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1.0 Introduction

VLSI (Very Large Scale Integration) technology has been developed to the
point where high speed floating point processors may be concatenated to form
compact supercomputers with far greater throughput than uniprocessor machines.
Thus, there currently is considerable interest within the signal processing
community in the development of parallel versions of many conventional
algorithms such as convolution, matrix multiplication and factorization. MTI
has collaborated with Dr. G.J. Biermon to develop a parallel form of the
Kalman filter that has several very unique and important features. We believe
that utilization of these features will result in the design of an integrated
test range tracking system that exhibits much improved performance over the
existing "independent" approach to tracking at the White Sands Missile Range
(WSMR) .

Specifically, our Decentralized Square Root Information Filter (DSRIF)
[1] allows each group of measurement variables, the process noise statistics
and the prior information about the initial state to be processed in separate
but locally optimal filters. Globally optimal state estimates and estimate
error covariances may then be computed by combining local filter outputs on
demand. This will allow the analyst to identify the contribution of each
measurement group, the process noise and the prior information about the
initial state to the global state estimate and estimate error covariance
without additional computation.

Furthermore, the process noise and prior information may be distributed
amongst the data processing filters in order to improve upon the fault
tolerant characteristics of the nominal algorithm when real-time signal
processing is an issue. In this case, the estimates and covariances should
gracefully degrade from global optimality as local processors fail. Thirdly,
the algorithm is based upon numerically reliable matrix factorization methods
which, unlike the Conventional Kalman Filter (CKF), will never fail.

The objective of Phase I research was to validate the DSRIF equations by
testing its ability to track a predetermined ballistic trajectory when
perturbed by white Gaussian noise. The state estimates and error covariances
obtained were found to be identical (when printed to 10 significont digits)
with those of a SRIF implemented in centralized form with all calculations
performed in double precision arithmetic. Furthermore, an extended version of
the DSRIF (E-DSRIF) was derived and successfully used to track real Multiple
Rocket Launch System data obtained from the WSMR.

The remaining parts of this Phase I report are organized as follows. 1In
the next section we formulate the decentralized estimation problem and define
a necessary and sufficient condition for recovering globally optimal state
estimates from locally optimal ones. Then, in section 2.1 we derive the DSRIF
and show how the effects of prior and process noise may be distributed. In
section 2.2, the ability of the DSRIF to accurately track the position and
velocity of a ballistic object is tested via a computer simulation. Finally,
in section 2.3, the E-DSRIF is used to track a maneuvering vehicle but using a
polynomial process model for the target dynamics.
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2.0 Results of the Phase I Work

The trajectory estimation problem is a problem of nonlinear estimation.
Assume that the state of a target evolves in time according to the equation

x(t) = F(x(t),u(t)) + w(t) (1)

where u(t) is the target's nominal control vector and w(t) is a zero mean
white noise process with spectral density Q(t). Values for the latter are
selected in order to compensate for errors in the model which may originate
from unknown perturbations to the nominal control (such as shear winds, wind
gusting etc.) as well as from uncertainties in the aerodynamics of the target
vehicle. The corresponding discrete measurement vector for the ith sensor is
given by

vi = hi(x) + vi (2)

where v& is a zero mean white noise sequence with covariance Rﬁ. The problem
is to estimate the target states xy based upon all of the past measurements yi
where {1<i<M and 1<1<k}. The state vector Xk contains the target position and
velocity, biases which account for the displacement and orientation of the
sensor or "local" coordinate systems (LCSs) w.r.t. the global coordinate
system (GCS), and acceleration when the target vehicle is maneuvering.

Unfortunately, the optimal nonlinear estimator (conditional mean) cannot
be realized with a finite-dimensional implementation and consequently, all
practical nonlinear filters must be suboptimal. The usual suboptimal solution
is the CKF when the nominal trajectory is known o priori, the Extended Kalman
Filter when the nominal trajectory is unavailable, and Higher Order Filters
(such as the second order filter [4], the single-stage iterative filter [5],
and the Gaussian sum filter [6], among others [7]) when even greater accuracy
is desired. The tradeoff here is performance versus real-time computational
requirement.

Thus, we see that the ability of a sensor group to accurately record the
motion of one or more airborne targets is a function of the individual target
and sensor dynamical models as well as the particular algorithm used to
combine raw data and produce track estimates. Another issue is intersensor
communication. Sensors which operate independently from one another will
exhibit larger estimate errors than ones which communicate with other members
of the network.

Let the global discrete time linear system

Xk = Bk Xoq * Wk-1 (3)

where
w, = N(0,Q,) (4)
xg = N(0,Pg(-)) (5)

be the model for the target, and the global measurement model
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where vﬂ through vm are uncorrelated random vectors and

\ o .

~ vi = N(0,RY) (7)
be the model for the sensors.” The problem is to calculate the globally
optimal (minimum mean square error) estimate of X ond its associoted estimote
- error covariance matrix P, when y& through yw are processed separately by

locally optimal estimators 1 through M correspondingly. The local dynamical
N models are

J . . . .
e Xk = Fo1 XK1 * Wi (8)
where
wik = N(0,Q%) (9)
x§ = N(0,P§(-)) (10)
and the local measurement models are
yi = HE xt o+ vi (11)
where v& satisfies (7). Notice that the local states may be physically
different from the global states. Wilsky et.al. [3] have recently shown that
e o necessory ond sufficient condition for our being able to recover globally
~j optimal state estimates from locally optimal ones is that
\S
4]
o i i i ;

and for the tracking application, we expect that

AN i i

_.:. Xk = Mk xk (13)
A .

= where Mﬁ is ¢ matrix which results in the correct partitioning of global

NG

states to the subsystem filters. Alternatively, equation (12) allows us to
define the local state vector as d' plus the local state vector defined in
section 2.2 (both in local coordinates) provided that Mﬁ = (Tl)tr.

