
Septembr 1987Report No. S'IAN-CS-87-11

Log Files: An Extended File Service
Exploiting Write-Once Storage

0
0

by

a)~
'V Ross S. Finlayson and Datvid Rt. Chcriton

ELECi-
AUG5 188~

silt
Department of Computer Science

Stanford University
a Stanford, CA 94305

O1tMIBUTION STA~TEMENT A

Approved fot public releasel
Vhstribution Unlimiited

i- L

4 i il ''I ~ * SIR I Q t

w' , SECAR:' CASS ; CA"'ON O T. S PAGE
IForm ADroved

REPORT DOCUMENTATION PAGE OMBtVo 0704018
IED Date Jun30 1986

Ia REPORT SECURITY CLASSiFIC-ATION lb RESTRICTIVE MARKINGS

unclassified

Za SECjRITY CLASSIFIC.ATION AUTHORITY 3 DISTRIBUTION/AVALABILiTY OF REPORT

APPROV7D FOR PUBLIC RELEASE:

2b DECLASS.F-CATiON/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED

4 PERFORMiNG ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

STAN-CS-87-1177

6 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

COMPUTER SCIENCE DEPT. [
E. ADDRESS (Ciy. State, and ZIPCode) 7b. AODRESS(Cty, State, and ZIPCode)

SrANFORD UNIVERSITY
STANFORD, CA 94305

ASa NAME ' ;UNDiNG, SPONSORING 8 b OFFICE SYMBO0L 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicabdle) N00039-84-C-0211

DARPA

Sc. ADDRESS (City. State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

1400 WILSON BLVD. ELEMENT NO NO NO ACCESSION NO

ARLINGTON, VA 22209

*...- 11 TITLE (Include Security Classification)

:.r. LOG FILES: AN EXTENDED FILE SERVICE EXPLOITING WRITE-ONCE STORAGE

12 PERSONAL AUTHOR(S)

ROSS S. FINLAY-ON AND DAVID R. CHERITON
13a TYPE 0; REPORT 13b TIME COVERED 14 DATE OF REPORT (Year. Monh, Day) 15 PAGE COUNT

! FROM TO

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SU8JECT TERMS (Continue on reverse it necessary and identify by block number)

FIELD GROUP SUB-GROUP

%" "%.19 ABSTRACT (Continue on reverie if necessary and identify by block number)

* A log service provides efficient storage and retrieval of data that is written sequentially (append-only)

and not subsequcntly modified. Application programs and subsystems use log services for recovery, to record

security audit trails, and for performance monitoring. Ideally, a log service should accommodate very large.

long-lived logs, and provide efficient retrieval and low space overhead.
'V In this paper,- we Lesc the design and implementation of the Clio log service. Clio provides the
W-' abstraction of log files: readable, append-only files that are accessed in the same way as conventional files.

The unde;Ling storage medium is required only to be append-only; more general types of write access are

* -n-necessary."NWe show how log files can be implemented efficiently and robustly on top of such storage

,¢' -. media-in particular, write-once optical disk.
In addition, we describe a general application software storage architecture that makes use of log files.

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CtASSIFICATION

C UNCLASSIFED/tJNLIMITED 0 SAME AS RPT 0 DTIC USERS I
* 22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

" DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS AGE
All other ed,tons are obsolete

%le ^ W ? " ." ',.P L m

0, r .- - - , 7 - - - - - - - - - - - -

Log Files:
An Extended File Service Exploiting Write-Once Storage

Ross S. Finlayson David R. Cheriton
Stanford University Stanford University

Abstract have been revised, allowing the application to evolve
without excessive disruption. This technique is often

A log service provides efficient storage and retrieval of used to move between different incompatible versions
data that is written sequentially (append-only) and of file systems, for example. Each of these uses of log-
not subsequently modified. Application programs ging is based upon the principle that a system's true,
and subsystems use log services for recovery, to record permanent state is based upon its execution histury,
security audit trails, and for performance monitoring, with the 'current state' being merely a cached sum-
Ideally, a log service should accommodate very large, mary of the effect of this history. We refer to this as
long-lived logs, and provide efficient retrieval and low the history-based model of system structuring.
space overhead. In addition, a logged history can be examined

In this paper, we describe the design and implk- to monitor for, and detect, unauthorized or suspi-
mentation of the Clio log service. Clio provides the cious activity patterns that might represent security
abstraction of log files: readable, append-only files violations.1

that are accessed in tLe same way as conventional Standard magnetic disk-based file systems are in-
files. The underlying storage medium is required only adequate for storing and accessing the large, long-
tc be append-only; more general types of write access lived logs that history-based applications may re-
are not necessary. We shc w how log files can be imple- quire. Because standard file systems maintain file
mented efficiently and robustly on top of such storage access data structures in rewriteable permanent stor-
media-in particular, write-once optical disk. age, they cannot make effective use of more cost-

In addition, we describe a general application soft- effective, write-once storage media such as optical
ware storage architecture that makes use of log files. disk [8]. By failing to distinguish (append-only) log

This work was supported in part by the Defense files from other (rewriteable) files, standard file sys-
Advanced Research Projects Agency under contracts terns are unable to take full advantage of this new
N00039-84-C-0211 and N00039-86-K-0431, by Na- technology.
tional Science Foundation grant DCR-83-52048, and In addition, standard file systems typically perform
by Digital Equipment Corporation, Bell-Northern best on small files, with access to very large, continu-
Research and AT&T Information Systems. ally growing files being more expensive. In particular,

in extent-based file systems, such files use up many
extents, since each addition to the file can end up allo-

1 Introduction cating a new portion of the disk that is discontiguous
with respect to the previous extent. 2 In indirect block

