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:“ ABSTRACT
) A . . . . . . Lo .
IR, The integral manifold concept is used in this thesis for controller design in various prob-
' -
‘ \ . . . .
W lems. A definition and the conditions for the existence of the integral manifold are given.
S
." ¥ Integral manifolds in linear systems are analyzed with special attention given to how the
’ oy linear svstem possesses an input dependent manifold. Flexibility in flexible link robots is
. "
hD a1 L .
(‘ shown 10 be a cause for phase delay, which is reduced by a corrective controller based on the
¢ . _ . . .
) ,_;’ integral manifold concept. For a class of nonlinear systems with nonlinear output, we
PN
3 designed a nonlinear Pl controller that achieve asymptotic tracking and disturbance rejection
)l
)
AR : . 4
. = of bounded signals which are not only unknown but also slowly varying. Finally, we showed
w
o ,;-; the existence of a lower order optimal problem which is equivalent to a singularly perturbed
L")
P : e - . .
~ optimal problem with initial conditions restricted to a manifold.
"~
A
! E Throughout this thesis. results obtained from the manifold approach are shown to be
L)
L)
::: e consistent with, and sometimes even extend, some established results in singularly perturbed
o %
I

systems.
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;.::: 1. INTRODUCTION

o

‘.r !: 1.1. Definition of an Integral Manifold

Yol
; '; 'y The concept of the manifold has been used as first integrals for classical Hamiltonian sys-
! b

A

. tems from 1700-1800. In the context of this thesis. as a decomposition tool, the ideas ori-
'

I

el i: ginated from [1-5]. A definition of an integral manifold is now given.

'::: ' For the following system of differential equations.
I ) ')!\
) -
¢ x=fx.y.t) (1.1.1)
l‘ “5
R y=glx .y .t) (1.1.2)
y- n m
K where x €R" .y €R™ and ¢ €R
S nom o
° v a set M CR XR"XR is said to be an integral manifold for (1.1.1)-(1.1.2) if for
'
L2 :jj (xo._vo.to)EM.thesolution(x(t),y(t).t)|x(,o)=,o,_\.(,o)=_\-oiS in M forallt € R.
) S,
1 -
< In other words,
Ly /
j«; 6 y =h(x .t) (1.1.3)
\:: is an integral manifold for (1.1.1)-(1.1.2) if given the initial conditions (x (z,) .y (¢,).t,)
P

that satisfy

'

‘. ?"‘ y(t0)=h(x(t0).t0)
W, -
‘W we have (1.1.3) hold for all ¢ € R . The flow on this manifold is governed by the n-
::.' e
ol dimensional system
a N

® .
! DYy x=f(x h(x.t).t). (1.1.4)
1' -" v . - . . .
;'::.‘ T Note from (1.1.4) that we are dealing with an n-th order differential equation rather than the
.‘\,j - (n+m)-th one in the original system (1.1.1)-(1.1.2).
D) ( v
X v

®
T Some of the advantages of using the integral manifolds in systems and control are as fol-
LY, Y

« <
-:§ A lows: |
e
i
) o (i) reduction of computational complexity due to system order reduction, ‘
jL 5 v *

[ .
:,;:. (ii) accounting for the intrinsic slow effect of parasitics in singularly perturbed systems by
gy

s )
':::: § treating the parasitics state v as y =h(x ,¢ . €), a function of other state x, perturbation
)
‘o
A

RXS ) . AN Q2L LA P L L h 0 R RO
A e s T L T e e et s L sttt
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parameter € . and possibly time variable t.
(111) an analyvsis 100! t0 understand some known phenomena. e. g., unsauisfactory rerformance

of ilexible robots in high-frequency maneuvers and minimum fuel paths in long-rar.ge cruises.

Applications of the integral manifold theory abound in many areas. Some of its applica-
tions are flexible joint robot control [6]. slow adaptation in adaptive control [7], tracking and
disturbance rejection in nonlinear systems [8], power system modeling (9]. and synchronous

machine modeling [10].

Mathematical treatment of the integral manifold theory. as in [11], sometimes is too res-
tricted in relevant control problems. On the other hand, there are many special features in
specific control problems that can be of great use when the manifold approach is being

emploved. It is this gap that we want to fill in this thesis.

A summary of the research being done in this thesis is as follows.
o Existence of integral manifolds in the linear system: an integral manifold in the form of
invariant subspace. = = Lx ., is postulated for the linear sysiem:
x X

=4 (1.1.5)

-

Under some assumptions on the A; entries of the matrix A the existence of such a manifold is
guaranteed. Necessary and sufficient conditions for z = Lx to be a linear integral manifold for
the linear system are also given in terms of an identity relating L to the 4 entries. An
explicit expression for one such L is found and represented by the slow eigenspace of the sys-
tem matrix A. Once the existence of the linear integral manifold for (1.1.5) is assured, we
proved that there also exists a shifted manifold - = Lx + p(u ) for the system with input u. i.

e..

X

=

=4 + Bu

t

In other words. there exists a family of input dependent shifted manifolds. Singularly per-

)

R
L)
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i
. A}
KN :.'ﬁ
. t
’Nﬂ 3
N
4 e
B\ .
' ¥ 3 . . .
'h:.: - turbed svstems are treated as a special case. and explicit expressions are found for L and p as
K
4
Y i asvmptolic series in € . Linear time-varying systems are also discussed as an extension to the
\:“r Y
) . o . : - . .
¥ ’. linear time invarian! case with some exira conditions imposed on the A, (¢ ) entries.
.*::. ' o /
2
* il . . . . . . .
KR ® Flexible link manipulators: Modeling flexible link robots leads us to a singularly perturbed
) L
‘?‘ia _d\ svstem in which the perturbation parameter is related to the reciprocal of the flexibility con-
b
:. ® stant. We interpret the presence of flexibility in the robots as a cause for phase delay in its
it »
o) N . . : . . L .
pe o performance, especially at high frequency maneuvers. Time domain analysis using the mani-
b fold approach leads us to a phase delay corrective scheme equivalent to that from the fre-
N
) ) [
R
5:.‘ quency domain analysis. A case study of an interconnected mechanical system. which shares
Pl
(1 the same basic principle in the modeling of flexible joint robot as in [6]. reveals the fact that
o
a5 . .
3, -:;-. . the overall system has a perturbed natural frequency and a perturbed damping ratio due to
IR
AT N\ -~
SA the presence of flexibility in the interconnection.
\"‘.
., 8
v
' t" e Tracking and disturbance rejection in nonlinear systems: For a class of lirear equivalent
XN
R
S ronlinear system with nonlinear output, we designed a controller that not only linearizes and
d }j_‘. pu g y
‘. Y o
LY . . . . . ..
:_"-.-, stabilizes the nonlinear system but also achieves tracking and disturbance rejection of unk-
o] . - 1y varving s
I~ nown but slowlv varying signals.
N
:' - -
:\ - S‘: e Optimal control systems: We proved the unique existence of a lower order optimal control
:. L] (‘.
.” * problem that is equivalent to a singularly perturbed linear system with a quadratic cost func-
s L
?1 Ry
z»: - tional to be minimized. The trajectory of the singularly perturbed optimal system is charac-
N
3
o . . . . L
;: ., terized by a fast convergence. with O (€) cost, to a manifold to which the subsequent motion is
LI
® - restricted. Complete separation of a singularly perturbed optimal system into two is also
f:ﬂ- - given. One of these corresponds to the optimal problem as restricted to the manifold, whereas
" : "?.
ﬂl\' the other one is an optimal problem concerning the convergence of the trajectory to the mani-
Al
.{ ' fold.
A
L\ C\
N CIC
's')'- s
L
:;.‘
o ‘ |
LN rL
l:.:‘ {
o
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l’,'l K
:‘l:": ~:‘
l_:.::' 1.2. Existence of Integral Manifolds !
':!:.:!l —
- (a) We are mainly interested in the singularly perturbed svstem :r!
ql‘..' '
Sl

’:“ x=f(x .y .t .€) (1.2.1.a) ;
5 A
! . ")
,:::b ey =g(x .,y .t .€) (1.2.1.b) -
' ) n m . - dx ‘N
o wherex € R* .y € R" .t €R .and € issmall positive number. x = — etc.,

!“.l de 5

-

=

::.‘ { Conditions for the existence of an integral manifold .y =h(x ,¢ . €). for system (1.2.1) are g}
)
el — N
( the following[1].
";‘.’ . . . O n ¥
. M1 Setting g(x . ¥ .z .0) =0 gives the isclated solutiony =h (x .t)forx € R" .t € R &
\ 'f'. t-
3
K)
R g
}'" M2 Functions f, g2 and R’ are all c’ functions for ;
\:3.' x €R” Iy —h’(x)1€p.t €R .and0 S e <€, . where pand €, are some positive o
X ¢ ‘\‘
LA &
WA nonzero numbers,
PN
oY ‘
9 . at
v . M3: All the eigenvalues of % evaluated at (x . »2"(x 7).z ,0) have negative real parts. '
o “ ay
Vol
o i e. %
Ni‘.. i e
4 .('
L
3 —
®) ReA:(—g) <0. 1Si<n '
":J: 9y foa A o 5
'n.‘
:J where A 's represent eigenvalues. -
y
0% :§
2 Comments: M3 is a necessary and sufficient condition for trajectories with initial condi- -
o
:-: tions not on the integral manifold to converge to the manifold asymptotically. It is a local %
LTy N
"o -
é: result and is applicable 1o those trajectories with initial conditions within the region of attrac-
‘A \-ﬂ
tion of the manifold. We will therefore refer to the integral manifolds of the systems satisfy- &
VOES ag
R ing M3 as "attractive." Condition M3 can be relaxed to only requiring that the Jacobian — ge
’ 1'3‘-: 8}’
X8
O be nonsingular. Detailed proof can be tound in [11]. ~
LA ti.
o N
I59) (b) For the periodic nonlinear svstem
\
>V [
a3 ~
= 3
.‘ l’ -
ol
red
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wherex € R* |y € R” .t €R ,and

Xx .y .t +w)=Xkx.y.t)

Y(x .y .t +w)=Y(x .y .t)

there exists a bounded periodic integral manifold y =g(x .¢) for (1.2.2),
ie.|lglx )| €$Kandg(x . t+w)=g(x .¢).if

(i) X and Y are continuous and have continuous and bounded partial derivatives with respect
to x and v for all x and t. and for ||y || € K where || .|| denotes the Fuclidean norm and K is

a positive number.

d
(i) —|lv]] < 0 . forallxand t.and |ly|| = X .ie ||y|| € K .forall x and t.
dr

(1ii) Let

where V(x .y .t) has eigenvalues A, (x .y .t), k €n .and W(x .y .t) has eigen-
values u. (x .y .1).1 S j §m ; — denotes the partial derivatives of X with respect to x
) .

and A7 denotes the transpose of A.

Also let

A and u have the prope-ties that
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[X)
)
S (¢) Center manifolds R
e'.’ W
::: For the following autonomous system
PR
! - 3
t g X =A4x + f(x .y) (1.2.3.a)
'-‘?_cl j =By +g(x .y) (1.2.3.b) .:‘;3
~ n e
f.‘_:' wherex €R" .v €R" .
% . -
e v = h(x ) is a center manifold to (1.2.3) if h is smooth, R(0) =0, and 2 (0) =0 . }3
° s
f:'.:' Conditions for the existence of center manifolds are the following: .
1S £
S5 , , , .
:::;, (iyf €C”,g €C”  and f(0.0)=f(0.0)=0,2(0,0)=g(0.0)=0.
v s
" 5 (1i)RelA,(A)) <0, 1S<i €n i e,allthe eigenvalues of A have negative real parts. 3
"‘- (i) Re(A (B))=0. 1€/ $m .

S,
oLR

If {1.2.3) satisfles (i)-(iii). then there exists a center manifold

ox v=hix)for|s|<8.h €C”.andt €R .

O,

=

Ha

Proot is based on the contraction mapping principle. Details can be found in [2].

o'y
L J -
o
)
>
’,\,,-::
o
K.
y Jﬂ ﬁ
o
-
¢ v‘-_ %)
o
Ko™
$ '-,‘J
u o .
k) )
7 ¢
LB 4
ey
-, «
W
2

“"-
‘.<
%

7

=
(
",
Q:..‘ n
4'.
T
Vb
)

"!'l"!l‘ 2 0 (  RIAN J \ D D O DUOBOGON0 D DO
T A L e R R R S i e il e e sodadatadidudinhniiniindidin!

0



O - DO

“\ Gy -
S

i -
atala A e RN

Y

(e

.4 o wTr R R UK Y igm

A

e e e

Pk 8 4
L4,

S5y

},N

P oy

=

'y e

« W&

"

KA

I

2. INTEGRAL MANIFOLDS IN LINEAR SYSTEMS

2.1. Introduction

Linear systems are special cases of nonlinear systems. In our investigation on integral
manifolds. all the results from nonlinear systems are applicable in linear cases. Due to its
linear structure, the application of superposition and Laplace transform are made possible. It
is through this that we gain insights into the geometry and analysis of integral manifolds in
the control theory. For the ease of illustration. we will concentrate on linear time-invariant

svstems and treat time-varying systems as an extension of the time-invariant cases.

2.2. Existence of Linear Integral Manifolds in Linear Systems
Start with the following linear time-invariant system:

X A5 Al

= (2.2.1)
z Aj Apllz

where x €R" .z €R” (A ER™ (A ,€R™" LA, €R™" .and A,,€R™™ are constant

matrices .

Assumption 2.2.1: A ,, is nonsingular.

Due 10 the linearity of (2.2.1), we shall propose a linear integral manifold of the form

z =Lx (2.2.2)
where /. €ER™" is a constant matrix.
Lemma 2.2.1
For = = Lx 1o represent a linear integral manifold for the linear sysiem (2.2.1), it is

necessary and sufficient for L to satisfy the following identity.

A 21 + A‘.’2L = L(A 11 +A 1214) (223)

Proof:

Differentiate both sides of (2.2.2).
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b0,
N »
o = Lx (2.2.4) i
"\""f. 4
' Since (x . ) is governed by (2.2.1). we have upon substituting (2.2.1) and (2.2.2) into (2.2.4) a2
> =
o (A, AL )x =L(A +A,L)x, (2.2.5)
KM 1
,f:' which results in the identity (2.2.3) and completes our proof on the necessity part. The ',f:
i W,
!".\ sufficiency part follows in the reverse order trivially by noting that the invariant subspace
t
s o
:% : = Lx is one of the integral manifolds subject to (2.2.1). K-
A‘.:ni
:o":' QED ~
A
o~ R
{ The main requirement for the existence of a solution L to (2.2.3) is Assumption 2.2.1.
AT ~
o~ Details can be found in [12]. S{»
>
S
- When our linear system is in singularly perturbed form we have the following result based on
s > g o
p *'_E ﬁ
[ a similar argument.
i ’
ey Coroliary 2.2.1 ﬁg
u
A The singularly perturbed system
L 3
b, x A Ak x - ﬁ
,,. = =A (2.2.6) ]
:' At ez A 21 A 22 Z <
o Coe i
-':" . where €€[ —€ ,€ ].e > 0is a small positive number, has a linear integral manifold z = Lx
!‘ -
3‘ and L satisfies {
:;:': =
)
:E \ Ay +ApLl =€L(A, +A4,L) (2.2.7) %
'
Sl Moreover, L can be solved as B,
(] - -1
o, L =—An'A, +0(e) (2.2.8) ﬁ
;:}: Proof:
1
! ﬂ Solution of L can be found by equating coefficients of different powers of € on both sides )
:'j:- of (2.2.7). x
% B
% ;. QED .Z‘
LR
LS o~
‘;‘-" Note with assumption I our singularly perturbed system (2.2.6) exhibits a two-time scale 3
-~
o
- property due to a clear separation of eigenvalues into two groups, small and large. respec- ,
: 3§
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tively. To facilitate our discussion on the more general system (2.2.1). we adopt the following
assumption.

Assumption 2.2.2:

Svstem (2.2.1) possesses n relatively small and m relatively large eigenvalues .
In this context, without loss of generality, we shall refer to x as the "slow” mode and z as the
"fast” mode in the subsequent discussion. The existence of a solution to (2.2.3) is guaranteed
through Assumption 2.2.1, and some bounds on the A, entries which in turns are related to
Assumption 2.2.2{12]. We thus have a linear'integral manifold for system (2.2.1). When sys-
tem (2.2.1) is restricted to the invariant subspace characterized by z = Lx , the slow variable
is governed by
£=(A,,+ALLx =Ax (2.2.9)
We now state a fact on how L is expressed in terms of the slow eigenspace of (2.2.1).

Lemma 2.2.2

is a slow eigenspace for (2.2.1) and v, is nonsingular, where

v €ER™ v,€R™" .then L =v,v ' is one of the solutions to (2.2.3) subject to the linear
system (2.2.1). Moreover L is independent of the basis chosen for the slow eigenspace v,

Proof:
We will show that (2.2.3) is equivalent to the following:
Ay Ay I

= (2.2.10)
L 0

]

AZI A22

where I, €R™" , I €R™™ are identity matrices.

m

Expand (2.2.10) by multiplying out the matrices and using (2.2.3). we get

L(All +A12L)_(A21 +A22L)=O
thus verifving (2.2.10).

\.'1

is a slow eigenspace for (2.2.1). Multiply v, on both sides of (2.2.10) and

v

Suppose v, = [
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-1
take L = vy,

|4 11 Al?

b = l & (2.2.11)
-] = v, -] L.
lL " 1Ag AL T mlA V2
Since v is a slow eigenspace of (2.2.1), we have
Vl Vl
A = A, (2.2.12)
\@) Va2

where A, is a diagonal matrix which contains the n small eigenvalues of A as its diagonal ele-
ments. In a more general sense. A, can be a matrix in Jordan canonical form.

Hence, (2.2.11) becomes

v v
1 -1 1
vy, =1,

A =

s

[L -1, A, =(v2vl_1vl—v2)AS =0.

Va \&]

. -1 . . s .
This proves that L =v,v, ~ is one of the solutions. To see that L is independent of the basis

ll
2
-1

_1)_
\ 8 =vLvy

of v, . we take a new basis

v M
v .M

where M €R""" and is nonsingular.

v = (v,M (M

This completes our proof.

QED
For linear time-varying systems we consider
X x
=A() (2.2.13)
€z z

where € is a small number, and A is the same dimension as in (2.2.1).
Assumption 2.2.3: In our domain of interest D, A, (¢) are continuously differentiable and

bounded. and A 12 A »; and A 3 are bounded.
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With this assumption we are also assured of the existence of a linear integral manifold z
=L(1) x. where L(1) satisfies

€L =A, +A,L —eL(A,,+A,L) (22.14)

The solvability of L in (2.2.14) is guaranteed by Assumption 2.2.3. Detailed proof can be

found on p. 212 of [13].

Once the existence of the integral manifold for our linear system is assured, the question
regarding the existence of the integral manifold for the same system with input is best
answered by the next theorem.

Theorem 2.2.1

If a linear system without input possesses a linear integral manifold M . characterized
by z=Lx. then for every piecewise continuous and Laplace transformable input u to the same

system it has a linear integral manifold M, characterized by z = Lx + p and p satisfies

p=(A,,—LA)p +(B,— LB u . (2.2.15)
Proof:
x x
= z

Solution 10 (2.2.16.a) is given by

oy () x (z,)

. x (¢ 0

o =0 . t,) (2.2.16.b)

- z () Oz ey

55 where ®(¢ . ¢,) is the state transition matrix and satisfies

. d=A0)0.

2 When the linear system (2.2.16.a) has an input, we write

Y x x

4 =A() . + Bt (). (2217

.:-{ Recall that ®(r .r,) is the state transition matrix of (2.2.16.a), the complete solution to
(2.2.16.b) is

"h"
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e
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!

+ fcb(z L TIB(u(r)d T

r
0

x(ty) x, (¢)
z(t,) * 2, @)y

x (z,)

" [x ()
=(ty)

:(t)]=¢([ o)

a k

=d(r .1,)

ot

|l o i i ws c
;
e - L

Define

>

(2.2.18)

< |

Since =0, we have

~a f|r =ty

tay
N
:N
3 = =

x (¢,)

z(t,)

x (¢ )
=d(z ,
z‘(z)} t.t,)

W thus,

»

*>

=A() (2.2.19)

i B

Ny

R If (2.2.16.a) has a linear integral manifold z = L(z )x ., then (2.2.19) also has one given by

e, - -

2 =L(t)x. From (2.2.18)

..-‘
ST
g;’
I

c=i4z,=Llx+z, =z, +L(x —x,)

u u u u

N =Lx +(z, ~Lx,)=Lx +p (2.2.20)
) Note that p(z,) = 0.

- —— _§

To see what p should satisfy, we consider

z=Lx +p -

. Differentiate both sides,

D aprapeegrage—yrrar

e i=Lx +Li +p

= Rl

S BB 2 g£x 2

" Substitute (2.2.20) into the above equation,

Ty Ve

! (A, +A,L)x +A,p +Bu =L +L[(A,+AL)x +Ap +Bul+p (2.2.21)

==

%

By the identity on L. i. e., (2.2.3), (2.2.21) simplifies to

O

I
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p=(A,—LA)p +(B,~LBu . plt)=0.
QED

Corollary 2.2.2

The singularly perturbed system

x x

,a
<

= ol
1

X5
=

=A@)] [+B@h (2.2.22)

€z

z

has a linear integral manifold z = Lx + p. where p satisfies

2
ol

Furthermore. a steady state solution of p to (2.2.23) can be solved algebraically to any order

]
E

.of € provided the input u does not contain any frequency that is of an order higher than 1/ €.

In fact,

s
A PR

p=—A, Bu +0(e

o Proof:

-~
)

To solve for the steady state solution for p, we treat both sides (2.2.23) as an asymptotic

R

:'.:: byt series of € and use MAE (Matched Asymptotic Expansion).

[ ) 'y

o

M , P=pytep, + - (2.2.24)
)
e o L=L,+€eL,+ - (2.2.25)
)
¥ - u=u,+eu,+ - (2.2.26)
i | ot ok G
kA " Collecting terms of € on both sides of (2.2.23),

o . i
LK™ T

s N 0=A4, + B.u

:: oy o 2P o 240
K T

‘ .' }* -1 -1

" [ pO = _A 22 Bzuo = -'A 22 Bzu + O (6) . (2.227)
;;i. YA thus proving
i
1‘;:1 -&‘ -1
W, ;-Q Similarly for €'

@ .

.} .

3',:: o Po=Anpy =LA po+ Bu,~LyBu,

. )

;:.:: [x] Thus.

o.:.

"y

) ’ L4

o

ey =

' = ) N - - - - N
) DOOUOL ! Ok D 0 0 D ) (Y
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Pi=Ax (po+ LA ppy—Byu, + LB u,)

=Apn [~A5'Byig+ LB, —A,A 5 Bu,— By,

With the assumption that the input does not contain a frequency as high as 1/ €, i e.,
leuyl < 1, MAE is valid and we can continue to look for the steady state solution of p up to

any order of € in this manner.

QED

2.3. Geometry of Integral Manifolds and Its Relationship to Inputs

The subspace z = Lx is an integral manifold for the linear system (2.2.1) if the solution
(x(¢,) . Lx (z,,)) lies on the subspace z=Lx for all t €R . This defines a clear picture as shown
in Figure 2-1. Each solution of the system shall remain in this invariant subspac} provided it
starts with its initial condition on the manifold. When an input is applied to (2.2.1), the man-
ifold changes 10 z = Lx + p . where p is related to the input u through the differential equa-
tion (2.2.15). An input usually consists of feedback. ie closed-loop control, and/or open-loop
control. As will be seen later slow manifolds are invariant towards fast feedback. So without
loss of generality. we shall consider feedback of slow modes only. Here slow modes are

understood to be the state x.

When a feedback of slow modes is applied to (2.2.1) the overall closed-loop sysiem is
again another linear system similar to (2.2.1). Hence the resultant closed-loop system has a
linear integral manifold for itself. The feedback has effectively shifted the original linear
integral manifold to another linear integral manifold.

Lemma 2.3.1

If the linear system (2.2.1) has a linear integral manifoid z=Lx. then the resultant system
with input u=Kx will have a linear manifold = = (L + M) x. where M is related to L and K
through

BK + AM =M (A, +B,K + A ,M) (2.3.1)

where

ot
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Proof:

First of all we note that the existence of an integral manifold for the resuitant system

with input is assured by Theorem 2.2.4. When an input is applied to (2.2.1), it is in the form

x A Al B,
= +- " (2.3.2)
= Ay Apl iz B,
This can be transformed by Theorem 2.2.4 10
X A; Al lx B,
= . + | u (2.3.3)
p 0 A B

with

z=Lx +p. (2.3.4)

When u=Kzx, (2.3.3) becomes a closed-loop system,

X A, + B K Ayl [«
= . . (2.3.5)
b Bk A
Equation (2.3.5) is a linear system similar to (2.2.1) and has a manifold given by
p = Mx (2.3.6)
where M satisfies an equation similar to that on L in (2.2.3), i. e..
BK +AM =M(A, + B K + A ,M).
QED

Note that M is directly related to the feedback gain K as seen from (2.3.1). The overall
system with input u =Kx has a shifted manifold z =(L + M )x as shown in Figure 2-2.
When we have open-loop control as the input to our system (2.2.1), the resultant system has a
time-varying shifted manifold as described by the next Lemma.

