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1.0 INTRODUCTION

. R
e PR PREEFEEN Yy -
s

The mission of -8DI is to develop defenses against threatening
ballistic missiles. There are four distinct phases to the §SDI

defense; boost, post boost, midcourse and terminal, -as- shown in

Figure—l.. In each of these phases, one or more machine vision

functions are required, such as pattern recognition, stereo

. - -

image fusion, clutter rejection and discrimination. . /. e

1.1 Adaptive Machine Vision for Boost Phase

Consider the Acquisition, Tracking, Pointing and Fire Control
(ATP-FC) function during boost phase. The hot rocket plume
provides a bright signature in the mid and long wave infrared.
However, the centroid of the +thermal plume image lies anywhere
from 50 to 300 meters behind the booster, and this distance 1is
as much as 10x the length of the missile body. The stressing
problem is not plume detection, but accurate tracking of the
actual missile, given that the size and shape of +the plume
evolves constantly during ascent, and changes abruptly between
stages. Figure 2 provides a guide to these variations in the
plume dimensions. The plume size and shape is changing
dynamically, and these changes result in large variations in the
offset from the thermal image centroid of the plume to the hard
body. Even if the changes in plume shape with aspect angle
could be neglected, these dynamic and sometimes abrupt changes

in signatnre pose a difficult, unsolved problem of ATP-FC, one

-1-
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Figure 1. The SDI layered defense concept provides four defensive zones,
boost, post boost, midcourse and terminal. During the boost phase, the

SDI functions requiring adaptive machine vision support acquisition, track,
aimpoint selection and kill assessment; during post boost, discrimination and

,v v track; During the midcourse and terminal phases, acquisition, tracking,
o discrimination and kill assessment.

...
BL DN
G

. . d
Ky TR0 2 T L S S T St S Rttty
R R R AR AR R e e D e B D e




b Al b bl s gl s mmmmmm‘“m - e
- - "‘

b
bf.
‘s
w
£
3
L SHOCK LAYER b .
& .
*MACH DISK
. P REGION
§ g ¥ w
. 5
o }: ) N
s vacuuM core® ¥
.,';;'
e >
> L
S
AR
. TIME/ALTITUDE PLUME SIZE VARIATIONS WAVE LENGTH VARIATIONS
)
- . L: 100 to 300 meters
‘] AT 0-40Km {w.- 300 meters :
L: 100 meters m
_ 40- T,
E..’ AT 40-100Km {w: 50 meters
N
Al L: §00-600 meters
ABOVE 100Km {w.- 500-600 meters
A
\'f
¥,
Ll
.1 =
({0 4 . .
O Figure 2. The hot missile plume provides a good strong signature for
S detection. However, the thermal plume centroid is located from 50 to 300
:'_ ‘_: meters from the missile body. Plume to hardbody handover is a critical
AU problem which cannot be so!ved by simple centroid tracking or rigid
dl template correlation tracking. An adaptive approach is required.
Yoo
A
LA
v
.
ERl -
e
s
4
R
o

~
]

RATRIR




that requires an adaptive pattern recognition capability.

: N The zfusion of imagery from separate space surveillance
ﬂ¢ b{ platforms, as depicted in Figure 3 is another challenging area
N

}‘ 5: of adaptive machine vision for SDI. It is known from studies of
f& ) mono vs. stereo tracking that stereo tracking with two passive
E§ ES angles-only sensors can provide much smaller error ellipsoids
( L for the target position than is possible with a single sensor of
'?A k comparable size performing monostatic angles-only tracking.
W

The fine-track function is performed quite well by a Kalman

Pun s ahsi@®
N

r‘_
-

filter, once coarse stereoc tracking has been achieved. This
involves associating the target images from the separate stereo

sensors, as well as estimating the offsets from the plume to the

"

)

(3

Wy

N & hard body. The key steps of this preliminary coarse stereo

! [

"

3 ’ track function is frame-to-frame association at the individual

; !: sensor level, and stereo fusion of the images from the separate
.

o

:} sensors. These functions are performed naturally by biological
< .: -

‘: N visual systems, inspiring our efforts to draw upon theories of
Y

% - stereopsis in humans to develop a comparable capability in
S

R . .

? ) machine vision.

oL

r:’ \'_.

"

1.2 Adaptive Machine Vision for Post Boost Phase

RRALAAL
rne

~ In the post boost phase, the bus containing the threat weapons
Sl
" (re-entry vehicles or RVs) makes a series of thrusted
ﬁg accelerations to independently launch each RV towards a
° -4-
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Figure 3. Trajectory estimation is greatly enhanced by stereo tracking.
The first step in stereo tracking is the proper association of targets
seen by sensor A with the targets seen by sensor B. This target

association problem grows in complixity as N2 for stereo tracking, where

N is the number of targets. For m sensors and N targets, the computational

complexity grows as N".  Parallel processing, similar to that performed by

biological stereo visual systems may be required to need the SDI requirements.
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designated impact site. After each divert of the bus, an RV is
oriented for re-entry into the atmosphere, spun up for stability
and deployed from the bus. To confuse and overwhelm the SDI
defenses, "penetration aids" such as balloons, radar chaff, and
thrusted replica decoys are deployed along with the threat RVs.
An adaptive machine vision capability can provide the critical
discrimination between the threat objects and the decoys which

proliferate during the post boost phase.

The basis for this discrimination will be measurements gathered
by passive electro-opti: imaging sensors, passive IR photometric
sensors, active laser radars, and other exotic systems. Passive
IR imaging will not be feasible at large standoff distances, on
the order of 10,000 km. However, sub-orbital trajectories which
originate in the USSR and terminate in the continental U S. are
invariably sunlit over that portion of the trajectory which
traverses the North Pole. Passive imaging at aigh resolution in
the short wavelength ultraviolet light from the sun is therefore
possible. For example, at a standoff distance of d = 10,000 km
(1.57 earth radii) and a wavelength of lambda = 0.2 micrometer,
a passive interferometric imaging system with an aperture
separation of D = 20 meters (the collection apertures can be
smaller) will provide a spatial resolution, on the target, of
approximately (lambda/D)(d) = 10 cm. This resolution is
adequate to determine object size and shape and to estimate the
object orientation; in combination with passive multiband

infrared photometry, the emissivity-temperature product of the

-6-
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object may be estimated to provide a discriminant between

objects of high and low thermal mass (warheads versus decoys).
Additional discriminants are needed to reduce the probability of
misclassification between decoys and warheads. Recent work by
Sejnowski at Johns Hopkins University has demonstrated the
capability of a neural network to estimate 3-D shape from
shading given passive imagery. What needs to be shown next is
the capability of a neural network to use this 3-D shape
information for enhanced discrimination between between warheads

and decoys.

1.3 Adaptive Machine Vision for Midcourse Defense

The midcourse phase sensors will consist of pop-up sensors,
derived from the probe experiment, and airborne sensors evolving
from the Airborne Optical Adjunct (AOA) Experiment. The
functions of these sensors include ATP, discrimination and kill
assessment. Since the pop-up and airborne sensors are launched
or operate over the region in the United States targeted by the
Soviet missiles, a serious threat of "sensor blinding" exists as
the result of fireballs in the senscr field of view. Even in
the absence of nuclear detonations, extensive angular regions
around the sun would be blotted out on a conventional detector
array. In the event of SLBM attacks off our eastern or western
coastlines, the morning and afternoon sun would play havoc with
the ATP, discrimination and kill assessment functions. Simple

shuttering is inadequate, because the blinding image of the sun

-7~
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\ or of a fireball is concentrated over a limited region of the N
[ ’ s 4
! sensor field of view. What is needed is a dynamic capability to
'? - adapt to extreme variations of scene brightness, similar to the g
Y '\.-" .
R 4 ability exhibited by +the human retina. We have studied this ﬂ
1 I retinal adaptation, and developed a model retina which adapts on
e
i a point-by-point basis to the scene intensity, to maintain 3
m W
-, Y
[ d
ﬁ oA limited visual function in the presence of dynamic blinding j‘
\ flashes as from a nuclear detonation. 4
3y ., 'a
A by
v “,4
. A less extreme, but equally serious problem for an airborne Ky
-
s
. sensor is the disturbed atmosphere remaining for several minutes !
f after a nuclear detonation. Figure 4 shows the evolution of hot :f
4 .
plasma from a one-megaton range burst occurring at a 200 km E
:( ﬁ altitude, according to an unclassified Defense Nuclear Agency o
. iyt
? i; primer on hign altitude nuclear events. At top left, the burst "
N » i
; is shown at a early phase. At the right, after 60 seconds, the !
§ hot plasma has risen to 800 km and is highly structured. On the L
a bottom left, after 3 minutes, the plasma continues to evolve in 3
b, o
V -.. . . . ) 2 .‘
r linear striations along the earth magnetic field, to form a ?
h ( \
‘. severely cluttered visible and IR background for the ATP Q
I ]
- discrimination and kill assessment functions. On the bottom 0
t 4
1
y b left of Figure 4, these striations are shown after one full bt
7 .
\ hour. The striations have spread out several earth radii. %
SRS -
! o During nuclear war, the long lasting contributions of precursor }
‘.i
v ‘
N o high altitude nuclear detonations will clearly result in an ﬁ
' =
b, extensive disturbed and cluttered background for all types of .'
\ ¢
: '2 SDI sensors... airborne, pop-up and space-based. To deal with :f
A
R B
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this threat, the pattern recognition and tracking functions of

e
3
a2

these sensors must be capable of adaptive gain control (as in

Ay

- the model retina we have proposed) as well as powerful, clutter
LY

¥ \

ﬁ: & rejecting pattern recognition. Fusion of measurements from

‘a

S ’ multiple wavebands and platforms can provide additional
c“h

Y ’ robustness for this function.

, .

'. \u

S

[‘ i 1.4 Adaptive Machine Vision for Terminal Defense

[ -

t -l A radar system (the Terminal Imaging Radar, TIR) is planned for

" the discrimination and tracking of objects leaking through to

?2 - the terminal defense zone. Here the pattern classification and

*
‘: parallel processing capability of neural network systems to

-
L

discriminate between lethal and non-lethal radar signatures (see

Figure 5) is extremely promising, because the terminal defense

-
=

0 is stressed by the large number of targets, the finite number of

interceptors, and the few precious seconds remaining to commit

.-

o) an interceptor against a threat vehicle.
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2.0 Application of Machine Vision to Stereo Tracking

Stereo tracking of SDI targets is attractive because it provides
substantially better accuracy than tracking with a single
sensor. However, the individual detected targets from the two
sensors must be correctly associated before stereo tracking can
begin. 8Since this target association problem grows as N2 when
there are N targets, the computational requirements are
significant. Yet this same basic function 1is accomplished by

compact, low power biological systems.

