
THE EFFECTS OF EXPLOSIVE SHOCK WAVE PROPAGATION
THROUGH A SOLID STATE MOLECULAR STRUCTURE

0) N 0o ~~ 3,1&
IN

o

DT!C

S JUL 1 21988

APPROVED:

Robert E. Watt

Richard A. Friesner

James E. Boggs

" '" - N " STATI , A, " '

Apr*~ f0 lil-AiC~



THE EFFECTS OF EXPLOSIVE SHOCK WAVE PROPAGATION
THROUGH A SOLID STATE MOLECULAR STRUCTURE

by

David Edwin Clark, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF ARTS

THE UNIVERSITY OF TEXAS AT AUSTIN

August 1988

pm."
-p.0

P'- 5Trf 0v % ,:- -4 -

_*2_2 -. 0 . .....



TABLE OF CONTENTS

Chapter Page

List of Figures iv

1. Introduction 1

11. Method 5 %

Ill. Discussion 26

IV. Conclusions 33

Tables 36

Figure Captions 39

Figures 46

References 125

Vita 127

D 7*1C

copyI

NTIS GRA&I- i
D'TIC TAR E
U',-1nouwced S

DI t 1,1caon/

Ill , 0i it o e

nnd/o6

Dis Jul



•I
LIST OF FIGURES

Figures 1-2 Model

Figures 3-5 Classical Positions

Figures 6-11 Classical Bond Energies

Figures 34-61 Quantum Atom Positions

Figures 62-69 Mode Energies

Figures 70-79 Quantum Bond Energies

IVI

V

!mI
:'.,:

S

S

r,,.r,,

S



I. Introduction

Shock waves have been studied in the past in order to provide insight to the

energy released during an external shock to a system and the resultant physical and

chemical reactions which occur. A detonation may be defined as a supersonic wave

which propagates throughout a crystal lattice structure, and whose energy is released

during an exothermic chemical reaction. 1 It is convenient to classify a detonation into

two categories, the first category being defined as the shock front which is

characterized by a sharp rise in energy and agitation over time occuring on the order of

picoseconds. As the shock front passes through a lattice, an almost instantaneous

change in atom position and momentum may be observed. The second category is the

shock wave which is usually characterized by the slowly decaying nature of the wave

until thermal equilibrium has been established. 2  The shock wave transfers energy

through the lattice in a much slower fashion. Time delays are experienced with respect

to atom displacement as well as energy transfer. Shock waves propagate through most

materials on the order of 2500 meters per second ( 5.49 x 10-2 ao/ps ).I There has

been considerable attention in the past devoted to the examination of shock waves and

whether they may be classified into two seperate categories ( first and second sound).

This idea has been disputed in the literature for several years. 3-8

Shock waves produce a variety of anomolous optical and electrical properties as

well as nonthermal chemistry, and they are capable of producing bond dissociation,

phase changes, and a redistribution of vibrational, electronic and rotational energy

within a lattice. Shock waves are also unique in that energy may be deposited to

vibrational modes of a molecule under nonequilibrium conditions. 2
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Early studies concerning simulations of shock waves propagating within crystal

lattices were restricted to classical dynamics with finite dimensions, consisting of non-

oscillatory atoms prior to the introduction of a shock wave.3-4 These studies were

primarily aimed at understanding the shock wave, and its velocity and kinetic energy

effects upon a crystal lattice. Later studies 5-8 devoted considerable attention to the

characteristics of the shock wave and the various phases of velocity transformations.

Classical studies have been completed on systems which were initially at a nonzero

temperature (zero temperature being defined as no oscilatory motion),9 -10 and on

models which incorporated deformations within the crystal lattice. 11-14 These studies

were concerned with affects of free radicals, mass defects which were randomly

4 . dispersed, and mass defects of heavy and light impurities on shock wave propagation

throughout the lattice.

There have been few quantum mechanical studies concerning shock waves.

Dancz and Rice derived expressions for the quantum mechanical equations of motion

for coupled anharmonic oscillators. 15 There have been other studies which were also

4.v_ devoted to deriving equations of motion for quantum systems by the introduction of

raising and lowering operators for interacting Morse potentials. 16 Other studies

examined the probability of occupation of excited states and the state to state energy

flow in which energy became trapped in excited states. 17

Experimental work using picosecond lasers has also been done in order to

understand shock wave propagation through lattices.2 In this experiment, a

picosecond laser ( capable of 1012 Watts/cm 2 ) imposed a shock upon a sample of

water which was analvzed using Raman Spectroscopy. This was the first experiment

N. ,1111, 1 1



in which energy transfer from a macroscopic shock to intermolecular states has been

observed.

Most of the previous studies have been devoted extensively to the classical study

of shock waves, and the subsequent interface with a lattice model using classical

mechanics. Much work has been devoted to examining the shock wave and the

. resultant energy transfer associated with it. Recent studies [Wyatt and Marston] have

been devoiecrt-tdes.ribing a shock wave effect quantum mechanically in a one

dimensional crystal lattice. This work was primarily devoted towards a high energy

shock wave and its effect upon a completely harmonic system. A classical linear model

of twenty diatoms was formulated and perturbed via a ballistic particle of equivalent

mass. The inner two diatom pairs were chosen for the classical study in order to

restrict center of mass movement within the lattice and to represent inner lattice

substituents. These inner atoms were perturbed by direct interactions of their neighbor

... atoms (entering and absorbing driving atoms). Wyatt and Marston used the action of

V. these atoms to establish a time-dependent driving potential for two diatoms. The

entering atom (q<) provided the initial interaction from the shock to the cluster,

whereas, the absorbing atom (q>) acted as a resevoir for the energy to be released from

the cluster. The dynamical data from the classical results of q< and q> was used

directly to formulate an interaction potential for a quantum mechanical model of two

diatoms; thus, the classical and quantum model experienced similar potentials. The

quantum model was represented by four normal modes, upon perturbation yielded

0 quantum dynamical data for comparison to the classical system. Wyatt and Marston

showed that a high energy shock imposed upon a harmonic quantum system

converges, as expected, to the classical results. ,

% %.
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This work is devoted to the replacement of harmonic oscillators with cubic

anharmonic oscillators and in maldng comparisons to classical dynamics. A similar

anharmonic classical model is established in order to provide for a driving potential in

our quantum system. In the quantum system the cubic anharmonicities provide various

mode couplings; thus, our Hamiltonian may be not separated exclusively into the four

modes as in Marston's; however, it will be represented by all four modes. This fact

will restrict our quantum basis size.

The remainder of this thesis is organized in the following fashion. Section II

develops the model for both classical and quantum systems. The classical equations of

motion are derived showing how we obtained dynamical data for comparison and for

the quantum potential. The quantum coupled anharmonic Hamiltonian is derived using

the normal modes representation and the time dependent system is developed by

approximately solving the Schr6dinger time dependent equation. Quantum formulation

for position expectation values, normal mode energies, and bond energies is presented

in this section.

Section M11 presents results of quantum harmonic and anharmonic calculations

of several basis sizes and compares these results to classical dynamical data. Section

IV draws conclusions based upon thse results and also provides commentary based

upon different formulations of the problem.



