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1. Introduction

1.1. Motivation
Hardware design could benefit greatly from a precise computation theory of hardware systems. Current design
and validaion methods. such as simulation and testing are expensive and unreliable. The call for formal methods in

) hardware design 1s heard more and more in the hardware community, and not only among theoreticians, but also
. among practutioners as in [Russell-Kinniment-Chester-McLauchlan 85] (p.189):
B As the designs get bigger this [validation] capability will not be provided by traditional simulators. Formal
'\: verificaton of some other kind will need to be employed, which means that current languages will ~=d to bc
-, redesigned to encompass formal techniques.

o)

‘-_\f Formal verification, such as mechanical proof of correcmess or transformation-based (inferential) design systems

{Burstall-Darlington 77], [Scherlis-Scott 83) . requires a formal underlying semantics, and this is what we mean by
a "precise computation theory of hardware systems”.

::: This is not an entirely new concept! Such a formal theory has been around for a long time for a small class of
:::: hardware systems: combinational circuits. Their semantics are given in terms of Boolean functions, and theoretical
) applications include equivalences proofs using the Boolean calculus, minimization theorems, and many more

o advanced theones such as fault-modelling and test-generation. In fact, the Boolean Algebra semantics is ubiquitous
y A<"_': in the education of hardware engineers.

R

:'.;:: Our goal was therefore to find similarly natural and mathematically tractable semantics for more general hardware
\::: systems, to serve as a basis for reasoning formally about hardware designs.

o 1.2. Solution proposed

::: Using functions on finite strings as a basic mathematical object, we have developed the core of a formal theory
¥ ~." for a wider class of hardware: synchronous systems/circuits.

b :“)-

The basic ideas and relation to the Boolean function semantics are fairly simple and we have made a special effort
1o include a detailed, motivated, informal explanation in section 3.1 . Technically we build Scott-style domains of

B0

.

::-:: strings. and string-functions, and give the extensional semantics of a synchronous circuit in terms of monotonic
';_}'_ {with respect to less-defined-than and prefix) and length-preserving string-functions. Note however that in contrast
‘ " to other work in concurrency theory based on strings, we need only finite strings, and use as our primary ordering
‘ the pointwise extension of the flat ordering on the base domain, not the prefix ordering. Correspondingly, we solve
.-: our fixed point equations in the string-function domain, and not in the string domain. The beginning of a calculus
:E: based on these functional extensional semantics is shown among the possible theoretical applications in section 4.1.
; ?. In order to reason about synchronous systems in an even more general and powerful manner, we have added a
2 ' recent idea of software computation theory: intensional semantics . These give a mathematical handle on how an
?‘ algonigthm (or in our case, a circuit) computes its result, as opposed to just what the result is, i.e. its extensional
_\::: semantics. These concepts are studied in great depth in [Talcott 85} and [Moschovakis {3]. They provide a way to
\‘;\ compare precisely the objects we are trying to design, and hence provide the relations which will be at the core of
1 future "guaranteed correct” transformation-based design systems {Scherlis-Scott 83]. A very limited taste of such
;‘ relations is given in section 4.2.
'::: These constitute the main ideas presented in this report. In order to support them however, we have proved a few
f- additional results about our semantics:

l" - e We have given a semantic characterization of synchronous circuits which obey the "Every Loop is

L

-

N

DA, LR O Wy ey W

) Y e T % T T U UK T %R %K TN

o o 7 N P ™, o P, B vf\SA

3 PN L STt N, o ‘l '\l‘.. &.‘.

.I.,. ¥, . ' P OAN L N |‘ ™ LY LM L M !‘ AT RS, TN .:'.-., 9 9.0 %,0%0,8 N A X MY X

AW ™ ] - Lo e ~ ) -
X ‘,‘\.OAW:":’:"\; L X ‘!'l.q LW !‘.a i’!‘t.-’i:‘l’:‘l g'!".!.'




i “-“, Clocked” design rule, even though our semantics assign a2 meaning to all circuits (Luilt arbitrarily from

. primitive components: registers and gates). We have not seen such characterization (in any form)
i anvwhere else in the hardware semaatics literature.

W]

:c ;ﬁs e We have defined an operational semantics which is extremely simple, and basically a trivial circuit
: ,n: simulauon algorigthm. and proved its equivalence to our extensional semantics. We also believe this
) ::. resqlt 1o be new in the context of hardware systems. although related operational-denotational
: . equivalence proofs have appeared in the context of dataflow [Faustini 82a) and more clearly

[Glasgow-MacEwen 87] within operator nets.

* We have shown how to apply these semantics to Sequential Machines (Mealy Machines [Booth 67].
{Hopcroft-Ullman 79]) which are at the core of synchronous circuit design in the engineering ‘
community. This aliows us to formally state that a cenain circuit correctly implements a certain

goxs\)

Y . .
AN sequential machine.
E.S
N
R , . . L : : . . .
( Finally, since our denotational semantics is based on a new domain of string-functions, and since vltimately all
v, claims of design correctness rely on sound underlying mathematics, and since a precise and thorough understanding
SNy of the theory is an essential prerequisite to its mechanization (in a theorem-prover), we have taken extreme care to
e

-

St

develop the foundations in complete detail.

In order to reach the full geperality that we needed, such as combinations of functions with arbitrary (and

:.. different) number of inputs, without any hand-waving, we found that we had to use some slightly technical tools,
-' such as Moschovakis’ induction algebras. Moreover, we isolated two mathematical structures which came up
) :::;- during the process and seemed to present some interest:
Ko « Finite Depth domains, which are generalizations of flat domains, and
"-'. ¢ String domains, which are domains generated from a base domain with string operations.
g"‘i To prevent confusion between these developments and their applications to hardware semantics, and spare less
u'::o’ mathematically inclined readers, we have placed them in a separate "Foundations™ chapter (chapter 2).
. e
:.". ] .
;;,‘;\g 1.3. Relation to other work
'3) The original inspiration for this work came from software concurrency theory and the work of (Kahn 74] on
_._\:: semantics of asynchronous communicating processes. The key idea there was to view each node as history- (or
"' \"’ string-)functional, the system as a list of string equations, and define the result to be the least solution (or fixed
:: :.'.'_f point) of the system, in a domain of infinite strings ordered by the prefix relation. Other people then tried to exhibit
:._: operational modeis for which they could prove the appropriateness of the "Kahn-semantics” [Amold 81], {Faustini
°® R2a), [Faustini 82b] and references therein.
(v
:':*: In our case, we have kept the basic idea of nodes being string-functional, but because of our synchronous context,
::::_' we were able 1o use a domain of finite strings, ordered by a pointwise extension of the flat ordering on the base
;: domain. Also, we made the abstraction to string-funcrions for circuits, which was only implicit in [Kahn 74].
-t Moreover we view the equations as defining string-functions instead of strings, and correspondingly solve our fixed '
.'-C" point system in a functional domain.
v“‘.-c"
::': Much of the work derived from [Kahn 74] in concurrency theory has gone into trace theory, keeping the history
::::-' idea, but tossing away the functional abstraction, mainly to deal with limitations of (Kahn 74] in non-deterministic
::'-:: contexts, as pointed out in [Brock-Ackerman 81]. These have been successfully applied to VLSI in(van de
. Snepscheut 85] and recently in [Dill 88} to asynchronous circuits. However synchronous systems do not present any
.“':'j of the difficulties necessitating trace theory. And fundamentally, we believe the functional abstraction to be natural
"':'ﬁ and crucial for the design of large systems, for a rich calculus of synchronous circuits (analogous to the Boolean

calculus), and for the intuitive understanding of systems.
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Also inspired by the work of Kahn. and trving to apply these ideas to the semantics of hardware. are the works of
[(Brookes 84] and recently [Kioos 87):

(Brookes 84] uses infinite strings (viewed as functions on integers) but is fairly informal and based only on one
example, which does not have any feedback. His remark concemning the handling of feedback is essentially wrong
(or extremely imprecise) since the original state of the registers seems not to be kept in the syntactic object. even
though tn the presence of feedback, it can affect the final semantics immensely.

{Kloos 87] in contrast is quite formal and thorough, and is very much based on Kahn's idea of functions on
infinite strings, with a (slightly modified) prefix ordering due to Broy. This work is the most similar to ours that we
have found. and goes a long way towards achieving many of our goals, within a different mathematical environment
and for the extensional part only. It is however. much broader in its scope of harware systems it aims to model. and
correspondingly, the theory is weaker. Moreover, the algebra of finite strings has many advantages for purposes of
mechanizing, such as induction. Also. no proof of equivalence with any operational model or other key property of
the semantics is given.

Much other work related to ours falls under the category of “new hardware languages”. These have evolved very
similarly to sofrware languages: from ad-hoc (assembly) to clearer (high-level) to semantically cleaner (functional) .
Just like in software, very few of them really have formal underlying semantics. Two notable exceptions are
(Sheeran 83] and [Johnson 83]:

[Sheeran 83] uses FP [Backus 78] as a semantic base, and bence functions on sequences. Aside from an
insistence on a variable-free (and hence hardly readable) style, there is a lot of emphasis on algebraic laws, so
"philosophically” our work is very related to hers.

[Johnson 83] uses a more standard applicative notation but puts much more emphasis on the language issue than
on the semantics. Most of the emphasis is on (informally) transforming recursive descriptions of the algorithm
which are not directly implementable in hardware, into other descriptions which are. The semantics only model a
special restricted “"stylized” kind of circuit (with one "output” line and one "ready" line). The model-theoretic
semantics are sketched rapidly, are not very natural (signals are "infinite sequences of instantaneous operations’),
and are clearly not the main goal in his work.

Finally, work in mechanical comrectness proofs of hardware shares some important goals with us, although we
believe that semantics should be thoroughly studied first. The most impressive such result we know so far is (Hunt
85] where two descriptions of a CPU (one of which was isomorphic to the actual hardware) were proved equivalent
in the Boyer-Moore system. The semantics however, while quite clear in the combinational logic case, are more
fuzzy in the sequential case, where a "stylized" description is used, with no formal justification. One price paid for
this is the lack of compositionality, i.e. the unability to combine easily two separate (sequential) specifications into a
bigger one. Also along the verification lines, we share a lot "in spirit” with Gordon's work in higher-order logic:
{Gordon 85] and related efforts. Technically however we differ significantly. Gordon's semantics are axiomatc:
hardware objects are associated with predicates (on functions of time), and systems are "ANDed" together. Besides
putting more emphasis on the model-theoretic aspects of our semantics, we have also defined our theory so that
hardware systems are describable in just a first-order language. This may simplify automatic derivations, and in any
case gives us a greater choice of theorem-provers. Moreover, by studying properties of the algebraic structure (i.e.
building a calculus) we can derive system-independent properties.
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X

?_:Q 1.4. Notation
¢ : We have tried as much as possible to use standard mathemaucal/llogical notaton: A , v , => ., <=> |V
M and = are the usual logical symbols.  denotes the set of natural numbers (non-negative integers).
A
8 . . . L .
; S‘ We've generalized shghtly the tuple projection operator (denoted by subscripting): (x,....x ), = X, , to take a tple
,,;5; of posinons and return the corresponding sub-tuple of values: (x....x ) (o) = Xy ey )

1k Wk

>
s 4

For our "precise” proofs, we have a semi-formal notation: There are two columns: assertions on the left, and
justifications on the night. enclosed in double brackets, which can be mentally read as "because” or "by". Successful
completion of the proof is indicated by:

'}J?.J

o-" PN RN

\ §0)
:"':‘ often indexed by the name of the theorem it proved. For example:
We have =V /R {{ Ohm, thm, 1 ]]
o and P=V<*] {{ definition ]]
- . P=Vi/R
K X and V= 5.0 volts ([ hypothesis ]]
o _":: and R =0ohm [[ we've reversed Vcc and Gnd pios ]

‘ t_.: [[]]Thm Chip-is-Hot
e In general, these proofs are most easily followed by skipping the individual justifications, i.e. reading the left
b ::z column only! Occasionally, if a step appears unclear, then checking the justification is useful.

"..-’_;: Other notations for particular structures (such as strings) are defined as concepts are defined. An index of major
! - definitions is given at the end for "random-access” readers. The report itself is "linearly” organized in definition-
N theorem-proof form, each referring only to concepts previously defined or proved.
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2. Mathematical Foundations of the Semantics

2.1. Basic Theory: CPOs, PCPOs, and Induction Algebras

The domatns we consider are chain-complete partally ordered sets. However, since there are some terminology
vanauons across the vanous authors in the field, we specify here the structures we will use, as well as the main
results we'll need about them.

Many of these definitions and results can be found in various places and forms in [Manna 74] chapter 5, (de
Bakker 80] chapters 3 and S. and [Schmidt 86] chapter 6.

Often however. these concepts (lub. continuity. fixed points) are obscured in standard treatmeris because they are
defined in the specific context in whuch they are needed, which usually turns out to be a higher-order set where it is
hard to visualize things. We have tried to avoid that pitfall here. and have defined each notion in the simplest
structure in which 1t is meaningful.

Definition 2.1: Partial Order [PO]
<P.c>1is a Partial Order [PO] <=> Pisaset A < isa binary relation on P which is

sreflexive: Vx € P . x C x
e antisymmetric: Vx,y € P,(XCy A yC X => X=y)

etransiive: Vxvz e P, (xCy A ygz => xgcz)

Definition 2.2: Upper Bound
Let<P,.c>beaPO,Sbeasubsetof P,y € Pisan UpperBoundof S(inP) <=> Vxe §,xCy

Definition 2.3: Least Upper Bound [LUB]
Let <P.c>be a PO, S be asubset of P,y € PisaLeast Upper Bound of S (inP) <=> yis an Upper
Boundof § A Vz e P,zUpperBoundof S => ygz

Definition 2.4: Chain
Let<P,c>beaPO,Sasubsetof P,Sisachain <=> Vxye S,xgy v ygx(e cistotalinS).

Note: we usually refer to chains as indexed by an ordinal I: (x;), . ; | Vi € I,x; ¢ x,,; . This does not
reduce the generality.

Definition 2.5: Complete Partial Order [CPO]
<P.C>1s a Complete Partial Order [CPO] <=> <P,g>isaPO A every non-empty chain in P has a LUB.

Definition 2.6: Pointed Complete Partial Order {PCPO]
<P.c>1saPointed CPO <=> «<P,c>isaCPO A there is aleast element, usually called L , for c in P
(1.e. the empty chain also has a lub).

The distinction between CPOs and PCPOs is often glossed over, because most domains used in practice are
PCPOs ( [Schmidt 86], [Melton-Schmidt 86] make the distinction). In our case, we will deal with structures which
are CPOs but not PCPOs, and therefore, we need the more general definitions.

Note that any PCPO is a CPO, and therefore all results true for CPOs apply to PCPOs. Also, an equivalent
definition of PCPOs not referring to CPOs can be given, simply by requiring that "every chain has a LUB", but our




TOMMATIRIE NN ™ Wy

B0 definition makes the dependency on the empty chain explicit.