General-purpose logging facilities are necessary for file systems (such as Unix), blocks at the tail end [
computer systems and applications to meet require- of such files become increasingly expensive to read]
ments of reliability, security, and accountability. Us- and write. (This is especially undesirable, because
ing a logging facility, a subsystem or application can in many applications, the most frequent accesses to -
record, or log, its history of execution in sufficient
detail to satisfy these requirements. Following a fail- I This assumes that the history itself cannot be circum-
ure, the application can use this history to recover vented or unduly compromised by such a violation.e rir h stte er 2 Since extent-based file systems tend to be faster for other----
its current state, or to recover an earlier state. The types of files, factoring out these large, slow growing files elim- dc!-

* history can also be used to restore the current state inates or reduces one significant drawback of extent-based file
of a system after the data structures for this state system. ,

"/,

, , Page I

, J -

1 11MIR)

large logs are to those entries that were written most Otherwise, log files are named using the standard file
recently.) In addition, the blucks of such files are directory mechanism, and are accessed and managed
likely to be scattered over the disk. using the same I/O and utility routines that are used

Furthermore, most file system backup procedures to access and manage conventional files [3].
involve copying whole files, which is particularly in- As a special case, the entire sequence of log entries
efficient (in terms of both time and space) for large that have been written to a volume can also be con-
log files, since only the tail end of the file will have sidered a log file, called the volume sequence log file.
changed since the last backup. The other log files are thus client-specified subsets

Finally, a log that becomes very large may have to (i.e. subsequences) of this sequence. These subsets
be split over multiple physical disks. Most standard are usually distinct, although the logging service al-
file systems do not support this capability, lows a log entry to be a member of more than one log

In this paper, we describe the design and imple- file.
mentation of Clio,3 a logging service that has been Log files are implemented by an extended file server
built for the V-System [4]. Clio provides the abstrac- with one or more attached log devices. A log device
tion of log files-special readable, append-only files is required to be a non-volatile, block-oriented stor-
that are accessed in the same way as regular (rewrite- age device that supports random access for reading,
able) files. Log files are implemented using write-once and append-only write access. More general types of
loy devices (such as optical disk drives) attached to write access are not necessary. A log volume is the re-
the file server machine. movable, physical storage medium, such as an optical

The logging service is implemented as an ,xtcnzioi disk, on which log data is stored.
of a conventional disk-based file server. It is able to Write-once optical disk drives are an attractive
use much of the existing mechanism of the file server, choice for the log device because they provide very
such as the buffer pool. high density storage (e.g. a 12" disk typically has a ca-

The next section describes how Clio provides effi- pacity of 1 Gbyte or more per side) at low cost (< 25
cient access to log files, as well as describing tech- cents per Mbyte4) [2]. In addition, optical disks are
niques for achieving reliability. In section 3, we ana- very stable compared to magnetic disk,5 and are re-
lyze the performance of the system, in terms of both movable, making them useful for archiving. Further-
access time and space overhead. In section 4, we de- more, the write-once restriction of current products
scribe the history-based system structuring model in is actually an advantage for a log device, because it
further detail. We argue that this model is well-suited improves the integrity of logged data. In fact, we fa-
to take advantage of the changing memory economics vor a log device that is physically incapable of writing
brought about both by the falling cost of RAM, and anywhere except at the end of the written portion of
by the availability of increasingly high-density low- the volume.
cos backing storage. Section 5 compares our ap- The following key issues must be addressed when
proach to other work in this area. implementing log files:

Performance: How to provide efficient read access

2 Log File Service: Design and to the entries of log files, especially to entries

Implementation that are located far back in time, without incur-
ring excessive space overhead (over and above

A log file is a file of records (called log entries) that the space used to store client data).
can be appended to indefinitely, and read back se-
quentially or randomly. Fault-tolerance: How to make the log service re-silientll or hadwrean ofwae aiues cld

Log files appear the same as conventional file sys- silient to hardware and software failures, includ-
tem files except that: ing failures that may result in random data being

written to the log devices.
% e log files are append only. The following sections describe how we have ad-

* when a log file is opened for reading, access can dressed these issues in Clio.
% be provided to the sequence of entries in the fileSp 4This compares with cost of tens of dollars per Mbyte for

either subsequent to, or prior to, any previous magnetic disk.
point in time. $This is true in part because the recording and reading

heads of such devices can be further away from the storage
3n Greek mythology, "Clio" was the muse of history. medium than the heads of magnetic storage devices.

Page 2

"Index'
entry I entry 2 entry 3 entry 4 (entry sizes)

S. 0

d d d d 6~y 4 S3 S2 S1

Figure 1: Layout of log entries within a disk block

2.1 Efficient Access has entries in any of the previous N blocks. This
bitmap indicates those blocks that contain such

The key problem of efficient access is that of locating entries.

log entries that are far back in a log file, with low

deiay, and using few log device read operations. Read 2. A 'level-2' entrymap log entry appears every N 2

requests for recent data, on the other hand, are likely blocks on the log device. Such an entry contains
to be satisfied from the file server's in-memory cache. a bitmap, of size N, for each active log file that
Write operations are performed only at the end of has entries in any of the previous N 2 blocks. This
the written data-a disk location that is known at all bitmap indicates those groups of N blocks that
tine:. contain such entries.

Each log entry record in a log file contains a log
entry header, written by the server, that identifies 3. and so on...
the log entry. In particular, this header consists of
the following fields: (The choice of N is discussed in section 3.)

local- logfile-id Identifies the log file(s) (usually only The entries in the entrymap log file effectively form
loa-oe -i ntiis the log los. ua search tree of degree N, rooted at the kth level en-one) to which the log entry belongs. trymap log entry, if k is the highest level entrymap log

timestamp The time at which the logging service entry written. This is illustrated in Figure 2. In this
received the written log entry. (optional) example, where N = 4, we show only the bitmaps for

one particular log file. The (five) blocks that contain
size The size of the entry in bytes. entries in this log file are shaded. Having determined
In practice, the "size" field is not stored in the header the block7 in which a desired entry is located, the log
itself, but is instead stored in an index that is writ- server reads this block and searches it sequentially for
ten at the end of each disk block, as illustrated in the desired entry.
Figure 1. This makes it easy to scan a disk block, Note that the entrymap log entries are located in
either forwards or backwards, to examine the log en- well-known blocks (at regular intervals) on the log de-
tries that it contains. vice, so the server is able to access them efficiently.

