radiation pattern from a ground-glass diffuser is presented for comparison :‘s
!
:,:;: with the theory of Section 5.2 Since this type of surface is made by an abrasive grinding o
y‘% .1
‘::: process, it has sharp edges and abrupt discontinuities as illustrated in Fig. 5.1(a). Hence, \ :;
3.9 (3
Y48 A
j::o one would expect that the resulting autocorrelation function would drop immediately, .::
n ]
‘W i.e., be better represented by a conical shape than by a paraboloidal shape for small
) o
& (%
. -
;;: offsets. Hence, Eq. (5.9), and correspondingly Fig. 5.2, are expected to provide a }
.y
;o:: theoretical basis for the prediction of the radiation pattern. ‘\5 .
o,
N Before presenting the experimental data from the ground-glass diffuser, we will
o ]
i
Q: present the calibration curve from the barium sulfate scatterer used to approximate an A
2 o
:::: idealized Lambertian surface. In the two curves labeled (a) in Fig. 5.7, the radiation &
h
P &
pattern in reflection resulting from illumination of this surface at normal incidence is -
"y ry
\J - . . . . e\
o plotted, solid line, and compared with Eq. (5.11), dashed line. There is a break in the :.t
)
\ WY
:.: experimental data around 8=0° where the detector assembly blocked the input beam. N
!'Q N
B2 . . . . . . . . -
"1 The calibration factor was obtained by adjusting the experimental curve vertically until . ’
]
U . .
:.:’ the solid line and the dashed line overlapped. N
(’Q ~
X In curves (b) of Fig. 5.7, we see the experimental results from the ground-glass é::
‘ AN
"r diffuser, solid line, together with Eq. (5.9), dashed line, plotted for w/(AS§2)=1.4. A very =,
)
:":| good fit has been obtained at all angles and over five orders of magnitude. We did not N
1‘ .| - ¢
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observe a significant difference when the radiation pattern measurement was repeated
for p polarization, i.e., when both the polarizer and the analyzer were rotated by 90°.
5.5.2 Etched Glass

As illustrated in Fig. S.1(b), the surface of the etched-glass diffusers are smooth on
a wavelength scale and have slowly changing siopes except at the ridges. Hence, we
would expect the radiation patterns to be quite different from those of ground glass. In
curves {c) of Fig. 5.7 we compare the theoretical prediction, using the composite diffuser
model of Eq. (5.36), with the measured patte. - from an etched-glass diffuser
(AE 60 min, BOE 45 min). Very good agreement is seen at alf angles and over eight orders
of magnitude. This fit is obtained by choosing wy/(AS;)=6.0 to set the height of the
central Gaussian intensity profile and by choosing w9/(AS52) = 38 to set the height of the
wide-angle wings. Alternatively, we could have chosen w;/(AS;)=5.0 to obtain better
agreement between the widths of the two curves in the central region, but then the
height of the dashed line at 8=0 would have fallen by 30% or by 0.16 units on the
logarithmic scale. The transition region between the central Gaussian and the wings is
dependent on the values of wys and Sy used to produce the above ratio. For the curve
shown, we/A =0.75 so that S9=0.14. The fitting of the wings is consistent with the
presence of microstructure on the surface having the discontinuities that are
characteristic of an autocorrelation function that isconical for small offsets. With
reference to Fig. 5.5, we review the curve fitting procedure as follows. As explained
directly above, (1) the parameter w/(ASy) is obtained by intensities [,, at small angles
and (2) wy/(AS92) is obtained from I, for 8~60°. Finally, (3) the parameter wy/\ is obtained
from the transition region between the central Gaussian and the wings.

In Fig. 5.8 we see the radiation patterns for the same etched-glass diffuser
(AE 60 min, BOE 45 min) as measured for input angles 8,=-60° -30°, 0°, 30°, and 60°.
Similar curves for ground-glass diffusers are in the literature.26 The measurements in

Fig. 5.8 were made with the detector arm sweeping out a half circle in the plane of

»
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incidence for s polarization. In these curves we observe that the position of the

maximum of each radiation pattern slides according to the illumination direction 6, but

that this peak is displaced toward smaller angles, the displacement increasing with

increasing angles of incidence. Some of this displacement arises from the fact that the

obliquity factor is stronger on the high-angle side of the curve, which tends to shift the

maximum value of the curve inward.

We also observe that the radiation patterns widen and that the maximum values

decrease as the input angle 6, increases. Part of this widening is due to the effective

value of S increasing as 6, increases in Eq. (5.18). However, most of it arises from the fact

that we are observing the radiation pattern as a function of the angie 8, not as a function

of the spatial frequency, which goes as sinf.

In Fig. 5.9 we have used Eq. (5.36) to plot a family of radiation patterns in the

plane of incidence for the same values of 8, as in Fig. 5.8 and for wy/(AS1) =6, we/A=0.75,

and So=0.14. We observe very good agreement between Figs. 5.8 and 5.9, especiaily in

the angular dependence of the wings. In plotting Eq. (5.36) we have used Eq. (5.18} for

the dependence of S on input angle 68,. The etched-glass radiation pattern

measurements were repeated for p polarization. The only observed difference between

these patterns was that the intensity level of the wings dropped on the long side of the

patterns for oblique incidence.

Figure 5.10 contains plots of the radiation patterns for three of the nine etched

glass diffusers for normally incident illumination. From these radiation patterns we see

the large range in the widths and maximum values of the intensity curves that can be

obtained by varying the BOE etch time between 2 min and 120 min. By fitting these

i - 7
; radiation patterns to Eq. (5.10), we can obtain the vaiues of the shape parameter w/(AS) S
4 . . e . . oty
: for the paraboloidal component. We use a linear rather than a logarithmic intensity axis .k'_\}y
LN |

‘E' . 0 . . . . . . . . . ‘
» for this fitting procedure because the angular distribution of intensity in the wings is ) .<

insignificant on a linear scale. In Fig. 5.11 the values of w/(AS) as so obtained are

&
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compared with direct measurements from a stylus profilometer. In the profilometer
method, 1 mm scans consisting of 2048 data points are taken for each diffuser.
Autocorrelation functions from each scan are calculated and fit to a Gaussian to obtain w
and S. The excellent agreement between these two methods of measuring w/(AS)
establishes measurement of the radiation pattern as a useful and accurate noncontact

method for characterizing paraboloidal surfaces.

5.6 Summary

A theoretical formulation for the far-zone radiation pattern resulting when a
diffuser with a normally distributed surface height profile is monochromatically
illuminated is presented in detail and compared to experiments. In the theory, which is
extended from an earlier publication,® we emphasize predictions of the expected value

of the normalized intensity <I,>, and we stress that this corresponds to the envelope of

the speckle pattern I,,. First, in the theory for the case of normalized roughness S in Eq.