Definition 2.7: Monotonic function on POs
N I.,f:t<P1,g;l>.<P2,g2>bePOs,fafuncl:ion:f’l — P, fismonotonic <=> Vxye P .xg,y =>
" ‘ N

oy fix) ¢ 2 f(y)
o
M
.r\:' Definition 2.8: Continuous function on [PJCPOs
\ Let <P,.c >, <P,.C 5> be PCPOs [resp. CPOs), f a function: P, — P, f{iscontinpous <=>
W ¥ (x,), 1 [resp. non-empty] chain in P, (f(x NDigrhasalub A f(lub (x); ¢ P =lub(f(x)));
»” . ] t . 17 e
LA - where the lubs are taken in the appropriate domains .
e,
.' NI,.. . - . .
o By considering a chain of just two elements we immediately get:
.
. Theorem 2.9: Continuous => Monotonic
N Let<P.c >, <P,,&,>be CPOs, and f a function: P, > P, fcontinuous => [ monotonic.
-
-'\a
-‘_:\: The pext two properties are immediate, but ofen useful:
\Y ¥
-~ ‘_-.:
NN Theorem 2.10: Composition of monotonic functions
‘.«_ Let <P, >, <Py, 5>, <Py, S 3> be POs. Let f be a function: P, — P,,gbeafunction: Py - Py . fand g
:'_ y are monotonic => g.f:P; - P,,is monotonic.
o \':"'.:
) {:',-. Theorem 2.11: Composition of continous functions
.‘_{I‘_ Let <P ¢ >, <P,,C,>.<P;,C 5> be CPOs. Let f be a function: P, — P, , g be a function: P, — P, fand
{ g are continuous => g.f:P, = P,.is continuous.
K
A
: }’\ Definition 2.12: Fixed Foint of a function
: ::Q Let S be an arbitrary set, f a unary functionon §,x € SisaFixed Pointof f <=> f(x)=x
Nt
12011
9) Note that the preceding definition is a common mathematical potion, and applicable to any structure, not just
A CPOs. In Parually Ordered sets, we can additionally define the notion of a Least Fixed Point:
D
]
W Definition 2.13: Least Fixed Point (LFP] of a function
X Y Let <P, > be a PO, f a unary function on P, x € Pisa Least Fixed Pointof f <=> xis a fixed point of f
b A
-~ .
PY VyeP,yfixedpointoff => xcvy
i One of the main reasons for using PCPOs as domains is that in these structures, a wide class of functions have least
e fixed points, which moreover can be computed explicitely:
- Theorem 2.14: Kleene ‘
A continuous function f, on 2a PCPO <P, c > hasa LFP inh P : lub(f(L }); ¢ o
s
)':"z Proof:
';_ - This is an extension of Kleene's 1st Recursion theorem [Klcene 67] . Many proofs of this result exist in the
: ,'-'_': literature, in various forms. One closest to our notatior can be found in [Schmidt 86] p. 114.
.
o (D Ttnem. 2.14
". -
X :r:j A useful generalization in {Moschovakis 77] extends this result to families of PCPOs. and systems of continuous
;: functions on these CPOs. (Moschovakis® resuits are actually more general and deal with arbitrary induction and big
‘ .rQ ordinals. We restate them here in the simpler context of continuous tnduction, and consistently with our notations.)
e ﬁ
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P Definition 2.15: Induction Algebra
{ <(PJ)JE P e F >isaninducton algebra <=> Vj e I,<P)‘gj> 153 PCPO A F is a set of funcuons
3 f: P R P{ - PJo . containing the identity maps, and closed under composition with projectons.
; ;- By projection we mean a function of the form: (x,....x) ~> x, forsomei € {1.n} .
: < By "closed under composition with projections” we mean that if g € F and f satisfies: f(x,...x,) =
. ZUT X)X b R (X X)) wath 7y, given projections, then f € F .
Ko
N Theorem 2.16: Kleene-Moschovakis
™ Let <(P); ¢ 1. (€)1 F > be an induction algebra. Let (f,....f,) be a system of continuous functions in F

wherer € {l.n}, fk:PJ. X ... X PJ - PJ ,Lhcnthatsysuem‘::saLl’-'PinPj X .. Pj :
1 o k i L]
tub[(f,...f Y(L

jl"""jn)]i Ew"”

o>

o i Y o

) Proof:
: See [Moschovakis 77], Lemmas 2.4 and 2.5 . These actually apply to monotwne functions, and conclude that the
: system has a fixed point:
' lub{(f, ... )'(L ; ....L . )], .  With x some "big enough" ordinal.
Py I b€
Since in our case we are restricting ourselves to continuous functions, it is clear that o is big enough:
P We have f [ lub(fi(L)); . ,]=lub(f*'(L Die o ([ continuity of f ])
\ and (f*I(L ))iem=(ﬂ(i))igm-(L}
- o Tub(ETIL)); ¢ o = (L))
f( lub(t‘(.L Vie ol =ubf(L )¢ o
j} lub(f(1L )); ¢ , Is 2 fixed point. And the same proof obviously carries through to a tuple of functions.
‘.
. (Drim. 2.1
.
& A few other results which help us build CPOs and PCPOs are enumerated below.
> Theorem 2.17: Product of CPOs
/ '_"_ The cantesian product of CPOs 1s a CPO (under the induced coordinate-wise ordering), and the lub of a chain of
K- tuples is the tuple of the lubs of the coordinates (i.e. the tupl-ing operation is continuous).
N
':-:: This generalizes immediately to finite product.
.
3 Theorem 2.18: Product of PCPOs
o The cartesian product of PCPOs is a PCPO (under the induced coordinate-wise ordering).
__4‘
et This also generalizes immediately to finite product.
K
[ ]
! Theorem 2.19: Disjoint union of CPOs
X The disjoint union of CPQOs is a CPO (under the union of the ordering relations).
A This generalizes to arbitrary unions with the following definiion: U (P'),_;={x | 3Jiel|xe P'},
T, .
N where the P'’s are all disjoint.
L
..'{ Note however that the disjoint union of PCPOs is not a PCPO (we need to add a new least element in order to
-',;'. obtain a PCPO). It is common in Scott-style semantics to add that extra element without even mentioning it when
'.": dealing with PCPOs. We will not do that. We sull clearly have that the disjoint union of PCPOs is a CPO, which
<
.
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o
N 8
ed |
o\ will be enough for our purposes.

WG

L * As for Kleene's theorem. proofs for the preceding coastructions can be found in [Schmidt 86).

I

oy Definition 2.20: Sub-CPO

L Let <P.=>be a CPO. P, 1s asubset of P, P isasub-cpoof P <=> <P .S comicied 1o p.> 15 2 CPO.

P !

QNS

S Note the following two subtleties about sub-cpos:

lj * In general. subsets of CPOs are not sub-CPOs (counterexample: w+1, with subset: ).

:\‘: *In general. LUBs (of a single chain) in a CPO and a sub-CPQO are not necessarily the same

::':.e (counterexample: w+2. sub-cpo: w+2 - {w}. chain: {0,1,...}).

M
A
Y

o The following notion is not as "standard” but very useful in building "nice" sub-CPQOs, and we will use it
f extensively in the rest of this work:

20

Ny Definition 2.21: Strongly Admissible predicate on a CPO
h x"f- Let <P,c >be a CPO. Let ¢ be a predicate on elements of P. ¢ is Strongly Admissibleon P <=> V Xiet
o non-empty chainin P, (Vi€ I,0(x)) => &lub (x);.p

.

~

® In other words,”6 carmries to the lub”. Note that this property is closely related to, but slightly stronger than, the
S—' ” noton of "admissible” predicate in computational induction [Manna 74].

o

-
T
&8
It Theorem 2.22: "Nice" Sub-CPOs

7 ;

o Let <P.c > be a CPO. let ¢ be a strongly admissible predicate on P, then PNd={x € P | &(x) } ,isa
"-»‘ sub-CPO of P. and the LUBs of chains in both domains are the same.

i ';: Proof:
: o Immediate by def. 2.21. l.e. we've defined "Strongly Admissible” to be exactly what we needed for this theorem to
, _':,,": be true; the work will be in proving that specific properties we’re interested in are in fact strongly admissible.
': ((lnen. 222
K- We now move on to function domains. We can easily extend the ordering of a Partially Ordered set to an
N ordering on its functions:
o

g
' :‘.:: : Definition 2.23: Pointwise function ordering
;.' Let<P,.c >, <P, c,>be POs, f.g functions: P, - P, , S pointwise 8 <=> Vxe P, f(x)c,ex).

' i It is immediate that c pommg'is reﬂexjvg. antisymmetric and transitive. The subscript "Poimw‘-”" is usually

" dropped since the correct relation can be inferred from context.

3, e

"o 38

: _s: Note that this definition immediately applies to functions of arbitrary arity, by considering them as unary

."'-t functions from the product PO.

‘:-j' Function domains on CPO: In the literature, one usually finds a proof that the set of monotonic functions on a
-::'_- CPO is a CPO, or that the set of continuous functions on a CPQ is a CPO. However, many more function domains
o on a CPO can be usefully built, as the next few theorems show.

‘!v Theorem 2.24: P,’1is a CPO.

i-.c let<P, >, <P:, c.>be CPOs. the set of al! functions from P to PZ: PZP\ , under the pointwise ordering, is

Vo a CPO.
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The proof is fairly standard. However, we give it because we will need to refer explicitely to the contruction of
the lub of a funcuon-chain in many other occasions.

Proof:
Assume [hl) <P,.c > CPO, [h2] <P,.C ,> CPO, and [h3] (£,), , ; non-empty chain in P,F: .

Define (and this is the essence of the proof) f = Ax.lub(f;(x}) we prove that 1) f € PZP\ and 2) fis lub (f;)

iel” el

) Letx € Pl . arbitrary.

Wehave Yie [.f cf {{h3]]

: Vie Il fi(x)g,f, ({x) [[def 2.23 )]
{ fi(x}., 1} is a non-empty chain in P, [(def.2.41]
{fi(x).,c ) hasalubinP, [[(h27]]

and this was done for arbitrary x,
: fis a (well-defined) function from P, to P,

[,
2) Leti € 1, arbitrary.
Wehave Vx e P, f(x) c,lublf(x));¢ {[def. 2.3,LUB => Upper Bound ]]
: Vxe P, fi(x)c,x) [[ construction of f ]}
o fcf [[def.2.23])
and this was done for arbitrary i,
: fis an upper bound of (f)), . |- [[def. 2.2 ])
Assume [hd]ge P |Viel.f cg
Let x € P, arbitrary.
Wehave Vie I, f(x)c,gx) ([ b4, def. 2.23 1]
lub(f,(x)); ¢ 1 €, &(X) [[def. 2.3 ]]
f(x) c, g(x) [[ construction of f]]
and this was done for arbitrary x,
fcg [[ def. 2.23 ]}
f=1ub (fl)ie i
(1},
((Dhm. 2.24

As an immediate corollary we get:

Theorem 2.25: PP"is a CPO.
Let <P.c > be a CPO , the set of all functions (of arity n) on P: PP" | under the pointwise ordering, is a CPO.

As an immediate application of the preceding theorem (thm. 2.24) and our notion of strongly admissible
predicates (thm. 2.22), we get a whole class of function CPOs:

Theorem 2.26: Function domains on CPQs

Let <P|,c > . <P,.c,>be CPOs. Let ¢ be a strongly admissible predicate on P,” , then P,Pin o= f €
PP\ | e(f) | . under the pointwise ordering, is a CPO. And, the LUB of a function-chain in PP o is the
same as the LUB in P,

vt ORI
OO
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NN Theorem 2.27: Corollary: Monotonic functions CPO, Continuous functions CPO
! Let <P|.c >, <P,.C ;> be CPOs. The following sets of functions. under the pointwise ordering, are CPOs:
f_\: * set of all monotonic functions: [P, — P, ],
N
_ _'C:j o set of all conunuous functions: (P - P, ).
Lo
4 :,-:. Proof:
' o(f) = "f is monotonic™ is strongly admissible on P,:
0. Assume [hl] (f)), . ; non-empty chain of monotonic functions from P, 1o P,
- We have f=Axlub(f(x)), [=lub(f) _; {{ construction of lub of funcuon-chains ]]
Bw i X3 1€
'N Let xye P, | xgy
o Wehave Vie I, f(x)c,f(y) ({ b1, f; is monotonic ]]
A
( and Vie I.f(y) c.f(y) ([ construction of f }}
7 Vie I.f(x)c,fy [[ < tansitive ]]
s lub(£(x)); ¢ | S2 f) ([def. 2.3 ])
‘ :" fix) <, f(y) {{ construction of f ]]
; -V’: f is monotonic.
1 »
o [[nmonotonic strongly admissible
DN
S o(f) = "f is coniinuous” is strongly admissible on P F1:
S Assume [h2] (f), . ; non-empty chain of continuous functions from P, to P,
xj-: We have f=Axlub(f(x)), [ =lub(f); | ({ construction of lub of function-chains }]

and we already know that f is monotonic ([ by above proof ]]
Let (x; )JE | Chain in P,

P WY

'5}_§ Webhave Vje 1.x &, lub(x) [[def. 23, LUB => UpperBound]] |
: Voe vie l.fx) <;2f(1ub ()¢ D {{ f monotonic ]

;-:i . LL 1ub<f<xj»j€, <, f(ub (xp,—e D [[ def. 2.3 ]]

b
®) Let i € I arbitrary.

! Ny Wehave f, cf ((f=lub(f),. ;. LUB => UpperBound )]

Qe L Ve L) oy fx) [( def. 2.23 )
NS and Vje I f(x) < lubfx)) ey [{ def.2.3,LUB => UpperBound ]]

P Vie I Ex) €y WbER)) ¢ [{ < transitive ]

e s b)), o lublf(x ))m ((def.231]

v and  flub (x); ) = ubCE (). [{ b2, , continuous ]}

Y o EQub(x) D Sy lub(f(x,-»,-el

o and this was done for arbitrary i,

o L Vie LfQub (R) ¢ ) S lub(f(x)); ¢ ¢

o ub(£ub (x)); ¢ P e 1 S 2 WKEX)); ¢ ([ def. 23])
NN and flub (x)); ¢ I) lub(f,(tub (x.); ¢ ;e 1 ([ construction of f ]]

:' . L2: f(lub (x) D g;zlub(f(xj))jel

N £Qlub (x), ¢ ) = WB(ECK)), ¢ | [( lines L1 and 12 ]

' .‘ ' f is continuous.

W3 [[]]cominuous strongly admissible

K- (Ol 227
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. :: Other strongly admissible functional predicates will appear in the next sections.

el

!- ol This completes our list of (slightly extended) standard notions. We now concentrate on particular classes of
W ~ domains which will be of essential use later.

o

i . :

o 2.2. Finite Depth domains
LA
lj Definition 2.28: Flat domain
i s Let S be an arbitrary set. S| (read 'S lifted”, or "S bottom") is the PCPO obtained by adding an extra element:

N _ . and the binary relation: ¢ definedby: Vxyy € S.x gy <=> x=1 v x=y.

e It is immediate that C is reflexive, antisymmetric and transitive, and that all ¢ -chains have a lub.
W
( A picture of S, is most convincing:

-»{::: Figure 2-1: Flat domain
N
Y
a ’ j S: . L] . . . .

o
‘]
) :’-

R
ot 1
e

>

s

:- Syntactic note about L : the character "1 " has no magical properties' In a different context (such as chapter 3),
-' we will free to use a different "least element” character more appropriate for that context.

o An essential property of flat domains is that all chains of distinct elements are finite, in fact they are at most of
*‘\: length 2. Many properties of flat domains (such as can be found in [Manna 74), chapter 5) generalize, often more
O] clearly, to arbitrary CPOs which have this "finite depth" property.

'

:" Moreover, the domain on which we will base our semantics for synchronous circuits is a finite depth domain. We
FC have therefore isolated this property here, as well as its consequences, so as to distinguish the abstract properties of
; 'f.\, these domains from the idiosynchrasies of their application to the semantics of synchronous circuits.

b) \.\

HEN
e Definition 2.29: Finite Depth domain [FD-CPO)

N Let <P,c > be a CPO, <P, g > is of Finite Depth <=> any chain in P is a finite set.

L
L An equivalent way of characterizing FD-CPOs is the "Accumulation” pro, :

’ e eq perty
3 .
‘S Theorem 2.30: Accumulation
B Let <P,c>be a CPO, <P,c>FD-CPO <=> V (x;),. non-empty chaininP,3ip € © | Vi 2 i,,x;= Xq

P (and therefore also: lub(x;) = Xy ).