II. Method

Model

A one-dimensional twenty-diatom classical model was established in order to

N study the effects of the propagation of a shock wave through a crystal lattice. All of

the atoms in the chain are of equal mass (mass of fluorine atom); the intermolecular

distances represent the intermolecular separations of diatomic fluorine. Each diatom

was connected with a force constant K> and equilibrium separation po. The

equilibrium separation between diatoms was Ro with a connecting force constant K<

(see Figure 1 and Table 1). A ballistic particle of equal mass will impose a shock wave

upon the chain of atoms. In order to compare a classical model with a quantum model,

the central pair of diatoms in the classical one dimensional chain will be isolated. This

pair of diatoms is far enough from the ballistic particle to reduce any sporadic results

6 from the strong potential and a smaller system of two diatoms was chosen for

comparison to an equivalent quantum model based on the fact that a twenty diatom

cluster is numerically intractable to handle quantum mechanically, Classically, the

central diatom pair will be perturbed via interaction with the nearest atoms in the chain.

The entering atom (q<) provides the initial interaction from the shock to the cluster;

whereas, the abLr'rbing atom (q>) acts as a reservoir for the energy to be released from

0, the cluster. The dynamical data from the classical results of q<(t) and q>(t) will be used

directlv to formulate an interaction potential for a quantum mechanical model of two

diatoms, thus, the classical and quantum models will be experiencing similar

potentials, thus allowing for direct comparisons.

Classicallv, these atoms may be thought of as forty harmonic or anhwrmonic

oscillators. At time t=O, atom positions were arbitrarily set at their equilibrium values,

0

H..
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and atom number one in the chain was originally chosen to have zero momentum.

Atom momenta are easily obtainable through the following relationships: 18

(P2 -P) 0 i 3 (1.
+P-P) 5 K>(q2- ql -po) +y q2- ql-p o)= E-1 I

21t

pi = momentum of atom number one =0

po equilibrium separation (Table 1)

(q2 - qj) = po- since at equilibrium

ET = Total energy (sum of potential, and kinetic terms)

p. = reduced mass (Table 1)

* = de-ree of anharmonicity (Table 1)

K> = Force constant between atoms (Table 1)

The total energy (ET) between any two atoms was calculated from the ground state

energy of a diatom pair (ET = 7hco where co =4K/.). Equation ( I ) readily reduces to

(P2)
- ET , since the potential energy term and the anharmonic term consistently drop

2.

out of the initial equations because all interatomic distances are at their equilibrium

separation. From this equation, the momentum of atom number two can be calculated.

thus allowing all other momenta to be calculated for their initial values via:

(Pn1 Pn)-
-pEKE

In order to initiate a shock wave into the forty diatom chain, a ballistic particle

(impact atom) with equal mass of a flourine atom imparts a potential upon the system.

The interaction potential of the impact atom and with atom number one is given bv the

following equation:

V = -
q ,
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A = 0.0029 l-artree

- = 1.0(Bohr - 1)

q, = position of chain atom number one

qo = position of impact atom

The quantity A was chosen as twice the ground state energy value of a diatom pair, and

ct was chosen as 1.0 Bohr -1 to optimize the trajectory of the impact atom in order to .

produce a movement of the atoms at a speed greater than 2500 m/sec (speed of a shock ]

wave). The entire classical potential of the chain may now be written as a combination

of the interaction potential from the ballistic particle, the sum of harmonic potential

interaction of the particles and an anharmonic term:
10 -40

Ae - q I q + K, -K(q -q 2p°  + I K> (qn+l-q_ -n= 1.3.5 ... n=2.4,6 ...

p-0 10

+ 7 (qn+qn- p 0 3 + 7 3tqn--I qn -R) 3

n !, 3,5... n=2,4,6...

%k here

qn = position of atom n

= e r

SPo = intrmolecular equilibrium distance (Table 1)
Ro= intermolecular equilibrium distance (Table 1)

As the ballistic particle moves toward atom one with twice the initial momentum

of atom number two. the repulsive potential becomes more significant, thus creating

transverse motion within the chain. These atoms move according to Hamilton's

equations of motion:

*, V

p, r)V i 0 1 .. n. ,
q n}l i )- q , "

-"I -. -% P ,

*1A



Upon numerical integation, these coupled differential equations yield atom momenta

and positions as a function of time. The Adams-Moulton integrator was used in this

study with the following parameters:

Order = 6

DT = 1 atomic time unit (2.5x10-5 ps)

EPS = 10-3, maximum relative degee of iteration

N = 60,000 = numbers of time step iterations

Results produce classical trajectory values for the one dimensional system. As stated I
previously, the two diatoms located at the center of the cluster are of main interest for

this classical problem and for comparison to the quantum mechanical problem.

In the quantum mechanical system, the four atoms are initially all located at their 

average equilibrium value corresponding to their counterparts in the classical system. 1W

These four atoms are connected to driving atoms (q< entering atom; q> absorbing atom)

as formulated in the classical problem, and the motion of these driving atoms in the

classical system is converted into the driving potential for the quantum system. This

potential creates a perturbation within the quanutm model causing atom displacement.

Since the one dimensional quantum mechanical system may be thought of as four

harmonic or anharmonic coupled oscillators, motion in the system is described by four

normal modes. The positions in the system may be expressed as a sum of initial

cartesian position plus a time dependent displacement 6:

q1=q?+61 (2a)
a, ()

(12 = (12 + 0 2  (2b)
0

q3 = q3 + 63 (2c)

-,.

I.

II t.
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q4 = q4 + 64 (2d)

From these relationships, calculations of transverse atom movement are performed.

Formulation of the Hamiltonian for the Cluster

For a set of atoms which are interconnected via sets of anharmonic springs,

there are many types of internal motions, vibrations, which are dependent upon the

initial displacements of the atoms. The Hamiltonian for the anharmonic system may be

expressed as the sum of a harmonic part (HO), anharmonic part (Va), and time

dependent part (V(t)).

HT = HO + Va + V(t)
4.

m -Formulation of Harmonic Hamiltonian

The harmonic Hamiltonian for this one dimensional two diatom case is
Vone

expressed as the sum of the potential and kinetic operators 19

2r.

K 2

2 22 22* H'. =-r+--o-aq(t ) R)+ (q>(t)-q 4-Ro) 2 I

* + [(q 2 "q1 -p 0) + (q4 -q 3 -P,) + N3 -q 2 -R)

where

pi= mi qi = momentum of atom i

mi= mass of atom i

qi= position of atom i

Po = equilibrium intramolecular distance

)r w
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RO = equilibrium intermolecular distance

K< = Force constant of intermolecular bond

K> = Force constant of intramolecular bond

As stated previously, the positions of the four atoms as a function of time may

be described as the sum of an initial position and a displacement position (6). The

positions of the impact and absorbing atoms (q< and q>) may also be expressed as an

initial position plus a displacement:

-. q<(t) = q< + 5<(t) (3a) .

q>(t) = qO + 5>(t) (3b)

The harmonic Hamiltonian is time independent, thus <(t) and 8>(t) are equal to zero

until a perturbation is introduced. Utilizing the previous relations of initial positions of

atoms, it is clear that:

0 0
4.

a,, q2 -q, =p.
0 0

- q 4 - q 3 = Po
o 0Sq3- q2 =Ro

q>- q = Ro

0 0

qd* q< RO

This enables simplification of the harmonic Hamiltonian:

[I
1

%



l 4,o p K,. 22 K2K
H~ +~ (51+84) +--(2- +(64-53)- 1+ -~(83-52) (4)mi 2 2

Formulation of Harmonic Time Independent Hamiltonian Matrix

If an atom has an origrinal position q0 and throughout time moves to a different

position q(t) the resulting vector describes the displacement (6) from its equilibriumI

value . This may be represented in mass scaled displacement coordinates (rhi).