Lemma 2.3.2

If the linear system (2.2.1) has a linear integral manifold z=Lx, then the resultant system

with a continuous input u=f(t) has an integral manifold. z=Lx+q , where L is as described by
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(2.2.3) and q is related to f(1) through

G =Ag + Bf (¢) (2.3.7)
"
.‘:\., where

& HaF

ot A=A, -LA,.

-~

) and B =B,—-LB,.
.". Proof:

e ol

b Again the existence of an integral manifold for our linear system with open-loop control

! is guaranteed by Theorem 2.2.4.

®
t

7
Py

X Ay Al [x B,

-

hod -

< A 21 A 22
hud By Theorem 2.2.4 (2.3.8) has an integral manifold

B,

SN =S

';.' z=Lx +¢
o ) where q is related to u through an equation of the form (2.2.15),

o q'=z;q +Bf(t).
KRN QED

=<

‘e When we have both open-loop and closed-loop control as our input to the linear system

a“.

:':} (2.2.1). we can use the superposition principle for our system and deduce the following result.
\

Theorem 2.3.1

If the linear system (2.2.1) has a linear integral manifold z = Lx , then there exists a

':,.

- -

I

time-varying shifted manifold z =(L + M) x + ¢ for the closed-loop system with input

-

S

-
o Ay 4

u = f (1) + Kx where M and q satisfy (2.3.1) and (2.3.9). respectively.

: Also
@
Exr
s 3 Y = >
::: G =Aq +Bf (t) (2.3.9) :53
:3 where
) »
° A=A,-(L+MA,,. =
s _
o and B =B,—(L +M)B,. §
BN 3
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Proof:

g -]

[t can be easily shown by Lemma 2.3.1. Lemma 2.3.2 and the principle of superposition.

)
I QED
"
TR
e For linear time-varying systems, we have the same form of manifolds except that L and
u
l . 5_‘ M are functions of time. When the system does not start with its initial condition on the man- g
. < 1l
Y itold. there is a deviation from the integral manifold. To investigate this situation we perform :
& . :
g8 . . . I )
o an exact transformation on the linear system by using x, the slow mecde and 7 . the deviation )
-{..« = from the manifold as the new state space. f
O \
: W Theorem 2.3.2 :
, .:rJl The linear system
. : A A B
N x 1 A2 |x 1 '
g o is equivalent to
"I ,
.. " i
o o x A, Ap Ay x B, X
'. - - ¢
L - : 5 (2.3.11) ‘
" pi=10 A O |[p|+{B |u
Dy -~
” 7 0 0 A 0
s
.,: where '
W
R m=:z—Lx —p (2.3.12)
° is the deviation from the integral manifold of (2.3.10), z = Lx + p . L satisfies the equation ,
e !
‘§ o (2.2.3). A, . A and B are as defined in Lemma 2.3.2. A
} ¢
\
it e Proof: t
< :
e Substitute (2.3.12) into (2.3.10) results in
N e
] - . '
: - x=Ax+Ap+AN+Bu. (2.3.13) '
ST Differentiating both sides of (2.3.12) ‘
‘BN L )
e . L \
e n=:-Lx-—p \
I A
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A
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=A,x +A,(n+Lx +p)+ Bu
—L{Ax +A (n+Lx +p)+Bul-p.

With (2.2.3) it simplifies to

n=(AZZ—LAIZ)n+(A22—LA12)P +(BZ—LBl)u _p .
Take

=(A, =LA +(B,— LB u ., (2.3.14)

we have
Combining (2.3.13)-(2.3.15). we have (2.3.11).

QED

We see from (2.3.11) that the differential equation governing 7). the deviation from the
manifold, is totally decoupled from the rest of the system. So if we assume that A is
Hurwitz. then m goes to zero asymptotically and our system will be on the invariant subspace
M, . Itis in this context that we refer to the manifold M, as an attractive manifold.

Corollary 2.3.1

equivalent to the following system:

A, A, B,

If A is Hurwitz then the steady state of (2.3.11) as restricted to the manifold is
x

t
p B

For singularly perturbed systems, we have a similar result.

v . (2.3.16)

+

0 Az

Corollary 2.3.2

The singularly perturbed system

u (2.3.17)

1s equivalent to
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p v
g
) ._'.
10 -
: € A, A5 Ap x B,
{ ﬂ esl=10 A o |lp|+|8|u (2.3.18)
v " .
§ -~
[ 7 0 0 A 0
: :', where 7 is the fast deviation from the slow manifold n =z —Lx — p and L satisfies
L Ay +A,L =el(A,,+A4,L) (2.3.19)
: o and
S
AN - -
N A=A, —€lA,,.B =B,—¢€LB,.
g — and A, =A,+A,,L .
: : \: Furthermore. if A ,, is Hurwitz. for €€[0. € ].0<e <<1.(2.3.18) is equivalent to
hY
i ‘: X A, A« B,
. |= R RN (2.3.20)
g - It is observed from (2.3.18) that m is 2 decoupled fast subsystem. We shall hereafter refer to
' .
]
i it as the fast variable. Now we show that the integral manifold of the linear system (2.3.2) is
> N~
' ) invariant with respect to the feedback of fast variable 7.
R
Vi SR Theorem 2.3.3
19 ™~
B .‘::
; Slew manifolds are invariant towards fast feedback.
N
= ! Proof:
:S o~
| : W Any input to our system must be of the form i
. g
Cp ™ .'J
' u=Kx+f@)+Gn
:' ;',;} for some constant vector K , G and some continuous function f(1). We shall show that the
tv
Wy
0 linear system with such an input,
N R
.h\
° & X Ay Ap| B,
- - + u ., (2.3.21) A
;: z Ay Al lz B, :
L4 '
N has an integral manifold = = (L + M )x + ¢ regardless of the choices of G. thus proving its '

invariance with respect to the fast feedback. The variables L, M. and q satisfy (2.2.3).(2.3.1)

PE@ EASEN
- ;

and (2.3.9). respectively. Due to its linearity we can use the superposition principle to study

'b
.
) L4
X
@

[X >
[N
l‘

1, . : A . oy ; , ; A ‘
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the overall effect of different inputs to the system (2.3.21). When the slow feedback control

L, = Ax 1s applied 1o (2.3.21). the resulting system becomes

s

x x A8 K A [«
=A = (2.3.22)

A, + B,K A

: -
= -

-na has a linear integral manifold given by z = (L + M )x = Lx , where M satisfies (2.3.1).

Or we can sav that L satisfies

Ay +A,L =LA+ ‘21_1317) - (2.3.23)

When in addition the fast feedback

u, =Gn=G(z-Lx—q)
R
=G ,—L 1|~ Gq
is also applied, we have frem (2.3.22).
:é] x |b ] ; x B,
=A| |+ -L 1 +
=4, BZ]G [ o |p,| 09

A,-BGL A,+BG|[x] B,

= i_ _ + (~Ggq)
A, —-B,GL A,,+B,G|lz] |B,

X
G

A +B (—Gg) . (2.3.24)

-
-

We now show that

G G ¥

by (2.3.23).

-y

- %2
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1 & A&
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This completes our proof for the case when the input is of the form of a closed-loop feedback

control.u = Kx +Gm. Now for the system with inputu = Kx +Gn+ f (¢),

X
=A| |+BKx +Gn+ 1), (2.3.25)

rd
-

it is equivalent to

X x
=A°| |+B(f-Gq) (2.3.26)

-
-~ -
-

by using (2.3.24) and the superposition principle. Finally we show that (2.3.26) has the same
manifold = = Lx + ¢ as (2.3.25) does.
By using Lemma 2.3.3 . (2.3.26) has an integral manifold z = Lx + ¢; . where g satisfies the

following:

4o = (A5, ~LAT,)g, + (B, — LB )f —Gg)

=(A,, — LA ))q; +(B,—LB|)Gq +(B,~ LB ) f —Gg)

=(Ay — LA + (B, — LB ))f (2.3.27)
By comparing (2.3.27) with (2.3.7), it is obvious that a solution to (2.3.27) is given by

46 =9 . which is independent of the fast feedback gain G. Hence, (2.3.26) or (2.3.25) has the
integral manifold z = Lx + ¢ that is independent of the fast feedback.

QED

The above theorem enables us to carry out the two-stage design. We can first stabilize
our fast subsystem and then concentrate on the slow subsystem by regarding it as subse-
quently decoupled from the fast subsystem. On the decoupled slow subsystem, we can design
our controller to achieve specific tasks. e. g., tracking etc. The eigenvalue placement problem
can be done in two steps. Desired fast eigenvalues can be obtained through fast feedback on
the fast subsystem. We then work on the slow subsystem to achieve our slow eigenvalue
assignment objective. When the system does not start on the manifold. and the fast subsystem
is not stable. this is equivalent to saying that the slow manifold is repulsive and the solution

will not come down to the slow manifold. We can stabilize our fast subsyvstem as shown

o X e o

-
R DO XX

Sy ]

W 1o

-'-»-“' - - ".-

-
P

-
-
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er,
-

Ny ¥
L 2F 2P

» below.

daP

X

=A| [+BQy +u,) (2.3.28)

AT lx
WS, z

A is equivalent to

5 A, A, A, B \(u, +u;)

X

o pl=10 A o [|p|+ Bu, (2.3.29)

Wy M 0 0 A éuf

E‘ ; where A4, .A and B are as defined in Lemma 2.3.2. Take u, =Gn so that A +BG is
{

=Y
B ) R_R=®

=

Hurwitz; (2.3.29) becomes

g <=

A, A, A, +BG B,

° % x
X
:‘:'v.. pl=10 4 B |lp|+|B |y . (2.3.30)
&

0

T,

b 7 0 0 A+BG

‘o When the closed-loop fast subsystem is asymptotically stable, the steady state of the slow

la b

i subsystem becomes the same as the one restricted to the manifold. i. e.,

G

!.‘...' X As A12 X BI
it = + .|y, (2.3.31)

p 0 Ay K]
¥
iy .. . : .
vy r all the previous results based on systems that start on the manifold can also be applied
)

;l., 1 systems that do not have their initial conditions on the manifold but have subsystems that }?f
S are stlable or can somehow be stabilized through fast feedback. -
"l& ¥
;:l "Q h
/ 2.4. Frequency Domain Interpretation of Integral Manifolds
‘S{ §
Ay 3
o When our system starts on the manifold. it will "flow” along the manifold as time goes
by W
SARE
}.,'-:: on. The motion on the manifold is governed by a system of differential equations that is of a &
v
Eh =
;:":C lesser order than the original system. It is crucial to have the initia! condition on the manifold .
?
S )
L2 so that we can consider our system as restricted to this invariant subspace as time progresses. 4
>, |
?
n For the case when the initial condition is not on the manifold. a separate discussion is also g
!
:"o R
o I
. K
g ™
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;':: 0
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Y

A0

.‘:‘ bf given in Section 2.3. For now. we shall assume that the initial condition is on the manifoid.
Al

R . : : , . : .

v n We then investigate the equivalence of the two designs from the point of view of frequency
g%, i

::‘ domain and that of the integral manifolds.

Kt e Equivalence of the Two Designs

i.’

4%

A7

i) Theorem 2.4.1

g

X ' & The integral manifold design is equivalent to the frequency domain analysis.

i -
( Proof:

3

_;‘ -t When we take the Laplace transform on both sides of the linear system

L.

BN y

e. = x An A lx B,

® = + v (2.4.1)
A_ A z Ay Anlle B,

::0 ;: we have for z

e

&

) ~ -
& é = (] = Ay (AyX +BU +2(0) (2.4.2)
g where / €R™" is an identity matrix.

"g b When (2.4.1) is on the manifold

b :=Lx +p. (2.4.3)
__ !:' we have

g

1y

% :}_, x=(A,+ApL)x +Ap +Bu (2.4.4)
S

.‘= p=(A,—LA,)p +(B,— LB )u (2.4.5)
"

’,': 2 2(0) = Lx (0) + p(0) . (2.4.6)
)

We now shcw that the integral manifold in the frequency domain is the same as (2.4.2).

Rewrite (2.4.5) as

o X<
L ino

=A,p +Bu ~L(Ap +Bu). (2.4.7)

Taking the Laplace transform on (2.4.7), we have

TRRLAE
s

=

P=(sI —A.) [BU —L(A P +BU)+p(0)] (2.4.8)

Now we take the Laplace transform on (2.4.4) z

< J '..?:;; * 30 !

-

UG ‘\ DO RARIOUUM
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- o A
A s
al e "

e (s] —A ;| ~ARLL)X ~x(0)=A,P +B\U . (2.4.9)

Multiplying both sides by L, we have

s I -

o L —L(Ay+ALL)IX ~Lx(0) = L(A P +BU). (2.4.10)

Using the identity that L satisfies. i. e.,

5,
e
=3

LS

) LA +AL)=A, +A,L .
a
'1’:5' (2.4 10) hecomes

(sI=A,)L — A, )X —Lx(0)=L(A,P +BU) (2.4.11)
- Substituting (2.4.11) into (2.4.8) we have

NE XX x])

00 P=(s] —4,)""BU —[(s] —Ay)L —A,]X + Lx(0) + p(0)

N -~ -
0':“ =(s] —A4,,) l[B:,U +A,X +:(0))~LX . (2.4.12)

° Take Laplace transform on our manifold expression (2.4.3) and use (2.4.12)

|

Z=LX+P

2L
1 4 .‘ i.'

o =LX + (I=A,,)"[BU + A X +2(0)] - LX

~

= (s —Ay) BU + Ay X +2(0)]

.;’

which is the same expression as (2.4.2).

"‘-t-
B A AT A
w2 |
—

'- QED
“ol 1
:‘J‘ The above theorem justifies the use of the manifold approach in linear time-invariant 0
i . . . . . .
o:' l systems. Note that we can design our controller from the point of view of the integral mani-
K A
D
s: fold for those nonlinear systems which are not Laplace transformable and thus renders the &
Ll
.' frequency domain analysis impossible. The integral manifold design is especially powerful
1)
Yy '
::"‘ when we are dealing with singularly perturbed systems. A controller in the form of an *
ey , . ‘ . . %
NN asymptotic series of € (the perturbation parameter) can be designed based on this methodology. A
=4

po-S
ol . . . .
Q":i This will be illustrated in the subsequent Sections.
L -
50 »
it hat
"o ;
-;:. . 2.5. Eigenvalue Placement Problem
F.‘ E

£

] We consider the eigenvalue assignment problem for linear time-invariant systems that -

contain slow and fast mode eigenvalues. Here slow mode eigenvalues mean eigenvalues with
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smaller magnitude as compared relatively with the fast ones or the larger ones of the same
system matrix. As will be shown later, this can be done in two stages. First of all, slow mode
eigenvalues are brought to the desired ones through feedback of the slow variables. The fast
mode assignment is accomplished by applying a fast feedback so that the resultant fast sub-
system possesses the desired fast mode eigenvalues. The fast variable is the deviation from the
slow manifold which is characterized by the slow eigenspace of the desired slow mode eigen-

values.

Recall from Lemma 2.2.2 that if the linear system

X An 4] x x ( y
= =A 251
z Az Aplle =
has a linear integral manifold z = Lx . then L is given by
L=lv, v,“l (2.52)

is the slow eigenspace of (2.5.1).

A&
where v, = '

Vs

When we want our system (2.5.1) to possess the desired slow mode eigenvalues, i. e.,

{ X,; !. through feedback control. the resultant slow eigenspace becomes

Vi
v, = (2.5.3)
V24
Aprarently the resultant system with feedback has a new shifted manifold given by
Ly=(L+M)=lv,, v -(2.5.4)

where M satisfies (2.3.1) in Lemma 2.3.1. Therefore. assigning slow mode eigenvalues for the
linear time-invariant system is equivalent to requiring our closed-loop system to possess the
desired slow manifold = = L,x . With Assumptions 2.2.1 and 2.2.2 we shall propose a

methodology for our eigenvalue assignment problem.

When our linear system is transformed to an equivalent system using x and 7 (the devia-

tion from the slow manifold - = Lx ) as the state variables, the system matrix will be in

R & eatalpa s A SRR, TN SRR NN 0 hEh.
J!‘u A a':?t':!v'..u‘f‘l‘!‘»‘!‘.‘.‘n‘f‘,s'. .0.,_1‘! DA n‘” ..o‘!‘s', POL LM A X l'!'l’, \G'. SOOI OO .eo'lto‘,',s?i.:'.b."l.;‘lfo'l.o',.l.o l.q!‘fl'i‘.v'l.c l.:‘h,s'l?v ety I S
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upper block triangular form. It is proved in Theorem 2.3.3 that slow manifolds are invariant
towards fast feedbacks. In other words. the fast eigenspace (fast manifold) m is orthogonal 10
the slow eigenspace (slow manifold characterized by z = Lx ) . Hence, when we adopt the
slow eigenspace and the fast eigenspace as our coordinates for the linear system we should
have a block diagonal matrix as our system matrix. We will name the new coordinates as
p and n . respectively. It is due to the block diagonal system matrix that we can have the

two-stage eigenvalue assignment design.

Recall
x x
=A + Bu (2.5.5)
is equivalent to
x A, Ap By|
= lu (2.5.6)
n 0 Af n B

where

‘45. =‘41! +4412L .¢4/ =.422—L‘412

B =B,—-LB, . M=z —-Lx:

here. L satisfies (2.2.3). To achieve block diagonalization we have to use p . the invariant sub-
space characterized by Z = LX . as our new coordinate . The state variable p is obtained by

removing the fast eigenspace component in x,

p=x —Hn. (2.5.7)
where H satisfies
(A +ARLH + A, =H(Ayp— LA, . (2.5.8)
Then {2.5.6) becomes
) A, O p B, —-HB
= - u . (2.5.9)
m 0 A B

Equation (2.5.9) without input is in block-diagonal form. When the system starts with its

initial condition on the eigenspace spanned by p . its motion will be governed by
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p=A p

and will remain in it as time goes on. This is exactly the description of motion on the slow
manifold of the system. Hence. the slow manifold is the invariant subspace spanned by the
slow eigenspace of the relevant system matrix . The same argument applies to 7 ., the fast
eigenspace. and we shall name it as the fast manifold for the sake of completeness. By assum-
ing the complete controllability of (2.5.5). we also have the complete controllability of the
slow and the fast subsystems in (2.5.9). The complete controllability of the slow subsystem
in turn ensures that we can choose K so that when

u=Kp+u,

is applied to the linear system. we have

5| A, +(B,—HB)X 0 || |B,—HB
= i + . (2.5.10)
7 BK Ay | B
where
A, [AS +(BI—H§)K] =), . 1Si<n; (2.5.11)

{ A,; | are the desired slow mode eigenvalues.
Since our slow eigenspace has been changed as a result of change of slow eigenvalues. we have
a new shifted slow manifold or slow eigenspace characterized by the submatrix

A, +(B,—HB)K
in (2.5.10).
Since we have introduced a slow feedback into the fast subsystem, the fast eigenspace is also
changed correspondingly. We shall name the new coordinate spanned by the new fast eigen-
space as O , where

oc=m~-Np, (2.5.12)

and N satisfies

BK +A, N =N[A +(B,—HB)X]. (2.5.13)

Note 7 = N p is a slow manifold within the system (2.5.10) without input u, .

B - e o e
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X2

With (2.5.12)-(2.5.13), we have from (2.5.10)

p A, +(B,—HB)K 0 ||p B,-HB
(2.5.14)

2 -

~ -~ u
o 0 Ay llol |B-M(B,~-HB)

We still have the complete controllability of the slow and fast subsystem pairs in (2.5.14)

& 8 Aab

A since controllability is invariant to state feedback. To achieve the fast eigenvalue placement
e

i 1 objective, we pick G so that

N A +GIB-MB,-HB)) =), . 15j€m . (2.5.15)
o, where { X, } are the desired fast mode eigenvalues. Overall we have achieved the eigenvalue

assignment in 1wo stages by applying a composite control that consists of slow and fast feed-

N == S S

(WX
ALES backs.

o u=Kp+Go (2.5.16)

‘.(-‘j The input can also be expressed in terms of the original state variables x and z.

' u=Kp+Go=Kp+G(n—Np)

lald 222

3 =(K -GN} +Gn=(K —-GN)x —Hn)+Gn

%

=(K —-GN))x +(G —(K —GN)H I

=(K ~-GN)x +{G — (K -=GN)H )z - Lx)

e

“Z;'—: =(K~-GN)-[G —(K -GN)H]Lx +[G —(K —GN)H 1z (2.5.17)

o
25. We now investigate how the slow manifold of the resultant system with input (2.5.16) is

&3

L T : .
characterized in (x ,z ) state space. From (2.5.12) when the system is on the slow mani-

" |

"‘. fold

n=Np, (2.5.18)
° eliminating p between (2.5.18) and (2.5.7) we have

| 3%

pak
S

e n=( +NH) 'Nx . (2.5.19)

v Substituting this into = = Lx + 7 we have

P |
s=Lx +U +NH)'"WNx =[L + (I + NH) 'Nx . (2.5.20) -4

Note that N depends on K but not on G. This again indicates that the shifted linear integral ) |
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manifold is invariant towards the fast feedback. Comparing (2.5.20) with (2.3.1) in Lemma

2.3.1 where the shifted manifold is described by Lemma 2.3.1 as

z=(L +M)x .

we have

M= +NH)'N .

From the above discussion we have proved the following theorem.

Theorem 2.5.1

By assuming the complete controllability of the (A , B ) pair in

A composite control of the form

u=ax + 8z
will achieve the eigenvalue placement objective, where
B=G —(K —GN)H

a=K -GN —BL .
The constants K and G are chosen as in (2.5.11) and (2.5.15). The variables L, H and N satisfy

(2.2.3),(2.5.8) and (2.5.13), respectively.

For singularly perturbed systems. we have similar expressions. Furthermore, L. H and
N can be approximated by some explicit expressions as follows.

Theorem 2.5.2

To assign { A, . A f } as the desired eigenvalues to the linear system

X x
=A | |+ Bu (2.5.21)
€z z
where { A, } = { A/ ..., | are the desired distinct slow eigenvalues. and { A, } = {

Aop Ay, } are the desired distinct fast eigenvalues. Assume the full controilability of the

fast and slow subsystem pairs. (A, .B,) and ( A,,.B,) . where
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) Ao=~411—A12A2_21A21 and Bo=31"Az_21A1231
gk a feedback control of the form

ol u=Kx +G(z —L,x)=(K —GL,)x +Gz (2.5.22)

e with K firstly chosen so that

ol =)

) » M(Ag+BoK) =\, . 1Si€q; (2.5.23)

1,9 and then G picked so that

e | \(Ap+BGl=e,, . 1<j<m . (2.5.24)
will result in
ol S=N(Ag+BK)+O0() =X, +0(e) . 15i%n (2.5.25)

Y A =A(Ayp+B,G+0(E)e. i=n+j . 1€$j<m . (2.5.26)

P where { A } are the eigenvalues of the resultant closed-loop system. Also. the Z, in (2.5.22)

satisfies

: Ay+B,K +A,,L, =¢L, (A, +B,K +A,L,). (2.5.27)
Proof:

Apply a composite control of the form

i_::'_
25 B 2 BE A S XU

u =u +u, =Kz +u, (2.5.28)
2 to0 (2.5.21).(2.5.21) then becomes

Al

X

2T

+ B(us <+ u/ ) ) (25.29)

-
-~

or

x A +B K Ayl x

z f

T
&K &=

€z A, + B,K Ay,

. With the assumption that A ,, is nonsingular, (2.5.30) has a manifold

- .
< ‘e
O 4,

D .y

Lo >

:a: z=L,x
! where L, satisfies (2.5.27) by Lemma 2.2.1 and

o
LR

R L,=L)+0()=A7 (A, +B.K). (2.5.31)

Take m as the deviation of z from the slow manifoldz =L, x .i.e.,

22 S
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1 31
)
n ;:.
i P n =z - L_-{ X
2 5 We have from (2.5.30).
d _ &
" x A A lx B,
‘IR = - + | -~ |y (2.5.32)
' €n 10 A mn B
[}
' where
i
f 5 K _ Tk _ = _
X A=A, +BK+A,L, . A =A,,—€eL,A, and B =B, —€L,B,
:’ (ny When a fast feedback
p 8
[ v, =Gn
R S is applied 1o (2.5.32). we have
& K
A x A5 Ap+B6
?, ;ﬁ = ~K =
{ en 0 A" +BG
'
: The above system matrix differs by O (€) from its approximate version
A '1'4
2 A,+B. K A,+B,G
Y (2.5.33)
1 b 0  Anp+B,Gln
: i.e.,
2 :
! ” A =A,+ B,K +0(e) and
<4 - -~
] AY +BG =A,+B,G +0(e).
1: - By a standard theorem in singular perturbation, the corresponding eigenvalues also differ by
1
L :\', O (€) from its approximate ones [13], i. e
Y
[ MAH =N (A +Bk)+0(e). 1<i<n
,- ..-
[ ~K |, = )
K AM(AT +BG)=x,(A,,+B,G)+0(e), 1Sj€m .
TR Since (2.5.33) is in block-triangular form and with the controllability assumption we can
( v choose G and K so that (2.5.23) and (2.5.24) are accomplished.
o QED
" The closed-loop system has a shifted siow manifold
{
] z=L,x=(L +M) (2.5.34)
) ,
\ 7'§ where L is governed by an equation related to the A entries of the open-loop systems. In
\
) .
'
W
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4 \{

B s %
-‘ other words. L is inherently related to the eigenspace or the eigenvalues of the original sys- N
"

!