(5.1) much greater than one, we present two important limiting forms of <I,>, Egs.
(5.9) and (5.10), which correspond, respectively, to autocorrelation functions that are Eq.
(5.3) conical and Eq. (5.4) paraboloidal for small offsets. Second, we present forms for
<I,> from a diffuser with two scales of roughness where the first component has large
roughness 8y >>1 and the roughness Sy of the second component is in one of three
categories: If So>>1, and the autocorrelation functions of the first and second
components are conical and paraboloidai, respectively, then we denote this combination
by the symbol (C,P) and Eq. (5.24) applies. For arbitrary Sy, Eq. (5.27) will apply if the first
component is conical and Eq. (5.28) will apply if the first component is paraboloidal. If
S9< <1 then Eqs. (5.27) and (5.28) simplify. We illustrated this case with four examples,
denoted by the symbols (C,E), (C,G), (P,E), and (P,G), that correspond to Egs. (5.32),
(5.34), (5.36), and (5.37), respectively. The second letter in each pair symbolizes either an

exponential or a Gaussian autocorrelation function for the small roughness component.
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In Fig. 5.7 excellent agreement is obtained between Eq. (5.9) and the ground-glass
radiation pattern by adjusting the single parameter w/(AS2) and between Eq. (5.36) and
the etched-glass radiation pattern by choosing the three parameters wy/(AS}), wa/A, and
Sq properly. As illustrated in Fig. 5.11, the values of w1/(AS;) obtained by measuring the

angular distribution of the radiation pattern agree well with stylus profilometer

measurements of diffuser surfaces.
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SUMMARY :::2*::;,

RN
¢
o . . ) o At
In this thesis the scattering of laser light from single thin diffusers and from a ‘,:1:,:”
Wl
L . . . . . i,
cascade of two thin diffusers is analyzed with particular emphasis on remote sensing. In .::t.g“:::;
(A
. ) . . . . QO
A both scattering configurations, the diffusers are probed with a monochromatic plane CaC
. o - z;.;r :
wave, see Fig. 1.1. For single diffusers, the angular distribution of the radiation pattern, o,‘.o,O \
1
b f " 'L
i.e, the slowly varying envelope of intensity, is related to the statistical properties of the ::,0::' A
SVt
) Y
diffuser surface. For double diffusers, decorrelation of the far-zone speckle pattern with "‘.'-'
respect to changes in the wavelength and/or angle of incidence of the input plane wave . s.'- ‘:l:::
s
is related to the diffuser surface properties and to the spacing H between diffusers. 1itis : W ::';
)
At bl
shown that these two problems are very closely related in that one can predict the ‘;{ﬂ ol
decorrelation behavior from a cascade of two diffusers given the angular distribution of o -!\\«:;; ¢
o ?
W
e . . +
the radiation patterns from the single diffusers that make up the cascade. X .:s::,
g/ iy chy!
The propagation of light through single diffusers is treated in Chapter 2. Of ) E'\':.
particular interest is the validity of Eq. (2.1) for obtaining the complex amplitude vg(r) at -':4
" ]
e "
the output plane of a diffuser by multiplying the complex ampiitude vy(r) at the input -,’: ; :
plane, point-by-point, by a diffuser transmission function t(r;k). This simple transmission ol
function approach is limited because it does not account for diffuser thickness effects. IRED
e
For comparison, a generalized transmission function #(r;k) is introduced that does 5,;:::1:
() ‘.'
account for thickness effects through its additional dependence on the angle of Ey_{
e AN Y
incidence of an input plane wave. Hence, t(r;k) is denoted as the plane-wave _mgr
transmission function for the plane wave with wave vector k. For general illumination, "(\f\ ;
ALY
b Koo
the input vy (r) is decomposing into an angular spectrum of plane waves, and Eq. (2.7) is ,%§
b
. used to calculate the output vg(r). Asis evident from Egs. (2.9) and (2.10), the plane-wave ‘s
SR
transmission function {(r;k) is an alternative to the impulse response g(r;r’) for treating ’a\_“ii::
200
the propagation of light through an arbitrary linear system. ;:& 8
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Approximate plane-wave transmission functions are given in Eq. (2.23) for a bulk .
'
.4 . . . . . " e
K diffuser and in Eq. (2.34) for a rough surface diffuser. Through computer simulations of .\o:‘
R4 h b
' (R
o . . . i
N far-zone speckle patterns (see Fig. 2.5) and through analytical calculations of the speckle :::'
¢ X
N . . o b
) decorrelation (see Appendix B) it is shown that the angular dependence of the " .
"; generalized transmission function is not important for typical thin diffusers illuminated
4 0
': at small input angles. Hence, the simple transmission function is adequate for treating e
A A
' the individual thin diffusers in a cascade. This is important because it makes the resuiting o
8
N expressions for the cascade manageable. .:'.'.:
: %
“,, In Chapter 3 the decorrelation of speckie from double diffusers is analyzed with "'::
3 )
'-: respect to changes in wavelength, angle of incidence, angle of observation, and spacing. R
\ The diffuser pair, see Fig. 3.1, is illuminated with a plane wave of wave number k that "
l. t
3 s . . . . . ) Yo0?,
i: points in an arbitrary input direction s,. The two diffusers are separated by a spacing H, ::‘.::
v‘\n
:: and there is an aperture a in contact with the second diffuser. The expression for the :::o:
p complex amplitude in the far-zone of this aperture is given by Eq. (3.17). -..
;: Equation (3.47) is a general expression for 14, the two-state correlation function AN
g0y
3 ) )
¢ of the tar-zone complex amplitude. The subscripts @ and b represent the initial and final n ‘::a.
‘ AL
. states of the four parameters that can be varied during an experiment, i.e., the wave R,
1y y‘&
:: number k, the input direction s,, the spacing H, and the observation direction s. in a -.\
[y .!’l‘
‘ R . R . h'e.
:. typical speckle experiment, one would measure the intensity rather than the complex :g-‘_t
! I8
W
amplitude. Hence, it is important to also calcuiate the two-state correlation function of e
" S,
v . . . . . .
; intensity <I,I,>. The expansion of <I,I;> in terms u,p for circular complex Gaussian :':0'::
0 N0
s JOO
“' statistics is given in Eq. (3.75). The two-state correlation functions ugp and <I,Iy> are P'
‘\.'; ot
] measures of the correlation between the initial and final speckle patterns. A speckie ® .
\ J 3
‘ pattern is said to be decorrelated if u,p is small compared to its initial value ug, or if the A
L%t
9 normalized two-state correlation of intensity in £q. (3.75) approaches unity. :,-:: \
I v
0 O
* The general expression for u,; given in Eq. (3.47) takes the especially simple form gL
®
given in Eq. (3.48) when k and H are constant, or more generally, when Eq. (3.45) holds. ’-'.j
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Equation (3.48) is proportional to the double-diffuser descriptor function F that is
defined in Eq. (3.30). The offset vector H; sy, -Hps,p1 that occurs as the first argument
of F is particularly important. It can be interpreted geometrically as the lateral shift at
plane Il between two rays leaving plane | at the same point and traveling in directions sy,
and s,p. Some special cases of u,, listed in Section 3.2.6 are the radiation pattern from a
cascade of two diffusers in Eq. (3.50), the radiation pattern from a single diffuser in Eq.
(3.51), and uq, for a singie diffuser in Eq. (3.52). Equation (3.58) is a general form of ug,
for a diffuser with an arbitrary plane-wave transmission function. It includes the double
diffuser as a speciai case.

The analysis in Chapter 3 applies to general diffusers; however, in order to
perform calculations based on £q. (3.47), the functional forms of the autocorrelation
functions R, and R,, of the diffuser transmission function ¢; and ts must be specified. For
diffusers whose height profile k is normaily distributed, there is a particularty simple
relationship, Eg. (3.63), between the autocorrelation functions R, of the transmission
function and Rj of the height profile. The decaying exponential, £q. (3.66), and the
Gaussian, Eq. (3.67), are two important large roughness limiting forms of £q. (3.63) for
R, The decaying exponential applies when R, looks like a cone, and the Gaussian applies
when R, looks like a paraboloid for small values of the offset parameter r. These
diffusers are designated as conical, C, and paraboloidal, P, respectively. For paraboloidal
diffusers, the slope parameter gy/w, where a, is the rms surface roughness and w is the
lateral correlation length, determines the angular spread of the radiation pattern. For
conical diffusers, the corresponding parameter is o,2/w.