Vi

A
S

"Lower case variables are vector quantities while upper case generall
corresponds to matrices of appropriate dimension. Also w, Xg, and v, through
v are uncorrelated with each other for all k and N(a,B) signifies an a mean
white Gaussian process with covariance macrix B.
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2.1 Derivation of the DSRIF

The derivation of this algorithm may be found in our recent publication
[1] with the exception of some new ideas on the distribution of prior
information cbout the process (plant) noise and initial stote amongst the
local processors.

Let M& = I. The goal is to find the sequence xg,...,xy that minimizes
the least squares likelihood performance functional [2, pg.42]

MmN
I(xgr - oxy) = || Ro(=) xg = zg(=) 12+ £ ¢ [[(RDT*HE x - (RE)YT#yE[|2
i=1 k=0
N-1
; 2
+ L] oz (k) - R(k) w |] (14)
k=0

-1
where the a priori estimate Ry (-) zg(-) has covariance

-1 -T
Po(-) = Ry (=) Rg (-) , (15)

-1 -T
Q = Ry (k) R, (K), (16)

z,(k) = R,(k) times the a priori expectation of w,, and the pair zj, H}
correspond to normalized measurement equations i.e., Rk = I. Decentralized
processing is achieved by distributing the minimization of the performance
criterion amongst the local filters and global merging equations that follow.
The best d1str1but10n for target tracking is probably to minimize

[| HE xk - z£ ||2 in each of the M local filters and minimize the remaining
two terms in (14) within the central (merge) processor. However, this point
should be explored in detail in Phase II research. Thus, both data types may
be processed using the standard SRIF mechanization:

Measurement Update

RE(-) zi(-) RE(+)  zi(+)
i -

| R e ROk || o ok

_1 (17)
]

Time Update

1

24 Ry(k) 0 z,,(k)

Ri(+) 87" Ri(+) g i)

_]_L‘_

A 0 N;“) "
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(. (1) () S
R, (k) Ryx(k) z, (k) |
= | (18)
| (i) (1)
L_° Ri1(-) Zy49(-)
where
[R§C-) z(-)1 =0 o] (19)
[ Ry(k) z, (k) 1=[0 0] (20)

and 1T§. 2T§ are orthogonal transformations which put the matrices on the left
hand sides of (17) and (18) into upper triangular form. They may be

implicitly computed using Householder transformations [2, p.60-64].

In terms of the local filter results (17) and (18), the performance can

be rewritten as

N-1
JN(XO,....XN) = || Ro(-) g ~ Zo(‘) ||2 + > || zw(k) - Rw(k) Wk l|2
k=0
— - _ - — —
. . (1) ..
Ru(k) Ryx(K) z,(k)
+ | wy + Xk+1 ~ 12
R L o
Ry (k) Rox (k) z, (k)
— —_ — —
(1) (1)
Ry(+) zp(+)
m oM ) . .
s o |left) 12+ ] xN - 2 (a1
i=1 k=0 . .
(M) (™M)
Ry(+) zn(+)

Applying an orthogonal transformation to the first three terms in (21),
results in the following recursive equation for combining local smoothing

coefficients with process noise and prior on

D

Xo:




3

i - -
R (1) SR RS
' Ro(k) Rer (k) zo(k)

B Cm o o
'§ 3T | Ra(k) Ry (k) zo,(k)

Wil R (k) 0 z,,(k)

2 -1 -1
:.:' ~H*(k-1) &, H¥(k-1) &, z"(k-1)
::

r * * *
R, (k) Ruwx(K) z (k)
o - |o H™ (k) 2"(k) (22) J

X 0 0 # B
L
®

o [H'-1) 2%(-1) 1 = [ Ro(-) 2zp(-) 1] (23)
oy and H'(k) is upper triangular. To obtain the globally optimal information

vector zk(+) and square root information matrix Rk(+), we solve the following
; equations using H*(k) and z"(k) from (22):

p

P

MM

—_
(1) (1)
Ry (+) zy (+)

¥

o
s

S )&

Rk (+) 2, (+)

(m) (m)
- R (+) 2, (+) 0 #

¢

a8 H*(k-1) z"(k-1)
e B

,ﬁ§ where “Tk is an orthogonal transformation which puts the left hand side of
"# (24) in upper triangular form. Globally optimal filter estimates and
covariances are then given by

P\ -1

o x(+) = Ry (+) 2z (+) (25)

0 -1 -tr
Al Pe(+) = R (+) Ry (+) (28)

when the a priori information about the initial condition and process noise

Y models are adjusted, it is only necessary to rerun (22) and (24) without
aﬂi reprocessing any measurements.
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To summarize, each data-type is processed by o local SRIF

A
o Local
Ay meas. group #1 SRIF |
Wy
) #1
i . Central Central Central
A%y
Dty M
») . Merge Merge Merge % (+)
T4 K
a"::’?" Local — > L 5
! g meas. group #M SRIF | Processor Processor Processor Pr(+)
J.‘.‘ #M
! Stage #1 Stage #2 Stage #3
!
[l Local
% xo(=),Pg(-). 0y SRIF |
'\ M1
I W
Ey
N
o : (1)
A (17)-(20) which generates a set of smoothing coefficients R, .
s . B ) (i)
X N~ wa(+) . z(+) as well as a square root information matrix R(+) and
R (i)
: ': information vector z(+) . The central or merge processor consists of three
4 separate processors which operote in porollel. The first mechanizes (22),(23)
e which combines the local smoothing coefficients with the effects of process

noise and prior information about the initial state. The second mechanizes
(24) which merges the local square root information matrices and vectors with
output from the first, but only upon demand by the third. The third produces
estimates and covariances whenever desired by back-solving (25) and (26)
respectively, noting that (25),(26) require output from the second processor.
An_important observation is that there is no feedback of information from the
merge processor to the local filters.

