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1. INTRODUCTION

Machine learning purports to be an important tool for increasing the

performance of knowledge-intensive problem solving tasks. The ability to learn

has been identified as a primary ingredient in any intelligent system; there is even

hope that machine learning systems can conquer the knowledge-acquisition

bottleneck and ultimately provide knowledge that can surprise their human

creators [Michalski861. It seems ironic that relatively little attention has been

given to machine learning itself as a knowledge-intensive problem solving task-a

task whose performance we would like to see improve with experience and with

the availability of more problem dependent and problem independent knowledge.

Learning itself should be conducted in an intelligent way, especially because

learning is hard.

By its nature, it is unlikely that any single conceptualization of a learning

, algorithm will be satisfactory for even a modest range of learning situations. An

intelligent adaptive learning algorithm is surely necessary. The focus of this

paper is on machine learning algorithms that can learn, i.e., that can change their

own performance as they gain experience.

Today's typical machine learning algorithm does not improve its own

performance over time, but remains static. When faced with another learning

problem, even one identical to a problem seen before, the same computations are

performed again, taking no advantage of biases or constructions or generalizing

transformations that have already been shown to be effective for that class of

circumstances. The same problem solution space is explored again, as if it were

\ ?fresh and previously unexplored. Clearly a human demonstrating such behavior

would not be called intelligent.

There are several key ingredients required to make a Learning Machine

Learning (L-ML) System. Principally, an L-ML system must both be directed by
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and be an updater of background knowledge. Specifically, an L-ML system needs

0 the ability to use background knowledge to transform representation spaces',

9 the ability to direct learning under the influence of a specified goal in the context of a
goal hierarchy-,

, the ability to compose generalizations and simplifications from one or more concepts
in background knowledge, efficiently reusing acquired generalizing and structuring
concepts,

0 the ability to discover patterns in examples, background knowledge, biases, and goals
that are effective for learning,

* the ability to update a background knowledge store with discovered general,
domain-specific, and problem-specific characteristics paired with the control
knowledge that was used to accomplish effective learning in the current situation,

, the ability to recognize a class of learning problems, and to index the background
knowledge for access to class knowledge.

S;.The first three of the above six capabilities of an L-ML system relate to the

use of knowledge to direct learning. Learning algorithms that have this

characteristic are called knowledge directed (KD). KD algorithms need not be

knowledge dependent, in the sense that pure explanation based learning (EBL)

algorithms depend on having a complete domain theory.

The last three L-ML capabilities provide an observational discovery

component for noting strong patterns in domain heuristics and conceptual

'., regularities that come into play during learning. This type of introspective

%- behavior has been termed self-watching. An L-ML system is thus a self-watching

KD learning system that maintains working knowledge across multiple learning

sessions by updating its background knowledge base.

- .- Learning in L-ML systems can involve at least three different types of system

metamorphosis in response to experience gained accomplishing prior learning tasks.

-. e Augmenting the concept language to be more expressive.

Some machine learning systems have extensible concept representation

1. Thi_5 :ransrma 1on is of lern cal;ed consiuc:,ve inductton NMichaiskis0].

2. Lea:n;r.2 ;s directed In, managing biases * hal are derived from rr,eta knoxiedge and goai structures found in the back-
grounr.d kr,,' :edge. such as a Goal Dependency Network [SteppSb].
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languages, languages in which frequently used or functionally integrated

A subconcepts can be denoted by a system-defined single symbol or predicate.

Examples of such systems include CONFUCIUS [Cohen78], MARVIN

[Sammut86], PLAND [Whitehall87], and SUBDUE [Holder88]. These systems

store inductively derived concepts in a knowledge base. The system searches

this knowledge base for prototype concepts when working on other problems.

The concepts the system constructs in subsequent learning are related to the

., experiences it has had. Knowledge that augments the concept laniguage is

usually domain-specific but the domain characteristics are not encoded as

*: preconditions for applying the knowledge (some other agent must ensure that

the knowledge base is used only when relevant to a new problem).

Many similarity-difference based learning systems use fixed concept

,. - languages, fixed biases, and fixed background knowledge. Those that search

for improved concept language and/or bias during learning normally do not

a add their improvements to a permanent knowledge store; the next run begins

with the same initial language and/or bias. Examples of these systems
include LEX [Mitchell83, Utgoff82], MIS [Shapiro8l], STAGGER

I[Schlimmer87], INDUCE [Hoff83], and CLUSTER [Stepp86]. Many of these

systems could be promoted to L-ML systems partly through the addition of a
knowledge base manager to add bias knowledge to a permanent knowledge

store.