¥ tem. Altering the eigenvalues would subsequently result in a new eigenspace, which in turn ""
MO0 oo ]
0 [
o:::l. shifts our system 1o a new manifold (2.5.34). The amouat of work required to achieve this

) 5
W »
::":" through slow feedback is directly related to M, the amount of manifold shifted from the origi- i‘:
h'!‘- »
') nal one. As we can see from (2.3.1). M is a function of both L. an inherent property of the -
1518

O

:&.S: open-loop system. and K. the amount of feedback applied. We now study a singularly per- e
b

,':s:',: turbed system and give an implementation for the eigenvalue sensitivity problem. t;
ate ~

Lemma 2.5.1

S e
'\-'5.* . o
§~ The singularly perturbed system

Sy

N -*: o
o x A A B, ;_':
o = + u (2.5.35) :

P €z Ay Apl (2 B,

! '&E: with input ¥ = Xx has a linear integral manifold E’g
o ‘

':: z = Zx (2.5.36) §
v " ‘ B o i
‘,‘. ‘ where L satisfies "
5:::"' - - 7 [ ]
(2 Ay +B,K +AnLl =el(A,,+B K +A,L) o
o 9
Lo L=L,+el,+0(e):

J {
:'. Ly=—An (Ay +BK): L, =A5 (LA, +BK,+Aa,L,)—B.K|]. )
:.'p.. With 71 as the deviation from the slow manifold (2.5.36), (2.5.35) is equivalent to .
W Eﬁ:
s X AfAu x i
.' - . (25.37)

;% €M 0 A 1M 5
! .-‘Q K " x 7
: A=A +B K +A L Ay =A,,—€lA,. .

' ~ . . 1)
* Furthermcre. if Ay is Hurwitz for € €(0 .6 | where 0 < e << 1,(2.5.37) will be on the &
e B
:2,‘: manifold and is equivalent to "
& s
.4 : X N
o X =Ax . (2.5.38)

\;i Proof: t:
l"l ‘ ‘
!

¥ 2 W

o [
" =
i
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Similar 1o the proof on Theorem 2.5.2.

Note in Lemma 2.5.1. if the fast subsystem on p is not stable , i. e., the manifold is repul-
sive, we can stabilize it by applving an appropriate fast feedback and thus rendering the slow
manifold attractive. We are then justified to use (2.5.38). To investigate the eigenvalue sensi-
tivity problem. we need the following Lemma [14].

Lemma 2.5.2

For the linear system

x = A(e)x

we have the following formula regarding the eigenvalue sensitivity with respect to the param-

eter € .

<(g‘é—)v' cw'>

oA, _ Je (2.5.39)
d¢€

<w' . v'>

where v'(e) and w'(e) are the respective eigenvectors of A (€), 47 () associated with the

eigenvalue A, .

Proof:
Take v’ (€) as the eigenvector of A (€) associated with the eigenvalue A, (€) , we have

Alen'(e) = }\I(e)v' (e) .

Taking partial derivatives with respect to the parameter € on both sides of the above equation,

) oA, ‘
ﬂv’ + 4 g = —v' + GL . (2.5.40)
g€ g€ o€ o€

Left multiply with w,-r on each terms of (2.5.40),

AA - ! ¥ ) ;
(w')y ' Fiw') A——av =(w' ) —v' +(w')T)\l.—av .

o€ ge

Observe that since

SO we have
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LS .
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. ™ .
SO w,o A=A w L
N
{' L4 and also due to the fact that A is a scalar. (2.5.41) reduces to >
N 1’
W)
..:;:': iNT 6‘4 ¢ ax SO A
o W B s Dy .
€ <
W 9 g€ o
'

Y
o

By dividing both sides by (w') v’ . we have (2.5.39).

22
ssld

QED
5
X !': We are now in the position to propose a design for the eigenvalue placement problem of ~

A

S
P 4

singularly perturbed systems. The method here is to add a corrective term as part of the feed-

e ¥
,‘{

:- back to the singularly perturbed system. so that the eigenvalues assigned do not differ more a
..ﬂ..'
, ":} than O (€ ) from the desired one.
o E
'.3 Theorem 2.5.3 -
e
}‘-: For the single input system, vy
D) _,"'.,'
.‘;-': . iA 4 1B
N x 1 2z (x 1
e A7 gy a1 s, " ‘%
P €z 21 Q224 (5 2
:‘::: if K, is the design parameter for the nominal or reduced system, -
1% AN L
p &
o X =Ax +byu '
C) where _
Sy Tq
o -1 -1 i
y'_:'_\j Av=A—ApApdy By=8,-4,4, 8,
k :‘_‘"',; such that &4
vV Sd e,
¥ 53 ANAG+HBK) =N, . 1Si<n 3
NS “d ’ [
_-,'::j and A, + B,K, has n linearly independent eigenvectors that span R" space. v
e
b a feedback of the form 'q
v -
i
- u =(K,+eK )x
':{::_‘ will place the eigenvalues of the resultant closed-loop system at ‘%
Lo )
At A =X, +0(€) (2.5.42) Y
_‘, where A, .1 i S n .are the desired eigenvalues. -
s
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with

M =

IR

—
-
‘:‘._.
<
=]

where v, are the eigenvectors of A, + B,K, and

1 1 n n
<w, .Av, > <w, .Av,>
P = s vy
<w, .B,> <w) .By,>

where <..> stands for dot product. The vectors w,.1 £i £ n . are the eigenvectors of

(A, + B ,K,) and
A, =ALA0 (A, +BK)(A,+ B,K,).

-~

We also assume that < wi, . B, > =0 , 1<i<n

Proof:

Bv Lemma 2.5.1 our singularly perturbed system is equivalent to

i =aKex

if the fast subsystem is stable by itself or through fast feedback somehow.

Note that
AMe)=A,, + B k() +A,L%)
=Af, +eall + ()
where
A=A, +B,K,+A,L,

=4, +31K0—A12A2_21(A21+32K0)

=(A, —A A A+ (B, —ALALBK,
=A,+B.K,

and
Arﬁl =B K +A 12171

=B,K,+ApAL LA, + B, —A A, BLK,

AaAn Gy
M bt bl )

o I 8 ) b
"A -A‘ '.‘ A .l"o',l'a"l ‘:'.I‘a,l‘o‘ |.l'ﬂ o.i‘ol 2 4 0'0 "h‘ ARt a.ﬂ. '0" !l'. "0-" "‘n 'u‘.\'; .‘a
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I

e
YV

[, —1 2

' =(B, = ApAnBIK, —A (A7) (A, + BK A, + BK,)

),

* - -, . -142 9
=B K, —A (45 V(4,5 + B,K Ay + BoK,) o
*‘ =BK,-A4,.

N f
::' Applying Lemma 2.5.2, &
\ A _

: <wg (=—Deao Vo> K m
Y ) 0 i€e=0 "0 l 1

L A, _ d€ _ <wo LA v > (2.5.44) ]
m ( Je=o o - . '

" € <wg . ve> <wl ve>

5 8
W)

(‘ In order that the first term on RHS of (2.5.44) vanishes, we require

o~ o
R <wy (BK,—Avy> =0, 1<i<n (2.5.45) &
5

1' or

[~
3

<wh .BKvi>=<wy Ape>. 1<i<€n

or

"~ LA,

-
-‘
I

provided <w .B,>#0 .i.e.,

22
=]

P

) 1 ) <wy LAy > <wp AvE>
B2 ") Kl VO ..... VO = L e ey . (2.5.46)
N 1 n ‘ {
<w, ,B,> <w, .B,>
::'u' o 0 0 0 m
%) .
b From (2.5.46). we have (2.5.43). By (2.5.44) and (2.5.45) we have (2.5.42). .
B 9 .
0 QED gz
L)
! f:-' In the proof of the above theorem, we note that if B is nonsingular, we can take Eg
Vi v
LA $: -1
N K,=B'A, .
:'? 1o achieve the same task. One merit of this kind of corrective measure is that the feedback t:
i:;ﬁ controller based on the nominal model can still be used. Only an additional term is added to i
K ﬁ
;:l ) the controller to compensate for the effect of parasitics that is inherent in the singularly per-
N B
® turbed system.
X -
N

I
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0
:::: 2.6. Application of Slow Manifold to Tracking Problems
Q..
Y
'._‘ We shall investigate the tracking problem of a singularly perturbed system in which the
N
‘b
,i::' X slow part is required to track a prescribed trajectory. When the fast part, i. e., the deviation
24, ,
l' ' K
): ‘—q} from the manifold, is asymptotically stable the deviation goes to zero at the rate of O( 1/€ ).
§
".. L, We can then consider the system as restricted to the slow manifold and thus simplify our
Y oW
:.. design. Tracking of this type arises in many situations. The tracking problem of the flexible
K -
.::. §Q~ link manipulator is just one of such.
. o) *
( 3 By following (2.3.29)-(2.3.31) in Section 2.3,
'
"‘S x A Al B,
Ny = + u (2.6.1)
. P €z A Apllz B,
s is equivalent to
* T2
~
.:: . x A, Ap A, B,(u +u.)
5 epl=]0 A o0 |lp|+ Bu (2.6.2)
“' 4 ~ ~
o -
::.' " 4] 0 o0 A Bu,
D ) ~ ~
3:' E:} where A, . A and B are as defined, and
D)
(
~ L A(e)=A, +€A,,+0()
' “u R
o =A, +ALL,+€eA L, +0(e)
) "y
) -
,,1‘ o =Ay+ €A ,L, +0()
: and
IRy
) » *‘ﬂ: - - - 2
. T A=A +eA, +0(€)
SR _ 2
:t: :-:5 —A22 + e(-LOAIZ) +O(e )
LA - R
d =Apt+edy;AB,+0(€).
\ j :,.’ [t is assumed that the fast variable. 1 , is available for feedback control. When the fast sub-
o i
d .
3 system of 7 is stable by itself or somehow through the fast feedback, u, =G 7 . the system
' X
. g will be on the manifold so (2.6.2) is equivalent to
\J
b -
o
Y ,
I
| ’ -
o
Ve LA
[V e
ip
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X A, A, t B, (2.6.3) g
— 2.6.3
= . + [ 2 (u .
€p 0 A B -
b}

Suppose the slow variable is required to track a given trajectory x, (¢ ), which is assumed to

be infinitely differentiable. By setting

£ =v

with
v=x, —alx —x,) (2.6.4)

then
e = —ae ; (2.6.5)

where

e(t)=x()—x,()

is the error between the output of the system and that of the desired trajectory at time t.

& OB PR &R =) &

With a > 0, we have (2.6.5) as a stable system and x will track x, (¢ ) as desired.

(3

We can solve p up to any order of € algebraically.

ep(e) = A (e)p(e) + Bleu(e)

: . 0 . .
Equating the coefficient of € in the above equation,

=3

]
¥

e §0p0+§0u0=0.

o'

So

-1
Po=—A, Bouy=—ApBu,.

Similarly,

€ py=Ap,+Apo+Bou,+Bu,.
So

cor

-~

-1, . ~ ~
p1=Ag (pg—Apy— B, —Bu,
—1, =1y . -1
=—Ay (ApByig+ LoA Ay Bug+ By — LB u,)

=~A (A By, ~LBuy+Byu)=p(u,. u,.t,).

Lk &2

In general.

.3
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e" : }5,--1= Z(A~,P, -1 +é:u' ‘l)'

=90

Pr =A2_2][15r—l—éour + Z(Alp" -1 +B~iur—l)]
i =1
=A-21[Pr—1"32“r + ZLi—l(AIZPr—i +Blur—-i)]'
t =1
whence it can be shown that

g, =pwy,...,u ,

From (2.6.3), the slow variable is governed by

x =A;x +A,p +Bu

=(A;x +Apo+Bu,) +elA;;x +Ap, +Blu1)+0(ez)

=[Ax +(B,—A AR A u)+e(A L x +App, + Buy)

+ - +€ApLx+ALp, +Bu )+ -

-1
Ag=A+tApLy=A—A AR Ay

and Bo=B,~A,A.'B,.
We should pick u,, . so that in the nominal model. i. e., the one obtained by setting the parasi-

ticse=0,

Ax +Bauy,=v .

uo=By' (v —Agx)=uylx . x, . %,) (2.6.9)

and u, so that coefficient of € , 1Sr <o , in (2.6.7) vanish. Here we assume B, to be non-

singular. In this manner the resultant closed-loop system becomes
x=Ax +Bu =v .
X =v.

and hence (2.6.5). The tracking objective is thus achieved. We now show how the derivatives
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1, . . . .
W of u, are expressed in terms of x. the state of the system, x, (¢ ) and the higher derivatives of

xX; .

=
Aok

:‘0::' From (2.6.8) and (2.6.4)

) wo= B (v = Agx)

e =B (x, —alx —x,) —Ayx)

f

it —1¢.

., =B, [x, —ax, = (A, +al)x]. (2.6.11)
Ay 3 Differentiating both sides of (2.6.11) and use the fact that when an appropriate control of the

form

hay u =u,t+eu; + -

““I' is applied to the svstem on the manifold we have (2.6.10).
‘!

BB B 2D

¥ uo=B, [X, ~at, —(Ay+al)v]
=B, (%, —at, —(Ay+al Xz, —alx —x,))]

v =uylx . x; %, . X,).

«" (\;:.
LR 5o

In a similar manner, we have

U _y=u, _(x . x; , %, ....xd(r Dy 21, (2.6.12)

W Hence, from (2.6.6), (2.6.9) and (2.6.12) we have

/]

wi p=p(x . x, . %, ""xd(r+1))' r20.

1 Therefore. we should design our control v, , 1Sr <co , based on

(r + 1))

g, u, =u,(x .p)=u(x .x; . X4 ....x,

2
v
23 B8R o

‘,%. That is to say, to implement the control we need the state of the system , x, the desired trajec-

R tory. x,(¢) . and its higher derivatives which are assumed to be known a priori. When €~0 ,

"]

(2.6.1) reduces to

}"
|7

==A, (Ayx + Bu)

-
212 ®
t

x =A,x +A,z +Bu
= (A 11 = A 12A Z_ZIA Zl)x + (BI - A le 2-;132)11

o =A,x +Byu . (2.6.13)

22 LR T2

ul Thus. for our design
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U Tu,tu

u, is the required control for the tracking problem based on the unperturbed or reduced model

(2.6.13), and

u =€lu; +eu,+ )

C

is the corrective control to be added to compensate for the effect of parasitics present in the
system. The parasitics in the case of a flexible link manipulator will be the flexibility of the

robot arm. Note that by appending a corrective feedback control to the real system the singu-

PP P

larly perturbed system will behave, to a naive user, as if it is parasitics free. Figure 2-3 shows

z 2
5 the block diagram of the controller which achieves O (€”) tracking accuracy. This completes
- our discussion on the tracking problem using the slow manifold concept.
-
o
~
i
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::::: 3. APPLICATION OF INTEGRAL MANIFOLD TO FLEXIBLE LINK MANIPULATORS -~
b "
! 3.1. Introduction o
i"‘.

! ,
:o::: There are two main reasons why we want to investigale the control problems of flexible «E;
N0 A
) :
B manipulators. First. control algorithms which assume a rigid model for the manipulator are

t -~
;.;‘ not satisfactory when applied to real robots where perfect rigidity is not a good assumption. 3
B

3

::é:: Second. most robots are built 1o be mechanically stiff simply because of the difficulty of con- -
i.n. trolling the flexible members and not because rigidity is itself inherently attractive. A great

.::5; deal of research has been devoted to this issue in recent years[6, 15-18]. g
- :
W In this chapter, the flexibility in flexible manipulators is interpreted and shown to be the ,
W @
’ll.l

® cause of phase delay in its performance. A phase-lead prefilter is appended to eliminate the

? error due to flexibility. A time domain analysis using integral manifolds gives an analogous g
Ko

Wi

: result and provides a simple approximate corrective scheme to the control problems of the

oVl
! flexible link robot. e
|;,'l -—
o

Wl

or 3.2. Modeling of a Flexible Single Link Manipulator ﬁ
b

L

‘D To demonstrate our principle. we designed a feedback control which, when being applied -
:;::. to the flexible manipulator, results in a performance that is arbitrarily close to the rigid one. )
1)

N

o In particular. we illustrate our idea by designing a controller that gives the flexible manipula- v

DAA

1
tor a performance O (&) close to the rigid one. The small constant € = O (—) , where k is the
k

flexibility constant. First. derive an approximate model of a single flexible beam as a linearized

Yl
&2 a2t

o singularly perturbed system. For convenience we restrict our discussion to a single planar

,. flexible link as shown in Figure 3-1. We assume the mass of the link is uniformly distributed f'$
; and that gravity acts norma. to the plane of motion and thus can be ignored subsequently. We ;(.(*

g model the flexible planar link as an interconnection of n rigid links, each with length {; and BS_:
mass m, . as shown in Figure 3-2. It is assumed that the links are connected by linear torsional ‘
:::' springs, each with stiffness k. and we assume that k is large. The flexible manipulator is thus Eg

OO MR NN
it 'o‘:?o'.fn'.,'_:'fo'.h‘ !
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represented as a planar n link mechanism. As a consequence, we establish a coordinate system
at the base and at each link as shown in Figure 3-2. Let ¢,g9,... .g, be the corresponding
joint angles measured with respect to these coordinate frames, and let /; be the moment of
inertia of the i th link about the z, axis which is normal to the plane of motion of the manipu-
lator. For simplicity, we take I, =/, forall ¢ =1 ..... n . Then the kinetic energy of the j
th link is given by[19]

r 1, v
m, V.V, +;wj1w/. (3.2.1)

where @, .the angular velocity of the j th joint, is given by

K =

J

N|v-

w, =(g, +g,+,. .., +q;)2 (3.2.2)

and ¢, is understood to be the angular velocity of the first joint, etc.
By following the standard derivation of the kinematic motion of any point on the manipulator

with rotational joints[19], the velocity of the center of mass of the jth link, V. .is given by

V., =14

<J
where

é= 41142:---,qn andJJ= le""",jn
J,, . the Jacobian of the center of mass of the j th link with respect to the (i-1) th joint is

given by
7,=13x(0,=0_) .1€i<;
=0 ,j<i<n .

The position of theith joint.1 i Sn —1,is

0, =x

?

lycosg,+1l,cos(g,+g,)+...., +cos(g,+g,+,..., +q,.)J

+3

lysing,+l,sin(g,+g,)+...., +sin(g,+g,+,..., +qi)].

The position of the center of the mass of the jth link is

OO GOONG 00 : W G OACAOROANAONG QBN RO AN SOREEN NN BAIHCAN)
dralidndndiatihl ittt ottt timintaaindndalntnl bl adahntatnlatntely s ittt

ORI
’rf,*l.,.".“_.“‘r;



o
s\ 4
\:.\ E
L) »
i)
"g +y [l;sing, +..... +1 ysin(gy+g,+ ... +q, )+, sin(g,+g,+ ..., +q',)|.
. =3
.‘; From a symmetry consideration, we take —
IAY) s A
o
:::' [, =1 =L/n (3.2.3.) 4
“a
;:g,: m,=m =M/n (3.2.3.b) -
i fa—
AN i, =172 (3.2.3.0) o
9::'0 < .:’
::!;‘ I=1_=m?/12. (3.2.3.d)
iy 2
;:1" With L being the length of the undeflected beam. M being the mass of the whole beam, and /_; X
al. A
14
i being the distance of the center of mass of the jzk link from the jth joint. By (3.2.1)-(3.2.3) 3
B L v
:“E \ the total kinetic energy K of the manipulator is then the sum of the individual kinetic energies te
0.. ‘.
0 n n
ReA m I ﬁ
» — Ty, T
° K =— Z VC] ‘/cj + - Z wj wj
G 2 i=1 2 i=1
b ”'_;\ n n ‘; :
0, m .r T . 1 r T LN g
2 =G J1)d +=¢ (T E[E, =)g
R 2 i=1 2 = /
’A L &
igr- - L r - I I 1 Y4 -
N =—q | X (mJJ, +1EE —)|4
f.‘ 2 i=1 J o
R B
i::'. 1 r S
b =-d M@,
n."
:‘.0: where S
N
0"‘
l:.'! §
o E = Lixi 0
° /710 0 .
(n—jxXn=j) .-
K 1 i j X j matrix with all entries bei it ﬁ
?::" j x j IS asquare j X j matrix wi entries being unity. S
"
,l:: By restricting our study to slightly flexible manipulators, we have a small deflection along the T
. (43
P link and this indicates that &

oot
> et o'
T,
[ e o)

(qz_qz,..A,q,,)'-'O(e)

where € is a small positive number.

L] o
wiH S
L) As a matter of fact, with some trigonometric and algebraic simplification, -
o
ll
D

. »
X! 3
!L: \ §
W

0 —
|
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I..
r’l.:
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g,)=M +0() (3.2.4)

when we expand it. This means that M(q) is only a function of fast variables, (g,, . .., g, ).

..... g, )=M(g,.q5.. ...

and can further be approximated by a constant matrix A_ which is positive definite and sym-

) . . oo . 2
metric. Since we are mainly interested in designing corrective feedback control up to O(€)
accuracy. it is thus acceptable to take M. instead of M(q) in our derivation that follows. The

potential energy 2 of the manipulator in this case is the sum of the elastic spring potentials

..... +q¢°)=Plg)
where Kk is the torsional spring constant and ¢; are the relevant angular displacements at each
fictitious joints. Euler-Lagrange equations are then of the form

L=K—-P=K(g)—P(g)

where K (¢ ) is a valid approximation of the total kinetic energy to O (€°) accuracy.

oL . d 9L .
—.=Mq.—-——‘= q
&4 t | &g
L P
a—=——~a———=—-kqj 2<j<n
aqj 6qj
=0 j=1

Assuming that there is a viscous damping term - d,¢; at the joints, the system equation that

describes the flexible beam can be written as

M(g)g + (32.5)

0 L
+dj = .
017 kg +dg = |u

n -1

£
0
By the fact that M is nonsingular and can be approximated by a constant matrix as in (3.2.4),

(3.2.5) is equivalent to the following with O (&%) approximation.
4 PP

g =Dg +A4 kg + Bu (3.2.6)

where D. A, B are all constant matrices
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By  scaling (g, .... gq,)=(€z, ... . €, ) =€  with &=1/k. we have
g =0, ... q, Y =(x.éz) .wherex = 7, . Without loss of generality. we take € = € .
Equation (3.2.6) becomes
" D, D : A B
X n Pz 1 1
= + z + u . (3.2.7)
€z Dy Doy ez A, B,

The rigid or reduced model can be deduced from (3.2.7) by setting € = 0. This is
equivalent to havihg an infinitelv stiff beam which is also the undeflected rigid beam.
Setting € = 0 gives

-

=—A; (D% +Bu).

Substitute this into (3.2.5) and simplify -

X=(D,—A,A;'D,)x +(B,—A,A; B,

i=Ax +Bu. (32.8)

(3.2.8) can be compared with the system equation from the rigid beam derivation. They are

found to be identical.

A more realistic modeling of flexible link manipulators can be obtained by using the
modal analysis. A flexible link manipulator with a concentrated mass is shown in Figure 3-3.
The deflection along the flexible link, 8(x ,z) . is a function of both time and position along
the link. 0 € x € , where | is the length of the undeflected link. The deflection 8(x .¢) is
governed by the beam equation with the boundary conditions where the beam is clamped at

one end and free at the other end.

=—p— (3.2.9)
where the constants are. respectively, -

E: Young's Modulus,

I: beam area inertia,

p: density.
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With the assumed mode method. 8(x .t ) can be represented as an infinite series of separ-

aole modes

8x .t)= ) m(x)p (x) (3.2.10)

i=1

where ¢, () = 0 as i — oo [20]. For a realistic representation of a slightly flexible beam. a
good approximation can be obtained by truncating (3.2.10) after the first few terms.