In matrix notation, -_ and 5 are defined as a row vector, and I!,~ is a square matrix

with the root values of atom masses on the diagonal.

The kinetic energy may now be represented as

I .2 N.

or in matrix notation

4%n

where'-, Is the transpose of the row vector

11 J< 1 1, 111 1r
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The potential energy of the system may also be represented in the same manner.

We expand V in a Taylor series in the mass scaled displacements:

n a2
A V,= T - +.0 jn - 21,,n1j()-j=1 "~ j 0-Mi Oj

where

V = potential energy

Vo = V(6=0) = 0

n
"j ) = 0 (Expanded about 5=0, the minimun of V)

j=1
j )i j

Thus, the harmonic potential energy may be expressed as

v YX 1 = .ii ( )
i j oT n i oT l ]

where , is the mass scaled coordinate row vector, nt is its transpose (a column

vector), and K = force constant matrix which may be represented as follows:

[j-j;
. -K> K -K< 0

0 -K< K -K>
0 0 -K> K

K< is the weak intramolecular force constant

a D V I r N
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I
K> is the strong intermolecular force constant

K = K> + K<I

In orde, to analyze the system, an orthogonal transformation is required such
that At = A- 1. Define = .A and t = Att where C is the normal coordinate row

vector. The kinetic and potential matrices may now be rewritten with this substitution.

2 I
' =M 1/2A 1 = CAtM-I/2

= (A = ()A(A A)A 7
* 2

The At-A matrix may be redefined as the diagonal normal mode frequency square

matrix (,22). The potential energy is then

From these relations the normal mode frequencies have been established (Table

2). The displacements of the atoms from their respective equilibrium positions may be

represented as linear combinations of the normal modes

*5 = CAt,-1/2

where a representation of the A matrix follows:

-0.5 -0.5 0.5 -0.5
-0.5 -0.5 -0.5 0.5A: -0.5 0.5 -0.5 -0.5
-0.5 0.5 0.5 0.5

.5,.

* i
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During the analysis of the two diatom case the values of the A matrix were all

approximately +0.5 or -0.5. This enabled the operators to be presented as simplified

combinations of the displacements of atoms from their respective equilibrium positions.

(See Fig. 2 for description of modes.)

1 = -0.5 m(81 + 82 + 83 + 54) (5a)

2 = +0.5Wm(-81 -62 + 63 + 64) (5b)

-3 = +0.5x/m(81 - 82 - 63 + 64) (5c)

4 = +0.5',m(-6i + 82 - 63 + 64) (5d)

-d{ Formulation of Anharmonic Time Independent Hamiltonian

If one considers an arbitrary potential V(q) between atoms n and n+l which has

a minimum at q=qo, the potential function V(q) may be expanded in a Taylor series

*about q0:20

V(q) = ct +P3(qn+l - qn - qo) 2 + y(qn+l - qn - qo) 3

Gamma (y) represents the physical size of the anharmonicity (deviation from harmonic

potential well ) and is negative. If one were to make the assumption that the (qnl+ - qn

- qO) 3 term is sufficiently small compared to the first terms of the expansion, a

harmonic oscillator would define the system. The (qn+l - qn - qo)3 interaction of the

potential function cannot be ignored in real systems; thus, this term has been added to

the total Hamiltonian for the model. In order to generate actual physical models, these

cubic anharmonicities between the two diatoms and interconnecting sets of atoms were

I
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introduced. The anharmonicities for the two molecules in the cluster are y(64 - 63) 3 and

,45o_ - 61)3 . We are assuming that anharmonicities exist only between diatom pairs, and

that only the cubic anharmonicity is significant.

From equations (5), the following normal mode operator equations were

derived:

-3'2 3

Y(62 -6 1)3 = ym ( 4+ 3)

Anharmonicities within the intramolecular bonds couple only modes three and O,,

four. If the intermolecular bond is anharmonic, all four modes would couple.

Expansion of these terms resulted in the following anharmonic potential operator:

312 3 2 U6)
Va= Vr- (24+6 3 4) (6).

Formulation of Time Dependent Hamiltonian (V(t))

In the time independent Hamiltonian, the impact and absorbing atoms were

stationary; thus, the 8<(t) and 6-,(t) were equal to zero. Now movement of these atoms

must take place in order to propagate a shock through the cluster. The terms two of the

harmonic Hamiltonian containing these groups were as follows:

K< 0 0  2=K 2R
K(q_ q>+ 6>1 <(t)-R) = - (0)2

Ea- -n + o (t) - Re r2m yils

Expansion of these term yields:

%-_-
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K[< 2 - 21 8<(t) + 82(t) + >(t) 2
- 2>(t) 4+ 6421 (7)

The time independent terms, (612, 542 ), are formulated in the time independent I
Harmonic Hamiltonian Eq. ( 4), thus equation ( 7 ) may be seperated into time

"* ,,. dependent and time independent terms. The time dependent terms will produce our

driving potential for the atoms in the cluster. Expansic ! of 51 and 64 in terms of

normal mode operators (eqns 5) 's yields:

wK

;- [5<(t) M ( i + 2 -3 + 4) +&>(t) m - ('  - C2- - + 5,(t)2  5<2(t)]

Movement of the impact and absorbing atoms therefore generates a change in position

which results in a potential being developed.

-Definition of Raising and Lowering Operators

The operators which correspond to momentum and coordinates must satisfy the

commutation relation. In matrix mechanics, the one dimensional harmonic oscillator
O

Hamiltonian is as follows:

2
,. 2

H + - Q2 1'
2 2

Sy

p, ?

. ',m
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i In order to procced with normal mode analysis, the following raising (a! ) and lowering

ii ,operators (a) are introduced. 1

., a = oxp + 3

a,= oc*p + 1

cc*3 is chosen as a purely imaginary value such that czx3* =--a* P
i

* F2

Substitution of these values mields the liefollowing

a ra= - hf a +
2

a (+ip ar + io ) (8a)
a= 2

I I

= (-p (8b)

So the Hamiltonian of the system may be described as

'" H = a' a+--

The Hamiltonian may now be applied to the Schrcbdinger equation in order to evaluate

the eigenstates.

HIE>=E LE>

11111S111 1ii , f l , i ll i r l



(a a + T ) I E> = E >

a alE>=(E- ; -)IE>-

such that
" <E la'a IE> = (E -* TK )<E IE>

<ElE> = I

<E laa IE>= (E-T)

This will provide a harmonic basis for the problem. The states may be labeled as

numbers with corresponding energies evaluated from the numbered states.