Chapter 3 arovides a framework for further analysis of speckle decorrelation from
a cascade of two diffusers. The general expression in Eq. (3.47) for ugp can be used as the

basis for many different remote sensing techniques. An important special case of the

analysis is the remote sensing of the spacing between a large roughness diffuser and a
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b circular aperture by observing the angular decorrelation of the far-zone speckle pattern, i
A see Eq. (3.93). o
::: In Chapter 4 the analysis of speckle decorrelation is applied to the remote sensing .}" ‘
i of a P-P diffuser cascade. The advantage of analyzing this combination first is that the ‘:
::" two-state correlation function of intensity can be calculated in closed form for arbitrary e
‘
::‘ values of the state variables. The resulting solution, Eq. (4.13), is used in categorizing the ?" ]
.[: different speckle decorrelation phenomenon and in configuring remote sensing :
:: experiments. Equation (4.18) is the simplified version of £q. (4.13) that results by setting :
;‘: kgp1 =0, i.e., by using equal input and observation angle.. Based on Eg. (4.18), it is » :"
S
: shown that the three parameters oy /wy, on/wz, and H of the diffuser cascade can be :i
determined remotely by performing three experiments. These experiments are x
,' measurement of the decorrelation of the speckie pattern with changes of wavelength :‘;f
.‘ and spacing and measurement of the angular distribution of the radiation pattern. :'::.:
o However, it is also necessary to perform a wavelength decorrelation experiment with ._.
Lt ko1 20 to distinguish between the diffusers, i.e., to determine the ordering of the :.':
f diffusers in the cascade. This additional experiment is based on the fact that the E'h
h. wavelength decorrelation for k,p #0is enhanced if pg>1, i.e., if the diffuser having the : »
) '
. larger spread in its radiation pattern occurs first in the cascade. ::4
.P The analysis is presented in Appendix E for the P-C and C-P diffuser cascades and ::tf
in Appendix F for the C-C cascade. It is shown that one can determine the values of the '.J
;-E: appropriate diffuser parameter op/w or 0,%/w for each diffuser, together with the :;.
o
:EE; spacing, by performing simple remote sensing experiments. The major difference :EE{
between these diffuser combinations and the P-P combination is that two unknowns, ) F:.
f instead of one, can be obtained from each experiment, see Section 4.5. This implies that :::'_
s ~L Y
.;d there is more freedom in choosing the types of experiments used in the remote sensing "..\:_
of the P-C, C-P, and C-C dittuser combinations. :,'?:*
& ®
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In Chapter 5 theoretical radiation patterns are compared with measured radiation
patterns from ground-glass and acid-etched diffusers. First, the theoretical radiation
patterns from conical and paraboloidal diffusers are given in Eqgs. (5.9) and (5.10),
respectively. Then diffusers with two scales of roughness are also analyzed. Of particular
importance is Eq. (5.36) for the (P,E) diffuser, where the letter P denotes a large
roughness paraboloidal component as usual, and the letter E denotes a small roughness
component having an exponential autocorrelation function.

Measured radiation patterns over a dynamic range of about 6 orders of
magnitude are presented for ground-glass diffusers and about 8 orders of magnitude for
acid-etched diffusers. For ground glass, exceilent agreement is obtained using an
autocorrelation function that is conical for small spatial offsets; this is consistent with our
physical expectation based on the need for a rapid fall-off in surface correlation due to
the jagged nature of the surface relief. For etched glass, excellent agreement is obtained
with the (P,E) diffuser. The upper two or three orders of magnitude of the radiation
pattern is dominated by the large roughness paraboloidal component, and the scattering
at wide angles is predicted by the small roughness component having a decaying
exponential autocorrelation function. The values of w/(AS)=w/(2na,) for the
paraboloidal component of etched-glass diffusers made with BOE etch times ranging
between 2 and 120 min are obtained from the measured radiation patterns. These

values of w/(AS) range between 3 and 13 and compare well with those obtained by direct

measurement of the surface profile with a stylus profilometer.
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Appendix A

Fourth-Order Moment of a Non-Circular, Non-Zero mean,

Complex Gaussian Random Process

The complex Gaussian random process z is defined as

2= x+iy, (A1)
where x and y are arbitrary real Gaussian random variables. In much of what is written
on the subject it is assumed that z has zero mean, i.e., that <x> = <y> =0, and that z is
circular.1-5 Circularity is defined below in Eq. (A11). There seems to be a lack of written
material on the general case of, non-circular, non-zero-mean complex Gaussian random
processes. There is sometimes confusion in the literature because the results for zero-
mean circular-complex random processes are applied to general complex Gaussian
random processes. The results of this appendix are used in obtaining Eq. (3.72) for the
two-state correlation function of intensity.

We begin calculation of the general fourth-order moment of a complex Gaussian
random process by first considering real Gaussian random variables. Let x, x,, x5, and x,
be four Gaussian distributed random variables, each having a mean value of zero. Then
by the Gaussian moment theorem,3.4 we can write the fourth-order moment in terms of

the second-order moments as

= >
<x1x2x3x4> <xlx2> <x,3.x4 + <x1x3> <x2:(4> + <x1x4> <x2x3> . (A2)
Since all odd-order moments are equal to zero, we also have

<x'x2,t3>=(), (A3)

The random variables in Eqs. (A2) and (A3) could be interpreted as arising from distinct

random processes, which may or may not be correlated with each other. However, in the
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usual application x; represents a single random process where the subscript denotes a
certain argument, i.e., x;=x(¢), where i=1,2,3,0r 4.

We generalize £q. (A3) to include non-zero-mean statistics by substituting the
zero-mean random process x;-<x;> for each of the variables and then expanding. The

resulting expression for the third-order moment is

<xlx2x3> = <x2x‘3> <xl> + <xlx3> <x2> + <x112> <x3>

(A4)
-2 <,\:l > <x2> <x3> .
By following the same procedure for Eq. (A2) and using Eq. (A4) to reduce the resulting

terms containing third-order moments to second- and first-order moments, we obtain

<x1x2x3x4> = <xlx2> <x3x4> + <x113> <x2;4> + <x)x4> <x2x3>

(A3)
—2<xl><x ><x ><x4>

2 3
for the expansion of the fourth-order moment when the random variables have non-
zero means.
When <x;>=0 and <y,>=0, the expansions for complex random variables

corresponding to £qgs. (A2) and (A3) are

<zlzzz3z4> = <zl.’,2> <zaz4> + <2133> <22z4> + <zlz4> <2238> (A6)

and
<zlzzz3>=0. (A7)

The validity of Egs. (A6) and (A7) can be checked by writing z; in terms of the real
variables x, and ¥, expanding, and using Eq. (A2) to reduce the real fourth-order
moments to second order moments and Eq. (A3) to show that the real third-order

moments are zero. Equations (A4) and (A5) also generalize to complex variables yielding

2. >2<2.>+<22 ><z >

Sz =<zp 123 2 %2 3

1243 ><zl>+<z

3
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_2<zl> <z2><23> {A8) N

a4
and O

N
\
]

><z >
7

<z 22><23z4>+<2123><2224>+<zlz4 3 .