David Marr proposed two different stereo vision algorithms. We
have studied these algorithms, but prefer an approach suggested
by Eric Schwartz of NYU. To understand Schwartz’s suggestion,
it is first necessary to understand how the images captured by
the right and left eyes are merged in the human visual cortex.
The input from each eye 1is brought together in registration in
the visual cortex, and organized into "ocular-dominance columns"”
as shown in Figure 6. The gross structure of visual cortex is a
map of the entire visual field, while the microstructure

contains interleaved inputs from the right and left eyes.

What advantage does this particular representation offer?
Schwartz by hypothesizes that this representation (formatting)
of the raw data permits the extraction of depth information by

means of a cepstrum~like computation.
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ANATOMICAL CONFIRMATION of ocular-dominance columns came from various stain-
ing methods and from axonal-transport autoradiographs such as those shown in color on
page 41. This composite autoradiograph visualizing the pattern over sn area some 10 mil-
limeters wide was made by cutting out and pasting together the regions representing layer
IV in # number of parallel sections; the one in bottom illustration on page 41 and others at
different depths.
Taken from "Brain Mechanisms of Vision," by
D, H. Hubel and T. N. Wiesel, in The Mind's Eye,
edited by Jeremy M. Wolfe

right
left LIRIL[RI|L|R|L|R|L]R|IL[RI|LI|R|L|R|L|R|L

Idealized ocular-dominance columns

Figure 6. Top, ocular-dominance columns revealed
in the visual cortex of a monkey by radioactive
staining. Bottom, idealized ocular-dominance
columns to be used in the cepstral stereo-tracking
experiments.
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His argument goes as follows: The pattern of excitation in the

left ocular dominance column is a duplicate of'that in the right
column, except that close up objects are mapped to slightly
offset columns compared with objects that are further away, as
shown in Figure 7. Think of these interleaved images as an
original plus its echo, where the echo offset depends upon

depth.

Mathematically, the pattern represented in visual cortex may be

approximated as:

ir + '1l = i(x-kd, y) + i(x+kd, y) =

i(x, y)*{é(x-kd, y) + é&(x+tkd, y)} ,

where i(x, vy) is the basic image that 1is seen at different
parallaxes by the left and right eye, ir is the image captured
by the right eye, and il is the image captured by the left eye.
The amount of parallax depends upon the object depth d, and a
scaling factor k which depends upon the lateral separation

between the eyes.

To extract the depth, it is necessary to find the convolution
function

[ 6(X‘kd, Y) + G(X+kd’ Y)]

Since this convolution function is unknown, a method of blind

deconvolution is required; the cepstrum is such a method.
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It is convenient to discuss the cepstrum for the general case of

s VA

blind deconvolution of the function

h(x) = u(x) % v(u).

LIZR
ey

*, E‘ By the Fourier convolution theorem, in Fourier space we have
g %
o
. H(E) = U(E)V(E),
b

where the upper case denotes the Fourier transform ! as been
applied to the original functions. This multiplicative form for

H(f) can be reduced to a sum by taking logarithms:

s

®
2 3 log(H(f)) = log (U(f)) + log(V(f)).
‘3:3 ¥
[)
% If the structure of U(f) is smooth and the structure of V(f) is
o vy
"," é rougher or more fine-grained, then a further Fourier
B . . . _ .
.:o: ﬂ transformation will separate them into distinct regions. In
’.i.
:Q W order words, the support of F(log(U(f)) will not overlap with
'I,
;} A the support of F(log(V(f)). Here "F" denotes the Fourier
N W
tﬁ transform operator. This completes Schwartz’s theory for how
L D
JE & the visual system may isolate the convolution function
.
M R
e v(x,y) = [8(x-kd, y) + &(x + kd, y)].
3
k& ﬁ Under critical examination, the cepstrum has some difficulties,
LY '.5
:_ since both U(f) and V(f) must be positive valued if negative
¥ i
3 ]
g; & infinities and complex valued quantities are to be avoided. Oof
L)
»
;s Y course, there is the possibility that a usable final result may
i I's)
o be produced using log-like functions which remain finite valued
¥
:c :Q for zero arguments. However, a modification of the procedure
S
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discussed above will eliminate the occurrence of complex valued

logarithms, if they really do pose a problem.

As before, use the convolution theorem to obtain
H(U) = U(f)

At this point, we take the absolute square value of H(f) before

going on, so that we have
log|H(£)|? = 1og|u()| 2 + 1og|v(£)]| 2,

which avoids complex values. If we approximate the true log
function with a finite valued function that saturates for very
small and very large arguments, we expect that the basic
properties of +the 1log function required by the cepstrum

technique will be retained, at least approximately.

After taking logarithms, instead of obtaining:
log(Zcos(kdfx)),

(where fx is the Fourier space variable conjugate to x) we now

obtain
log(4c052(kdfx)).

In either case, an additional Fourier +transform will produce

peaks whose location provides a measure of the depth d.
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2.1 Optical Implementation

An all parallel optical implementation of the cepstral stereo
fusion algorithm will require optically addressed spatial 1light
modulators for the input, coherent optics to perform the Fourier
transforms, and a logarithmic response spatial light modulator
to implement the cepstrum. At the present time, spatial 1light
modulators with a logarithmic response are not available.
However, there are two ways out of this dilemma. One way is to
use a thresholding spatial light modulator so that the
Goodman-Kato halftone screen technique can be asked to produce a

logarithmic response.

Spatial light modulators which are capable of thresholding
include the variable grating mode liquid crystal device (Sawchuk
and Tanguay) and a photocathode addressed lithium niobate device
(Warde). See Figure 8 which shows the halftone screen technique
is capable of providing a logarithmic response over two decades

of input light level.

The alternative approach is to use an array of logarithmic
amplifiers, each one coupled to a photoreceptor, as Carver Mead
has done. His results, which are nearly logarithmic over a four
decade range of input intensity, are shown also in Figure 8. It
should be possible to couple such a photoreceptor array onto a
liquid crystal modulator, but at the present +time, such a

logarithmic spatial 1light modulator is unavailable. If our
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Applied Optics 14, p 1817 (1975).
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35 . Figure 8. Logarithmic conversion results. Top, halftone screen approach,
y: 3; Bottom, CMOS photodetector approach.
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’*ﬁ demonstration using more readily available devices is
L B
{ n encouraging, future tasks can emphasize an all parallel
W T
2 ‘
L, implementation.
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The planned demonstration will wuse a CCD TV camera to input

- -
-
Ak

merged left and right views of a test scene into a liquid

) .

Eh E: crystal TV display (Radio Shack) for coherent optical Fourier
(; - transformation. This +transformed pattern is imaged onto a
:'E§ : Goodman-Kato half-tone screen, and detected by a second TV
Ej i. camera, operated in a thresholding mode, by electronic clipping
i; " of the output wvideo signal. The resultant signal 1is then
;35 ;f applied to a second liquid crystal TV, and optically Fourier
b

Ei transformed. Discrete peaks in this output image correspond to

b2

the 3-D depth planes in the test scene.

SRR

The first task in our stereo tracking demonstration is to

-

RANFIES

validate the concept through a digital simulation. This will

()
l'F

3P -2

provide insight into the sensitivity of the cepstral stereo

SRy
b
o

. AR
A
1 -
.

.;\"t

algorithm to the accuracy of the logarithm function.

S

Figure 9 shows the laboratory set-up which provides merged and

interleaved images from "right"” and "left"” vantage points. Only

it

- R
RS e LA

one ronchi ruling used, so misalignment prcblems between a pair

.

e,

of ronchis are eliminated. Experiments with different amounts w

e =

¢ of parallax are permitted, since the baseline between the right

and left objective lenses can be varied. Finally, only a single

- Xy
eIk RO A

ﬁ TV camera is required to capture the input scene, so problems
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0 with differential distorticn between two ca.cras are eliminated.
in’!'l g
b
| Figure 10 shows the schematic for the cepstral processing.
s &)
4 "\. .}"\ .
?:.a? Coherent optics is used to perform Fourier transformation, and
S
) L the logarithm is introduced through the Goodman-Kato half-tone
) ;}_
ﬁ i screen, followed by <clipping of the video signal in the
“‘. N
1f$ 3} subsequent step of image detection with a CCD TV camera.
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idealized ocular-dominance columns

[:TV camera

¢/Goodman-Kato halftone screen

e
laser R [: TV camera
beam

LCTV

nonlinear
clipping of
video signal

laser — discrete peaks reveal
beam object depths in scene
—

LCTV

Figure 10. Block diagram of planned laboratory test
of cepstral stereo tracking.
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‘%& 2.2 Digital Implementation of Stereo Algorithms
P N *
L4
-l'\ n
Py
s The cepstral stereo algorithm is attractive from the standpoint
A Y
.
° : N of optical or digital implementations. The optical
;ﬁ L implementation is uniquely capable of exploiting the
» \}
;xa - computational map style of processing that is used 1in the
‘ "
| .ﬁ interleaved input format of the cepstral algorithm. From the
¥ Sa
- digital standpoint, the cepstral algorithm offers a smaller
) ‘('\ _‘-
}$E‘§ operation count than the best-known rival algorithm (the
| » -
K NG zero-crossing algorithm of David Marr and Tomaso Poggio, in “A
i h)‘,‘ “\-'
S
Ll computational theory of human stereo vision," Proc. Royal Soc.
A
R
S Lond. B204, pp 301-328).
¢ iy S

it/
=,

In the sections that follow, we demonstrate this advantage by

ol
LA s

e : carefully counting the computer operations needed to carry out
%; o both algorithms. Since the speed of multiplication, addition,
J L_ table look-up and algebraic sign comparison is machine
g T
:?j g de: 1,t, such a comparison is generally made for a specific
gi :{ ma¢ .ne and the results may be different fer other computers.
:L " In the present case, the dominant computation in both algorithms
v

)

s

is an FFT, and so the algorithm ranking should be machine
independent. With this in mind, we Jjustify the comparison in

Table 2.4 which counts all of the computer operations (multiply,

2

A A rnh
y-)‘

-«._
‘2 % Y

P

N add, look-up, sign compare) equally.
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_,:‘: 2.2.1 Computational Load of the Zero-Crossing Stereo Algorithm
”b' - .