0 Chunking and transforming solutions to become more operational.

* Machine learning theory includes the distinction between learning at the

knowledge level versus learning at the symbol level [Dietterich86]. There has

4 -been some debate about how to characterize the learning embodied in

* operationality transformations that change which and how many hypotheses a

system can consider. In any event, such transformations do profoundly

change the performance of the system on subsequent problem solving and

* Leurning tasks. They represent a second kind of metamorphosis that is
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important for an L-ML system.

Operational knowledge can be applied to a problem using less search, thereby

improving the system's performance against a fixed computation threshold.

EBL systems (e.g., GENESIS [Mooney88], BAGGER [Shavlik88], PRODIGY

[Minton871, and others) are noted for their focus on improving operationality.

From the standpoint of L-ML systems, it is important to realize that the

learning performance (as well as the problem solving performance) of EBL

systems also improves when the generalized and operationalized schemas it

produces are retained and available for subsequent learning.

Few similarity-difference based learning (SDBL) systems have the above

* characteristics, but there is nothing inherent in SDBL that prevents changing

' this. SDBL discovery systems (as opposed to discriminant concept

;.'. generalization systems) are more likely to demonstrate operationality

I! improvement because they profit from remindings of solutions to similar

%. '. problems.

* Optimizing the learning algorithm by becoming more controlled.

Learning algorithms are directed by internal (programmed) or external (user

specified or knowledge based derived) control knowledge. Control knowledge
* 3

* '.' includes heuristics, biases, feature selection rules, feature transformations

agenda management schemes, search control strategies, and hypothesis

* evaluation functions. Usually there is no obvious or direct relationship

between control knowledge and the detailed composition of learned domain-

"A specific concepts. This has often made the specification of control knowledge a

. black art.

, Learning systems that can discover relationships between problem domains

3. E. .. ,In.n perform construc:ve inouctor and how *o seiec. -he translernatlion rules.

41 2 l 112_ ._;1



and control knowledge will have solved one of the obstacles to the pervasive

use of machine learning. To a degree, adjustable bias systems exhibit this

type of L-ML behavior. Systems like STABB [Utgoff86], and VBMS

[Rendell8*7 adapt the way they work by varying their biases. Although these

systems contain the needed knowledge sensitive control features, at present

only VBMS reports its control knowledge findings and associates them with

-characteristics of the problem domain, thus making the bias settings

potentially available for subsequent reuse on similar problems. The typical

bias adjusting algorithm rediscovers the proper choice of bias from scratch,

for each application. The similarities between adapting control knowledge

5"- and automatic programming may eventually lead to an advantageous

' combination of automatic programming with machine learning.

"€ VOne cornerstone of intelligence (and of L-ML systems) is the ability to

discover. Crucial knowledge for improving learning system performance is found

in the patterns and unsuspected relationships discovered in the course of learning.

w. These patterns could be identified using conceptual clustering (e.g., CLUSTER

[Stepp86] or COBWEB [Fisher871) or a generalization based memory approach

- (e.g., UNIMEM [Lebowitz86]) and used during learning. Important characteristics

-' to discover include patterns of empirical relationships in domain data, and

', patterns between domain data and the most effective general biases.

. ,.' Some incremental learning systems can accept previous concepts as working

hypotheses, and then improve them in light of new examples, using limited

memory resources. The ability to use previous hypotheses gives each cycle of

o. incremental learning a large performance boost when compared with repeated

- batch learning. A L-ML system should be able to do more: it should also take

advantage of operationalized potential solutions, an extended concept language,

* and be able to utilize previously acquired concepts to compose new hypotheses,

potentially combining several known concepts together.



2. AN ANALYSIS OF SYSTEMS WITH SOME L-ML BEHAVIOR

Although most learning systems do not have a self improving component,

some notable systems do. For example L-ML behavior (with performance changes

accumulating across problems from potentially different domains) is evidenced by

many EBL systems. Such systems discover generalized schemas that are gocod

shortcuts to problem solving, and also good shortcuts to learning. One or more

learned generalized schemas may be combined to explain a new example. The EBL

learner has learned by storing and indexing learned schemas. Chunking [Laird87]

provides similar effects.