The raising and lowering operators may now be defined through their action

upon the eigenstates.

a I n> = nhn In-I> (9a)

aln>= (n+1)hKi ln+l> (9a)

In the model problem, the normal mode operators were defined from equations ( 8):

p = ( ) (a- a) (10a)

Using the above relations for a and a- the cubic anharmonic operators may now be

evaluated

,," 1/) //

Sni> ( )1/2 [(n)1/2 In i - 1>+ (ni+ 1/ 2 In,+ I>1
2mi Qi

11 d 14@
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n > [(h 112(/ 1) 1/21 n -2> + (n i n> +(n i+ 1) 1n i>

-t~~~ 2i n)>~(nj+ 1)1/ (ni + 2)/ Ini+ 2>1

3h 1/ / /2 1/2 1/2 /
In>= - [(ni) (ni - 1) /(ni -2)/ lni- 3> +((n) (ni-i1) + (ni) n+1

'~V. ' 2mi Qi

+ +(n+) /2 (ni +1) 3/2 ni±-31> + Ini ( + 13/>(I +)/ n +) i+1

1/ 3/2 n 12ni1/2 1/2

T'he oriainai basis set chosen for the problem consisted of the product of fourI

normal modes I > I n2> I n3> I n4>). The normal mode operator acts only upon its

corresponding basis state (i.e. C43 operated only upon I n4>). The normal mode

A operators were used to formulate the anharmonic and time dependent Hamiltonian

matrix elements. In the total Hamiltonian matrix, the harmnonic terms correspond to the

diagonral elements and the anharmonic terms correspond to the symmetric off-diagonal

elements.

I r n>- h 12 1/2 + n 11/2
<i' n mj> (n,) l6n n. i+1 n n,,,

The anharmonic Hamiltonian matrix was generated and diagoinalized to obtain the

appropriate eigenvalues and eigenstates (Table 3)

ILI-:~ -

where Z =eigenvector matrix

kx*
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2t = transpose of eigenvector matrix

= diagonal eigenvalue matrix

Propagation of Time Dependent Hamiltonian

The following passages formulate the time dependent perturbation introduced
into the one-dimensional system.2 1 The basic solution to the time dependent

Schr6dinger equation is as follows:

HV = (ih) (-)
dt

where H is a function of position and time in a Cartesian coordinate system. This is

extremely difficult to solve: therefore, the Hamiltonian is divided into a time-
")" independent and time dependent part:

H = HTI + V(t)

HTI time independent term of Hamiltonian

V(t) = time dependent term of Hamiltonian
P = (e-E t

TI

The spatial equation to solve is

HTny = Ey

E = separation constant

It has well behaved solutions when E is equal to En

HTPfno = Enn o

Assume the P(q,t) can be written as a linear combination of orthogonal functions:
* 0

*T(q,t) = L an(t) Wjn (q,t)

n0E4
oi T ne/

*~=hn
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* 0

The quantity T,, is described by the eigenfunctions of a harmonic oscillator and the

-, quantities an(t) are defined as the occupation coefficients. Since the wave function isI

Ia,(t)*a, (t)=
n

the series expansion for 'Y(q,t) may now be substituted into the Schrbdinger wave

equation yielding: 0

d h 0
a, (t) n= an W f Wm V(t)xvf dq

* whliere nm = 1, 2, 3,..

This yields the rate of change (with respect to time) of the m~h component of the

baZsis. Am (rate of amplitude change) depends upon all basis amplitudes. The

following equations are shown to exemplify the above differential equation.

h da * a0 f . 0(t f xV I (tV~ dt +a xj1 V 2t ydt + ... + aK I WO W4Kd+

*- _ = alf yo*V(t)4fd+a2JI VW t + aKJ VW t xdt±dt 2 x1 d '2 2 Vjdt+W+

-~ Utilizing these coupled first order differential equations, numerical analysis using the

0 Adams Moulton integrator provided the coefficients for the various states of the model.

P z~0



Calculation of Quantum Position of Atoms

In order to calculate positions of atoms, computations of expectation values of

displacements from equilibrium were performed. The matrix elements of operators 6i

were evaluated in the normal mode basis, and then transformed into the harmonic

representation using the eigenvector matrices , as follows:
, ,Z7 --

where

transpose of eigenvector matrix

Z=eigenvector matrix

;2i = displacement matrix

S= transformed displacement matrix

Upon transformation, Z' was then summed over each state with its corresponding

energy and probability:
.-t (t) D i. (t) i,

where

P (t) i = c (t) exp [- i E i t ii

where is a column vector based on probablity and eigenvalues, and ?t is a row

vector. This summation yields the displacement of atom i from its equilibrium

position.

%W

Calculation of Quantum Bond Energies

The total energy of a particular bond is expressed as the summation of the

bond's potential and kinetic energy. The potential energy for the quantum system is

calculated from the expectation values of position for the corresponding atoms.

%4."

%, %, %* % *~ '
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Potential energy =(1/2)(Knd)(5j - 60)2

From equations (5) the potential energy can be represented in terms of normal modes:

PE12 =(T(K,)(6 -81 2)=( ) (K)C*1~4

4PE 3 4 = (~)(K>) (64 - 52 = (' ) (K) (4 + 3)

These operators will act upon our normal mode basis set in order to establish potential

energy matrices. Upon transformation of the potential energy matrix with the I

eigenvector matrix, summation over all states at a particular time yields the potential

* energy of a bond.

- j Z .= P7ij

?t~)--)7 (t) = potential energy of bond ij
1i

As stated previously the kinetic energy is calculated by:

7t ~Lt 

where is a column vector and is normal mode momentum. As mentioned with

respect to position, normal mode momentum (p~j) may be expressed as a summation

of corresponding atom momentum (pi)

p~l=-0 .5 %m(p + P2 +P3+ 4) = (/(iYF))(al-a 1)

P 2 +0.5%/m (-P1 I P2 + P3 +fP4) = 1/(iC2)) (a2-a2,)

A S-
I * A 1,9
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P 3 = +0.5"m (PI - P2 - P3 + P4) = (1/(i--)) (a3-a3)

P; 4 =+0.5'm (-P1 + P2- P3 + P4) = (1/(iF)) (a 4 -a4 )

The kinetic energy of the i-j bond is expressed as:

Tij = 
' 

(Pj _Pi ) 2

~2 i

which is expressed by normal momentum operators as:

S(P 4 - P 3 )2

T12=- kinetic energy operator for bond R 12

(P 2- P 
4) 2

T,= - kinetic energy operator for bond R 3

2t
T4-(P;4+P 3) 2- kinetic energy operator for bond R3

S Each kinetic energy operator established a kinetic energy matrix which is transformed to

the harmonic representation via the eigenvector matrix Z.zt K --iJ Z K i"ij

* Upon transformation we sum over all states:
% tP(t) K" 3i 2(t)
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Calculation of Classical Bond Energies

Classical potential and kinetic bond energies are calculated directly from atom

position.