- A
ol
-

:\fs . Two distinct strategies are used by the zero-crossing algorithm.
AN
:::: R One strategy is to work with an edge-enhanced version of the
'_, [':’ stereo pair imagery. The Laplacian filter 1is used to perform
3.3 :‘ this edge-enhancement, since this filter is not preferential to
: E\: ;S any particular orientation. The zero-crossings in the Laplacian
m‘) = filtered imagery are then correlated between the left and right
éj ::: stereo pairs. This brings us to the other strategy, which is to
_j ;-" solve the zero-crossing association problem in stages: first at
" low resolution, then at double the resolution, then quadruple
:;‘EE ,.E the resolution, and so on, up to the highest available
;, *:_ " resolution. This recursive strategy uses the low resolution
{_ ' 5 depth information to guide the associaticn of more detailed
:E\.c: :_: zero-crossings revealed at the next higher level of resolution.
) -
:')Z !9 For the remainder of this discussion, we fix the size of stereo

h,
i:%: _ pair images as N by N, where N = Zk. Though not a requirement
s: 1 E'( of the algorithm, it is helpful in analyzing the computational
‘ E"‘ load, since the recursive processing uses 1image resolutions
%% - which change by a factor of 2 between stages. To prepare the
;3' g blurred imagery needed for a given stage, we merely need to
.rA replace every 2 by 2 square of pixels in the previous image with
2-: , a single pixel. This involves summing up the 4 pixel values at
E:.' 5 each of the new sample locations. The original N by N image
\;' goes over to an N/2 by N/2 image, and the computation count is:
e E‘; (3 additions per pixel)(N2/4 pixels) = (3/4)N2 additions.

X
R
. -25-
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See Table 2.1 where this result is tabulated. The blurring is ;

repeated in stages to produce stereoc pair images sized N/4 by

¥ o

ﬁ .- N/4, N/8 by N/8, etc. At each successive stage, the number of

o B

X pixels decreases a factor of 4, so the computation count over

5

L ‘ all stages of blurring forms a geometric series:

-

M)
-~ (3/4)N% [1+ 1/4 + 1/16 +...] additions.

Y 2

|:| -\’
( — The infinite geometric series sums to 4/3, and since the series

>~

1j o is rapidly convergent, the truncated sum may be approximated by :
-

I 4/3.

Ry >

o ™~

%

Ly -2

o 2 So the computation count for blurring totals 2N2 additions. The

-

b factor of 2 comes from the left and right stereoc pairs. See

! s
! Table 2.1.

(39 :
V$ n t
g 2 . .

) In the next step of the zero-crossing algorithm, the Laplacian

filter is applied to the blurred images and the resultant

3 -
lj . zero-crossings are located. The Laplacian filter combines each ‘
, :},\: pixel with the weighted sum of its 4 nearest neighbors. There ’
h, w} are 4 additions and 1 multiplication for each filtered value.
) A Hence, to filter an N by N image requires: :
t
b 2 2 :
; - 4N” additions + N® multiplications. 9
- . )
;; ﬁ See Table 2.1 where this result is tabulated. Once again, a !
gg QZ factor of 4/3 1is applied to include the filtering for all s
f ' resolution scales, and a factor of 2 for both 1left and right "

P
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e
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! ﬁ Table 2.1 COMPUTATION COUNT FOR
:::o * ZERO-CROSSING ALGORITHM
n.‘:
' E‘§ KEY: ADDITIONS........'ccvvevune. [+) A FACTOROF 2.............. x2
"l MULTIPLICATIONS............ (%] A FACTOR OF 4/3............ x4/3
W SIGN CHECKS. ......vvven.nen [sgn) A FACTOR OF (N/m)*(N/m)....x(N/m)"2
N1 NKN. o oottt i N~2 BASE 2 LOGARITHM........... log
YRSy
08 G
D)
of
;0. .
;E' a}: COMPUTATION COUNTS: SUBTOTALS:
1 o
("' OVER OVER OVER BOTH ADDS MULTIPLIES SIGN
. mxm OR (N/m)~2 ALL STEREO  (+] (%] CHECKS
. MxM NEIGHBOR- SCALES PAIRS [sgn)
W ARRAY HOODS
X FORMING
o BLURRED A
x> IMAGES 3/4 N~2[+) n/a x4/3  x2 2N~2
; ~
e LAPLACIAN A
NN FILTERING 4N~2[+] 32/3N"2
oo L. n/a x4/3 x2 A
- N~2{*] 8/3N"2
N
v i ZERO-
",‘. : CROSSING 6/3IN(N-1)
ks LOCATION 2N(N-1)[sgn) n/a x4/3  x2 (16/3)N(
- >
L CROSS-
; } CORRELATION
[ %
@ DIRECT: m"2(m-1)[+) 4/38°2(m-1)
“.? x(N/m)~"2 x4/3 x1 o
D m~3{x] 4/3N" 2 tm)
- - OR -
Lol
b a IN FOURIER-
I, SPACE"
9 Sen FORWARD FFT 3m~2log(2m)(+] 8N"2log(2m)
SN x(N/m)~2 x4/3 x2
e 2m~2log(2m) [*] 16/3N"210g(2m)
W
oy T PRODUCT OF A
TN TRANSFORMS 4m"2[+) 16/3N"2
oA x(N/m)~2 x4/3 x1
@ 8m~2[*) 32/3N"2
"
2 W INVERSE FFT 6m~2log(2m)[+] 8N~2log(2m)
SR x(N/m)~2 x4/3 x1
f 4m~2log(2m)[*) 16/3N"210g(2m)
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b stereo pairs, so the computation count for Laplacian filtering
o T

! ﬁ totals:

" X'n

N . 2 oy 2 , . .

Q‘ > (32/3)N” additions + (8/3)N” multiplications.
o, \'.p

;‘ l‘ The search for zero-crossings involves a sign comparison between
o each pixel and its nearest neighbors. In an N by N array there
l&: g are 2N(N-1) places for the pixels to change from positive to
(; - negative or vice-versa. Including the factor of 4/3 for all
E,; f- resolution scales, and the factor of 2 for both left and right
é;i A stereo pairs, the computation count for locating zero-crossings
3? " totals:

R -

:\’.: A%

ERCRRT
A,

(16/3)N(N-1) sign comparisons.

See Table 2.1 where this result is tabulated.

Hpa s
e

o
1%‘ !' The final step of the zero-crossing algorithm is the association
;ﬁ i of zero-crossings between the left and right stereo pairs. The
ié ;f associations are made on the basis of peaks in the cross
_fi =~ correlation between small neighborhoods taken from the left and
:35:? right stereo pairs. The cross-correlation may be made directly,
% si or they may be carried out via Fourier space, using the
.: convolution theorem. The computation count results are
‘;g E: different, depending upon the correlation method. Despite the
aﬁ; ‘- well-known computational efficiency of the Fast Fourier
é k Transform (FFT) for large transforms, direct cross-correlation
i; if computation may actually be more efficient if the correlations
<5
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are made over small neighborhoods. Take the neighborhood size
as m by m. The cross-correlation is carried out only aléng >the
axis separating the stereo pairs, and is performed for lags of +
m/2. Direct correlation requires m multiplications and m-1 adds
for each of the m lags, or m3 multiplications and mz(m—l)
additions for each m by m neighborhood. An N by N image
contains (N/m)2 such neighborhoods, and the cross correlation
over all resolution scales increases the operation count by a
factor of 4/3. The total operation count for each

cross-correlation tabulated in Table 2.1 is therefore:
(4/3)N%m multiplications + (4/3)N%(m-1) additions.

The alternative correlation apprcach wuses the FFT to Fourier
transform corresponding neighborhood for each stereo pair, and
then inverse transforms the product of these +transforms to
obtain the cross-correlation. Since the cross-correlation is
performed along only one axis, a 1-D transform along the axis
separating the stereo pairs 1is required for each strip of

pixels.

The cross-correlation between strips from each stereo pair is to
be carried out over lags of + m/2 pixels. One of the strips
must be 2m pixel long, the other m pixels 1long. The m pixel

strip must be augmented with m additional zero valued samples

(zero padding) to keep both the transforms the same length, 2m.
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N An FFT of length K requires K/2 logz(K) complex multiplications
Y .

!'..' s and K log.(K) complex additions. However, our input data is
o

2& %_ real-valued, and the FFT algorithm also computes the transform
W

B 3

by O for the (all zero) imaginary part of the input. For real-valued
Lk

' F' inputs, it is possible to reduce the computations in half. The
’5 t FFT of real-valued data of length 2m samples then requires:

o

{’ ’ 3mlog2(2m) additions and 2mlog2(2m) multiplications.

|
A==
2y

N Each m by m neighborhood requires m such transforms, and there

are (N/m)z neighborhoods in an N by N image. The total

L,
)2

operation count for the forward Fourier transforms including the

2 stereo pairs and all resolution scales is:

f_"[;"-’—b'. 'r . 4
P

2

8N log2(2m) additions and (16/3)N210g2(2m) multiplications.

Tt P

h A

-
S
:& it The next step is the multiplication of the transformed data from
. “. Y -
;ﬁ N the left and right stereo pairs. With the =zero padding, the

‘ !; length of each transformed strip is 2m, and each neighborhood
“J i contains m such steps, so there are 2m2 multiplications for each
> X
SRS
;ﬁ ~ m by m neighborhood. Counting all of the (N/m)2 neighborhoods
f o in each N by N image, and including a factor of 4/3 for all of
o ° the resolution scales, the total operation count listed in Table
o
\ . ';'3 2.1 for multiplying in Fourier space comes to:

®
. a2 . . ﬁ
D f: (8/3)N° complex multiplications, or

; <
o - 5 5
oY o (16/3)N® additions and (32/3)N” multiplications.

M

o .
;j . The final inverse transform step 1is full-complex and has twice
& %
N,
1S
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the operation count as the individual forward transforms (but

there no longer are 2 stereo pairs) so Table 2.1 1includes

inverse transform operations totalling:

2

8N log2(2m) additions and (16/3)N210g2(2m) multiplications.

Table 2.2 uses a spread-sheet format to compare the operation
count for direct cross-correlation with that for correlation via
Fourier space. Direct cross-correlation is most efficient for

m<64. However, for high resolution in depth, larger values of m

will be needed.

2.2.2 Computational Load of the Cepstral Stereo Algorithm

The operations of the cepstral stereo algorithm are applied over
(N/m)2 neighborhoods each of size 2m by m. Zero-padding by 2m
zeros along the axis oriented from one stereo pair to the other
brings the Fast Fourier Transform (FFT) length up to 4m. The

operation count for each (all-real) transform of length 4m is:
6m log2(4m) additions and 4m logz(4m) multiplications.

For each 2m by m neighborhood, there are m of these transforms,
and there are (N/m)2 neighborhoods so the total operation count

for the first set of transforms is:

2 2

6N log2(4m) additions and 4N log2 multiplications.

The next step 1is to form the absolute value squared of each
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transform value. This involves 4m2 additions and 8m2

multiplications over each neighborhood, and over the (N/m)2

neighborhoods totals:
2 . 2 . v .
4N” additions and 8N~ multiplications.

Taking the logarithm of each value requires a table look-up and
an interpolation. The input value must first be converted
through some bit-level manipulations into a table address and a
residual value, x, for the interpolation function. The log
function is convex, and so quadratic interpolation should be
effective. Evaluation of a quadratic in x requires 2 additions

and 2 multiplications when expressed in the form:
Xx(Ax+B)+C.

The quantities A, B and C are obtained from the look-up table.
Each neighborhood c¢ontains 4m2 values to be converted into
logarithms, and over (N/m)2 neighborhoods the total operation

count comes to:

2 2

B8N® additions, 8N2 multiplications, and 4N° table look-ups.