In principle, a log server could locate the entries Note also that the information in the entrymap log
that are members of a particular log file by examin- file is redundant, because, as mentioned earlier, it
ing every entry in every block of the volume sequence. could also be obtained (although considerably less ef-
This, of course, would be prohibitively expensive, es- ficiently) by examining every log entry on the volume.
pecially if a desired entry is far away. The server must also be able to efficiently locate

To efficiently locate the entries in log files, the the position of those log entries that were written
server maintains a special log file called the entrymap at a given earlier point in time. The server uses a
log file. The data in this log file describes a sparse tree search, based on the timestamps in the log entry
bitmap for each (other) log file, indicating which headers. A header timestamp is mandatory for the
blocks on the log device contain log entries in this first log entry in each block, so the search succeeds to

* log file. In particular, the entries in the entrymap log a resolution of at least a single block. At the upper
file are as follows: levels of the tree, the search uses those blocks that

1. A 'level-i' entrymap log entry appears every N happen to contain entrymap log entries. Thus, when
blocks on the log device. Such an entry contains the server next attempts to locate the log entry (for
a bitmap. of size N, for each active log file6 that a given log file) that is closest to the specified time, it

* 8 This does not include the volume sequence log file, and the 7A log entry may also be fragmented over more than one
- entrymap log file itself, block.

_0
Page 3

,, entrymap level

2 10

% 1 000 100100001

log device blocks

Figure 2: ExAmnTle entrymap search tree for N = 4

is likely that the useful entrymap log entries already mail messages delivered to user "smith". Note that
reside in the server's block cache. each such name represents not only a log file, but also

Within a log file, a particular log entry can be a directory of (zero or more) sublogs.
uniquely identified using its timestamp. If the en- A log file may span several log volumes. Each log
try is written synchronously to the logging service, file is totally contained in one log volume sequence-a
then a client can obtain this timestamp as a conse- sequence of log volumes totally ordered by the time of
quence of the write operation. This timestamp can writing. Whenever a volume fills up, a (previously un-
subsequently be used to efficiently locate the log en- used) successor volume is loaded, with this successor
try. being logically a continuation of its predecessor. The

Some applications-for example, database transac- newest volume in each volume sequence is assumed
tion recovery mechanisms-need to uniquely identify to be on-line, both for reading and writing. Many
a written log entry without the write operation being of the previous volumes in a volume sequence may
synchronous. One possible approach is for the client also be available for reading (only), or may be made
to use a unique identifier consisting of available on demand, either automatically or manu-

ally. A log file can be uniquely identified by (i) a log
1. a client-specified sequence number (that is writ- volume sequence and (ii) a log file identifier relative

ten as part of the log entry), and to the log volume sequence. (This log file identifier

2. a client-generated timestamp. is distinct from that of all other log files ever created
on the same volume sequence.)

To access the log entry, the timestamp is used to de-
termine the approximate location of the entry within 2.2 Reducing Space Overhead
the log file. The sequence number is then used to
identify the specific entry. The efficiency of this Although Clio has been designed to make use of low-
scheme depends on how well the client and server time cost, non-reusable storage media, we wish to avoid
clocks are synchronized. Its correctness depends on excessive storage overhead on the log device (that is,
the sequence number not wrapping around within the storage beyond that which is used for the client data

" maximum possible time skew between the client and itself). This is especially important if large numbers
the server. of relatively small log entries are written, for example,

* The logging service allows a client to create a log to support object-oriented databases.
file that is a sublog of an existing log file. If log file 12 is We accomplish this goal primarily by limiting the
a sublog of log file 1t, then any entry that is logged in 67.e of log entry headers. The header for any given
12 will also belong to 11. A client may t"-1- efficiently 1.g ",trY !ontains information that is relevant only to
access either all of the entries in 11, or ju.t tl.ise in 12. this entry. Any information that is an attribute of a
The sublog facility thus provides an additional way to log file as a whole is recorded separately, in a separate

* efficiently locate a small, selected set of entries within log file called the catalog log file. Such "log file spe-
a larger log file. cific" attributes include a log file's name, its access

In addition, the sublog concept allows the familiar permissions, and its time of creation. Any change to

file naming hierarchy to be used in a natural way. For these attributes is also logged (at time of the change)
example, if "" denotes the volume sequence log file, in the catalog log file.
and "mail" denotes a log of mail messages delivered The simplest form of the log entry header is only

* to a system, then "/mail/smith" may denote a log of 4 bytes in length, consisting of:

PaeI
~Page 4

header-version: Indicates the form of log entry for each mounted volume, must reconstruct its cached
,header that is being used. (4 bits) knowledge of the log files that are maintained on this

volume.
local-logfile-id: Identifies the log file to which this The server first locates the most recently written

entry belongs. This is an index into a table block on the volume. (If this block cannot be found
(called a catalog) of lcg file specific information by directly querying the device, then binary search
(i.e. file descriptors) maintained by the server, is used.) The server then examines recently-written
and derived from the catalog log file. (12 bits) blocks, to reconstruct missing 'entrymap' information

size: The size of the entry. (16 bits) (that is, bitmap information for entrymap log entries
that had still to be written at the time of the crash).

Note that this information alone iz sufficient to iden- Finally, the server reads the catalog log file, to de-
tify and parse every log entry in a block, as is neces- termine which (client) log files are being maintained,
sary during server initialization, when the only infor- and their attributes.
mation initially available to the server is the location The major problem caused by a file server crash
of the last written block on the log device (and the is the loss of data stored in volatile memory. For
location of the entrymap information), this reason, log entries are written synchronously to

With this minimal log entry header, the space over- the log device when forced (such as on a transaction
head (due to the log entry header) for a log entry with commit).
d bytes of client data is 400/(d + 4) percent-for ex- On a (purely) write-once log device, frequent forced
ample, less than 10% for entries with more than 36 writes can lead to considerable internal fragmenta-
bytes of client data. tion, since a block, once written, cannot be rewritten

Entrymap log entries also contribute to the space to fill in additional contents. Ideally, in order to
overhead. An entrymap log entry, however, contains efficiently support frequent forced writes, the tail end

N. . a bitmap for a log file only if this log file has en- of the log device is implemented as rewriteable non-
tries that appear in the set of blocks covered by the volatile storage, such as battery backed-up RAM.

