Analysis of Thermodynamic and Transport Properties of $\text{La}_{2-x}\text{M}_x\text{CuO}_4$ and $\text{YBa}_2\text{Cu}_3\text{O}_{7-\delta}$ Superconductors

by

A. Langner, D. Sahu and Thomas F. George*

Prepared for Publication

in

Physical Chemistry of High-Temperature Superconductors
Edited by D. L. Nelson and T. F. George
American Chemical Society Symposium Series

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

June 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Analysis of Thermodynamic and Transport Properties of La$_{2-x}$M$_x$CuO$_4$ and YBa$_2$Cu$_3$O$_{7-6}$ Superconductors

Anisotropic Ginzburg-Landau theory for coupled s-wave and d-wave order parameters is used to analyze the unique thermodynamic and transport properties of the new La$_{2-x}$(Ba,Sr)$_x$CuO$_4$ and YBa$_2$Cu$_3$O$_{7-6}$ superconductors. This simple phenomenological approach is used to explain the prevalence of the large Sommerfeld coefficients of the specific heat, the existence of multiple specific heat anomalies, the ultrasonic attenuation peak, and model the anisotropic critical field data as observed in oriented samples.
Anisotropic Ginzburg-Landau theory for coupled s-wave and d-wave order parameters is used to analyze the unique thermodynamic and transport properties of the new La$_{2-x}$M$_x$CuO$_4$ and YBa$_2$Cu$_3$O$_{7-\delta}$ superconductors. This simple phenomenological approach is used to explain the prevalence of the large Sommerfeld coefficients of the specific heat, the existence of multiple specific heat anomalies, the ultrasonic attenuation peak, and model the anisotropic critical field data as observed in oriented samples.

Following the discovery by Bednorz and Müller [1] of "high-temperature" superconductivity in the rare-earth copper oxides, there have been numerous investigations of the anisotropic electronic [2,3] and magnetic [3-7] properties of these materials. It is now well recognized that any successful theory of superconductivity for the high-T$_c$ oxides must include the quasi-two-dimensional nature of the Cu-O planes; the theory must provide, in addition, for a coupling between the planes [8,9]. One of the best known theories of the new superconductors is the resonating-valence-bond (RVB) model of Anderson [10] which describes the onset of superconductivity as a Bose condensation of quasi-particle pairs within a large-U Hubbard model. It has been shown by Kotliar [11] and Inui, et al [12] that the superconducting order parameter of this model possesses s-wave and d-wave components, the latter being favored at large U and near half-filling. At low temperatures the mixed (s+d)-state is favored, similar to that found in the heavy-fermion superconductor U$_{1-x}$Th$_x$Be$_{13}$ [13-15]. It is interesting to note that the low-temperature behavior of the penetration depth, $\lambda(T)$ [16], the large Sommerfeld coefficients of the specific heat, γ [17,18], the enhancement of the sound velocity and ultrasonic attenuation [19,20], and the thermopowers [17] of the La$_{2-x}$(Sr,Ba)$_x$CuO$_4$ (called 214) and YBa$_2$Cu$_3$O$_{7-\delta}$ (called 123)
materials are very similar to the heavy-fermion systems. This leads us to believe, as has been suggested on the basis of high-resolution X-ray scattering experiments, [21] that s- and d-wave coupling may exist in the high-T_c superconductors.

Model

In this work we apply anisotropic Ginzburg-Landau (GL) theory [22], previously extended by us to include coupled s-wave and d-wave superconducting order parameters [23], to qualitatively analyze the single-crystal and oriented-film data on the 214- and 123-materials. In particular we think that the large Sommerfeld coefficients $\gamma = 5 \text{ mJ/mol K}^2$ [4, 24, 25] and 9 mJ/mol K^2 [18, 20] for the 40 K and 90 K superconductors, respectively, the anomalous peak in the ultrasonic attenuation at $T \sim 0.9 T_c$ [19, 20], the upturn in the $H_{c2}(T)$ curve [6, 7], and the anisotropy in the magnetic properties of these materials can be explained in the context of coupled (s+d)-wave states. A brief investigation of the (s+d)-wave state on a square lattice has been reported previously [26] and will be compared with the full three-dimensional results. We are aware that the limitations on any mean-field-theory description of the high-T_c materials, namely the Brout condition, due to critical fluctuations is very restrictive [27]; however, the qualitative agreement of the GL theory with experiment deserves mention.