>
17277374 1

Wit
- > ‘U " ¢
2<21> <z,> <-3> <z,> (A9) '.;

. . Sy
for the expansion of the third- and fourth-order moments of non-zero mean complex RN

Gaussian random variables. The steps in obtaining Eqgs. (A8) and (A9) from Eq. (A6) and ;

(A7) are exactly the same as those used to obtain Eqgs. (A4) and (A5) from Eqs. (A2) and .;.0"
(A3). biot

The usual complex fourth-order moment that one encounters in random processes .‘i
has complex conjugates on two of the four z variables, and z is interpreted as a singie

random process, i.e., z;=2z(t). Thus we rewrite Eq. (A9) as N
<At )2tz 2t )> = <zt )at)> <z*t)z*i)>

* * * * “s‘

+<Z(t1)z (t3)> <2(l2)z (t4)> + <2(tl)z (14)> <Z(t2)z (t3)> ; .‘l

*
=2<2 > <AL)> <P )> <2 )>. (A10) \
In many cases, e.g., when z(¢) is an analytic signal representation of the real
function x(1), the random process will be circular.5 The definition of circularity is that e

e
<Z(ll)2(t2)>=<z(tl)> <2(t2)> (A11) :"'?

&£
%3

for any values of t, and ¢,. Equation (A11) implies that the real and imaginary parts of 2
will obey the following two relationships: e

roted

<x(tl)x(13» )—<x(ll)> <x(t2)>= <y(ll)y(t2)>— <yle)> <y(t2)> (A12) s q

and
..,
L Hx
@

< IE)> - <xlt)> <xlt)>= - <x(t2)_v(tl)> - <y¢)> <~V“2)> . (A13)

For circularity, Eq. (A10) reduces to A
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<At ) At M) 2 )> = <t )2 (E)> <L) 2t ) > N

+ <At )2¥e)> <at) 2¥(e)> — <at)><At)> <zH)> <zt )>. (A14) ."y
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Appendix B o
Plane-Wave Probing of Single Diffusers ."‘:}‘“_

Approximate plane-wave transmission functions for bulk diffusers and rough- RO
surface diffusers are given in Eqs. (2.23) and (2.34), respectively. In this appendix these .
transmission functions are used to evaluate the two-state correlation function Y
R, ,(rKoq;kop) defined in Eq. (3.56). The two-state correlation function ug4 of far-zone I
complex amplitude is then cbtained by substituting R, , into £q. (3.58), and Eq. (3.75) is .H
applied to calculate the two-state correlation function of far-zone intensity. This X
appendix is useful for showing that the wavelength and angular decorrelation of speckle

from single diffusers generally occurs slowly compared with decorrelation from cascaded *-x_“

diffusers. ;""'J*

F.1 Bulk Diffusers —~
Upon substituting €q. (2.23) into Eq. (3.56) and using Eq. (2.22) to write cosB«, > in Ao

terms of sin6,, we obtain ®

t

. . — { 2 ‘. 2 2 i 2 \
R lz(r’koa‘kob) = exp zH(ka\/ <n>"-sin’6_ - kb\/ <n>°-sin‘d , )l :‘.Et

ka An(r') kbAn(r+ r’)
X<expli11<n>( - >l>
1

(B1) .9
\/<n>2—si:129m Vv <n>2-4n% SR

ob
as the two-state correlation function for the plane-wave transmission function of a bulk

diffuser. Following Section 3.3, we identify the ensemble average of the exponential in

Eqg. (B1) as the joint characteristic function! of the random process An with respect to the

4
e &

P

;{. e
SRS,
N
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variables n, and n, , where

Ld

1
.
4

h e e T T ¢
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Hk <n>
a

<

W
ty

(82)

rla = 9 .9
VvV <n>°_sin"0
0a
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and
_ Hkb<n> (83)
W T
V <n>°—sin“0
ob
For a normally distributed wide-sense stationary random process, see Eq. (3.62),
< in An(e)+in Anr+r) (> = L 2
expfin An(r)+in An(r = exp -—20An<rzb—rza) ]
x exp| -0} nny(1-R,,@)|. (84)
in Eq. (B4)
9, =<An(n>* (BS)
n
and
R ()= <An(r)An(r+r)> (86)
An 2
OAn

Through its dependence on the difference n;-n,, the first exponential on the right-
hand side of Eq. (B4) controls decorrelation with respect to changes in the wavelength
and the angle of incidence of the input plane wave. The second exponential is relatively
insensitive to small changes in wavelength or angle of incidence because n, and 7, occur
a5 a produ-.. We aiso note that the first exponential can be factored out of the integral
in caiculating u,y from Eq. (3.58). Hence, it is not the precise functional form of R4, that
is hnportant in determining the decorrelation properties of a single pulk diffuser, but
rather the magnitude of the normal incidence rms phase delay

S,=klo, . (87)

A good approximation to Eq. (3.58) for u,, is obtained by setting n, = n, within the

secund exponential in Eq. (B4):
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u_ = -k—ak-%expl—iR(kb—ka)]eosCacoseb

* (o)

i.H(k V <n>2%_sin’® -k V <n>2_sin% )
a oa b ob

! 2 2
Xexp exp[-—EOA"<rzb—rza) ]

X J exp[ —oinrz:( 1 ~RA"(r)> J A(r;Akabl)exp(i kabl or) d’r. (88)
We use Eq. (3.75) to calculate the two-state correlation function of far-zone intensity
from a strong diffuser whose limiting aperture is large compared to the diffuser
correlaticn length. By requiring that the speckle tracking condition holds, i.e., that
Akgpy =0, the integral in Eq. (B8) will have the same value for ugp, ug,, and upp, and Eq.
(3.75) will take the simple form

<Ialb> (89)

_ 2 [ \2
<1 ><I,> =1 +exP[-°A"(nb qa) ]

Equation (B9) governs the wavelength and the angular dependence of speckle
from a single bulk diffuser. We emphasize the wavelength dependence by applying Eq.
(B9) to normally incident illumination and note that the wavelength dependence reduces
to that of a single diffuser in a cascade, see Eg. (4.24):

<l >
<1a>a<bl,,> =t rew(-Skp) o
In Eq. (B10) we have used the fractional change in wavenumber p, defined in Eq. (4.23),
and S, is calculated for the initial wavenumber k,. The angular dependence in Eq. (B9) is

emphasized by assuming k, = ky:

sin2 sin2
<Ia1b> ) sin"g -y sin Oob -3 |2 (811)
————— =1 +exp{~8§, 1-———2) (1= - .
<I><I> <n> <n>

In many applications 8,, =0, i.e., the input plane wave is initially normally incident. Then
for small angular detuning, £q. (B11) reduces to

2244
<Ialb> bo Oub (812)
=1+ exp( - )