The final step in the cepstral stereo algorithm is an inverse
Fourier transformation. The operation count is the same as for

the initial set of forward transform,

2

6N log2(4m) additions and 4N210g2(4m) multiplications.

These results are listed in Table 2.3.

..33..

o A0 ) T ONOOO00 DA { IR0, 0 g
B e L R M o o N D O R N A A S S NG S A S



Pl D N o gl

TR

[ 3

‘ 1A A
SRR A A

o

o

o
.
S

P 8

R
- @ &5
4 -

{
)

‘ \".‘:". W, A'!‘!'.‘t"'t'. Wf, ‘I.'. D

e
DA R
'-’-rl

o

22

RS

[

“ )‘ “'

Table 2.3 COMPUTATIONAL COUNT FOR THE
CEPSTRAL STEREO ALGORITHM
KEY: ADDITIONS. ... ............. (+] A FACTOR OF 2.............. x2
MULTIPLICATIONS........... [*] A FACTOR OF (N/m)*(N/m)....x(n/m)"2
TABLE LOOK-UPS............ (tiu] BASE 2 LOGARITHM........... log
| B3 2
COMPUTATION COUNTS: SUBTOTALS:
OVER OVER OVER ADDS MULTIPLIES TABLE
SINGLE NEIGHBORHOOD (N/m)"~2 (+) {*x] L,OOK-UPS
STRIP (m STRIPS) NEIGHBORHOODS [tlu]}
(2m pixels +
2m zero-pad)
FORWARD
FFT 6mlog(4m){+] 6N~2log(4m)
xm x(N/m)~2
4mlog(4m)[x] 4N~ 2log(4m)
ABSOLUTE
VALUE
SQUARED 4m[+] 4N~ 2
xm x(N/m)~2
8m{x) 8N~2
BASE 2 LOG
EVALUATION 8m(+]) 8N~2
8m(*] xm x(N/m)~2 8N~ 2
dm{tlu) 4N~ 2
INVERSE
FFT 6mlog(4m)[+] 6N~ 2log(4m)
xm x(N/m)~2
4mlog(4m)[x] 4N"210g(4m)
-34-
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b\ 2.3 Stereo Algorithm Comparison

A,
¥ 3

A
.ﬁg . Table 2.4 compares the computational efficiency of the cepstral
ég ij and the =zero-crossing stereo algorithms. The number of
}\ 5_ operations per image pixel depends upon the size of the
’? ' neighborhoods which are processed to extract depth information.
_:% é& Precise depth measurements will require large neighborhood
( - sizes. The Table shows that the zero-crossing algorithm is most
CS j: efficient for neighborhood sizes of 64x64 or smaller. For
‘:E }; larger neighborhoods, the cepstral algorithm is more efficient,
é, ‘ because its computational count grows as 2010g2(m) versus

wu
R e
I'l..l'

(80/3)log2(m) for the zero-crossing algorithm.
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Zc: ’ (
. )
) -:.’ t
o ) q
)
i m \
S .
-
\ $ CEPSTRAL ZERO-CROSSING
‘ ",;
$ NEIGHBORHOOD BASE 2 LOG OF m TOTAL TOTAL
—~ SIZE m OPERATIONS OPERATIONS ¥
R PER PIXEL PER PIXEL 3
3 8.00 3.00 132.00
s 16.00 4.00 152.00 \
ph 32.00 5.00 172.00 )
¢ 64.00 6.00 192.00 ;
N 128.00 7.00 212.00 ’
~o 256.00 8.00 232.00
o 512.00 9.00 252.00 f
S 1024.00 10.00 272.00 .
b o 2048.00 11.00 292.00 )
¥ 4096 .00 12.00 312.00 \
_ 8192.00 13.00 332.00 0
[ 16384 .00 14.00 352.00 4
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3.0 Neocognitron Evaluation

The Neccognitron 1is an adaptive neural network for pattern
recognition developed by Kunihiko Fukushima and his colleagues.
(See K. Fukushima, “Neocognitron: A Self-organizing Neural
Network Model for a Mechanism of Pattern Recognition Unaffected
by Shift in Position,"” Biol. Cybernetics, Vol. 368 pp 193-202,
1980). The Neocognitron has a pattern recognition capability

that is tolerant to scale changes, distortion and pattern

registration (shift). Training of the Neocognitron is
accomplished by an unsupervised learning procedure. It is not
necessary to instruct the network; 1instead, a competitive

learning algorithm creates new exemplars as novel patterns are
introduced during the learning phase. Although a teacher is not
utilized to correct the network errors, careful pattern
selection and repetitive pattern presentation 1is essential to
successful learning. In this sense, the "invisible hand” of the
teacher is part of the learning process. Unlike a human infant,

the Neocognitron cannot make sense out of unedited confusion.

The shift, scale and distortion tolerance of the Neocognitron is
accomplished gradually over a series of feedforward processing
stages. The general architecture is illustrated in Figure 11,
which is taken from a paper by William Stoner and Terry M.

Schilke, "Pattern Recognition with a Neural Net,” SPIE Vol 698,

Real Time Signal Processing IX pp 170-181 (1986).
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The "front-end” of the Neocognitron consists of a bank of

parallel correlators, which becomé dedicated during training to
specific feature elements. The outputs of these correlators are
nonlinear in the sense that only ‘"above average” correlations
are past on to the next stage. So even in the first stage,
decisions are made which reduce the information flow in an
attempt to select the significant features of the input pattern.
After feature extraction, the spatial resolution 1is slightly
degraded in order to introduce tolerance to shift, scale and
distortion. This sequence of nonlinear feature extraction
followed by degradation of spatial resolution is then repeated
in order to integrate (fuse) feature element information that is
spread out over the input image. For example, to recognize a
rose, the separate features for stem, thorn, leaves, petals,
etc. must be combined. Since these feature elements occur at
different places in the input image, it 1is necessary to bring
them together by reducing the spatial resolution, so that higher
order correlators in subsequent stages can detect combinations
of feature elements such as (thorn + stem). After several
stages of feature detection and integration, complete patterns
are detected, with insensitivity to the location, scale, and

distortion of the pattern.

in the 1986 paper by Stoner and Schilke cited above, a model
Neocognitron was implemented on an IBM PC AT. The input image
was limited to a 14x14 array, because of the modest computing

power of the PC AT. A typical application of the Neocognitron

-39~
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b might require a 128x128 input array, and processing times a
{r . ! 1000x faster than the processing time on the PC AT (hours).

X .

K

3& . A fast mainframe, or a dedicated parallel machine would help,
VRS
$Q¢ & but how much? In order to predict the processing speed of a
e

j‘ 3§ larger Neocognitron model on a faster machine, it is necessary
t‘l' b

hﬁ to understand how the operation count of the Neocognitron grows
!". 1)

w ‘ as the scale of the input array increases. This is analyzed in
(, Section 3.2.
,"‘ M
DA .":'
i

;.'l § In advance of this analysis, we are prompted by the sluggish
e speed of the Neocognitron on the IBM PC AT to ask if there are
.q_" .

Eﬁ ﬁ: alternative candidates for SDI target discrimination missions
S

"N

ﬁ: requiring tolerance to shift, scale, and distortion.

Tl
.

-

L,
vz,

N 3.10 Pattern Recognition with Tolerance to Shift, Scale and

Aspect Angle

21
or—

.
o
- § |

WL We now pose an important question: what is a good strategy for

- "

L " achieving pattern recognition independent of shift, scale, and
3

aspect angle? To address +this question, we first characterize

Sy K O
A L’}:.!

‘;i N the problem in mathematical form. The following discussion shows
e e

2v that the image changes resulting from positional shifts, scale
'-J. -

S

- h variations and aspect changes may be accomodated by adding 6
ol

) ]

ﬁ? o extra degrees of freedom to the target image. By searching over
l" .,‘»'

J: ‘ a range of parameters representing the additional degrees of
\

:E.::: g; freedom, the target image may be matched, even in the presence
el
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‘i‘: of a scale or aspect change.
AV
.05 - .
"{_ o~ Consider first the trivial parametric representation of shifts.
SRS
}' Shifts may be parameterized in terms of the horizontal and
A
;;9‘ “). vertical components of shift, X and Ve - In an ideal situation,
t.‘.
::‘:: suppose the coordinates overlaying the target are (x, y), with
BN o

4R . , .
::l.:'s o origin at the centroid of the target. If the target is shifted
Py -~
{_' - by (xs, ys) from the ideal position, the coordinates overlaying
SR

N Y
-u:; n the target are given by
A
Wi
e
e Y x’ = x + x_ and y’' =y +y_

° s s

" ]
“‘:l > Similarly, scale changes by a scale magnification factor of M

)

v
';',-: are represented by
£} J ."
48 D

N x’ = Mx and y’ = My, or

1A, 'g:

o
;.“ x' = Mx + x_ and v’ = My + Yoo

!

oA L | | o
* iy in the presence of a shift. If the shift is removed, and the
l. Ny -
h‘:. $ coordinates are distorted logarithmically, a scale change 1is
)

.’{‘ converted into a shift

' :-;
e %
"';-. - log(x’—xs) = log(x) + log(M).
i
i
:5 i This transformation does not eliminate the scale parameter M.
v“.":: < The parametcer space that must be searched to find a match with
2R v

~.. * 3 . . .
:_'_;.' the nominal target image is Jjust as large as before. The
L)
o W,

; - equivalence between a shift by log(M) and a scale change by a
o

_&- " factor of M illustrates that the dimension of the search space
e ¥

C'ﬂ".
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is more significant than the form of the parameterization.

-
¥
4

0y As the aspect angle of an object changes, most of the change in
gs: ;; the image is a continuous function of the angle change.
¥ IJ._
‘ el
*E) However, when the changing aspect reveals or conceals facets of
) I
\\3 }ﬁ the object, the image changes discontinuocusly in the first
A 1y
gy . . . . . .
F@ ¥ derivative. In mathematical language, the image is a piecewise
Al \‘f‘ N
) L) . R
i ‘T continuous function of aspect angle. Many objects have a
itb ;S limited number of facets, and their appearance may be captured
O
A
;} with a few well selected views. This is especially true of
.' o objects which are aerodynamically streamlined. 1In such cases,
%@ . it is feasible to represent the object image with a reasonable
. A
SIC
R number, P, of discrete models, which Jjointly comprise a
{f B piecewise continuous image model, valid for all aspect angles.
® The jth of these models may be based upon a continuous
K o
) ]
a 23 distortion (x, ¥y) (x', v’) of the image Ij corresponding to
M
a8
%) ! the jth aspect of the object:
iq S
v, I.(x, I.(x’, ).
’-‘Q: z J( V) J( y’')
::: "‘.,.
‘;‘ The coordinates x’,y’ are distorted from x,y as a function of
W 'R
’,Q o incremental changes in aspect angle about +the jth aspect.
iﬁ " Assume (x’, y’) is expressed as a polynomial in (x, y):
B
'} D i 4 i-q D i q i-q
(2 =l XAy g x v v’ =X X by gx v
_\‘* A i=z0 g=0 > i=0 q=0 ’
‘!.«
S
g N
wl A

The degree of the polynomials need be no higher than D=1, and

L
g i the coefficients a, q and b, q will be functions of the three
.. F". ’ ’
N
o
() .
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parameters which define the deviation in object aspect angle

from the jth aspect: pitch, roll, and yaw.