As is done in the GL-theory for a single even-parity order parameter, we write the free energy density difference between the superconducting state and the normal state as an expansion in even powers of the complex gap function $\Delta(k)$, which is related to the anomalous thermal average $<c^- c^+>$ of the microscopic theory [28], where c^- is the electron annihilation operator with wave vector k and spin \uparrow. However, for the multiple-order parameter case we must expand $\Delta(k)$ as a linear combination of the angular momentum basis functions (Y_{s}),(2,1,2)

$$\Delta(k) = \sum_{j=0}^{2} \eta_j(k) Y_j(k) \sum_{j=0}^{2} \Delta_j(k) \exp(i\theta_j) Y_j(k), \quad (1)$$

where Y_0, Y_1 and Y_2 are analogous to the s, d$_{x^2-y^2}$ and d$_{2z^2-r^2}$ atomic orbitals. Y_0 and Y_2 both belong to the irreducible representations of the D_{4h} (tetragonal) and the D_{2h} (orthorhombic) point groups, while Y_1 degenerates from a B_{2h} to an A_1 representation in going over from D_{4h} to D_{2h} symmetry. The consequence of this is to induce some low-angular-momentum s-d$_{x^2-y^2}$ coupling as described below. Generating the invariant terms of the free-energy density, as previously described [29], we can write the free-energy difference between the superconducting and normal state for a tetragonal lattice as

$$F_s - F_n = \int d^3r \left[\frac{s^2}{4} + T + G_S + G_T + b^2/(8\pi) \right], \quad (2a)$$

$$L \cdot s^2 \left[\sum_{j=0}^{2} \left(a_j \Delta_j + \beta_j \Delta_j^* \right) + \Delta_0^2 \Delta_1^2 (y_1 + \delta_1 \cos 2\theta_1) \right], \quad (2b)$$
\[\mathcal{F}_T = \alpha_2 \Delta_2^2 + \beta_4 \Delta_4^4 + \Delta_0 \Delta_2 \cos \theta_2 \]
\[+ \Delta_0 \Delta_2 \cos \theta_2 \left(\lambda_2 + \mu_0 \Delta_0^2 + \mu_2 \Delta_2^2 \right), \quad (2c) \]
\[\mathcal{F}_{GS} = - \sum_{j=0}^{1} |\alpha_j \xi_j^2| \left(|D_x \eta_j|^2 + |D_y \eta_j|^2 \right) \]
\[+ \frac{1}{2} \sum_{j=0}^{1} M_{0j} \left((D_x \eta_0)(D_x \eta_1)^* - (D_y \eta_0)(D_y \eta_1)^* + \text{cc} \right), \quad (2d) \]
\[\mathcal{F}_{GT} = \sum_{j=0}^{2} |\alpha_j \xi_j^2| |D_z \eta_j|^2 + |\alpha_2 \xi_2^2| \left(|D_x \eta_2|^2 + |D_y \eta_2|^2 \right) \]
\[+ \sum_{j=0}^{1} M_{j2} \left((D_x \eta_j)(D_x \eta_2)^* + (-1)^j (D_y \eta_j)(D_y \eta_2)^* + \text{cc} \right) \]
\[+ M_z \left((D_z \eta_0)(D_z \eta_2)^* + \text{cc} \right). \quad (2e) \]

Here we define the coherence lengths, \(\xi_{1,2} \), as \(\xi_{1,2}^2 = \frac{\hbar^2}{2m_1,2 |\alpha_1,2|} \).

\(\mathcal{F}_T \) is the free energy with respect to the \(\Delta_1 ′, \theta_1 ′, \) and the vector potential \(\mathbf{A} \) to obtain a self-consistent picture of the thermodynamics and spatial variation of the order parameter which reproduces the dominant features of the single-crystal data of the high-\(T \) oxides. Even though many parameters appear in Eq. (2), we understand the basic physics in simple qualitative terms. The simplest scenario is that of the
coexistence of a highly anisotropic $d_{x^2-y^2}$-state, Δ_1, responsible for the quasi-two-dimensional character of these materials, with a nearly isotropic, mixed $(s+d_{x^2-y^2})$-state, possibly characterizing the "holon"-pair hopping within the RVB picture [31]. As determined by Kotliar [11], the transition temperature, T_1, of the d-state is higher than that of the mixed state. A schematic picture of the relative magnitudes of the order parameters is given in Fig. 1. The relative phases are $\theta_1 = \pi/2$ and $\theta_2 = \pi$ near the transition temperatures. The small amount of $\Delta = \Delta_0 + \Delta_2$ state persisting above the onset temperature, T, is a consequence of the small perturbation to Eq. (2) caused by a shift from tetragonal to orthorhombic symmetry. Perhaps in a naive way, this may be viewed as adding the three-dimensional character necessary for the onset of superconductivity [9]. The existence of d-wave states, consequently gapless superconductivity, would explain the large observed Sommerfeld coefficients, while the multiple transitions of these states would explain the two specific heat anomalies observed near T_c [32,33].