. In other words, there is a finite index. after which the chain is constant. We refer to ij as the "accumulation
‘:l. point” and x. as the "accumulation value” (or "lub”).

e .
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. } Proof:
}.. (Should be intuitively clear, given for completeness.)
{
Assume [hl] <P,c> FD-CPO, [h2] (x,), .  arbitrary non-empty chain in P, we prove the Accumulation property
by contradiction:
: Assume thatitis false, we have: Vie w. 3, 21| x, g x. A X, #Xx;
then we extract X= (X, ), , . which is a chain ' ([ b2, and subset of a chain is a chain ]]
\ il
W and X contains an infinite number of (distinct) elements ([ by construction ]}
-- X is an infinite chain in P, contradicting hl.
Wy [ .
ot
4,
<=
( Assume [hl] Accumulation property holds, [h2] (x,), . | arbitrary chain.
[ We have if (x,), . | is empty, then it is finite ([ trivially ]}
-: and if (x;), . | is not empty
:\ then 2ij e o | Vi2iy.x =" {[hl,h2]]
i (X)er=((x),i=0.14} {[ set extension' ]]
: (X)ie1 is a finite set.
- and this was done for an arbitrary chain, so P is a FD-CPO.
o
W [ ..
(_ A few pictorial examples may belp:
\
k Figure 2-2: Finite depth CPOs
Y
148
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2 aa ab ba bb
N
n.: al bi
\
R
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L
®
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:- La Lb *
L J L L
3
o ?
o ({ a,bm arbitrary FD-CPO

v
2t

Examples of FD-CPOs abound: It is obvious that any finite CPO is a FD-CPO (and any finite PO is a CPO). Itis
also clear that FD-CPOs can be obtained as follows.
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; S Theorem 2.31: Flat domains are FD-CPOs.
e
3} Proof:
! f Immediate.
’ Mrnm. 231
Yl
oy Theorem 2.32: Product of FD-CPOs
, '“: The Cartesian product of FD-CPQs is a FD-CPO.
5
¢ Proof:
; 'yl Immediate with the Accumulation property, by taking the max of the accumulation points for each coordinate.
((Dhen. 232
D
2 Theorem 2.33: Disjoint union of FD-CPOs
: The disjoint union of FD-CPOs is a FD-CPO.
At
' Proof:
' 7 Immediate once you notice that any chain in the disjoint union is necessarily included in one of the original sets.
15¢ Ul hen. 233
%

o

Finite Depth has interesting consequences regarding continuity issues, both for functions and functionals:

Theorem 2.34: Monotonic => Continuous in FD-CPOs

™
-

K- Let<P|.c >, <P,,C ;> be FD-CPOs, f a function from P, to P, , f monotonic => f continuous .
. a

" Proof:

j Should be intuitively clear. Given here for completeness.

Assume [hl] <P,,c > FD-CPO, [h2] <P,,c,> FD-CPO, [b3] f a2 monotonic function: P, — P, , [h4] (x)

3 i€l
s non-empty chain in P .
-_-_1 Wehave 3ige @ | Vi2ig, x=x, =lub (X}, ([ b1, thm. 2.30 ]]
" We have f(x,), . ; non-empty chain in P,, [[ h3 and b4 })
",', Zie | Vizi| fix)= f(xi‘)=lub(f(xi))iel ([h2, thm. 2.30 ])
° Let j=max(ip.i,)
» We have X; = lub (x); e 1 A f(x).) = lub(f(x;)); ¢
-1 fub (x)); ¢ 1) = lub(f(x); ¢ 1
o f is continuous.
o () rnm. 234
v Our result about functionals is a generalization of [Manna 74] theorem S.1 , which states that functionals (on
! : monotonic functions, of arity n) on a flat domain, defined by composition of monotonic functions (of arity n) and a
1 '.t function variable "F", are continuous.
'
D
I Besides separating what is true in any CPO from what depends essentially on the finite depth property, we
. generalize the result in three ways:
'l » To apply to FD-CPOs instead of just flat domains,
::, * To allow functions of any arity in the construction of the functional, as long as anities match. This
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technicality corrects the fact that the theorem as stated by Manna does not even apply to the functional
defining "factorial”. .

¢ To apply to functionals on any sub-cpo of the set of monotonic functions (another technicality which we

'.:i will require in order to apply this result for our purposes in the next section).
N
"‘: The first theorem applies to any CPO, independently of finite depth considerations:
L2 Theorem 2.35: Continuous functionals on a CPO
}D Let <P.c > be a CPO. if T is a functional, on confinuous functions: ( P" — P ) defined by (arity-correct)
.:'.l. composition of continuous functions: (P™ — P)foranym € o, and the function vanable "F", then T is
Yy continuous.
R
‘.:::" Our proof is similar in structure (induction cases) to [Manna 74]’s (partial) proof in the flat domain case, but
’l : different in detail since we do not mingle considerations of "finite-depth” (accumulation property).
NN Proof: l
: }: The proof is by structural induction on 1. There are 4 cases. In each case we have to check that
K :" 1 is closed (i.e. yields continuous functions when fed a continuous function as input),

Y
R . .
'.'\ T 1S monotomc,

) 1t preserves lubs of function-chains.
"
:-"‘: [Base] case 1: t = AF.g , with g continuous function: P* = P .
N 7 closed: immediate.
! 7 monotonic: immediate ([ constant fun. (in any PO) is monotonic ]]
M 7 preserves lubs of function-chains: immediate ([ constant fun. (in any CPO) is continuous ]]
AN
}:: [Dcase 1
*:: [Base] case 2: 1= AF.F.
', :. 7 closed: immediate [[ Identity is always closed on any set! ]]
e 1 monotonic: immediate ([ Identity (in any PO) is monotonic ]]
;) 1 preserves lubs of function-chains: immediate [[ Identity (in any CPO) is continuous ]}
o ([ ease 2
W o
-, [Induction) case 3: T = AF.go(T,(F)....1,(F)) , with g continuous fuaction: P™ — P
".:"1 1 closed: immediate ([ thm. 2.11, induction hyp. on ;.7 1]
9 1 monotonic:
: &'. Let f|.f, continuous functions: P* = P | f; ¢ f,
::\ Wehave Vje {1.m} ,1j(f,) < tj(f,z) 1R monotonic, induction hyp. 1)
:c:' Vxe P", Vje {l.m) ,(1j(f1))(x) c (tj(fz))(x) {[def. 223 ])
2 Vx e PP gl (f XX (1 EXX)] © BI(T (EDXX),- (T (F))(X)]
® {{ g monotonic, thm. 2.9 ]}
. «f,) < uf,) {[ def. 2.23, definition of 7 ]
y ':{ 1 preserves lubs of function-chains:
f :: Let (f)), non-empty chain of continuous functions: P* — P
: ‘::, Wehave Vje (l.m}, 1j(lub €ep= lub[tj(t’i)]i el 1 T continuous, induction hyp. 1]
.' ~Ll:vYxe P?",Vje {l.m} ,(tj(lub (A I))(x)=lub[(1:j(fi))(x)]iel
. [[ construction of lub of function-chains }]
" Let x e P", arbitrary.
;E;. We have (t(lub (f), ¢ PXX) = 8((T,Qub (£); ¢ PR, (T Mub (£); ¢ PUX))
g
L J
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([ definition of T ]}

= g(lub[(t (fI)X%)}; ¢ po--Jubl(T (£)XX)], . P [{line L11]]

= lub[g((T, (F)X)...(T (F)Xx))]; ¢ | ([ g continuous ]]

= lub((2(€INx)]; ¢ 1 ([ definition of 7 }]

= (lub[T(f)]; ¢ )(x) ([ construction of lub of function-chains ]]

and this was done for arbitrary x,
T(lub (), . P = lub[(f)]

1€l
[Nease 3
(Induction) case 4: T = AF.Fo(1,(F),...7 (F)) .
T closed: immediate ([ thm. 2.11, induction hyp. on 1,..7_ ]
T monotonic:
Let f,.f, continuous functionson P" | f, ¢ f,
Wehave Vj e (l.n} ,1:j(f,) c 'cj(fz) { T monotonic, induction hyp. ]]
Vxe P" Vje (l.n}, (‘cj(fl))(x) c (tj(fz))(x) ([def.2.23 1]

Vx e P", [t (FXX). (T, )XX)] € £[(T (F)XX),...(T(F)X(X)]
[[ £, monotonic, thm. 2.9 ]]
and Vxe P",f[(7,(£, )X (T,(£)XX)] © £,{(T (£ )NX),...(T (£)XX)]
(f,cf;1
Vx e P [t (f XX (T, (£XX)] < £5[(T,(F)HX).... T (£)XX)]
[{ c transitive ]]
«f)) ¢ wf) ([ def. 2.23, definition of 7 ]]
7 preserves lubs of function-chains:
Let (f), ¢ non-empty chain of continuous functions on P°.
Wehave Vje {l.n}, 7(lub (£)ie P =Mub{T(f)]; ¢ ;
~L2:Vxe PP, Vje (Lo} (tub () P)x) = lub{(z,(£))(x)]

1 T continuous, induction hyp. ]]
iel

{{ construction of lub of function-chains ])
Let x € P", arbitrary.
We bave (t(lub (fi)ie PXx) = (lub (fi)i € IX(Tlan (fi)ie l))(x),..,('rn(lub (fi)ie PXX))

{{ definition of T 1)
= lub{ £,((,(lub (f}); ¢ PYX)-(T,Aub (£); ¢ PXXN}, ¢ 1 ([ construction of lub of function-chains 1]
= lub{f;(tub{(T,(f))X)]; ¢ p--Jub((T (E)X)]i ¢ P)ie g ({ line L2 ]
= lub{lub[f,((T; (£)XX),... (T, (EIXXN); ¢ 1 e 1 ([ f; continuous ]}
= b [T (E)XR) (T ENEN]; ¢ ¢ ([ lub; ¢ (lub; , () =lub; ¢ () 1]
= lub[(Z(EINX)); ¢ ¢ {[ definition of 1 ])
= (lub(*(f)}; ¢ P(X) {[ construction of lub of function-chains }]

and this was done for arbitrary x,
T(lub (£), . P =lub{w(f)],
(Deage o
(D nem. 235

Combining thm. 2.34 and thm. 2.35, we immediately get the result for Finite Depth CPOs:

Theorem 2.36: Continuous functionals on a FD-CPO
Let <P, <> be a FD-CPO, if t is a functional, on monotonic functions: [ P™ — P ), defined by composition of
monotonic functions: [ P™ — P ] forany m € w, and the function variable "F"', then 1 is continuous.

And finally, noting that the proof of thm. 2.35 carries through to functionals defined on a sub-cpo of the set of

AN "'.' .‘ .‘ .‘ ‘. “ W |' Q‘
\ 5!’A‘:‘A':‘n:..'c‘:‘A’:'u':‘n':‘n\q'o0'.'.!‘,



monotonic functions, as long as we assume that they are closed on that sub-cpo, we get our final result:

Y
1 ' Theorem 2.37: Continuous functionals on a FD-CPO , general version
o Let <P.c > be a FD-CPO. if 7 is a functonal, on any sub-cpo of the set of monotonic functions: [P" - P ],
:' closed on that sub-cpo, defined by composition of monotonic functions: {P™ — P ] foranym € w, and the
4‘ W function vanable "F", then 1 is continuous.
¢

2 ~" [[]]Gcncralizmon of [Manna 74] Thm 5.1

“1 Note that this theorem (or thm. 2.36) are not true in arbitrary CPOs, as the following simple counterexample
o shows:

L3 .

D oy
:: "& Counter-example:
:‘. Let P =w~+1, with the standard (ordinal order) < , P is a CPO.
L Let g=2Ax.(if x = wthen 1 else 0)
( We have g monotonic ([ immediate verification ]]
e, o Let 1=AF.g.F, 7is a functional defined by composition of monotonic functions and the function variable "F".

A Let f =Ax.i (ie. the constant function: i), Vi € ®.

W Wehave Vi € o, f, is monotonic ([ constant functions are monotonic ]]
s and Vie o,f<f, . ie(f), ,chan ([ immediate )]
' and lub (f), . ,=*x.© ([ immediate verification ])
an s lub (f) ¢ ) =Mx1
A Wehave Vie o,(f)=Ax0
'.f o b)), ¢ o= A0
2.!,. s b ()¢ o) # ub(T(f)); ¢ o
! i [ UJcounacrcumpk
350

A, . . . .
g 2.3. Strings of a domain, and String Induction Algebra

() )

A particular construction on domains which we have found useful in our semantics is the domain of (finite)
Strings on a domain. It is also from these domains that we noticed the generalizations from flat domain to finite
depth domain.

3

. ‘l’l.

b

A Q.;«L.)

As in the previous section, we study the properties of String domains independently of their application to the

! : semantics of synchronous circuits so as to separate the general from the particular. (This also has the advantage of
y ';: keeping the overall notation. and hence proofs, simpler.)

L J
o Definition 2.38: Strings of a partial order

o Let <P,c>be aPO, P * = U (P'),_ ,, With the induced ordering, is a PO (disjoint union of cartesian products
- of a PO). We call it: Strings of P.

o

.':; Recall that when forming the disjoint union we are not adding any new elements (cf thm. 2.19).
o

T Once again, a picture helps.
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Figure 2-3: Strings on a flat domain
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They key fact about the String construction is that it preserves the "niceness" of the underlying domain, to a great
extent:

O

Theorem 2.39: Strings on a CPO

xY

oy <P,c>isaCPO => <P* c>isaCPO.
; _;‘-.;:
--:\:.r: Proof:
! :-::j Immediate by thm. 2.17 and thm. 2.19.
o (D rnm. 239
:' and most importantly:
l.\"
LA
.::-t: Theorem 2.40: Strings on a FD-CPO
. <P.c>is aFD-CPO => <P* g>isaFD-CPO.
@
N Proof:
- js Immediate by thm. 2.32 and thm. 2.33.
P, (D nem. 2.40
v
-‘b'-~ . . . .
PY Note however that the String construction does not preserve "pointedness” (i.e. PCPO). In fact, we have a stronger
_:1,',.' statement to the contrary:
s
ﬁ Theorem 2.41: Strings do not have a least element
Wy
°
2
), o0, e e o P o N . : -ym ‘ N g |
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: Let <P, c>be a PO, Pnon-empty => <P * C> bhas no least element.
i‘ X Proof:
e Assume [hl] <P.c> ?O. (h2) P non-empty
’. Le‘t € be the empty stning (€ P *)
4 Wehave Vxe P* [cl(x g & => x=¢€£) A [2(ecx => x=£)
b > ({< is induced coordinatewise ordering]]
‘3 let ae P ((b2]]

We have a € P * (string of length 1, containing the element a)
Assume _ least element of P *
then L ceandl g a

L=€ [[cland L c €1]]
e €Eca ([Lcal
- € = a. which is a contradiction. ([c2]}
i (O, 2.0
N
! "_;: This point was mostly made to bnng out the fact that we are not studying the "usual” domain of strings under the
T prefix ordering (for which € is a least element), instead we are constructing the String domain of an arbitrary PO,
® under the induced ordering.
aad

The junction with "usual” strings will now be made, but the preceding remark will still be valid for the rest of this
work.

We consider the usual (slightly extended) string structure on P *:
<P *, &0 1,<, . last(),abl(), 1st(),rst(), T 4. ©>

e P y , -
s
= N

W Definition 2.42: String structure
E:: e g : — P* (constructor) empty string.
\

5"’ s :Add:P* x P - P*  (constructor) add a character (to the right).

e ol|:Length: P* - o, length of a string. (We assume the integers are included in P, or are encodable
K in it, cf. [Moschovakis 71].)

;-;: Defined by: (lel=0) A (Ixul=Ixl+1)

)

o o< :Prefix:P* x P* — {TF}, prefix relation on strings.

Vsl Definedby: (x SE€ <=> x=€) A (xSyu <=> x=yum v x<y)
®

- e . : Concatenate : P* x P* — P *  concatenate two strings. We overload the "." symbol since we will
:‘3’ identify characters and strings of length 1. We will also sometimes omit the "." all together, when no
" confusion can result.

; Definedby: (x.€=x) A (x.(y.u)=(x.y)u, where the "." preceding "u” means "Add" )

. e last() : Last : P * — P (destructor, partial) , last character of a string.
& Defined by: last(x.u) = u

s .
e, e abi() : All-But-Last : P* — P * (destructor, partial) , all characters of a string but the last one.
:1:: Defined by: abl(xu)=x
| "5: o 1st() : First : P * — P (derived destructor, partial) , first character of a string.
(-2 Defined by: 1st(u.x)=u
’_‘ erst(): Rest: P* — P * (derived destructor, partial) , all characters of a string but the first one.
e Defined by: rst(u.x) = x
"l:'z ¢ T :"To the power" : P x @ —» P *, make a string by Adding the same character a certain number of
[/ ¥ -
'
B -
-
o
P
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oo
' -,:-' ume.
o Defined by: uT™ = uu..u "ntimes”. or formally: (uT®=¢) A (@t =y 4)
L e | : "Atindex/position” : P * x — P extract a character from a string .
;" ﬁ Deﬁned by: Letn=1ixl, x=xl x4«, X+, . We also use | with 2 arguments to extract substrings:
: "‘ﬁ denotes the corresponding substnng ofxifi < j < 0, € otherwise. (x=x4, ) . The formal
, (recursxve) definition is messy and uninteresting.