In summary, shift tolerant pattern recognition requires searches
over a 2 parameter space. Scale variations may be accomodated
with one more parameter, and aspect angle changes with 3
additional parameters. The most general capability of shift,
scale, and aspect tolerant pattern reéognition regquires a search

over a 6 dimensional space.

3.11 Alternative Approaches to Invariant Pattern Recognition

By virtue of the shift-invariant connection patterns within
slabs, and the gradual, module-by-module elimination of spatial
resolution, the Neocognitron is hard-wired for shift, distortion
and scale tolerant pattern recognition. Is there a better way
to achieve these properties? For example, why not use back-
propagation to train a neural net for these properties? Or, why
not use the shiftfinvariant property of the Fqurier power

spectrum to obtain shift invariance?

It 1is possible to demonstrate analytically the utter
impossibility of training for shift invariance, distortion and
scale using a learning algorithm 1like backpropagation. The

difficulty arises from the astronomically large number . f cases

on which the neural net must be trained in order to adequately
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sample possible instances of shifted patterns. Similar

arguments can be developed for scale and distortion invariance,
because they too require a search over a 1low dimensional

parameter space.

To keep the argument clear, we restrict the analysis to binary
input patterns. That is, pixels are either white or black. An
NxN input array then admits ZNXN possible patterns. For a
reasonable array size, say 128x128, this is an enormous number,
216384. Assume that the array has a doughnut topology so that
as a pattern is shifted that portion which falls off the edge
re-appears on the opposite side. Then it is clear that a given

pattern can be re-located to any one of the N2 array locations.

If all of these N2 shifted versions of a pattern are classified

as equivalent to one another, there are ZNXN/N2 classes of

patterns, disregarding shifts. This 1is still an enormous
1

number; for Nz128 we have 2‘7384/214 = 216370.

To +train for shift invariance, the +training set should

adequately sample the space of 216370 pattern classes. To put

this in perspective, there are less than 225

seconds in a year,
and so the naive idea of training a network for shift-invariance
just isn’t possible, because it would take too long. It appears

that training for distortion or scale invariance is fraught with

the same problem. We conclude that building in shift,
distortion, and scale invariance 1is the proper approach.
-44-
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However, it is not clear that the Neocognitron architecture is
the best approach, because alternative appréaches such as using
the Fourier power spectrum or invariant moments can provide some
of the desired invariances. Simulations are required to rank
the effectiveness of these alternative approaches under
realistic conditions; for example, the performance of power
spectrum and invariant moment approaches is degraded in the
presence of background clutter. These known deficiencies must
be quantified and compared to the Neocognitron performance. It
is also necessary to discover how the Neocognitron architecture
grows with the size of the input image, so that the speed of the

Neocognitron may be projected for large input images.

3.2 Computational Load of the Neocognitron

In the following discussion, we determine the scaling law and
computational count for one complete cycle of Neocognitron
operation. To do this, it is necessary to introduce some

specialized terminology: module, layer, slab, channel and unit.

Each processing stage is accomplished in a module. The modules
are numbered from 1=1 to 1l=L where L is the last module. The
modules consist of two processing layers, the S layer which
performs correlations and the C layer which reduces the spatial
resolution. Within each layer are multiple slabs. The distinct

slabs comprise separate channels through the architecture.
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Within a slab, all of the connections are shift-invariant, but
different slabs have distinct coﬁnection patterns. Within the
1th module, slabs are numbered from 1 to Kl’ where Kl is the
number of distinct channels through the module. Within each
slab are individual processing units, which perform the
nonlinear summation of activity within their receptive field

(weighted connection pattern).

3.2.1 Scaling of the Neocognitron

The Neocognitron can be considered a multidimensional system.
The input array is N by N; there are L cascaded modules in the
(feedforward) processing chain; and within each module there are
multiple processing channels Kl which terminate in the KL output
classes. How do these parameters scale as the input array size
is varied? What is the 1limitation on the number of output
channels? Finally, how does the computation count scale with N

and K, ?

L
We consider first the scaling of L with N. L is independent of
the number of output channels KL. As KL increases the number of
processing modules remains the same, but each module needs
additional channels +to feed the increased number of output

channels.
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IR
::% ‘ The increase of L with N is a conseguence of the
: g shift-invariance propert}} of +the Neocognitron. As an input
?Sé . pattern is shifted, the output channels must remain fully
i:ﬁ :: connected to the pattern of input activity. At the same time,
“'l) '-_) any motion of an input pattern must be reduced in each module,
\
E ﬁ ~ so that at the last module, there is complete insensitivity to
:$§ FE shifts at the input. This property of the Neocognitron is
{ - achieved gradually. Each module provides a 1little more shift
;\\3 :‘.‘ insensitivity by virtue of the reduction in slab size between
t ﬁ :i the S and C layers in the module. The receptive fields of
!L ' adjacent units on a C slab are made to overlap on the preceding
ﬁ; E S slab so that as activity moves around in the S slabs in accord
’i§ . with shifts of the input pattern, the activity registered in the
Y
( . [j C slab also moves around slightly, but the activity level |is
jEE . nearly constant. This goal is satisfied in an integrated sense
:%S 3 if the receptive fields fall off linearly to zero with the
;?, . distance from the center of +the field, and the adjacent
%g ‘; receptive fields overlap 50%.
\ &

TIX:
A

.2! ~ If the rxr receptive fields in the C slab did not have to
:ﬁ g overlap, then an nxn S slab could be covered by an (n/r) x (n/r)
S

f} ’5 C slab. The regquirement for a 50% overlap doubles the number of
L SR

:; sample points along each dimension of the C slab. Including
e P

e ;: edge effects, a

[ ) »

e o

s: b (2n/r+ 1) x (2n/r + 1)

RS

:  -ﬂ C array is needed for an nxn S array. In the following, edge
i
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i
w,
s effects are ignored, so we take the ratio of the C slab array
' . .
{. n size to the preceding S slab array size as (2/r)2.
ANy o
2
“:h v
DR ;
e The point is that the array sizes decrease geometrically from
‘."’
}7 ‘ module to module. Since the last module has only one pixel 1in
e
;*ﬁ each channel, we have that the number of modules, L must satisfy
L .
. :‘ L
G T N(2/r)" <1, or L > 1ogz(N)/log2(r/2)-
IR
L This criterion fixes L, number of modules, when N and r are
b
':g 2 given. The receptive field size need not be constant from
7 N
N
d module to module. However we assume a single value for r in
_\-f .
DO
2 Q order to make the analysis clear. The receptive field sizes of
‘-. ’\‘
L the S layer should be optimized to the size of the smallest
) s
(" features in the preceding C layer. If they are bigger than
-
s v this, scale and distortion tolerance will be reduced. To
+ 4]
'~ » v_\: . N
g& preserve information in passing from the S layer to the C layer
X

within each module, the receptive fields in the C layer should

)
o—

2
)

1f~ not be significantly larger than the receptive fields in the

preceding C and S layer mapping. In the demonstration we made

‘x

® - on the IBM PC AT, the receptive field size was 5x5, (see the
Ay

S above cited paper by Stoner and Schilke).

R
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2 3.2.2 Operation Count for One Neocognitron Cycle

To organize the operation count, we split the Neocognitron

‘\'.‘: “‘ N . . .
ﬁ.'f computations into two <classes. The primary c¢lass consists of
Z) { multiply-accumulate computations which generate the excitatory
NI o , ,
f& and inhibitory inputs to individual S and C units. This class
S
P
T of operations may be taken into account by counting the
; LS
( - connections between layers. This is done 1in Sections 3.2.2.1
OASERAN
v -
,ﬁ: - and 3.2.2.2. The excitatory and inhibitory inputs to an
:.: :} individual unit are combined by a nonlinear function to generate
1% -
LN
;!‘ the unit output. The operation count for nonlinear combining is
A -
wj :j facilitated by counting the number of S and C units. This 1is
N
;‘§ done in Sections 3.2.2.3 and 3.2.2.4. The results are analzyed
3
3. <t
‘_ ') in Section 3.2.2.5.
-2
A
Pl
D
o
C) L_ 3.2.2.1 Connections Between Modules
:\j - ‘
N T
s
'%: o Consider the connections between an S slab and the NxN input
™
2_ .. array. The output of each unit in the S slab is computed by a
A J'.' .:_: .
.jl - nonlinear summation over the r2 connections of the rxr receptive
e .)._'
DS, field in the input array. The S slabs in the first module have
‘3' the full NxN array size, and counting both excitatory and
L) ':- .
:}- g inhibitory inputs to the S units, the total number of
\ »
\:{ .. connections in the S slab to the input array 1is 2N2r2. The
LS
o first module has several S slabs, numbered from 1 to Kl;
oo
? _-~ “
s )
-f: -
rj-“'
® -49-
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therefore there are 2K1N2r2 connections from the input array to

the first S layer.

In the second module, the S slabs are connected to C slabs of
dimension N(2/r) x N(2/r). So connections from any given S slab
in the second module to any given C slab in the first module are
2N2(2/r)2 r2 in number. There are multiple channels in both the

first (Kl) and second (Kz) modules, so in all there are

2K, K, N (2/r)% @

connections between the first and second modules. This pattern
continues from module to module, and in general the number of

connections from the lth to the (1 + 1)th module is

2 21 2
2Kl Kl+1 N™ (2/r) r-.
If we define KO = 1, this general expression also applies to the
connections from the input (1 = 0) to the first (1 = 1) module.

The total number of connections between modules is therefore
21
2N° r Kl Kl+1 (2/r)

For each connection, the multiply-accumulate operation requires
one multiplication and one addition. The total number of

connections for constant Kl = K for 1 ¢ 1 <L is given by

L-1
2K N% r? + 2k% W% 2 Y (2/m)?t
=1
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The finite geometric sum can be evaluated exactly, but we shall
use the infinite sum because it converges rapidly and in any
event, we are interested in the result for large Neocognitron
models, so L will not be small. For large L, the sum will tend
towards

2 2 2 42 .2

(2/r)°
2K N® r® + 2K N® p»* ——

5 additions, multiplications.