Actually, a faomily of DSRIFs exist. Each member corresponds to a
different distribution of process noise and prior information about the
initial state amongst the local processors and the first merge processor
(22),(23). To see this, realize that the prior and process noise terms in

2 3@ |

L (14) may be written as
535 . (1) (1)

. [ zu(k) = R(k) w [[2 = T[] z,(k) - Ry(k)  wy |[2 (27)
3;: i=1
® M (i) (i)

: [] Ro(-) xg = zo(=) |12 = & || Ro(=)  xq - zo(-) |2 (28)
S i=1

S
W
Yy (i) (i)
:! where the dimension of w and x are both n. The vectors zw(k) .zo(-) and
.%
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(1) (i)
matrices Rw(k) \Ro(-) are chosen so that the local norms on the right
hand side of (27),(28) remain invariant with respect to orthogonal
transformations. Each norm may be incorporated into a local SRIF or the first
merge processor and minimized there.

2.2 Validation of the DSRIF for a Simulated Ballistic
Trajectory Over the White Sands Missile Range

In order to validate our decentralized approach to solving the linear
least squares estimation problem, a high fidelity simulation of a multisensor
network, tracking a ballistic trajectory over the WSMR, was encoded in Fortran

h ‘ '77 and executed on an IBM (clone) Model AT desktop computer (640K ram, 20
1Y Mbyte hard disk, Intel 80287 math coprocessor). Initial conditions for the
nominal trajectory were calculated using a "flat earth" or constant
R gravitational acceleration model which neglects the earth’s rotation and
"gj- assumes that the target vehicle is a point mass.
N s
¥
) ; The initial position is launch complex #32 (E4,N2) and the desired
h&': terminal position is the GAM 83 target (E13,N85). This corresponds to a
® flight path of
N ((13-4)2 + (85-2)2)% = 83.49 miles (29)
o
Ak
.:f: when projected onto the "Range Area - General Road Map (RAGRM)" which we use
\fg to define the GCS. That is x1,x2,x3 is a right handed coordinate system where
; ) the vector cross product of x! with x2 = x> and the vectors (x!' o 0] ana [0 x2
» 5, 0] point east along latitude 32.380 degrees and north along longitude 106.481
:I?C degrees respectively. Then [0 0 x°] is collinear with the radial vector which
,nﬁ* points outward from the earth's center and passes through the origin of the
b 6CS. A lounch elevotion angle, w.r.t. the x1,x2 tangent plane, of 45 degrees
‘ #? was chosen in order to maximize the projected flight path for @ given amount
:)i' of energy. The corresponding initial positions and velocities are then
N
o x) = 21,120. feet
1, ‘.N,
1 Sl
x3 = 10,560. feet
&*‘n:)
L 3
'.“5' Xo = 0., feet
o0 xg = ((32. feet/secz)(as.ug miles/2.)(5280 feet/mile))x (30)
M = 2655.8 feet/sec
ﬁﬁ
A
e x§ = (x§)(9./83.49) = 286.29 feet/sec
N
o x3 = (x§)(83./83.49) = 2640.21 feet/sec
307 0 0
37
. 2 with a maximum ensuing altitude of
= 3 642
5:, x?(tef2.) = (xg)e/(2.(32. feet/secz)) = 110,207. feet (20.9 miles)
e~ (31)
@
A where
s
o
’.. -18-
®
)
..::

-

y - . W s w . o . . '
n u W/ N LW, VA \)
PO I A Rt s K RS R T M R KN LK

(SRR AN RO,



-

-
12

""‘f

‘N
o8 QRONG QOS] v s pab A0
R R R GO R RN A TR MR X IR N

TN TR T DT TWTWYWY - W W ETTW

te = (83.49 miles)(5280 feet/mile)/xs(o) = 165,99 seconds, (32)

the flight impact time.

Five sensor locations which cover both sides of the projected flight path
were selected. They are Zebra (E3,N14), Rhodes Canyon Range Center (EO,N53),
ABRES Radar (W10,N99), Oscura Range Center (E18,N77) and King I (E21,N34), '
Each sensor records measurements with respect to its own LCS so that
coordinate transformations to the GCS were derived and included in the
observational equations. The transformation is

[ - . .71
X1
x2 - (t1)

x3 L_x

xis1
x?-i + dt (33)
1

where
Ti o (81l ) (7vi ) ( Byl (51 (34)
and
_ 1 o o
5ti .o cos(L+al)  sin(L+al) (35)
0 -sin{L+a?) cos(L+a1)_J
. cos gl 0 -sin pl
6ri . o 1 o (36)
sin gl 0 cos pl
, 1 0 0
T .o cos L -sin L (37)
0 sin L cos L
. cos T% sin T% 0
8ri . | -sin +i cos ri 0 (38)
0 0 1

noting that (Ti)tr = (Tj')'1 since Ti is an orthogonal transformation. A
computational savings results when (3T1)(6ti)(71l) gre combined using
trigonometric identities for the cosine and sine of the sum of two angles

along with the smoll angle approximation since ol is bounded by + 1 degrees
over the length of the WSMR.

dl Is the vector from the GCS to the ith LCS and ol,gl,ri gre the three
Euler angles describing the orientation of the ith LCS w.r.t. the GCS.
Specifically, if we first rctate about x! counterclockwise by an (L+al) degree
change in latitude (aligning y2 with the polar axis), and then rotate
counterclockwise about y* by a gl degree change in longitude, (gl is bounded

_19-
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by + 1/2 degree over the width of the WSMR) then rotate clockwise about x3 by
. an L degree change in latitude, and finally rotate about Pl by vl degrees to
account for "tangent plane misalignment", the LCS will coincide with the GCS

\ A
;qar when d! = 0. al Is equal to the LCS latitude - GCS latitude. gl Is equal to
* the LCS longitude - GCS longitude.

To determine ai, gi given L, § and dl (in global coordinates), solve the
following two equations:

o i1 1] i1
i'.‘ { Ox . Ox d
M 2 2 + 719

i i,2
X = X di,
°.i.3 03

0 I o o | L]
DUTh — ~JECEF ECEF GCS

fM here
A whe
o

(39)

’¢@‘ oX) re cos L cos §
Soy) oX = -rg cos L sin § (40)
® ox3 re sin L

)

a4

A\

?ék and

Oy

kﬁh sin § -cos § 0 1 0 0

79 = cos § sins O 0 sin L -cos L (1)

N 0 0 1 0 cos L sin L
L

;) ox?'; or% cos (L+q%) cos (s+a?)
- oft cos (L+a?) sin (s+8t) (42)
5 oft sin (L+a?)
o ECEF

° The solution is

s'.. . (oxi.3)2 .
o L+al = tan™? (L+at) =
e

- = 32 degrees (43)
(°x1.1)2 + (oxi,Z)Z

'Y i

s+l = cos™!? - - (8+ai) = 106 degrees (a4)
ot cos (L+a)

ﬁ' where .