A .
"”'\. . ¢®:0isto"." (add) in string theoxy what I is to "+" and what [T is to " x " in number theory,
O ie. ©,1,u; =uu,.u,, where u, is any character expression.

:',: Formally: (©2u,=¢) A (912‘1l u=0O"u). u,,)
] \':
| : We also allow ourselves to expand this structure with addinonal (derived) operations whenever needed.
-‘:- Terminology notes:
oo There are a few basic sting operations which are well-known in the literature: [Landin 65], [Burge 75,
::':_ (Friedman-Wise 76] and [Manna-Waldinger 85] among many others. However, there are no consistent notations.
_ f_;.a We have therefore used our own, which we have tried to keep simple, and meaningful relative to the use we will
P ,;Q; have for them (describing synchronous system semantics).
b
.;.-._ The notation used for subscripting is taken from [Mason 86) and [Taicout 85). Even though it is "heavier" than
N . N . . . . . .. .
e simple subscripting, it allows subscripted string variables by differentiating between x, x, (strings) and xll. x1¢1
j-:-:- (characters). [Note: if no confusion can result, i.e. in a context where no subscripted string names are used, then it is
-0 reasonable to omit the arrow.]
Lo
{ Theorem 2.43: Prefix
g There is an equivalent definition of the Prefix relation which we will sometime use: Vx,y € P* ,x <y
e <=> Jz€e P*|y=xz
h :.'-i‘:
oy Proof:
2 Immediate induction.
: (D rnm. 2.43
= .:;::: We now study various function domains on string-CPOs:
"1_:.
{',:_-i Let <P *,c >, <P,* < ;> be string-CPOs, it is immediate from thm. 2.24 and thm. 2.27 that:
() o P,*F\* : all functions from P,* to P,*
! " e[P\* - P,*]:all C-monotonic functions from P,* to P,*,
e
i’n_: *(P* - P,*):all ¢-continuous functions from P,* to P,
u'::) are CPOs.
ot
.'1 There are however other classes of functions which are meaningful only in the string structure, and we are
Yo, interested in two such classes:
e Definition 2.44: Length-Preserving [LP] function
e Let f be a function: P\* — P,*, fis Length-Preserving [LP] <=> Vx € P Ifx)l=xl
°
p. Definition 2.45: <-monotonic function
o Le: f be a function: P * — P,* ,fis <-monotonic <=> Vxye P* .x<y => f(x)Sf(y)
9 aS]
g
‘ ' ll
)
[ f‘i M
e
)

'.r-----‘. ------ ). ---h--vw-- "W
GG ..0".0 it ":".t‘l PRl 3:“; Y, 'm'b.. A 0:'0 0' N "lbl.i'l :'0"‘ Sttty ."“..“ &m



—’;‘j
s

o
/7

PN
e
5% %Y "‘. v'-

">

195

»

N l. l‘ l, )
R

-
o "
- .
N
’ .' “- “. '.. /c‘l.

4@

5
PSS A

-
"
4 % S’S"

»
L]

A

Pronunciation note: < -monotoni¢ can be read "L-monotonic” (short for "less-defined-than-monotonic ). And
<-monotonic can be read "P-monotonic” (for "prefix-monotonic™).

Theorem 2.46: LP preserved by composition
Let <P\*.C |>.<P,*.c,>and <P3* C ;> be stning-CPOs. Letf:P* — P,*andg:P,* - P;* ,fandg
are LP => g.f:P* o P;* isLP

Proof:
Immediate venfication.

(i, 2.46

Theorem 2.47: <-monotonic preserved by composition
Let <P *.c ,>.<P,*.C.>and <P,*,C ;> be string-CPOs. Letf:P\* = P,*andg:P,* - Py* ,fand g
are <-Monotonic => g.f:P* = P;*,is <-Monotonic

Proof:
Immediate verification.

(M. 247

Both LP and <-monotonic are in some sense "natural” properties for string of Finite Depth-CPOs, as the
following theorems indicate.

Theorem 2.48: LP is strongly admissible on FD-CPOs .
Let <P,.C > . <P,.C ;> be FD-CPOs, " fis LP " is strongly admissible on P,*/1* .

Proof:
Assume [hl] <P, ,C > and <P,, < ,> are FD-CPOs, [h2] (f)); . { noo-empty chain of LP functions from P,* to P,*

We have = Ax.lub(f(x)), . | = lub (f) ([ construction of lub of function-chains }]

1e 1™ el

Let x € P,*. arbitrary .
We have P.* FD-CPO {{ b1, and thm. 2.40 ]]
and (f(x)), . | non-emptychain in P,* ([h21)
: Sige w| Vi2i, fi(x)= fio(x) = lub(f(x)), ¢ | ([ thm. 2.30 ]}

f(x) = f,c(x)
- If(x)l = Iflo(x)l
and lfb(x)l =Ixi 1 f.‘o LP,h2]]
b= ixl
and this was done for arbitrary x,

fis LP

((Drnm. 248

Theorem 2.49: <-monotonic is strongly admissible on FD-CPOs .
Let <P,.c > . <P,.C ;> be FD-CPOs, " fis <-monotonic " is strongly admissible on )

Proof:
Assume (hl] <P|.c > and <P, C ,> are FD-CPOs, [h2] (f)), . | non-empty chain of < -monotonic functions from
P *wopP,*
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}’ ]
,,-::j We have f=Ax.lub(f(x)), . ;=lub(f), {[ construciion of lub of function-chains ]]
:' 1 Let xye P*|[h3]x<y,
( We have P.* FD-CPO {{ hl., and thm. 2.40])]
:“‘l..." and (f(x)), .. (f(y)) . | non-empty chains in P,* [[h2}]]
iy : iy € wl V|>10 f-i( x)-—f(x)—]ub(f(x))lel ([ thm. 2.30]]
:; and Zi € @ | Yi2i,fify) =1 (v)=lubfy), ({ thm. 2.30 ]}
1
|:0 Let j=max(iy.1;)
v We have f(x)=f(x)and f(y) = fj(y)
’\-:'\ and thx) < fj(y) {[ h3, f -monotonic, h2 1]
-:_ ' o fix) € fly)
o - fis <-monotonic
LR
o ((Dhm. 2.49
‘.;r [t 15 also obvious that if 6, is strongly admissible on P , and ¢, is strongly admissible on P, then &, A ¢, is
Lo strongly admissible on P.
,r:_
X :\: Therefore we get:
RS
SN
o Theorem 2.50: Function domains on Strings of FD-CPOs
- Let <P,.c > . <P, C ,> be FD-CPOs, P,*/" M ¢, where ¢ is any conjunction of
o2 e C -monotonic
v «LP
s
- e <-monotonic
{ is a CPO. in which the lub of function-chains is unchanged.
h M\I
s :::: Proof*:
‘.f\: Immediate by thm. 2.22 (sub-CPOs) and thm. 2.27 (for < -monotonic) , thm. 2.48 (for LP) , and thm. 2.49 (for
X -::- <-monotonic).
2 (O 1hum, 250
.-:‘ When trying to extend the notion of Length-Preservation to functions of arity > 1, we find that the standard
¢:: cartesian product of string domains is inappropriate. Instead it makes sense to define LP on functions with
"-\: argumeants all of the same length. We therefore define the following product on string domains:
\
[
N Definition 2.51: String Cartesian Product
.,-: Let <P\ *.c >, <P,*, C ;> be string-CPOs, we define their string cartesian product to be: P* x P,* = {(xy)
;'_: € P* x P,* | Ixi =lyl | , with the standard (induced) coordinate-wise ordering.
V]
“
.-‘/' One way to think about this product is: P\* x P,* = (P, x P,)", up to tr nsformations from tuples of strings
Y ' to strings of tuples and vice-versa. Also, our definition is meaningful in the category of string-domains, as it
- does not refer to the domains underlying the strings.
)
’ :z,’ Notation: P2 =P x ... x P, ntmes. And if x denotes an element of P , then x will denote an element of P2 ;
vl the underline. instead of the usual overline, is intended to recall that xisa tuple of elements of equal length.
g
‘-('
6" We can thea immediately generalize the notions of Length-Preservation, <-monotonicity and ¢ -monotonicity to
Sty functions: P\* x ... x P * — P,* . thm. 2.50 also immediately generalizes to such functions.
e
1 ~
) .&: For our purposes in giving semantics to syr.chronous circuits, we are interested in functions (of various arities) on
)
o
LN
L
ar
\:,-
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P * which are ¢ -monotonic. <-monotonic and Length-Preserving and defined by recursive systems of continuous

K '\.’& funcuonals on them. We therefore develop here the String Induction Algebra of a domain P :

{

:"" Definition 2.52: MLPp,

"‘:}' Let <P, 2> be a FD-CPO . MLP,, , is the subset of the set of functions from P * 1o P * defined by: MLP, =
i P *P %~ (c-monotonic A <-monotonic A Length-Preserving) , together with the standard (induced)

W : pointwise function ordering.

% It is an imi»vediate application of Thm. 2.50 that MLP, , is a CPO, and is a "nice” sub-cpo of the set of monotonic
}_‘. functions. However, by combining all 3 properties, we now get an additional property: Even if P has a least
x
Ll

)

:: ! lement, P *F °* does not have a least element (because no string is less than all others according to the pointwise
'} .-::~ ardering). However, if P has a least elemeat, then so does MLPp n 35 1s shown below.
\. , aeorem 2.53: MLP,  is a PCPO
¢ -j;: Let <P.< > be a FD-PCPO . MLP,,  is a PCPO with least element: Q=X x .1 Tix! and is a sub-cpo of the

¥ :{,‘: set of monotonic functions: [ P® — P ], in which the lub of function-chains is unchanged.
Wy
(3 Let Fe MIPp, x e P*Dambitary, letk=1x!
;3: Wehave F(x)=yl|, [[FisLP]]
.\:2- and Q(x)=LTk ({ definition of Q ]]
M- Vie {uq Leyl, " definition of L !]]
. S Yie {'k;.Q x)N, cFxN,
{ QUx ) = T'x) ([ definition of order on strings ]]
o and this was done for artit2rv x and F,
:,'; s Qis least element.
o (O . 253
a \-,:
C) We can now construct our string induction algebra:
r :::::'_ Theorem 2.54: MLPp Continuous String Induction Algebra
oo Let <P, > be a FD-PCPO, and let (F,); . | be functions in MLPp , .
"_-';': Let MLPp = <(MLPp ) . o+ F [(F), (] > where F [(F), . (] is the least set of functionals containing:
-."- « the functionals Fo = A £. F; . f, fori € 1. (Or A fy,..f, . (A x. F(f;(®)...f, (%)) in the general case.)
v « the identity functionals,
.':.,- and closed under composition witi: projeiivas, then:
o
:::-:.' MLPp is an induction algebra (cf. def. 2.15) and all functionals in F are continuous.
Lot
® Proof:
’ ;: Domain requirement:
:.:- Wehave Vo€ w MLPp isaPCPO. {{ thm. 2.53 ]]
M
33.: {0l gomain req.
N We still have to prove that all the functionals in F are closed (i.e. really yield a function in MLPp  for some n) and
3“, are continuaus.
l-"ﬂ
N*"; Closed:
;2 Wehave Vie I.F € MLPp, ({({ bypothesis ]]
Ko
]
j" .
|' »
"\‘“." V"\?‘n}"g"" ,f""J“j—“ﬁ“
e A A R Tt e N et l“'l.o' o “M ) .o.‘-."n“.o 'l‘.o "s 0'0."0 Yo o..'n ety t“'l“' "s?!::?o.!'u
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and ¢ -monotonicity, <-monotonicity and LP are preserved by composition
[[ thm. 2.10. thm. 2.47 and thm. 2.46 ])

j "

b 3

Vi€ L Fpisclosed.

ﬁ\ and the identities and projections are closed ([ immediate }]

-;: their compositions are closed.

oy

::.: [D]closcd

\ ~ Continuous: (this is where we use our generalizaton of [Manna 74] Thm 5.1 : thm. 2.37)
]y We bave P isa FD-PCPO {{ hypothesis |]
iy and MLPp,, sub-cpo of [P™ — P] {[ thm. 2.53 ]]
( and Vie I.F, C-monotonic ([F, € MLPp, )]
B and Vie I,F,closed ({ above }]

. Vi € I.F, continuous! [(thm. 2.37 ]]

"‘- and the identities and projections are continuous ([ immediate ]}
.‘ -‘, their compositions are continuous. ([thm. 2.111])
P 0 [[]]com:inous
N (i, 2.54
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3. Semantics of Synchronous Circuits

3.1. Informal view

The key to our work is to understand what a synchronous circuit is, as a mathematical object. The goal of this
section is to guide vou through the evolution of thoughts which led 1o the final product, and informally convince you
of 1ts appropriateness.

The final product itself is described in exacting precision in the rest of this chapter. In this first section, we have
tried to maximize simplicity, and minimize the use of mathematics... We are also assuming no prior knowledge of
history-functional semantics such as (Kahn 74], {Johnson 84] and [Kloos 87] . More advanced readers should bear
with me, or sumply skip this informal section.

3.1.1. First basic intuition (circuit as a black box)

Consider as a start a combinational circuit, i.e. a circuit with no memory (no registers and no feedback loops).
Assume that the values which can appear on the wire are binary digits (True and False), then we can identify the
circuit with a boolean function. This is commonly done in all circuit design textbooks. In fact we can easily move
from binary digits to natural numbecs for example, and identify more general combinational circuits with functions
on these numbers.

Abstracting slightly, consider that the values on the wires belong to an arbitrary set: £ , we can identify a
combunational circuit with a function from Zto .

Once we inroduce memory (or state) in the forms of feedback loops, or registers, things are not so simple. For
example, consider a running sum sequential circuit (which accumulates the sum of all the inputs it has seen). Itis
pictured below, with the square representing a register (initialized with Q) and the circle representing an adder.

Figure 3-1: Running Sum Circuit

sum >
Ro I‘

For this example, we have I = the set of natural numbers. Assume the first number we present is 3, the output is
3. The next number we present is 5, the output is now 8. The next number we present is 5 again, the output is now
13. Clearly, we can no longer identify this circuit as a function on the natural aumbers, since it produced a different
answer on the same input number.

The solution to this problem is to consider the sequence of all inputs, and the sequence of outputs; in our case:
3.55 — 3.8.13 . If we ever replay the same sequence of inputs (from the start) then we will get the same sequence
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;!" of outputs.
Lo
h In other words. a sequential circuit can be identified with a function from se"uences of values in T to sequences of
N values in L. These sequences being finite, we refer to them as "strings”, and the set of strings on X is called: X* .
\
HEN Note that a combinational circuit identified with a function f: £ — I can be identified in this context as the
\ “memory-less” function: f* which to the input: a.b.c assigns the output: f(a).f(b).f(c) (In comparison, the
‘ o function which corresponds to our register: Ry, assigns: 0.a.b to the input string: a.b.c)
: Therefore our conclusion at this point is that any synchronous circuit can be identified with a function from T* v
! Z* which we will call a string-function.
S8 Vaf
\ However, the string-functions associated with synchronous circuits have two additional (and fundamental)
? f} properties:
: 5‘2 * Length-Preserving: the length of their output string is always equal to the length of their input string.
) This is immediate since we find out what our string-function is by looking at all the wires at the end of
V.'. each clock period say, and tacking these new values onto the history of previous ones for each wire.
@ * Monotonic: assume that on the input string x, the circuit returned the output string y . Now, assume that
&N we add one more value u to x, making it the string: xu , then the new output string will already start
; ‘: with y, and the circuit will tack on a new value v to y, making the output: yv . The circuit can not "go
< back in ime", change some of the results it had output on input x, and produce a string which does not
j«. start with y . This property is exactly monotonicity with respect to the prefix relation: < on strings.
(RS
e
{ So, the essence of our semantics is: @ synchronous circuit can be identified with a <-Monotonic, Length-
R Preserving string-function.
x."
)
s Abbreviation: we temporarily define MLP= " < -Monotonic and Length-Preserving".
1
1
«.l'
! There are two technicalities we have ignored so far, and which we mention for completeness here:

e If the circuit has many input lines, tben the corresponding string-function takes as argument a mple of
strings, all of the same length (for the same reason which led us to the conclusion that the string-

function was length-preserving) .
» If the circuit has many output lines, then each output line is identified with an MLP string-function, and
the circuit as a whole is identified with a tuple of such functions.