The functions 7, (x ) are the eigenfunctions of the PDE (3.2.9) and satisfy

4

9™,
gx

We treat ¢, as part of the generalized coordinate g = (8 , ¢)" , where 8 is the joint angle of the

EI =o pm (x)

relevant link. Through Lagragian formulation the flexible link manipulator can be modeled by

the following state equations{21]:

M(g)g + kqg+dg=Qu (3.2.11)

0 O

017,
where ¢ = (0 . ¢) and Q is a constant vector. The dg term accounts for damping. Constant k
is a normalized stiffness constant that arises as a result of the presence of link flexibility and is
related to the payload mass. length, cross-section area, cross-area inertia. density, and the
Young's modulus of the beam. A quick comparison between (3.2.5) and (3.2.11) reveals the
fact that both ways of modeling flexible link manipulators lead to two equivalent system
representations., though there is no one-one correspondence of the state variables between
them. For a single flexible beam with no payload that has its motion restricted to a horizontal
plane [18]. it can be verified that M(q) is a function of fast variables (deflection variables) &,
alone and can further be approximated by a constant matrix as in (3.2.4). This again justifies
our way of modeling the flexible beam as n sublinks each connected to the othe: through a stiff
spring except at the base where it is hinged upon a rigid joint. Neglecting the damping effect.

Judd and Falkenburg used the Denavit-Hartenberg 4-parameter representation for modeling

the flexible beam and came up with a set of system equations identical 10 (3.2.11) with the
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damping term omitted [22].

LI RN
A

4

x Mazine
3.3. Existence of Integral Manifold in Flexible Link Robot System d
('
f_ The flexible manipulator system (3.2.7) can be rewritten as the following singularly per- 2
% o
f‘ ~
94 turbed linear svstem
\ .
e E
W 1l o I 0 0 |1 (O l
: X, 0D, A, uD | |x b o
o 2 | 1 4 2| X2 Py (3.3.1) E
( PR D T R S B P R [
.‘ [z 0 Dy A, uDyp z, b, 2
) J 12
131 whereu =€~ ,x,=x .x,=x .z, =z ,andz, = uz
o iy !
M This can be rewritten in a more compact form as 4}
®
:; X Ay Ap {X]+ B, (33.2) E:i
= u 3.
'.:':-: Z Ay Ap|lZ B, ¥
2 where X =(x,.x,).Z =(z;.z,)and 4,, and B; correspond to appropriate entries in 2
iX (3.3.1). -
e
] »
:: Due to the nonsingularity of M(q). A , is nonsingular and hence “{
- ‘
5 - -1 -1
' -1 0 7 —uA; Dy A,
Dy A = = (333
B 4 22 A ) #.D 2 1 0 ) q
:ﬂj Bv (3.3.3) the existence of a conditionally attractive manifold for (3.3.2) is assured [11]. {g
o - "
v o
;’ From Corollary 2.2.1 of Chapter 2. the integral manifold is of the form
B =" ?
= Z=LX+P x
I where X = (x, a2 = (z,. 22)r and L isa 2 X 2 constant matrix. .
' - -
TR Y
." By Corollary 2.2.1, L satisfies the following equation: -l
e
-
i 0 0 0 I ] PT B P T P @
0 Dy Ay uD oy, 0Dy AL #D g, .
° Solving ﬁ
O
P 3
: A
2

ﬁ*‘h . -
W

Nt A Ty o 0T " P Y R O O ‘ Nt 0 O&WN] Ay
D AR AR R L B .l'o!l‘:?l_u;_:'.u’.?n'-.., "v ! .u'... IO SR T A DS SOOI DA AN DAL SOOI
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0 —/‘Az—lsz )
L = _ - R XA
0 —=A7'D, (D, ~A4,4.'D,) #

and P satisfies
pLP = AP + Bu

with4 =4 22 = LA |, and B = B,—ulB .
For our system to start on manifold Z = LX + P . it is necessary and sufficient that

Z(ty)=LX@ )+ Plt,)=LX(,) (3.3.4)
since P(¢,) =0.
We recall that (X ,Z ) represents the positions and velocities of the joints and deflections,
respectively. One of the initial conditions that would satisfy (3.3.4) is the one where the robot
starts from rest with undeflected links in the "zero" position. In this case. we have

(X(zy).2Z(t,)) =0and (3.3.4) is trivially satisfied.

3.4. Flexibility as a Cause for Phase Delay

It is intuitive that for a robot with perfect rigidity the links and the end-effector will
move accordingly when the motor starts running as a result of the applied input torque. How-
ever. for a robot with flexibility in either links or joints. the end-effector does not move simul-
taneously with the motor. Furthermore, the trajectory of the robot arm does not follow the
expected one exactly. This phenomenon becomes more noticeable with the increase of input
frequency that in turn excites the inherent flexible modes in the robot. We shall interpret this

as a phase delay due to the flexibility in the manipulators.

Referring to the flexible beam in Figure 3-3. the position of the mass m at the tip of the
beam is described by
y =160()+8 .t).
where {0 is the arc traversed by the tip of the undeflected beam from the reference frame and
8({ .z ) is the deflection at the tip of the beam.

By (3.2.10). (3.3.1) and the fact that we take c,; as the scaled version of the deflection vari-
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ables ¢ .i.e.. €z, = ¢ . we have
=100)+ T 7 (1)e, (1)
i=2
=lx1+€(77'2(l).77'3(l)- 'Wn(l))zl

: r
Since X =(x,.x,)’ .Z =(z,.z,) . wehave

y =C,X +€C,Z (3.4.1)
=Co,X +4°C,Z
where C,=(1 ,0).C,=(m(), -~ .m ().[0, - .0).e=4’

Thus, we have the movement of the mass m at the tip of the flexible beam governed by a linear

time-invariant system (3.3.2) with linear output (3.4.1).

The movement of the mass m on a rigid beam is described by the following system equa-

tions:

X =A,X +Byu’ (3.4.2)
y=CoX (3.4.3)

-1 -1
A=A —ApARAy . By=B,—ApAyB
where (3.4.2) and (3.4.3) are obtained by setting u = 0 in (3.3.2) and (3.4.1) respectively.

The frequency domain representation of (3.4.2)-(3.4.3) is given by
Y =Co(sI —A)'BoU =Co(sI —A,, +ApAsgAy) ' BoU . (3.4.4)
The flexible beam system (3.3.2) as restricted to the manifold Z = LX + P is
X =(A,, +ALL)X +ALP +Bu (3.4.5)

uP = AP + Bu . (3.4.6)

The frequency domain representation of the movement of mass m on the flexible beam

described by (3.4.5)-(3.4.6) is given by

Y(s)=CoX(s)+p’C(LX(s)+P(s))

=Co(sI —A, —ALL) (B +A,(usl =AY B)HU

! 2 0 ~hy
'. .o'm.. '.9' Rty .o'l!a "2:% -'c. .- 3’ ey m '.a. W N‘W':' t'm'%. O Hm'.v. B .t"n '.w..o '.w SN

s R

e e = aa wn g

(27
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+u'C (LC (5T —A —ARL) (B +A,(usI —A) B )+ (us] —A)'B)HU

X g Note that
.y
.': Tyl P N 2
_:’ (usl —A) == +usd DA +0u")
My )
YO So
&
(
L ~_ ~ o~
! ;5 Y =ColsI —A,—ApL) (B, -4, +usA HDAT'BYU +0 (D (3.4.7)
‘.
’3' - where, as a reminder, A = Ap,+0(w) .B=B,+0().L =—A A, +0()
WY 5)(
::: a& As u = O the flexible beam reduces to a rigid beam and consequently (3.4.7) becomes that of
N (3.4.4). One can check this easily by setting u = 0 in (3.4.7). Comparing (3.4.7) with (3.4.4),
T
3 o)
:' - we found the perturbation parameter g . which arises due to the presence of flexibility. induces
o -
:: fs a phase delay term usA " in the flexible system output.
L)
z o To illustrate the principle, we consider a scalar singularly perturbed system similar to
"
! *r (3.3.2) that describes the flexible beam:
&
. )
v E X =ax + bz , (3.4.8.2)
L}
r
*;' ' pz = -z +u (3.4.8.b)
) '_,-Q-
;4 e where O < 4 << 1, and x, z, and u are scalars. Equation (3.4.8) is a simplified version of
¥
A ! (3.3.2). We shall name (3.4.8) as the flexible model with u representing the stiffness constant.
jj Y The rigid model is obtained when we let 4 — 0. This resultsin z =« in (3.4.8.b). Substitut-
%
»3 '- : PO . P .
ol ‘;_: ing this into (3.4.8.a) gives the rigid model equation
S
{
1 i =ax +bu . (3.4.9)
. =
.~
. Ll
- ® Frequency domain analysis
' ;'"
Fo)
] The Laplace transform of (3.4.8) with zero initial condition is
2
3 t# ,
VIR X(s)= Us) (3.4.10)
‘. (s —a)(1+us)
p o
‘ where s = jw . w represents frequency. Functions X(s) and U(s) are the Laplace transform
L)
v
N
N of x(1) and u(t) respectively.
L) -
. .
: -
’ W ™ M T N e P W N ) .
B L A B D T R R A PR

T e

Pttt o 2,

P ey~
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! When u = 0, i. e.. the spring constant — co, (3.4.10) reduces to ﬁ
",
:l'. 5 X
‘».;., X(s)= —U(s) (3.4.11) >
N (s —a)

A
L

which is precisely the frequency domain representation of the rigid model (3.4.9).

i By comparing (3.4.10) with (3.4.11) one would readily see that there is a phase delay of @
?‘i‘ tan”'(uw) in the output performance of a flexible robot if a control based on rigid model .
é:\ assumption is applied to it. It is easy to see that phase delay will increase with the increase of %
:, input frequency. This‘explains why in a slightly flexible robot, high-speed performance is Q;g
' Ly

usually not satisfactory, though it is fairly acceptable at low-speed maneuvers. The Taylor

series expansion of (3.4.10) with respect to  is

= B2

LN R ol - -
KA L SRy

" b b(1—ps)

D K 2

: = +0 () (3 4.12)

4 (s —a)(1 + us) (s —a)

e

1‘_} g
4 2

" Neglecting O (u”) terms in (3.4.12) and comparing it with the rigid model (3.4.11), we notice -
) |'

that there is an additional unstable zero in the flexible robot system. This is first observed in

ZIEZTE 2
55

:c‘" [23]. Thus we have shown that flexibility not only causes a phase delay but also induces an
e
3 unstable zero in the system. -
o e
:-._ In order that the behavior of the flexible model be like a rigid one in the mid-frequency range
N R E‘%
:}E where O ( (us )7 ) is negligible. we must use a control Z such that
o b b (1 ) ’
—us) - .
LI ETI T
4
5 (s —a) (s —a)
i W
i\ hence "
2 i
P _ U(s)
o U(G)= — . (3.4.13) .
b '-: _ (1—us) %
X ‘5 Note that U (s ) is obtained by sending the rigid control through a phase-lead compensator. :
o
-~ o Time domain analysis using integral manifold v

i

]
VNN
=2

1,9y A

Yy X OO0 IRy Q ! ' 0 ‘ T X AN, LN
NN ."f. S UG !'1‘,'1 "\‘ «‘ A ‘.f.O \!"P’"”“ﬁ.‘.&\"" : .‘o.i‘:.l':! » Q‘:‘I‘. I‘:‘c‘.‘l‘!‘:‘: l‘-"'! .bii‘t‘:.’t'm‘\‘!‘l'»‘:‘q .-3!‘q‘-'@‘!‘n‘.'c".&"’d [ X\ \‘!dﬁ!h:...l -:"."




-
00N

- T

-
-

—
)

P e

PO LY X R

T e e e

L5

L

b,

Sl

s

&Fd

‘B

O IO R A A AN IO N T LI R MK XM UK R
T R A I AN

53

Bv Corollary 2.3.2, (3.4.8) possesses an attractive inpul dependent integral manifold of

the form = = p , where p satisfies

up ==p +u .
With
2
X Txotpux, +ux,t o
2
p=potup, tup,t.
u =u0+/¢u1+p.2u2+...
We have
Po=Uu . py=UuU,—U,
So

X =ax +buy+ub (u,—dy) + 0. (3.4.14)
Note that at # = 0, (3.4.14) reduces to the rigid model (3.4.9) and hence we are justified that

u, is the rigid control applied to the ideal rigid model.
By appending a corrective control . u, = u ., to the nominal rigid controller, the flexible model
will behave like the rigid one in the mid-frequency range where O ((us )?) is negligible.
In other words, applying

T =ug+puu, =uy+ pu, (3.4.15)
to the realistic flexible system will make the flexible system performance identical to the rigid
one in the mid-frequency range.
Note that (3.4.15) in the frequency domain is

U=0+us),

which is equivalent 1o (3.4.13) in the mid-frequency range where O ( (us )?) is negligible.
The same argument can be applied to the flexible link system (3.3.2) and similar result can be

obtained.

We now recapitulate what we have done. A case study of a flexible beam system reveals
that flexibility causes phase delay and thereby deteriorates its expected performance based on a

rigid model assumption. The frequency domain analysis comes up with a corrective scheme
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o
M o : . . : . . .
"::.' which is equivalent 1o the the time domain approach. where the integral manifold idea is used h
'l.' )
o as a design tool. L
2 ®
)
:::' 3.5. Case Study of a Mechanical System with Flexible Interconnection §
l..
nd : , , : . A
fe'd In previous sections we investigated the control issue of flexible link robots where perfect
t -
/ .:' rigidity is assumed for the joints. Due to the deformation of gear teeth or bearings within the @
!

o joints, we also have to face the control problems of manipulators with elastic joints. Spong.

)
L)
"

( Y
o4 ing a fictitious stiff spring within the joint [6]. The motor shaft is interconnected to the :.r:
)
:::: relevant link through this spring. which becomes a rigid connection as the spring constant
R0 [Ty
- tends to infinity. In this section. we shall study the modeling of a mechanical system of two @
R
£ interconnected masses, which is similar in principle to the elastic joint modeling in [6]. ;4
e ".‘
«; Consider the mechanical system in Figure 3-4 where M is attached to a reference frame
3T
K &
L through a spring with spring constant X, and m is driven by an external force f. Masses M
e
' and m are interconnected by a stiff spring with spring constant k, . and x and z are the dis-
o g
- lacement associated with M and m. respectively. Viscous damping is modeled by the damp-
Wy P p ping M p
W -
:) ing constants D and B, respectively.
v i)
“: The equation of motion for this mechanical system can be written as
o %
’f; Mx ==k x =k, (x —z)—B(x —-z)+ Mg - Dx (3.5.1.2) R
b mi=k,(x —2)+B(Gi—3)+mg +f (35.1.0) i
" -.I - . . .
e, where (. ) and ( .. ) represent the first and second derivatives with respect to time, and g is the
:‘: gravitational constant. Q
Py
ol Dividing both sides of {3.5.1) by mass
0 ks kf B ) D .
:f f==—x=—(x —z)—-—(x —2)+g — —x (3.5.2.2)
y}' M M M M .,
v PFe.}
> 3
o L B . . /
& I=—(x —z2)+ —(x=2)+g +—. (3.5.2.b)
" m m m N
v Introducing a new state variable o
)
i am
o
g s
i

)

Khorasani. and Kokotovic model the joint flexibility in the rigid link manipulator by introduc-

)
TR e ¥ (Tt ) Pate (St R 1T © AN 19 Wy Wy OO IO, P00, T Sy 'y T U e 80 NI OO0
‘:&:!?l'v..l q,l,‘q. WX e ". bELY n.vc‘.’l':!"-.l .4 .l'n?l'..‘l'o. LAY, 'Ll‘u’l't.‘Q"QS"A?‘"‘."I!“u!"!"‘l?‘.ﬁ A 'u'.i.i.ﬁ‘t“i':ﬁ'of"i’.l-h ‘.fq‘.’:?.,'q’g‘"a‘.ufc’:!l'q,!'.,i?.’!’..l!:{l‘.’t‘.f:’-
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B o .
q
a 35 ]
) ALY
i » - 1 ..
! y =k, (x —z). and k. =—. "
!‘ s #‘ 8,
'j. equation (3.5.2.a) becomes °
s d
: ] k !
; 1 B D h
3 @ X =y ——y — Py + g — —3 . (3.5.3.a) \,
) Y MK —Y TE
A M M M M ]
. 5 By subtracting (3.5.2.b) from (3.5.2.a), we get )
:: ]
! ) k 11 11 D \
: wy = _—x = (— ¢+ —y —;.LZB(—- + —)y - —x — L ) (3.5.3.b) ::
) @ M M m m M M m .:
i . . . Y,
4 To transform our system into a standard singularly perturbed linear system, we use
:‘ 1 - -’C : = y, 'i
¢ : X 2 x Ya] [y Y,
i With this, (3.5.3) becomes )
I N
SR 4
;: ’S{ . 0 1 0 0 ::
:! X1 —ks D -1 B X 0 ol
\ . -— = —u— 3
¢ g X2 M M M M T2l | g 5
‘ ‘= - (3.5.4)
/ ©y | 0 0 0 1 v, 0 "
X
I Yy, —k, D m+M m+ M A L ::
A e - - [}
! g M M mM mM m )
! "
: % For a stiff spring k, is a large constant and this implies x4 is 2 small constant. which assures
) the singularly perturbed form in (3.5.4). As k, = . or pu—0 ,our mechanical system X
[} '
) - |'
) t‘_; becomes the one with a rigid connection and (3.5.4) reduces to i:,
1 g
‘. 1
VY <1l C 1 i 0 o
= {3
SN %, k, D |l L1 (3.5.5) 3
. - - - — '
Y -_% m+M m+M m + M ::
T b
g o with the use of equalities s
‘ “. k :‘
L/ o, mM s D f )
o y,=0,y,==———(—x,; + —x, + =) v
| m+M M M m X
Y l;:: obtained by setting u = 0 in (3.5.4). y,
(
Equation (3.5.5) is the system description for the rigidly connected mechanical system as ‘;
\
N !
' iy shown in Figure 3-5, where we have a single object with mass m + M attached to the inertial ::
1 \
¢ )

"""y{",_ e fi L, “""[ ) ' $
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c::‘l, frame through a spring with spring constant &, and damping constant D.
X,
X,

Et!!:n. b'e
A "

KO whereu =

Y,
Y,

Jat

R With X = and ¥ = (3.5.4) can be written as

s
A5

_ All A12

= (3.5.6)
Az Ap

vl
)’

v

N 0 1
. A, = is nonsingular .
m+M

mM

3 R

1'0. . —_ —

L In fact

2 mM
—up -
,:: . m+ M
s A = | 0

a2 2235 E

'{&:’u By Corollary 2.2.2 there exists an integral manifold Z = LX + P for (3.5.6). The constant L

i
==

:.h' and the variable P satisfy. respectively,

6 >

A 21 + A22L = .u'L (A 11 + A 1214) (3573)

uP = (A, —uLA )P + (v —ulu) (3.5.7.b)

O ek

X

RIS
& Sa

with

o=
Y
I}

i::‘::.: L=Lo+pl +p'Lo+ %
» N
' _ 2
::.'. P=Py+uP +uP,+ - “
e Equation (3.5.6) as restricted to the manifold becomes ;\)
L

®
R X =(A, +A,LL)X +(u+ALP) (3.5.8) %
N s
Uy K.
):E:::: =(A +ARLIX +(u +A,P)

7,0
ahht 2 >}
3 :\ Consider the case where f is a constant force, such as a mass of weight f, then P can be solved

A-),‘.: X
::i by equating coefficients of different powers of u on both sides of (3.5.7) g‘\z
"
R -
L J
P o
f‘::'n

s

it g e g Uy 8 B WY DTy 17 8V g T oy Vg 0Ty Wy (RMTNTIWNG NG 1 g Zan e e AN
' 2t N ¥ el \ 1 B
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K o 3
) 4
SRS . §
i P.o=—=4,v d
- ' ‘
?'b s Pl=A2—21(P0+L0,412P0+1,0u)

b . -1 -1. -1 ’
o S

' (N

With the assumption that f is a constant. u and v will also be constants. So we have

A

-1
W P0=—A22 v @

X3
~y
[

= A, Ly(~A,ASy +u)

-4 -
- P,=An (L ALPy+LoALP +Lu) '
::: ":: where ::
- By "
:o E L,=-A A, ::
. L1=A2_21L0(A11+A12L0) v
' l' - - .'
e :}t: Ly=Agp (Li(Ay+ApL)+LeApL,) "
as solved from (3.5.7.2). A
g - :
" s Substituting 4,; by corresponding entries from our mechanical system description (3.5.4), we
‘ ‘
) have the relevant coefficients of u° terms: W

.
-
- o -
A

’
0 1 "
! ApntApl,= o
! k, D 1
\: Y - - d
[y m+M m+ M v
; '
.S iy K
S 0 "
IR u +A,P,= f ::
g+ — 1
W .7-;‘ m+ M X
i\ ':h
¥
A | mks mD A t
' . - - X
B E L = m+M m+ M ;
¢ 0 0 0 '
~ i . ‘:
- v K terms: z
« My

-
> -

v, - \J
T ApL =AAL L, (AL +A L) ::
yz % f
\ =0. (A, +4,L,)=0 °J
R . ‘
o AP, =0. .,
: v 4
* g
+J b,
q »
' w 0
;
. N
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Iy, L lerms:

hn

'u'.i o o -

“v ,( A 1-,L 5 = - 5 - 2 =

_;‘ o mk (k,(m + M)—D") m DQ2k,(m +M)-D")

o : , "o

Ao (m + M) (m +M)* :QF\

3%! N

) '

o 0 0 -

Q"l A ‘,P_’ - E“‘

" 12t f mk,(m +M)~D? <

D) ol g + 3

D m+M (m + M) o
- Thus. (3.5.8) can be rewritten as i

" | ]
W o
) _‘v; . k, . f [3:
2ol x =g, ——x |+g,(w) | —x |+q,(w)|g + —— 359
53 m + m + m+M
n ’ with O (u*) terms neglected and ;3
A
,:'z: , m*(k,(m + M)—D?) &
¢ = ~
y g, (W) =1+u ¢
::y (m + M )3 ¥
Y
G ,,sz(st(m +M)-D% s

" g ) =1+u° . —
e (m +M)*

)

:«::: By using a scaled variable x , = x /¢ (1) (3.5.9) becomes @
t..l

l.|'l

(W)

! ) g (k. g,(w)D f

) x,=- x, = x,+ + —. (3.5.10)

i m+M m+M m+M T

A’

;& Note that with u =0 (3.5.10) reduces to the mechanical system with a rigid connection as ~
Ly

:: described by (3.5.5), or

a9 A b f 3

,:l , x == x - x + |g +

4 m+ M m+M m+M

an ;

| s R ——— 3
°® with natural frequency w, = 5 and damping ratio £, = —2- _\/_ D .
g m+M k;m + M §
i On the other hand, the perturbed system (3.5.10), i. e.. the one with a flexible connection, can ‘
.,‘-\\
B be viewed as the one with a displaced center of mass. x, = x /¢ ,(u) . and N
o .
" perturbed spring constant: g ,(ulk, .

perturbed damping ratio: gq,(u)D .