TN °x1'3
. or‘i -
L H .
Q e sin (L+al)

(45)

L) ‘ -20-

Tyt vgh ot agh a8 48 g 87 (MR (g $ ) OGS ONOSNOADBON DROADSOGOANSORORIGOGOSOBO0OOERT
!,.‘H.ti‘!‘"\':"o?ﬂrtﬂasﬁ :”v:ﬁia?di_\’;“’A!?‘.a’ﬁ?..“.gl,i.«vl‘ﬂ.l‘._l?h'“.' "l,"q.",t.“v«‘!RJ*L‘?- ".h”?'ﬁ‘,".‘*i-a‘,.in“.‘\'\'i’»“.l‘p‘f m.‘a'u"ﬁ-‘i‘.‘,’w‘-h"‘i' QUSRI

vy
e
LR A

i
(A

B GOABOODOAGOUS
BONCRIAGHGICHONCN




» The results are given in Table 1 below.
[\
rl a
L X)
ity
s Sensor | | | .
?‘*R i Type gl 1 ai.2 ai.3 L+a?t s+pl vl
b,
e 1 ot 3. 14, 0 32.5824  106.4295 0.
‘:) 2 ot 0. 53. 0. 33.1462 106.4810 0.
o 3 re -10. 99. 0. 33.8109 106.6550 0.
h ) 4 ot 18. 77. v} 33.4927 106.1690 0.
g. 5 rr 21. 34, 0 32.8710 106.1195 0.
,
[y
ﬂ ) Table 1: Optical Tracker (ot) and Range Radar (rr) Locations a~d
A Orientations in GCS for the Ballistic Target
e
) .
DO
'Mb Detailed equations that describe the translational motion of the target
?&; were developed. The equations include a radiacl gravitational force as well as
;ﬁ.* centrifugal and Coriolis forces which come about by rotation of the GCS about
® the polar axis. The equations are
¥ .
S .(\‘\ 1
,}\ . —HX
f: x4 - + 22(x8sin L - xBcos L) + 922x! (46)
2-,., ((x1)2 + (x2)2 + (x5+re)2)3/2
Rand
. 2
‘.' R X
:’ui: x° = - 29x"sin L
-, ((x1)2 + (x2)2 + (xP+rg)2)3/2
Yy
hﬁ; + Qz(xzsin2 L - (x3+re)cos L sin L) (47)
v
\ . -p(x3+re)
t::' x5 - + 29x%cos L
\ ((x1)2 + (x2)2 + (xP+rg)2)3/2
D
Cn 2
“ - + Qz((x3+re)cos2 L - x2cos L sin L) (48)
e
R where
0
e
‘::.'.: =G mg (49)
0
el
ond all other variables are defined in the List of Symbols. A spherical
. harmonic expansion of the earth's gravitational field is probably not
45 necessary since most shots over the range are low altitude however, a major
:?ﬂ effect will be atmospheric drag and more precise modeling may be necessary.
M)
i
?:' Any one of three sensor types may reside at each sensor location. The
‘il three types are
@
??’ * range radar wherein range (ri), azimuth (Fi) ond elevation (Gi) data
45‘ are available,
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* optical tracker wherein ozimuth and elevation data are available, and

doppler radar wherein range, range rate (ri), azimuth and elevation
dato are available.

The observational equations in terms of the global state are

rl . ((x1—di'1)2 . (XZ_di,Z)Z . (x3_di.3)2)1/2 (50)
— .
o [aea
[o 0 1] (Tl)tf' x2_dl'..2
x3_d1,3
— —
ol - sin”? (51)

rt = (53)

The various measurement variables are defined by Figure 1 that follows.

The Local Coordinate System and Measurement Variables

l‘l ] (7
AICLLINSL ) s {0 XN NEN 5 0%,
'l'i‘\"'«‘!':'f ‘ ~‘;"!t"|.‘.n.'.0.3‘a,“*."!““Q.“l

((xT-ai+1)2 & (x2_gi.2)2 4 (x3_gi.3)2)1/2

r‘ . -
x1_d1,1
[0 1 0] (Th)tr | x2_4i.2
x3_d1.3
— —
ri . tan™? (52)

[ 1_giil |
[100] (TE)tr | x2.¢i.2
«3_gi.3

e ]

o4 ]
x1-gl.1
[ x‘& x5 XS ] x2_d:!..2
x3_d1,3

((x1-di'1)2 + (x2_di.2)2 + (x3_di,3)2)1/2
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The nonlinear equations of motion (46)-(48) were integrated forwards in
time starting from (30) and using the Fourth Order Runge Kutta method with a
1 second interval. Figures 2 and 3 show the resultant trajectory of the
target vehicle. Comparison with the flat earth model predictions show close
agreement in peak altitude (110,305. feet), terminal time (166+ seconds), and
the projected path length (82.7 miles).

x& xE xa

44,403, 226,391. 110,285,
44,688. 229,010. 110, 305.
44,975. 231,629. 110,296.

el M*' s

69,187. 444 ,565. 1176. 308. 2570.3 -2640.9
69,496. 447,135. -1481, 309. 2569.6 -2673.0

Table 2: Nominal Positions and Velocities for Key Time Points of the
Ballistic Trajectory

o -

As a further check on the Fortran code for this part of the simulation, the
total translational energy (kinetic plus potential) of the target vehicle was
computed for each point aleong the computed trojectory. The total energy
remained constant to within /% as it should since there are no external forces
(u(t) = 0) and the system is conservative. Figures & through 8 show some of

the corresponding measurements for the various data-types with vl = 0 for
{1<i<m}.