,-: bitmap. Therefore, log files that have few entries, or
that are written to infrequently, incur little overhead 2.3.2 Log Volume Corruption
in the entrymap log. On the other hand, although fre-
quently written log files may be mentioned in numer- Log volume corruption must be assumed to occur,
ous entrymap log entries, the overhead due to these since a log volume may be written over a long pe-
entrymap entries is amortized over a large number riod of time, during which hardware and software

"'. of log file entries. In section 3.5 we show that un- failures may occur. A failure may cause a portion
der most circumstances the average overhead per log of the log volume to be written with garbage. If pre-
entry, due to the entrymap log entries, is small in viously written blocks have been corrupted, then the
comparison with that due to the log entry header. data in these blocks is assumed to be lost, unless the

client(s) that wrote entries to the affected blocks have

2.3 Fault Tolerance taken measures that allow them to recover from such
" an error. However, corruption of this sort should be

The log service must deal with the following faults: rare, since the logging service attempts to enforce the

e: .append-only restriction at the lowest possible level of: File server crash The file server software or hard- the system (ideally, in hardware). It is more likely
* ware fails, so the server has to be rebooted. The that only previously unwritten blocks are corrupted.

log service must be restored as soon as possible, In either case, the presence of corrupted blocks

should not render the remainder of the volume un-
Log volume corruption A software or hardware usable. For this reason, we do not simply abandon

problem may cause garbage to be writte_, to the a corrupted volume and copy the log entries in the
. log volume. Despite this, the log service must uncorrupted blocks to a fresh volume; this would

still be able to access any useful information that be wasteful and time-consuming. Instead, corrupted
has already been written to the volume, blocks are invalidated (e.g. by overwriting them with

all l's). The logging service ignores a block that has

2.3.1 File Server Crash been invalidated in this way. If a previously unwrit-
ten block is corrupted, then its location is recorded

If a file server crashes, we assume that the contents of in a special log file (thus allowing the server to locate

its RAM memory are lost. On reboot, the log service, this corrupted block if it is subsequently rebooted).

.' -Page 5

-€ • - r r - - N' N'r '" . . , *" * ,* * '.

a VpWIN P _ _ , IWnrVWwnvn-- -wn ,t a -1

It is possible that an entrymap log entry is ex- 3.2 Log Writing
pected to occur in one of the invalidated blocks. If We measured the time taken for a client program to
a block in which an entrymap log entry would nor- (syncuhronoesly) write a log entry to a log file. Both

, mally be written has been iald tthen theenr (snhoolywitalgetytoaogfe.Bh
can be written instead in the next uncorrupted block, the client and the log server ran on a Sun-3 worksta-

if such a block is nearby. In general, however, it is tion. At the server end, the client data was copied
always possible for the logging service simply to as- to the erve iemor ok ach enl
sume that no such entrymap entry is present, at the write to the log device was performed asychronously
cost of some additional searching of the lower levels with respect to the client; the cost of this operation

-s of the entrymap search tree. This is true because the is not reflected in these measurements. The serverinformation in an entrymap log entr is : dasPt tagged each log entry with a complete, 14-byte logand is present only to provide efficient iccs to log ntr, cader that included a (64-bit) timc.stamp. En-entries tryrr.ap !og entries were written 16 blocks apart (i.e.N = 16). The block size was 1 kbyte.

We measured both the time taken to write a 'null'
log entry (i.e. a log entry containing no client data-3 Performance Analysis and just a timestamped log entry header), and the time

Measurement taken to write a log entry containing 50 bytes of client
data. The average time to write a 'null' log entry was

A production log service is expected to deal with vol- 2.0 ms. For a 50-byte log entry, the average time
ume sequences that are several hundred volumes long, was 2.9 ms. Of these times, 0.5 ms-1 ms were taken
containing millions of records, and running continu- up by the basic synchronous client-server IPC (write)
ously for several years. Periodically, audit and mon- operation.9 The cost of generating the timestamp
itoring processes read hundreds of records from vari- was roughly 400 pus. The cost of maintaining and
ous log files in the volume sequence. We are interested periodically logging entrymap information for this log
in the time and space performance of our design in file was low: only about 70 jus for each written log
this environment, entry, on average.

In this section we describe the measured perfor- We draw the following conclusions from these mea-
mance of log writing and of log reading (given com- surements:
plete caching). We also analyze the expected perfor-
mance of log reading in the absence of caching, and Excluding the cost of generating the header
the expected space overhead, per log entry, due to timestamp, the cost to the server of loggingentrymap information, a small log entry in the block cache is low-

comparable, in fact, to the cost of a basic local
IPC operation.

3.1 Log Server Configuration The cost (per log entry) of maintaining and log-

Cliu has been implemented ii, the V-System as an ex- ging entrymap information is generally negligi-
tension of an existing file server. The file server im- ble, especially if entrymap log entries are written
plements both regular file systems (i.e. with rewrite- infrequently.
able files) and, using separate storage devices,s log file
systems. Much of the code-in particular, the code Attention should be paid to the cost of gener-
that implements directory management and block aing a timestamp for each log entry. We are
caching-is common to the implementation of both curreAtly investigating ways to more efficiently

types of file. The (Motorola 68000) binary image of access kernel-maintained time in the V-System.

the file server (alone) is roughly 90 kbytes in size; the
addition of log file support has increased the size by 3.3 Log Reading
less than 20%.The current configuration uses magnetic disk to Reading a log entry from a given log file consists ofThe urrnt cnfiuraion sesmageticdis to three steps:
simulate write-once storage. Configurations with op-
tical disk drives will be in use shortly. No change to 1. locating the block that contains the desired log
the existing file server software is required in order to entry
support optical disk configurations.