, "-"Among data-driven similarity-difference based learning systems there are few

that demonstrate L-ML behavior. This is because many such systems use fixed or

4user supplied biases rather than knowledge-directed biases. Some SDBL systems

that do use knowledge based adjustable biases and/or knowledge driven

-- transformations (such as constructive induction [Michalski83b]) lack a way to

store findings to help direct subsequent learning.

In this section, six contemporary learning algorithms are discussed with

respect to their capabilities as L-ML systems.

1. 2.1. EBL as represented by GENESIS

As discussed in [DeJong86], an important aspect of building a schema in EBL

systems is the ability to use the new schema in the future. By using previously

learned schemas the system is able to solve problems that would be beyond the

prucessing capabilities of the system without those schemas. Another advantage is

that they provide a mechanism for generalizing the structure of the example. The

* GENESIS system [Mooney88l (as a prototypical EBL system) improves its learning

performance by using schemas it may have discovered previously.

GENESIS learns a schema to describe events in natural language stories.

Consider GENESIS as it learns a schema for kidnapping given a story in which

S¢"someone is held hostage by being threatened with a gun.. The system possesses

knowledge about bargain, capture, threaten, etc. in schemas the system has built

6



from previous examples. Using its deductive mechanisms the system is able to

build a proof tree that explains the kidnapping event.

In this process some of the previously defined schemas are incorporated into

the new explanation. Having to regenerate all schemas might well cause GENESIS

*, to exceed its space/time limits, and thus do an inferior job of learning. Also, using
previously defined schemas allows the system to increase the generality of the new

schema. In the story, suppose John points a gun at Mary to force her into his car.

The system recognizes this as an act of capture and uses the previously defined

* .schema. If the capture schema were not in the system, then the new schema for

kidnapping would only allow for a single method of abducting someone-with a

gun. By using the previously learned generalized capture schema, the many ways

a person may capture someone can be used to explain a new instance of

kidnapping.

Shavlik [Shavlik88] has shown that EBL systems improve their performance

Aby reusing learned schemas. His results indicate that the advantages of building

new schemas from operationalized, previously acquired explanations outweigh the

burden of searching a larger knowledge base. The results also indicate that the

most general schemas built by his BAGGER system are the ones that can most

decrease the learning time required. This is because fewer rules need to be found

" .to cover all the cases.

a. t..2.2. Soar

-. .. Soar [Laird87] learns by chunl:ing. The system stores its solutions to a search

0 problem in long term memory, in the form of production rules. The chunking

\4 .mechanism adds new rules to production memory after solving a previously

unobserved problem successfully. This solution is generalized (in a way similar

* to EBL systems, but not as extensively) and may be called upon during the next

cycle.

Soar uses its learned chunks to build new chunks. It performs within-trial

* transfer: a chunk found early in problem solving may be used as part of the

7



ultimate solution, as Soar continues to work on the same problem. Chunking is a

form of larning by operationalization, like that done in EBL. The system profits

from previous experiences by building new chunks from the solution found by its

internal problem -oler that uses previously acquired chunks to solve problems.

2.3. VBMS

,' The variable-bias management system (VBMS) [Rendel187] improves its

learning performance by learning the proper bias to use for classes of problems.

This approach to improving learning is significantly different from the methods

mentioned above. EBL and Soar directly use the knowledge they have gained in

creat1i,' new knowledge. They learn domain knowledge whereas VBMS learns

Smeta-knowledge for modifying inductive bias. In VBMS, a region belief table
(RBT) is used to indicate which bias point in the bias space is appropriate for the

given problem. VBMS can improve its capabilities as it handles more problems by

refining the RBT to make sharper distinctions between problems. The information

in the RBT is not directly used in the solution of the problem, but rather controls

the learning system's biases.

VBMS works by splitting the problem space into regions using the PLS1
algorithm. Problems are characterized by features and values that define global

attributes of the class of problems being handled. The problem space is the set of

0 all such problem points for the predefined features and their values. The problem

belief table (PBT) contains all the biases explored for a specific problem and a

J ,.[ measure of credibility for each bias. The system partitions the problem space into

regions of points with similar PBT's. Every problem given to the system defines a

/ 4-point in the problem space and this point is contained within some PBT. Each PBT

is defined within an RBT that indicates the type of biases that should be used for

:" the problem. As the system sees more problems, the PBTs and RBTs are refined to

improve the selection of bias for new problems which in turn allows the system to

give better. faster results.