Each row of A(t) is computed by partial differentiating the scme row of
f(x(t)) w.r.t. the nominal state. Thus, A{(t) has the following structure

—
0

2
}
)
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Nominol Velocities Versus Time for the Ballistic Target.
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Figure 4: Sensor #1 Azimuth and Elevation Measurements Corresponding to the
Nominal Ballistic Trajectory.
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2 Figure 5: Sensor #2 Azimuth and Elevation Measurements Corresponding to the
5 Nominal Ballistic Trajectory.
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Figure 6: Sensor #3 Range, Azimuth and Elevation Measurements Corresponding
to the Nominal Ballistic Trajectory.
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Figure 7: Sensor #4 Azimuth and Elevation Measurements Corresponding to the
Nominal Ballistic Trajectory.
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Figure 8:

Sensor #5 Range, Azimuth and Elevation Measurements Corresponding

to the Nominal Ballistic Trajectory.
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A axt -u 3p(x1)2 )
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Each row of Ci(t) is computed by partial differentiating the same row of
hi(x(t) w.r.t. the nominal state. Thus, when the ith sensor is a doppler
radar, Cl(t) has the following structure
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{ where u is the argument of sin~! in equation (51).
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R + (91)
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» [1 0 0] (T} [ x2-ai.2 |
{ | x3_d1,3 |
! I _J
Ag"
. . : .
;§ ori yri ari
; 2 - = = = 0 (92)
A 3 x* D x° é x6
b
v The 6 biases ol,pl, r1,d1:7,d1:2 g1.3 per 10cal system could be included
:i. - as states in the filter and estimated in order to correct for any preflight
|:t: miscalibration. Then, o = 0, gl = 0 ... would be added to the equations of
ol motion and additional partial derivative expressions would be needed.
g However, only the 6 positions and velocities of the target vehicle were
;'.\ included.
NN
ﬁ" In order to create simulated data and test the state estimation part of
:n the code, a subroutine RANDOM for generating sequences of Gaussian random
ey vectors with prescribed covaricnce was written. Two algorithms were
! considered. The first proceeds by rotaoting coordinates to a system in which
;l‘ia the covariance motrix is diagonal. 1In this system the multivariate normal
W, density becomes equal to the product of its marginal densities, and each
_}4“' marginal density can be sampled independently of the other components. After
b‘ obtaining a somple vector in this rototed system, the coordinates are rotated
g{ back to the original system.
%i} The second algorithm proceeds by decomposing the multivariate normal
&9. density into the product of the marginal density of the first variate times
.:t: the joint density of the remaining variates, conditional upon the value
A;." sampled for the first. This joint density is determined once the first
;J& variate has been sampled from its marginal density. The procedure is then
applied to the second variate and iterated until values have been assigned to
0 all components of the sample vector. This "Conditional Decomposition
'&\: Algorithm" will execute more rapidly than the latter "Matrix Diagonalizaotion
Ny Algorithm" especially for time varying covariaonce matrices. Thus it was
:P chosen as the basis for subroutine RANDOM.
e
h Assuming a constant covariance matrix, RANDOM was tested by counting the
‘ number of random values within several bands for each component. Comparison
3 with theory has shown agreement to within a few percent. Much time was spent
k : in validating RANDOM since its occuracy is a prerequisite for meaningful
? o future comparisons of DSRIF estimates with decoupled Kalman filter estimates
.:‘u. in Phase II research.
L Figures 9 and 10 show the evolution of the perturbed state as governed by
q equation (3). The initial condition is
1‘.
»
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§xg = [ 0.ft 0.ft 0.ft 2.8629 ft/s 26.4021 ft/s 26.558 ft/s ] tr

which represents a scaling of the initial velocity vector for the nominal
trajectory. Thus, the combined nominal plus perturbed solution should reach
impact along the nominal line of sight (which is the vector difference between
the nominal impact point ond the nominal initial condition) but further from
Xg since a positive scaling factor was used. A diagonol Q, with small
variances was used to generate the process noise sequence. The position
variances were .1 ft2 and the velocity variances were .1 (ft/s)z.

Figures 11, 12 and 13 are the corresponding DSRIF results with all of the
prior and process noise information embedded in the merge processor. Each of
the 12 local filters processed 1 measurement variable. A diagonal Ry, with
variances of 1079 deg© and 102 ft2 for angular variables and range variables
respectively, was used to generate the measurement noise sequence. The
initial state estimate for all of the local filters was

sx§ = [20.ft 20.ft 20.ft 23.8629 ft/s 47.4021 ft/s 47.558 ft/s ] F

and a diagonal P°(+), with variances of 100 ft2 and 100 (f‘t/s)2 for position
variables and velocity variables respectively, was used to initialize the
merge processor. Figures 11 and 12 show that the rms position and velocity
estimate errors quickly decay to steady state mean values after less than 10
time samples. The corresponding estimate error covariances follow the same
course as expected.

In Figure 14 the process noise levels were multiplied by 10 and
comparison with Figure 13 shows that the corresponding estimate error
covariances increase as well. This is as expected since Q, is linearly
reloted to the time updated estimate error covariance i.e., the conventional
covariance time update equation is given by

Pk+1(—) = Qkpk(+)§ktr + Ok (93)
Furthermore, the same phenomenon results when R, is multiplied by a factor of

5 in Figure 15. The conventional covariance measurement update equation in
Josephson Stabilized form

Pr(+) = [I - KHT P(-) [T - KH I + KRK, ™ (94)
may be combined with the Kalman gain equation
K = P(=)H Y [H P (-)RE™ + R (95)

to show that the time updated estimate error covariance is linearly related to
R as well. The result is that

P (+) = P N-) o+ R R W (96)

2.3 Extended-Decentralized Square Root Information Filtering of MLRS Data

On November 11, 1987 six rockets were launched sequentially in time over
a period of 2 hours and 30 minutes ot WSMR. Only 1 rocket was airborne at any
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one time and thus dato association for multitarget tracking would not be
needed. MTI obtained a copy of the Multiple Launch Rocket System (M_RS) data
in order to gain experience at processing real test range single taorget dato
with the algorithm. The digitized measurements for all six shots were plotted
in order to select the best set as characterized by the least amount of data
drop outs and outlyers. Figures 16 through 26 comprise the data set chosen
and this was the second shot.