1-(2/r)
Although we have not made any Neocognitron experiments with
variable Kl' we can give a rationale for increasing Kl as 1
increases. With Kl held constant, the number of pathways from
the 1 = 1 module to the 1 = L module decreases by a factor of
(2/r)2 from module to module. It may be possible to conserve

the information flow by increasing Kl+1 according to

K. . = (2/r)% K

1+1 for 1=1 to L-1.

l ’
This is probably overly optimistic, because the information
being discarded by the reduction in spatial channels is not

equivalent on a one-to-one basis with pattern classification

information. However, we can use this relation for the growth

of Kl as an upper bound. The relation assumes the number of
connections remains a constant K2 N2 r2 between modules 1 = 1 to
1 =L -1. So a bound on the total number of additions and

multiplications required by the connections between modules is:

2KN2rd + 2(K2N2r2)(L - 1) additions, multiplications.
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:; The only difference between this upper bound and the previous
EL W 0
1 g expression is that:
N,
()
o )
“ : (L - 1) has replaced (2/r)d/(1 - (2/r)2).
) L

3.2.2.2 Connections Within Modules

~

3 -,

) '41‘ t

.\ )

s )

q _ Within the lth module, there are

} i
S f

. 2k, N2 (2/r)%t r?

) : ‘A 1

ST,

e connections between the S and C layers. The factor of 2 comes

T

U {

f{ ", from the two types of connections, excitatory and inhibitory. !

v S j
4

? There is a factor of Kl to include all of the channels, and a

K

factor of N2(2/r)21 which is the number of units in each C slab.

PN Y
-

\ 3
;: s Finally, the factor of r2 comes from the size of +the C unit 4
A
?t - receptive fields. Each connection requires a multiply; the 3
! number of additions is precisely one less than the number of 4
L multiplications. In the 1limit of large N, this difference 1is !
. ¢
; b r ¢
b~ negligible. '
1]
L] v
Y 3
e X :
; Summing over all modules from 1l=1 to l=L, there are a total of X
E) \
! - t
'& &- L !
e 2 2 21 P v s . !
9 2N ¢ Y K,(2/r) multiplications, and
b 1=1 y
e 2 .
J ' f
A ¢
T 2 2 & 21 . :
Lo 2N r“ ) K, (2/r) additions. -
q - 1 '
a 1=1 X
& }
L :
': " '
198 *
I, \
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If Kl is a constant for 1 = 1 to L, we again take the limiting

expression for the geometric series sum approximate for large L

to obtain

) 5 (/m)F .
2N r™ K ———————E' multiplications and,
1-(2/r)
s o (2/0)%
2N® r® K — 5 additions.
. 1-(2/r)

In the case of K1 = K(r/z)z(l"l) for 1 <1 < L, all of the terms

in the sum have the same value, K(Z/r)z, so to the sum is:

2 2

Ly
2N rzKL(Z/r)° = 8N“KL additions and multiplications.

These operations occur with each activation of the feedforward
processing cascade.

3.2.2.3 Nonlinear Combining Within Modules

Each of the C units in the 1th module combines its cumulative

excitatory and inhibitory inputs (E and I, respectively) in a

function of the form

1 +E
LIMITER[Tfrjr 1].

The LIMITER function is defined as

LIMITER(x) = _ = -~ for x > 0; LIMITER(x) = O for x < O.
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The inhibitory input I is computed separately for each position

in the C slab,.and these values of I are used by all of the ¢
slabs in a given layer, so once the computation of 1/(1+1) is
made for one slab, it may be stored for the other Kl—l slabs in
the 1th C layer. There are N2(2/r)21 units in a C slab in the

1th C layer, so this computation requires
2 21 . s s
N®(2/r) additions and divides.

In the definition of the LIMITER function, there is an addition
which may be identified as +a, and in the argument of the
LIMITER function, there are additions which may be identified as
+E and -1. These 3 additions are performed for all C unitc in

the 1th C layer. This involves Kl C slabs in all, requiring

2

3N Kl(2/r)21 additions.

The multiplication of (1+E) by the prestored 1/(1+I) value is

also performed over all C units in the 1lth layer, requiring
NzKl(Z/r)21 multiplications.

The LIMITER function definition involves a division, x/(x+a)
which must be performed over all C units in the 1lth layer,

requiring

N2K1(2/r)21 divisions.

-54-

A
!,‘D’o‘l‘-




5
I? ]

L
22

‘-
5

;

s 3
X

-
=,
-

N
ol

o o5
=

>

X
Tws S5

Cs,
5

Lt

2

0 I @
5

-ﬂ'.‘:, .
% -
K5
S b
i3

S
pro -

el 4

BT W K,
\ Ve
OO AN

-~

; AR L OO AGACY LV A OO IGSE
UM ’t'- A‘-‘l’t.l.!.‘ - l':‘l ‘.l A a‘l 2 l’, \-’l !’(‘o l‘!‘a' Eh \ ) A Y u.l'a.

Adding terms for the addition operations, the nonlinear

combining operations for all modules contribute a total of

2 & 21

N® 20 (3K, + 1)(2/r) additions,
1=1

2 & 21

N 2 Kl(Z/r) multiplications, and
1=1

2 21
N® 3 (K, + 1)(2/r) divisions.
1=1

We are considering two types of Neocognitron architecture, those
with constant Kl = K for 1z1 to L, and those with increasing K
specified by Kl+1 = K(r/2)21. The increasing K case provides an
upper bound to the nonlinear combining operation count. Summing

the above expressions for these two cases provides the following

results. For constant K,
5 (2/r)2
(3K + 1)N — additions,
1-(2/r)
, (2/0)%
K N ] multiplications, and
1-(2/r)
(2/r)2
(K + 1)'——-——“5 divisions.
1-(2/r)

N STRYe ST « TSRS
r e N R R MR T (R OO B D DK RN
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vy
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R
3; In the increasing K case,
A'n
L
el 2 2 . .2 (2/r)%
ig - 3KLN™"(2/r)" + N — 5 additions,
, o 1-(2/r)
H :,p_
» 2 2
:‘ ﬁ? KLN™(2/r) multiplications, and
e 2
e 5 9 o (2/r) o
:::: t: KLN®(2/r)¢ + N—————é divisions.
¢ 1-(2/r)
(
e
1"'
Yo
g R
: 3.2.2.4 Nonlinear Combining Between Modules
%t . Each of the S units in the lth module combines its excitatory
i‘. E and inhibitory inputs with a function of the form
\
)

1 + E
‘C)RA“P[l ¥ (c/<1+c))(b>(1>'1] '

ALK

-’-""

Ur
L=

‘l

.ﬁ The RAMP function is defined as

e o

b

e RAMP(x) = x for x > 0; RAMP(x) = 0 for x < 0.

(R

N, at

:} o The multiply-accumulate operations considered in Section 3.2.2.1
S

:'( ;-: generate the E and I inputs to the RAMP function argument, but
L a "

.2; the operation count in Section 3.2.2.1 did not take into account
[0 "

D e

h{ Q. the fact that the inputs to the multiply-accumulate operation
:ﬁ Py for I are the squared outputs of the preceding C units in the
.’ (1-1)th module. There are N2(2/r)2(1_1) C units in each slab
Yl

e Lo

Rl

E) "
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in the (1-1)th module, and so there are

(1-1) multiplications for the C unit output.

Nzlzixl_l(wr)z
In the argument to the RAMP function, the quantity ¢ is constant
within each layer, and b is constant within each slab. The
product (c/(1+c))(b) may therefore be computed once per slab,
and this factor and the initial factor of (c) involve 2
multiplications per S unit. Similarly, there are 3 additions, 1
division and 1 sign comparison (for the RAMP function) and 1
square root (the I 1inputs are RMS values) for each S unit.

There are

NZ(Z/r)Z(l—l)

S units in each slab in the 1lth module, and so the nonlinear

combining operations in the S layer of the lth module require

L _
BNZZ Kl(2/r)2(l 1) additions,
1=1
2 & 2(1-1)
2N° " K, (2/r) multiplications,

1=1

L
N Y Kk, (2/0)2(37D) aivisions,
1=1

L

NZZ Kl(Z/r)z(l_l) sign comparisons, and
1=1

2 & 2(1-1)

N Z K1(2/r) square roots.
1=1
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In addition we have the multiplications identified above from
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the squaring operations in the C layers.

DO~
e
A LS . . . .
*: ' We are considering two types of Neocognitron architecture, those

with constant Kl = K for 1=z1 +to L, and those with increasing K

h

o
KN specified by K = K(r/2)21. The increasing K case provides an
ﬁ% f: upper bound to the nonlinear combining operation count.
( ! . Evaluating the above expressions for these two cases provides
LR
::j AN the following results. For constant K, the operation count for
-
;:j &: nonlinear operations between modules requires
Q
»,
b X 3%k ——L—  additions,
" ' 1-(2/r)
) 2 1 2 2, (2/0)°
iy 2N°K — 5+ N® + N°K 5 multiplications,
3 1-(2/r) 1-(2/r)
ffg:; 1
Ry N°k ——— divisions,
fﬁ‘ | 1-(2/r)
e
::j i NZK ___—l_—ﬁ sign comparisons, and
P 1-(2/r)
f\ W w
.‘.‘I
o R N2K ____l__§ square root evaluations.
DI 1-(2/r)
2
i .
RN For the case with increasing K between modules, the operation
RS e
:) count for nonlinear combining between modules requires
N Y
- L% 2
i 3N“KL additions,
¢ ." “.-
A ON2KL + N2 + N°K(L-1)(2/r)? multiplications,
w N2KL divisions,
s .
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NZKL sign comparisons, and

N2KL square root evaluations.

3.2.2.5 Conclusions on Neocognitron Computational Load

In both +the standard Neocognitron architecture, in which +the
number of channels K 1is held fixed from module to module, and
the hypothetical architecture in which the number of channels
increases as K, = K(r/2)2(1_1) for 1 < 1< L, the dominant
computation is the multiply-accumulate operations which support
the connections between modules. For constant K, the operation

count summed over 1 for these connections is:

1

2N?rPK + BN%KZ———— = aN®rPK + 8N°K®  additions,
(1-(2/7) multiplications.
For typical values of r = 5 and K = 100, these terms can be

combined to give the approximate growth in computation with the

parameters N and K as either

2,2

8.5N°K? or 400N’K additions, multiplications.

For the increasing K case, there are 2N2K2r2L additions and

multiplications, with L growing as logz(N)/logz(r/Z). (See
Section 3.2.1.) Using the same values of r = 5 and K = 100 as

before, this result may be written for comparison with the
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Al constant K case as approximately
1 G

R 50N?K<1og, (N) or 5000N°Klog(N) additions, multiplications.
v?% v This comparison shows that the hypothetical increasing K
' 1 architecture has a computational locad which is greater than that

o for the standard Neocognitron architecture by a factor of

2
W &
f

s
1,8, Ay

AT
l.““. 3

roughly Blogz(N) to 1210g2(N).