4<n>t

<l >« >
a b
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If we say that angular decorrelation has occurred when the exponential in Eq.
{B12) falls to its 1/e paint, then the value of 8,; necessary for decorrelation is
8 ,=<n>V2/S . (813)
ob o
For the speckle pattern from a thin bulk diffuser to decorrelate with a change of angle of
incidence of 0,,<1°, 8, must be very large, i.e., §,215,000 rad. Even for 0,,<10°,
S, 2150 rad for the speckle pattern to decorrelate. As illustrated in Fig. 1.3, changes in
the angle of incidence required to decorrelate speckle from a cascade of two diffusers
are typically of the order of arc minutes. Thus angular decorrelation arising from the
individual diffusers is usually insignificant compared to angular decorrelation arising
from the spacing between diffusers.
F.2 Rough-Surface Diffuser
The two-state correlation function for the plane-wave transmission function of a
rough-surface diffuser is obtained by substituting Eq. (2.34) for ¢ into Eq. (3.56) for R,
and using EQ. (2.30) to express 8 in terms of the input angle 6,:
. . - . 2 .2 2 . 92
Rtm(r,kw.kob) = exp[zH(ka\/ n®—sin® - kb\/ n"—sin‘g )]
T2 2o = (814)
x <exp[ikah(r')( Vn?-sin®  —cosd ) ikyhor+ eV n-sin®0 ~cos8, ) J >
Once again, the ensemble average of the exponential is a joint characteristic function,
this time of the random process A(r) with respect to the variables
- 2 .2 .
r[a—-ka(\/n —sin Om—c05900> (B15)
and
rzb=—-kb(\/n2—s'm?'0”b —cosOob). (816)
The normat incidence rms phase delay corresponding to Eq. (B7) is
S, =ko,in=1). (817)
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Equation (B17) is identical to Eq. (3.10) except there is a subscript on S in Eq. (B17) to
emphasize that the phase delay is for normal incidence.
The expression analogous to Eq. (B9) for the two-state correlation function of far-

zone intensity is

<Ialb>

<ds<l> 71 eXp[—oi('lb_'la)Z]' @1e
] b

Equation (B10) also applies for the wavelength dependence of a rough-surface diffuser,

but S, is now given by Eq. (B17) rather than Eq. (B7). The expression corresponding to Eq.

(B11) for the angular decorrelation at constant wavelength is

<lIl>
ab _
<I ><I >
a b
1 = 5 —_— 2
+expj—S82 —(\/nz—sinze —cosd — Vn’—sin®0 _ + cosd )} ] (819)
ol n=1 oa oa 0b ob
For 8,, =0 and small values of 8,;, Eq. (B19) simplifies to
2,4
<[1,> S, 90 (B20)
s ep(- ),
<Ia> <Ib> 4n

Except for the difference between the way S, is defined for a rough-surface diffuser and
the difference in the way the index of refraction occurs in the denominator, i.e., n2
instead of <n>4, Eq. (B20) is identical to Eq. (B12) for a bulk diffuser. The rough-surface
analog of Fq. (B13) is

0,=V2n/S_. (821)
From Eq. (B21) we see that S,= 10,000 rad and S,= 100 rad for the speckie pattern from a
rough-surface diffuser to decorrelate with changes of angle of incidence of 8,,< 1°and
906 =10°, respectively. Once again, these decorrelation angles are large compared to

typical decorrelation angles arising from the spacing between diffusers.
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Appendix C

Paraboloidal-Paraboloidal Diffuser Combination

In this appendix we present the results of the intermediate steps in the calculation
of Eq. (4.7) for the two-state correlation of far-zone intensity from a cascade of two thin
diffusers. The diffusers are assumed to be strong, i.e., 81 and S are much larger than
one, and Eq. (4.8) applies for both R, and R,, so that both diffusers are paraboloidal. We
denote this diffuser combination by the symbol P-P. The subscripts 1 and 2 on the
diffuser parameters o, and w refer to the planes | and I of Fig. 3.1. We proceed by first

evaluating Eq. (4.4) for F while keeping all of its arguments arbitrary. Using the identity!

2
k| ) ()

J exp[— (02|r|2+iklor)]d2r = %exp(— 5

a 4a

where Re(a) %0, to evaluate the integral, we arrive at

e . . _n (011 O 1 -1
Flek bk, Ak, )= L Ly —

X exp 1 <°¢1+°¢2+ 1 )~1'k 2
expl - —| —m+— + ——
4kakb wl2 wz2 2ka kbwa2 abl
w g -1]-1
1 t2 1 2
Xexp{— :2- (w2 2—~——kkw2) l lkakblﬂ +
0’ 2 a %
2
so2 L -t (C2)
+z(—-—+ ) i 11
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When we substitute Eq. (C2) into Eq. (4.1) and evaluate the integral, again using Eq. (C1),

we obtain the following general expression for ug:

o b

HH 0‘:

1 . l a' b 2 Al

an exP("¢ab) e"p('z' kH —kH, [Kgpr = Koq ) h
a a

2,2 . L B S
1 - . ot
. (B ) 2 (5, ) ]
] w” w, 2k kw 1+ pp N
’ 1 2 a b a pp 5-:" X
: 2 ~ bfé‘-
x { [1+ i (0‘2 - >]—l P! ko (H H } ) )
p exp — | — . s, —Hs ) , g
; 02 w2 2kkw2 1+ﬁ2 abl b ubl a oal §
) t1 2 ab a op .:
:: where f,,, is a wavelength-spacing detuning parameter defined as 2 Q.l
¢ n
2 2
' B, =2 (k1 ~kH,) il (0‘2 ! >-ll_l (€ i
= - — | =+ — : ®
- PP b a a’'b o 2 w 2 2k k w 2 =~
t1 2 a b a N
' i
We note that B, is zero when the condition in Eq. (3.45) is satisfied, i.e., when ::;'(
4 [} L-"H d
) ) . . NS
R kyH, =k Hy. We point out that there is an inherent difference between the parameters :'_’,'.
¢ !
0 AKap 1, kb-kq, ppp, @and HypSop 1 -HeSoa1 and the parameter kqp 1 that occur in Eq. (C3). The ) :
D : A
) parameters in the first set all vanish when the states a and b are equal, but k,p; ¢an be R
"o
"N
) d
! non-zero. For example, when we calculate u,, from Eq. (€3), most of the factors reduce ;:
[
®
R W X}
L} *.r"‘
® o
: e
I e t
Sk
8!
4
~
vl

$ o0 47 oayt » LRSS} ) - I (] R IR I . R R LN SRy "
IO O it A A A A .a.-J . '. -l' ." V '-.. Walkth . ‘ ol

* d

]
o,

D
-
»

3




WA VWU WSS R IR AR S R W R PO AN O A R N M RN Y TR Y S Y T U O R R O X Vot a9 -'...";.’.;"(
M
AR

508
ORI

175 'ﬁ.‘::::

to unity, but we are left with a function of the offset between input and output wave

vectors: ah

1 4, /C
um(ka.L—k )= <Ia(kaJ.—koaJ.)> =4—r;cos 90(
a b a

X exp

2 2 ¢
1 (%  %n 1 —lk K P (C5) Vi
YR st )la.L— oat!
a

2 2 4
Wy Wo 2ka kbwa ) !':&
Of course, kg1 -Kogs =Kgp by Eq. (3.29) since Ak, =0. When we write ugq Without an ®

argumer.t, we mean that the argument is k, | -ko, as given in Eq. (C5). When we write ' .." '
ug4(0), we mean that kg ) =Ko, i.e., that the observation point lies in the same direction R ":
as the input plane wave. As we will see below, there is an advantage to using ug,(0) and }
upp(0) instead of uy, and uyy as the normalization factors. e
We need to know |ugs/2 in order to obtain the two-state correlation of intensity :
from Eq. (4.7). In calculating Ju,y/2 from Eq. (C3), the real components of the arguments -
of the exponentials double and the imaginary parts disappear since they are just ghase g“:}?‘:
factors. We begin by using the normalization factors u,, and upp. The resulting N)"

expression for the normalized magnitude squared of u,y is:

-
-—

7

P e %

®

"8

..-
AT
DN

g
B a0 ]