(LA AKX ]
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.'o: %
N
1t
i X
. natural frequency: w, = .\/ sq1\M
v -
X g m+M
) {: damping ratio: £, = — \/ D7q, (u) ‘ \
>0 !
N k.g,(uw)Xm + M) :
" % The ccnnected system as a whole can be viewed as the one in Figure 3-6 with the above charac- §
: Bl teristic constants. Suppose we have an underdamped system in the rigidly connected case, i. e.,
'
I » 2 \
o D {
N t‘j 0<é, <lor0< —— < 4. _
(‘ : (m + M)k,
;: :?‘_: For M and m both large enough as compared with damping constant D, we have g ,(#) > 1 and '
\ b
!
‘a g-(u) > 1. This implies that the mechanical system as a whole has an increased natural fre-
Ny
- > . . R .
-0 e quency and damping ratio due to the presence of flexibility.i.e., u# 0.
s \
S % t
! ;:‘_ 3.6. Conclusion
L -
1
. »
:g. ﬁ Additional fast states are introduced to take into account the presence of flexibility in the
! '

manipulators. The resultant system is a singularly perturbed version of the rigid model equa-

B!
5
»

tion. Flexible link robots are shown to be in this singularly perturbed form, and the system

[ b
i‘ equations possess an integral manifold. We indicated and proved that the flexibility is a cause 1
:" !S of phase delay which induces unsatisfactory performance in the nonrigid robot with a |
E :,.-:v presumed rigid modeling. Frequency domain analysis and time domain analysis using the idea :
k + of the integral manifold both come up with the same remedy scheme which demands an addi-
y

‘: E:‘ tional corrective control be appended to the nominal controller to compensate for the phase

-

delay. Last, we extended our idea to an interconnected mechanical system which contains

1 >,
; he flexible joint robots as a special case. The system with a nonrigid connection is shown to have
@
o e a perturbed natural frequency and damping ratio and a displaced center of mass from that of .
RN i
o the rigidly connected one. X
) S

Y\".
:
3
.
1y i }
:I: e ]
y
N .
L '
g w0
5
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o2 4. TRACKING AND DISTURBANCE REJECTION IN NONLINEAR SYSTEMS

W BY NONLINEAR INTEGRAL CONTROL o=

! .

o' 4.1. Introduction =
~ -,

:\: We shall investigate the tracking and disturbance rejection problem of a class of time- -_‘

e, ..
o

invariant nonlinear systems which are linear eguivalent to controllable linear systems. By using

-
&2
[ |

a nonlinear feedback control and a slowly varying integral control the closed-loop system

W
:: asymptotically tracks a reference input and rejects disturbances which are both unknown and %
D, o
< . . . . . . N
f" slowly varving. The Integral manifold concept will be used to design a nonlinear integral con-
M 7
e troller. %
. 2
1 z i
' J
::"o The so-called Pl controllers have been used extensively for asymptotic tracking of con- s
L\ /
ki £
Y stant but unknown set-point and rejection of constant disturbances. For linear time-invariant
-.':
:'\.r controllable systems with nonlinear output. Smith and Davison showed that a full state feed- 'tj
- L\
ﬁ-:. i
. back plus an integral control are needed to achieve the asymptotic tracking and disturbance
0 Q2
B
o . - . =
4 rejection with the resultant closed-loop system remaining stable [24]. By using a small A
ey, -~
(M)
) . . . . . . - . -
t:.:o‘ integral gain Kokotovic pointed out that in a linear time-invariant system the effect of the ~
LX) )
)y, o
D) ¢
;::c" integral control is to counteract the disturbance terms [13). For nonlinear systems Desoer and . r
» l'
a't
3} Lin proved that a PI controller can be used to asymptotically track reference inputs and reject .
et 5
.-l‘}; disturbances provided that the given sysiem is exponenrially stable and has a strictly increasing
X2 =
2. )
e dc steadyv-state 17O map [25]. <)
Ly - Ly
S
A In this chapter we study the tracking and disturbance rejection for a class of nonlinear -
AN ‘w'
:.;{ systems which are equivalent to linear controllable systems through a diffeomorphism of -
7 a
;'_::.‘ change of coordinates and external feedback linearization. Once the given system is ::.
< transformed to its linear equivalent. it is first of all stabilized by using a full state feedback. -
o . (
‘_;_uj A slowly varying integral control is then applied for the purpose of disturbance rejection and o
.‘f_'-“
- asymptotic tracking. The overall system consists of a fast linear subsystem governing the "
.' L
u states of the given plant, and a slow nonlinear differential equation governing the variation of )
o 2
Wl the integral control. We will show that there exists an integral manifold for the overall -
A2\ d
PO
b
A"
) .
T 3
p
) 'y €

t 3 { U N W -7 'y Tty ALY Y, 0 8! !
':.'. e . ':l ) l.:!"t "n" SO IS ‘0-"!. 't.('!. ) .l'h":’.!o. ;:.la,‘" “' 3. OO N S ‘o.l‘o.!\.C':’l':!l‘n’l'sﬁ‘; C‘!!l':‘:':?l'-,:‘:,i". l‘o.:‘g. AU
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svstem. By stabilizing the linear equivalent system the integral manifold for the overall sys-
tem is rendered attractive. Finally we show that when the system reaches the equilibrium

somewhere on the slow manifold. asymptotic tracking of reference input is then accomplished.

We start by reviewing some concepts in differential geometry and external feedback
linearizaton, and also by giving a description of our problem. To facilitate our discussion we
shall consider the set-point problem alone in Section 4.4. Later, with some additional assump-
tions, we continue our analvsis in Section 4.5 when an unknown but constant disturbance is
also present. The result is extended to slowly varying unknown reference input and distur-
bance in Section 4.6. Finally. in Section 4.7, we illustrate our methodology by a second-order

example which is unstable and has a nonzero output at the origin.

4.2. Some Useful Concepts of Differential Geometry

The Lie bracket of two C” vector fieldson R" | f and g, is defined by

| _ Og 9f
-8 I = (:Tx f = g’ g
08 9f , . o n
where — and — are n X n Jacobian matrices and | f . g |is itself a vector field on R .
ax ox
Successive Lie brackers are denoted by
i — k-1
ad; (g) = |f .ad; "(g)
ad, (g) =g
A set of C* vector fields {f ;,.... f,,} on R" is said to be involutive if there exist C*

functions a, , (x) such that

\f., -, ](x)= T e () f,(x) 1Si.jSm.
L =1

Suppose f,..... f. are linearly independent on R" . {f . . .. f..! is said to be
completely integrable if there exists an m-dimensiona! submanifold M in R" such that at each

point of M the tangent space of M is spanned by {f , ... ., fl-

NG 08t Tty G g ,r-'fr TR A AT AN . . W o RO RN L Y ) - ARSI LA \
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;.I" t‘c
':""{ n . . ‘.‘:
o,:“,. For Q: R" — R . the gradient of { is a row veclor -
! "
{ 9 EY)
KT dQ=(——.. . .. ) Fy, 8
:j axl arn
¢ .
ol The dual product of d Q and a vector fieldg =(g,,.... g, ) is a scalar field denoted by .z:
K \4 lu
® 30 50
<dQ .g>=—g,+,.... +—3g, . R
\j axl axn Ji?
::: With this notion. complete integrability of {f ,,..., f, | can also be deduced from the fol-
"‘.’N“ . J'\
o lowing fact. 5':
" - A set of vector fields on R" . {f ..., f..) . is completely integrable if and only if ",:j
- «’:.,‘
O there exist n-m linearly independent functions 4 ,(x) ... ., h, _, (x)such that
k- ‘ "
re <dh(x).f,;(x)>=0 ,1Si<n-m. 1< <m forall x €R" |
f;'}_ With the concepts of involutiveness and complete integrability we now state the well-known .
s 2
4 o Frobenius Theorem. 0N
Plas s
s
-;,-‘ Frobenius Theorem: A set of linearly independent vector fields {/1 v S ! is com- _g
& g
S . . . .
L pletely integrable if and only it is involutive [26]. o
l\.‘.
2058 N
-:?_-f. We are concerned with the class of nonlinear system
®) .
"-:.:: x=fx)+gx)u ., x €R” ,u€Rr f
Q)
S which is equivalent 1o a controllable linear time-invariant syvstem (4.2.1) after external feed- ‘
SN
'-J_w :3
oo back linearization "
o -
.z_':.: y = Ay + Bv .y ER" v €R . (4.2.1) :'-5
; e
'%: From [27] necessary and sufficient conditions for the local existence of such a transformation
20 S
o are ,*.j
. -—
:.E:. (1) f(0) = 0. 0
o g&
’ '.\'_. . .- . 1 n =1 n .
. :_:_,' (ii) the controllability matrix g .ad, (g).. ., ad; " (g) |span R" about the origin.
o 1 n =2 - ‘ é‘f
PY (i1i) the set of vector fields{g .ad, (g).,.... ad; ~(g)|isinvolutive. e
; ‘-:_
S )
W B
g x
Y,
e q
KAl At
L) "
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Before we state the conditions for the global existence of such a transformation. we

integrate along the involutive distribution { g . adf1 (g). ..ad; -2 (g)t.
(1) Solve for all Q € R the system

dx n —-1
—— =ad, (g) .x(0)=0 (4.2.2 a)
aQ

and obtain the solution x( Q ).

(2) Solve for all J; € R the system

(g) . x(Q.0)=x(Q)

and obtain the solution x( Q . 8, ).

(3) Obtain the solution x (2 , 0, . 8,) for all 6, € R the system

dx

— =ad; ’(g) .x(Q.6,.0)=x(Q.6,) (4.2.2.c)
de,

>

" (4) Repeat in this manner until we obtain the solution x (Q .8,,..., 0, _) for all

8, _€R the differential equation

dx
den -1

)
t
v
'
\
¢
r
'

=g . N 0, _,.00=x(Q.6,,...,0, _,). (4.2.2.d)
Carrying out the above procedure we have the map

M: x=(x,..... )= (Q .9,

which has a Jacobian matrix, or the noncharacteristic matrix

9x; 0%, 0x
30

8%, dx, ox,
30 90, 86, -,

The conditions for the global existence of the inverse of map M is: (28]

there exists a constant p > O such that the absolute values of the leading principal minors

Q"\"\f‘ "'PF"‘.J"."_' -r--'l“,v*"“\_ y\‘-.;'yl ‘-"f"f‘f“—‘i"‘~' > e, T ey W { P ¢ 2 'g' \d ' ? Bad) ' e,
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Ay A, o0 4A, of J(x) satisfy the ratio condition
I A:’ | l An |
a1 20, Zp... .. ——2p
l Al I l An -1 l

for all x € R" . The scalar A, is defined to be the determinant of the matrix obtained by

deleting the last n — k£ columns and rows of J.

Now we are ready 1o state the conditions for the global case. Proof can be found in [28].

Theorem 4.2.1

X = f (x)+ g{x)u is globally transformable to y = Ay + Bv with external feedback linear-

ization if

(i) the controllability matrix |g(x) .adfl(g (x)) .- .ad; "~ "(g(x)) | is nonsingular
onR"

(ii) the set {g (x J . ad,l(g (x). - .adf “%(g(x))} is involutive on R" . and

(iii) the noncharacteristic matrix satisfies the ratio condition on R" .

4.3. Problem Formulation

A. System description

Consider the SISO feedback svstem as shown in Figure 4-1. where P is the given non-
linear plant. Scalars ¢, and § are. respectively, the plant-output disturbance and plant-input
disturbance. The scalar ¢ is the reference input. The variables & and y are. respectively, the
input and the output of the piant P. The controller F takes E. the error between the output of
the plant and that of the reference input plus plant—oﬁtput disturbance, and produces u that is

to be fed into the plant.
The nonlinear plant P with input u, state x, and output y is described by the following
equations:

2 =f(x)+glx)u (4.3.1)

y =nlx) (4.3.2)

where x €ER” .y €R . and u €R . The controller is to be designed such that the closed-loop
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-'k i system performs asvmptotic tracking and disturbance rejection for all given initial conditions
D)

K

i g and for all inputs and disturbances satisfying our assumptions.

:.‘ >

4 ]

D » .

o i{ B. General assumptions !

The following assumptions are assumed to be satisfied throughout this chapter.

5=

A43.1: f:R"—=R"andg: R" — R are such that the system x = f (x) + g(x)u is glo-

bally feedback linearizable.

A43.2 mR" =~ R isa C” function .

FE X TS

v o
> -:j A4.3.3: The reference input ¢ , the plant-input disturbance 8 , and the plant-output distur-
¥ b ’
K . bance ¢ are all scalar constants (see comments below). We will assume ¢, =0 . and hence ,
S Ej d
¥
° . = E . since its effect can be included in ¢ in the closed-loop system.
-V
¢ , . .
p- 7 A4.3.4: The states of the given plant are available for full-state feedback.
S
K. ¢
':' C . !
SO omments:
! - D I
:"! From Theorem 4.2.1, Assumption A4.3.1 is required so that our nonlinear system can be )
) [ (
Ly . . . . . 5
' o transformed into a linear controllable system by diffeomorphism and external feedback linear-
g :
] L ization. Since f and g are both smooth functions, it therefore guarantees the existence of a
o ¢ unique solution for our plant (4.3.1) for all ¢ 2r,, with any given initial condition x, and ini-
K
d
, i ::, tial time ¢,, . Homogeneity only serves to ease our discussion and is not necessary. If (x, .u,) ‘
N )
>
° is the equilibrium of (4.3.1), i. e, f(x,)+g(x.,)u, =0 . a change of coordinates
[}
o v
:‘_; Y ¥ =x—x, .2 =u —u, . will bring us back to a homogeneous system. Note also the require-
9
Ko . ment of 7(0) =0 as demanded by Desoer and Lin is not required here [25]. For reference
~ o
% 1-" . . . 2 .
; - input and disturbance varying at a rate of O(€”) . 0 < € << 1, our methodology can still !
e - . . . - . .
" achieve asymptotic tracking and disturbance rejection up to O (€) neighborhood of the perfect
. - ymp g ] P g P
N

one.
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::' 4.4. Asymptotic Tracking of an Unknown Constant Reference Input s
(L
iy at

Assuming that there is no plant-input disturbance, i. e., ¥ =u , we shall show that a

) nonlinear feedback control plus an integral control will achieve asymptotic tracking of the

=5

) constant set-point problem.

! (1) External Feedback Linearization

o B

Wy

3::0 We seek a change of coordinates for (4.3.1)-(4.3.2): _
i o
ol T: R" =R "
4
‘ -

re=: §
¥

,\: where T is 2 C“ diffeomorphism and in the new local coordinates there exists a function

!

L.t Q: R" =R 23

®

i such that

" &

§ L 2(x)=0

'w.

! %

W

s ;

¥ L(L70(x) =0 R

4 n=1 ~

e L(L] e =0 (4.4.2) -h_i
e where L Q represents the Lie derivative of  along the vector field g. )

[ |

30 5
L=< — . g >
ox ’

< ... > denotes dot product.

B2

[t can be shown that the Q variable we obtained in integrating along the involutive set

_.,.

® T A LA,

: {g(x). ad},l(g (x)). . adj (g(x )} as in Section 4.2 satisfies (4.4.1)-(4.4.2) [28]. We
4 shall define the new local coordinates by the following C diffeomorphism from the old ones. m :
{
o .
” -
. N
o
X! o
L J
o
w»
B

N Ty A T e > 3 i I g L 0,05 AT PR T 15 W g 1% (AN QU0 LMK ¢ Hat
MRS AT RN . R NG RR A R R R B i e 'O'ﬁ.lﬁfﬁ'u:l':!i'nf"u",ﬁ!‘n!“u’“c!“ X ’l!"c"'o‘."&*‘tf"!f"

' 3 ¢ | 3
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¥ :_‘,
8 Q(x) T(x)
E. z, L, Q(x) T.(x)

p = ' = T l=T(x). (4.4.3)

U
-

<n L;_la(x) Tn(x)

We then have the following equivalent system from (4.3.1):

=t Y
"Il

=21
I

¥
H
w

vy

Ry |

i =z, (4.4.4)

h 4, =L7QG)+L,(L; 7 aGE)u

n

o

ﬁ =F(x)+Gx)u .

We shall show that a nonlinear feedback control of the form

,',_3‘ u =G_l(ul+u2+v) (4.4.5)

will achieve asymptotic tracking of the unknown set-point.

! Pick u, = ~F (x) . (4.4.4) becomes

o 010...0
f o1 .o

0 .0
3_‘{5 =0 R ARICPERD (4.4.6)
N 000 ... 1 ‘1)
= 000...0

which is a standard linear controllable system.

$!

v

- . . - . .

' Observe that this external feedback linearizing technique requires full-state feedback and also
. the nonsingularity of G(x) . We can carry out the pole placement design or stabilization of the
svstem once we have our system transformed into (4.4.6).

§

oy

o
®

- Q';‘
(:'

.v
‘ - X7 "y { . &
! %+ 7.3 RSO W) (U0 ) ) ) OO 2
‘.'.'t v' h v‘"m‘t s 0‘0“. g .0 s ’.l"ll'- ATRE RN ? LAY - l‘.‘l‘n“'c‘l’o‘i‘n‘l‘:‘:"'l'u‘\' l’u WY, ’c' ORI S8 ..!...l"'l.a W" ‘.' "' (0 ‘%‘x. ":'f'v".’u“, ".u".!’.;' !
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Hunt. Su. and Mever had shown that conditions for the global existence of G™' andaC”

-
9%y
-

-

transformation (4.4.3) are equivalent to Assumption A4.3.1[28]. Similar argument for feed-

back linearization can also be found in other books[29. 30).

s doF

(2) Stabilizing the linearized system

) We now apply a feedback control u,(z) to stabilize the linear system (4.4.6).

.‘:" n _ n

:".‘ ll2 = Za‘ :1 - Zai T" (x ) (4.4.7)

1 :O i=1 =1
{ where «, s are chosen so that the resultant system matrix is Hurwitz, i. e., the characteristic

53 R~ -~ BB

':'::l polynomial

W s" —ans"-l—an_lsn_z—...—al=O (4.4.8)

¥

has all roots with negative real parts.

With u, and u, the given system becomes

Feoorsoo o

L S5y

01 0 0 o
‘ 0 0 1 0 o
c‘;' 0 0 0 0
K
.:'c, dz
k) 2= ——= z + \% %
[ : ar fy
. ‘V_‘ . . . . i
9} 00 0 ... 1 (1) K
:q‘;: ay oy oy ...« b
,n:}
a'.‘t
l"'i' = Az + Bv . (4.49) g
l'"l'
A0

We shall study the bekavior of the overall system when v is an integral control governed by

o’
1
r

LT dv
" \
e ) — =€eT(E(z).v .€) (4.4.10.2)
g $ dr
o -
. % r0.v.e)=0 (4.4.10.b) ﬁ
= where I' is a smooth nonlinear function to be designed . E is the tracking error ,and € is a
i o~
e ‘ - o
ot *" small positive number. The equivalent system is as shown in Figure 4-2. L
[} L]
" Remark: When € =0 .v = v(0) becomes a constant. By the nature of Hurwitzness of the N
' < svstem matrix A the states z remain bounded despite the presence of v, which acts as a con- !
L
*.r\ Ly
-3 stant disturbance to the system (4.4.9).

-
o,

®
d. &

et s [ .. . . R

DOLOGO 0,50, V0, 0 V58 e 1 a0 e n e e et W0 9§ (] WSy K € ¢
eh 1o 0 atiatigh 8 ) DR im0t o figte (tn g fe it TRyt
NI AN ':'l'tf!‘-."c.!‘.ft"'!’ ‘,'oﬁ‘_c','.'o!'l?n:‘!u.?-fi'.ofl?oft!ta'.s,‘."’o.‘fcer'.‘?of'!c:l?p:‘!o"!l.‘.l."ft.‘ft.'!r!‘!':‘.c.‘.a,’?o.".eﬂ!t.‘?h‘!o.'fo W% 0t e it b
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T (3) Change of time-scale and the existence of integral manifold

We now define ¢ = €7 as the slow time scale. In the slow time scale. (4.4.9)~(4.4.10)

Y

” will be in standard form for the integral manifold discussion as in (1.2.1).
’i: dv
! — =T(EE).v .6 (4.4.11)
’ dt
0~ z
«— = Az + Bv (4.4.12)
. t
G
&

It is easy to check that the conditions in Section 1.2 for the existence of the integral manifold

-

T -

Y . for (4.4.11)-(4.4.12) are satisfied.

o M1l: Az + Bv =0 gives

oy .

£ I,=Z,=.=Z2 =0 (4.4.13)
¢ and

~\7

o

- Z—l = - \7/01 . (4.4.14)

.

Note that in (4.4.14) a; # 0 since if a; =0 (4.4.8) will have a zero root contradicting the

"

Wy fact that all of its roots have negative real parts.

M2: Trivial.

52

M3:

A

Rex, (4) 1€i €n

where A, (A ) stands for the eigenvalue of the matrix A.

A
. x
.

a5
Trivial by (4.4.8).

~—
:' ,'f.
SR Hence. there exists an integral manifold of the form z =h(v ,€) for the system
)
(s (4.4.11)-(4.4.12).
A ; A
! N (v .€)=h'G) +er'(v) + .. (4.4.15) ,
;: ‘:?; h(v .€) can be found by the fact that it satisfies (4.4.11)-(4.4.12), i. e.,
K,
. oh

St e—v =Ah(v .€)+ Bv (4.4.16) 2

av

Using MAE ( Matched Asymptotic Expansion ). we equate coeffcients of successive powers of

Ey

Y o FEFFEINLF S a
awm
J"

_°.'.‘_ J 5

R e A R e R R L T T R R R IR AR "!



CE L A
ey

b

ol

s

P
i

‘i
PJ' -

W

70

€ on both sides of (4.4.16)

e 0=A4r°%v) + Bv

or
01 0 0 h10
0 0 1 0
0 0
0 00 0| k2
+ v =0
L ) - o
¢ 0 o ... 1 h, i
a, o, a; . . . Q,
gives
—v /oy
0
)= - (4.4.17)
0
Coefficients of €' terms in (4.4.16):
0O 1 0 . 0
0 0 1 0
0O 0 0 . 0
n°
¢ I(E.v.0) o =AR'= At
av [z =h"(v)
0O 0 O 1
a; a, oy a,
gives
—012/011
1
0
nY( --Lre 0)
v - o Vo [2 =h0(r)
1
0

”

1V AL, ’ )
A optedy sl Vet 0 'l.:'t‘.s'b"".t'o‘a" ?h o,

s
2

L

a.L

T = v
o

N

%

L= N <

L
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Since E is a function of the plant-output. which in turns depends on the states z, we use

T(E.v.0) 10 express the fact that it is evaluated at z = h"(v) . Further analysis

[z =h%)
with MAE gives A (v . €) to any order of accuracy in powers of € .

Thus. we have

h(v.e)=h’(v)+0(e

—v /o)
0

+ O (e) (4.4.18)
0

When the system does not start with its initial condition on the manifold . viz
() # h(v(z,).€). there is a deviation from the manifold given by

Z=z—-h(v .€

Lemma 4.4.1
dz
€E— = A: + Bv
dt
dv
—=T(z ,v .1 .,€)
dt

A€ER"™ ,Be€R" .t €R.Te€C’.€€(0.€].€ is a small positive number and A is
Hurwitz.

The above system has an integral manifold z = A(v .z ,€) with a global region of attraction
for € small enough.

Proof: see section 4.8.

With this attractivity property the trajectory asymptotically converges to the integral
manifold. Note that we have a global region of attraction. When the trajectory is on the mani-

fold the behavior of the system is described by the action of integral control.

The plant-output in the z-coordinates is

b LG ]
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* q
: nx) =T ) =w(z)
: where al
5 o

— -1

3 w =m0 T
,2 isa C° function. :

The error between the plant-output and that of the reference inputl in z-coordinates is

2
A
DL

E=w(z)-c

:.;l which, when the system is on the integral manifold. becomes .;%
\" :!.‘
{,‘. E=wh{v . e))—c.
) b
=.::: Note that since we are working on a constant set-point problem for the time being. the mani- .:i
’ 5
W,
:::. fold is of the form z = A (v ,€). "
A J
| N
° Since w €C° . we can use the chain rule of differentiation and obtain
28y .
u:t dw ow 9z dv ow Qh dv .:Q
o T e T T T o
ﬂ_j dt 9z Jv dt 9z Qv dt |z =4r( e
‘ - ' A
o Now Pa)
k] -~
- ow gh  gw om(v . € gw o, (v .€)
o —_—— e — — + .+ -
i 9z v 4z, v 0z, av :;‘
:: Recall from (4.4.18) we have h
‘:'v oh, ®
1 -_—
' ov ?
N )
' 0k, —1/ay B¢
ov 0
= o _| . . !.'.Q
i — = = + 0 (e) W
bt ov
& . | i
A oh, 0 &
_ v .
i Therefore. :§
gw gh  —1 gw
. —— = —— _t+0ole). (4.4.19) N
' 9z Qv oy 9z lz=(~v/a; .0 . . o) .
"’ For € small enough we further propose the following assumption to assure the nonsingularity
i 3
K3
0 o |
o
19" e
: |
IV

o et . } ]
“ h ) ‘ CLA) (A >0 j 0 ( I a BVt N ) > { » #
R e N R R Mt il QDO DN KR A !.,».!3'..«!‘:-.,0.910'.5
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gw gh
of — — when the svstem is on the integral manifold = =h (v .€).
9s ov
Assumption A4.4.1:
ow
The choice of diffeomorphism T has the property that |——| ;= 0 (1) uni-

621 |z =(—VI01.0.. .. 0)
formly in v. where w(z) =1(T7'(z)) = n(x) is the plant-output.

With this assumption and the fact that

gw on _ gw (v . € N oh, (v . €)

3 av 8, o S Bz, v
where
oh
|—] =] /o, |
\4
oh;
|—|=0(@) 2<i<n
gv
we have

il
9z Qv

This in turns ensures that w oA is a bijective mapping. Hence one and only one plant-output

=0(1) uniformly in v.

will achieve the perfect tracking for each reference input.
Remark: The same assumption is made by Desoer and Lin, who claim the implicit existence of
the function h which is made explicit by us [25].

Using the update law,

dv ow o~
dt 9z Qv
124
where — is understood to be evaluated at z = A (v .€) .
o I
we then have
dw
— ==(w —¢c)=-EF . (4.421)
dt

R

.
Lol

> _ v,
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Solving

w(i)=c +(w(0)—c)e™

EG)=E)e™" .

Therefore, the tracking error goes to zero asymptotically.