3

Pd
s

by Since the operation counts for both architectures grows in a

reasonable rate with the number of pixels in the input window,

i
T

® NZ, the Neocognitron is attractive for practical values of N,

) -
: j ): say 128 or 2586. Scaling up the N = 14 model which we
\‘

4

‘?ﬁ demonstrated on an IBM PC AT to N = 128 will increase the

h]

computations by roughly 100x. A response time on the order of a

-
’d
L

NN second for the N = 128 Neocognitron will require 100,000x the

L 'f'

oo processing speed of the PC AT. This is feasible with parallel

s L; processing.

YT
" &
s W )

@ x's 2
‘.hJ e AR ® )

il
< T,

- -60-

¥ s e AT . s - , : O T Rl P K , - "
n¥ e et it e I L A e Tt o R R Gt L R Rys,




)
‘ 7".
W o
N :‘
ﬁ% ) 4.0 AC-coupled Retina with Cooperative Receptors
i A
L
W R
:3 Today’s supercomputers are in many respects greatly inferior to
N :,,-
A, s ) . , . . .
o, the brain. Language learning without instruction, fluid,
T
') L content-addressable memory and the natural ability of humans to
4 +
Do w . .
|.é perform face recognition are examples of the superiority of the
)
0 . S sas .
$: o~ brain. The capabilities of +the brain are all the more
P
_ remarkable when its size, weight and power requirements are
S48 N compared to those of computers.
o
Lo
@ These attributes of the brain compel us to try to understand its
3 "_4' .
Lﬁ :ﬁ form and function. A natural place to start 1s the most
~7 accesible part of the brain, the retina.
[ -~
( B
\J N.
}" o The human visual system 1is adaptive in many diverse ways. For
N ] _y.:
hofa, 7 example, we perceive colors fairly well even though the spectrum
l‘ of the illuminant changes sharply when going indoors or
o 4
i:: outdoors. While reading, we adapt to different fonts and type
N
- ) * »
km N sizes. We "see” fairly well under both moonlit and sunlit
L40
LAY conditions, and we frequently must drive cars with sunlight or
#® A l\:
ot headlights shining in our eyes.
"
: \§ oy
L) ."'_
YR
:, In the "computer-vision" style of information processing, the
B,
:}:‘ﬁ front-end of +the system, a camera and analog-to-digital
A
:E - convertor, is selected to capture the scene intensity and
.Q spectrum faithfully for subsequent processing. Not so in
) .
ﬁ w5 the biological style of information processing. Even at the
oot N
DU
D »
{
L - -61-
-
! v % - ~ L0t - ow " V.SV LR TR T T M T AT 6T a0 AT M BT AT A AL e S e
’l ‘ s } ,...l'.-':‘! .?,:.!.l., (1.5 188 b, l';‘:’,‘:‘!‘l" l..n"', ~ . 03'5’. ,-l .‘ !.l’ L% (LA -'“ . '- | I‘ 'l ’- ‘n ;’l ‘ w"««l £) 'n (L0 VS L .a.



X

@ Y
vz

L,
g
Pl i

o A
- 2L,

\ AR
lr'~

ated

b Xa
"
i
D
P N
oy, 2
W
M
e
«,
e
o', -
PRI
LY
."' s
.
[ a " .
AR
A
.
2

x
s

O o O 'l"
pap aiin RS
: -

..L) - g

2

Y e
X
'?~.§
>
o ..
OSEN
g N
"
e
~7
d
%?
®
;o
‘\" \).
SRS
A
B ',,
YOREN
LR
®
.."
J\ -
Y’ )
gy B
"
s
o -
@
1
* )
At

i)
]
DRI

photoreceptor level, our visual system 1is responding to the
relative image brightness, rather than fhe absolute brightness.
In solid-state focal plane array cameras, "fixed pattern noise"
caused by inhomogeneities in the detector material or
fabrication must be corrected by special "field flattening"
hardware or algorithms. Not so in +the human visual system.
Yes, the retina has inhomogeneities-- like +the blood vessels
which obstruct the retina, but we don’t see fixed pattern noise
because the retina only responds to changes. Eyve tremor
provides the necessary modulation to refresh the scene on the
retina, while the AC-coupling of the retina filters out fixed

pattern noise.

The retina is part of the brain, and it is likely that the style
of information processing known to occur in the retina is used
elsewhere in the brain for diverse functions. For example, the
natural ability of the retina to eliminate fixed pattern noise
can be recognized more generally as a form of delta modulation

to achieve bandwith compression and maximize information flow.

The retina is therefore significant both as a new, biological
paradigm for imaging sensors, and for the opportunity it
provides to learn about the brain. These two reasons provided
the motivation to study a retinal model developed by Michael H.
Brill for his Ph. D. dissertation at MIT under Professor J. Y.
Lettvin. We improved the computational approach used in the

model (called IRIS) so that it became possible for the first

zzzzz




1\\ time to scale up the retina to interesting array sizes (up to
v

_ ﬁ 266x256). We did this first in FORTRAN on an IBM PC AT, and
;: . later on a SUN Workstation, and a BBN Butterfly machine. The BBN
;; ;: Butterfly is a parallel machine. Using 16 processors on the
l“ %‘ Butterfly, the model ran 25.14x faster than on the SUN. This
QQ * work 1is reported separately in an  appendix, PARALLEL
‘o E' IMPLEMENTATION OF IRIS. Although this is a significant speedup,
( - the Butterfly is a coarse-grained parallel machine, and the IRIS
.f;'\; E‘ retinal model involves local processes, suggesting that it is
U

most naturally implemented as a special purpose analog or

T

_" digital chip, as Carver Mead has done with his retinal model.
' “r,

--: I ("A Silicon Model of Early Visual Processing," by Carver Mead
b and M. A. Mahowald, Neural Networks, Vol. 1, pp91-97, 1988.)

L4

Tt

The IRIS retinal model has the capability to adjust

L
o

spatiotemporal resolution to the prevailing light level, thereby

- % combating photon noise. This property 1is known as adaptive
;,'E _. resolution. It also has an automatic gain control (AGC)
:E ‘: capability to adapt the set-point of dynamic range to the local
V&

9} ‘. average light intensity. This property is known as adaptive
:?: contrast olut ‘

gj B IRIS receptors have three-state activation kinetics with
\:. ” short-lived intermediate photopigment states. The model is
o

_EE :.‘_‘ "AC~coupled” in the sense that only temporally varying
,,' light/dark gradients maintain a sensory excitation. The
’ :‘_ response of the receptor cells is coded as voltage, and the
0-_ -63-
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receptors are resistively coupled. This arrangement provides an

automatic mixture of time/space integration: a) for high photon

‘,..‘

™

flux, each receptor cell responds rapidly, and the neighboring

P
-V

-
-

cells are decoupled, providing the highest spatiotemporal

%

resolution; b) for low photon flux, cell temporal response 1is
slow, and neighboring cells are coupled to give Dbroader

spatiotemporal integration, enhancing 1light sensitivity at the

KL Qnn Y Y

expense of resolution in space and time.

(5a'd
L

i
.

In the mcdel retina, transduction of 1light into receptor

response is the result of ionic photoconductors embedded in the

- F R
RPAAWY S A

receptor cell membrane. Depending on its instantaneous state,
each photopigment molecule in the membrane can open a conducting
channel to either of two monovalent cationic species. When a
photon is incident, the receptor quickly opens a channel to the
first of these species, then slowly closes this channel and
opens a channel to the other species, and finally returns to a
nonconductive state (by the addition of metabolic energy). The
ionic species are driven by membrane voltages in opposite
directions, so the receptor acts in a ’“push-pull"” way. As 1in
human vision, the voltage response is 2zero to a sustained
(steady-state) light; the response versus log-intensity function
shifts to the time-averaged intensity, thereby giving the
ardaptive contrast sensitivity desired for a visual system with
limited C(dynamic range. Also, the receptor’s response is
governed by photopigment kinetics whose rate increases with

light level. Hence, the model retina has adartive temporal

. -
b @ tT2 1T 2 A AL @Y,

_64..

AL ]

.- . e P P N " P o e
‘! N .',"-‘- J\J‘ 4\) .n".-.‘. Ao .f\ S .}-‘.r a‘.r _.r N _y.r% .r_‘..-"a..r_ .-.,'.. ,.-(- ‘ ,,ﬂu.r,\.h.\.r,,‘.r\» ER -_h." \“ '."‘




s

f?ﬂ’u{

4
2

Ve

L

RO

:. .‘" P
.*@J@ﬂ'

-

TSI
PN
AT R

<@

N Yy

P s
.l

PR

‘_. '.n ,
.

NP S
.

-‘..-'
[N N

A
LA A

LA

B

3

D
Nals

ety K7
B

resolution-- as desired to defeat photon noise. The
photopigment kinetics are described by a set of coupled

first-order differential equations provided in Figure 12.

The adaptive time behavior of the model receptor has
another helpful property borne out in our computer
simulations. A pulse of light causes a response that decays
slowly to steady state; however, a pulse of darkness produces
only a short-duration change of response. This is fortunate for
an eye that has to blink. See Figure 13 for simulations of the

model receptor response to changes in light level.

The adaptive temporal resolution of the model retina has a
simple counterpart in the spatial domain. The model retina is

tiled with a lattice of photoreceptors, wired together with a

passively conducting grid of constant conductivity. The <visual
signal for each receptor --a transmembrane voltage-- is now
modified by lateral interaction. See Figure 14. When the

retinal illumination is (and has been) very low, most of the
current passes between receptors when light hits one of +themn,
and the receptors are functionally coupled. However, when the
eye is light-adapted, the receptors tend to keep to themselves;
very little current flows between them. This behavior shows wup
as an "iris"” of lateral influence, contracting in the presence
of light and dilating when light is removed. It provides a
simple mechanism whereby visual acuity can be traded off against

light sensitivity as the prevailing light gets dimmer.
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= uncoupling in bright light
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Results of an IRIS simulation provided in Figure 15 demonstrate
this intensity-dependent spatial resolution. The test pattern
is split 1into twe portions along the diagonal. Above the
diagonal, a pattern of black and white squares recedes into the
upper left corner. Below the diagonal, there is a cosinusoidal
pattern with linear FM modulation in the radial direction (a
Fresnel pattern). The limiting resolution is determined by the
discrete photoreceptor sampling at high light levels. This is
demonstrated in Figure 15a (where the peak light level is 0.12
of that level which would bleach ten percent of the photopigment
into a state requiring a metabolic input before returning to the
ground state). At one tenth this light level, (see Figure 15b)
a smail decrease 1in resolution is evident because of spatial
averaging among nearby photoreceptors. A further ten-fold
decrease in the light level results in the obvious reduction in
spatial resolution shown 1in Figure 15c. Such intensity

dependent resolution is also found in human vision.

In common with human vision, the model retina displays Weber’s
law (proprotionality of increment threshold to a pre-existing
background intensity over a much greater intensity range than

the instantaneous dynamic range of the receptor.