We feel that the peak in the ultrasound attenuation results from the oscillations of the relative phases θ_1 and θ_2 about their equilibrium values $\theta_1 = \pi/2$ and $\theta_2 = \pi$, as suggested by Kumar and Wolfle [13] in a different context. Defining $\omega_j = \partial \mathcal{F}_j / \partial \delta_j$ ($j = 1, 2$), where $\mathcal{F}_j = \mathcal{F}_q + \mathcal{F}_T$, the oscillation frequencies are given by

$$\omega_1^2 = 4\Delta_0^2 \Delta_1^2$$

and

$$\omega_2^2 = \Delta_0^2 \Delta_2^2 (\lambda_2 - 8\Delta_0^2 \Delta_2^2 + \mu_2^2 + \mu_2^2 + \mu_2^2)$$

There will be a sharp onset of these oscillations at \bar{T} which will correspond to the attenuation peak at $T = 0.9 \bar{T}$.

We next consider the variation of the upper critical field, H_C, with orientation and temperature. Using a straightforward variational approach on the linearized form of Eq. (2), we have derived the differential GL equations, the full details of which will be presented elsewhere. For the sake of simplicity we assume a $(s+d_{x^2-y^2})$-wave mixed state with $\Delta_0 = \Delta_2 = \Delta_m$ and $\xi_0 = \xi_2 = \xi_m$ and write differential equations for fields, parallel, $H_{||}$, and perpendicular, H_{\perp}, to the xy-plane. For $H_{||} = (H, 0, 0)$ and $A = (0, -H, 0)$, we have,

$$\Delta_m = (\xi_m \phi_{inv} H_{||})^2 \Delta_m + \xi_m^2 (d^2 \Delta_m / d z^2) = 0$$

and

$$\Delta_1 = (\xi_1 \phi_{inv} H_{||})^2 \Delta_1 + \xi_1\xi_2^2 (d^2 \Delta_1 / d z^2) = 0$$

Similarly, for $H_{\perp} = (0, 0, H)$ and $A = (0, xH, 0)$, we have,

$$(\alpha \xi_2^2 + \alpha M_0^2) \phi_{inv} H_{\perp})^2 \Delta_m + (\alpha \xi_2^2 + \alpha M_0^2) (d^2 \Delta_m / d x^2) = 0,$$
\[\Delta_1 - (\xi_1 \Phi_{\text{inv}, Hx})^2 \Delta_1 + \xi_1 (d^2 \Delta_1/\text{dx}^2) = 0 \quad (4d) \]

These equations are decoupled and can readily be solved for \(H_{c2} \) within the harmonic oscillator approximation to yield

\[
\begin{align*}
H_{c2}^\| &= (\Phi_{\text{inv}} \xi_1 \xi_2)^{-1}, \\
H_{c2}^\perp &= (\Phi_{\text{inv}} \xi_2^{-2})^{-1} \\
H_{c2} &= (1 - \lambda_z/\alpha_m)(\Phi_{\text{inv}} \xi_2^2 + 2N_{02}/\alpha_m)^{-1} .
\end{align*}
\]

Figure 2 gives the variation of the critical fields with temperature for \(\xi_1 < \xi_2 < \xi_1 \). For \(H^\perp \) the upper critical field is always determined by the smallest coherence length \(\xi_1 (0 \text{ K}) \). For \(H^\parallel \) the upper critical field becomes the largest between \(H_{c2} \) and \(H_{c2}^\perp \) as given above. This may explain the discrepancy in the reported \(H_{c2} \) values of the in-plane coherence length \((\xi_1 (0) \sim 34\text{Å}, \xi_2 (0) \sim 22\text{Å}) \), as well as the kink in the \(H_{c2} \) data.