* ~~Potential energy qnjKod)q+ - p0)2

Kinetic energy = (/2) (P111 - P

Calculation of Atomic Period

The atomic peniod for this model was based upon the stonger force constant.

T T=27c/ o= 2.1 x lO3 atu

Energy Evaluations of the Two Diatom Model

In order to evaluate the normal mode energies, the original H-amiltonian matrix

was separated into four normal modes, a time-independent anharmonic term, and the

time-dependent potential term.
__O .. Ho +--+H +V t

Each matrix was italytransformed into the harmonic basis by multiplication with the

eigenvector and transpose eigenvector matrix (Z =eigenvector matrix).

Upon trans formation, each term was summed over all possible states to provide the

energies of the particular parts.

*?(t) ]r ?(t)

0

er i

'4.-



III. Discussion of Results

A. Classical Trajectories

When the ballistic particle imposes a shock, it adds .005884 Hartrees of energy

to the chain of atoms. The shock wave propagates through the classical chain at 0

approximately 6.5 x 10- 2 ao/ps, causing displacement of atoms ( Figures 3,4). The

classical system responds as expected with respect to atom position and bond energies.

Atom position is directly related to the neighbor atoms, and atoms tend to oscillate in

diatom pairs. The impact atom provides a disturbance within the lattice which is not felt

by the central atom pairs for approximately eight periods (Figs. 5). The transverse

0 displacement of the entering atom (qo) imparts energy to the first atom in the lattice

which causes the transverse movement of this atom and so forth; thus, resulting in the

propagation of the disturbance throughout the lattice. Since this shock wave is a

comparatively low energy disturbance with respect to previous calculations

[Wyatt,Marston], atoms are not significantly displaced and atom separation is fairly

constant. The atoms connected by a strong bond tend to move as a pair, with most of

the lattice deformation occuring within the intermolecular bond.

Bond energies indicate that energy is transferred between kinetic and potential

energy. As the energy from the shock wave is transferred to the bonds,

nonuniformities in the oscillator behavior are observed. The strong bonds exhibit a

tendency to remain relatively constant, while most of the energ, from the shock is

transferred to the intermolecular bond ( Figures 6-11).

26
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B. Convergence of the Quantum Model

The time dependent coefficients for the quantum states ai (t) will help us in

examining the convergence of the results of our system, the nature of occupation of

various quantum states, and the conservation of probability. Quantum eigenvalues of a

sixteen state model are listed in Table 3. In the present model, the classical positions of

q< and q> are used in calculating a driving potential. The classical system was

initialized with all atoms in the chain located at their respective eqilibrium values. Initial

momenta were calculated for these atoms, and Hamilton's equations of motion were

solved for position and momentum. Upon solving the equations of motion, the atoms

-0 were no longer located at equilibrium displacements. This has been defined as t = 0 for

the system. Since q< and q> were displaced from equilibria, a small driving potential

for the system was established causing population of excited states in the quantum

model. The model may now be thought of as being non-zero temperature. ( atoms are

oscillatory).

-S. When a shock wave is introduced to the quantum model, energy is transferred

into the crystal lattice resulting in excitation and population of higher energy states.

'., This corresponding population of states may be represented as ai*ai where ai is the

"- coefficient of occupation of state i ( .04% deviation in the 16 state model, .008%

* deviation in the 100 state model). Plots of a 16 state basis illustrate a periodic transfer

of energy from state to state and a tendency to retain most of the energy within the

lower mode states (Figures 12-27 ). Harmonic and anharmonic 16 state bases exhibit

• similar tendencies. Examination of a larger basis (100 states) shows a larger retention

of energy in lower mode states. Since there is a ratio of 5:5:2:2 (nl:n2:n3:n4) in the 100

state system compared to a 2:2:2:2 ratio in our lower (16 state) model, the energy

IVI
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distributes itself differently; thus, allowing for even less population of higher energy

levels (Figures 28-33).

C. Comparison of Position Trajectories

Comparison of expectation values for the positions of atoms for several bases
indicates fairly good convergence of the system. (Figures 34-41 ) We have learned
from [Wyatt and Marston] that quantum harmonic atom positions at high energy

converges towards the classical results. Although there are deviations from this

expected result one can see that the larger harmonic basis sets move toward

convergence to classical results. (Figures 42-45 ) This is also the case with

convergence of the anharmonic system.

Anharmonicities produce deviations in energy level spacing as compared with

a purely harmonic system. The deviations in energy spacing produces a variance in

energy state occupation; thus, there will be variances in position plots of harmonic and

anharmonic models. Since there are only two states in the higher frequency modes, the

100 state system does not fully describe the cubic anharmonicity making differences

between the harmonic and anharmonic models small. (Figures 46-49 ) Atom motion in

the anharmonic model deviates slightly in frequency and amplitude as compared to the

* harmonic model.

In comparison to classical harmonic trajectories, the quantum harmonic model

does not converge exactly to the classical harmonic trajectory, as expected [Wyatt,

* Marston]. The initial oscillatory motion of the quantum model prior to a shock is

deviates slightly coupled with small deviations of average position away from average

equilibrium values. This result is most likely caused by the low number of energy

%90, r%
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states in the quantum model. If one were to examine the frequencies of the four modes

(Table 2), one can see that they are in a ratio of 11.5:6.6:1:1 (l 1:Q2 :Q3:Q4).

The quantum model currently has a 5:5:2:2 basis ratio. Movement in each

system should be characterized by oscillations of diatom pairs. For instance, normal

oscillations of atoms one and two should be directly out of phase as observed in the

classical system; however, careful observation of quantum diatom pairs yields small

phase dissimilarities which may be caused by the population of various energy states.

Since we have a low number of internal mode states (modes one and two), the higher

modes are increasingly populated. If one were to examine the modes (Figure 2), one

can see that linear combinations of the modes describe the normal oscillator motion of

the atoms. Since the higher energy modes are more populated, we observe phase

dissimilarities within diatom pairs. Classical anharmonic results versus quantum

anharmonic results correspond in a similar fashion.

The quantum harmonic model of [Wyatt, Marston] was easily separated into

four independent modes. This allowed for vast numbers of low frequency mode states

as compared to the higher energy modes (500:200:100:100) (nl:n2:n3:n4) giving a total

basis size of 109. The low frequncy modes were now capable of describing center of

mass and oscillatory motion. Addition of this number of states to the present model

makes the problem numerically intractible.

It is also interesting to note the dependence of the present model upon q>. The

absence of the potential created by q> causes great phase dissimilarities with respect to

diatom oscillations, and it also inhibits proper atom atom displacements with respect to

a shock induced lattice. Several cases have been examined ( Figures 50-59 ) in order to

show these effects. Since the q> potential is no longer present prior to a shock ( ramp

,  0A
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shock ) or not present at all, this causes the excited state population to vary

significantly; thus, atom energy and displacement become less uniform. The potential

caused by q> has a significant affect upon lattice dynamics.

Another interesting point to note is the dependence of this model on the size of

the anharmonicity. The degree of anharmonicity was increased 10 fold as a trial

experiment- Small deviations in position are observed as well as small frequency shifts

in oscillations Fig. ( 60-61 ). In the present model, we are limited to a ground state and

first excited state in modes three and four. This limitation in basis size effectively

reduced the survival terms of the anharmonic operators; thus, allowing for small

deviations in frequency and amplitude of atom positions.