The MLRS data set contained azimuth and elevation angle measurements
(with respect to each local sensor) from 11 optical trackers located at the
range coordinates listed in Table 3 below. The origin of the WSCS is
[500,000. 500,000. 0.] in units of feet with its latitude and longitude
equal to 32.38 and 106.481 degrees respectively. Each optical tracker is also
characterized by a set of 3 Euler angles at, g and 7! which define its
orientation relative to the Global Coordinate System (GCS) as in section 2.2.
The first two angles are calculated using equations (39) through (45) and the
angular misalignment is assumed equal to 0.

Optical . . . . .
i Tracker gi.1 dl.2 gi.3 al gl vl
1 G110 7,308.2856 -237,899.4738 2,686.4839 32.4320 106.3096 O.
2 G152 3,440.0051 -225,071.0857 2,810.1186 32.4671 106.3221 O.
3 6 30 -32,914.1744 -203,310.5045 3,352.4878 32.5267 106.4402 O.
4 G 80 -25,713.6722 -221,819.8655 2,778.9435 32.4760 106.4167 O.
S 6102 -26,675.1965 -244.187.0879 2,523.8507 32.4148 106.4198 0.
6 G106 -19,918.2179 -252,889.6291 2,452.5578 32.3910 106.3979 O.
7 G150 - 6,758.5768 -201,753.4857 2,992.5174 32.5310 106.3552 O.
8 6220 -32,505.5910 -181,663.7427 3,539.5030 32.5859 106.4389 0.
9 G252 3,844.5713 -168,382.0272 3,299.8877 32.6223 106.3208 0.
10 G254 2,449.5559 -152,952.6079 3,436.9316 32.6646 106.3253 0.
11 G256 -38,799.7405 -157,557.3009 3,506.5874 32.6519 106.4595 O.

Table 3: Optical Tracker Locations and Orientations in GCS for the MLRS Test

The data set also contained range, azimuth and elevation angle
measurements from 3 radars but with respect to the local coordinate system
originating at the launcher. Their locations and orientations are given in
Table 4 below however, the launcher location al:1 = —14,074.34,
al'2 - _247,569.51, d1'3 = 2,505.08 was used instead.

i Radar ai.? ai.2 gl 3 ol gl ri
12 350 -13,971.87 -264,430.55 2,334.06  32.3534 106.3786 0.
13 393 -27,098.86 -222,179.08 2,787.84  32.4750 106.4212 0.
14 394 - 2,382.95 -260,481.11 2,403.07  32.3702 106.3410 O.

Table 4: Radar Locations and Orientations in GCS for the MLRS Test
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Figure 16: Radar #350 Range, Azimuth and Elevation

Measurements for MRLS.
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Figure 17: Radar #393 Range, Azimuth and Elevation Measurements for MRLS.
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Figure 18: Radar #394 Range, Azimuth and Elevation Measurements for MRLS.
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Figure 19: G30 Azimuth and Elevation Measurements for MRLS.
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Figure 20: G80 Azimuth and Elevation Measurements for MRLS.
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Figure 21: G106 Azimuth and Elevation Measurements for MRLS.
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Figure 24: G220 Azimuth and Elevation Measurements for MRLS.
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Figure 25: G254 Azimuth and Elevation Measurements for MRLS.
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G256 Azimuth and Elevation Measurements for MLRS.

e 128314

&
M

4

AT
AN

e T
ARLET

K

A

-

-5 X
S e
ULy WINPT S I S

/

o e

- ' = ‘ Slsec

® M!
o
'::K |
y I
Prd 1.
Q0
‘. ]
. .
M Figure 27:
@
5 oW,
t:’
5
48 , 3 -
OO ) .8 OO 15,05, 3% 0% Uy BSOSO
R AR R R RO URARANA)

Derived Position Measurements from Radar #350.
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wh An extended version of the DSRIF is needed since the nominol rocket
‘ trajectories were unavailable. The Extended DSRIF (E-DSRIF) may be derived by
)ﬁg, extending the observations equation, linearized about the current estimate, to

'..,.I y'l( = HE; Xk + Vi + Z& (97)

~) where . . .
. 4 zi = hi(x)| - HE x, (=) (98)
e | x=x) (-)

O] and

. |
HE = —— { (99)
|

and the dynamics equation, linearized about the current estimate, to

Xk+t = Fk XK + Bk Wi + gy (100)

i where

gk = f(x)l - Fk Xk(+) (101)
|X=Xk(+)

‘J and

" N F(x) |
e Fe = ——

|
XX d x i

(102)
x=xy (+)
) Substituting equations (97) ond (100) into the least squares performance
.54, functional of equation (14) gives the following set of equations for updating

ol the local filters in extended form:

P Measurement Update

0 _ REC-) zi(-) _)
5+1i
] Th . -
2 I
—

-
>,
1

RE(+)  zk(+)
0

(RL)* ui (RE)* (yi-2z) °

_1 (103)
J

Xh

1

[
X, Time Update
>

R, 0
! ors (k) 2,,(k)

—
|
:ﬁ‘ L_-R§(+) Fi” "By RE(+) A1 (2R(+) + RL(+) FY gy)

L _ 1

e 3 Q d "ah74Y f U DUOO R UL X (M) AR
IR :‘l‘:'n‘!!c‘:“‘.‘ “'.‘t’t*t‘n'ﬁ';9{’q‘t‘x‘f‘=!t‘f§f‘f"‘:\!§:"‘:'f"tf‘tlf':'tZt‘{ﬁti"‘%"faql!w'i?t'itﬁ' ‘%‘5’:‘¢§a*!!"ife’i‘»‘as\vr.q!i‘qufa*bf%:0!;'b?-'8‘;'5‘*‘3‘»'lfv‘isygkio*t§v‘l‘-‘ et 'if"b‘.”n'.’t‘t*n..‘w“
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(1) (1) . (D)
Ry(k) Ruxc(K) 24 (k)
(104)

-
|
|
|
(1) (i) |
0 R - z -
ke1(-) k+1(-) _Jf

1

Herein, sTa and GT& are orthogonal transformations which put the matrices
on the left hand sides of (103) and (104) into upper triangular form (they may
be implicitly computed using Householder transformations). All other
variables are defined in the List of Symbols.