0)



2.4. LAIR

" ~-The LAIR system [WatanabeS] incrementally learns conjunctive concept

descriptions from examples by applying a domain theory for performing

constructive induction [NMichalski83a]. LAIR uses a hill climbing approach with

- .* limited incomplete memory that forces the system to forget all but the last seen

-/ positive example and the current working concept hypothesis.

LAIR's knowledge base consists of examples, concept descriptions, concept

%% :description constraints, and learnable domain knowledge. The knowledge base is

* built of frames and production rules. Rule frames in the knowledge base express

first order implicative rules with literal consequents. On the other hand, concept

descriptions determined by LAIR are lambda conjunctive formulas that are refined

by the system as it learns to recognize correctly the class of positive examples.

By transforming a learned concept for a class into an implicative statement

where the antecedent is the learned concept definition and the consequence is a

predicate symbol identifying the class, the system can feed learned concepts into

its rule base. For example if C is the learned concept description for the class

can-stack-on", then the rule C(x) => can-stack-on(x) could be captured in the

rule base and used in subsequent learning. This potential capability of LAIR is

K,.. mentioned by its author but is not illustrated with an example.

:r:

* 2.5. PLAND

The PLAND system [Whitehall87] discovers planning macro-operators

(macrops) by observing sequences of executed actions. PLAND incorporates many

* of the abilities required of an L-ML system. The system uses previously learned

structures to help discover new, more complex macro-operators. PLAND uses

-', domain-specific background knowledge to guide the search for new macrops. And,

* the system is able to compose hypotheses based on relevant background knowledge

by allowing separate contexts (or perspecti .'es) to be considered at the same time.



A trace of observed actions describing the performance of a task is input to

the PLAND system. From this trace, the SDBL system discovers macro-operators

that consist of sequences, loops, and conditionals. If no background knowledge is

applicable to the given trace, the system finds a regular grammar that describes the

input, where the actions are treated as symbols of the language alphabet. With or

without initial background knowledge of applicable macrops, PLAND is able to

use newly discovered macrops in the course of further macrop generation. Such

within-trial learning allows the system to build a hierarchical representation of

the action trace and to discover macrops that would not be possible otherwise. As

an example, let a trace of observed actions be denoted by the string

. ABBBBD.4BBBBBDACCDACCCCDABBBD. From this trace PLAND

-immediately discovers the loop constructs for 3* and C*. These are then used to

* define the macrop for the whole input (A (B* + C*) D)*, which would not be

discoverable without the learned macrop components. Thus the performance of

the system is improved by its own learning capabilities.

PLAND performs all the discovery processing within the confines of a context.

A context is a data structure that contains the agendas for the context, the level of

,' g-eneralization used, and previously discovered macro-operators. An agenda

defines a search operation for a specified type of macrop (loop or conditional) and

specifies where within the input sequence the search should occur. Before any

agenda is executed, background knowledge is used to check the applicability of the

* agenda. An agenda may be rejected if it operates on portions of the input sequence

k 'that the system has reason to believe are devoid of macrops or, for example, if it is

looking for conditionals, and the system infers that conditionals are not

0 appropriate within the observed task. This use of knowledge eliminates wasted

, search effort.

Knowledge is also used to select the context. When a context is selected,

I generalizations guided by background knowledge can ,e used to determine the

N vattributes of actions that are considered relevant for action comparisons. For
d,. -

example, if actions X and Y each have some property A, then XXX)'')XA'X

10



could produce the macrop Z* where Z denotes actions with the A property. By

producing contexts with different levels of generalization, the system is able to

work with proposed hypotheses. The generalizations of the context define the

level of abstraction. Switchable contexts allow the system to work on more than

one subproblem until a predominant solution emerges.

2.6. SUBDUE

SUBDUE is an L-ML system for discovering conceptual substructure in

examples [Holder88]. The examples given to SUBDUE can be descriptions from a
certain domain, descriptions of a knowledge base, descriptions of a goal structure,

or any other group of structured knowledge representable in first-order calculus.

:X, With such input, SUBDUE can discover patterns, or substructure, in the

knowledge and retain the substructures for use in subsequent learning tasks. The

substructures discovered in the knowledge can be used to compress the knowledge

base, form new features for constructive "induction and concept language

augmentation, and suggest rules for applying the knowledge to similar domains.