I The corresponding time for an IPC operation between dif-
8or separate disk partitions ferent workstations is 2.5 ms-3 ns.

Page 6

n
13N-4 N-8

i NN-16

I I I N I INN,64 =N128

-- 2o 3
4

06 u d too;e

Figure 3: Theoretical average cost of locating an entry d blocks away (without caching)

2. reading this block (either from the server's block cost of reading a block) is greatest for blocks that are
cache, or from the log device), and far away.

Note that for a given d, as N increases, n decreases
3. locating and reading the desired log entry within by a factor of only about 1/log N, so that there is

this block, little benefit in N being larger than 16 or 32, even

T t o s a d ofor locating entries that are as many as 107 blocksK. The expected cost of steps 1 and 2 depends on how wy1

% much of the necessary entrymap log information has away.
been cached, and, in particular, on the way in which Extensive log reading interferes with the perfor-the log file entries are distributed on the volume, For mance of log writing, and vice versa. Thus, the log

thelogfil enrie ar ditriute onthevolme.For device should ideally have separate read and writeexample, the cache hit ratio for the blocks that con- heads. A separate write head makes it easy to phys-
tain the upper levels of the entrymap search tree will ially e ar te rule ha d aa i e r t ten,
usually be quite high. We first discuss the worst case ically enforce the rule that data is never rewritten,
cost of step 1 (locating the desired block). This worst- because the write head need only be able to move

case cost occurs if none of the necessary entrymap log forward (plus be able to "restore" to the beginning of

information has been cached by the server, the disk when a new volume is mounted).

3.3.1 Analyzed cost (no caching) 3.3.2 Measured cost (given complete
caching)

kIf i.iex t i'.- ;us) entry iii tcS file liappens Using the same client-server configuration as de-
to be d blocks away from the current block (where we srgbdhi secin.,ermeasur time aken., ",scribed in section 3.2, we measured the time taken

, -. start looking), then it can be located by examining,ontaerkg, hen it n +et lo e nie, for a client to read a 50-byte log entry from a log file.P where N is the size of a bitmap in an entrymap log A major component of this time is the time taken

entry. Note that a block that contains a level-(i + 1) by the server to locate this entry using the entrymap
entrymap entry also contains a level-i log entry, so the search tree. This denends on the number of entrymapnumber of actual block reads required may be even log entries that need to be examined, which in turnlnu depends upon the distance (in blocks) between the log:. ,less than n.

Figure 3 shows n plotted against d (on a logarith- entry being read and the starting point of the search.
In Table 1, we list the measured cost of a log read,• mic scale), for various values of N. We are most

interested in the performance of the system when d as the search distance is varied. In each case all diskintlreth i ts, when the entry that we are trying to blocks were located in (and therefore read from) the

locate is a considerable distance away), since in such server's main-memory block cache. The search dis-
a case our 'no caching' assumption is most likely to tance is listed as a power of the degree (N) of the
be true, Also, for a storage device such as an opti- 1°Such a distance is not unrealistic given the likelihood of

* cal disk, the seek time (which typically dominates the media with a capacity of 10 Gbytes or more.

Page 7

-~~~ A.*.

'0

search distance # of entrymap # of disk blocks time
(blocks) (if N = 16) log entries read read (from memory) (ms)

0 (0) 0 1 1.46
Y (16) 1 3 2.71

N 2 (256) 3 5 3.82
N 3 (4K) 5 7 5.06
SN4 (64K) 7 9 6.51

m) 9 11 8.10

Table 1: Measured cost of a log entry read, for different search distances (given complete caching)

search tree. (We also indicate the actual distance, in Step 1 may require the use of binary search to locate
blocks, if N is chosen to be 16.) the end of the written portion of the volume, at a

From these measurements we see that the cost cost of log 2 V, where V is the size of the volume, in
of accessing (and interpreting, if necessary) a single blocks.
cached disk block is around 0.6 ms. In comparison, The cost of step 3 depends on how many log entries
a typical average seek time for an optical disk drive need to be read from the catalog log file, and to the
is -150 ms [2]. Furthermore, queueing for disk reads degree to which these entries are spread throughout
(under conditions of heavy load) may make the aver- the log device. Fortunately, much of the entrymai.
age cost of a cache miss even higher. Therefore, the information that is used to locate these entries will
cost of a log read operation (which typically requires already be cached at this point, as a result of step 2.
multiple block reads) is determined primarily by the The cost of step 2 can be estimated as follows.
number of cache misses. To reconstruct nussing level-i entryap information,

When recently-written entries are read, both the the server need examine the blocks that were written
entrymr: information that is used and the log data since the last level-1 entrymap log entry was logged.
itself will usuaUy be in the cache, so the cache hit There are between 0 and N such blocks (N/2 on av-
ratio should be very high. If, on the other hand, a erage). Similarly, level-i entrymap information (for
log entry that is being read is located a large distance i > 1) can be reconstructed by examining between 0
away, then neither the lower levels of the entrymap and N recent level-(i- 1) entrymap log entries. In to-
search tree nor the log data itself can be expected tal, it may be necessary to examine N logN b blocks,
to be cached. A read of this type is expected to cost where b is the total number of blocks that have been
several hundred milliseconds. Fortunately, such reads written to the volume so far. On average, roughly
are typically far lees frequent than reads to log entries n = (N logN b)/2 such blocks are read.
that are located nearby. If, for example, log entries Figure 4 shows n plotted against b (once again, on a
within a log file are batched, so that each 'long dis- logarithmic scale), for various values of N. Note that
tance' read is followed by a large number of 'short this cost increases if N is increased. (This occurs
distance' reads, then the cost of each long distance because although a larger value of N increases the
read is amortized over the subsequent short distance scope of entrymap log entries, it also increases the
readis. separation between them.)