D. Quantum Mode Energy Comparisons

A slightly larger difference between our quanutm harmonic and anharmonic

. * models is observed in mode energies. (Figures 62-65 ). Energy level spacing in the

harmonic model is different as compared with the anharmonic model in which energy

level spacing decreases towards higher levels. This spacing difference exhibits

variances in mode energies prior to and after shock wave introduction. If both models

',. .were initially stationary states, one would observe that mode energies would start at 0.5

quanta. As stated earlier, t =0 corresponds to a time in which atom positions are

,. displaced from their equilibrium values causing a driving potential to be created by q<

ON and q>. This deviation in q< and q> is fed into our quantum system providing for

population of some excited states. Since the excited states became populated, initial

values of mode energies increased above 0.5 quanta. Initially, the harmonic model

distributes energy to its excited states in a different fashion as compared with the

{0A



anharmonic model. The anharmonic model slowly distributes its energy to higher

states then reaches a steady value prior to the shock wave. Energy transitions are

much smoother in the anharmonic model because energy levels have been lowered.

As shock energy is introduced to both systems, the anharmonic model reacts

more quickly and distributes energy to higher states. This is evidenced by the fact that

the higher modes reach a steady state at slightly higher values as compared to the

harmonic model, and the lower mode energies in the anharmonic case achieve smaller

energies as compared to the lower modes. In each case, the upper modes pick up

approximately 0.2 quanta of energy as compared with approximately 0.6 quanta for the

lower modes. A ratio of this (0.6:0.2) corresponds quite well with a ratio of states

(5:2).

Addition of states to the lower frequency modes in these models will definitely

improve the energy transfer prior to and during the shock wave. Energy will be

distribute differentlv among the lower states allowing for the system to stabilize.

E. Comparison of Bond Energies

The classical models react as expected with respect to bond energies. Diatom

pairs are oscillating in a uniform fashion prior to a shock wave resulting in kinetic and

potential energy to be directly out of phase and total energy to remain constant. As the

system is perturbed, oscillations and dispacements vary; thus, variances in potential,

kinetic and total energy may be observed. The strong bonds have an inherent tendency

to resist change with respect to a low energy shock. (Figures 6-11 )
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Prior to a shock in the quantum models, energy within the bonds is dependent

upon the coupling of various modes. Since the system is non-stationary, population of

various energy levels vary with time. This causes individual bond energies to fluctuate

transferring energy between bonds. As the shock wave is introduced to the system,

bonds exchange energy slightly faster and the overall energy within the bonds is higher

(Figures 70-79 ). There are few differences between the harmonic and anharmonic/I
quantum models; however total bond energy is slightly lower in the anharmonic

system. Careful examination of the potential versus kinetic energy plots of bond

energy in both quantum systems shows that potential and kinetic energies are in phase.

Part of this is due to the sharing of energy between bonds; however, some is caused by

an small number of low frequency mode states (modes one and two). Excessive

energy is placed into the higher mode states; thus causing an imbalance in the system.

5 . This was not as evident in positions as it is in bond energies.
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IV. Conclusions

Examination of a crystal lattice using a coupled mode basis yielded a great deal

of information concerning both harmonic and anL.armonic models. The following

conclusions may be drawn from these results:

(1) The deviations in energy spacing from the anharmonicities cause

transitions to occur more easily as compared with the harmonic model

(2) Addition of states to the quantum model allowed for convergence toward

classical results.

(3) The anharmonicities produce slight deviations in frequency of oscillation

and displacement because of energy spacing differences.

(4) The quantum model is not only dependent on the potential created by q.,:

the potential created by q> is necessary to allow the atoms to act as a

cluster. Any deviations in the potential created by q> causes the model to

change significantly.

(5) Energy spacing differences allowed for deviations in mode energies.

(6) Bond energies within the classical models correspond directly to atom

positions. There are instances in time in which potential energy is at a

maximum (corresponding to maximum deviation of atom position from

1-;S equilibria) and minimum kinetic energy. Total energy is constant prior to

a shock. Most of the energy is transferred to the intermolecular bond.

(7) Bond energies within both quantum models are not constant prior to a

shock. Since energies are dependent upon mode population, total energy

within a bond may oscillate. Energy may be transfered from bond to

bond. The total energy of all bonds prior to a shock should be constant.

33
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(8) Deviations from the expected results of [Wyatt, Marston] in a harmonic

model were caused primarily by the absence of states which resulted in

normal oscillator motion of the atoms and center of mass motion to be

inconsistent. Careful examination of the mode frequencies yielded

information concerning the proper number of states one must have in

order to describe atom motions properly. Lack of a substantial number of

states also restricted the amount of energy transferred into the lattice.

Upon re-examination of the problem, one sees that the total quantum

Hamiltonian was written as follows:

HT = HO +Va +V(t)

The anharmonic substituent (Va) of the Hamiltonian was formulated using a coupled

normal mode operator:

Va =(2!m) 4 +6 3 4 )

Instead of using a Hamiltonian which had all four modes coupled, we should have

formulated the problem using a harmonic uncoupled Hamiltonian for modes one and

two, and a coupled anharmonic Hamiltonian for modes three and four.

FIHT= H' + H2+ H3 4 + V3 4+ VI(t) + V2(t) + V34(0

where

00
HT= total Hamiltonian ,

H i= Harmonic Hamiltonian for mode I

H34= Harmonic Hamiltonian of coupled modes three and four

V34 = Anharmonic Hamiltonian of coupled modes three and four

Vi (t) = Potential for mode t Jill

V34 (t) = Potential for coupled modes three and four

Wil ikmeSW ? il1



This would have allowed for an increased number of low frequency mode state (modes

one and two), thus, placing the energy levels of all the modes in proper ratios. U
In conclusion, an entirely coupled Hamiltonian severely restricted proper

formulation of this problem; however, reformulation using uncoupled modes should

prove beneficial. Since desired results were not obtained using the harmonic model,

deviations are most likely present in our anharmonic model. Once the Hamiltonian is

uncoupled, an extremely large number of states may be added, and it will afford

extremelv large additions of energy to the crystal lattice. .
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Table 1

Equilibrium values for position, atom separations, mass,
and force constants

o O=

q<=-6.9316 ao  q> =+6.9316a o

0 0
q1 = -3.4658 ao  q3 = +1.7329 aI

0 0
q2 = -1.7329 ao  q4 = +3.4658 ao

P0 =+1.7329ao R0 =+3.4658a.

m = m3 = 34629 amu K< = 0.00468 Hartree/Bohr 2  -

m- = mr = 34629 amu K> = 0.14985 Hartree/Bohr 2  j
i= 17314.5 ainu

= -3.0 x 10-4 Hartree/Bohr 3

k
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Table 2

Frequencies and energy spacings for the normal modes.

