NEW CONDUCTING POLYMERS

Bernard Gordon III, James P. Runt and Paul C. Painter

The Pennsylvania State University
310 Steidle Building
University Park, PA 16802
Part I

a. Papers Submitted to Refereed Journals
NONE

b. Papers Published in Refereed Journals
B. Gordon III and L. F. Hancock, "Proton Abstraction as a Route to Electrically Conducting Polymers", *Polymer* 1987, 28(4), 585.

c. Books (and sections thereof) Submitted for Publication
NONE

d. Books (and sections thereof) Published
NONE

e. Technical Reports Published and Papers Published in Non-Refereed Journals


f. Patents Filed
NONE

g. Patents Granted
NONE

h. Invited Presentations at Topical or Scientific/Technical Society Conferences
i. Contributed Presentations at Topical or Scientific/Technical Society Conferences

P. J. Hans and B. Gordon III, "Wittig Synthesis or Conductive Segmented Block Polymer Compositions" Polymer Chemistry Division, American Chemical Society, August 1987.


L. F. Hancock and B. Gordon III "Conductive Materials Based on Delocalized Anions" Polymer Chemistry Division, American Chemical Society, August 1987.

j. Honors/ Awards/ Prizes

NONE

k. Number of Graduate Students Receiving Full or Partial Support on ONR Contract

Graduate Students - 3

l. Number of Postdoctoral Fellows Receiving Full or Partial Support on ONR Contract

NONE
Part II.

a. Principal Investigators

Bernard Gordon III, James P. Runt and Paul C. Painter

b. Cognizant ONR Scientific Officer.

Dr. Kenneth J. Wynne Code 7A720

c. Current Telephone number.

(814) 863-3457

d. Brief Description of Project.

Conducting polymers, in the n-doped state, have the proposed structure of totally delocalized carbanions. These are produced by the reduction of totally conjugated polymers. An alternative route to polymeric delocalized carbanions is through proton abstraction from methylenes which are doubly allylic and/or benzylic and placed periodically along the polymer backbone. Polymers, oligomers and model compounds of this general type are currently being prepared. Proton abstraction is being carried out with strong base. To stabilize the delocalized carbanion we are preparing monomers and model compounds which contain strong electron withdrawing groups to study the effect of stabilization on conductivity. To prepare high molecular weight materials, we are preparing non-conducting segments to polymerize with the above conducting segments. These materials should have higher stability and more useful properties which can be tailored by composition of the resulting block copolymer.

e. Significant Results During Last Year

In our last report we indicated that low molecular weight model compounds have a high conductivity, since that time we have found an error in our measurements and these compounds do not have the earlier reported conductivities. However, serendipity was with us, we did find several low molecular weight systems that do have high conductivities. These anions have unusual structures, in that they have either formed in situ or by addition neutral species of the same structure. This is evidently necessary for flow of electrons (not all of the orbitals are filled which cause mixed valence states). We have now prepared a comprehensive series of low molecular weight compounds as delocalized carbanions and plan to publish the results shortly.

We have prepared several nitro containing model compounds. The conductivities of these first samples are in the semiconductor range, however, they are stable to air and water for extended periods of time. We are now preparing high molecular weight analogs to these model compounds to investigate their conductivity.
f. Brief Summary of Plans for Next Year's Work.

The proposed research during the next year is aimed at solving several critical problems in the conducting polymer field. These problems include: the intractability of the known conducting polymers and many of their precursors, their susceptibility to oxidation, their poor mechanical properties and the toxicity of the dopants.

We believe these problems can only be solved by the preparation of new materials and the subsequent study of these materials by an interdisciplinary approach. We will be working in the following areas to address these problems:

1. The synthesis of new conducting precursors (both high and low molecular weight), which are not completely conjugated. These materials will be doped by proton abstraction and their conductivities measured. We will be continuing our work on mixed valence state compounds. If funding on our DOD equipment proposal is approved we will be performing oxidations of multicharged anions, which should yield highly conductive materials.

2. The stabilization of the delocalized carbanions with strong electron withdrawing groups will be continued. We will be looking for an effect on conductivity as well as reactivity based on placement of the electron withdrawing group on the delocalized carbanion framework of high molecular weight systems.

3. The preparation of segmented block copolymers which contain segments from above and non-conducting segments. Initially we will use polyethers (stable to the anion), as the stabilized structures become available we will be able to use other polymer segments. The resulting high molecular weight polymers will be studied for both their conductive and mechanical properties.

g. List of Names of Graduate Students and Post-doctorals Currently Working on this Project.

Graduate Students

- Lawrence Hancock

- Paul Hans

- Brian Hilker
  - M.S. Thesis Title "Nitro-stabilized Proton Abstraction Doped Model Compounds as Precursors to Conducting Polymers", August 1987

- William Swatos

h. Technical Reports Submitted to ONR during the Past Year.