N
=
a8
o~

o+,

. . b
N Y - RS Y TR R M e e T Y L e e Nt e et e s R e N
VO A VAT Y NG HQM)&."‘_"? e T T T P ‘.f.s_&;.".g\;‘TL{'A.F.'L"m‘&;‘b“f\;‘u\'_x‘u'.%&ﬁfj.‘f:"_.{'




R RARN A IR ARN R A7 RAR R R TN AR ‘wal AW oaW Yol dub wpk Sap hah Yl af ol N v (X ENAE KA R i nad val Soit sad Vol ad Uol ugl b, g?,

176 R

+ +
2 2 oy, 2,2 2 2, 2
2 a a wl w2 Zwa kb wl w2 2kakbwa

2 2 2 2 2 2 2 . UK
luy) _("n % 1 )("u 0% 1 )("u % 1 )—2 bt

1, 2 2. 2 N2 *
Xexp(—zwa Ak, | )exp[—(u“+o‘2)(kb—ka) J 2 "\
l+ﬂw s ee

! +<0—'2+ ! >—l|-l—l |1 H lz] N
———— —— S — S ) F .’,
2 2 op bw? 1+p2  8obrT Tl !
aba PP

W
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et

X p[ l (0“+0'2+ ! >_l
exp| - St St
2kakb w? w? 2kakbw:

2 2 2

Otl ) 1 -1 ﬁpp
PVt 2 2
2kakbwa l+/3pp

2
Il"al).L'

w? 02
1 2 1
Xexpi2(t+—{ —+
0V w? 2% kw?
tl 2 a b a

"
In Eq. {C6) we have used h

(Co)

1 g
k -k =k + —Ak (C7) o
N

and w g
k, -k " Ak (c8)
L 2 bl
S
to express the normalization exponentials in terms of Ak, and k,p . Y
, , ‘ el
We have left the width w, of the Gaussian aperture arbitrary in order to see how it v

enters into the equations. It is evident from Egs. (C3) and (C4) that the aperture can be ®

accounted for implicitly within the rms slope parameter o Jwy of diffuser Dy by not 3‘_#'.' !
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writing the w, dependence and letting

2 2
O O 1

_—— = ———
2k kw?
a b a

(C9)

2 2
w, W,

In most practical applications, the aperture contains many diffuser correlation cells so

that the condition

Wy (C10)

a

2% kaw’ >>
ab a

t2

is satisfied. Then the first two factors in Eq. (C6) cancel with the third factor and the w,

dependence within the exponentials in Eq. (C6) and within the definition of §,, can be

dropped. The resulting expression corresponding to Eq. (C6} is:

Wk

1 2 2 2 2 2 1
. u "e"p(‘f{wa ok, | )e"pl"<°n+°¢2)(kb"ka) ] 1452
aa bb ﬂpp
2 2
TN e R Hs [
X expj = a b 2 + 2 1+ 2 IHbsob.L_ asoa.Ll
otl 0l2 ﬂpp
2 2 2 2 2
y L (fn,tay () ey
eXP{ = ok & 2 2 2 2 2 /™ aby
bW, wy w0, 1+Bpp
2
1/% 92\ 171 2 2
X exp -(_§+——2> (_2| abr TR T Tk, Akab.L')
w w
i 2 a b
2 2
w; 0,\-1 B (€11)
1 2 op
X exp 2<1+ 2 2) 2 kabl.<HhsnbL_Hasoa_L) -
o w 1+
2} 2 v

We show why the normalization ugq(0luys(0) is preferred to ugqqunp, by evaluating

Eq. (C11) for the limiting values of the arguments AKqp; =0, B, =0, and 8401 =Sgb.
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A 8.
0 2 N
Y gy 2.2 2 Al
b =exp[—(0 +0 )(k -k ) ] {5
s u u t1 2 b a hy
" aa  bb .‘;
y 4}
2 2 2 '
K x exp 1 (0“ 0,9 )‘l (k[,_ka) k |2 (C12) ﬁ
o ANt T3 K
N w? w2 k22 ch Y
i) 1 2 a b ,’
i\ . . . .
Ny Since we have assumed that 8y and Sy are much larger than one, the first exponential b g
[y € L
will have damped to a small value unless (ky-kg)/k, is small compared with unity. ®
N 3
\ . . . . !
:I However, the argument of the second exponential is positive and there is no restriction ¥R
{4 )
A .
;:. on how small the slope parameters o, /w; and o, /ws can be; Therefore, this exponential é
Nz txuy
) A
will increase as ky-k, increases and it can dominate the first exponential so that the g
!"" "
) product increases as a function of of the wavelength offset ky-k,. The reason that Eq. .
i) %
:a {C12) increases about the origin is that we are dividing by normalization factors that fall ?i::
o L
\ . . . . . . \)
v off rapidly as |kqp1| increases. Since we would like our normalized |ugp/2 to behave like b s
- ) L . . o
an autocorrelation function, i.e., drop as ky-k, increases, we will use uq,(0) and upp(0) as :.r"
[) S
: . . . e
; the normalization factors. The corresponding form of Eq. (3.75) is o
i <l I> lu J? ':-Cr
a'b _ uaaubb + uab] (€13) .
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For the P-P diffuser combination, Eq. (C13) takes the form

<Ialb> t &

= A /
<I (0)> <I,(0)> ey

o
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o
el
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Appendix C Reference

1. I. S. Gradshteyn and !. M. Ryzhik, Table of Integrals, Series, and Products, L

(Academic Press, New York, 1980), p. 338. :_.r':w
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X Appendix D
i
" Circular Symmetry and Two-State Correlation Functions
$
14
N With the exception of certain special cases, the general expression for u,p, the
X)
;: : two-state correlation function of the far-zone complex amplitude from a cascade of two
! diffusers is very difficult to evaluate analytically. In this appendix we derive the reduced
form of Eq. (3.47) for u, that results for wavelength and spacing dependence by
D
. assuming normal incidence, on-axis observation, and that the corretation functions R,
)
) and R,,, along with the aperture ambiguity function A, are circularly symmetric, i.e., that
they depend on r only through its magnitude |r|. Appendix D is used in the caiculation of
: ugqp for the P-C and C-P diffuser combinations in Appendix E. For convenience, we
repeat Eq. (3.47) here:
.
A k kb exp(-—iq)ab) i HH, R
* u - ————— |k, -k |*)cosB cosd
- ab™ 2 3kH—kH 2 kH -k H obl ool a b
i ( It) b7a "a' b
Y k k
b 2 (D)
. Pk kyk , 8k )exl = r?+(Hs, —-Hs or]dr, A
¥ J abl P k H —k H I | ( 6061~ Ta oa.l) "
; :. -
! The above assumptions imply that kgpi =Akgpy =0, and that Fir;k,,k5:0;0) is also % {
',), circularly symmetric. If we convert the r integral to the polar coordinates r and 8, then £
] we can evaluate the 0 integration immediately. The resulting expression for u, is ;~.~_ :
e s
N .}\
¥ ot : Ca
) . kakb 2 exp( _l(pab) '.-":
Y YT T\ g kH —kH 3
E n 5 a— alh _"A ¢
B
M @ k k
b - D2
K X J ri(ek k0 O)exp( _— 2>dr. (©2)
0: 0 a 2 k H —k H
)
»
.. Equation (D2) 1s only useful as long as we can evaluate the functional form of F.
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In some instances, we can not evaluate F directly, however, it may still be possible

to find a closed form solution for u,p. Given the same assumptions used to arrive at Eq.