A .PU

e
=

v

a
()

. ]
¥ e . . .
; j’ 3.1.2. Second basic intuition (circuit as a system/network)
: 'w:- We now take a look at how our circuits are built. As far as we are concemed here, synchronous circuits are made
X .,- from two kinds of elements:
3 e Combinational elements: elements which do not have memory, or state, and which we have associated
.‘ above with f* string-functions.
(>
o o Registers/clocked storage elements: elements which hold values for one clock period (after which they
- latch in the input presented to them), and which we have associated above with the R, string-function.
‘ ~ {The parameter: a, is the initial value of the register; in the example above it was 0.)
":{ Note that we use the word "register” in a very narrow sense, which is common in the formal hardware specification
literature [Leiserson-Saxe 83], [Johnson 84] and [Hunt 85).
o
j: Circuits are then built by connecting inputs and outputs of the above components in an almost arbitrary manoer.
o
o~ We say “almost” because for a synchronous circuit, every loop in the connection graph should contain at least one
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register.  Otherwise, we get problems of asynchronous latching, oscillations, etc.. i.e. not a correct synchronous
circuit: see [Mano 76]) and [Mead-Conway 80) for more details. For our semantics, this restriction: "Every-Loop-is-
Clocked” [ELC] is not necessary (and we will come back to it in section 3.4), but at this point it is easier to keep

g thinking in terms of such “good" circuits.
W
: The question is, how do we give meaning (i.e. semantics) to the network. knowing what the individual elements
o
A stand for?
A
. X If for each element in the circuit we write an equation relating the output to the input(s), then we obtain a new
g :.r view of our circuit as a system of equations. If there are loops in the circuit. then the system will be recursive.
L
o
w_':: There is a standard way in semantics to give meaning to a recursive definition, and that is to consider it as an
>, equation in a certain (appropriate) domain, and take a certain (appropriate) solution of this equation as the object
being defined by the recursive definition.
:-:_: This is exactly what we shall do!
Ca)
Ml
: e Our domain is basically the set strings on Z, and the MLP functions on it. Each node is already identified with a
N cerain MLP function (f* or R,) . A circuit, or system of equations, will be identified with some MLP function
’ L4 which solves that system,
‘::‘:“ A technicality which we have ignored so far, is that the "appropriate” domains we have mentioned above are
e
'j'_-.‘ ordered domains, i.e. there is a ootion of an object being "less-defined-than" another. This relatdon will be denoted
vr: by: € . In our case this notion of ¢ is very simple: We add to T one element: ? , which should be read as

"unknown”. In the C order, ? is ¢ all elements of Z , and that’s it. The new set is called: £, . We then simply

o

for extend this order relation to strings (by comparing them one position at a time), and to functions on these strings
2:: (also by comparing them point by point). One basic concept of computability in these domains is that the
A ';-'E computable functions respect the ¢ order, i.e. are < -Monotonic.
'y
e

Propunciation note: " ¢ -monotonic” can be read “"L-monotonic” (short for "less-defined-than-monotonic”); and
<-monotonic can be read "P-monotonic” (for "prefix-monotonic").

Q.

Sl

":}: We also define the following (permanent) abbreviations to ease everybody's job:
Oy Monotonic= " ¢ -monotonic and <-monotonic”; and
L MLP= "Monotonic and Length-Preserving".

o
! : So, in conclusion, a synchronous circuit will be identified with an MLP string-function, or a tuple of such
;.'_-; Jfunctions if there are many output lines.

>,

=

. 3.1.3. Extensional versus Intensional view of the world

?F There is one last subtlety which comes into play in our semantics of synchronous circuits: so far we have always
’ ':Sc said "a circuit is identified with a certain function”. What we have really argued however is that "a circuit computes
'

a certain function”.

F

S
.\_‘.,!
"' : So in other words, we have associated a circuit with what it computes (a certain function). In doing so, we have
@ abstracted away all information about how it computes that function. What we have done is to define an extensional
:;-} semantics of synchronous circuits.
. \’
o
';'-; In order to retain more information in our theory, we actually define an intensional semantics which identifies a
s
=
g
@
o
N
G
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circuit with the functional defined by the system of equations, rather than simply its solution. We caa still recover
the extensional semantics simply by taking the least fixed point of that functional, and so we end up defining both

the intensional and extensional semantics.

This concludes the vague view of things. The remaining sections of this chapter, together with the mathematical
preliminanes of chapter 2, are intended to dot all the i’s.

3.2. Formal Syntax

Formally, we have one basic symtactic object: “SYnchronous System Description” or "SYSD". These are
essentially recursive systems of equations, together with a list of which defined functions are the designated output.
They correspond very closely to engineer’'s "net lists”. We will define a set of such syntactic objects, ie. a

language: Lg;, .

Note that syntactic entities will be writtenin this font.

D6ﬁnition 3.1: LSD
e L, = countable alphabet with elements denoted by a, a,, a, ...

o L i . fun = countable ranked alphabet (elements have arity) with elements denoted by £, £ 10 £

JOl£x | £ € Lg,, s, } With elements denoted by F, F,, F, ...

oL ={R,|a€el

char

= countable alphabet with elements denoted by x, x, , x, ...
= countable alphabet with elements denoted by Y, ¥y, ¥, ... 2,24, 25 -

string-fun
; ¢ Linput-li.nc-vnr
* Lnon~inpul-line-vu

eLep={ (in, sys, out) |
in = tuple of input-line-vars: (x,....x ), also denoted as x for short.

sys =system of equations: Y, (x) & F; (. -+Eg, . .)j € {l.arityof F_} ,fori € {1..n}
with F € L fun gnd !-:jh_;some input x, or non-input expression Y, (x) .

out is a wple of non-input-line-vars among Y,, .., Y. }

Elements of Lg, are denoted by S, 5., S, ...

As syntactic sugar, we will sometimes omit the input variables (x,,..,x;) or X as arguments for Y 's in the
system, so that Yg « £*(Y,,Y,,%,) will bealegal equation. Note that in this sugared form, our syntax is
almost identical to the one used in [Kloos 87] in its "applicative” form. Our reason for not using the sugared form as
the primary syntax is that we can view our syntactic objects as restricted expressions in a more general string
expression language, and under that angle, we want our expressions to be well-typed.

One weakness of L¢, as defined is that it is "flat". It does not allow user-defined string-functions (sub-systems).
? We did this because treating such objects formally brings semantic complications which are orthogonal to the
e problem at haod: semantics of synchronous concurrent systems. Informally, we treat them as follows:
» Non-recursive string-function definitions, i.e. macros, are simply expanded out.
e Recursive string-function definitions are disallowed. They comespond to non-directly implementable

specifications; they are studied in [Johnson 84]. Alternatively they define networks which reconfigure
themselves (expand and contract) during execution; see [Glasgow-MacEwen 87] for this view in the

N context of operator nets.

Lgp, is a fine language for mathematical and computer treatment. For human interaction however, a graphical
language is more appropriate. We will therefore define a second language: LSDanh , of sysd’s in graphical form.
LSDGrlph is isomorphic to Lgp,, and we will give a (trivial) translation function.

R
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Definition 3.2: L¢paoh
A sysd is a multi-graph fV.E). where vertices are of 2 types:
o VCombinational: represented with a circle, and a char-function letter per out-edge. They have n
in-degree, and m out-degree, withnom 2 1.
¢ VRegister: represented with a square, and a character letter. They have in-degree 2, and out-degree 1.

and where edges have at most 1 From-node, and at least a From-node or a To-node (and usually both). Edges
with no From-node are called "Input edges". Some non-input edges are designated as "Output edges”.

At this point, an example should help:
Figure 3-2: Example: Running Sum/Avg Sysd

X
Sum Y running-sum
X
X ck ck
Y2
Y .
1 Y running-avg
e 1
0
inc
Y counter
Or in sugared Lgy, :
Yr:m'uung-a\.uu & sum* (x’Yz)
YZ « RO (Yrutming-sum’ xck)
Yrunm.nq-avg € divx (Yrunm.ng-lum’ Ycountcr)
Ycounter &« Rl (Yl'xck)
Y1 € inc* (Ycountor)

In the future, and as commonly done in synchronous circuit design, we will often omit the 2nd input of Registers
(the clock input: x_, ) from graphical or sugared sysd’s.

Note: As they stand, elements of LSDanh are not "classical" mathematical graphs, since an edge here is not just a
pair of vertices, but instead, a pair: (0 or 1 vertex,0 or 1 or many vertices). We could reduce these objects to
standard graphs simply by introducing additional ("duplicate”) vertices, but there is no point in doing so, since we
only intend Lgpc,, a5 a front-end (auxiliary) language, and not as a tool for meta-proofs.

Definition 3.3: Translation: LSDanh - L,

Let the input edges be: x,, . ., x, and the non-input edges be: Y, , . ., ¥ . Define:
in = tuple of input edges.

sys =

¢ For each node in VCombinational, for each out-going edge (out-edge: Y, , char-function letter: £, ), add

- -

, T T, Ty Co PV e o U ¥ o¥ QT T R X N O IR R ]
e e T s R e Tt Rt T et e tetetaletetstiot e



the equation: v, &« £ *(, .,F.:, ..),where .., E_, .. are the incoming edges (either 2, 's or
vos). i
k B

4

{ * For each node in VRegisters (out-edge: Y . character letter: a), add the equation: Y, R, (E,,E,}.
:.-- where E, and E, are the incoming edges.
b N sut = tuple of designated output edges.
b 3.3. Denotational Semantics
K The mathematical foundation of our denotational semantics is a String Induction Algebra. of string-functions, and
-‘}:‘: stning-functionals. A sysd will be (compositionally) mapped, by [[ Tl . into a string-functional, or more precisely, a
2'\»; system of functionals. This is in the spirt of [Talcont 85] and {Moschovakis 83], and preserves intensional
i information about the sysd - how it computes - as well as its extensional denotation - what it computes.
) ,(l‘
)
Since however, for many of our purposes. we are interested in the extensional denotation of the system, we also
:j' A define an extensional denotation function, p, which maps a sysd into the tuple of string-functions which it computes,
::-: and which is the least fixed point of the system of functionals.
sl
| j:.‘, Construction of the String Induction Algebra:
Y
.r.v We have a countable alphabet. I, elements of which are denoted by: a, b, ¢, a,, by, ¢, ... for constants, and u, v,
-.".::;'_: u,;, v,, ... for variables. Now we lift the alphabet I, with least element "?": L, , and get the corresponding < (flat)
;'.»' order, and we take Strings of £,: Z,* , with the induced C order. Elements of Z,* are denoted by: x,y, z, ... for
Cr:. ‘ variables, and €: the empty string, as the only constant.
ot
{ For reasons explained in 3.1, we are interested in functions on X,* which are ¢ -monotonic, <-monotonic and
:‘ :', Length-Preserving, and which we can define recursively from the following functions:
%
.,‘.l (]
1::.' Definition 3.4: Primitive string-functions
b ) . "
i::'l' *R,: (2?")3 — L,*definedby: R (e.€)=¢ A R, (xux,.v)=ax,forae L. We call R, a "register
ENG string - function.
NN o f*:(Z,*)% > L,*defined by: f*(e...&)=€ A f(x u,..x u)=xp.x).fu).0), forfe
! j (Z," - L,]. We call f* a "combinational” string-function. It is simply the homomorphic extension of
; E: a ¢ -monotonic function on I, to strings (of equal length).
Ll Note about Registers: informally, we had treated R, as a unary function. Formally, we've defined it as a binary
. oS function, which ignores its 2nd argument! This is only a semantic subtlety, the reason for it is clear when you
:: . consider what happens if you fuse the output of a register with its "main" input. The results of this operation is a
7'-‘: perfectly meaningful synchronous circuit, which keeps outputting the same character, at every clock tick! In other
::-: words, the 2nd argument (the clock) is not entirely ignored. It’s just that all its information (its length) is also given
AL by the main input, as long as it exists. Whenever the clock input remains the sole input to the circuit, then it
!‘ - becomes semantically significant.
'w"-'-
Ko Theorem 3.5: R, and f* are MLP
*‘.3:-:' (Recall that MLP= "< -monotonic and <-monotonic and Length-Preserving".)
[ % o "
h ‘:..
Y Proof:
;}-‘ Immediate verification.

(D rhm. 3.5
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Therefore we can now instantiate the main results of chapter 2, and get the keystone of our denotational
semantics: the string induction algebra.

H

;.t"i Theorem 3.6: MLP; Continuous Induction Algebra

Rel¥ The MLP functions on I,*, and functionals defined from R,’s and f*'s . form a continuous induction algebra,

\j which we call: MLP;.

gt

\.[ o

:."-'l. » Proof’:

13 We have I, is a flat CPO [[ by construction ]]

0 Z,is a FD-CPO {[thm. 2.31]]

00 and I, has a least element ([ by construction ]]

. ;.f‘ . Z,isa FD-PCPO

;:";J‘ The result is now an immediate instantiation of thm. 3.5 and thm. 2.54 where we have slightly abused the
( ) terminology in exchange for simplicity...

[f 3

9 , (D rhm. 3.6

;E: We can now define our (intensional) denotational semantics:

N

holel Definition 3.7: Intensional Denotational Semantics: [ ]|

’r‘ LetS € Lgp . S = (in, sys, out) with non-input lines Y;, i € {1..n}, and input lines x;, j € {1.m}:

X .r_‘ oLgp: [5]=(n,[sys],out); [ sys ] wil be called 15 . Tg =(%,....T,) where

b L= MY Y Mx) [F, D (..,Ej,..) ] forequation: Y, & F, (.., Ejres)

L.

'_..:_'_ oLm.ng_ﬁm:[[R I=Ry,p and [ £*J=0€£]*
' ' oL . sn: [ £]=someoperation on Z, naturally extended to Z, .

ol oL, [a]=somecharacterinZ

:: Formally, our semantics is parametrized by an algebra £ with some fixed set of constants and operations.
)

:: And the (derived) extensional semantics:

K

s

Definition 3.8: Extensional Denotational Semantics: |1

-c_:- Lets € Lgp. S =(in, sys,out)and [ sys ] =1, =(x,,..,7,) . We define the extensional semantics of S as
b the least fixed pownt of its intensional semantics, i.e. a tuple of string-functions, from which we keep only the

(e selected output lines: y(S) = LFP(T},...T))

s

~

" To justify this definition: we have MLP; is a continuous induction algebra (thm. 3.6) therefore (thm. 2.16), the
?_,—., system (T,); ¢ (1.n) has a Least Fixed Point in MLPy: lub(1,...,T )’(Q, ,Q)]Je w - (Recallthat Q=Ax.? Tixl )
ot

iy

":: Just to add a touch of concreteness to these definitions, we continue with the example presented in section 3.2, in
N _,.‘: figure 3-2.

v

® Assuming we've selected the lines: 3(1_““1!,‘1“‘;_.um and Ymnmng_avg, then its extensional semantics is a pair of
PG string-functions (where the characters are numbers):

".:: (Axxy .0% (Ij‘=I xl«j) Axxy . 0% ((Z' : xi)/x )).

LY

.x-‘:-: Its intensional semantics is the system of functionals which would be described exactly like the sysd in recursive
. * form (except for the font).
N
1, " -
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3.4. Mathematical characterization of "Every-Loop-is-Clocked"

It is one of the most basic facts of synchronous circuit design that some "building rule” has to be observed: every
loop 1n the circuit should contain a clocked storage element. or more tersely: Every Loop is Clocked [ELC] . Our
semantics gives a meaning (assigns string-functions) to all circuits, including those with "illegal” connections.
Intuinvely however, there is a distinction between "good" synchronous circuits and others.