The variation of the lower critical field, \(H_{c1}^\parallel \), with orientation and temperature for the mixed state can be approximated by the expression \(H_{c1}^\parallel = (\Phi_0/4\pi \lambda^\text{eff}) \text{ln} (\kappa_\text{eff}) \) [34], which is valid for large values of the GL parameter: \(\kappa_\text{eff} = \lambda^\text{eff}/\xi_2^\text{eff} \). For this case the variation of the internal field occurs mainly in a region where the order parameters exhibit their maximum values. One can therefore obtain the penetration depth, \(\lambda^\text{eff} \), by casting the current relations into the form of the London equation, \(\nabla \times \mathbf{B} = -\lambda^2 \mathbf{A} \).

The results for \(H_{c1}^\| \) and \(H_{c1}^\perp \) are,

\[
\begin{align*}
H_{c1}^\| &= \lambda_2^{-2} - 2\lambda_m^{-2} + \lambda_2^{-2} + \lambda_z^{-2} \\
H_{c1}^\perp &= \lambda_2^{-2} - 2\lambda_m^{-2} + \lambda_2^{-2} + \lambda_1^{-2} \lambda_2^{-1} \\
H_{c1} &= \lambda_2^{-2} - 2\lambda_m^{-2} + \lambda_2^{-2} + \lambda_1^{-2} \lambda_2^{-1} \lambda_0^{-1}
\end{align*}
\]

where the same assumptions on \(\Delta_0 \) and \(\Delta_2 \) were made as for the calculation of \(H_{c2} \). At temperatures near \(T = T_c \) the lower critical field should behave as \(\lambda_2^{-2} \) since it is proportional to the square of the order parameter. Consequently the anisotropy of \(H_{c1}^\| \) should go as the square of the anisotropy of \(H_{c2}^\perp \). At lower temperatures the influence of the coupling terms \(\lambda_p \) and \(\lambda_z \) makes predictions more difficult. The anticipated behavior of \(H_{c1}^\perp \) for several values of the coupling terms is given in Fig. 3. We are at present not aware of any single-crystal \(H_{c1} \) studies over the entire temperature range \(0 - T_c \).

Summary

We have analyzed the thermodynamic, magnetic and ultrasound attenuation data on oriented samples of the high-\(T_c \) superconductors within the context of anisotropic Ginzburg-Landau theory for coupled, even-parity superconducting states. We are able to present a consistent interpretation of the data in terms of the coexistence of a quasi-two-dimensional d-wave state, with critical temperature \(T_1 \), \(T_c < T_1 \), and a more isotropic mixed (s+d)-wave state with critical temperature \(T_2 \). We predict the possibility of a "kink" in the temperature dependence of the lower critical field near \(0.9T_c \), which should be tested by experiments on single crystals.
Acknowledgments

This research was supported by the Office of Naval Research.

Literature Cited

29. The term $\Delta_0 \Delta_2 \cos \theta_2 [\lambda_2 + \mu_2 (\Delta_0^2 + \Delta_2^2)]$ of Ref. [23] is too restrictive since Δ_0 and Δ_2 need not have the same coefficients to be invariant terms.
Figure Captions

Figure 1. Schematic temperature dependence of the superconducting order parameters, where Δ_m is for the mixed (s+d)-state and Δ_1 for the pure d_2g_2-state. T_1 and $T = a - T_m$ are the critical temperatures of the mixed and pure states, respectively, and $T = b - T_0$ is the onset temperature.

Figure 2. Schematic temperature dependence of the upper critical field, H_{c2}. The dashed curves are not experimentally observable. H_{c2} is the field parallel to the ab-plane, and H_c is the field parallel to c-axis. $T = a - T_m$ and $T = b - T_0$.c2

Figure 3. Schematic temperature dependence of the lower critical field, H_{cl}. The dashed curves represent the effect of the coupling terms λ_2 and λ_2. $T = a - T_m$ and $T = b - T_0$.c2
<table>
<thead>
<tr>
<th>Institution/Individual</th>
<th>No. Copies</th>
<th>Address/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
<td>Attn: Code 1113</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Support Center Code 50C</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Code 334</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>NSTL, Mississippi</td>
<td>1</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Building 5, Cameron Station P.O. Box 12211</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Alexandria, Virginia 22314</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Dr. David L. Nelson</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Arlington, Virginia 22217</td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
Cooksville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina
27709

Dr. D. DiLeila
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. W. T. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. W. T. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853