(D2), we can aiternatively write Eq. (D1) as

k:k: exp(—icpab)
(2,,)3 kaa'kaHb

u -i [ I R‘l(r;ka,kb) th(r’;ka'kb) Awr’;0)

cb=

: k &k
X exp( Leb Ir-—r'lz> d*r dir'.
2 kaa_kaHb

By converting both the r and the r’ integrals to polar coordinates and evaiuating the 8

(D3)

and 0’ integrals using

2n 2n
[ { exp[_ic cOS(U—G’)]dG do'= @m’J (O, (D4)
0 0

we obtain the solution

k%2 expl —ig ® > k k
u . =—i a b ( ab) I ’ rr'J(———a—b——rr'>R (r;k k)
0 0 ll a b

ab
2 kH_—kH, lolo kH —kH,
X R ek k) AG'0)exp| — Faty 2er2)| dr dr (D5)
tzr, LA r’;0)exp p kaa—kaHb(r r rdr.

Since the number of integrations has been reduced from four to two, Eq. (D5) is useful

for numericai or analytical evaluation of i) for circular symmetry.
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Appendix E

Mixed Diffuser Combination: Paraboloidal and Conical

In Appendix E we calculate the wavelength and spacing dependence of the two-
state correlation of intensity, Eq. (4.7), for the P-C and C-P combinations of strong
diffusers. The letters P and C stand for paraboloidal and conical and represent the
autocorrelation functions R; given by Eqgs. (4.8) and (4.9), respectively. The fisst letier of
the pair corresponds to R;and the second letter to Ry, In this appendix the output
aperture is a Gaussian of arbitrary width w,. Hence the aperture ambiguity function is

given by £q. (4.10).

E.1 Paraboloidal-Conical
We calculate uyp for the P-C diffuser combination directly from the equation that
results from substituting Eq. (4.8) for R, Eq. (4.9) for R,,, and Eq. (4.10) for A into Eq.

(DS):

i—&_(rz.*,r’z)
2 kH -k H
b a a’ b

dr dr'. (E1)

I’
X exp( - 2——2 ) exp
w
a

Since the r integral in Eq. (E1) is (27)-1 times the Fourier-Bessel transform of a complex

Gaussian, Eg. (D1) can be used to evaluate the equivalent two-dimensional Fourier

transform:
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kakb . i 03 -1 1 ’ . ,
o= B it ) [+ (1) 2 | o] - o002,
i
® k k 02/w2 (E2)
- 2 I _ a“6n'% 1 ] 2}
X Jo rexP( k ko, wz)e"p{ I 1+i2(k"”a"kaﬂb) °z21/"’12+ 2"’a2 repdr

The remaining integral in Eq. (E2) can be evaluated using!

[:rexp[ -(ar2+ br) ] dr= -2-!; D< 2\1;; ) (E3)

In Eq. (E3) we have introduced the decorrelation function
D(z)=1—\/; zexp(zz) erfc(z). (E4)
Methods for evaluating the complimentary error function of a complex argument are

given in the literatureZ-S. Upon evaluating the integral in Eq. (E2), we obtain the final

form of u,p:
2
- ! % kaa—kaHb ~1
4o g oxP( -0 )[——‘+——(1+i )
ab 4 ab 2 2 P
n 2wakakb wl wakakb
1 2 2 2 : )
o[-} (o2 +02) (8,4, )2] D1,V ERVTTEL),
where
2
o
t1 (E6)
ch =2 (kaa—kaHb) w_2. {pc

is the spacing-wavelength detuning parameter,

- ol [ E+B2 l; (E7)
~ooa, \/2w2 {pc(1+‘8p2c)

is the effective ratio of diffuser shape parameters, and

2.2 2
- l1+ l+4(kaa—kaHb> 0,/w, l_x (E8)
pc 2

2wakakb0“/wl
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is the output aperture discombobulation factor. The expression for the normalized

square of the magnitude of ug; is

2 2 2
(e S e )

4 M Zw:ka2 w

2 2 2 4
2wa kalzb w, w, kakb w,
_—
1D(y, VEE VI )l (E9)

2, 2 2
X exp[-(ou+0‘2)(kb—ka) ] D(ypcka) D(ypckb>
For large apertures, we can use Eq. (3.75) to express the two-state correlation function of
intensity in terms of the normalized square of the magnitude of ug; given in Eq. (E9).
Equations (E5) through (E9) also simplify for large apertures, e.g., {,c approaches unity so
that the expression within the square-root in Eq. (E7) reduces to unity, and the product of
the first three factors in €q. (E9) approaches unity. The resuiting expression for the
wavelength and spacing dependence of the normalized two-state correlation function of

far-zone intensity for the P-C diffuser combination is

<1 1,> |D(y ViR VIHE_ )P (E10)
<1q>a<lb> = 1+exp['(°t2!+°t§)(kb'ka)2] D?cyyc k‘;) D(ypck:c ’
where
(E11)
(E12)
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E.2 Conical-Paraboloidal
We can also calculate ugy for the C-P diffuser combination directly from Eq. (D5).
In this case Ry and R,, are of the form of £qs. (4.9) and (4.8) respectively:

k22 expl —i¢
=i ka(a—ka;;z exp| = 3 (ort o3 ) (k1.

® r® k k n2
b I v
XJ J rr'Jo(——l—k-—rr') exp -kakb<0t21~|+ot22—2>]
0-0 kaa_ OHb wl w2
"§2 . kk
r
X exp(— ’—%)exp{i ——a-—b——(r2+r'2) dr dr'. (E13)
2w’ 2 kH -k H,
This time we evaluate the dr’ integral first:
. 2
kakb exp(-—upab) 0, 1 i ]t
u =i — l—§+———2 —E(kaG—kaHb)' ‘
4n kaa- alb tw, 2wakakb
1/ o2 2 2 Jm 2 T
X [_—o+o k—kJ xp(—k ko2 —
exp 2(:1 ¢2)<b a) O’e"p( a btlwl>
2
S, 1 -1 -1, (E14)
X expl =k k|| =+ —— +12(kaa—kqu) r) dr.
w, 2w kk
a ab
Once again, Eq. (E3) is used to evaluate the remaining integral:
02 1
£2 1 -
u ,=— exp| —i¢p <~ )
ab  4n ( o) w? 2wk k
2 a b
V62402 2 ~ E1S
Xexp[-5(0“+o‘2)(kb—ka) J D(ycp\/kakb\/lﬂ[icp), (E15)
where the offset parameter is now
. 012; 1 (E16)
Bcp=4(kblia—kaﬂb)<~—o+ m)

w2 2wk k
2 a a

and the e ffective ratio of diffuser shape parameters is
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2 2
% ("12 1 )—i (E17)
Y, = —=—|—+— ) .
cp \/2wl w22 2w:kakb

The normalized square of the magnitude of u,; is now

ID(ycp\/k—je;\/l+iﬁcp)|2 (E18)

D(Yv:pka) D(ycpkb)

Xexp[ —(°¢2l+°t22)(kb'ka)2]

In practical applications the condition
wy (E19)
2 2
2wa kakb> >—
O
is usually satisfied, i.e., the aperture is large compared to the effective diffuser
correlation length, so that Eq. (E18) simplifies, and Eq. (3.75) applies. The resulting form
for the wavelength and spacing dependence of the normalized two-state correlation
function of far-zone intensity for the C-P diffuser combination is identical to Eq. (E10),
except that the detuning parameter f and the ratio parameter y are redefined to account

for the switch in the order of the diffusers:

s = e (o vad) 4y ID(;C(: ik)b;/(l;fb) I,
where p P
B, =2(kH, ~k H,) (-:—;2 , (E21)
and 2
o5 w, (E22)
T V2w o,
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Appendix F