Processing on the globol scole is the some as for the DSRIF i.e., the
merge steps are exactly as defined in section 2.1. Only processing on the
local scale is modified as such. A major difference between the E-DSRIF and
DSRIF is that the local E-DSRIFilters require knowledge of the globally
optimocl estimate xk(i) in order to compute their first order Taylor series
expansion terms Fk- gk Hﬁ and zﬁ whereas the DSRIF may compute Xk(i) at any
rate less than the highest datao rate. Future research should examine whether
an E-DSRIF algorithm, in which the Taylor series expansions are about the

locally optimal estimates, may be derived.

In order to derive a suitable dynamical model as well as initialize the
filter, the position, velocity, acceleration and jerk of the rocket were
precomputed using finite differencing with At = .1 seconds. Results are
plotted in Figures 27 through 30 using all of the data provided for radar #350
except for the first 21 samples (we estimated that all rt's had locked onto
the target by the 22nd sample). Figure 30 indicates that jerk is suitably
modeled as a white Gaussia noise process with constant mean. Thus, the E-
DSRIF was encoded in Fortran '77 using a second order polynomial dynamical
model wherein

— —
1 0 0 at 0 0 0 O O
01 0 0 at 0 0 O O
0 0 1 0 0 at 0 0 O
0O 0 01 0 0 at 0 O
Fx = 0 0 0 0 1 0 O at O
0 0 0 0 0 1 0 0 at
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 O 1
- I
and
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Figure 28: Derived Velocity Measurements from Radar #350.
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Figure 29: Derived Acceleration Measurements from Radar #350.
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Derived Jerk Measurements from Radar #350.
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Radar #350 Range, Azimuth and Elevation Estimates for MLRS.
Yo Ry (J,3)=10'0 for ot variables and 10.,1.,1.
and elevation variables resgectively.

diag [ 1.7 x 10!

for rt range, azimuth

9.3 x 1017 ] .
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The sample mean and covariace of w, was computed to be
[ -10. ft/sec3 -.055 ft/secd -.48 ft/sec’® ]
and
diag [ 23.851. ft2/sec® 1,458. ft2/sec® 23,199. ft?/sec® ]

respectively. however, a much larger covariance was used in order to compensate
for any errors in the model. Detailed testing of the olgorithm is deferred to
Phase II work wherein an adaptive method for adjusting Q) in real time will be
investigated.

Figures 31 through 35 show the rt and ot measurements as predicted by the
E-DSRIF. Comparison with the actual measurements in Figures 16, 18, 19, 20
and 22 shows an exact match to within a plotting line width. A bastter means
of comparison is thus provided below in Tables S and 6.
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Figure 32: Radar #394 Range, Azimuth and Elevation Estimates for MLRS.
R (J, J)-10 10 for ot variables and 10.,1.,1.
and elevation variables rosgect1vely
Q(j.j) = diag [ 1.7 x 1077 7.4 x 1077
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R (3, j)=10'9 for ot voriables and 10.
and elevation variables resgectively
Q(j.j) = diag [ 1.7 x 107 7.4 x 1077

y1.,1.
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G30 Azimuth and Elevation Estimates for MLRS.
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G80 Azimuth and Elevation Estimates for MLRS.
Rk(j,j)-101° for ot variables and 10.,1.,1. for rt range,
and elevation variables resgectively.

Q(j.j) = diag [ 1.7 x 107 7.4 x 107 9.3 x 1017 ]
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G110 Azimuth and Elevation Estimates for MLRS.

azimuth

Rk(j,j)-101° for ot variables and 10.,1.,1. for rt range, azimuth

and elevation variables resgectively.
Q(j.j) = diag [ 1.7 x 1077 7.4 x 107 9.3 x 1017 ]
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type )2 r12 612 14 F14 ot

23

24

229

230

459

4,355.61 359.18 18.07 4,305.91 357.65 18.04
e 4,355.61 359.19 18.74 4,355.61 359.19 18.74

3

m 4,683.17 358.91 18.07 4,665.94 358.30 18.09
e 4,658.07 358.16 18.07 4,658.07 358.16 18.07

m 52,171.33 358.96 11.88 52,163.32 358.95 11.89
e 52,167.32 358.96 11.89 52,167.32 358.96 11.89

m 52,332.09 358.96 11.84 52,324.25 358.95 11.86
e 52,328.15 358.96 11.85 52,328.15 358.96 11.85

m 80,328.90 359.22 .96 80,178.71 359.22 3.00
e 80,254.10 359.22 2.98 80,254.10 359.22 2.98

N

Table 5:

Raodaor #350 and #394 Meosurements and Estimated Measurements for
MLRS. Rk(j,j)=101° for ot variables and 10.,1.,1. for rt range,
azimuth and elevation variables respectively.

0 (j.j) = diag [ 1.7 x 1077 7.4 x 1077 9.3 x 1077 ]
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o 23 m  154.96 1.05 151.09 3.29 257.38 3.80
o e 154.97 .18 151.87 2.01 255.49 2.88 ,
a0
|.’\ 26 m 154 . 39 1.19 150.73 3.58 258.16 4.07
1y e 154.90 .25 151.71 2.14 256.30 3.00
\
?éh
N
o 229 m 68.57 28.54 22.78 21.75 wan "
( e 69.20 26.13 22.93 20.28 331.64 12.52
.-.
o 230 m nnn wnn 22.64 21.65 wun wnw
fn* e 68.74 26.07 22.80 20.18 331.73 12.48
L
.,;::,.
F
RO
s 459 m  26.07  5.58  waw e o L
.:f e 26.32 3.94 10.98 3.66 342.28 2.98
PP
vl
i :J
( Table 6: G30, G80, G110 Measurements and Estimated Measurements for MLRS.
. Rk(j,j)=1010 for ot variables and 10.,1.,1. for rt range, azimuth
:5{: and elevation variables resgectively.
s Q(j.j) = diag [ 1.7 x 1077 7.4 x 1077 9.3 x 1077 ]
:&:4 *** denotes data drop-out
\‘.v'
I .