IRIS was designed to give repeatable response in dim light to
visual scenes +that are nominally the same except for photon
noise. The repeatability was brought about at the expense of

spatiotemporal resolution. Repeatability of percepts from the
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same reflecting objects is a necessary but not sufficient
condition for lightness constancy and color constancy --the

illuminant-invariant assessment of reflectance information.

Further detail on the IRIS model may be found in the paper
“"Retinal model with adaptive contrast sensitivity and
resolution,” by Michael H. Brill, Doreen W. Bergeron, and
William W. Stoner in the December 1, 1987 issue of Applied
Optics, a special issue devoted +to neural networks edited by

Gail Carpenter and Stephen Grossberg.
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6.0 APPENDIX

PARALLEL IMPLEMENTATION OF IRIS
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This document describes the implementation of the fortran
program, COLORP , on the Butterfly multiprocessor. The COLORP program
is a computer simulated trichromatic retina ( called IRIS ) as
described in Retinal Model with Adaptive Contrast Sensitivity and
Resolution by MIchael H.  Brill, Doreen W. Bergeron, and Willlam W.
Stoner. The purpose of this experiment was to show the reduction in

g

PR Y

- - K’
»

> resolution of the output image as corresponding input image light
. ﬁ . levels were reduced, and to increase the runtime speed of the program
0~ &n by implementing on a parallel processor.
e~
S

An unoptimized version of the code was tested on the SUN
uniprocessor which did produce output images that demonstrate the
reduction in the spatiotemporal resolution as the 1light 1levels were

o«

-

one-half that of the maximum intensity value. Then listed is the chip
size, min and max input values, and min and max of the resulting

o reduced. Table 1 summarizes the results of the 7 test runs performed
W on the SUN. Column 1 is the run number. Columns 2 and 3 1list the
e initial phi and intensity values used. The initial phi value is used
- to calculate the initial values of the three-phase receptors and is
o -

‘l
.

'O j& output arrays. Runs 2, 3, and 4, which showed the greatest difference
" - in the resolution of the output arrays, were rerun on a 256 x 256
hﬁ image and photographed. The results are shown in figure 1.
o Figure 2 is a diagram of the calling sequence of the uniprocessor
g, version of the program. Each routine is briefly described below:
;FI COLORP - Driver which controls flow of the program and produces
A jitter effect. .
. PICL1 - Provides an n x n picture as input to the retinal array.

_ b The pattern lying above the diagonal is a series of squares decreasing
o in size. The pattern lying below the diagonal is a cosinusoidal
e - fresnel zone plate.

Lo -

s KNUTH1 - Random number generator used to determine jitter effect.
.
.‘) .' BLEACH - Finds change in photo-chemical species of three-phase
AR receptors as functions of quantum cath phi.

:j o SYNADI - Performs syncytial lateral interaction by using the
NN alternating direction implicit (ADI) solution of partial differential
AN equations.( from Numerical Recipies)

~Q, - TRIDAG - Solves tridiagonal system of equations.(from Numerical
AN Recipies)

N ‘s IMGOUT - Writes an image out to a RAMfile.

e RAMGLUE - Fortran-C Interface to BBN ramfile system ( Mike Ingram
o SAIC Tucson)
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RAMFILE SYSTEM - File handler written to maintain ramfiles on the
Butterfly system. (BBN) The RAMfile system was simulated on the SUN.

The SUN version of the program was modified in the following ways
in order to optimize the code and minimize its size for implementation
on the Butterfly.

- Only one call to synadi was made rather than twelve.

- Portion of code which produces jitter indices was replaced by a
do loop.

- Bleach routine was replaced by a worker routine as were two
sections of synadi which set up input vectors to the tridag routine
and call that routine.

- All arrays referenced in the worker routines were scattered
throughout butterfly memory in order to reduce contention.

- All frequently referenced variables appearing in worker
routines were shared among processors ( local processor private copies
were made .)

- Output data word size was reduced to integer*2 because values
fall between 0 and 255.

~ Jitter indices are passed to the bleach routine, eliminating
the need for an additional array.

- Third dimension of A array in bleach routine was replaced with
a temporary variable.

- All arrays were reduced to two dimensional in order to be able
to allocate them.

Parallel Implementation :

Three portions of the code were identified as targets for
parallel implementation. The first is the bleach routine, which finds
the changes in the photochemical species of three-phase receptors by
computing coupled differential equations for each pixel. A generator
calls the bleach worker routine once for each element of the image
array thus a GENONA call is used.

Two worker routines were extracted from the synadi routine.

1.) Bodyl which computes input vectors for the tridag routine and
computes a solution for PSI, one line at a time.
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2.) Body2 which also computes vectors for the tridag routine and
computes a solution for V and PSI one line at a time.

22

A generator calls these routines once for each row of the image
thus a GENONI call is used.

.

In order to measure the timing of the cocd2 on various node
configuration, it had to be reorganized . The new calling schewe is
shown in figure 3 and the new subroutines briefly described below.

2

TIMECOLORP - Driver for the timed version of the program.

=

INITPROBONCE -~ Contains all memory allocation and matrix
scattering calls. Makes the call to picll to produce the input array.

’ INITPERRUN - Initializes arrays to pre-bleached state.

CxK

EXECUTE - Portion which does the actual computation. It performs

- all generator calls. This is the only portion of the program which is
A, timed.

PRESULTS - prints results of time tests.

The program was run on every possible number of nodes ( 1 - 26 ).
The timing routine reports the time it took the code to execute, the
- number of processors it used, the effective number of processors, and
N the efficiency . The effective number of processors is equal to the
g time it takes one processor divided by the time it takes n processors °
, ( n isthe number of processors being used.) The efficiency equals the
.; effective number of processors divided by n processors.

A summary of the testing results is shown in table 2. Tabulated
is the number of processors, time in seconds that 1is took the
algorithm to run, effective number of processors, and the efficiency.
Figure 4 1is a plot of the time it took the program to run versus the
number of processors it ran on. Note that the time it took to run on
II one processor was 4137.98 seconds, and that was decreased by a factor
- of 7 when the number of processors was increased to 2. The

significant decrease can partially be attributed to the fact that even
though only one processor is being used to run the program, the data

Zj is scattered across all available nodes ( 26 of them.) The one
- processor must make many switch calls to access the data which is too
numerous to fit on one node thus producing an I1,/0 bottleneck. There )
- may also be some unidentified overhead computation involved in the
N initial run of the routine, perhaps some memory management
initialization which is not locatable at this high level of testing. N
. Figure 5 18 a rescaled version of figure 4 with the first data point 1\
N eliminated. The fluctuation in runtime is more apparent in this plot ;

as is the tendency of the runtime to decrease as the number of
processors approaches 16. The runtime then increases as more
P processors are added above 16. The index generator calls to the

™o ~
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'\-{x o worker routines Bodyl and Body2 were made 256 times and the array
\::' -.:f generator calls were made on a 256 x 256 array, so it is not
P surprising that the statistics show the program running faster and
~% most efficiently on a configuration of 16 nodes.

HQY .
{ B Figure 6 is a plot of the computed effective processors and a
Y linear plot. It is interesting to note that the 2 curves intersect at
Y S the data point for 17 processors. The effective processor curve
\ e Y reaches a maximum value of 17 at the 16 processor point. The data
*:j ~ also shows that 11 processors would be an efficient number to work
e with for this algorithm.

! (
-:._- f:{ Figure 7 is a plot of processor efficiency vs number of
- processors. The efficiency steadily decreases after the efficiency
)Z - peak at the two processor point.
N

Lot Timing was also performed on a comparable version of the SUN
( code. There were slight differences between the data structures used
ey, = in the two versions, but nothing which would amount to any major
SIS processing time differences. Processing of a 256 x 256 image on the
b SUN took 1:37:02 or 5822 seconds. When compared with the single
K processor run on the Butterfly, the SUN took (5822/4138 ) = 1.4 times
ﬁ_} 0y longer to run, In the two processor case the butterfly was
: = (5822.0/581.3) = 10.0 times faster than the SUN. The greatest speedup
d factor occured in the 16 processor case which ran (5822.0/231.58) =
L o 25.14 times faster. There still remains the discrepancy between the
2 b1os numbers of the first two timing runs performed on the butterfly. More
et rigorous timing procedures may be able to identify a source of.
¥ . overhead computation involved in the first run of the timing series on
¥ v the Butterfly.
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Table 1

SUMMARY OF 7 SUN RUNS

RUN PHII INTENSITY SIZE INPUT-RANGE V~-RANGE E-RANGE

1.0e-03 32 1.01e-03 0.712274 0.728196

1.5e-04

. 1.00e-05 -0.753071 -0.881850 i
'~ NS
L output very bright tc

- \
- ,
™ 2 5.0e-04 1.0e-03 32 1.01e-03 0.337748 0.337009 €
(= 1.00e-05 ~0.960784  -0.960881 >
“ ('-' -
e slightly blurred image 0
. &
L, l.* r
ol ,3: 3 5.0e-05 1.0e-04 32 1.Cle-04 0.314754 0.337013 3

. 1.00e-06 -0.654061 -0.960881 []
S blurred image o
- 2
N 4 5.0e-06 1.0e-05 32 1.01e-05 0.160709 0.337014 '_:*
L 1.00e-07 -0.148879 -0.960880 .
‘_ n very blurred image !“
Z 5.0e-07 1.0e-06 32 1.00e-06 5
5 1.00e-07
. : ; ; . ]

- maxits exceeded in synadi ( maxits = 1000 ) N

, ‘ :\

?: 6 S5.0e-03 1,0e-02 32 1.01e-02 0.332361 0.336964 »

o 1.00e-04 -0.959805 -0.960886 R,

b fairly sharp image '
k- <

‘»

- 7 S5.0e-02 1.0e-01 32 1.01e-01 0.335810 0.336513 -

N 1.00e-03 -0.959701 -0.960939 A

. very similar to output of run 6 »
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processors time effective efficiency
(secs) processors
1 4137.98 1.00 1.00
2 581.3 7.12 3.56
3 428.88 9.65 3.22
4 354.8 11.66 2.92
5 308.99 13.39 2.68
6 279.48 14.81 2.47
7 261.59 15.82 2.26
8 258.2 16.03 2.00
9 243.02 17.03 1.89
10 244.67 16.91 1.69
11 233.12 17.75 1.61
12 241.43 17.14 1.43
13 242.67 17.05 1.31
14 237.73 17.41 1.24
15 243.3 17.01 1.13
16 231.58 17.87 1.12
17 244.37 16.93 1.00
18 255.03 16.23 0.90
19 253.58 16.32 0.86
20 244 .61 16.92 0.85
21 271.61 15.24 0.73
22 257.11 16.09 0.73
23 273.68 15.12 0.66
24 270.42 15.30 0.64
25 261.34 15.83 0.63
26 290.43 14.25 0.55

Table 2 Time Test Results
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