The goal of this section is to formalize this intuition, i.e. find a mathematical property enjoyed by the "legal”
circuits. and prove that the extensional semantics of ELC sysds have that property.

In order to carry this out precisely, we need to define several simple concepts about synchronous circuits:

Definition 3.9: Predecessor
Let 3 be a sysd. with non-input lines: Y;,i € [l..n}, Y, is apredecessorof Y; <=> Y, « F;(...Y}...),
1e. Y, appears as one of the arguments for Y.

Definition 3.10: Path
Let S be asysd. A pathis asequence P = (Zl...,ZP) such that Z's are non-input lines in S and Zj isa

predecessor onJH .Vje {l.p-1}.

We denote the set of Paths of a sysd S by: Paths(S) .

Definition 3.11: Loop
thP:(Zl...,ZP)e Paths(S), Loop(P) <=> ZP=Zl

Definition 3.12: Register-line, Combinationai-line
Let S be a sysd, with non-input lines: Y, , and equations: Y; « F(..)i € {l.a},

e Y, is a Register-line <=> F,=R_ forsomea.

¢ Y is a Combinational-line <=> F,=f*, forsome f.

Definition 3.13: Path is Clocked
LetP:(Zl,...ZP) € Paths(S), Clocked(P) <=> 3je {l.p} | ZjisaRegister-line.

Note: the set of all non-clocked paths is the set of all combinational paths through the sysd. It could be totally
ordered by appropriately defined weights (delays) on combinational nodes. Its max weight element would then be
the "cnitical path™.

Definition 3.14: Every-Loop-is-Clocked [ELC]
Let s be asysd. ELC(S) <=> VP € Paths(S), Loop(P) => Clocked(P)

The fact which is informally known in the engineering community, but which I have never seen formally
mentoned in any form in the "theoretical” literature is then:

Theorem 3.15: ELC => TotalonX*

Let s be asysd, ELC(S) => u(S)istotal on Z*.

And more generally: ELC(S) => LFP(1;)istotal onZ*, i.e. the results applies to all the lines of the circuit,
not just the ones selected for output.

Impontant note: all functions we've dealt with so far were "total” functions, but on Z,* . The additonal property

of being total on Z* means that if the input is in Z* (i.e. has no ? in it) then so does the output. This is not enjoyed in )
)
t
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general by arbitrary functions on Z.* .

The proof rests on two observations about iterations of Kleene's algorithm in MLP; . "Kleene’s algorithm” is
simply the constructive method used to reach the Least Fixed Point of a continuous functional in Kleene's theorem
(thm. 2.14), as the least upper bound of a chain built by iterating the functional starting with the least element of the
PCPO.

Informally the proof goes as foliows. On any sysd, for an input € Z* (i.e. withno ? in it):

¢ At each Kleene iteration (applied to the input), all values (on all lines) have a particular shape: some
“real” (non-?) characters, followed by some ?’s , and each iteration "pushes" the ?’s a little further to the
right (or leaves the value unchanged).

» If the algorithm stabilizes with some line still having ?’s in it, then we can "climb back"” from that line
and extract a loop of combinational-lines (i.e. a non-clocked loop).

More precisely:

Definition 3.16: K-view
Let S =(in, sys, out) be an arbitrary Sysd, x an arbitrary input. Lettg={sys] =7..7,

Define KJ = (1,,..,7, ¥(Q....Q)(x) = (K!,....KJ,) . Figuratively, KI is the "view" of the values on all the lines of S,
after the j'th iteration of Kleene’s algorithm. For example, KO = (?T% | Ty

The first observation is expressed in the following lemma:

Theorem 3.17: K-view shape

Lets € Lg;,, with non-input lines Y;,i € {1..n} and m input lines. Letx € (Z*)2,Vje o,Vie€ {l.n},
3p;; € (0.1} | Ki, =C'Ll.p“ TP with Ci'l..pp € ZI*,ie.informally: K, =cpcp 2.2 withc's # 7.
Proof:

Assume (hl]x € (Z*)®. We induct on j (i.e. on Kleene iterations) with predicate:

Vie {l.n},3p;; € {0.1x] | Kji=c¢l‘_pjﬂ.?T‘§"P,-_,

Base case: immediate [[takepy;=0,Vi]]

[[]]bue case

Induction step: (assume ok for j). Let i arbitrary € {1..n}

If Y, is a register-line: Y, < R (Y,), then:
We have Ki*l=a.Kil, .\, ({def. Kleene's algorithm]]
Kl =a.cl . ITR-p -1 [{ induction hyp., instantiating general i to k ]]
1.e. we have added a 06:1-? character on the left, and chopped off a ? (if any) from the right.
Ki*! is "of the right shape” A p;,;; =ifp;, =Ix! then Ixl else 1+p;,

If Y, « Rn(xk) , then:
Wehave Ki*! =a.xd, .., ([def. Kleene's algorithm])
there are no ? in KJ*1. ([x, € I*byhl,a = ? by definition, 3.7 ]
Ki*!is "of the right shape” A p;,; =%

If Y, is a combinational-line: Y, « f*(...Y, orx,,..), then:
We have .. KI,... are "of the nght shape" [[ induction hyp. ]]
and all x,’s have no ? in them [[ bypothesis hl ]]

¥ P ) Ay 8% 0% 8 l Cho e LA N
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N

". :? +1

;‘.. ¢ and K = (K orx,..) {[def. Kleene's algorithm]]
,:e o and fis a naturally extended function : (Z*)! — X [[ by definition. 3.7 J)
r Consider any position: pos € {1.Ixl} :

:;3" Wehave KI*'w = £ (K)o, O Kevpoee) ([def. £, 3.4])

: : and Xvpos & ? therefore:

A if for all predecessors. K, + ? then KJ*! i

N . pos

" if for some predecessor, KJk;P = then KJ‘” Yoo =7

.)} Ki*! is "of the right shape” A Pjo1s = min{ p;, . Y, predecessors of Y, } or Ixl if all the arguments are

o o input-lines.

‘W

K ::-: [[]]mducnon step
g ,,::: [[]]ﬂ\m 3.17

AL
t The second observation becomes the proof (by contradiction) of the ELC theorem:

) n‘ Proof:

N :"_- Let S € Lgp . withnon-input lines Y,,i € (1.n} and m input lines.
' \'-:l‘_- Assume

A (bl]x € (Z*)2

‘ po (2)3j € o | KI*' =K/, i.e. the algorithm is stable at the j’th iteration.

g (h3i3iy e (1.} | Pii, < ix! , i.e. there is still at least one ? in Kjio‘

:_:a
: :»,::- We now extract a predecessor of Yio which also has some ? left in it:

Pt
L if Ylo is a register-line, then its argument can not be an input line because inputs are assumed to have no ? in them
{ . and hence K/*o would have no ? init, Vj > 0.

-

\5: Y e R(Y)
'.::_ We have p, & = if P, = Ix! then Ix! else 1"’9,',11 ({ proof of Shape lemma ])
\'.:: and Piviy = Pid, ({ bypothesis h2 ]]
L) and P < tx! ([ hypothesis h3 }]
)t (]
= pj'i‘ < Ixi mainly, and also: pj_il > Pig
':}:‘ if Y.lc is a combinational-line: Y*o « f* (.Y, or x,,..) . Again, because inputs have no ? in them and Kio

.-s_}: contains some ? , at least some arguments must be non-input lines.

NN Pty = min { p;, . Y, predecessors of Yio } [[ proof of Shape lemma ]]

g.. Let i, be some predecessor yielding the minimum p,

S
X then p;; =Py
. ::\' and pyl i = pj.io it bypothesis h2 1]

_:;3: and p,, <l (( hypothesis h3 ]]

1 o

Y Pin < Ixl mainly, and also: pj‘il =Pji,

C iy

r:. By this pro.ess we’ve extracted a predecessor of Yie .Y, such that P < ixl , which was the hypothesis we had

L 1 M |
v on i therefore we can reiterate this process.

:::: Remark: From the construction above we also get:

Q.‘ {r1] in either case, P 2 P iy ;
+ | - |
- L= . = i 1 i -line. |
,.,‘_': (r2] p;.n, Pyi, <=> qu's a combinational-line |
o™ We now build a path by stanting with P = (Y, ), and:

®
L
B

\-’\"*-"\ ~ -(" T ,y‘ [ N .W SIS

- % RENLE R A Lht
k) N ] w l'.i '| ‘.‘.‘..4 ..|‘t: PR o ) o h .‘. '.' A -.a.l o Y, ’ I‘, ﬂ‘.o".c'f‘-' X !'.'l' ‘* " P . AR\ % AN 'l‘."&"‘l“‘:s U

- -




Fal's

S @

S ™
152",

o

—~—
[4

2t
PP R A PP

'
v
*

v LI
L AU G

Y

0 I N4

-, -~ ‘w‘_w.\'r._-'\r W O '\-"'Lﬂh"\\ O -f‘*d', \-f -(‘.\ \
N AN

* If Y, does not aiready appear in P, we add it to P. and reiterate. Since there are finitely many lines in s,

we must eventually hit the other case:

¢ If Y, does appear in P, we add it to P and stop: we have now obtained a path which contains a loop!
More precfsely‘ at the end of this (finite) process we have: P = (Y.Q'Y, Y Y, LLY)) for some q. Extract the
1 !
loopL =(Y,.Y, .Y) e
q q

q+!

From [r1]. we know that the p's are weakly increasing along L. And they must be equal at both ends (because L is
a loop). therefore they are constant along L. From [r2], the p’s can only be constant if the lines are combinational-
lines.
L is a loop of combinational-lines in the sysd S

Therefore, the contrapositive is that if S has no combinational loops, i.e. ELC(S), and if the input x has no ? in it,
and if Kleene's algorithm terminates at the j’th iteration then:
Vie (lLaojp,;=kxlie Ki, e I*
and K/ =LFP(t )(x) [[ by def. of K-view, and Kleene's thm. ])
LFP(15)(x) € (Z*)°

([ nm, 3.15

3.5. Operational semantics and Equivalence with (extensional) Denotational
semantics

An operational semantics is a different way to assign meaning to a circuit with a more "dynamic" or algorithmic
flavor than the denotational semantics. It usually refers to concepts such as state and transition steps, and iterative!
computes the outputs from the inputs and the circuit. This is in contrast to the (extensional) denotational semantics
which are considered more "static”, just stating what the outputs should be (least fixed points of a system of
equations) without explicitely constructing them. This however, is only a question of taste since Kleene's theorem
for reaching the LFP is constructive and easily implementable.

Proving the equivalence of an operational semantics/algorithm and the (extensional) denotational semantics can
be seen under two angles:
¢ as an additional justification for the denotational semantics, if the operational semantics is "intuitively
right”,
e or as a proof of correctness of the algorithm, if one believes first in the denotational aspec: of the
computation.

In this work, our goal is the first angle. We thercfore have to pick an operational semantics which is as
“intuitively right” as possible to people who would be skeptical of our denotational semantics. To that end, we will
give two operational semantics, both based on states, and character by character operation, but with a slight
distinction:

¢« The 1st one uses a "big" state: the history of all values seen on all lines, and is therefore a little
"abstract”. We will refer to it as our "operational semantics”.

* The 2nd one uses a more practical state: the current value held in all registers, and is essentially the
simplest simulation algorithm for synchronous circuit; [Russell-Kinniment-Chester-McLauchlan 85],
and hence, quite "concrete”. We will refer to it as our "simulation semantics”.

And we will prove equivalence with the (extensional) denotational semantics for both of them.

Definition 3.18: Informal Operational Semantics
For a given ELC circuit S with non-input lines Y ,1 € {1..n}, and input lines xj.j € '1.m}, we define the
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state s = (Sy.s, ) to be the history of all characters seen on each line.

We define a "next-output” function 8¢ which takes the state (sy.s,) and an input character (for each input line)
and retums an output character (for each non-input line) as follows:
* Case: Register-ine Y, &« R_(Y,): Retum the LAST character which appeared on Y, so far, because

that's the character which is currently being held in the register. We can get that character from the
state: sy . If there was none. i.e. we are in the initial condition, then return "a"
k

If the argument 1s an input line, lookup the value in s_ instead of sy.

¢ Case: Combinational-line Y, « f*(..Y,,..) : Recursively compute the next-output for the predecessor
lines and apply f to them.
1f some argument is an .nput line, then take the current input character for that line.

We also define a "next-state” function yg which simply tacks on the new character produced by 3 to the
current state. (And for the input part of the state, tacks on the new input values.)

Then we extend both of these functions to handle sirings of inputs by iterating the character by character
funcuons, while starting in the initial, empty, state. This yields the "complete-output” function A and the
"final-state” function I’ .

Pictorially. the set-up looks like this:

Figure 3-3: Operational Semantics

1 .:.
S
LA R B B I : o] (s, u)  s=(sy,sx)
n .':
1 ..:
sx ¢ o ele]s . ol ¢
m L B |

Dchar.

Notes:

e The function & is recursive in an unusual way in the combinational case: it calls itself on all the
predecessors of the current line. But since we assume that all loops are clocked (ELC circuit) then these
recursive calls will eventually hit a Register-line or an input-line and terminate. We will justify this
formally below.

* The 2nd input to "R,” equations was not mentioned because the operational semantics ignores it. (The
clock beat is in some sense hardwired in the string recursion.) More precisely, the equivalence theorem
is true no matter what line is plugged into the 2nd argument of Registers. However the operational
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4
: ﬁ model matches the reality of physical registers only if x_, is indeed connected to their clock pin (and if
::s other physical considerations such as aming, electncal issues, etc... are also correct).
! « To lighten up our notations the S subscript will be omitted from here on. Also, we will make use of an
0t “or respectuively” notation, to express definitions which are very similar in two symmetric cases
L7 (argument 1s a non-input-line. or input-line). This will be clear with the examples below.
:’::- Definition 3.19: Formal Operational Semantics
- Let S € Lgp, . with non-input lines Y,.i € {1..n} and input lines x;, j € {1..m}, and ELC(S).
t
L. Letsy € (T,)0,s, € (5,90, x € (5,9M y e (E)",ve T
- ’
,'1: Define 8(sy.s,.v) € (Z,)2by: fori € {l..n},
0. *if Y, & R (Y, orx,) then &(sy.s,.v), =if sy ,,, =¢thenaelse last(sy ors, )
) oif Y & (.Y, orx...) then 8(sy.5,.v), = f(...8(Sy.5,.¥), OF V...)
, EE: Define y(sy.s,.¥) = ( 5y.8(sy.5,.v) . 5,.V)
> . . . . .
4 And the string-extended functions are defined by recursion on the input string:
)
",
) Ag) = € and A(xu) = A(x) . 8(T(x).u)
L
E-7 (g) =g and T(x.u) =y (T(x).0)
o
>
-\.: It should be obvious from the state set-up (or the defining equations) that the "complete output” and the "final
e state” are essentiaily the same, and that therefore the defining equation for A can be simplified, by replacing "'by A .
o
(' More precisely:
--
s Theorem 3.20: A simplification
:. Vxin(Z,*)2 u e (I,)2, I(x)={A(x),x)and therefore A(x.u) = A(x) . 5(A(x),x,u)
o The first equality is proved by a simple structural induction on x ; the second is then a trivial substitution into the

definition of A .

“ . 3 ;l "

Proof:
3 Case g :
g We have A(g)=¢ ([ def. 3.19 1]
3;. and T(g)=¢eg [ def. 3.19]]
- T(e) = (AR)€)
> (e
:_. Case x.u:
N We have T(x.u) =y (T(x).u) ([ def. 3.19 , expanding I" ]]
o and T(x)=(A®).X) ({ induction hypothesis ]]
:-f S Ty =y (Axxw
® T(x.4) = ( A(x).8(A(x).x.u) , x.u) ([ def. 3.19 , expanding ¥ ]]
9 , S Mxw) = (AX).&((X).0), x.u) ({ simplifying A(x).x w/ induction hyp. ]]
o and  A(x.u) = A(x).8(T(x).u) ([ def. 3.19 , expanding A ]]
N v Txw=(A(xW,xu)
o0 (Dy
s hm. 320
-::.
-.‘;2
non
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Remark: Totality of the functions 8, v, A, "
®A. I' and y are primitive recursive in 8: i.e. assuming 8 is total, their totality is simply a structural
inducnon on x (i.e. well-founded induction on the < (prefix) relation in Z.* .