The large values of Rk(j,j) for ot variables serves to weight the rt data much
more heavily in computing estimates. Decreasing the ot measurement errors to
'Eg more realistic values should give similar results since the predicted ot

! () measurements matches their actual values very closely.

o

(.
hg“ Figures 36 and 37 show the global position estimates and corresponding
P estimate error covariances respectively. Again, the rocket positions derived
._ from radar #350 as compared with the E-DSRIF estimotes based upon all of the &
'l selected sensors, show extremely close agreement. The slight difterence in
%I' the estimate of height is due to using T+9CM = I jnstead of its correct
qég value as defined by equation (34). In Table 7 below, the estimates are
;Jq compared using the correct cooordinate transformation.
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Global Position Estimates (w.r.t. launch) Versus Time for MLRS.
Re(j.j)= =1019 for ot variables and 10. ,1.,1. for rt range, azimuth
and elevation variables resgectzvaly

Q. (j.j) = diag [ 1.7 x 10! 7.6 x 1077 9.3 x 1017 ]
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Global Position Estimate Error Covariances Versus Time for MLRS.
Re(d,j)= =100 for ot variables and 10.,1.,1. for rt range, azimuth
and elevation variables resgect1vely.

Q. (j.j) = diag [ 1.7 x 10! 7.4 x 1077 9.3 x 1077 )
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k tp x) xﬁ xi x& xE xE x] XE xa |
22 e -14,104. -243,740. 3,754, -296. 3,110. 1,015. 430. -23. 73.
M e SAME . . . it e e
23 e -14,189. -243,437. 3,798. -280. 3,104, 995. 429, -23. 73.
m -14,076. -243,413. 3,806. -254. 3,120. 986. 436. -23. 80.
|
24 e -14,184. -243,110. 3,903. 106. 3,271. 1,062. 497. 11. 85.
m -14,160. -243,101. 3,905. -211. 3,118. 994. 421, -35. 49.
229 e -15,018. -196,406. 12,646, -19. 1,639. 1. -.4 -45. -15.
m -15,012. -196,397. 12,641, -17. 1,639. -3. 1.6 -46. -10.
230 e -15,020. -196,242. 12,646. -20. 1,635. ~-3. -5. -41. -28.
m -15,014. -196,233. 12,641. -18. 1,635. -4, 1.7 -49. 8.
459 e -15,197. -167,388. 5,729. 22. 758. -431. 21. -221. 184.
m -15,202. -167,307. 5,704, 8. 866. -439. .8 -25. ©59.
Table 7: Global Position Estimates and Derived Measurements for MLRS.

Rk(j,j)=101° for ot variables and 10.,1.,1. for rt range, azimuth
and elevation variables resgectively.
Qc(j.j) = diag [ 1.7 x 10! 7.6 x 107 9.3 x 107 ]

Finally, the monotonically increasing estimate error covariance ( actually,

Pg = diag [ 1012 £¢2 . 1072 f‘t2/sec2 ... 1013 ft2/sec4 ... ] was used to
initialize the covariance propagation so that the first step is a large, off
scale decrease to approximately 100 ftz) is due to our using values of Qy
approximately 12 orders of magnitude higher than its precomputed sample value.
A more realistic value should result in a P, with quite the opposite behavior.

3.0 Estimates of Technical Feasibility

The objective of Phase I research was to determine the feasibility of
constructing an integrated test range tracking network based upon the DSRIF.
A multitude of test range scenarios is envisioned so thot a robust system is
needed. At one extreme, test vehicles may include ballistic projectiles with
well defined nominal trajectories a priori while at the other, multiple smart
munitions with maneuvering capability is possible. The key to a successful
network design is to employ a more or less sophisticated version of the
algorithm depending upon the particular scenario. Thus the network must be
adaptable. For example, preflight simulations of the proposed shot using high
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fidelity cerodynomic models can yield good values for the process noise levels
and o basic DSRIF should result in good tracking performance. However, a
sudden departure from the nominal trajectory would require a detection
mechanism as part of the algorithm and adjustment of Q. in real time.

In order to determine the feasibility of our distributed approach to
multisensor tracking, several specific technical objectives must be met.
First and foremost, the basic DSRIF theory needs to be extended to enable the
tracking of maneuvering vehicles, high dynamic trajectories, and multiple
taorgets. The latter requires that a theory for associating data with targets,
based upon the DSRIF, be developed. Other theoretical questions such as the
development of a delayed-state DSRIF for processing range-rate measurements, a
method for isolating faulty sensors, and efficient implementations of the
DSRIF that facilitate high data raotes need to be addressed.

Secondly, the DSRIF is a new algorithm which has undergone only limited
testing in Phase I research. Extensive testing within a multisensor
multitarget tracking scenario is needed. Finally, consideration needs to be
given to the design of the tracking network both at the global and local
levels. The major question here is whether a sufficient data rate con be
achieved using current chip technology. Another question is whether the
architecture can be reconfigured (in software) to implement other members of
the family of DSRIFs. A DSRIF based multisensor laboratory tracking
experiment should be performed.

For multitarget tracking, correlation of measurements with targets can
best be done using a hypothesis testing approach. The idea is to select the
correlation of measurements with targets that has maximum probability given
the data. Calculation of all combinations to form the entire set of these
conditional probabilities can be prohibiting, especially in a dense target
environment. A major advantage in using the DSRIF is the tremendous reduction
in _computational cost associaoted with this calculation.
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