Conical-Conical Diffuser Combination

In Appendix F we evaluate the two-state correlation function of intensity given in

d Eq. (4.7) for the C-C combination of strong diffusers. This is the most difficult of the four

diffuser combinations, P-P, P-C, C-P, and C-C, to analyze. By assuming that the input
and observation angles are equal, i.e, kqp) =0, that the speckle tracking condition is
satisfied, i.e., Akyp) =0, and that the aperture function a is wide spatially compared to
R,, so that A(r;0) can be replaced by A(0;0)=1, we can evaluate the double-diffuser
descriptor function F(r;ky,kp;0;0) defined in Eq. (4.4). In Section F.1 we evaluate F by
assuming that the diffusers have equal shape parameters, i.e., that wi/og? = wol0,,2.
Given F we then find closed form solutions for the angular dependence and for the
spacing-wavelength dependence of uqp. In Section F.2 we give the functional form of F
for arbitrary shape parameters. This allows us to write the angular dependence of ugp
immediately, and to reduce to one, the number of integrations necessary in evaiuating

the spacing-wavelength dependence of ugy.

F.1 Equal Shape Parameters
Since R, and Ry, are circularly symmetric, and the aperture ambiguity function A

has been removed, we can write F as the convolution of R, and R,,:
b b 00) = .. .. 2 (F1)
F(r,ka,kb,0,0) = J Rll(r ,ka,kb) th(r-r 'ka’kb) dr'.
Then by the convolution theorem, F is the inverse Fourier transform of the product of the

Fourier transforms of R, and R,,. The two-dimensional Fourier transform of a decaying

circularly symmetric exponential of width w is the Fourier-Bessel transform?!

-2 (F2)

2n J:r Jo(kr) exp(— ::}-) dr = 2nw’ l+(2nkw)2
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Since Ry, and R,, are identical functions, the product of the Fourier transforms is the
square of Eq-(F2). The inverse Fourier transform of this product is the Fourier-Bessel

transform2

9

2n [:xdo(cx)(l+x2>-3 dx=2n§K2(c). (F3)

Hence

00) = © 1o a2 2 2] 2 2
FUek k,;00) = Zexp[-i(o“mw)(kb-ka) ] P Ky k ko, ;). (F4)
In Eqs. (F3) and (F4), K» is the modified Bessel function of the second kind of order two.

For small arguments

K@~2:7%, (FS)
so that
4
n
F(0;k,k;0,0) = — . (F6)
2yt 4
9%

We calculate the angular dependence of the two-state correlation function of
intensity by substituting Eq. (F4) for F into Eq. (4.6) for u,, and then substituting the
resulting expression for ug into €q. (4.7):

<l I > ¢
b . (F7)
_._a__ =1+ — Koz(l; )
<Ia><1b> 4 =\’

The angular detuning variable (. in Eq. (F7) is defined as

& = ko, 5 [Suar =01l (F8)
The arguments on the intensity normalization factors in the denominator in Eq. (4.7)
have been dropped in going from Eq. (4.7) to Eq. (F7) since we have already assumed that
Kap1=0.
We calculate the spacing-wavelength dependence of u,, by substituting Eq. (F4)
for Finto Eq. (4.1), setting s,q1 =Spp1 =0, and using the identity3

9 2 2

® 1 b2 822 bi\ [ b
[, ool esthrfor) e = o 1= - (5 Tomol 5 o)
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where Re(a) >0, to evaluate the integral. The resulting expression for ug is

2
uy = SL" ; :04 exp(—idzab) exp[ - %(0121*'0;)(’“1;"&0)2]
a bt
¥
X [ 1-if_+8% explif ) Ei(—if )J. (F10)
) The single subscript on the spacing-wavelength detuning parameter,
kkyo, (F11)
b= (ht - y) 25t

indicates that R, and R,, are identical functions. Finally, the two-state correlation
function of intensity, obtained by substituting Eq. (F10) for ugy into Eq. (4.7) and writing
the complex exponential in terms of a sine and a cosine and the exponential integrat Ei

in terms of a sine integral si and a cosine integral ci, is

<IaIb> s \
<1 ><I> =1+exP[-(°tl+ot2)(kb—ka) ]

x { [1+82(cos8, ciB,+sinp siB,) |+ 821+ B, (<058, 5i8, —sin[icciﬂc)]z}. (F12)

F.2 Arbitrary Shape Parameters E‘ﬂ.
¥
W
When the shape parameters w,/0, 2 and wa/o, 2 are arbitrary, it can be shown that N
L 2 \" .l'
3
\t\
114 1 2 2 2 .
Firk k0,00 = Iexp[— 5(0“+0‘2 )(kb—ka> } &y
SR
o
’ 2 (L Vk (N ke (2 (F13) w2
R xr Io(w )K-(w ) ,‘Z(w )Ko<w )’ N
¥ + + v
where
2 2
1 kA, ( %, ",z) (F14)
w, o9 wow, ’
and
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2 2
2Ry % 2 (F15)
w_ w,  w,

We note that 1/w. is zero when the shape parameters are equal; thus Eq. (F13) reduces to

Eq. (F4). We also note that

n o
MO-b b -0 = — 12 F16
F(0;k,k,0.0) = 5 Wi (F16)
which reduces to Eq. (F6) for equal shape parameters.
Given Eq. (F13) for F, we can now generalize Eq. (F7) for the angular dependence

of the two-state correlation function of intensity to arbitrary shape parameters:

| NN (F17)
Io(yccécL‘)K'z(l*cc) —I‘Z(yccgcc,) Ko(l"cc) l '

in Eq. (F17) we have also generalized the angular detuning parameter ¢, for equal shape

parameters to

= — - 1
ccc w Isoa.l. sobll (F18)
+
for arbitrary shape parameters, and we have introduced the ratio parameter
v = Z (F19)
ce w o

We note that y,. is zero when w)/0, 2= wo/0,,2, and that it approaches unity when wy/o 2
> > wolo,2 or when wi/oy ? < < waloy,”.
By substituting Eq. (F13) for F into Eq. (4.1) and setting syq 1L =S¢p1 =0, We obtain

the spacing-wavelength dependence of ugy:

2
k kw (F20)
_ . ab + : 1o o 9 2] ,
“ab =t 81 cxp(—upab)cxpl_E(oll+ol‘l)(kb—ku) } (,(Bcc')c(.‘)'
where the spacing-wavelength decorrelation function G is defined as
]
1 %, : X (F21)
G(”cc’rcc> = 41} IO * l Iu(rcc"> K‘l(">_12(ycc'x) Kn(.x> exp(z 4[} )d.x,
cc cc
and the spacing-wavelength detuning parameter .. is
) kaa—kaHb (F22)
cc . 2
lw+kakb
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When f.. is zero,
G(O,ycc> =i (F23)

Hence the normalized two-state correlation function of intensity is

<QQ>

<l ><l >
a b

=1+ exp[-(oﬁ-ﬁ—ué ) (kb-kay] IG(Bcc'ycc)lz' (F24)

In evaluating Eq. {F24) numerically, it is convenient to rewrite Eq. (F2) for G as a one-sided

Fourier transform:

- - X
. P (F29)
._Iz(y \/x)Ku<\/.x> exp(14ﬂ >dx
cc
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