Thus. the nonlinear differential equation governing the desired integral control is given by

-1 -1
dv dw dh 1 gw
— =—F | = = ——— | +0(). (4.4.22)
dt o= Jv o, 07,
Or. in the 7 time scale.
-1
dv aw 5
— =€a, |— | E +0(€). (4.4.23)
dr N
ow
The assumption on —— being uniformly bounded from below preserves the two-time scale
<1

propertV in the overall system.
The overall system will finally converge to the uniformly asymptotic stable equilibrium

(z, . v, ) that satisfies

0=E =w(hi(v, .€)=—c (4.4.24.2)
ok

0=€¢—T(.v, . €)=Az, +Bv, . (4.4.24.b)
Qv

Solving (4.4.24), we obtain the equilibrium point given by
v, =(woh) ()
—v, [0
0

. =h(v, € =~4"'Bv_ =

¢ e

0
We have shown that for any given initial conditions the closed-loop system will converge

asvmptotically to the integral manifold due to its global region of atiraction. The motion on
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the manifold is governed by (4.4.23). which also converges asymptotically to its equilibrium ¥

point with bounded plant states and a zero tracking error. To summarize our result, we have

am:
=1® LA

the following theorem. 1

&2
=T

Theorem 4.4.1:

!:t
13
}, The nonlinear plant £ = f (x) + g(x)u with output y =n(x) will achieve asymp- [
L] "
) J
totic tracking of an unknown constant set point for all initial conditions (x,.t,) if a control ’::
‘!(, - 5y’
'; ; of theform v =G (uy +u, +v) is applied. where :
e,
> (a) G(:c)=L§(L;-10(:c)) uy=—F(x) . and F(x)=L;Q(x) where 2
. A
- Q: R" — R isa scalar field that satisfies ::3
th

I\') \ aQ' n - n I'
S (i) — g(x),adjlg(x) ..... ad; %¢(x){=(0,...,0) forall x € R" .and 3

ox
] .’
- Q _ n !
~ (ii)a—adf" lg(x)#O forall x € R ::‘
v ",
r ax ..‘
n h
= . '.‘
i (b) u, = X a,z, where .
1 =1

0
- Qx) .%'

-, 0
L, Q(x) ;"
DA

! 2 =T(x)=

Ry :t
: J
%
ot JARVIES d
3 S '
and a, s are such that for Wy
. ]
k2 . \
o ps)=s" —a,s" = —a A
N pls) has all roots with negative real parts. '
" 3
- (c) 02
-1 ::;
dv ow oh W
—_ = —eF g_ "‘t
- A 1
dar ae a\ I::h(v,e) ::.
N

E=nx)—c . w=mnol} )
. T L P ."
. €€V . € j.€ isasmall positive number that satisfies Lemma 4.4.1 to ensure a globally attrac- R
o ;
Y
. o,
:
N
v

-----
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tive manifold. The scalar E is the tracking error.

\“.
1 O
% 3

( Remark: With our methodology exponential stability as demanded by Desoer and Lin for a 4

W] .

PN constant input u in the system, x = f (x) + g(x)u . is not required [25]. One choice of the

W, »

™ ‘h

: “ scalar field Q «can be obtained by integrating along the involutive set 3

LA %

'_7" {g (x) .adfl(g (x). . adf “(g(x))} as in (4.2.2) Section 4.2. Our result here is global. "

R “~ [

1N "

{ *-: For the local case the assumptions need only be satisfied on the domain of interest instead of

Bl

v Ni'\ n '}1'

"‘.r. the whole R space. ol
' Vel O

S . ) ) gw di By N

OEN With Assumption A4.4.1 on the uniform boundedness of |— ——| and a small integral o~
RN 9z Qv &

19 S

; i ~

K gain € . we have the following Corollary. L\

,._.'u -
. Corollary 4.4.1

7 .
e Asvmptotic tracking and disturbance rejection for the nonlinear plant x = f (x) + g(x) &

N
r N )

-":‘-‘ with nonlinear output ¥ = m(x ) can be achieved if a controlu =G ™' (u, + u, + ¥ ) is applied. - o
_ 4

K ) The functions f .g .G .u,.u,.and nare as in Theorem 4.4.1 and
¢ ::";* »
KL . -1 :
:: dv _ ow .

s PR PO
o . e Y = T

) 1 ]|z =(= /011 L0 0) «

e where € € (0, €], 0 < € << 1. E is the tracking error. b5
I‘\_l--

'.‘;::}: Proof: -
o &
'.." dw  gw Qh dv
o - s ﬁ
.:_:': dt 9: v dt |: =x(¢ e :’}
Y - " -. N
et With
" ~
<o
.. I
A - By 3
S dv gw 0hy aw

i — =—¢ef |— : =eaE |—

;\: dr 9z, gv Mz =f-::,o, ) 9=, |z == /a0 o7 (:\,
e N
e and the fact that
f::".. ah o ::-.
o gw g _ (w O - '
- —_—= +eV(v . €)

o 9 g¢ 97, @b .
o . Y
NN We have o
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l (jw on 10
[z, v

—(l +eBv .e))E .

Recall E =w — ¢ , we thus have

dE

dar
With B(v . €) being uniformly bounded. there exists a € such that for all € € (0, €] (4.4.25) is

]

—(I +eBv .e))E . (4.4.25)

u.a.s.. Sowithé=Min [e .€).E = 0ast — oo.

QED

4.5. Disturbance Rejection

We now impose a constant but unknown disturbance 8§ in our plani-input as shown in

Figure 4-1. The actual system is

x=fx)+gx)a

where

T=u+38.

In the new local coordinates described by (4.4.10)

t
L)

z., =z,

Fix)+Gx)u
where F(x) and G(x) are as defined in ( 3.11).

When we first apply

O S 7
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u,=—~F(x).

it results in

2 =G(x)8=G(TMz)8

With v, and v also taken into consideration, the overall system becomes

0 1 0 0
0
0 0 1 0 0
0O 0 0 0
d- L . ' -1,
- = + | (v +8G(T(2)) (4.5.1.a)
o 0 0 ... 1 (:
o, 0y Ay ... O
dv
— =€l(E .v .¢€). (4.5.1.b)

dt
We now propose the following assumption.

Assumption A4.5.1: The plant-input disturbance is an unknown but small constant.

With A6 we check the conditions for the existence of an integral manifold for (4.5.1).

M1: setting the RHS of (4.5.1.a) to zero gives

N|

2

N|

3=..25, =0

0, T, +7 +8G(TM(z,..,0)=0 (4.5.2)

Byv the implicit function Theorem for & small enough (4.5.2) has a unique solution given by

I, ==V/a; +0(8).
M2: Trivial.

M3: Taking the partial derivatives with respect to z on the RHS of (4.5.1.a) and evaluate it at

z=h"(y) gives
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N ;
X 0 1 0 0 01 0 0 v
Pab,
r ﬁ 0 0 1 0 0 0 1 0
. ot '%
' 0 0 0 0 0 0 0 0 .::
’ ™ %
' = (4.5.3) )

»
[

%

0 0 0 S 000 . ..1 )
T "
SN _ .
. E: a, +8; a, +8;, a; +8; . . . o +3, & @, . .'!:
H where
P "\' ,
N i
L 8 {
! 1 .‘:
X .':'\ 82 W
2 e
4 ,&‘ ~ oz {z=4%) i,
) " I
RN !
3 87! n
. o
: E and h°(v) isasin M1. o
. Ly
The characteristic polynomial of the perturbed system matrix (4.5.3) is given by .::;
o :|:
": ) - N - n-—l - !9
- P(s)=s" —a,s — = Q. (4.5.4) it
)
With Assumption A4.5.1, we now carry out the root sensitivity analysis for (4.5.4).
N o . ]
' Suppose P(s) has roots given by ]
-vf. :“
SN POA)=0. 1< <n, o
} i by
i e.
B 0]
l“w Wt
N, n— ¢
I Ps)=s" —a,s" 1=, —q e
! s
L Q n ':,
&! = H(5 - A[) . .'S
1=t °
o Denoting AA, and Aq, as the perturbed part of A, and o, respectively, we have )
¥ ]
-f_l ‘!
n a)\ s}
~ = ) — Aq . (4.5.5) &
't =1 &
In our case here ok

A OOHON X
» 'a‘.'_a‘.:nl.ﬁ'.'o' DRI SARA NN

K \ OIOA) )
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hoa Aoy =0B). 1<k $n . |
W l
B Now a |
;o:' o A
-;3-:&- 9P _ P O\

=%

. 0o, - oA, Oo,

trlke where
t
) L
:‘l'\ oP o P . g
R\ =—s' -§—=- II G -x).
’: 9o, oA, =10 % !
:,.'. Thus, )
Lo &
e" k & s =A -
X ..:: )\Ik -1 g:'
L =
f'v“ " (4.5.6)
i:f:: (=10 #%#i <
b From (4.5.5)-(4.5.6) it is seen that if we do not have tightly clustered roots, which can be done &
}' ." by eigenvalue placement at our disposal as in (4.4.14), the perturbed system matrix in (4.5.3) o
..:" will still remain Hurwitz. Hence, the existence of an integral manifold is still guaranteed and :;3
) Ly
! }. the rest of the argument is similar to that in Section 4.4.
:‘q) Remark: Suppose the plant-input disturbance & is not restricted to a small perturbation and gw'
iy “,} B
¥
'.‘ the integral control is a constant v (¢ ) = v(0) . but somehow the closed-loop system remains
N g
(\
;" exponentially stable as assumed by Desoer and Lin [25]. In order that our methodology be Q
o
W feasible in this case, we require the existence of a unique solution Z,(v) to (4.5.2) so that the -
OO0 i
iy existence of an integral manifold for our system is assured. This is equivalent to the assump-
et
'l tions made by Desoer and Lin for the existence of a c! function @
L
T
s h: R = R" &-:
¢
b j + such that o
1
o5 - - - o
_* Z=h({V ,€) forall VER A
}:J\ where (¥, ) is the equilibrium point for the closed-loop system and w oh is a bijection
N" -
i ::5 mapping as deduced from Assumption A4.4.1. Ei
B
P '5 o=
o
8.4 Rr‘
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In other words, an alternative assumption for disturbance rejection is the following:
Assumption A4.5.1.a:
(i) The disturbance 8 is a bounded constant that gives a bounded solution z (7) in (4.5.1) for
all constant v and

(i) ,Z, + 7 +8G(T™'(£,.0. - -+ ,0)) = O has a unique solution Z, = Z,(¥ . 8).

Note for 6 small enough the above assumption is always satisfied. With this assumption
it can be shown that the existence of an integral manifold z = h (v , §) is still satisfied and the

rest of the argument is similar to that in Section 4.4.

We have shown how a class of linear equivalent nonlinear system can achieve asymptotic
tracking and disturbance rejection for any given initial conditions by external feedback lineari-
zation and the integral manifold approach. The nonlinear system x = f (x) + g(x)u is first
transformed into a stable linear system = = Az + Bv by a nonlinear feedback and the use of
new local coordinates, z =T (x) . An integral control of the form v =eI(E ,v .€) is

. adopted. The concept of integral manifold is then used to design the integral control and prove
that the plant-output asymptotically tracks the given reference input and simultaneously
rejects disturbance.

4.6. Asymptotic Tracking and Disturbance Rejection of Slowly Varying Unknown
Signals

We now consider slowly varying unknown bounded signals as our reference input and
disturbance. By using the integral manifold concept we shall show how the asymptotic track-

ing can be achieved when some extra assumptions are satisfied. The overall system is given by

=f(x)+g(x)(u +8)
=G (uy(x) +uy(x)+v)
v=el(z . .v.8,e.7)
=T(x)

E(t)=xn(x)—c(7)

‘ NG VN 0 0
e I e et R Tl g

0
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4"_:}
. 2 o
c =€ y(T)
§=¢ o(r) -
"

) dx
where ¥ = — and y(7) and o(7) are smooth functions that give rise to a bounded reference
dr g
input ¢(1). and a small disturbance, i. e., ?

Assumption A4.6.1:

The reference input ¢ (7) € D , the disturbance 8(7) € E ,

(LY

D={c€R:|c(®)|<B .|é(r)|=0().forall T €[7,, 00}

:i E={8€R:|8r)|<6.|8(r)|=0() . forall 7 €[1,,00)} @
R R h
e where B is a positive number , § is a small number as presumed in Assumption A4.5.1, and
et T, is the initial time. @
®
3 -3 Theorem 4.6.1 K
% g
Yo .
Al For the nonlinear plant x = f (x) + g (x Ju with nonlinear output y =n(x) . a slowly i
L
’ varying unknown reference signal ¢ (7) and a disturbance 8(7) both satisfying Assumption &
. Lo 4
b - -
:n A4.6.1, the control u =G '(u, +u, +v) will result in tracking error E(7) — O(e) as
o g
"". T—o . u,,u,.andv are as in Corollary 4.4.1. € € (0,€] is the integral gain and
2
%") 0<é<<1.
t."‘. v)
‘v;’:o Proof: ¥
R

In slow time scale ¢ = €7

- -~
e

X2
.- -

P

-

dz
e— = Az + B(v +8G) (4.6.1)
dt

dv

@ X

SL X
=3

DY ~ R
‘.:' d—t = F(z ,v.8.€e.t ) (462&) g
L7 Z9 o (2 ) (4.6.2.b)
5 15 — =eo(t 46.2.b
1o dt ~E§
A - |
(g. where o(¢) = o(r/€) , etc.
L
B ~
- Bv Lemma 4.4.1, (4.6.1)-(4.6.2) has a globally attractive integral manifold 1
'
b :=h(s .8.€.¢) (4.6.3)
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and can be solved from the PDE
h h
(a—l‘(h 8et)+69—0'+a—)-Ah+B(v+SG)‘
v 88 o
Denoting
h=h®+eh'+en%+...
we have
€ AR’+B G +8G" D=0 .r°=r" .8)
0
1 oh " -~ o _ 1 _ 1,4
€ I'(h .86.0.¢)= AR} +— B &G (h) le=0 hi=h'(v ,8.1),
o
etc.
Hence,

R .8.€.t)=h°G .8)+er (¥ .8.€.t)

Thus. when the trajectory of (4.6.1)-(4.6.2) is on the manifold (4.6.3), the plant-output

becomes

wh@ ,6.e.t)).

Differentiating the above expression with respect to t gives

w(z)=

d—w—a—w(ahdv+ea—h-a'(t)+e—a—}l)
dt 9z go dt 8% o
ow oy av . -1 _ gw _dav .
=(— J—+e¥ . 8.t .e)=(—N—) — +e¥({ .5

9z, gv dt o, gz, dt

By adopting the integral control

dv w w
dt 9z, 0z,
we have from (4.6.4)
dw
— ==(w —¢c)+ €V .
dt

(4.6.4)

t .€).

(4.6.5)

(4.6.6)

Now by using a new relative slow time scale s = € ., we have the following subsystem:

! '! 0,‘ o li li‘ '»“.i‘ 'l‘ . . ’l

a
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Ny

':':k g
y dw

,ﬁ,n,':. e— =—(w —¢ )+ eV (4.6.7.a)

;!l'l_‘ ds Y
W de  _ ?""
‘: — =¥(s) (4.6.7.b)

i. ds et
:::5 ' where (s ) = y(r/€®) . It is easy 1o see that (4.6.7) has the following integral manifold: '{{
:‘!‘; ‘ .
. w=W(, s .€) (4.6.8) —~
iy

:‘ where W satisfies the following PDE E
o -
AN . ~

A0S w w 7
e e(a—7+a—)=—(W —c)+ev. <
f dc 9s

Solving o4

o

-
-
-

U
::.‘;'?, W . s.e0=c—e3()+¥)+ - (4.6.9)
.
RN Overall, the trajectory will asymptotically converge to the integral manifold (4.6.3) and then ﬂ
" later to the integral manifold (4.6.9) within the manifold (4.6.3). \
'
}'EQ}: Note when the subsystem (4.6.7) is on the manifold (4.6.8) we have from (4.6.9) the follow- %
A ing: o
! ¢
o -
:.::: w—c=00(e). (4.6.10)
: By (4.6.10) and (4.6.6) we conclude that asymptotic tracking and disturbance rejection to '&’
o )
% O (e) neighborhood of origin can be achieved when an integral control of the form (4.6.4) is
} U
1::' used. R
|
o QED
)
5 §
AL
‘.i ) 4.7. Example and Simulations
Y o Consider the nonlinear system on R? ‘
N .l
,' . x1+—+x2+e2-1
sy X 2 0 (4.7.1)
e T 2 Tl ig
Wt X2 ! 2
'u'al
:
B " ‘:i
- )
o .4
Y = f(x)+g(x)u
20 ’
0
'n"'o ﬁ
D)
K
:{“.’
. Bl
3874 m.‘:
o

PR A BOCLED DO A d 4 OSSN ANO00 0 ( 1) / 170, X XRRRG
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R

1: P*‘ dx 1

:: where u represents control and x = P is the time derivative of x, etc. Note that (4.7.1)

L4

" s has an unstable equilibrium at the origin because

-

2 % ¥ oo

:, ox |0, 0 00

| s Compute the Lie bracket,

y &

g

0 :Q [f - [—(1 +e °)
£ 0

P o T

it is easy to show that { g . lf . g |} is linearly independent on R?

1

LNy

ot ol ¢

Integrating along { g . [f . 8 ] } gives

ol P
KRR

x -20
] = ‘ ] . (4.7.2)
» x2
3 :. The noncharacteristic matrix of (4.7.2) is
v ﬁ i—z 0

which satisfies the ratio condition with p = 1/2 [28].

Thus, we are assured that (4.7.1) is external feedback linearizable on R2

O S S S
; aJ

."x-

For our new local coordinates we choose

(]
4 S| _ alx) —x,/2
h ::5" 22 Lf Q(x) -1 xl2
Y —(x;+ — +x,+e 2—1)
i 2 2
- ea differentiated with respect to 7 gives
[\ w5
- . dz
I e - =2
\’ w'j.l d‘r
i dz,
R, — =F(x)+G(x)u

“ dt
) where
+
A 2
o —1 1 ¥ 2 ‘2

Fx)=—((+x )N+ —+x,+e "= D+x;(1+e 7))

R Q‘h 2 2
s
L
)
] o
¢

fay ]

§ 0 e
B R R R R B R R R A R

(XS5
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ZAZ,

Gx)=~t(1+e'?).
2

(]
-

Y

. -1 : 2
It is easy to see that G "(x ) existson R” .

v

Fellowing a discussion in Section 4.4 we now apply a nonlinear feedback of the form

5%

)
o=
.“‘l-,
L

1554

SN
o)

u =G Nu,+u,+v)

;:3:;:‘ where u, is used to cancel the nonlinearity and is given by (ﬁ
R AW b
o
" u, =—F(x). "
!. v
:':“‘5 The linearized system is stabilized by u,. A choice of u, is he
,' u,=—6z,— 5z, :?
ﬁl Y R i3
nhe X,
:l.'. =3x,+25(x;+ —+e "+x,—-1). - E.
Hl 2 .
L‘A.! g
2? The equivalent stable linear system is then given by
~$-': oy
e dz, "]
R dr [ 0 1 l 21| o
Ty = : +l lv (4.7.3) ol
) . [N JR o
¢ dz -6 =51 |- 1 -

] a2 2 i
o drt
‘.‘.. . "-l
e Suppose our plant output is o
A" ..
"‘Q : X
"j.. }'=T)(x)=el+x]

-2 <

e

=w(z)=e l---2.:1.

XXM

Let the unknown set-point be denoted by c.

\ -
.k.' The tracking error in z coordinates is
L T E
B, -2z ]
:.'f E(t)==2z,+e '—c=w()—c. -

L) -
o Equation (4.7.3) in slow time scalet = €T is
)A_’a q
) p g
@ 1
N €— .
{”" dt 0 1}z o vy
) = + v (4.7.4) N
1..'..| dz, -6 —51iz, 1 )
rw €—
n,.: dt N
which together with nonlinear integral control 4

-
A
Cx 3
-,

o A
P FE

18
oy

) -
o [
.l'q.. k2
A'..‘ l:

h
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have an integral manifold = = A (v
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dv
— =T(E(z).v ,€)
dr

) =h°v)+eh'(v)+ - and h satisfies

- h
\ ea—v=Ah(v,e)+Bv.
¢ . aV
u! The M , manifold is obtained by solving
Ny .
nER 0 1], [0
‘\® 0= h™ + v
, -6 =5 1
‘st .
K ::i So
( -1
-~ o 0 1 ] [O] [1/6]
'v‘ h = e [ =
b Wr==l6 —s| Llv=1lol"
o) So
Y
, ¥ w gk’ = /6] 1 -2
.q —_— =[—2(l+e D) OH ]=——(1+e )
14 f\:‘ 62 av Y 3
N A
“ N When the nonlinear integral control is governed by
- »
f i dv ow oh’ —~€E(1) 3eE()
; _— = —e |— E = =
dr z Qv 1 -2: 1
o 9 9 -—(1+e 1) 1+e
e 3
we have
dw  |gw 9h ] dv
Vr — = |— —|—=—-€(1+0(e))E =—e(1+0(e))(w —c).
< . dart 0z Qv |dT
.
j e Consequently. £(z) — O asymptotically. A simulation with set-point ¢ =1 +e' . €= 0.05
P W
! b and various initial conditions is shown in Figure 4-3. It is worth remarking that in a constant
L I \_.
j ” set-point problem perfect asymptotic tracking is achieved even though we design our integral
4 e
d ": controller based on O (€) approximated manifold. Regardless of the initial conditions, all tra-
b L
. jectories converge to the manifold and then flow along it towards the equilibrium point. As
i o
\i
:’ - can be seen from Figure 4-3, the z; - coordinate of the equilibrium point is -1/2. which
L)
3
o: .:, corresponds to x| = 1. As expected. all the trajectories asymptotically converge to the equili-
' ¥
. brium point where we achieve perfect tracking. Figure 4-4 shows the tracking error E(1)
¢
\'.‘ )
".: E1 asvmptotically goes to zero. When an additional unknown bounded disturbance is also added.
g
' .
. 3

)

1y . . . - . . R,
DOOLOL ! 2 () S ChE LR
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s
oW
i \
::‘:g. the simulation in Figure 4-5 shows that asymptotic tracking is still achieved. As shown in e
! Figure 4-6, with a new value of € =0.018 , O (¢) asymptotic tracking is still achieved when "=¢‘
o =
W
;l?.;l both reference input and disturbance are slowly varying. § = 3.718 — 0.0972 sin (7/300) and
5 .
", - S
e ¢ =0.5—1.62 %10 “cos (7/50) . tg ‘
.l.j_..
L
o o
Hay o
..:1-: Y4 j
‘ | !
Y -
> d
TR _-g
W . oy
W Sor
‘ » LJ
,;I:; >
h‘\
b ""\'," e
»: > ;\
o
RSEN o
. \‘;w
3.5 o]
vy
i ':" ’
4 -
l;| "3
o
«. # -
e 3
D0 l
B
o
@) (
e A
L] \0
) _\.t
T A
NN o

o .
a
]

L]
o
L7

)
Pkt

~.)~

)

ot v
Wy ®
,. "
v :
Wy

o P -‘
RO -

B3 ¥ 0% WP 3 by W 0 1 i D &0, O 20K O O M N - (R,
S S I L R B o e e A Al ) Mﬁ&i@(&&&&b&&@m&ﬁﬁ



et
:t:::o'
Jotyd &
® [}
Wy 89
g R
13, 4.8. Proof of Lemma 4.4.1
i" )
[ AN ot
-
I Proof:
_A:
"l «
j". :';3 :: In order that A (v .z ,€) be an integral manifold for the system, it is necessary that it
X ch NS
Y
Lo satisfies the following PDE:
\‘j A. ]
ol
5. n”“. )- ah ah
- e(—T(h(v .t .e),v .t .e)+ —)=Ah(v .t .€)+ Bv . (4.8.1.a)
SICEER ov ot
’ti -:;: Let