This cost could be reduced by choosing a small
value of N, by varying N so that it is smaller at

3.4 Initialization higher levels, or by adding additional, redundant lo-
As was mentioned in section 2.3.1, server ini~ializa- cation information at higher levels (to reduce the sep-

N" tion consists of three main steps: aration between location informaLion at these levels).
However, the first two solutions have the drawback of

1. locating the most recently written block on the increasing the cost of locating entries in the common
log device, case discused earlier, while the third solution com-

plicates the location algorithm somewhat, and also
2. examining recently-written blocks, to recon- slightly increases the space ovcrhead due to location

struct missing 'entrymap' information, and information.
From this and the previous section, we see that

3. reading the catalog log file, to reconstruct the log a choice of N in the range 16-32 provides excellent
file specific attributes of each client log file. performance for reading (even very sparse) log files,

Page 8

120 N-128 N,,64

N-16

04
N-

20

10 t 10
4

10 0 10 40
8

0 o to 1 0 oo-,

Figure 4: Theoretical average cost of reconstructing entrymap information

without leading to excessive overhead during server large compared to a block (i.e. c is large), and large

%initialization. numbers of different log files are typically written dur-
ing short periods of time (i.e. a is large). For example,

k3.5 Space Overhead even if the average log entry were to take up an entire
block, each block in a 16-block group would have to

Section 2.2 described how space overhead is reduced. contain a different log file in order for the entrymap
In this section, we sketch an analysis of the expected space overhead to be comparable to the header size.
space overhead for our design, in terms of parameters We illustrate the space overhead that is incurred by
that describe the size and distribution of written log an actual log file system, by considering a file system
entries. that we have been using to record user access (i.e.

The average space overhead, per log entry, is com- login/logout) to the V-System. Measured values of
posed of c and a for this file system are roughly 1/15 and 8,

1. the average size, h, of a log entry header, andreptieyThavagpr-nyoehaduet
entrymap log entries is therefore less than 0.16 bytes

2. the average per-entry overhead, o , due to the (which is less than 0.2% of the average entry size in
entrmaplog ntresthis file system).
entr maplogentres.To summarize, most of the average per-entry space

or, in turn, is equal to (eE), where overhead is due to the average log entry header size,

ard this, in turn, can be kept low, as we showed ine = the average number of entrymap log entries per scin22
block, scin22

eE =the average size of an entrymap log entry, and 4 History-Based Application
= the fraction of each block that is taken up byStu urn

the average log entry.

Fromthestrutur ofan etryap og etry we A history-based application has the following proper-

see that E = h + a(N/8 + c) (bytes), where a is ties:

the average number of log files referenced in an en- 1. It uses an underlying (append-only) logging ser-
ID.trymap log entry, and c is a constant. Therefore, since vice for permanent storage, recording its entire

e < 1/(N-1), o, < (h+a(N/8+e }/(N-1). Filling persistent state in one or more log files.
in likely values for many of these variables, namely:
h = 4 bytes, N = 16 bits and c = 2 bytes, we see 2. The application's current state is an (at least
that o, is (in this case) bounded by 0.27c(a+ 1) bytes. partially) cached summary of the contents of
Thus. o, is usually less than the overhead, h, due to these log files. This state can be completely re-

, the log entry header, unless the average log entry is constructed from the log files, if necessary.

} • Page 9

I_.v

RAM 0-"0 magnetic disk 0 magnetic tape

RAM cache permanent object storage archival storage

(a)

*rewrlteable write-once

Figure 5: Storage models: (a) traditional. (b) history-based.

This model stands in contrast to the traditional be cached in RAM rather than on magnetic disk. The
4." model in which an application's persistent state is higher speed of RAM can make this cost effective, de-

maintained in rewriteable permanent storage. These spite the fact that the cost of RAM, Per byte, remains
two models are illustrated in Figure 5. In the history- higher than that of disk. Suppose, ,or example, that
based model, the role of rewriteable permanent stor- the cost of retrieving 1 kilobyte is 100 ms if the data
age is less significant; it is used only as a staging area is read from a log device (on a cache miss), 30 ms if
for the tail end of the log device, if at all. the data is read from a magnetic disk cache, and 1 ms

The history-based model has a number of poten- if the data is read from a RAM cache. In this case,
tial advantages over the traditional model. First, given the choice of adding R Mbytes of RAM versus
the history-based model combines regular permanent D Mbytes of disk for the same cost, as long as the
storage with archiving. No separate mechanism is cache hit ratio for the RAM cache is at least 70% of
needed for archival storage, which reduces the com- the cache hit ratio of the disk cache, then the RAM
plexity of systems that follow this model. Similarly, cache has the better read access performance.
because only a single form of persistent storage is used A potential disadvantage of the history-based ap-
to restore the cached state of a history-based applica- proach is the possibility of excessive amounts of data
tion, the recovery mechanism of such an application being written to the logging service. Because this ap-
is simplified. proach combines archiving with regular permanent

The append-only nature of this persistent storage storage, it is best suited for applications in which
also makes it easier to guarantee the consistency of there is a close match between the time granular-

P. . the system state that is recovered from it. In par- ity that is sufficient for permanent storage, and that
ticular, the logging service preserves the order that which is necessary for archival purposes, so that little

data is written to persistent storage, and ensures that of the logged data can be considered extraneous.
if a log entry is recorded in persistent storage, then Two possible applications of the history-based
previously-written entries are also recorded. In ad- model are illustrated below.
dition, this model makes it possible to consistently
access both a new (or tentative) version of an object, 4.1 File Server Support

S-"and a previous version.
Furthermore, by using a logging service for per- A conventional file service can be implemented fol-

manent storage, a history-based application inherits lowing the history-based model. The file server main-
many of the benefits of the logging service itself. In tains, in one or more log files, a file history for each
particular, this storage is less vulnerable to acciden- file that it stores. The file history includes all updates
tal corruption than it would be if it were rewriteable. to the contents and properties of files, as well as (pos-
(This is especially true if the logging service's append- sibly) information about read access to files. The file
only policy is physically enforced by the log device.) server can extract, from the file history, either the

Because a history-based application's current state current version of a file, or an earlier version. (The

is recoverable from the logging service, this state can contents of the current version are typically cached.)