The SUBDUE system consists of a substructure discovery module, a

substructure specialization module, and a substructure background knowledge

module. The discovery module discovers substructures in the given input

- 'examples using a computationally constrained best-first search guided by four

* heuristics: cognitive savings, compactness,. connectivity and coverage. These

heuristics are motivated from results in gestalt psychology, data compression, and

numerical and conceptual clustering. The specialization module specializes the

best substructure found during the discovery process by adding additional

i, ,'. structure to the substructure. The additional structure represents information

about the context in which the substructure is applicable. Both the discovered and
specialized substructures are stored : the background knowledge module. Within

6
the background knowledge, substructures are stored hierarchically by defining the

substructures in terms of prev;ously defined, more primitive structures. During

subsequent discovery tasks, the background knowledge module suggests

• 11



substructures from which to begin the discovery process.

, .- As an example of SUBDUE, consider the input example shown in Figure la.

After considering 29 alternative substructures, the best substructure discovered

by SUBDUE is that shown in Figure lb. Figure Ic shows the substructure after

specialization. Both substructures are stored in the background knowledge. Now

that SUBDUE has learned these new substructure concepts, they can be used to

reduce the complexity of future examples containing the same substructures and

improve SUBDUE's ability to discover more complex substructures. In addition,

the newly discovered substructures augment the concept language with new,

-,~constructive features. The simplified example descriptions and constructive

V. features can improve the speed and quality of results of other learning systems.

One of the machine learning areas providing great challenge is the area of

learning concepts involving structured examples, especially the task of discovering

structural concepts. The PLAND and SUBDUE systems show that some concepts

cannot be learned until the system has learned simpler concepts from previous

exercises. In this way SUBDUE and PLAND augment their own concept language

and provide this augmented language to subsequent learning processes.

-!" 3. CONCLUSION

Knowledge-directed machine learning algorithms provide the advantages of

* ,SDBL and EBL approaches. Further power stemming from the application of

H H
H H I I
I I; c-ct c-cc

M- cc c-H
c:-c C-H c /\ _/ cC'
H C-C H (b) Discovered Substructure

H-C / \ I --

H-C 4/C-C - c C-H H H

cc cc4/ C\
SI i I H

H I Br H

(a) Input Example W Specialized Substructure

Figure 1. SUBDUE Example
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machine learning techniques to the machine learning algorithms themselves could

give learning machine learning systems important advantages over more limited

current approaches.

It is instructive to note that current systems that have L-ML behavior fall

i. mainly into two categories: EBL systems and SDBL discovery systems. In both

kinds of systems, concepts are built by taking account of observations of the input

phenomena. SDBL discovery systems create concepts from observed examples,

augmenting the concept language in a way that is useful for interpreting new

observations on subsequent learning. EBL systems use the observed training

example(s) to improve the operationality of both themselves and a performance
system. The VBMS approach is unique in its ability to optimize biases and

heuristics based on discovered control knowledge. These system types exploit

unequally different ones of the three main L-ML metamorphoses described in Sec.

1. Incorporating the metamorphoses in one system would create a powerful L-ML
tool.t The chart in Figure 2 summarizes the major characteristics of the six learning

. ~ .systems that were presented. The table shows that a mechanism that chunks to

improve operationality is provided (in some form) by all six algorithms. Also,

L-ML Prototype Systems

feature EBL SOAR VBMS I LAIR PLAND SUBDUE

SBK. transforms representation no no yes yes yes

* goal hierarchy in B.K. yes yes no no yes no

B.K. helps compose hypotheses yes yes no yes yes yes

discovers patterns no no yes no j yes yes
updates B.K. yes yes yes yes yes yes

* recognizes similar learning situations no no yes no J no no

% V augmen:s concept language yes yes no yes yes yes
"0 - to be more expressive

chunks and transforms to ves yes yes yes yes yes
be more operational
optimizes biases and heuristics no no yes no no no

tN to be more controlled

Figure 2. L-ML Characteristics of Six Learning Systems.
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each of these systems has some mechanism for updating a permanent knowledge

base of domain and control concepts. The selection of representative learning

systems for discussion here was based on evidence of a number of L-ML

capabilities and to consider a wide range of approaches. With further

development of such systems, there may soon be a time when systems possess all
L-ML characteristics (and the focus will be on additional facets of intelligent

learning behavior).

.
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