"'i: ﬁ‘ R(v .t . €=h"(v .t)+er(v .1 .¢€). (4.8.1.b)
"
::g Equating the coefficients of powers of ¢’ on both sides of (4.8.1.2),
"
o § € AR°(v .t)+Bv =0 (4.8.2)
® or
v 1)
ey -
{ 2 o
R o 'S 0 0 0 -1
x}'- . A(v . t)=h(v.t)=h(v)=—A Bv
‘ L]
3‘{ - with (4.8.1.b)
- )
28 ' dh gh -~
‘R:j N —T(h(v .t . €).v.t.e)+ —=Ah(v .t ,€) (4.8.3)
' ::' av 6t
j oy Since A is Hurwitz, there exists a positive definite symmetric matrix P such that
o) . ATP+pPa <
N
s where C > 0.
A Nl ‘~!
f.: .r_:: To show that the integral manifold has a global region of atiraction we shall prove that the
B ln,
® - deviation from the manifold goes to zero asymptotically for all initial condition (2, ¢ ) with.
¥ b
l‘ '\
N - S=:—-h(v .t .€)
'L" . . . . .
NOREEERA Taking derivatives with respect to t on both sides of the above expression gives
N
SN
e di  d: 9h dv &k
E N e—=e——€(— — + —)
» E-. dt dt gv dt or
i.\ h h
S = A: +Bv—e(6—1'(:,v.r.€))+—a—)
Y v or
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- oh - oh %
=ACE +h(v .t . €)+By —e(—TE +h(v .1 . €).v.l . €)+—)
ov o -
L A h x
\J -~
oy =ACE +R°v)) + Bv +€(Ah —-a—r(f +h(v .t .€).v .t .e)—a—).
.§ av at -
Ay
! By (4.8.2) and (4.8.3) @
W
5,.? i . oh ) -
L' e— =AZ +e— (I'(h(v ,¢ .€),v.t .e)=T(E +h(v .t .€),v .t .6€)). ,
L dr v
248 ~ - -
:: We now use the Lyapunov function v(Z) = :T P > 0 to show that the above equation has ox
i 'J:'
? ; an asvmptotically stable equilibrium at the origin. -
s ; - o f
A ev < =2'C: 42 P—(T(h(v .t ,€).v.t . e)=T(EF +h(v .t .€).v .t ,€) D
s Qv
_)1 b - -
: .{Q Since I' € C” . T is Lipschitzian . i. e E
o

[Th(v .t .€).v.t.e)=T(EZ +h(v .t .€),v.t.€)|<L|Z|

"‘ “ where L is a positive constant. g&'
ety Also, since ~
)

W no gn° ah aﬁ e
'C"\Q v Qv 6v (')v @
':',: we have

7 oh -1 :
s 1= <248 z
hos r o 2 r 2

;2:: Pick k,.k, >0 such that 2 C5 2 k,|Z [ and 3" P: 2 k,|5| forall 3 € R" . With ®
) ¢
S : . _ o
' v €€(0.€] where € =k,/5k,L ||[AT'B || we have v < O uniformly in 7 and hence the

! '::j uniform asymptotic stability of the sysiem governing the deviation from the integral mani- E
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5. OPTIMAL CONTROL SYSTEMS

- )

i; X A 5.1. Introduction
3.“l'

(A

o

We have shown in Sectiion 2.2 how a linear system with siow and fast modes

&
T
» x An Al B,
s .
A e = + u ., A,, nonsingular
: ” €z Ay Aplle 8,
¥
:' v, 1s equivalent to a pure slow problem with a lower state dimension
&
( x =(a;; +a;,L)x
.
X -,
:\j . 2(e)=L x()
! \" . . e LY . - .
> provided that the initial conditions are on the integral manifold =z =Lx ., i e.,
\ -
N .
o z(z,) = Lx(1,) and L satisfies (2.2.3).
MR
-,‘ < This type of model reduction is made possible when the initial conditions are restricted to
B
» a
'j the manifold. We shal' see in Section 5.2 that there exists a reduced order optimal linear-
2.878. 7.': '
’ 1 uadratic svstem which is equivalent to a higher order regulation problem with slow and fast
] q 3 q 4 g P
I o
LY

-

%

U?d‘
PP
T
e

2OR
l'r .‘

-~

dvnamics. When the existence of an integral manifold is assured in the optimal system, we

- then pursue the problem where the initial conditions do not start on the manifold. It will be

Ay
LA

shown that the optimal system can be decomposed into two subsystems. One of these is a

decoupled optimal subsystem that governs the convergence of the trajectory to the slow mani-

F AL
,

fold. For the system with slow( O(1) ) and fast( O(1/€) ) modes. the cost required to bring

o the trajectory to the manifold is of O(€) in the overall optimal cost. A complete decomposi-
o E{:
A e tion of the optimal system into decoupled pure slow and pure fast subsystems characterizes

m
_.. :.,: the slow-fast behavior of the optimal trajectory. For fixed end-point tracking problems we
k) [t

9. propose an approximate scheme that renders similar analysis applicable.
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j: ) 5.2. Linear-quadratic Optimal Problems as Restricted to the Integral Manifold

.::' o

. ', We study the regulation problem of the following system:
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x A Al lBl
e = Ay Al + 132 u ., A, nonsingular . x € R" .z €R" ,u€R’ (5.2.1)
1 , . ,
J== [xQx +:zS: +uRudt (5.2.2)
25
[x x

free

0

X
L, T L
“ir =0

where A, 's and B;'s are understood to be of appropriate dimensions. Matrix R is positive

P
t =0

definite and Q and S are both positive definite or positive semi-definite matrices. The constant

€ is a small positive number. Vector V stands for the transpose of the vector V .

We are seeking an optimal control, ¥ . that minimizes the scalar cost functional. J.

Consider the reduced problem. i.e., € =0. From (5.2.1)

F=-A; (A% +B,7) (5.2.3)

Substituting this into (5.2.1)-(5.2.2) we have the following reduced linear-quadratic problem:

Mi Min 1 o _ ' :
T ro=" = [£00% +28C % + TR, dr
z z 2"

£(0)=x°, 7(0) free
where
A0=A11"A12A2—21A21
Bo=Bl*A12A2_2132
Qo=Q +(A,4 21)'5 (A5'A5)
R,=R +(A,'B,)S(AL'B,)

Co=(4 ‘;Bz)s (A7 42)

It is obvious that the reduced optimal problem is easier to solve, due to its lower state dimen-
sion. Note that a coupling term & C, X appears in the reduced cost functional J, . To facili-

tate our discussion, we adopt the following assumption:
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L Assumption 5.2.1
()
i g The reduced problem has a unique optimal solution.
e
y . - Derive the optimality condition for the reduced system by Hamiltonian formulation[31]
S
.%3‘ 1N _ ’ ' ’
.% H=—(FQ,f +28C, % +TR,Z)+X (A, + By@)
[ 2
4 7 = . , . :
'-' re where A is the costate variable and satisfies the following state equation:
"..':
" N oH
W, - 0 o .
) A=——— = ~Q,f —AA—C,i
ox
4 E In order that & be an optimal control 1t is necessary that
RN
o 3H .
by N =R +BA+Cyx =0.
1. 9ed LS ai
2 Th
> us,
SN,
$ x . a4,
W # ==R, (BoA+Cyx).
é. b.\ Thus, the optimality conditions for the reduced system are
S £| [40—BR;'C,  —BRG'B, ||z
V'}' & = " e (5.2.4)
e x| Q.+ CoR.Cy (A4, - BR,ICHI
"y <
3 : £ =x° . Xeo)=0.
i = When € is small but nonzero we can use the manifold idea to obtain an equivalent system.
o,
oy
N x Since we have a system (5.2.1) subject to the constraint of minimizing (5.2.2), it is not easy to
I, )
Lo ‘ see the existence of the integral manifold. Instead we investigate the closed-loop system when
L]
i:i. .\: the optimality condition is obtained from the associate Hamiltonian equation.
,::0 b
::E:l " ) : 4 : A,
) 3 H=—(xQx +zSz +uRu)+ X (A ;x +A ;2 +Bu)+ —(A,x + A,z + Byu)
N % 2 ’ € 2 2
L
N 1 : : . . .
et % = —(xQx +285z +uRu)+ X (A x + A,z +Bu)+, (A, x + A,z + Bu)
i 2 » ~
!:' ) - Az
:.'\ - where A, and A. are the associate costate variables. The variable A, = is the scaled
- €
o
::s X costate variable. In order that u be a minimizing contral to (5.2.1)-(5.2.2). it is necessary
e .
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A _—= and

b > >0.
o ou ou

3 Ru' + B\, +B,\, =0 (5.2.5)
s and

B B8 w2 dal

;::?.:' R >0. (5.2.6.a)

Equation (5.2.6.a) is trivially satisfied since we assume that R is a positive definite matrix.

(5.2.5) gives

ca0)

*

u' =—=R7 B\, +B,\,) (5.2.6.b)

The standard calculus of variation approach to optimal problems[31] yields the following

-
LA

iy IJ\' costate equations:

'h‘:!‘n )\'=_a_x=—Qx_A11)\x —Ag A,

%
L

o
EEE
Q

N
0

We then come to the optimality conditions:

; _ 1 1
S x A, —B,R B, A\; -B\R 'B,

fln A -0 -A; 0  —A, |
W\, = 1 o (5.2.7)
s €z A, —B,RTB, A,, =B,R"B,| |z

A

3
Red
(@]
|
S
|
9]
|
S
2 223 =X A

V4

f t =0 I =

T Since this is an infinite-time linear-quadratic regulation problem, we have the equivalent end

22
2

conditions

X

b5

-
t =0

r =0

&, In view of the cost functional to be minimized. a good controlier should drive the states to zero

K

*

:;.:'
a"

KW
JELS0 0 iy DA OAOGGON0GR0S DA ) X F RO ADSOSAROANA ‘
L T T T R e R A e o N 0o e S N X U e O O S



95

. A
::’ﬁ} '

as time tends to infinity. We now show that the reduced optimality condition obtained by set-

ting € = 0 in ( 5.2.7) is identical to the optimality conditions of the reduced optimal problem

% 3

(5.2.1)-(52.2). )
2
N Rewriting the optimality conditions ( 5.2.7) by keeping u and setting € = 0 gives
¥ i=Ax +ALz +Bu (52.8)
0=A,x + A,  +Bu (5.2.9) ;
5 )
ol . ' .
H A, ==0x —A A\ —Ay A (5.2.10)
A =—5z"— AL\, —A,A0 (5.2.11) 3
*7 where u  is given by ' \
i
o 4
o £=Ru'+31xx+32)\z°=o '
du '
e Eliminating A2 by (5.2.11). we have the reduced optimality conditions
‘ 2 t
2 |
A=A x +Az"+Byu (5.2.12) .
: ' RS I '
) =—Qr —A A, +FA A, (S0 +ALN) (5.2.13) ¥
< x(0)=x° . x(e0)=0
SRS where u satisfies
&8
) Ru' +B N —B,A;' (Sz"+A,0)=0 5.2.14) 1

b .
and - satisfies

P

i
N

v 0=A,x +A,,:"+Bu (5.2.15)

e Equations (5.2.12)-(5.2.15) are the reduced optimality conditions.

ey f

! -

,, e We now study the reduced system and find its optimality conditions. When we set € = 0 :

L

. {

I in (5.2.1)-(5.2.2). the optimal infinite-time regulator problem becomes ¢

! E t

. . -~ i3

::, o x =A;x +A 2 +Bu (52.16.a)

g & - .»

0=A,x +A,z +Byu (5.2.16.v) )

\ i

1 % The associate Hamiltonian equation is :

7 A

q 1 )

‘:: . H = —2-(xQx +2S7 tuRu)+ A (A x +A4,2 +Bu) (5.2.16.¢)

‘ 5 b
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W where A, is the associate costate variable and = (x . u ) satisfies (5.2.16.b).

2L,
PP,

Necessary conditions for optimality are

5
Ak

o |
it'"‘l:' £=Ru'+B;Ax+a—z(ss+A12>\x)=o :\;}
s:\ au eu o i
l" -

; Xx=—£=—Qx—A;1)\x—§i(SE FALN) a
'S' ax ox iy

From (5.2.16.b)

fqv gg
.::.':’! RH =1 H Cl ‘
( — =—ByA» and — =-Aj A,
?‘ ) du 9 '
y So the reduced optimality condition for the reduced optimal problem is
[N
Rk :
, X =A;x +A4,,7 +Bu (5.2.17) g
® : : e ”
e A, ==0x —A A +A, A7 (S5 +ALN) (5.2.18)
ey -
‘,'\. =" =
| fi x(0)=x" , x(e0)=0 :8
R u satisfies
A_- ﬂ
o Ru' +B N\, —B,A,; (SZ +A,0,)=0 (5.2.19) 4
{:: and = satisfies
b) '
gl . ) g
N 0=A,x +A,% +Bu (5.2.20)
;’ Comparing (5.2.17)~(5.2.20) with (5.2.12)-(5.2.15) we come to the following Lemma: gé
JC {
bl
:h' Lemma 5.2.1
1 v
~: " The reduced problem (5.2.16) is formally correct. g
[ ]
Ve Now, we recapitulate what we have done. We derived the necessary optimality condi-
N y Yy ;3

-~ -
-

tions for the full optimal system (5.2.1)-(5.2.2) and then obtained the reduced optimality con-

At LA
S RREE
&

P
.%‘

ditions (5.2.8)-(5.2.11) by setting € = 0 in (5.2.7). They were compared with the optimality

-
-

conditions of the reduced optimal problem (5.2.16) and were found to be the same. In other

-

o
e
L¥oC05

words. the reduced optimality conditions (5.2.8)-(5.2.11) correspond to the optimal problem

he given by (5.2.16). Assumption 5.2.1 implies that a unique solution to (5.2.19) exists. The

.~

I . . . . . .
,v"..' nonsingularity assumption on A ,, made the above discussion possible.
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Observe that the optimality conditions (5.2.7) can be viewed as an initial value problem

with

r =0

where K satisfies an algebraic Riccati equation associated with the entries of the system matrix

in (5.2.7)[31]. Thus. we can rewrite (5.2.7) as

4]
X x X X
Xx’ Fll FlZ Al kx A\ A,\O
=T s =
€ Fay Fpl|: < < z°
e, | A: As Ale A

where F, € R ** F € R™ ™ F, €R™*™ and F,, € R""**" correspond to
appropriate entries of the system matrix in (5.2.7). It is known that T has (2n + 2m ) eigen-
values of which 2n are slow ( O(1) ) and 2m are fast (O (1/€)) . From[32] it was pointed out
that half of the eigenvalues of I' are symmetric to the other half with respect to the origin.
Because of the clear slow-fast separation due to the smallness of € . we can conclude that I" has
n slow eigenvalues which are symmetric to the other n slow eigenvalues and the same for its
2m fast eigenvalues. With these facts we are ready to prove the main theorem with the fol-

lowing assumption:

Assumption 5.2.2

F ., is nonsingular.

Theorem S5.2.1

There exists a lower order optimal problem

x,=A,x,+B.u, x,€R" u ,€R (52.21.a)

P e » ' ;
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oS

Mi Min 1 , , .

Pre=T =[x Qex v 2w Cox, +u, Rou, di (5.2.21.b)
2

Q

€
U, UE

x (0) = xeo =x" | x (c0) free
that is equivalent to the optimal regulator problem (5.2.1)-(5.2.2) for some initial conditions
(x°. 2%
This means that the optimal controls in two optimal systems are the same:
w(@)=u,tt) .20

Furthermore. the state trajectories along this optimal control are alsc the same:

x()=x.t) .t20

Proof:

The optimality conditions of the full-order optimal problem (5.2.1)-(5.2.2) is in the

standard form of a singularly perturbed linear system

x x x
xJz Fll Fl?. Ax Ax k.\o
= =1, (5.2.22)
€z Fy Fpl|z < z
) A; A tla A,
u' =—RT(BA +B,A).
Bv Corollary 2.2.1, there exists an integral manifold (5.2.23) in (5.2.22).
z x
= (5.2.23)
) TE D

m X 2n

where L € R’ satisfies

Fy+FpL =€eL(F  +F_,L).

Furthermore,

L(e)=—F,,'F, +0(e).
Thus, (5.2.22) is equivalent to the following lower order system (5.2.24)-(5.2.25). provided

o
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X x X x x°
. (Fuyt Fol (€D, =@}, Ao e 5224)
z() x(¢) Ly Lip|ix@)
= = t P 0 (5225)
A (2) A ()| Ly Lol N () ~
and the optimal control u  on the manifold becomes
u =—RN(B,L,x + (B, +B,L,)\,)) (5.2.26)

Note the dependence of L on the parameter € . At € = 0 we have the reduced optimality condi-
tions from (5.2.22). and by Lemma 5.2.1 this is identical 1o the optimality conditions (5.2.4)

of the reduced system. Thus. we have

Ao_BoRo—lCn —BORO_]B(;

(Fll +FLLy)=9,= (5.2.27)

—Q + CORo—lcu —(4,— BORO—ICO)'
Note that (¢0)23 = - (¢())l11 .

Fore =0

o, =P, +ed,(e)
To show that (®),, =—(®,),, . We shall prove it by contradiction. Suppose
(®), # —(®,),, . We understand that ®, has 2n eigenvalues and half of these are sym-
metric 10 the other half with respect to the origin. So with some elementary ruw operations
applied to ®, , we can obtain a matrix &)e with (&>,)22 = - (<Ab€)‘” .

O, =EP, =E D, +€E d(e) ,E=I

However. since we already have (®,),, = —(CDO)‘“ . premultiplying ®, by an elementary
matrix E other than the identity matrix would thus deprive (50 of this property. Therefore.
It is easy

(®,),, = —(P,),, . contradicting our assertion. So we must have (®),, = (@), -

to see that the optimality conditions of (5.2.21) are the following:
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¥ X, A,—-BR,C, -B.R, B, 1 X,
. A —-0.+C.R'C, —(Ae—BER:lCE)l AL U ]
' ¢ '
= .
: X ¢ X 0 ::l <
1 = LSt '
L 0 t
| }\‘s A"( o
=0 5
A . o ‘ £
. ue =—R. (B, +Cexe)‘ e
Y
\) The question of the existence of an optimal problem with optimality conditions and optimal i:
o) B (]
( control identical to (5.2.24) and (5.2.26), respectively. is equivalent to the issue of the solva- - .
“ '..,.r: J
- bilitv of (4,.B,.C,. Q.. R)in oo\
: -1 -1 ) :.
, A, —B.,R, C, -B.R, B, )
A =
! -1 -1 1= @ ,
k. Q. +C. R, C, —(Ae_BeRe Ce) oy
: -RV(BA, +Cx)=—R 7 (ByLyx + (B, +B,Ly,\,) S
\ .
’ Xe x “ d
: = e .
: Xx Ax N
3 o \
. . ;5.' 3
Since (®,),, = —(®,),, . we have a well-posed problem of five equations with five unknowns: W
. \3
B (A,.B,.C..Q,..R,) viz. -
: N
. A,—-B,R]'C.=(®), (5.2.28) -
» .\:
; —Q,+C., R C, =(d)y, (5.2.29) <
! -B,R7' B, = (&), (5.2.30) FFE
l _l _.l . L
—-R., C.,==RB,L,, (5.2.31)
b -1, “1/p" : , ’\
" -R'B, ==R7'(B, +B,L,) (5.2.32) k
] -
{ We have shown that the solution (4,.B,.C,.Q,.R,) exists for the above equations at
y ‘
|. 'I
L: € = 0. By the implicit funcuion Theorem. for € small enough. there exists a unique solution of .‘:{
l' N
K]
i the form .
. &
¢ .
0 B,=B,+0(e) .
» o
|} -
L]
}. —— A
‘ )
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1 Y :
> o .
p R,=R.+0(e X
a -
.Y K —
) A,=A4,+0()
3 . b g
; C.=C,+0(e) N
NS
N Q.=Q0,+0(e).
: Thus. this completes our proof.
2 4 .
C QED &
P [
5 We have shown that a lower order optimal system possesses the same optimality condi- b
g tions and optimal control as that of the full-order optimal problem with its initial conditions )
\ .'f‘:. .
: - restricted to a manifold. The (4,,B,.C,.Q,.R,) characterizing the lower order system is )
K of O (e) perturbation from.the (A,.B,.C,.Q,.R,) of the reduced optimal problem. The :’.
SR
¢ unique existence of (4,.B,.C..Q..R,) is assured by the existence of )
b - 3
£ .J:" (4,.B,.C,.Q,.R,) and the smallness of the perturbation parameter € . It is worth point- p!
A ing out that in general a set of optimality conditions does not correspond to a unique optimal X
. :
\ E problem. As an illustration, consider the optimality conditions L
B (d
I . 1 1. 4
: - X A—BR C —BR B x :
S Q
y : = _ N '
, A= +CcrR7'C (A —=BRTICH I A 5
) : :
N x(O)=x" . NMT)=0 , R>0
)
:. It is easy to check that both of the following optimal problems come up with the same :',
) ;.'\ '
' S . \X
:: A optimality conditions as above: ¥
)
¢« )
TN x=Ax+Bu .l
X e !
g - N
B : ‘
b Min Min 1 : ’ ‘ "y
- J = — | xQx +2uCx +ulRud ;
f > 173 u 2
. 0
' X ]
.. x(0)=x" . x(T) free Wt
) S he
N
", A and ::
LY {J
_— . '
- x=(A —BR Clx +Bu v
L
- b
e A
' A
)
[ ]
‘ )
K v, ¢
) {
\ :
ol B R h R 0 Bl Bl Rl Bl R e R 1 y PR e { ) { %t Nt a0 { 3 » ( A
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Min VMin 1
7 = in
u u

x(0)=x"

— [x(Q =CRT'C)x +uRu dt
<
0

. x(T) free .

However, the optimal control in these two optimal problems is different.

5.3. Decomposition of Optimal Linear Systems with Quadratic Criteria

As discussed in the previous Section, a full-order optimal system is equivalent to a lower

order one. provided it starts with its initial conditions on the integral manifold. When the ini-

tial conditions are not on the manifold, there is a deviation from the manifold. It will be

shown in this Section that the optimal trajectory will converge to this slow manifold. This

mechanism is analyzed by decoupling the optimality conditions into two.

One of these

corresponds to the optimal system as restricted to the manifold. The other one governs the

behavior of the deviation from the manifold.

We start by looking at the optimality conditions (5.2.7) of the linear-quadratic regula-

tion problem (5.2.1)~(5.2.2):

X A ‘BlR—lBll Ap ‘BlR—lBé
x.\ —Q -A;1 0 —Aéx
€z i} Az 'BzR—lBi Ao “BzR-lBé
A, 0 -4, =S —A,
x 0
: A A
z = 2’
A, t =0 )\zﬁ

(5.3.1)

Define the deviation from the integral manifold (z .A,) =L (x .\, ) of the closed-loop

optimal system (5.3.1) by
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(5.3.2)

A

n

It is easy to see that with (5.3.2), (5.3.1) is equivalent to the following block triangular sys-

tem:

x x
X\ Fll + F12 F12 Ax
= (5.3.3)
€N 0 F €L Fpi|m
\ A
An n
0 0 0 0
x x 7 n z x
A = N N = N N L )\0’ .
X1, =9 X n t =0 n z X
The optimal control (5.2.6.a) in this new state space is
' ==RT(BA, +B,(A, + Lyx +Ly\,))
=—R7N(B,L,x + (B, +B,Lp) A\ )—R B\, =uy +u, . (5.3.4)

The optimal control consists of two components, namely u,{, and u:n . The fast control.
u;’ = —R'lBé A, . governs the action of the deviation from the manifold and vanishes as the
optimal system is on the integral manifold. Clearly. the optimality conditions (5.3.3) and the
optimal control (5.3.4) become identical with (5.2.24)-(5.2.26) when the optimal system starts

with its conditions on the manifold or somehow converges to the manifold eventually. We

have a decoupled subsystem (7, )\,,)T from the optimality conditions together with the fast

control u;)
. N 0
€n n n mn (53.5)
| =Fyp—€LF,)) =l o 5.3.
€A, A Ay =0 A,
u, =—=R7'ByA,. (5.3.6.2)
Note that (5.3.5) is an O (€) perturbed version of the following optimality condition:
-1 !
€n n Ay —B,R B, n 7’
N=F,, . =1, (5.3.6.b)
€A, Ay -5 Ay A, S P

(5.3.6) corresponds to the following optimal problem:

N
‘\ “.i,‘.Q |§. .!h. A .‘..g’.‘l'.""’,, u“". h‘ l‘.‘....l'.‘l "'. '. ! .. "“‘..' ‘.‘ |‘.!"' .‘.!'.‘N."' "th ¢ q’
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577=A22'U+Bzu1)

(o8]

Mm]n_zm fn5n+u Ru,adt
¥n Un 2

n(0) = no . n(e0) free .
For this optimal problem to have a unique optimal solution, we propose the following assump-
tion. A detailed proof can be found on P.237-238 in [32].

Assumption 5.3.1.
(A.,.B,.S)is a stabilizable-detectable triple.

It is easy to see from the block triangular system matrix in (5.3.3) that the decoupled
fast subsystem (5.3.5) has 2m fast eigenvalues with order O (1/€). Among these eigenvalues,
m of these eigenvalues are symmetric to the other m eigenvalues with respect to the origin.
Recalling the nonsingularity assumption on F,, and the smallness of € , it can be similarly

shown, as in Theorem 5.2.1. that (5.3.5)-(5.3.6.a) correspond to the following optimal prob-

lem:
- € €
eN=A,pn+B,u, (5.3.7.a)
- M- 1 , ,
Min ;- T [ns.ntu, R, de (5.3.7.b)
un un 2 o
70) =7’ . M(e0) free
where

(A5, .B; .S..RI=(Ap.B,.S .R)+0(e)

and its unique existence is guaranteed.
When the closed-loop optimal system (5.2.22) starts on the manifold. i. e., no =0, we have
the following by inspection on (5.3.7):

u'n (t)=0 .t 20.
With this observation we are again justified that the full-order optimal problem (5.2.1)-(5.2.2)
is equivalent to a lower order one, viz. (5.2.21). From standard textbooks on optimal con-

trol(31. 32] it is understood that a unique optimal solution to the fast subproblem (5.3.7)

(2
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'y o

e o] c

o exists provided (A,, .B, .S,) is stabilizable-detectable. This condition is equivalent to

’ ‘ (A,,.B,.S) being stabilizable-detectable by a singular perturbation argument similar to

v

:: [33]. Due to the presence of € in the state equation (5.3.7.a), the closed-loop fast subsystem

B -

B \

) i{ tends to zero at the rate of O(1/€) . In other words. this means that the trajectory of the

; -, full-order optimal system (5.2.1)-(5.2.2) will converge to the integral manifold at the rate of
-
")

' n..