* & is more unusual: it recurses on its "line" argument (noted as a subscript) in the Combinational line
case. le. it calls itself back on the predecessor lines of the current combinatonal line.
This corresponds to well-founded induction on the predecessor ordering of the circuit “cut” at each
Register, i.e. where all Register-lines are considered as sources together with the input lines. Clearlv if
the cucuit is ELC, then all toops have at least a Register-line, and when these loops are "cut” at the
Register, the resulting directed graph is acvclic, and hence the "R-cut-predecessor” relation is well-
founded.

Therefore the proof of totality for & is simply a well-founded induction with the R-cut-predecessor
relaton on 1ts line argument.

The main reason for all this set-up is of course:

Theorem 3.21: Operational-Denotational Equivalence
LetS= (in, sys, out) beanELC sysd (with m inputs), we have: V x € (Z*)T, A (X),,, = H(SXX)-

Or in other words: for all “true” synchronous circuits and inputs, the operational and denotational semantics
agree.

The key idea of the proof is that the "complete-output” function A is a fixed point of 7 (the functional system
denoted by S) , and also of course that it is in the right domain: MLP;. The inequality p(..) € A(.) is then an
immediate consequence of the fact that any fixed point is at least as defined as the least fixed point. The
ELC-characterization of the previous section gives us that for an ELC circuit and input with no ? in it. the
denotational semantics returns strings with no ? in them, i.e. maximal strings under < , and this yields the equality.

Proof:
Let S bean ELC sysd with lines Y,,i € {1..n} and input lines xj.j € {1.m}.

We want to prove: MLP(A} A 15 (A) =4, which is equivalent to the coujunction of:
[LP:Vx € (£,%),1Ax)=1x!
[€-Mon): Vxx € (2,92 . x £x° => A(x) S A(x)
[c-Monl:Vxx' & B2, xcx = AR c AX)
[Fixed-Point]: Vx € (£,*)®,Vie {l.n}.[7(a)](x)=A(x),, where the left-hand-side is simply the expansion
of the Y, definition, substituting: A(x), for: Y, (x).

[LP] is clear from the definition of A, since for empty input we return the empty string, and for each additional
input character, we concatenate one extra character. Formally, [LP] is a trivial (and hence skipped) structural
induction on x .

(e

[ <-Mon)] is similarly easy, since to compute A(x.u) we take A(x) and append "something"” (a character). Therefore
A(x) € Axu). Andsincex S x° <=> 3z | x=x.z,2 trivial structural induction on z yields [ <-Mon] as
originally stated.

8 < -Mon

e A
'& hY

For {c-Mon] we first prove that § is < -Monotonic (in its string arguments), which requires a well-founded
induction on the R-cut-predecessor relation on the line argument, corresponding to &’s recursive definition. Once
this is done we can prove that A is < -Monotonic by a simple structural induction on X .
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d 1s ¢ -Monotonic:
Let yy e (T,*)2,xx" € (T,")2.v
Assume vycy A xcx A v
Let i€ {l.n} arbitrary,

"e ()T

i<, |<

=

If Y, is a register-line: Y; « R,(Y,) then:
We have 8(y.x.v), =if y, =€ then a else last(y, )
and &y'.x".v"), =ify’, = € then a else lasuy', )
and y,=¢ <=> y| =¢
and a ca
and last(y,) < last(y’,)
L My, € 8y X,

If Y, is a register-line: Y, « R (x,) then:
exactly the same reasoning as above with x instead of y yields:

d(y.x.v); € 8y XY,

If Y, is a combinational-line: Y, ¢ £*(..Y, orx,,.) then:

We have &(y.x.v), = f(...5(y.x.v), orv,...)

and  &(y"x¥); = f(.8Q XY} or Y'y..)

and  (y.xv) < 8 x\¥)

and v, C vy

and f ¢ -Monotonic
.8y X vy orvi..) ¢ f(..8( x'¥) orv',..)
S(y.x¥); € 8y XY

(0] 8 ¢ -Monotonic
Now we prove [ < -Moan ] by structural induction on x :

Case €: Let x” arbitrary | x ¢ X7,
Wehave e g x’ => g=x
and e=x" => Ag)=A(X) = A g AR)
() < -Mone

Case (x.u): Let x".u’" arbitrary | x.u g x".0’,
oote:xugy => kku=lyl => 3Ixu |y=x'0" A x¢

We have A(xu) = A(x) . 5(A(X).x.10)
and A(x’.u) =A(x") . HA(X)x"u)
and A(x) ¢ A(x)
5(Ax)xw) < HAGDX"4)
A(x.u) < A(x".u)

(D¢ Monz
[0 < -Mon
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([ def. 8.3.19]]

([ def. 6,3.19 1]

{[y c y hyp. and def. ¢ .2.381]]
{[def. £ ,2.38])

[[y < y hyp. and last() < -Monotonic ]

([ def. 8, 3.19 1]

([ def. 8,3.19]]

([ induction hyp.: k <g -cm-pmmri )|
[y < v hyp.])

{[ def. of the meaning of a Sysd, 3.7 ]]

([ def. < ,2.38]]

X nugy

[[def. <,2.38]]1]]

([ simplified A, thm. 3.20 J]

([ simplified A, thm. 3.20 ]}

([ induction hypothesis, x < x"]]

([ 8 -Monotonic,x € x",u < u’]]

We finally prove the main result: [Fixed-Point] , by structural induction on x, combined with much equation

pushing...
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Case (g): leti € {1.n} arbitrary.
We have Alg) =¢
and fre=e A Re)=¢
[z(A) ] (&) =€ =Alg)

[[ def. A, 3.19]]
[[ def. f*,R,, 3.4 ]]

[[]]Fixed-Po'mt.g

Case (x.u) leti € {1..n} arbitrary,
We have A(x.u) = A(x), . HA(x).x.u); ({ simplified A, thm. 3.20 ]]

IfYsa register-line: Y, ¢ R (Y, or x) then:
We have &(A(x).x.u), =1 if A(x), orx, =€ then a else last(A(x), or X,) }
([ def. 8,3.191)
CLirArxu), = A(x), - { if A(x), orx, =€ then a else last(A(x), or x)1
and  A(x), ={ 1(4) }(x) [[induction hypothesis ]]
A(x), = R, (A(x), or x) [{ expanding def. 7 ]]
Ax), =1 if Alx), orx, =€ then ¢ else a . abl(A(x), orx,} ] [[ expanding R, 1

A(x.u), = [if A(x), orx, =€ then € . aelse a . abl(A(x), or x,) . las((A(x), or ;_:k) 1
({ replacing A(x), in line L1]]

A(x.u), =[if A(x) =€thenaelsea. (A(x) orx,) ] ([ simplifying abl().last() ]]
CL2:Ax), =a. (A(x) orxy) ([ simplifying if expression ]]
We have {1(4) ] (x.u) =R, (A(x.u), or X)) [{ expanding def. 1, ]]
(7(8) ] (x.u) =R, [Ax), . S(A(x).x.u), or X,.u; ] [{ expanding A(x.u) , thm. 3.20 ]}
{1,8) ) (xu) =a. (Ax), or xy) [[ expanding R, &..) and u, are characters. N
(1(8) ) (x.u) = Ax.W; [{ matching with line L2 ]]
[[]]Fixed-Poian_.g.Register

IfY isa combinational-line: Y, « f*(...Y, or X,---) then:
We have 8(A(x).x.u), = f (..last(A(x.u), or X, 0),)
. L3: A(xu), = A(x); - f (. Jast(A(x.u), or §k.\_xk),..)

{[ def. 8,3.19 1]

and A(x); ={7(4)]1(x) ([ induction hypothesis ]}
A(X), = P*(...AR)y Or Xy...) {{ expanding def. 7, ]}
A(x.u), = P*(A(R) Or Xy.,.) - f (.. Jast(A(x.u), or X,.u)...) [[ combining with line L3 J]
Ax.u), = (. A(x), last(A(x.u), ) or x, last(x, .u,)...) [{ def. £* ]]
. LA: Alxu); = f*(...A(x), last(A(x.u), ) or Xy Uy e ({ simplifying x, .last(x, .4,) 1
and  A(x.u), = A(X) . HA(X).xu) ([ thm. 3.20 ]}
Alx.u), = AR) - last(A(x-u),) {[ &(...) is a character! ]]
([ substituting into L4 ]]

A(x.u), = f*(...A(x.u), or &._qk,..)
and [ 7,(4) ] (x.u) = £*(...A(x.u), or }_k.gk,..)
[ T(A) ) (x.u) = A(x.u);

{{ expanding def. 1, ]]

((1}Fixed-Point.x.u.Combinational
([ Fised-Poimxa
((M)Eixed-Point
From all this we know that A is a fixed point of 1, and A € MLPy,
LFP(zg) c A [[ LFPis Least! , def. 2.13 1]
vxe (T, LFP(t )Xx) © A(x) ([ def. pointwise order, 2.23 ]]
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: Sg From the previous section (section 3.4) and ELC(S) hypothesis :

;.\ We have LFP(ty) total on Z* [[ ELC thm.,3.15 ]]

! vx e (IMR LFP(1(x) € (T*)E

b and strings with no ? in them are maximal under ¢ [ def. ¢ coordinatewise j]
R V¥ x € (Z%® . LFP(t)x) is maximal under ¢

‘;: Combining those 2 results. we get:

b Vx € (IMT LFP(1)(X) = A(x)

: and of course the equality still holds if we project some lines (out) from the tuple:

:' " and p(s)=LFP(t),,, [[def. 3.8 1]

e Vxe (S92, AX),, = MSKX) .

(Unm. 321

"\‘f-‘;

We now move on to our simulation semantics. We will define it both informally and formally, and then prove its
equivalence with the operational semantics (and therefore also to the extensional denotational semantics).

el

‘o
o Definition 3.22: Informal Simulation Semantics
; ::~ The main difference with the operational semantics is that now the state simply contains the current value
.‘ stored in each register. We call it s and it is indexed by the (Register) line number.
- The new "next-output” function &’ differs from the old one in the Register case only and simply returns the
& character in sp for Register-line Y.
3 ) The new "next-state” function y ¢ updates sy by storing in it the character just output by &’ for its predecessor
1% line (or the input character if the argument is an input-line).
t
.; The extensions of these functions to handle strings of inputs are done just as in the previous case, by iterating
N the character by character functions. One detail is different however: the initial state is taken from S, i.e. if S
‘.?"{,-. contains the equation Y; « R,(Y,) then the initial state has sg, ..., =a.
bl L
P .‘.\
G Pictorially, the set-up looks like this:
&
S
L
hy
b
N
N
e
B\
]
i )’
! )
1,
h '
by
@
»
Y, ‘
5 |
D '{ ;I
o
W
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o
L
o
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KA Figure 3-4: Simulauon Semantcs

=

k)
;:f_’. B unused
® m
w7 D char.

oy
Y
Ca
f_‘:-: As before. the S subscript will be omitted. Note also that we define sy to be an array of length n, indexed by the
e Y line number i, when in fact we only use array slots corresponding to Register-lines. This is just for ease of notation.
K " The other entries can be thought of as "unspecified” or containing an "unused” character, and are irrelevant to the
N 5#5‘ prOOf
"y J.:
e Definition 3.23: Formal Simulation Semantics
E,l)._ . Lets € Lgp , with non-input lines Y, i € {1..n} and input lines xj.j € {l.m}, and ELC(S).
)
Letsp € ()2, v e (Z,)2.
It
7 Define 5'(sg.v) € ()2 | Vi € (1.0}
:ﬁ ¢if Y; « R,(Y, or x,) then §'(sp.v); =sg
" oif Y, « (.Y, orx,..) then 8'(sp,v); = K...8'(sp.¥) OF ¥y
3“"‘ ’ :
s Define Y'(sg.v) | Vi € {l.n}
KN '_‘:. ¢if Y, « R (Y, or x,) then y'(sg.v), = & (sg.y)y or vy
:j And the string-extended functions are defined by recursion on the input string:
> A'(g) =€ and A'(x.u) = A'(x) . §'(T" (%))
]
! % T'(e); = Spiima = ¥; ¢« R(Y, 0rx,)thena and I'(xw) =y (C’®).W)
" The justification for the totality of these functions is the same as for the operational semantics. The key result is:
. v Theorem 3.24: Simulation-Operational Equivalence
: ;._ﬁ Let S be an ELC sysd (with m inputs), we have: V x € (T,*)B, A'(x) = A4(%)
W7
y Or in other words: the two operational semantics agree.
‘ol
S
®
vy
o
\‘ M R TR ", W, ™
\ ) ‘..,’ A WS4 vl“ n e WA MWW oo S 3 L V"8 SN - :
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s

e

The proof proceeds in two steps:

1. A "small state is appropriate” lemma, which makes explicit the fact that the value currently kept in the
register is the same as the last character seen on the predecessor line, and which is proved by structural
induction on the input string .

ol M
A

2. An inductive proof of equality between A and A’. The main subtlety here is to find an induction which
proceeds in the same manner as A or A’ recurses, i.e. a combination of structural recursion on the input,
and R-cut-predecessor recursion on the lines. To achieve that we define <, : the lexicographic

A
ko

D combination of the prefix ordering on strings. and the R-cut-predecessor ordering on the lines of an

S ELC circuit, and use well-founded induction on <, .
ol Once these steps have been identified, what remains is tedious equation pushing...
~I
"nr‘-
N [State-Lemma): V x € (£,*)®, Vi e {l.n},ifY; & R,(Y, orx,) then
» .
:,;’: T (x); = if (A'(x), or x,) = € then a else last(A’(x), or x,)
-

( This is proved by a simple structural induction on X :

N
N :_‘:_ Case ¢ :

_:'__".-: Let ie (L) |ifY; & R(Y orx))
-';:.: then T'(e),=a [[def. T, 3.23 ]}

P "'3 and A(g)=¢ [{ def. A%, 3.23])
N [(g),=ife=gthenaelse ...

._-r: [[]]Snm-bemma.e
P i

s Case x.u:

- Let i€ {lLan}|ifY, « R(Y, orx,)

\ | then I''(xw), =y '(x).w) ([ def. 3.23, expanding " ]]
N " LI T“(xw), = (T (x)), oru, ([ def. 3.23, expanding ¥” 1]
o and A (), = 8'X),. 8 (T (D)), ([ def. 3.23, expanding A’ ]]
K8 last(A'(x.u),) = 8" (T '), A A(xu), # €
2 I “(x.u); = las(A’(x.u),) or u, ([ replacing in L1 ]}

O

and u =last(x;.0.) A X1 ;t €

K _.:,\ I '(x.u); = last(A’(x.u), or x,.u,)
N i: I ’(x.u), = if (A'(x.u), or x,.u,) = € then ... else last(A’(x.u), or X,.uy)
>
h.‘r: [D]Suw-hmu.u
< ([ suue Lormme
4
W
= We now prove the final equivalence: V x € (Z,*)®,Vi € {l.n},A'(x), = A(x), , by well-founded induction on
o0 . = =
! x;f- Cpex(®i)
| ;:_.: Case (g,i):
® We have A(g), =€ =A'(g), ([ def. A, 3.19 and def. A", 3.23 ]]
A
! Case (x.u.i):
‘F::j We have A(x.u), = AX),.3(A(x),x,u); ([ expanfiing A,thm. 3.20]]
° and  A'(x.u), = A'(x),8(T “(x).0), ([ def. A", 3.23 ]
i~ and A(x), = A'(x), ([ (xd) <, (x.u,i), induction hyp. ]]
- A , , ,
.'_:;:' oaly &A(x).x,u), = §'(I" ’(x),u); remains to be proved.
"'-"‘:
.-
)
@
25,
22

x

o'.‘
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fY e R(Y, orx )then
We have diAx)x.u), = if (A(x), or x,) = € then a else last(A(x), or x,)
([ def. 5.3.19 ]]
and &I '(x).u) = I'"(x) =if (A"(x), or x,) = € then a else last(A’(x), or x,)
([ def. &°, 3.23 and State-Lemma ])
and  A(x), = A'(x), ([ (xk) <, (x.uk), induction hyp. ]]
dAix)x.), = (T "(x)u),

lex

[[]])_:.g.i.R:gislzr

If Y, & (.Y, orx,..)then

We have B(A(x).x.u), = f(...8(A(X).x.u), oru,...) [ def. 3,3.197]

and  &(T""(x)u), = f(..8(T (x).u), oru,...) ([ def. §.3.23 ]}

and A(x.w), = A'(x.u), [{ (xuk) <., (x.u.i), induction hyp. ]]
and  A(x.u), = A(x), .O(A(x).x.u), ([ expanding A, thm, 3.20 1}

and  A'(x.u) = A%(x),.8(T'(x)u), ((def. A’,3.23 ]}

d(A(x).x.u), =&(T '(5).5)k
f(A.,s(A(é).E.l_l_)k oru,..)=f(..8"(C "(x),u) oru,...)
d(A(x)x.u), = §(T "(x).u);

()¢ u.i. Combinational
My i

(o 3.24
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4. Theoretical Applications of the Semantics

'\ 4.1. The MLP-calculus

4 \::' In this section we develop the theory of MLP string-functions, in order to provide some basic tools for the
3 -\.j . theoretical and practical manipulations of sysd’s. The following list of theorems only includes those which we have
'3'_:": found useful in our current investigations of mechanical SYSD equivalence proofs. It is only intended as the
\ )

beginning of a calculus.