Normal Mode Frequencies (a.u.) Energy Spacing (h-Q)(eV),

f21 = 0.000256 6.966 x 10- 3

Q2 = 0.000445 12.108 x 10-3

Q3 = 0.002927 79.644 x 10- 3

Q'24 = 0.002949 80.243 x 10-3

I V'-' ,LA
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Table 3

Eigenvalues for the anharmonic and harmonic quantum 16 state system.

State (n4 n3 n2 nj) Anharmonic Energy (a.u.) Harmonic Energy (a.u.)

0000 0.003284 0.003290

0001 0.003540 0.003546

0010 0.003722 0.003735

0011 0.003989 0.003992

0100 0.006163 0.006217

1000 0.006235 0.006239

0101 0.006435 0.006473

1001 0.006594 0.006496

0110 0.006634 0.006662

1010 0.006684 0.006685

0111 0.006896 0.006919

1011 0.006942 0.006942

52 1100 0.009165 0.009166 s-

1101 0.009421 0.009423

1110 0.009610 0.009612

1111 0.009859 0.009869
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Figure Captions

Figure 1 Representation of the four atom cluster, with q< and q>.
q< = initial cartisian coordinate position of entering qroup atom

*q" = initial cartesian coordinate position of atom one
q2 = initial cartesian coordinate position of atom two
q3 = initial cartesian coordinate position of atom three
q4 = initial cartesian coordinate position of atom four
q> = initial cartesian coordinate position of the absorbing atom
K> = force constant utilized between diatom pairs
K< = force constant utilized for entering, absorbing, and coupling of
diatoms
Ro = cartesian distance utilized for entering, leaving, and coupling of
diatoms

po = cartesian distance utilized for coupling of diatom pairs

I Figure 2 Pictoral representation of the four normal modes.
* Normal mode one represents center of mass motion of the four atoms.
,' Normal mode two represents paired diatom stretching about the central

bond between atoms two and three.
Normal mode three repesents an attractive stretching between atoms one
and two, and a repulsive interaction between atoms three and four.
Normal mode four represents a repulsive interaction between atoms one
and two, and an attractive interaction between atoms two and three.

Figure 3 Classical harmonic position of atoms q<, qI, q2, q3, q4, and q>.
Positions are measured in atomic units, periods correspond to one
harmonic oscillation of a diatom pair. Atom positions are measured
from the center of mass for the chain.

Figure 4 Classical anharmonic position of atoms q<, qj, q2, q3, q4, and q>.
Positions are measured in atomic units, periods correspond to one
harmonic oscillation of a diatom pair. Atom positions are measured
from the center of mass for the chain.

Figure 5 Position of the ballistic particle. Atom position is measured in atomic
units. Position is measured from the center of mass for the chain.

Figure 6 Classical harmonic bond energy of the intramolecular bond ( R 12)
between atoms qj and q2. Energy is measured in harmonic quanta.

0
Figure 7 Classical harmonic bond energy of the intramolecular bond ( R34)

q.: between atoms q3 and q4. Energy is measured in harmonic quanta.

Figure 8 Classical harmonic bond energy of the intermolecular bond ( R23)
between atoms q2 and q3. Energy is measured in harmonic quanta.

%



Figure 9 Classical anharmonic bond energy of the intramolecular bond ( R12 4

between atoms qj and q2. Energy is measured in harmonic quanta.

Figure 10 Classical anharmonic bond energy of the intramolecular bond ( R34 )
between atoms q3 and q4. Energy is measured in harmonic quanta.

Figure 11 Classical anharmonic bond energy of the intermolecular bond ( R23 )
between atoms q2 and q3. Energy is measured in harmonic quanta.

Figure 12 Representation of the occupation of the two lowest energy states in the
16 state quantum harmonic model. The probablities (n4 n3 n2 nI)
correspond to the quantum number of a particular mode.

Figure 13 Representation of the occupation of energy states (0010) and (0011) in
the 16 state quantum harmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 ni) of a particular mode.

Figure 14 Representation of the occupation of energy states (0100) and (1000) in
the 16 state quantum harmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nj) of a particular mode.

Figure 15 Representation of the occupation of energy states (0101) and (1001) in
the 16 state quantum harmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 ni) of a particular mode.

Figure 16 Representation of the occupation of energy states (0110) and (1010) in
the 16 state quantum harmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 ni) of a particular mode.

Figure 17 Representation of the occupation of energy states (0111) and (1011) in
the 16 state quantum harmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nj) of a particular mode.

Figure 18 Representation of the occupation of energy states (1100) and (1101) in
the 16 state quantum harmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nj) of a particular mode.

Figure 19 Representation of the occupation of energy states (1110) and (1111) in
the 16 state quantum harmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nj) of a particular mode.

Figure 20 Representation of the occupation of the two lowest energy states (0000)
and (0001) in the 16 state quantum anharmonic model. The numbers
correspond to quantum numbers (n4 n3 n2 nj) of a particular mode.

Fi2ure 21 Representation of the occupation of energy states (0010) and (0011) in

the 16 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nl) of a particular mode.
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Figure 22 Representation of the occupation of energy states (0100) and (1000) in
the 16 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n? n I) of a particular mode.

Figure 23 Representation of the occupation of energy states (0101) and (1001) in
the 16 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nI) of a particular mode.

Figure 24 Representation of the occupation of energy states (0110) and (1010) i
the 16 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n,? nl) of a particular mode.

Figure 25 Representation of the occupation of energy states (0111) and (1011) in
the 16 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nl) of a particular mode.

Figure 26 Representation of the occupation of energy staLes (1100) and (1101) in
the 16 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nj) of a particular mode.

Figure 27 Representation of the occupation of energy states (1110) and (1111) in
the 16 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 n1 ) of a particular mode.

Figure 28 Representation of the ground state occupation of (0000) in the 100 state
quantum anharmonic model. The numbers correspond to quantumnumbers (n4 n3 n2 nI) of a particular mode.

Figure 29 Representation of the occupation of the first excited state (0001) in the
100 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 n1) of a particular mode.

Figure 30 Representation of the occupation of excited energy state (0010) in the
100 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nI) of a particular mode.

Figure 31 Representation of the occupation of excited energy state (1134) in the

100 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nI) of a particular mode.

Figure 32 Representation of the occupation of excited energy state (1143) in the
100 state quantum anharmonic model. The numbers correspond to
quantum numbers (n4 n3 n2 nI) of a particular mode.

0
Figure 33 Representation of the occupation of excited energy state (1144) in the

100 state quantum anharmonic model. The numbers correspond to
Y' quantum numbers (n4 n3 n2 nI) of a particular mode.

Figure 34 Comparison of the positions of atoms one and two (ql,q2) in the 16
0
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state and 100 state quantum harmonic models. Postions are measured in
atomic units (at) and one period corresponds to one oscillation of an
atom.

Figure 35 Comparison of the positions of atoms three and four (q3,q4) in the 16
state and 100 state quantum harmonic models. Postions are measured in
atomic units (at) and one period corresponds to one oscillation of an
atom.

Figure 36 Comparison of the positions of atoms one and two (ql,q2) in the 64
state and 100 state quantum harmonic models. Postions are measured in
atomic units (a0 ) and one period corresponds to one oscillation of an
atom.