Page 10

When considering the feasibility of a history-based a number of log server nodes for reliability. In our
file server, two issues are of primary concern: (i) the design, however, the basic service provided by a log-
size of the RAM cache that is needed to provide ac- ging facility is that of a single, complete log file, with
ceptable performance, and kii) the rate at, which log server-level replication (if any) being managed at a
entries krepiesenting updates to files) fill the log de- higher level."1 In their design, the log servers and file
vice. In each case, however, we are encouraged by servers are physically separate (at the cost of addi-
measurements of the performance of typical file sys- tional network overhead), rather than both services
tems, such as the results obtained by Ousterhout [11]. being integrated. Furthermore, log entries in their de-
In particular, Ousterhout's analysis of the Unix 4.2 sign are tagged with a sequence number rather than
BSD file system shows that cache miss ratios of less a timestamp. The timestamp in our design not only
than 10% are possible with a cache size of only 16 uniquely identifies log entries, but also makes it pos-
MIbytes, given an effective cache write policy. sible for them to be located by time. Finally, their

n addition, it was observed that typical file life- design uses a binary tree structure to locate log en-
times are very short; for example, more than 50% of tries. The performance of this scheme is within a

% newly-written information is deleted within 5 min- constant factor of ours (both schemes have logarith-
utes. This suggests that with an appropriate delayed mic performance--asymptotically the best possihle),
write (or a 'flush back") policy, most newly-written but our scheme requires significantly fewer disk read
data will not lead to writes to the log device. Fur- operations, on average, to locate very distant log en-
thermore, temporary files can often be managed com- tries.
pletely by clients, without any interaction with a net- The Swallow system [14] was a design for a reliable,
work file server. long-term data repository that could use write-once

storage media. Tils design is similar to ours in many

4.2 Electronic Mail ways. The major difference, however, is that Swal-
-• low was designed explicitly to support sequences of

In a history-based mail system design, associated versions of objects, whereas our system is intended to
.-.." with each mailbox is a log file corresponding to mail support sequences of arbitrarily-specified client data.

messages that have been delivered to this mailbox. Specifically, this distinction has the following conse-
The local mail agent maintains pointers into this quences:
"mail history". In addition, it caches copies of mail Swallow, each object version (which is anal-
messages from the history, for efficiency. In this way, o t allog enrh o urstem) is n-
a user's mail messages are permanently accessible, ogous to a log entry in our system) is linked to
and the storage of the mail messages themselves is the previously written version of the same ob-
decoupled from the mail system's directory manage- ject. This link is the only 'location' information

ment and query facilities, which can evolve over time that is written to permanent storage. The design

withc t rendering old mail inaccessible. The Walnut of Swallow was based on the assumption that al-

mail system [7] was structured similarly, although it most all accesses are to the most recently written
version of an object. It is impossible to scan for-.:vused rewriteable storage for logging, and allowed mail wrstruha bethsoy ihu edn

:" -"wards through an object history, without reading
* .'. messages to be (permanently) deleted. every subsequent block on the storage device. On

R ltd W rthe other hand, a general-purpose logging ser-
5 Related Work vice, such as ours, needs to efficiently support a

* wide variety of access patterns.

Below we discuss the following classes of related work:i-'"9 Swallow does not ensure that versions of different

1. other general-purpose logging services that were objects are written to the repository in the order
designed to make use of write-once storage, and of arrival; such an ordering is guaranteed only
-'.. for different versions of the same object.

2. other (actual or proposed) uses of write-once

* storage. e The Swallow design did not attempt to limit
space overhead on permanent storage, perhaps

Other Logging Services because it was felt that large numbers of very
5.1 small object versions would not be written to

Daniels et al. [6] describe a distributed logging fa- such a system.
cility that was designed for use in transaction pro- 1 Note that our design does not preclude the possibility of

cessing. In their design, a log, or intervals of con- replication occurring at the log deice level (that is, with mir-

i. serutive entries within a log, may be replicated on rored disks).

Page 11
- 3 -*,',. . 'Jh

,,9 \

e As a reliable storage system for data objects, it is our belief that frequent, fii e-grain updating of
Swallow was designed with a built-in atomic write-once storage media to support dynamic data
transaction mechanism, in which 'tentative' ver- structures is a poor use of such media. It is more
sions of a set of objects are converted atomically efficient for such data structures to be cached and
into committed versions. An explicit atomic updated in RAM, with the slower, write-once storage
transaction mechanism of this sort would not be being updated less frequently, for checkpointing and
suitabie for a general logging service, archiving. In this way, we exploit the write-once na-

ture of the storage medium, preserving the temporal
. O e s o r O e r ordering of updates, rather than attempting to hide,'. .5.2 Other Uses of Write-Once Stor-
e.'...it.

age In [5], Copeland presents a number of arguments in

The CDFS file server [9] was designed especially for favor of the "no deletion" (and "append-only") model
write-once optical disk. This design, like ours, as- of storage, and suggests that storage media such as
sumes an append-only model of storage. However, optical disk make such a model feasible.
CDFS was designed to support 'files' (and, in partic- Spurred in part by the prospect of very high den-
ular, versions of files) in the traditional sense, rather sity permanent data storage, there has recently been

" than supporting logs. In this system, a file is usually increased interest in temporal databases, that could
rewritten entirely whenever it is modified. The au- support historical or time-dependent relations, and
thors do, however, describe an extension of CDFS to queries about past states of the database. Snodgrass
support "fragmented files", so that only the modified and Ahn [13], for example, discuss the possibilities
portion of a file need be rewritten each time. Even in of databases of this type. In addition, a few authors
this case, a 'map' that describes the entire file con- (e.g. Ariav [1]) have proposed temporal data models
tents must also be written along with the modified (in most cases based upon the familiar relational data