Theorem 4.1: Composition of f* ’s
Let f.g be character-functions, (f. g)* =f* . g* .

2

FASAA

1
o\ Proof:
‘a mmediate
& Immedi
(. .1
t /‘::":
v.‘ The following property is an essential characteristic of combinational functions (which will often be used in
_,{: ::. mechanical proofs of equivalence of sysd’s):
A
N
PY Theorem 4.2: Combinational-Concatenation Commutativity [CCC]
1,:- Letf*: (T,*)2 5 E,* Vx,ye (E*B . (x.y)=(x).*(y)
NS
4
[+ Proof:
‘CPks
. ;:: f* was defined as the homomorphic extension of a character-function f to strings (of same length), therefore this
1Y, property is immediate.
Uhm. 4.2
> . Q.
o
K _';:- We now define the "extended register” function: R, . Intuitively, R, outputs z first, and then x, up to a total
b number of characters equal to the number of characters in the input. The else clause consists of the (uninteresting)

x
a9

case where the input is of smaller length than z.

RO

Definition 4.3: R,

=

| ‘-;\ Letzl , € L* defineR:L,* > L*by: R,(x{, y=ifn>kthenzl, xl, . elsezl _
j ;’: It is immediate that R is MLP.
-
.: Note that we are abusing the notation slightly in the case where z=a, since the extended R, is unary, and the
:" on'ginal. R, is binax?'. The confusion is harmless, since Fbe bix?ary R, .ignores its second input (x,), so all algebraic
".,:: properties of one will carry to the other. In the rest of this section, we intend the unary R .
Lot
- ) Theorem 4.4: Composition of R, ’s
Y Vzz € £,* R, R, =R, .
::::: Proof:
;:' Let z=zl, 7= ZIJ'L.j X € L% arbitrary, x =x4, .
. The proof has 3 cases: n > i+j,0 S i,i < n < i+j. The most general one is n > i+j (i.e. steady state) and it is the
'. only one we show (the others are simpler):
F ..:; Wehave R, (xd, )= z'¢lnjzil._ix¢,__n_i_j (o> i+): 1]
/ and R(xd; )=zl xd . {a>iy => n>i)
" Let x =R,(x{; )
W

 J

L/
|‘..
0
[}

Wi

h - IS - S O - € 4 Wy ] W IESEvy IS N LAY INY) 0 J IO U
\ I o7, & e ; ( O Wty bty ettt ittty 4
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Wehave IX1=n.x"=x"{,

and \'/ke Lo}, x4, =if 1 Sk <ithenzl elsexi,

- and x)‘z"l)x*lnj | | [[n>i:+i => n.>j].]
~, and x'v o zwl_"llxﬁ“?“ izvl_‘lxwl__n_l_j ((a>i+j => n-j>i])
:. ] R AR (x)) =2 vi'l‘.jz“'l..ix“'l..n-lj =R, (%)

‘ (N hm. 4.0

" 4

v The next property is the essence of the "is-a-pipeline-of" relation which we will define later, in section 4.2 .
1

J:‘; Theorem 4.5: R, pipeline

o Vzz'x € I* . if 2 =z then R (xz') = zx
-2

- Proof:

Immediate verification.

¢\
N ()P

J.:h
o Finally, this next property is an essential characteristic of MLP functions in general (which will be key in
o mechanical proofs of equivalence of sysd’s):

.—

K e Theorem 4.6: Register-MLP

; Let F: (Z,*)2 — Z,* MLP string-function,a € %,,Vx € (L,*)2,Vu € e,

- R(F(x.u))=a.F(x)
-

.

The proof relies on the following lemma, which is interesting in its own right:

[ W

Theorem 4.7: 1st-order characterization of MLP string-functions
Let F be a (unary) function: £,* — X£,* ,FisMLP <=> F(¢)=¢ A Vxe€ Z,*,Vue Z_,.Bv €L |
F(x.u) = F(x).v

.

.
L A A By 8
Y .

-,
v or Yy
.7,

Proof:

o =>
N \' Assume F:ZX,* — I,* MLP string-function.
';-: We have [F(e)l = le! ([ F is length-preserving ]]
IF(e)l =0 [[ property of length ]]

® Fe)=¢ [ property of length ]]
3 .
_,.: Assume x € L,*,u€ L,
» We have F(x) < F(x.u) {{ F is monotonic ]]
s 3y e £ | F(xu)=F(x)y ([ thm. 2.43, 20d def. of prefix ])
° IF(x).y! = IF(x.u)l = x.u' ({ F is length-preserving ]]

5 o IF(x)l + iyl = kx| + 1 {{ properties of length ]]

o and IF(x)l = Ix! ([ F is length-preserving ]
: -: : yl=1

® m .

|' <=

R =

w.. Assume F:EZ,* - L,* | [hl]F(g)=¢ A [B2]Vx € L* Vue Z,,3v € I, | F(xu)=Fx).v
Vi

D'|

WCOWC
.‘ .‘l '0‘."'.'5 C'l . 'l' .C' .i‘

» 4 ] 0 (A" Wy,
* 'u* ot u" o AR IR O t'.'u'. n'.'l'.‘c‘.’ ) t' DR EAOND "‘ e .‘. OO q!.}u,u'.,o!.fu".f;! 'n' .,I ..t.
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“w
i.\
u"-
.n: Let xye L*|x<y
N then 3ze L,*| y=xz ([ thm. 2.43, 2nd def. of prefix ]]
{ We prove by induction on zthat V z € I,* , F(x) < F(x.z):
.
‘ :_:', - Base case: z = ¢,
-;‘_ then x=x2 ({xe=x.Vxe E,*]]
e F(x) = F(x.2) ({ F functon' }]
N F(x) € F(x.z) {[ € reflexave ]]
v
.r:. - Induction step: assume that F(x) < F(x.z), consider x.(z.u) for some u € 5:
4 _.'f'_: We have =x.(z.u) =(x.z).u {[ definition of concatenation ])
j.-\: [c1] F{(x.z).u] = F(x.z).v forsome v € X, [[h2 ]}
- )
ey and F(x) € F(x.z) ([ induction hypothesis ]]
{ and F(x.2) < F(x.2).v ([ definition of < )
:.-: F(x) € F(x.z).v ({ transitvity of < ]]
e F(x) € FIx.(zu)] IE38)
:'_I. [[]]F monotonic
[
® We now prove by induction on x that V x € Z,*, [F(x)i = Ix!, i.e. F is length-preserving.
o
::4»: - Base case: x =,
::; Wehave F(g)=¢ ((b1]]
g IF(e)t = lel
Yl
_( 3 - Induction step:
L Assume [F(x)i=Ixl,u € I,
N We have F(x.u) = F(x).v forsome v € Z, [(h21])
N IF(x.u)l = IF(x).vl = IF(x)| + v = IF(x)l + 1 ([ properties of length ]]
o and  [E(x)l = Ixl ([ induction hypothesis ]]
IF(x.u) =Ixl + 1 = Ix.ul [[ properties of length ]]
Y
L ([)F Length-Preserving
N M .
(Drom. 4.7
™,
o . It is clear that the => part of this lemma generalizes immediately to string-functions of any arity. (For the
::': other direction, there is a technicality in that we have to consider the restriction of F to (2,*)2 .) Therefore, the proof
"y of the Register-MLP theorem is now extremely simple:
Pt
B, v
‘e Let a e I, FMLP string-function, x € (Z,*)2,u € (T,)°
°® Wehave 3ve I, | F(x.u)=F(x).v [(thm. 47, => part]]
o . RF(x.u)=R,F(x)v)=aF(x) ([ definition of R, ]]
o
o {Dnem. 4.6
ol
: oo This completes our current algebraic development of the theory of MLP; .
(5, -
o
l‘ x
o
L
1
) e}
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N
n . . .
e 4.2. Relations on Synchronous Circuits
” A key concept 1n the transformational approach to design is (from [Talcott 86], and in published form in [Mason
( 86])
4 o8 ]
n.j Operations on programs need meanings to transform and meanings to preserve.
:: where we replace "program” by "synchronous system" for our purposes. The study of relations on sysd's s the
b W study of the various meanings we want 1o transform or preserve.
)
\ The following preliminary investigations are just intended to give a taste of the possibilities. ..
-
! ”ﬁ Definition 4.8: Equivalence Relations on L,
_ :_. We can define 4 equivalence relations on sysd's, which are progressively coarser. Let S,, S, € Lgp,
R »S.=5, <=> S, andS, are syntacticly identical. (Not very interesting.)
% l.
t *S,. =5, <=> S, and S, are isomorphic (i.e. equal up to renaming of syntactic pieces).
3 .:: es.=5, <=> [, ]=[5,].(Intensional equivalence: they denote the same functional.)
.:. 4 3., =5, <=> Wu(S,)=n(S,). (Extensional equivalence: they compute the same functions.)
\
-4 Note: technically, for = , we are comparing tuples (of functions), and we compare coordinate-wise.
L J
: More generally, = is a particular case of the fact that for any relation on MLP; string-functions, we can define
e the corresponding extensional relation on L, as follows:
-
e Definition 4.9: Induced Extensional Relation from MLPy to Lg;,

Let 6 be a (n-ary) relation on functions of MLPy . Define ¢ on Ly, with:
¥V S5,...S, € Lgp,&(5;,..5) <=> O((S))...u(S)).

SN
:"' Again, we extend ¢-comparison to tuples by comparing them coordinate-wise (and answering True if all
o, comparisons are True).
pt :,'
- One such relation which is very relevant to current digital circuit design, is the notion of a string-function being a
b “pipeline” of another:
o
T Definition 4.10: Pipeline relation on string-functions
(‘:’; Let F, G be two string-functions: Z,* — L,*,
_:-f: eFa,, G (read "F is-a-pipeline-of G with garbage z and purge z' ") with 2.2’ € L,* <=> ld= 1z
o A ¥x e Z*, F(xz') = zG(x)
[
A% e F a G (read "F is-a-pipeline-of G") <=> 322 € L,*| Fa .G
N
"
! : This definition is extended in the obvious way to string-functions of same arity (> 1).
o
; Intuitively, z is the garbage output during pipeline fill-up, and 2z’ is the (irrelevant) string fed in during pipeline
v purging.
f‘
-
< Pictonally:
o
(o
i
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Figure 4-1: Fis-a-pipeline-of G

G:
z G(x) G(x)

Theorem 4.11: « partial pre-order
o is a parual pre-order on string-functions (i.e. reflexive and transitive) and is not antisymmetric.

Proof:
reflexivity: immediate (take z and z’ to be &).
transitivity:

Assume Fau,GandGa”/H
Let x arbitmary in Z,*.

We have G{(xy") = yH(x) [[ G a H, instantiating x to x 1]
and F(xy'z") = zG(xy") ([ F o H, instantiating x to xy’ ]]
: F(xy'z") = zyH(x) , for arbitrary x

Fa vz H

FaH

o 1S not antisymmetric, even when restricted to MLP string-functions:
Counter-example:
Let
e F(x)=0101... | IF(x)i=Ix|
¢ G(x)=1010... | IG(x)l =IxI

then Fa,, G A Ga,,F.foranyabe X
and yvetF2G

([N1hm. a.11

Note: this counter-example brings up the fact that the purge string mentioned in the definition of  is absolutely
urelevant. In fact, if there exists one such purge string, then any other string of the same length will do. This brings
up an alternative definition of a which may be also be useful:

Definition 4.12: Alternate pipeline
Let F, G be two string-functions of arity 1, F & | G (read "F is-a-pipeline-of G with latency n") <=>
Jzz' e L* | ld=l2l=n A Vxe€ L,*, F(xz") = zG(x)
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4.3. Relations between Synchronous Circvits and (Mealy) Sequential
Machines
The key idea here 1s that sequential machines [Booth 67]. [Hopcroft-Ullman 79] can be given string-functional
semantcs (v) very naturally. Once this is done. then we can use our string-funcional semantics for SYSD's (U) to
compare formally both objects, as shown pictorially below. We base our definitions on Mealy machines. Since

Moore machines are mvially reducible to Mealy machines (without state explosion) this does not reduce the
generality.

4 h [l I
S, @

-

M xxXTYr
-"..‘..' ."." :’ :'

Figure 4-2: Formal Comparison of Sequential Machines and Synchronous Circuits
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Synchronous Circuits Mealy Machines
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Note: the fact that sequential machines have associated string-functions is not new in any way! Whalt is new is to
look at these functions as an extensional characterization of the machines, and to compare them to our extensional
characterization of synchronous systems. Usually, the standard theoretical development on sequential machines
proceeds with an equivalence relation based on state equivalence, i.e. an intensional characterization.
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L]

S

A Mealy machine M is given as a "next-state” function ), and a "next-output-character” function 8,4, which both

.
Py

*.'-: depend on the current state and current input character. We then extend these functions to take strings of inputs
*:: exactly as we did when defining the Operationai semantics of SYSDs in section 3.5, by iterating the next-output and
"0 next-state functions. Precisely:

-
. ,\7 Definition 4.13: String-Functional Semantics of Mealy Machines

~ Let M = <Z,0.q,,Y.5> be a Mealy Machine, with the intended interpretation:
o~ o T : alphabet (input and output)
N » 0 : set of states

- '_ ® q, : initial state

e

:~:: ey:Q x £ — (Q:pext-state function

S

o #d:0Q x £ -5 I:next-output function

. Define V(M) = A : I* — I* where:
4“: s AlE)=€ A A(x.u)=A(x). 8T (x).u)
!
& ol(g)=qy ~ Ixu)=vy (T(x).u)
j . » . . .
, i: The fact that A is MLP should be clear. Formally, the proof would be similar to the ones in section 3.5, and is
i3
8
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o
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. "\a. not repeated.
( » We can now easily define extensional equivalence of a Synchronous Circuit and a Mealy Machine:
'¢ Definition 4.14: Extensional Equivalence of Mealy Machines and Synchronous Circuits
7 Let M be a Mealy Machine, and S be a SYSD, wedefineM =5 <=> Vx e Z*,vIM)(x)=u(sS)(x).
o
o .
Y Note: there is an interesting duality to this jump from state machine to string function, in that we can easily define
) "states” for an arbitrary string function, and trivially obtain a Mealy machine equivalent to an MLP string-function:
R. . * To get the states of a function F on Z* | take the equivalence classes for ~ in Z*, where:
3 '_: x~y <=> Vze I*Fxz)=F(yz).
. (A "state” is simply a summary of the past good enough to account for the future.)
g ighs
'\:'ﬂ ¢ To get a Mealy machine for an MLP F, take those states, and define:
£HY) ¥ (x7,u) = (x.u)” and &x~,u) = last(F(x.u)) , where x~ is the equivalence class of x under ~ .
( . Actually, we get the minimal state machine extensionally equivalent to F, unfortunately however, this is far from
E;‘-: constructive!
};'\‘
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