Figure 37 Comparison of the positions of atoms three and four (q3,q4) in the 64
state and 100 state quantum harmonic models. Postions are measured in
atomic units (at) and one period corresponds to one oscillation of an
atom.

Figure 38 Comparison of the positions of atoms one and two (ql,q2) in the 16
state and 100 state quantum anharmonic models. Postions are measured
in atomic units (at) and one period corresponds to one oscillation of an
atom.

Figure 39 Comparison of the positions of atoms three and four (q3,q4) in the 16
state and 100 state quantum anharmonic models. Postions are measured
in atomic units (at) and one period corresponds to one oscillation of an
atom.

Figure 40 Comparison of the positions of atoms one and two (ql,q2) in the 64
state and 100 state quantum anharmonic models. Postions are measured
in atomic units (at) and one period corresponds to one oscillation of an
atom.

Figure 41 Comparison of the positions of atoms three and four (q3,q4) in the 64
state and 100 state quantum anharmonic models. Postions are measured
in atomic units (at) and one period corresponds to one oscillation of an
atom.

Figure 42 Comparison of the positions of atoms one and two (ql,q2) in the 100
state quantum harmonic model and the classical harmonic model.
Postions are measured in atomic units (at) and one period corresponds
to one oscillation of an atom.

Figure 43 Comparison of the positions of atoms three and four (q3,q4) in the 100
state quantum harmonic model and the classical harmonic model.
Postions are measured in atomic units (at) and one period corresponds
to one oscillation of an atom.
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Figure 44 Comparison of the positions of atoms one and two (ql,q2) in the 100
state quantum anharmonic model and the classical anh, rmonic model.
Postions are measured in atomic units (a.) and one period corresponds
to one oscillation of an atom.

Figure 45 Comparison of the positions of atoms three and four (q3,q4) in the 100
state quantum anharmonic model and the classical anharmonic model.
Postions are measured in atomic units (at) ,nd one period corresponds
to one oscillation of an atom.

Figure 46 Varations in atomic position (at) of atom one (qI) in the quantum 100
state anharmonic and harmonic models.

Figure 47 Varations in atomic position (at) of atom two (q2) in the quantum 100
state anharmonic and harmonic models.

Figure 48 Varations in atomic position (at) of atom three (q3) in the quantum 100
state anharmonic and harmonic models.

• Figure 49 Varations in atomic position (at) of atom four (q4) in the quantum 100
state anharmonic and harmonic models.

Figure 50 Positions of atoms qI and q2 in the 16 state harmonic model in which
the potential created by q> is zero at all times. Positions are measured in
atomic units.

Figure 51 Positions of atoms q3 and q4 in the 16 state harmonic model in which
the potential created by q> is zero at all times. Positions are measured in
atomic units.

Figure 52 Positions of atoms qI and q2 in the 16 state harmonic model ; the

potential created by q> is applied as a step jump at t = 10 periods.
Positions are in atomic units.

Figure 53 Positions of atoms q3 and q4 in the 16 state harmonic model; the
potential created by q> is applied as a step jump at t = 10 period.

* Positions are measured in atomic units.

Figure 54 Positions of atoms ql and q2 in the 16 state harmonic model ; the
potential created by q> is applied as a ramp increase between t = 10 and
12.5 periods. Positions are measured in atomic units.

Figure 55 Positions of atoms q3 and q4 in the 16 state harmonic model ; the
potential created by q> is applied as a ramp increase between t = 10 and
12.5 periods. Positions are measured in atomic units.

Figure 56 Positions of q and q2 in the 16 state harmonic model ; the potential
created by q> is the actual potential of q> shifted 3 periods earlier.
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Positions are measured in atomic units.

Figure 57 Positions of q3 and q4 in the 16 state harmonic model ; the potential
created by q> is the actual potential of q> shifted 3 periods earlier.
Positions are measured in atomic units.

Figure 58 Positions of ql and q2 in the 16 state harmonic model; the potential
,1- created by q> is the actual potential of q> shifted 3 periods later.

Positions are measured in atomic units.

Figure 59 Positions of q3 and q4 in the 16 state harmonic model ; the potential
created by q> is the actual potential of q> shifted 3 periods later.
Positions are measured in atomic units.

Figure 60 Positions of atoms ql and q2 in the 100 state quantum anharmonic
models. The solid line plots are atom positions with gamma = -3.0 x 10
-4 Hartree/ Bohr 3. The dashed line plots indicate atom positions with
ten times the anharmonicity.

0 Figure 61 Positions of atoms q3 and q4 in the 100 state quantum anharmonic
models. The solid line plots are atom positions with gamma = -3.0 x 10
-4 Hartree/ Bohr 3. The dashed line plots indicate atom positions with
ten times the anharmonicity.

Figure 62 Distribution of energy into mode one of the 100 state quantum harmonic
model. Energy is measured in quanta.

Figure 63 Distribution of energy into mode two of the 100 state quantum harmonic
model. Energy is measured in quanta.

Figaure 64 Distribution of energy into mode three of the 100 state quantum
harmonic model. Energy is measured in quanta.

Figure 65 Distribution of energy into mode four of the 100 state quantum
harmonic model. Energy is measured in quanta.

Figure 66 Distribution of energy into mode one of the 100 state quantum
* anharmonic model. Energy is measured in quanta.

Figure 67 Distribution of energy into mode two of the 100 state quantum
anharmonic model. Energy is measured in quanta.

Figure 68 Distribution of energy into mode three of the 100 state quantum
anharmonic model. Energy is measured in quanta.

Figure 69 Distribution of energy into mode four of the 100 state quantum
anharmonic model. Energy is measured in quanta.

Figure 70 Potential and kinetic energy of bond ( R 12 ) between atoms q I and q2 in

0
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the 100 state quantum harmonic model. Energy is measured in quanta.

Figure 71 Potential and kinetic energy of bond ( R34 ) between atoms q3 and q4 in
the 100 state quantum harmonic model. Energy is measured in quanta.

Figure 72 Total energy of bonds ( R12 ) and ( R34 ) in the 100 state quantum
harmonic model. Energy is measured in quanta.

Figure 73 Potential and kinetic energy of bond ( R23 ) between atoms q2 and q3 in
the 100 state quantum harmonic model. Energy is measure in quanta.

Figure 74 Total energy of bond ( R23 ) between atoms q2 and q3 in the 100 state
quantum harmonic model. Energy is measured in quanta.

Figure 75 Potential and kinetic energy in bond ( R12 ) between atoms ql and q2 in
the 100 state quantum anharmonic model. Energy is measured in
quanta.

Figure 76 Potential and kinetic energy in bond ( R34 ) between atoms q3 and q4 in
the 100 state quantum anharmonic model. Energy is measured in
quanta.

Figure 77 Total energy in bonds ( R12 ) and ( R34 ) in the 100 state quantum
anharmonic model. Energy is measured in quanta.

Figure 78 Potential and kinetic energy of bond ( R23 ) between atoms q2 and q3 in 5
the 100 state quantum anaharmonic model. Energy is measured in
quanta.

Figure 79 Total energy in bond ( R23 ) between atoms q2 and q3 in the 100 state
quantum anharmonic model. Energy is measured in quanta.
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