O (1/€) and then flow along it slowly as its lower order counterpart described by (5.2.21).

To see how significant the deviation from the manifold contributes to the overall cost. we

- look at the Hamiltonian-Jacobian Equations of (5.2.1)-(5.2.2) with the standard assumption

() P
2 A

AL

-

T 0 B K

R e e b

" e

Ry .
t . ¢
h
! Y ] - )
i 2 that J (x ,z .¢) is continuously differentiable on the relevant domain. t
(
\
S U ¥ & i
. " 0=—(xQx +zSz +uRu)+(—)A;x +A,z +Bu)+(—) (A, x + A,z +Bu)—
2 gx 9z €
oy It is pointed out on p. 355 of [31] that the costates (A, . A, ) are such that
4.' po p X z
‘&-
8/ ~ _ o/
« N=— A=
b 8= 3z
¢ when evaluated along the optimal system (x (¢).x (¢).z (¢)). )
z: \i
I o
:' 3-: Consequently,
AL
! . , -
» J i =x A, +zA,
" '.’l‘ A: .
:: Recall the scaled costate variable A, = — that we have been using in the optimality condi-
-y €
e &
o tions and the optimal controls, the optimal cost can be rewritten as W
1 ?3 I =x\ +e\, .
! Expressing this cost by the slow state variable (x , A ) and the deviation from the integral
A
4 .
S manifold (1. A,) . we have
4
' ;: J =x\, +e(n+ L« +L12)\x)()\n+L21x + L\, ) )
A . , ‘ , . W
y =x\ +e(Lyx + LA ) (Lyx +Lph ) +e((Lx + LA A+ (Lyyx + LA, ) +MAL) {
[y’ P )
f ‘e - . )
‘ ’ =Jy(x A ) +el (x A .M. \).
o Note that J;, =0for(n. }\n)r = 0 and it weighs only O (€) in the overall optimal cost J .
o
"
y
‘I
4
X
[}
'
T e e s s e, e b s et gty et g e 20:?:,‘:o,‘:o:f‘.ome',d_to:ﬁ.i}.‘“q:lf.:i:.:c!\{lf,tc}.:n:.:cf..af::a‘
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We now illustrate the idea of decomposing optimal systems by integral manifold with

the following example.

Example 5.3.1

0
X X X
) =, free
“ =0 = z/:oo
; 1
Min , _ Min fQ + S22+ Ru?dr L R>0.Q.5S2v

u

a.b.Q.S.and Rarescalarsand 0 < € << 1.
Equation (5.3.8) is of an actuator form which is common in practice.

When € = 0 we obtain a reduced optimal problem

s =ax+bu x(0)=x°, x (o) = free

- - 1 N
Min ; =A1m-2—fo"+(S +R)u’de
]

u

ty
I
R

Its Hamiltonian is given by

1
H=;(Qx2+(5 +R)uD)+r(ax +bu).

Necessary conditions for optimality are

£=bx+(s +R)u =0
ou
whence
_ -=b
(S +R)

W, ' RAICAKIN g ' A B A
e ;., sty ’n RIS ONS . 0‘-,')‘, 00\‘ n',,'ﬂ Q‘A -‘;,' O n‘,'o‘. DD l‘@ ' Wl h.‘.‘. AT "af5'1,":',"0,1351".03" ". .,,

a0

b o
(5.3.8.2) g‘
(5.3.8.b) ﬁ
(5.3.8.0) &*

‘,V;

}_‘,\5
(5.3.9.2) o
(5.3.9.b) |
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b2

X S +R | |x

A - —a A

<(0=x° ., MT)=0.

When € # O, the Hamiltonian equation for (5.3.8) is

1
H =—(Qx2+Szz+Ru2)+)\x (@x +bz)+r, (u—2)
2

X -
where A, = — is the scaled costate of the original costate variable A, .
€

Optimality conditions are

A
H o\, +Ru =0 . u =t
Qu R
Xx = ——=—g), —Qx
ox
A, =--6£=—b)\_, —Sx 4+, .
9z
Hence
x a 0 b O x x
Ax —Q —a 0 0 Al Fll F12 )‘\'
= -1 V4 = F’) Fo z
€ 0 0 -1 — B
R |, A,
0 - -5 1
0
x
A A
. =10
z z
0
K‘ t =0 )\z
1
.—1 [RE—
R
F, = s is nonsingular since det(F,,) = —(1 + —) = 0.
R

Thus, (£.3.10) has an integral manifold

(10 O o\ Wyt
'if",‘.c‘*,e’*'.a"t»'m”‘:o*‘z*'*’*f":"‘.";"ﬂ:v'."ﬂ?haf A

v

il MW N)

OGO AV AV OBG00 SAOIGAON
‘\'t l"‘-l"‘.‘l"»‘!"ll‘!.’:"!’:“:l “Q"‘di"r",‘»‘?.:1“4‘!’1@“ e !‘4""@'%&“
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X Lll Ll.?

ty

)‘\ L21 L22 X

dak

where L € R2 x2 satisfies

Fo, +F,L =eL(F, +F,L).

-
R
!-GEA

) Solving for L,

]

N '
o ale) ~ Ble) N
i -

wi y(e)
s Ly =€RQL;

J L22=—R(l—ea)L12

s
B

® where

e 1
E &: ale) = “T—
! ":.' 2€°RQb

na , B(e) = V(S + R (1—€a’))’ —4e"RQb"

! y(e) = €RQb .

e , . .
ielne Thus, on the manifold. (5.3.10) is equivalent to

ZZE  lab Bxy

a bL,,

X X

A

x

=(F,, + F,L(€)) (5.3.11)

A,

Y Qe

x
X

A

X

YMir=o0 A"

L5 TE e

. 1
i u ==—(Lyx +Lph ) =—€QL,x +(1—€a) LA, .
R

® Note that we have two roots for L and we shall pick the one that satisfies

3 L =Ly+0(e)=—F;F, +0(€

% where

\n":‘.
2 WEE == E

al

)

[ - . A . . .
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~1
1 —b
_1 _—
R 0 0 S +R

— -1 -
Lo==Falfa=lg 4 0 —b bR
S +R
It is easy to see by applying the L 'Hospital's rule that
i —b
im L=
€—0 S +R
for
ale) + B(e)
T ——— -
y(e)
Also,
lim bR lim lim
L_) = ) = = .
€e—=0"% 4R e—ofuTeoln™0

With a little effort everyone can see immediately that the scalar optimal problem

X =a.,x +b,u (5.3.12.a)
Mi Min 1
1= = [0 x4 2C 1 + R d (5.3.12.b)
u v
x(0)=x° . x(o0) free

has the optimality conditions

b€C€ b€2
q, — — ———
.'é Re Re X
Xx - c€2 béc A"'
0+ — —(a -
€ €
4]
X X
0
)\‘ =0 A“

and optimal control

. 1
u ==— (Cx +b,).
€

If this optimal problem 1s to be the lower order equivalent of the full-ordcr vprimai sysiem

(5.3.8) on the manifold. it is necessary that we have

() ) RXOGOBOAOG000008 cov:i!i
"‘.o. A "A-“!"a’ TR ‘.'.‘.t.'n e TR i s ey SN0 Attty o
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bfcf bfb
a,— -
a bL 12 RE Re
- R (5.3.13.a)
—Q —a C. b L.
Q.+ — —(a,— )
R, R,
and
C.
—— =—QL , (5.3.13.b)
€
b€
—_—=(1—¢€a )Ll'.’ (5.3.13.¢c)
R

€

Solving (5.3.13) we have

€QbL |,
a,=a + ———
(1 —e€a)
b
b= ——
(1—ea)
€0°bL |,
Q=0 ——7
(1 —e€a)
b
Ri=m— o
(1-e )L,
o0
(1—ea)

Therefore, the optimal control problem (5.3.8) is equivalent to the lower order optimal prob-
lem (5.3.12) with the above coefficients. Note that (a,..b,.Q..R.) reduces 1o
(@ .b.Q .(S + R)) while C, vanishes at € = 0 . This shows that the equivalent lower order
optimal problem (5.3.12) becomes the reduced problem (5.3.9) when € =0 . To construct the

optimal subproblem that governs the deviation from the manifold. we introduce

[}

7
A

n

as the deviation from the manifold.
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! ‘ With this it is easy to see from (5.3.5)-(5.3.7) that !
)
i W
A 1 _,
e; . -1 -—— l o b,
u en R ’ ul n U :
ty ) . = = 0 D‘
4 E €r, —(§ +el,) 1 1]\, A, L=0 Mg ::
Y Y.
] = o mat -.
AN 7 R )
' which corresponds to the optimal subproblem ’:
o '
kN . !
{' en=-n+u, (5.3.14.2) .
{3 ¥ :
s Mi Mi
i Tr =t f(s vely) M+ Rul de (5.3.14.0) 3
u n u n 2 '1‘
- 0 4
o “:" N - ¢
- nN0)=n" . n(co) free .
o The stabilizing optimal control gives )
v "
NG K X
) en=—0+—)m n(0)=n° O
1N R . 3
; i where X > O satisfies the algebraic Riccati equation .
) \
48 K ’
: & K—(S+elL,)=—K(1+—). s
! R N
!
. yt
K l Thus. 7 (¢) = 0 at the rate of O (1/€) . For the case where the in tial conditions (x° . z°)" do ‘
Rt not lie on the manifold. the optimal system will converge to its lower order equivalent at the ‘:
J
g -‘
w rate of O(1/€) , and the behavior of the deviation is governed by the optimal subproblem ¥
; ) (5.3.14). Asa whole, we have shown that b
.
o X =ax +bz v
W € =—z +u .
o 1
- 0
{ X x x
:o - ) =1, . free ::
) .:" “tr =y z “ 2w L)
. ::
¥ (o <]
| _ Mi Min 1 «
S Min ;o T [oxt st R . R>0.02.520 N
b - u u 3
4 . 0
‘- is equivalent to the lower order optimal problem é:
A D
U ::
N
‘ [
B LK g
i "’
[} '{
)
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x =a.x +b,u

Mi
in 7

u €

AM. 1 2 2
= u”‘ —[o.x*+2C,xu + R’
2
0

x(0)=x" , x(c0) free

if (x°. 2% belongs to a manifold.

= dal

o Complete separation into two subproblems

So far we have seen how a decoupled optimal subproblem concerning the deviation from
the manifold is formulated when the initial conditions of the full-order optimal system do not

start on the integral manifold. To get a complete separation of the original optimal problem

into two subproblems. one slow and one fast, we need to block diagonalize the block triangular

ey

matrix in (5.3.3).

Introduce

Py

3
A

X

A

X

A

n
A

)
A

—eH

tjll HIZ
— €
21 H22

fd

r' X n x n J

10 " Differentiate both sides with respect to t .

h %-‘.: g
- 2IE ?

:)\ =1 |—€H |. X

e Ae A, A, o

)

:g,,'-"\ £ m } Y n o

¢ =(F,,+ F,L +eH + —H(F,,—¢elF, y

i (Fyy 12l Ae € A, Fo A, (Fp = €LF ) A, 0w

£ y E

=(Fy+FaL), |+ [e(Fu+F12L)H +F,—H(Fy—elF ) || | .
n

Now choose H. which satisfies

2n X 2m

= 33

By the implicit function Theorem. a unique solution H € R to the above equation of the

form

(=

RO H =F,F; +0(e¢)

3 exists for F,, being nonsingular and € small enough. With this new state variable we have the

T
4
R
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following:

¢ 3 ¢ ¢’ )
| =(F, +FpL) =], (5.3.15
>‘§ )‘g )\5 =0 A§

n " § T,O (5.3.16)
. =(F22_€LF12) = 0 1

exﬂ A'n Xn t =0 }‘n

u =u (€, A + u; (n.A)

where the optimal control u  from (5.2.6.2) in this state space consists of two components,
namely
u,(€.0) = =R (ByLyé + (B, + BoLyA,) (5.317)
and
u,(n.N\)==R7'ByA, (5.3.18)

+€R ™ (BoLyy (H n+H\)+ (B, +B,Ly) (Hym+ Hyh,))
Comparing (5.3.15) and ( 5.3.17) with (5.2.24) and (5.2.26). we know at once that the follow-

ing optimal problem would have optimality conditions and optimal control as (5.3.15) and
(5.3.17) respectively.

® Slow subproblem

£'=Ae£+B€uS (5.3.19.2)
Min

Min 1
qu=m f§Q§+uC§+uRudt

s 3

(52.21.b)

£(0) = EO . €(o0) free
where (A, .B,.C,..Q,.R,) are as in (5.2.28)-(5.2.32). In the same manner, (5.3.16) is simi-

lar to (5.3.5) whereas (5.3.18) is a perturbation of (5.3.6). Thus we have

e Fast subproblem

en = A;z n+B, u, (5.3.20.2)
Min Min 1 ~
u e ., fns n+u, Rou, di (5.3.20.b)
: 0

AT e w we w w w had

T

- e
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I

7(0) =7m" . M(eo) free

W here

2 I

w

e
t&
)

§

(A, .BS .S..R)=(4,,.B,.5 .R)+0(e).

<

R

Both subproblems exist and are unique.

4,90
; > 1 The transformation 1
S 3
) $
_ x ¢
d ‘
( (5.3.21)
» z LI +elH||n B
e A
A A A S
3 ~ ”
.V is invertible and is expressed by &
. .
A ‘ ’ ‘
e A¢ I +eHL —eH| ]\ ﬁ
iy = (5.3.22)
- mn -L 1 z &
14
SN An Al F’
,:l.:‘ With (5.3.22) we have decomposed the full-order optimal problem (5.2.1)-(3.2.2) into two
i 3
::E': decoupled optimal subproblems, one slow and one fast. This is an exact decoupling and relies S
“
o0
) on the nonsingularity assumption of F,, and the smallness of € . Instead of solving the F:
¥ Ll )'
f’ L)
: :‘_: (m + n)th order optimal problem (5.2.21)-(5.2.22). we can solve with ease the two lower
Y ' ;
Lot order subproblems. (5.3.19) and (5.3.20). P
s
e '
)
:;u" ¢ Optimal problems over a large time interval with prescribed end states E}
el :
L)
NN We now consider the optimal problem of the following singularly perturbed system: ot
Y. e
g lu
@ x A Apllx B, ( )
= + u x€R" z€R™ ,u€R’ 5.3.23 )
o ezl Ay Ay B, '3
[} a
: N Mi Mi 1 :
s it et xQx +:Sz +uRu dt (5.3.24) K
° u u 2 | "
e’
"
s 3
v, !
L~ . LY
[ ] l
" 2
N .l

~ A _
L '\h!u"‘s!. q NTOOO ORI LRI IOAIANDAOAI SN Y m'm.c u.m ‘.0'0,9H".9'i.| RN 0'0.0 DN KRIRH .'uo,.u LS DRI




Lils

)N

S AN

: 115 ‘
D . !
-’ - '
b K |
kY o« o I
$ - X X X X
' . — o . = -I_

“lr=o0 - “ly=r ~

with the same description as in (5.2.1)-(5.2.2).

o
¥ ._‘:{ First of all we note that (5.3.23) is identical to (5.2.1), and (5.2.24) differs from (5.2.2) in
P b
i that the terminal time is not infinity but T. Also. since the trajectory is required to reach a
S
o ::5 specified point, the final state conditions are no longer free.

. We shall be concerned with T being large and seek an approximate scheme to decompose our X
-~ :
optimal problems.

4Ny
-~

Y
P 4

b . —:’.‘ It was shown in a recent paper [34] that an approximate solution to problems of optimal con- R
! gt pap PP P P
v - ]
Y
o trol over a large time interval with end states prescribed
v -
Y 3 \
« x =Fx + Gu x(0),x(T) prescribed (5.3.25.a) )
b, 2 7
AN Min Min 1 ' f
Y, o= — [x0x +uRu di (5.3.25.0) ]
w u L 4
8 0 .

R >0.0 20.and{F .YQ }is completely observable

-
-

X can be obtained by piecing together the optimal trajectory and control of the two infinite time
R "
. .“: problems
- . dx” . . )
y i =—=Fx +Gu (5.3.26.a) :
<N dt )
] d
k: 84 Min . Min 1 p . . . '
% T = — [ xTQx +u Rude (5.3.26.b) )
: ¢ u u 2 ;
pu 0
¢« '
% x(0)=x(0) , x (c0) free
Ao e A
‘. dx' ) ) J
SO — =Fx +Gu (5.3.27.a) 2
ih ds R
“, = [ ox v u Ry ds (5.3.27.b)
N u u 2
4 s 0 ]
%
b “», x(0)=x(T) ., x(00) free . X
» L !
q In other words. the solution of a fixed end-point optimal control problem can be approximated J
- .
S by superposition of two regulator problems. .
g . .
q )
p :
¢ :

R AN DS Wi 5
O A A A L A e G I NI I ot L0 YOI

b B OO0 ( 0 00 G gh OOEEROICLOUN00
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¢
. 116
o <
e o]
;‘ % One easy wav of piecing is b
' - 0<: <
;‘."; X ([ ) XX tm d I
S - =
({0 X ([ ) = 3
:::& x (T —¢) tw <t ST ot
L V! . W
v:'io: where ¢, is defined to be the time where the two curves meet. iex (¢, ) =x (T —¢,). o2
K
|j Furthermore, .5‘
e
\ . . . !
Min Min Min .
’ J~C I+ C I
.:::::: u u u §
) the sum of the cost of the two regulator problems approaches that of the fixed end-point prob-
Lkl g PP
{
R lem (5.3.25)as7 — oo. i
e »
'&j Equation (5.3.27) can be viewed as a regulator system in reverse time, while (5.3.26) is a regu-
W
YW
‘-' lator system in forward time. g
° y
e
-;S{ Applying this scheme to our fixed end-point, linear-quadratic regulator problem @
SN .
N ~
-\E} (5.3.23)-(5.3.24), we have the forward regulator formulated as d
B
"‘-"

At )
r x A Al B, S
o = |+ uw x"€R" ,z7€R” .u"€R’

o €z Ag Al B,

bk &

™ oo
e Min . _Min1 0 . . _ I
P Ty = L [t 0x 427z 4w Ry dr (5.3.28)

o
»
13
.
L‘i -

‘,,';- - =10 - free ﬁ

' ~ : =0 < -~ ¢t =T

(N
s which is equivalent to the fnllowing lower order optimal problem when the initial conditions
(N
o belong to a manifold.

S

\)"'l L. . . . .

‘\:i:: X, =A, x, +B, u, E
> -

d Min Min 1 2 : - )

K. o= . —Jx. Q. x, tu, C,x, tu, R, u, dt o

o ue Ue 27, R
o . .

I x (0)=x", x] () free

" ;
.’ and the deviation from the manifold is an independent optimal problem described by t}
'0 .
o o
Y
‘\l 'rq.

AN ~
® {
a"l' WJ
R
v""
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Y T

n

oo

Min . _Min 1 , . . . .
A R S R L SR (5.3.29)

- n -

llw ll,n N

70 =m"" . n(c0) free .
The reverse regulator problem can be similarly defined and decomposed.

Overall. we propose the following approximate optimal control solution to the fixed end-
point optimal problem (5.3.25) by composing the solutions of several lower optimal problems
as

we)=u ") +u (T —-t)+u:’,(z)+u;_(7' —-t)
By the above analysis. we can picture the optimal trajectory of the fixed end-point optimal
problem as shown in Figure 5.1. The trajectory converges to a manifold asymptotically and
then flow along it until it approaches the vicinity of the terminal time, where it leaves the

manifold and goes to the designated end states. It is u;], that brings the optimal trajectory to
the manifold. On the other hand. u _ is responsible for steering the trajectory away from the
n

manifold and going to the prescribed final points.

Ay OO 0

¥

- o>
Ve e .

Lt LAt

o

.'." DGR

OBGAE 0BG 0 0 0 . R o, OOV OO
":‘I':'l"‘l'w l't’l'.'\'!‘l'?‘i".‘i'- AN {" "r‘o‘ﬁl‘. M qi.’llA‘\...'ﬂ?.:',a",’\."f{!f‘t‘.“\lﬁ,1":9?-'. Ey "0“’ ﬁ!ﬁ"“":‘!’;l‘ﬁ:’"’,!""""‘3!“’?‘\.':5.“.:",ﬂ“"..:h'b.o LTI AN



T ™
- g

* o

Pl o™y

O

5

4
rd

2
h ‘."."-'?r{.'

-

118

LY

6. CONCLUSIONS
We have presented the necessary and sufficient conditions for the existence of the integral ;
manifold in linear systems. It has been shown that in linear systems there exists a family of q
.
input dependent integral manifolds if the existence of the manifold is assured in the zero input :;4{
case. The relationship between them is also given. Emphasis is given, though not exclusively, EQ‘

to singularly perturbed systems. A two-stage design in the eigenvalue placement problem

)

clearly illustrates the usefulness of the integral manifold approach in reducing the computa-

tional complexity and a way to obtain an approximate solution in the singularly perturbed

* N
[
\]
systems. The effect of parasitics on the nominal states of the singularly perturbed systems can )
be taken into account by using the manifold idea. This allows us to design a controller to ) &‘
achieve the tracking objective to any order of accuracy in such systems. All of these results
L 3
are described in Chapter 2. 3
)
In Chapter 3 we applied our results to the control-problem of flexible link manipulators. &
!
The nonlinear system in this case was shown to be a perturbed version of a linear time- -
. : . . . ‘
invariant system. The unsatisfactory performance of flexible robots at high-frequency uﬂ\
A
maneuvers is explained by the fact that the presence of neglected flexibility causes a phase
'
delay in the system output. Time domain analysis using the integral manifold approach pro- ]
vides a corrective scheme which coincides with that based on the frequency domain analysis. &
8
However. in a more general model where the Laplace transform is not applicable due to non-
linearity or time-varying characteristics in the system. the integral manifold approach is still ‘
¢
applicable and offers a solution in controller design. To extend our idea to the flexible joint
(4
manipulators, we studied the effect of a flexible connection in an interconnected mechanical ¢
system which also includes the flexible joint robot model as one of its kind. The flexible sys- &
|"-
. , . , o)
tem has a displaced center of mass with respect 1o that of the rigidly connected one. The flexi-
bility also induces a perturbed natural frequency and a perturbed damping ratio. o
-3
¥
LY
w

O
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We focused on the problem of tracking and disturbance rejection in the nonlinear system

in Chapter 4. For a class of linear equivalent nonlinear system. linearizing and stabilizing the

Lz

nonlinear system render an integral manifold globally attractive. Based on this observation,

o

»

we designed a slowly varying integral control that drives the system along the manifold to its

i

equilibrium where the tracking error becomes zero. Regardless of initial conditions, asymp-

L=

totic tracking and disturbance rejection of slowly varying signals can be achieved due to the

-
e e

global attractivity of the manifold.

f &
Lo
—

-

It is known[35] that the optimal trajectory of a long-range flight consists of steep ascend-
ing to a manifold. cruising along it with a fairly constant altitude, and finally descending to

the destination. This is precisely a typical optimal trajectory of a singularly perturbed sys-

TR W

PO X%, - O

tem. This leads to the analysis in Chapter 5. When the initial conditions are restricted to a
manifold. the optimal problem of a singulariy perturbed linear system with quadratic cost
functional is shown to be equivalent 1o a lower order one. Regulation problems as well as

optimal problems over a large time interval with prescribed end states are both studied.

The tracking problem for flexible link robots can be viewed as controlling the robot tra-
jectory to a prescribed attractive manifold. This is certainly one of the future research areas.
Among other prominent research issues. the minimum-time-to-climb problem in aerodynamics
falls into the category of the singularly perturbed optimal system with constraints. An exten-

sion of ideas in Chapter 5 should be done 1o solve this well-known problem.

We have shown the use of the integral manifold in svstem designs through the limited

scope of this thesis. Extension of these ideas to other areas of system and control will

definitely be a future work with a unified theory and with countless applications.
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Figure 2-2 The closed-loop system has a new shifted manifold.
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Figure 3-2 Flexible beam modeled as n rigid interconnected sublinks.
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Figure 3-3 Flexible beam with mass m at its tip.
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