* portion of the file. Thus, even with this extension, a model) that attempt to provide a semantic frame-
large, constantly growing file could not be maintained work for such databases. Our work, however, is not
without incurring excessive space overhead. Also, aimed at attempting to provide the same facilities as
CDFS does not allow files to extend over more than a general-purpose database. Instead, we provide a
one volume. Note that a general file system, such simple data type-the "log file"-that is a natural
as CDFS, that has been designed to use append-only extension of the familiar operating systems concepts
storage, could be implemented on top of our logging of files and directories. Log files, although restrictive
service (although with some loss of efficiency), by us- when compared to the more general data models, are
ing a log file as its storage device. This would allow easily implemented, and are useful for the many ap-
the same (physical) device to be shared with other plications that require no more than simple logging.
applications. In addition, since log files provide an abstraction of

The Amoeba file server [10] was also designed to append-only storage media (hiding block and volume
make use of write-once storage, although some (non- boundaries), they can be used to support any data
volatile) rewriteable storage is also required. Newly type that could be implemented directly on top of
modified pages of file data can be stored on write-once such media.
media, but higher-level data structures that describe
file versions must be maintained in rewriteable stor-
age. 6 Conclusions

Several authors (e.g. Rathmann (12] and Vitter
[15]) have considered the problem of maintaining dy- We have described the Clio logging service-an ex-
namic data structures on write-once media. This tension of a conventional logging service that provides
work has concentrated on the issue of how to cre- access to log files: readable, append-only files that are
ate and update more complex data structures than accessed in the same way as conventional files. We
logs-in particular, B-trees. In some cases, this work have shown how the logging service is able to make
has assumed an append-only model of data storage, in effective ise of write-once storage. In addition, we

7 which case these data structures could be supported hav3 illust,ated how applications may make use of
on top of the log abstraction that we providing. Much such a service.
of this work, however, has been based upon the (ques- We draw the following conclusions from this work.
tionable) assumption that the write-once storage de- First, log files can be implemented on write-once stor-
vice allows arbitrary-sized, empty fields of a previ- age devices such as optical disk, allowing efficient re-

* ously written block to be overwritten. In any case, trieval, and low space overhead. We have provided

* Page 12

~9W br e

some insight into the time-space trade-off that arises [4] D. R. Cheriton. The V kernel: a software base
when trying to provide fast read access to log files, for distributed systems. IEEE Software, 1(2),

In addition, we observe that log files fit naturally April 1984.
into the abstraction provided by conventional file sys-
tems, since such files can be accessed in the same way [5] G. Copeland. What if mass storage were free?
as regular append-only files. A uniform I/0 interface, Computer, 27-35, July 1982.
such as the interface [3] used in the V-System, sup- [6] D. S. Daniels, A. Z. Spector, and D. S.
ports access to this type of file. Our experience in Thompson. Distributed Logging for Transac-
incorporating the log file implementation as part of tion Processing. Technical Report CMU-CS-86-
an existing file server has been favorable. The com- 106, Carnegie-Mellon University, Department ofbined implementation allows for the sharing not only Computer Science, June 1986.
of hardware resources, but also of code. It also pro-
vides the file server with particularly efficient access [7] J. Donahue and W-S. Orr Walnut: Storing
to log files. (This is important, since we plan to im- Electronic Mail in a Databaqe. Technical Re-
plement atomic update of (regular) files, using log port CSL-85-9, Xerox Palo Alto Research Cen-
files for recovery.) ter, November 1985.

Finally, we observe that the append-only storage
model is appropriate even if the backing storage [8] L. Fujitani. Laser optical disk: the coming revo-
medium happens to be rewriteable. An append-only lution in on-line storage. Communications of the
storage policy helps guard agains data corruption, as ACM, 27(6):546-554, June 1984.
well as providing accountability and built-in archiv- [9] S. L. Garfinkel. A file system for write-once me-
ing. dia. October 1986. MIT Media Lab.Our work to date--designing and implementing a
general-purpose logging service-represents the first [10] S. Mullender and A. Tanenbaum. A distributed
step in exploring history-based storage management. file service based on optimistic concurrency con-
We plan to explore this approach further by devel- trol. Proceedings of the ACM Symposium on
oping applications that follow the "history-based" Operating System Principles, 51-62, December
paradigm, as well as extending our file service in this 1985.
manner. We are working to gain greater experience
with such applications, and with Clio itself. [1 ,K utrote] rc-rvnaayi

of the Unix 4.2 BSD file system. Proceedings of
the A CM Symposium on Operating System Prin-

7 Acknowledgements ciples, 15-24, December 1985.

Peter Brundrett implemented and maintained signif- [12] P. Rathmann. Dynamic data structures on op-
icant portions of the V-System file server, on which tical disks. Proceedings of the IEEE Data Engi-
Clio has been built. Our interest in the history-based neering Conference, 175-180, April 1984.
structuring model was inspired by discussions with [13] R. Snodgrass and I. Ahn. Temporal databases.
Jim Donahue. Bruce Hitson provided helpful com- Computer, 19(9):35--42, September 1986.
ments that improved the presentation of the paper.

[14] L. Svobodova. A reliable object-oriented data
* References repository for a distributed computer system.

Proceedings of the ACM Symposium on Operat-
[1] G. Ariav. A temporally oriented data ing System Principles, 47-58, December 1981.

% model. A CM Transactions on Database Systems, [15] J. F. Vitter. An efficient I/O interface for optical
11(4):499-527, December 1986. disks. ACM Transactions on Database Systems,

* [2] A. E. Bell. Optical data storage-a status re- 10(2):129-162, June 1985.

port. Proceedings of the 6th IEEE Symposium
on Mass Storage Systems, 93-98, 1984.

0.1?[3] D. R. Cheriton. UIO: a uniform I/O system
S.ri interface for distributed systems. ACM Trans-

actions on Computer Systems, 5(1), February

0

1987.

REFERENCES Page 13

